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FACTORIZATION THEOREMS FOR SOME NEW CLASSES OF
MULTILINEAR OPERATORS*

M. MASTYLO! AND E.A. SANCHEZ PEREZ}

Abstract. Two new classes of summing multilinear operators, factorable (g, p)-summing oper-
ators and (r;p, q¢)-summing operators are studied. These classes are described in terms of factoriza-
tion. It is shown that operators in the first (resp., the second) class admit the factorization through
the injective tensor product of Banach spaces (resp., through some Banach lattices). Applications
in different contexts related to Grothendieck Theorem and Fourier integral bilinear operators are
shown. Motivated by Pisier’s Theorem on factorization of (g,1)-summing operators from C(K)-
spaces through Lorentz spaces L4 1 on some probability Borel measure spaces, we prove two variants
of Pisier’s Theorem for bilinear operators on the product of C'(K)-spaces. We also prove bilinear
versions of Mityagin-Pelczynski and Kislyakov Theorems.
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1. Introduction. The concept of absolutely p-summing operators due to Pietsch
[28] and the notion of (g, p)-summing operator due to Mityagin and Pelczynski [26]
play a fundamental role in the theory of Banach operator ideals; (¢, p)-summing op-
erators found deep applications in many areas of modern functional analysis includ-
ing for example eigenvalue distribution of Riesz operators (see [10, 15, 17]). A par-
ticular role is played by factorization theorems. Besides, there are many dif-
ferent concrete applications of such factorization that arise in different contexts.
We mention famous Pietsch’s as well as Pisier’s Factorization Theorems for linear
operators. In recent years several attempts have been made to generalize classical
linear theory to various multilinear settings; we refer to the survey paper [25] and
references therein.

The purpose of this paper is to analyze classes of multilinear operators with
new types of summability and to prove new factorization theorems for them. These
spaces of operators are defined to fit with the main known results on summing linear
operators on C'(K) spaces, and so their properties are closely related to their behavior
when acting in products of C(K)-spaces. Motivated in part by the importance of
Pisier’s Theorem on factorization of (g, 1)-summing operators on C'(K) spaces through
Lorentz Lg1(\) spaces, we will provide two possible extensions of this result in the
multilinear setting.

The paper is organized as follows. In Section 2 we investigate the class of multi-
linear operators that are defined as the composition of pointwise products of functions
and a summing linear operator. After giving a general factorization theorem, some
applications are given in four subsections. In particular, a bilinear version of Pisier’s
Theorem is proved, which gives a characterization of bilinear operators on products of
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C(K)-spaces that admit factorization through a Lorentz space by means of the point-
wise product of functions belonging to the C'(K)-spaces appearing in the domain.

Bilinear operators satisfying Grothendieck’s Theorem are analyzed in other part
of this section, as well as some applications to Fourier bilinear integrals. Finally
bilinear versions of Mityagin—Pelczy1iski and Kislyakov Theorems for factorable (g, p)-
summing operators are given.

In Section 3 we provide a characterization in terms of factorization through a spe-
cial type of tensor product of Banach lattices of a class of (r;p, ¢)-summing Banach
space valued bilinear operators from the product of C'(K)-spaces under the assump-
tion 1 < p <rand 1 < ¢g < r. We prove that this class coincides with the class of
all bilinear operators that factor through a positive (r;p, ¢)-summing operator. This
gives an adequate extension of Pisier’s Theorem for linear operators just taking into
account that it can be stated in the equivalent form: an operator T from a C(K)-
space to a Banach space Y is (q,p)-summing if and only if it factors through a positive
(¢, p)-summing operator. The main difference with the version of Pisier’s Theorem
given in Section 2 is that in this case the factorization is given by the composition
of two linear maps (first) and a bilinear operator (second); in the one provided in
Section 2, the factorization is first given by a bilinear operator (first) that is in fact
a multiplication operator, and (second) a linear map. Therefore, the result provides
an essentially different Pisier-type factorization.

In general, notation will be introduced as and when needed. Nevertheless, we
remind the reader some standard notation from the Banach space theory and the
theory of multilinear operators. Following the concept introduced by Pietsch in [30]
for scalar valued multilinear operators, if 0 < ¢, p1,...,p, < 0o are such that 1/¢ <
1/p1+---+1/pn, an n-linear operator T': X x---x X,, — Y is said to be (¢;p1,...,pn)-
summing if there exists C' >0 such that

- (1) (n)yjja \ /4 S ETRGN
(ZHT(% s T )Hy> <CITIGET)
k=1

j=1

for every choice of finite sequences (xgk));n:l in X;, 1 <k < n. Here, for a given
0 < p < oo and every finite sequence (z;)}L; in a Banach space F,

|@) el = sup (le el)”.

lz* || g <1

Recall that in the linear case (i.e., n = 1) and for 0 < p < ¢ < oo such an operator
T: X, —Y is called (g, p)-summing (p-summing for short if ¢ = p).

Our main reference for tensor products and tensor norms is [7]; some ideas from
the presentation given in [9] are also taken into account. For the theory of Banach
operator ideals we refer to [29]. As usual, given two Banach spaces X and Y, we
denote by e the injective norm on the tensor product X ® Y defined by

—Sup{‘z:rj, (Y5, y >;x*€BX*,y*€By*}, ue XY,

where Z _, % ®yj; is any representation of u. The completion denoted by X R.Y is
called the injective tensor product of X and Y. We define the injective tensor product
X1®¢ - - - ®:X,, of Banach spaces Xi,..., X, in the same way.
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We will use the well known fact that if K; and Ky are two compact Hausdorff
spaces then the injective tensor product C(K1)®.C(K3) of the corresponding spaces
of continuous functions can be identified in a natural way with C(K; x Ka).

We recall that a Banach space X has cotype ¢ (2 < g < c0) if there is a constant
C > 0 such that no matter how we select the finite sequence (xy)p_; in X,

n

(Steutt) " s ([ rmomf )

k=1

where (ry) is the sequence of Rademacher functions. The smallest of all these con-
stants is denoted by Cy(X).

2. Factorable (¢, p)-summing multilinear operators. In this section we ini-
tiate the study of factorization for some new classes of multilinear operators. Our
primary motivation for studying these classes stems out from the fact that some
known important multilinear operators belong to these classes. We begin with a key
definition.

DEFINITION 2.1. Let X;,...,X,, Y be Banach spaces, and let 1 < ¢,p < oco. An
n-linear operator T: X1 X --- x X, — Y is said to be factorable (g, p)-summing (with
constant C' > 0) if there exists C' > 0 such that for every positive integers M, N and

all M x N matrices (:ESC)), ceey (xgz)) in Xy,...,X,, respectively, we have
M N
() ONEARE
(Z[X e a,)
Jj=1 k=1

A simple observation is that we may replace the balls Bx: in the above formula
by norming sets. Recall that if X is a Banach space, then a subset £ C Bx~ is said
to be norming whenever |z||x = sup{|z*(z)|; z* € E} for every x € X.

Definition 2.1 is motivated in part by the fact that Pietsch-integral bilinear opera-
tors are factorable (g, p)-summing for any 1 < ¢, p < co. To see this we first recall that
a multilinear operator T': X X --- x X,, — Y is called Pietsch-integral (P-integral) if
there is a regular Y-valued Borel measure v of bounded variation on B Xy XX Bxs
endowed with the product of the weak™ topologies on Bx:, 1 <@ <n such that

T(ac(l)7 ...7:5(")) = / (x(l)m*{) e (x(")w;) dv(zy,...,x}),

n
BXTX“‘XBX;«L

for all (x(l), ...,o:(”)) € X1 x --+x X,,. The following calculations show that in the
bilinear case, a P-integral operator is factorable g-summing for every 1 < g < oo, and

so factorable (¢, p)-summing for all 1 < p < ¢ < oco. Fix M x N matrices (xﬁ)) and
(asgi)) in X; and Xy, respectively and suppose that T: X; x Xo — Y is a Pietsch-

integral bilinear operator associated to the regular Borel measure v. Write |v| for the
variation of the measure. Using the properties of the vector-valued integral, we obtain
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the following estimates with C' = [v|(Bx: x Bxy),

(S )

N

l/q Z H /BX* X Bx 3 ; E}C),xl (2>),$;>) dv
M a\ 1/q

<(2(/ aw)’)
Jj=1 B

q)l/q
Y

‘Z ‘qu)y:rl 5?7552)

X7 ><BX*

M N
= sup A ’Z ﬁ),xl xk,$2>‘d|u|)
(\DEB,y i Bx:xBxs ' ko1
N
S/ sup (Z)\ 5?,1}1 ;?7CL‘2>‘) d|v|
BX;‘XBXS ()\j)Gqu/ =1 k—
N
1 2
<C sup sup (Z)\j Z( ;k),:r )(x§k>,m2> )
(zf,m;)EBxi«XBX* (/\j)GB 1= k=1

Q)l/q

There are more known classes of multilinear operators related to the one given
in Definition 2.1. The first remarkable one is given by the p-semi-integral multilinear
operators. If 1 < p < oo, we say that a multilinear operator T: X7 x --- x X,, — Y is
p-semi-integral if for every set of finite sequences in the corresponding spaces we have

- (1) (n) l/p (1) (n) 1/p
(X lrE?.....«)Iy) s (Sl )
j=1 =1

B ...,x*EeB
3? € Xim sxy € X%

=C ) sup (Z’Zx(?,xl ]k,x2>

zleBXi"I;EBXS =1 k=1

Thus, Definition 2.1 gives a “factorable version” of these operators with ¢ (¢ # p) on
the left hand side of the inequality. We point out that there is a Pietsch’s Domination
Theorem which states that T is p-semi-integral if and only if there exist a constant
C > 0 and a probablity measure pon Bx; X-+-x By such that for all (x(1)7 . ,m(")) €
Xy x---Xx Xn,

|7 (=0, ., =™, gc(/B (aM,27) - (@) 27)

Xl* X"'XBX;;

du) l/p.

We remark that p-semi-integral operators are closely related to the so called 7(p)-
summing (linear) operators, which were initially introduced by Pietsch for p = 1 in
[29] and studied later in [23] for the general case. Although the definition was given
for the case of linear operators, it involves the bilinear functional T: X x Y* — K,

T(l‘,y*) = <S(l‘),y*>, (x,y*) €EX xY"

associated to the linear operator S: X — Y. Recently, more properties and applica-
tions of these operators have been studied in [34].

The second class of operators that is connected with our definition is the one of the
factorable p-summing multilinear operators were, in fact, first defined for polynomials.
In [24] (see also the references therein) it is shown that this class satisfies a Pietsch-
type Factorization Theorem through a p-summing operator composed with a canonical
multilinear map. In this case, the canonical multilinear map is the product on the
projective tensor product of the domain spaces.
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The next class of operators to which we want to pay attention is the one of
the so called integral multilinear operators, that were introduced and systematically
analyzed in [35]. The particular case of Pietsch-integral operators has been explained
above. The following characterization is known (see [35, Proposition 2.6]): T is P-
integral if and only if the linearization T of T can be extended to the injective tensor
product X;®, ---®.X,, and this linear extension is P-integral. This automatically
implies a factorization through the e tensor product and a linear operator as

X1 x - x X, T

x/

X1®e tee ®5Xn

Y

where T is P-integral, and so factors itself through an L!-space. This diagram is
similar to the one we will get for our class of multilinear operators. The class which
satisfy such a factorization but for the extended multilinear operator having values
on Y** was also studied in [35]. Finally, let us remark that another related space of
linear operators acting in injective tensor products of Banach spaces was analyzed in
[22]; see Theorem 2.4 below.

The notion that we have introduced is in a sense a mix of the definitions explained
above. It is a “factorable” class, since it admits a factorization theorem starting
with a canonical multilinear map (in this case a pointwise product) and the defining
inequalities involve matrices of vectors. It is also of 7(p)-summing type, since we have
single products of functionals in the right hand side of the inequalities. Note also that
we are interested in considering different exponents ¢ and p in the definition, so it
should be some sort of 7(p, ¢)-summing operators of factorable type. Finally, let us
point out that there are also other relevant relations with classical summing multi-
ideals. For example, it is easy to prove by writing the inequalities in the definition
for some particular class of matrices that all factorable (q,1)-summing multilinear
operators are multiple (g, 1)-summing. We are not interested in this class of operators
in this paper and so we will not analyze the details of this relation.

We present now an example showing that there exists a bounded bilinear func-
tional which is not factorable (g, p)-summing.

EXAMPLE 2.2. Consider the bilinear functional ¢: ¢? x 2 — R given by the
canonical duality,

P((A) (1)) = (A7), () = > _Ximiy  (A), (1) € 2 x £2.
j=1

We claim that ¢ is not factorable (¢, 1)-summing. Indeed, take M = 1, and the (one
row) “matrix” (s) of vectors in ¢, where s, = e for all k € N and ej, are the
elements of the canonical basis of the space. Then, for each n € N, we get that

‘ Zgo(ek,ek)’ =n.
k=1

Thus if ¢ were factorable (g, 1)-summing, we would get that there is a constant C' > 0
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such that

n=|Y elene)| < sup (e, () (e (7))

1 (Aj)EBp2,(m5)E€8,2 '

n

=C sup Ak Tk‘
(Nj)EB2,(15)EB2 kz:l
<C sup A ezl (7)1 e2 = C,

()\j)eBe2 ,(Tj)eB£2
which is a contradiction.

This example is relevant in the following sense: although it is given by the com-
position ¢ = r o ® of the pointwise multiplication ®: ¢2 x £2 — ¢! and the linear map
r: 00 = R, r((\;)) = >\, it is not factorable (g, 1)-summing. This direct relation
with the pointwise multiplication maps holds only in the case of C'(K)-spaces. How-
ever, our development may also give some non-trivial positive results for the case of
bilinear maps acting in Banach function spaces and essentially defined by a pointwise
product. We will show some of them in Subsection 2.3.

We will prove in this section that the notion introduced in Definition 2.1 is the
one fitting with our aim of describing multilinear operators that satisfy a factorization
involving a multiplication multilinear operator.

The following Proposition shows that the property of being factorable (g, p)-
summing is preserved by composition with linear operators. Since the proof is obvious
we skip it.

PROPOSITION 2.3. Let T: X1 x -+ - x X,, = Y be a factorable (q,p)-summing
operator, and let A;: Z; — X, (1 <i<n), R:Y — E be operators between Banach
spaces. Then the n-linear operator S: Zy x---xZ, — E given by S = RoTo(Ay,..., An)
is also factorable (q,p)-summing.

The following result allows to relate the class of factorable (g, p)-summing opera-
tors with the norm in a space of continuous functions. It is our main characterization
of this class of multilinear operators.

Let us introduce first some notation. Consider the compact set By X -+ X Bxx,
endowed with the product of the weak™ topologies on Bx:, 1 < i < n. We denote
by kx, the canonical embeddings rkx,: X; — C(BX;) for each 1 < i < n. If S; are
nonempty sets and f;: S; — K are functions for each 1 < i < n, then ® denotes the
pointwise product map defined by

Ofty s fu)(S1yevysn) == f1(s1) -+ fu(sn), (S1,...,8,) €51 X -+- x S,,.

If Xy,..., X,, are Banach spaces, them using the pointwise product ®, we define the
multiplication operator ®: X x - -+ x X;, — C(Bx; X --+ X Bx:) by

®(;r(1), . .,x(”)) = 0(kx, (x(l)),...,ﬁxn,(x(")))7 ($(1)7 . 7$(n)) € X1 x - x Xy,

In what follows we will denote by S the closure of the subspace of C(Bx; X+ x Bx:)
generated as the linear span of the range of the multilinear map ®.

We are ready to state the main result of this section, which gives a characterization
of factorable (g, p)-summing multilinear operators in terms of factorization through
the injective tensor product of Banach spaces. It relates directly our setting with the
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one in [22] where summing linear operators acting in injective tensor products are
studied.

THEOREM 2.4. Let 1 < p < q < co. The following statements are equivalent for
a Banach space valued n-linear operator T: X1 X --- x X,, = Y.
(i) T is factorable (q,p)-summing with a constant C > 0.
(i) There is a (q,p)-summing linear operator T: X1®¢ - - - ®.X, — Y with
Tqp(T) < C such that T admits the factorization:

X x - x X, r Y.

x/

X1®6 tee (/X\)an

(iii) There exists a constant C > 0 such that for each positive integers M, N and

all M x N matrices (a:é}c)) mn X1,...,(mgz)) in X,, the following inequality
holds:

SR ) N AR
(XX rE. =)

N
S0, @), o, (a)

p1/p

C(Bxf ><---><BX1*L).

(iv) There is a (q,p)-summing linear operator T: S — Y with ’/Tq’p(f) < C such
that T' admits the following factorization through a subspace S of C(Bx; x
- X BX*)Z

-x X, — T .y

\/

Proof. (i) < (ii). Let us show first that if T is a factorable (g, p)-summing n-linear
operator T': X1 x - -+ x X,, =Y, then T" admits a factorization:

\

X1®s : ®6

where ® is the universal n-linear mapping and T is a bounded linear operator.

If we take N = 1, then our hypothesis implies that for every finite sequence of

elements ((xgC ), “’x](cn)));nﬂ in X1 x---x X, we have
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Since the subspace spanned by the 71 ®---®x,, is dense in the injective tensor product
the above estimate allows us to define a unique bounded operator T: X1®.---®.X,, —
Y satisfying

T @ - @xp) =T(x1,...,%0), (T1,...,%5) € X1 X -+ X Xp.

We claim that the operator T is (¢, p)-summing. To see this, we take a sequence
of tensors (Zk 1 x(l) R ® xgk)) . Recall that the dual space (X; ®. - ®. X,,)*

is isometrically 1som0rphlc to the space of all integral n-linear functionals. Every
v € (X1 ®: - ®:X,)" is represented by an integral formula given by

W@, gy = /B @) ) du,
x* XX Bxx

where p is a positive regular Borel measure on the compact set Bx: X - -+ X Bxx
such that ||| = u(Bxs x - -+ x Bxx) (see, e.g., [T, Th.4.6] for the bilinear case;
see also [35, Sec.2] for the general vector-valued case). Below we write M in the
following computations for the probability measures like these ones. We have that
with C' = ,u(BXi« X X BX;({)
) 1/p
N

sup (Z ‘<Z V@ 2
- sup (3] /B > (e e

PEB(X1®c e Xn)* j=1 —
HEM Ty Xy X XBxx k=1

)1/17
M N

= sup  sup / (Z)\j (Z S@),JJ §Z),xn>))du
Bx*x---xBX* j=1

HEM (X\))EB =
)1/P

1

>~ sup (Z‘Z(x;k)7xl gz)>wn>
z’{EBXi«,m,z;‘LEBX;«L =1 k=1

Since the supremum in this expression is in fact a maximum, we conclude that there

is Dirac’s delta d,- - € M with (27 g,...,2), ) € Bxy X -+ X By such that

p) 1/p
M N

1
-(X1, (Xt ai) - i) dosg .o,

xp X XBxx Cp—1

N

1 00

M
sup (ZKZ&U(D ;7137 >
j=1 k=1

PEB(X @ ®cXn)*

p) 1/p

This shows that the inequality appearing in the definition of factorable (g, p)-summing

for T and the one in the definition of 7' to be (¢, p)-summing coincide. In consequence
this proves that the conditions (i) and (ii) are equivalent.

(i) < (iii). Take 2 € X;,...,2(" € X,,. The definition of the norm of a C(K)
space gives the equality

N

E : E: (1) (n) _x\|?
sup ’ _]k: 7561 <xjk axn>
T1€Bxy TR €Bxx v T
M N »
_ (n)
_H ‘ E ®“X1 ,...,mxn(xjk )) .
C(BXl*xmxBX;’)

1 k=1

J
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This yields the equivalence between (i) and (iii).

(iii) = (iv). Consider the subspace Sy of C(Bx:; x --- x Bx:) generated
by all the linear combinations of the functions ®(rx, (z™),... kx, (z(™)), where
M e Xy,...,2™ € X,. This is described as finite sums of products of functions
2116\[21(%(;), EEE (x,in), -) acting in the compact set Bx» x - -+ x Bx=; notice that there
is no need of writing explicitly the product by scalars in each summand, since we can
include them, for example, in the first coordinate.

Let S be the closure of Sy in C(Bx: x -+ x Bx:). We will use the well known
isometrical duality formulas:

S* = C(Bx: x - -+ x Bx:)"/S*,  C(Bx:; x - x Bx:)* = M(Bx; X -+ x Bxx).

N (n)

Since the set of all functions represented by f; = Zk 1< 5y ,-) oz, ) is dense in

the space S, we can define the operator T:S Y by

N
: ZT jk,..., §’;>)

=1

Note that 7' is well defined by the injectivity of the map ®. Next, observe that the
inequality in (ii) implies that T is a continuous operator from S into Y. Clearly, we
have the factorization T =T o ®.

On the other hand, we have

N

H;‘Z ]k’ ; 7’“’ ‘H C(Bx;xxBxy)
- Y[ )

IIEBXf,...,z;‘LEBX*j 1 1

1 * *
= sup ZK gk)a' o <§Z),>,ZL‘1®®$”>

T EBX*, LT EBX* X h—1

< sup ZK%( g >"'<$§2)7'>7<P>

WEBM(BXfXWXBX:L)j:l k—1

M N
= sup Z ‘<Z<$§}€), > o <I§'Z)7 >7¢>

P

p

p

M N »
1 n
— o ST 6
PEBs+ ;1 V=1
Combining these estimates with the inequality in condition (ii) for the factorable
(¢, p)-summing operators applied for the functions f; = Zk 1( ]k o) (az(z), -) for
each 1 < j < M, we get that

M

M _ g o
(;HT(fj)qu) SC;‘;&(ZM@V} |

k=1
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Thus 7T is (¢, p)-summing and so the claim is established. This proves (iii) = (iv).
(iv) = (iii). Assume that 7" admits a factorization T'= T o & as shown in (iii).

Consider M x N matrices (atﬁ)), ey ($§Z)> in Xq,...,X,, respectively. Then we have
W oy /e (1) N A
(ZHZT o) (ZHZT @)
j=1 k=1 =1 =
7 SIA e (n) P\/P
<7y p(T) sup (Z‘<Z<xﬂw> (ajy 7.>7¢> )
PEBse N1 k=
T S - (1) (n)
=mgp(T sup /\»< x_l,. x”,)H
qp( )(Aj)esz, ; ! kz::1< gk ) <jk ) C(Bxsx-xBxx)
T . - (1) ()
et (S0 )
qp( ) (A)EB, ; J 1;< Jk > <gk > C(Bx;X"'XBX:L)

1)) 1/p

M N
~ 1 .
Sﬂ_q,p(T) Sup* (Z’Z<$§k)7xl> o < 52)’ >

This proves (iii) = (i) and completes the proof.

To conclude we remark here that the computations given in the proof allow to
assure also that the infimum of all the constants appearing C' in the definition of
factorable (g, p)-summing coincides with 7, , (T ) for the operator T appearing in the
factorization of T'. O

We will show in the following subsections of this section some applications to
bilinear operators factoring through pointwise multiplication operators which appear
in problems related to some classical extension theorems.

2.1. The first variant of Pisier’s Theorem. As in the case of linear p-
summing operators, the factorization theorems that are obtained for the case of C(K)
as domain spaces are special. The reason is that in this case, the operator is already
acting in C(K)-spaces, and is not necessary to embed the domain X in the space
of continuous functions C(Bx~«). We will show in this section how we can provide
a factorization of the multilinear operator using the specific elements appearing in
this space. In particular, the pointwise product f() ... f(®) of the original functions
fM e C(Ky),.., f™ € C(K,) will play a key role.

One of our aims is to investigate the class of multilinear operators on the product
of C(K)-spaces for which a multilinear variant of Pisier’s result is true. The indicated
topic of this section is inspired by the remarkable factorization theorem due to Pisier
[31], which asserts that an operator T' from a C(K)-space to a Banach space Y is
(¢, p)-summing with 1 < p < ¢ < oo if and only if there is a probability Borel measure
1 on K such that T factors as follows:

T: C(K) -5 Lya(u) =5 Y,

where j is the continuous inclusion map. Here L, 1(p) is the Lorentz space on the
measure space (K, B(K), i) equipped with the norm

1
17 = / () dt,
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where B(K) is the o-algebra of the Borel sets in K and f*(¢t) = inf{s > 0; u({|f| >
s}) < t}, t €0,1] is the decreasing rearrangement of | f|. Notice that Pisier’s Theorem
is a cornerstone in the theory of (g, p)-concave operators, which is deeply connected
with the linear theory of (g, p)-summing operators (see, e.g., [10, pp. 326-345]).

Now we are ready to state the multilinear version of Pisier’s Factorization Theo-
rem. For simplicity of presentation we state only a bilinear version; the proof of the
multilinear version is similar via Theorem 2.4(iii).

THEOREM 2.5. Let 1 < p < q < co. The following statements are equivalent for
a Banach space valued bilinear map T: C(Ky) x C(K3) =Y.
(i) T is factorable (q,p)-summing.
(ii) For each positive integers M, N and all M x N matrices (fji) and (g;i) in
C (K1) and C(Ks3), respectively, the following inequality holds

M N q\ 1/q Mo N py\1/p
(Z H ZT(fjkagjk) ) < C’H (Z ’ Z@(fjkagjk) )
j=1 k=1 =1 k=1

(iii) There is a probability Borel measure p on Ky x Ko such that T admits a fac-
torization:

C(K1xK2)

C XOKQ

\/

Proof. Since the set of all evaluation functionals forms a norming set in any
C(K)-space, it easily follows that for all M x N matrices (f;x) and (g;x) in C(K;)
and C(K3), respectively,

sup ( ‘ i%k’@(gjkvw‘p)l/p

PEBo(ry ) YEBo(Ky)* 21 =1

M N p\ 1/p
IS S5t s

Thus, by the natural identification of C(K)®.C(K3) with C(K; x K»), it follows
that (i) is equivalent to (ii).

(ii) = (iii). Applying Theorem 2.4(ii), we conclude that the operator T factors
through C(K; x K3). Denote by T the linear operator T which appears in the
factorization Theorem 2.4(ii), and note that it satisfies the inequality

(S In(Zetman)])" sel(SISetmm)”
j=1 k=1

for all M x N matrices (f;x) and (g;%) in C(K) and C(K>), respectively. Since the set

of functions of the form Z;‘il ©(fj,95) is dense in C (K7 x Ks), the above inequality
holds for all functions in C'(K; x K»). This yields that for all h; € C(K; x K),
1<j5<n,

g

<

I
-
ES

I
—

C(Kl XKQ)

(SSlmol)" <] (S5 m)

C(Kl ><K2)
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and so Ty: C(K; x K3) — Y is (¢, 1)-summing. Then Pisier’s Theorem [31] (see
also, [10, Theorem 10.9]) gives the desired factorization by taking 7' = Tj o i, where
i: C(Ky X K2) < L4 1(u) is the natural identification map.

(iii) = (ii). Suppose that T factors as it is shown in (iii). Since y is a probability
Borel measure on K7 x K, the canonical inclusion map i: C(K; X Ko) — Lg 1 () is
continuous; in fact, it is easy to check that it is (g, 1)-summing. Since via a natural
identification we have that C(K; x K3) is the injective tensor product of C'(K) and
C(K3), it follows that the bilinear map @: C'(K;) x C(K3) = C(K; x K3) is bounded.
To summarize, we have that the bilinear operator T" admits a factorization:

C(K;) x C(Ky) T Y
A
o} T
v %
C(Kl X KQ) > Lq,l(,u).

Now, applying the linear Pisier’s Theorem we conclude that for all M x N matrices
(fjx) and (g;) in C (K1) and C(K>), respectively,

Mo a\1/a M N p\ 1/p
(3 rtman],) " = | ([ etheam] ) "o e
j=1 k=1 j=1 k=1

and this proves (ii). O
Note that we have actually proved that a bilinear operator T: C(K7) x C(K3) —
Y is factorable (g, p)-summing if and only if it factors as

C(Kl) X C(Kz) Y

A
® T
v .
C(K1)®5O(K2) ! >Lq71(u)

where g is a probability Borel measure on K7 x Ky. That is, factorization through
the injective tensor product is implicitly guarantied. Other relevant fact regarding
this factorization is connected with the so called Fremlin tensor product of Banach
lattices (see [11]). It is well-known that for the case of products of C'(K)-spaces, the
injective tensor product and the Fremlin tensor product coincides (see [11, Corollaries
3E]). We will develop this particular point in the last section of the paper.

2.2. Grothendieck’s Theorem for factorable (¢, p)-summing operators.
We recall that Grothendieck’s Factorization Theorem states that if Ky and K> are
locally compact Hausdorff spaces and U is a bounded bilinear functional on Cy(K7) X
Co(K3), then there exist probability Borel measures pi1, pa, on Ki, Ko, respectively,
such that for all f1 € Co(K7), fo € Co(Ka),

1/2 1/2
IU(f1,fz)|<ﬁcU||</K |f12du1> (/K |f22duz> ,

where k¢ is universal constant.
We refer to [32] where a nice presentation of this classical topic is given. A mul-
tilinear variant of Grothendieck’s Theorem is known (see [5, Theorem 3.2]). In this
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section we will show that all factorable (g, p)-summing bilinear (vector valued) opera-
tors satisfy Grothendieck’s Theorem, and that this can be translated to a factorization
scheme.

In what follows we assume that K; and Ky are given locally compact Haus-
dorff spaces. Let T: Cy(K1) x Co(K2) — Y be a factorable (¢, p)-summing opera-
tor. Then it defines two operators T7: Co(K1) — L(Co(K2),Y) and Ty: Co(K2) —
L(Cy(K1),Y) in the standard way, for given f € Cy(K;) and g € Cy(K>),

Ti(f)=T(f,"): Co(Kz2) =Y, Ta(g) =T(-,9): Co(K1) =Y.

We can state now the following technical result.

PROPOSITION 2.6. Let T: Cy(K1) x Co(K2) — Y be a factorable (q, p)-summing
bilinear operator. Then the associated linear operators Ty and Ty are (g, p)-summing.

Proof. Let (fj)j]‘/i1 be a given sequence in Cy(K7). Then for a given £ > 0, we
can find (g;)}Z; in the unit ball of Cy(K3) such that

1T (f)llLicoka), vy < (L Ti(fi)gilly = 1T (f5, 95)lly-

If T is factorable (g, p)-summing with a constant C, we obtain (by considering
only M x N matrices with N = 1)

M
(Z”Tl(fj)Hquco(m),Y))l/ (1+¢) (ZHT Fiv o)y )

j=1 Jj=1

M 1/p
gC(1+a)H(Z\®(fj,9j)\p> ‘
j=1

Cg(Kl)

M

<C(l+e¢) H(Z \fj|p)1/p

j=1

CO(KI)'
Since e > 0 was arbitrary, we get that T3 is (¢, p)-summing with 7, ,(71) < C. Similar
arguments prove the result for 7. O

PROPOSITION 2.7. Let 1 < p < g < oo and let T: Co(K71) x Co(K2) = Y be a
factorable (q, p)-summing bilinear operator. Then the following statements hold:
(i) There exists a constant C' > 0 such that for every sequence (f]) 7, in Co(Kq)
and (g;)}L, in Co(K3), we have

&l q\ /4 M 2\ /2
(;HT(fj’gj)Hy) <C“(;|fj|) HC(K)H(Z‘QJ ) HCO(KZ)'

(ii) There ewists a constant C' > 0 such that for every sequence of functions
(f]) 1, in Co(Ky) and (g]) 1, in Co(K3), we have

=S e (S i0)

Co(K1) Co(K2)

M
H ZT(fj’gj
j=1
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Proof. Our hypothesis implies that there exists a constant C' > 0 such that for
all M x N matrices (fx;) and (gx;) in Co(K7) and Cy(K>), respectively, we have

(ZH Tfka’gka )UQSCH(i(iﬁm~|gkj|)p)1/p

— Co(K1xK2)
M N N
fril - 19xs H fril - gk
H;;' il 19ws] C(K1><K2) Z;' 3l lgws| Co(K1xK>2)
ey f:f o] SIS 1B) 2 (S lanl?)
D DIERTE < 3| (Xial) " (Xloul?) 7
P e il 9k Co(K1 xKa) =N ! et / Co(K1 X Ka2)

an

M 12
z z 2
H( |f g Co(K1) =1 |g J‘ Co(K2)

Applying the above in the case N = 1, we get that for any finite sequences ( fj)j]‘/il
and (g;)7L, in Co(K1) and Co(Ky), respectively we obtain

M M M
(X I alg) " <o ( > =) > 57)

Similar arguments, now with M = 1, yields

N N 12
I3 0], <) I )

as required. 0

Co(K71)

COROLLARY 2.8. The following statements are equivalent for a Banach space
valued factorable 1-summing bilinear operator T: Co(K1) x Co(K2) — Y.
(i) For all finite sequences (f;)}, in Co(K1) and (g;)}L, in Co(K2),

M M 1/2
> 0l < (1) g, | (S 07)

(ii) There are reqular Borel measures A1 and Ay on Ky and Ks, respectively, such
that for every f € Co(K1) and g € Cy(Ka),

oty <c [ iean)" ([ 1o o)

In particular, this implies the following factorizations:

‘C (K1) CO(KZ).

Co(K1) ——— L(Cy(K2),Y), Co(K2) ———= L(Co(K1),Y).
A A
i Q i Q
Y ~ Y -
L2(\1) T L(L2 (M), Y) L2(\2) s L(L2(\),Y)

Proof. (i) is a direct consequence of Proposition 2.7(i) for ¢ = p = 1. The
equivalence of (i) and (ii) can be proved using a standard Hahn-Banach separation
argument (see for example [19]). O
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We remark here that not all Banach valued bilinear operators Cy(K;) x Co(K32)
are factorable 1-summing. To see this, note that there is a bounded bilinear functional
T: ¢y X ¢g — K such that

o0

S T(ej.en)] = o0

jk=1

(see [18]). Clearly, such a T is not factorable 1-summing; however it satisfies the
Grothendieck Factorization Theorem.

2.3. Summability of bilinear integrals operators. Many relevant multilin-
ear operators appearing in classic and new problems of harmonic analysis and partial
differential equations are essentially defined by means of the composition of a point-
wise multiplication of functions and a kernel operator. This is the case for example
of the so called bilinear Fourier integral operators or the bilinear oscillatory integrals
(see, e.g., [4, 13]). For example, consider a classical bilinear Fourier integral operator
P, where ¢ is a Hormander symbol by

Po(fu fo) () = / o (@, 61,62) Fu(€1) al€) 76T de, dey:

R2n

originally defined for fi, fo Schwartz functions on R2?". Here, as usualAf de-

notes the Fourier transform of the Schwartz function on R2?" given by f(¢) =

fR% f(z)e 2™ =8 dz for all £ € R?", where (-,-) denotes the inner product in R?".
It can be easily seen that an equivalent formula for P, is given by

Py(f1, f2)(x) = / o(x,&1,&) f1(y1) folys) 2@ vGH@=1)8) gy, gy, de, dés,

R4n

in which the pointwise multiplication appears explicitly.

To obtain suitable domains and ranges for such operators —LP-spaces, weak
LP-spaces, Lorentz and Marcinkiewicz spaces — is the subject of some fundamental
developments in harmonic analysis, as the Calderén-Zygmund Theory (see [14]). The
arguments used for obtaining these spaces are deeply related to the classical develop-
ments in harmonic analysis, and in general only few of the known results in general
multilinear operators summability theory are applied.

We will show that general functional analytic arguments as the ones obtained in
this paper allow also to shed some light on the summability properties of such maps.

LEMMA 2.9. Let E and Y be Banach spaces and let (Q, A, u) be a o-finite mea-
sure. If Y has cotype 2 < q < oo, then the following are equivalent statements about
a blinear operator T: L>®(u) x E =Y.

(i) T is factorable (q,1)-summing

(ii) There exists a constant C > 0 such that for every finite sequences (f;)7_;

and (z;)7_; in L*°(n) and X, respectively, we have

E

H zn:T(fj,xj)HY < Cess SqueQH zn:fj(w) mJH .
Jj=1 j=1

Proof. We will use Theorem 2.4 (ii). Recall that L>® ®. E < L*°(u, E') isometri-
cally. Clearly, the inequality appearing in (ii) means that the linear extension T of T'
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—originally defined in the projective tensor product— can be extended to L*>° ®. F,
since

n n
ess supwEQH ij(w) IJHE - H ij IjHLOO(,u E)'
i=1 =t |

On the other hand, T is (g, 1)-summing, since Y has cotype ¢. Thus, Theorem 2.4
(ii) gives the required equivalence. O

We present an example from classical analysis of a bilinear map that is defined by
the composition of pointwise product of functions (of different variable) and a measur-
able kernel. Given three o-finite and complete measure spaces (21, 31, 1), (Q2, 3o, v),
(Q3,%3,7) and a measurable kernel defined on € x 5 x Q3, we define a bilinear map
I by

I09)@) = [ kw0,0) 1) g0) dufw)du(v), o €
Ql X QQ
where f and g are measurable functions in the corresponding measure spaces.

THEOREM 2.10. A bilinear integral operator I generated by a kernel k is factorable
(g, 1)-summing from the product I: L*°(u) x L™ (v) — L9(n) if and only if there exists
a constant C' > 0 such that the kernel operator K defined by

K(t)(x) ::/ k(w, v, 2)t(w,v)dp(w)dv(v), x€ Q3
Ql XQQ
for all t € L*>°(u) @ L"(v) satisfies the condition

| K(t < CH [|t(w,v)|

) HL‘I(n) ‘LOQ(M).

L7 ()

Proof. For any finite sequence (f;)?_; in L>(u) and (g;)"_, in L"(v), we have

|3 10500
j=1

([ b, 0,2) () g5(0) dp(w) dv(w)| dnz) )
o= LI " ane))

-(/.

1/q

[ b3 500 duw) avio)| dn(o))

and

n n r 1/r
s suacal| Y f@ o], =esswaca( [ | S0 )
j=1 3 j=1

Then the inequality shown in the condition (ii) in Lemma 2.9 can be rewritten as the
integral inequality

(1,

" dn(x) ) v

/Ql X Qs kw, v, ) (é fi(w) gj(v)) dp(w) dv(v)

1/r

Tdu(v)) . (1)

< Cess supweg(/Q ‘ i fi(w)g;(v)

3 j=1

Combining with Lemma 2.9 we obtain the required statement. O
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2.4. Bilinear operators on the disk algebra. In this subsection, we will
characterize the classes of bilinear operators as T': X; x Xo — Y that satisfy that
the one-side associated linear operator ®7: X; — L(X5,Y") has certain summability
properties. We will show a characterization of the class of bilinear maps for which
®r is defined on the space II; . (X2,Y) and is (s,p)-summing. As an application we
will show variants of Mityagin-Pelczyniski and Kislyakov Theorems on the existence of
extensions to C(T) x E preserving summability properties of bilinear operators acting
in the product of the disc algebra C'4 and a Banach space E.

The class of bilinear operators given in Definition 2.11 below will be the key of
our results of the section. It was initially inspired by [22], and also in connection with
the question of how the class of bilinear operators introduced in Definition 3.6 of [33]
can be used in the proof of Proposition 3.7 in the same paper. Our definition is not
symmetric, in the sense that we develop the “right hand side” version of such results;
the reader will notice that a similar development can be done in the symmetric “left
hand side” case.

DEFINITION 2.11. Let X1, X5, Y be Banach spaces, and let 1 < ¢, s,p,r < 0o be
such that » < g and p < s. A bilinear operator T: X; x Xo — Y is said to be right-
(g, s; p, r)-summing if there is a constant C' > 0 such that for all sequences (x;l))jle

in X; and all M x N matrices (mﬁ)) in X, we have

SIAS ( s/ay1/s (1) @
(;(;HT@ AI) ) <ClE@, max @),

Recall that given a bilinear operator T: X; x Xo — Y, it defines a linear operator
Or: X7 — L(X5,Y) by the formula

Op (M) =T (2™, ): X3 > V.

PROPOSITION 2.12. Let T: X1 X Xo — Y be a bilinear operator. Then it is
right-(q, s; p,r)-summing if and only if the associated linear operator ®r is defined
from X1 to 11, .(X2,Y) and it is (s,p)-summing. In this case, the least constant C
in the above definition coincides with s, (D).

Proof. Suppose first that T' is right-(g, s; p, 7)-summing, and consider the linear
map ®r. Assume that 1 < ¢, s,p,r < oo (the proof for the cases involving parameters
equal to oo is the same and is obtained with the obvious changes). Fix M = 1, and

consider () € X; and a sequence of elements (xgk)) in X5. Then

N 1/q
(Sl 8) ™ < ClleDly, 1D,
k=1

That is, the operator @7 (z(Y)): X5 — Y is (¢,7)-summing. On the other hand, for
every € > 0 and every finite sequence ( g ))j in X there exists a sequence (x(?)fg\f 1

for each 1 < j < M such that H(xjk Hw - <1 and

(iﬂ'q,r(@'T(x;l)))s) (1+¢) (Z(ZHT 51)7 ;i) 1 )S/Q)l/s

<c(+e) (), max [[(@)]ler < CO+e)l)wsp.

WP 1<j<M
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Since ¢ is arbitrary, @ is (s, p)-summing with 7, ,(®7) < C.

For the converse, just take a sequence (xgl)) in X; and a matrix (z(k)) in Xo.
Then

(3 (e ™) (z_:l(gn% D))
f ) DI,)

0 (®2) 125, a2,

The computations also show the coincidence of C' and 75 ,(®7). O

INA
LT

\ /\

We remark here that bilinear operators satisfying that the associated linear ones
are defined in a space of p-summing operators and are ¢g-summing has been already
considered. In fact, they play a relevant role in [22], in which this property appears
(see for instance Theorems 11 and 12 in this paper). Some of the bilinear maps
considered act also in the product C'(K) x E, in which we will center our attention
in what follows.

We also note that there is a connection between factorable (g, p)-summing op-
erators and right-(g, s; p, r)-summing operators. In particular, it can be easily seen
by using Theorem 2.4 that Theorem 5 in [22] gives the following: if X; is an L°°-
space, then for Banach spaces X5 and Y, a bilinear operator T: X1 x Xo — Y is
factorable (1,1)-summing if and only if ®7: X7 — II1(X32,Y) is l-summing. It fol-
lows from Proposition 2.12 that this can be rewritten as follows: a bilinear operator
T: L* x X9 — Y is factorable (1,1)-summing if and only if it is right-(1,1;1,1)-
summing. Theorem 6 in [22] gives also a coincidence result. In this case, it can
be rewritten as follows: Let X7, X5 and Y be Banach spaces. If T: X1 x Xo — Y
is a factorable (2,2)-summing operator, then ®p: X7 — II5(X5,Y) is a 2-summing
operator, that is, T is right-(2, 2; 2, 2)-summing.

Taking into account that cotype g (¢ > 2) for a Banach space X implies that the
identity map in X is (g, 1)-summing, we obtain the following result.

COROLLARY 2.13. Suppose that the Banach space Y has finite cotype q. Then all
the classes of right-(t, s; p,r)-summing bilinear operators for t > q > r coincide with
the one of right-(q, s; p, 1)-summing bilinear maps.

We apply our result to prove some variants of Mityagin-Pelczynski and Kislyakov
Theorems on the existence of a bilinear extension of a bilinear map from C4 x E to
C(T) x E preserving its summability properties. Here as usual we denote by C4 the
disk algebra, which is the uniform closure of the analytic polynomials in the Banach
space C(T) of continuous functions on the unit circle T in the complex plane.

We recall that Mityagin-Pelczyniski Theorem states (see [26]): For 1 < p < oo,
every p-summing operator from the disk algebra C's to a Banach space Y extends to
a p-summing operator from C(T) to Y.

We also will need Kislyakov’s Theorem (see [16]) which states: For an arbitrary
Banach space Y and 1 < p < q¢ < o0, every (q,p)-summing operator from the disk
algebra C4 extends to a (q,p)-summing operator from C(T) to Y.

The above results allows us to conclude that the class of right-(q, s; p, 7)-summing
bilinear operators admit extensions from Cy4 to C(T).
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COROLLARY 2.14. Let E a Banach space. Let T: Cx x Xo — Y be a right-
(g, s;p,r)-summing bilinear operator. Then it can be extended to a right-(q,s;p,r)-
summing bilinear map T: C(T) x E =Y.

Proof. As a consequence of Proposition 2.12, we have that &7 can be defined
as an operator ®p: Cy — II,,(E,Y) and ®r is (s,p)-summing. The application
of Mityagin-Pelczyriski Theorem (for s = p) or of Kislyakov’s Theorem (for p < s)
provides an extension to C(T) that is still (s, p)-summing. Using again Proposition
2.12, we obtain the result. O

The case of right (oo, s; p, 00)-summing bilinear operators —that is, ¢ = r = co—
is relevant for our purposes. Clearly that a bilinear operator T: X3 x Xo — Y is
(00, s; p, 00)-summing whenever

M
1/s
(I 05) " < ey i, 157,

holds for all finite sequences (l‘gl));\i and (x 2))j: in X; and X, respectively.

LEMMA 2.15. If T is factorable (s,p)-summing, then it is right (oo, s;p,00)-
summing, and so (0o, s;p,r)-summing for all 1 <r < co.
Proof. If the definition of being factorable (s, p)-summing is taken only for M x 1

matrices, we conclude that for all sequences (:17;1)) and (zf)) in X7 and X5, respec-
tively, we have
p) 1/p

. @ @y ) N (1) (D)
(S lrE=P)5) " <e s (Z|<xj @) (el a5)
j=1

xleBx*,xgeBX*

sup (Z| W o) P l®r) "

wleBX*

<Ol|@5),, ma, [l

w,p 1<G< M HX2

and so the result follows. O
A direct consequence of Corollaries 2.13 and 2.14 and Lemma 2.15 is the following

COROLLARY 2.16. IfT: Ca x E =Y is factorable (s,p)-summing, then there
is an extension T: C(T) x E — Y that is (00, s;p,r)-summing for all 1 < r < oo.
Moreover, if Y is a cotype q space, then T is right (q, s; p,r)-summing for all1 <r < q.

3. Factorization of (r;p, ¢)-summing bilinear operators. In this section we
are interested in studying the factorization properties of (r;p,¢)-summing bilinear
operators, where r, p, ¢ € [1,00) and 1/r < 1/p+1/q. We will show that in this case
domination and factorization do not follow the same lines.

We recall that the notion of (g;p1,...,ps)-summing operator was introduced in
[2]. For more information we refer to the survey paper on multilinear summing oper-
ators [25]. The case 1/¢ = 1/p1 + -+ + 1/p, has a particular interest in the theory
of multilinear operators, and provides the so called “dominated operators”. This
notion defines a class of multilinear operators for which a Pietsch’s Domination The-
orem holds. It should be noticed here that this type of domination theorem for an
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n-linear operator T: X7 X - -+ x X,, = Y is equivalent to a factorization that is es-
sentially different from the one that we have proved in the previous section. In the
case of the mentioned Pietsch Domination Theorem, the operator factors through
a product LP'(u1) x -+ - X LP"(uy,), where the p;’s are probability Borel measures
on Bx: endowed with the weak®™ topology, by means of a product of canonical maps

C(BX*) — LP(p;) for each 1 < 4 < m. Thus the factorization is obtained by
usmg a domination theorem involving probability measures and functions in the unit
balls of the corresponding C'(K)-spaces, as in the linear case (see [10, Theorem 10.8]).
We will show in this section that these ideas do not work for the general case of
summing multilinear maps. The interested reader can find different versions of dom-
ination/factorization theorems for dominated-type multilinear maps that extend the
linear case in [6, 25, 27] and the references therein.

We will need the following result from [19] on domination of bilinear operators.

THEOREM 3.1. Let 0 < p,q < 0o and let X and Y be quasi-Banach lattices such
that both duals (X1 /,)* and (Y1,4)" separates the points of X1, and Y 4, respectively.
Assume that ¢: Ry — R4 is an increasing and continuous function, 0 < Cp, Cs < 00
and that A C X, B CY are non-empty sets. The following are equivalent statements
about a bilinear operator T' from X XY to a quasi-Banach space E.

() For any set of positive scalars (ag)P_, with Y ;_, e = 1 and any sets (fx)P_;

in A and (gr)p_, in B, n €N,

S~ (T (fis ) 1) < Cr || S anl el
k=1 k=1

n
+ OQH Z Q.
k=1

(ii) There exist positive functionals x* € Bx,,,) and y* € By, , ) such that

1/p

o(IT(f. 9)lle) < Cra™(IfIP) + C2y(Igl?),  (f.9) € Ax B.

Here as usual given a quasi-Banach lattice X and 0 < s < oo, X, is the s-
convezification X of X equipped with the quasi-norm ||z||x, = |||=|® ||1/§
denotes the Mackey norm on X ,,.

Let 1 <7, p, ¢ < oo be such that 1/r < 1/p+ 1/q. We start our discussion on
(r; p, ¢)-summing bilinear operators from the product of C'(K)-spaces. Since for every

1 <'s < 0o and any choice of finite sequences (f)}_, in C(K),

(3 180)" = [ (S184)

it follows that a Banach space valued bilinear operator T: C(K;) x C(K2) — Y
is (r;p, ¢)-summing if there is a constant C' > 0 such that for any choice of finite
sequences (fx)p_, in C(K1) and (gx)7_, in C(K>),

(S hrtsole) = e ()] IS ) e

We observe that it follows from factorization Theorem 2.5 that an operator T
satisfying the summability property shown in condition (i) is also (r;p, ¢)-summing,
1/r <1/p+1/q, r > 1. To see this, use Pisier’s Theorem for the inclusion C(K7) ®.
C(K3) = C(Ki1 x Kg) — Lg1(p): since it is (r,1)-summing (see [10, p. 205]), we

and ||,

HSDHC(K)*<1
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conclude that for any pair of finite sequences (f;)}_; in C(K1) and (g;)7_, in C(K2),
we have

(310 sl ) <[ 10 el
k=1
< (S IAr)" (X ) N
<cf(Xu) . H(Zigkl) Do

and so combining with factorization we obtain that T is (r;p, ¢)-summing,.

Let us show now our first example. Let T: X XY — Z be a bilinear operator from
a product of Banach spaces to a Banach space Z, and let 1 < r < o0, 2 < p,q < o0
be such that 1/r < 1/p+ 1/q. Assume that X has cotype p and Y has cotype q. We
claim that T is (r, 1, 1)-summing; in fact for any z1,...,2, in X and y1,...,y, in Y,
we have with C' = ||T|| C,(X) Cy(Y),

(S wls) <) (znj feel?) ”(i )

k=1
< ([ I rwm @) ([ |3 ron], )"
<O sup H;emﬂx up H;fkykﬂy

lex|=1

=C sup (ilxk ) sup (’é|<yk,y*>l),

[ly*|ly=<1

where as usual (r3) denotes the sequence of Rademacher functions on [0, 1].

To show the next example assume that 1 < r < p,¢ < cosuch that 1/r = 1/p+1/q
and let T: X XY — Z be a positive bilinear operator from a product of Banach lattices
into an r-concave Banach lattice Z with constant M (T)(Z ) = 1. Using the inequality
given in [8, Theorem 6.2], we conclude that for any choice of elements 1, ..., 2, in
X and y1,...,y, in Y, we have (with C = ||T|| C,(X) Cy(Y)),

(S Ireeuwls)” < ||T||(Z"j ||xk||§()””(znj Jwly) "
k=1
< ([ I momfa) ([ S mom], )"
< s [ en] s HZ%H
k=1

ler|=1
n
=C sup (Z|<xk,x*>|> sup (Z|<yk,y*>|)
o[- <1\ £ ly*lly-<1 N =

This shows that T is (r;p, ¢)-summing.
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As it was mentioned for the general case at the beginning of this section, for
1/r =1/p+ 1/q the (r;p, ¢)-summing bilinear operators satisfy a Pietsch’s Domina-
tion/Factorization Theorem; more precisely a bilinear operator T: C'(K;) x C(K3) —
Y is (r;p, ¢)-summing if and only if it admits the following factorization:

C(Ky) x C(K2) - Y

X1 /

LP () x L (pg)

where pq and pe are probability Borel measures on K; and Ko, respectively (see
(12, 21]).

One could expect that the similar bilinear version is also true for Pisier’s Theorem,
e, if 1/r <1/p+ 1/q, then a bilinear operator T from the product C'(K;) x C(K32)
to a Banach space Y is (r;p, ¢)-summing if and only if it factors as follows

C(Kl) X O(Kg) Y

ixi /

Lgq(p1) x Ly (pe)

for suitable probability Borel measures p; and pus on K; and Ko, respectively, and
suitable 1 < s,t < oo. We show that this is not true in general, even if we assume
that T is a positive bilinear operator. Recall that the product Ls1(p1) x Ly (us2)
equipped with the natural order and norm is an order continuous Banach lattice, and
the same is true with the product of any pair of order continuous Banach lattices.

PROPOSITION 3.2. Let 1 < p < co. There is a (1;p, 1)-summing positive bilinear
map T: C(K) x C(K) — C(K) which does not admit a factorization:

C(K) x C(K) T C(K)

\/

Xi(p1) x Xo(p2)

for any pair of order continuous Banach lattices X1(p1) C L'(u1) and Xa(u2) C
LY (p2) over finite measure spaces, any positive linear operator R and any bilinear op-
erator S. In particular, we conclude that there is a positive (1;p, 1)-summing bilinear
operator which does not factor through Ls1(p1) X Ly 1(p2) for any pair of probability
Borel measures py and pe on Ky and Ko, respectively, and suitable 1 < s,1 < oo.

Proof. Let ¢ € C(K)* be a positive norm one functional on C(K). Consider the
bilinear operator T: C(K) x C(K) — C(K) defined by

T(f,9) = (9. 0)f, (f.9) € C(K) x C(K).
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Note that for any choice of finitely many f1,..., f, and g1,..., g, in C(K), we have
ST gl < D fellous el < sw lfillous (X lo(on)
shsn k=1

s (3 Il
k=1

C(K) ¢peBeo(xy*

k=1
) [

and so T is (1; p, 1)-summing. Suppose that T" admits a factorization:

T: O(K) x O(K) % X1 (u1) x Xa(u2) > C(K)

where X (u1) and Xo(u2) are Banach lattices with the properties appearing in the
statement of the theorem, and R is a positive linear operator. We recall the well known
fact that a Banach is lattice E is order continuous if and only if every order interval
of I is weakly compact (see [3, Theorem 12.9, p. 179]). Since Bk X Bk is order
bounded in the order continuous Banach lattice X7 (u1) x Xa(u2), the image by the
positive map R is contained in an interval I in X7 (u1) X X2 (u2) and so this would imply
that 7' is a weakly compact operator. However this is a contradiction by T'(Bg (k) x
Beky) = Be(k) whenever C(K) is infinite dimensional space. As a consequence,
we conclude that T' does not admit a factorization through Lg1(u1) X Ly i(pe) for
any pair of probability Borel measures p; and pe on K7 and Ks, respectively, and
1<t,s<oo. 0O

We remark that the bilinear operator C'(K) x C(K) > (f,g) — (g,¢) P(f),
where P is any positive non weakly compact operator from C(K) to a Banach lattice
Y, provides a new counterexample to the factorization problem discussed in the above
proof. Motivated by this negative result we will consider the question of factorization
of bilinear (r;p, ¢)-summing operators from the product of C'(K)-spaces.

We start with the following remark: if 1 < p < r < oo and 1 < ¢ < r, then
a bilinear operator T from the product C(K;) x C(K3) to a Banach space, which
factors through the product L, 1 (1) x Ly 1(12) of Lorentz spaces is (r; p, ¢)-summing.
To see this we need to use Theorem 3.3, that will be proved later. If f € Bo(x,) and
g € Bc(k,), it follows from the linear Pisier’s Factorization Theorem that there exists
a positive constant C' such that

T D™ < USI™ (s ey + 190200 002) ™ < C U Iy + 1900 ) -

Thus applying Theorem 3.3 we conclude that 7" is (r;p, ¢)-summing.

To prove and state our next results, we need to define some Banach spaces which
seem to be of independent interest. Fix p,q,r € [1,00) with 1 <p <r,1 < ¢ <r and
compact Hausdorff spaces K7 and Kj, and two probability Borel measures p; and
p2 on K and Ky, respectively. We define a seminorm ., , on the tensor product
C (K1) ® C(K3) by the formula:

n

. 1— 1
Tripaq(2) = inf { Sl M sl gk lle e + grllEa g laxll e il kancm))}
k=1
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where the infimum is taken over all representations z = > ;_, frgr of z € C(K1) ®
C(K3). We define the tensor product C(Ki) ®r,.,, C(K2) as the quotient space

generated by the seminorm, and C(K1)®,., ,C(K>) for its completion.

Now, we define a Banach lattice which will be a cornerstone for establishing our
result on factorization of some class of (r;p, ¢)-summing bilinear operators. The idea
is based on a variant of the Fremlin |r|-tensor product for Banach lattices. Recall the
definition of the positive projective norm |¢| on a tensor product of Banach lattices
given in [11] and compare the definition below with [11, 1E (vi)]. Let p, ¢, 7 € [1,0)
satisfy 1 < p < r, 1 < g < r. Consider two given probability Borel measures
and o in K7 and Ko, respectively. In the tensor product C'(K;) ® C'(K3) considered
as a subspace of the Fremlin tensor product C(K 1)<§>|ﬂ‘C(K2)7 we define a seminorm

7| rsp,q bY

) r 1—p/7 s 1 T
|7 |rip,a(2) = inf { STl Ml S gkl eeay + gr 127 gkl o i fillex K1>>}
k=1

where the infimum is taken over all dominations |z| < >)_, |frgr|. Notice that
this seminorm is continuous with respect to |rw|. Thus, the kernel of the seminorm
is closed in the normed lattice. With the order induced from the normed lattice
C(K1) ®x| C(K2), it is clearly an ideal. We put L, ¢(p1, p2)o for the quotient
Riesz space, that is a normed Riesz space with the quotient lattice norm (see [3,
Ch.4]). Note that it is also a normed Riesz space for the seminorm |r|,.,, that
by definition of the quotient is also an order preserving norm in this space. More-
over, its completion is a Banach lattice (see [3, Theorem 4.2]). Clearly, in the
dense (quotient) subspace C(K1) ®|x|,, , C(K2) of Ly 4(p1, p12) functions are iden-
tified with their ||, , equivalence classes. Consequently, the positive bilinear map
®: O(K1) x O(Kg) = C(K1) ®r),.,, C(K2) C Lyp q(p1, p12) is well-defined.

We are now ready to state and prove the main result of this section.

THEOREM 3.3. Let 1 < p,q,r < oo satisfy 1 < p <r and1l < q < r. The
following are equivalent statements about a Banach space valued bilinear operator
T: C(Kl) X C(Kg) — F.

(i) There are probability Borel measures py and s on Ky and Ko and a constant

C > 0 such that for every f € Bo(k,) and g € Bo(k,)s

ole < ([ irrdm [ )

(ii) For every finite sequence of positive scalars (o )y, with Y ,_, ax = 1 and for
any finite sequences (fx)j_, in Bo(k,) and (gr)ji—; in Bo(k,), the following
inequality holds

>l T gl < Cu| Y- anl il
k=1 k=1

+ C H el
oy ; §

C(K2)

(iil) T admits the following factorization:

C(Kl X C K2

\/

Kl ®7rrp q
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where S a bounded linear operator.

Moreover, each of the above conditions implies

(iv) T is (r;p, q)-summing operator.

All conditions are equivalent whenever T is a positive operator.

Proof. The equivalence of (i) and (ii) is given by Theorem 3.1 and the fact that
C(K)i/s = C(K) for all 0 < s < oo. For (ii) = (iv), take two sequences of functions
(fr)p_; in C(K1) and (gx)}_, in C(K>) such that >, |fe[? < Lland >, _, |gx|? < 1.
Then

ZHT fralls < 0( [ Z|fk|pdm+/ > lonldua)

K k=1 Ko k=1
<c(] S P llewen + 13 98l llcren ) < 2C.
k=1 k=1

This clearly gives (iv).

(ii) = (iii). By homogeneity of the norms involved and using the inequality
(a+0b)t <a'+b" for 0 <t <1anda,b> 0, we conclude by (ii) that for every pair
(f,9) € C(K1) x C(Kz),

r 1—p/r r 1 r
IT(f 9l < CUAR ey Il @S gl oty + 1a1% ey Il ecin | Flloae,))-

Let S: C(K;) ® C(K3) — E be an operator given by S(f ® g) := T(f,g) for any
f®g e C(K;)® C(Ks). Then the above inequality implies that for every simple
tensor z =Y 1, fr ® gr € C(K1) ® C(K2) we have the inequalities

52l < | S8t @00, = | ST, < S IT a0l
k=1 k=1

k=1
<O (sl e o Ml @ arllote) + 1arl 4 ey o Nk NG i | Fillocaesy)
> LP(Kq,u1) k C(K1) JkllC(K2) 9k La(Ky,p2) 9k C(K3) EIC(Ky))-

This shows that || Sz|ly < Cm,yp4(2) and so yields the required factorization. The
converse statement is obvious.

(iv) = (i). Since T is positive, we may assume without loss of generality that
the (7;p, ¢)-summing constant C' of T equals 1. Let n € N and call C,, to the n-
vectors (r;p, q)-summing constant of T. Notice that C,, < 1 and lim,, C,, = 1. Let
fiseoo, fn € C(Ky) and g1, ..., gn € C(K2) be such that

H(kfj_l ), Crl1 =1/ < H(Z ) ", o1 1) <1

and

n

DT (frg)l” =1

k=1
Then there exists a sequence (b})7_; in Y* such that for 1/r + 1/r" = 1, we have
2= IR =1,

n

(Z< (fkvgk Z”T fkagk =

k=1
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Since the bilinear map is positive, we can assume also that all the elements (fx, g
and b}) in this expression are positive.

We use some ideas from the proof of Pisier’s Factorization Theorem for linear
operators (see [31]); we define a positive bilinear form v: C'(K;) x C(K2) — R by the
formula

n
v(f,9) =Y (T(fef,919),05), [ €C(Ky), g€ C(Ky).
k=1
Clearly, v is bounded with norm less or equal than one.

Fix a pair of functions in the unit spheres f € Sc(k,) and g € Sc(k,), we put
fio= = |fI)Y?f, g = (1 — |g|9)/9g), for each 1 < k < n and f,,, = f,
Gny1 =9

We have S0 21 |f1P < 1 and 377 |g4l9 < 1. Since v(|f],1) > v(|f],]g]) and
v(L,lgl) = v(If1,190),

0<v((1—fP), (1 —1gl) =1— (w(f*,1) +v(1,]g|?) —v(|fI?,|9) =1 —a
and so 0 < a < 1. Thus, we obtain

IT(f " <1 =D T (e gi)l” < 1= (1= [£P)/7, (1 = |g|)"/9)"
k=1
1= v((1—|f"), (1= 1g|))" <1—[1—v(|fI",1) = v(1,]g") +v( 7 g|)]"
r(v( 1P, 1) + v(1,1g]%) — v(I£17,191D) < r(v(f1P,1) +v(1,]g]%).

Since f — v(f,1) and g — v(1, g) define positive continuous functionals on C' (K1)
and C(K3), respectively, we obtain the required probability Borel measures by the
Riesz Theorem via adaptation of a well known approximation argument that uses
weak™® compactness of the closed unit ball in C'(K)* and the measures obtained for
each n € N with the argument above. We leave details to the reader and refer to [10,
pp. 202-203], where the linear case is considered. O

<
<

We conclude our discussion with some results concerning factorization of positive
bilinear operators. As we have already mentioned, if 1 < p < ¢ < oo and pu is
a probability Borel measure on K, the natural canonical inclusion ¢: C(K) — Lg.1 ()
is (¢, p)-summing. This allows us to give the following equivalent form of the Pisier’s
Factorization Theorem: an operator T from a C(K)-space to a Banach space Y is
(g, p)-summing if and only if there is a positive operator P: C(K) — L on a Banach
lattice L that is (g, p)-summing and an operator S: L —'Y such that T = So P. In
this part we will give a complete characterization of the bilinear operators that satisfy
this positive Pisier’s type factorization. We have proved in Proposition 3.2 that this
class cannot coincide with the (r;p,q)-summing bilinear operators. However, the
class of operators satisfying this factorization is in a sense near to the class of the
(r; p, ¢)-summing multilinear maps.

We recall that for every bilinear mapping A: X x Y — Z there exists a unique
linear mapping (called a linearization of A) A: X®Y — Z such that A(z,y) = A(z®y)
for all z € X, y € Y. Let K; and K3 be two compact Hausdorff spaces. To state
the next result we need to introduce the following definition: a bilinear operator T
from the product C(K;) x C(K32) to a Banach space Y is norm-order dominated by
a positive bilinear operator Ty from C(K;) x C(K3) to a Banach lattice E whenever

Tl <> ITo(1 el lgxD) ]
k=1
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for all z € C(K1) ® C(K3) and any choice of finite sequences (f)7", in C(K;) and
(gr)iy in C(K2) such that 2] < 3700, |fellgrl

THEOREM 3.4. Assume that 1 <r,p,q < oco and 1/r <1/p+1/q. The following

are equivalent statements about Banach space valued bilinear operator T: C(K7) X
(i) T is norm-order dominated by an (r;p,q)-summing and positive operator.
(ii) T admits a factorization:

C( X C K2 /
Lyip,q(p1, pi2)
(iii) T admits a factorization:
C X C Kg % Y

\/

where E is a Banach lattice and the factor P is a positive (r;p, q)-summing
bilinear operator and S is a bounded operator.

Proof. (i) = (ii). Assume that the operator 7" is norm-order dominated a positive
bilinear operator Ty from C'(K;) x C(K32) to a Banach lattice E. By Theorem 3.3, it
follows that there are probability Borel measures pq, po on K7 and K3, respectively,

such that for every >"/", fi - gr € C(K1) ® C(K>), the linearization T of T satisfies,

Hf(i o a)|, < S ITlil gD,

m

r sl T r ~ nl—q/r . 7
O (Wlhser o NI Nillcieny + G012 e o I i )
k=1

This shows that T’ can be defined from L. (g1, po). Taking into account the con-
tinuous inclusion C'(K1) ®xr,., , C(K2) < Lyp q(p1, pi2), we obtain the desired factor-
ization.

(ii) = (i). Assume that T admits a factorization as in (ii). Notice that the map ®
is positive and that the factorization assumed in (ii) implies the one in (iii) of Theorem
3.3. Consequently, ® is (r; p, ¢)-summing. We need only to show that 7" is norm-order
dominated by ®; to do this take z € C(K,) ® C(K3) and two finite sequences (f;)i™,
and (g;)1, in C(K;) and C(Ky), respectively such that |z| < S}, |fx||gk]. Then
the lattice property of the norm of L,., ,(p1, p2) gives

120 < NTW= 21 < 1T Z|fk||gk|\

Lrip,q(p1,p2)

< |7zl Z 1® (Fel G0 G i) -
k=1
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Thus the statement holds for Ty := ©.

(ii) = (iil). The implication is an immediate consequence of the lattice structure

of the space L, 4(p11, pt2) and the fact that © is in this case positive and (r;p, q)-
summing. The converse holds directly using the characterization of positive (r;p, q)-
summing bilinear operators given in Theorem 3.3. O
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