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REAL PINOR BUNDLES AND REAL LIPSCHITZ STRUCTURES∗

C. I. LAZAROIU† AND C. S. SHAHBAZI‡

Abstract. Let (M, g) be a pseudo-Riemannian manifold of arbitrary dimension and signature.
We prove that there exist mutually quasi-inverse equivalences between the groupoid of weakly faithful
real pinor bundles on (M, g) and the groupoid of weakly faithful real Lipschitz structures on (M, g),
from which follows that every bundle of weakly faithful real Clifford modules is associated to a real
Lipschitz structure. The latter gives a generalization of spin structures based on certain groups
which we call real Lipschitz groups. In the irreducible case, we classify real Lipschitz groups in all
dimensions and signatures. Using this classification and the previous correspondence we obtain the
topological obstruction to existence of a bundle of irreducible real Clifford modules over a pseudo-
Riemannian manifold (M, g) of arbitrary dimension and signature. As a direct application of the
previous results, we show that the supersymmetry generator of eleven-dimensional supergravity in
“mostly plus” signature can be interpreted as a global section of a bundle of irreducible Clifford
modules if and only if the underlying eleven-manifold is orientable and spin.

Key words. Spinor bundles, pseudo-Riemannian manifolds, Clifford algebras, Lipschitz struc-
tures.
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Introduction. The classical approach to spin geometry [1, 2, 3, 4] assumes exis-
tence of a spin structure Q on a pseudo-Riemannian manifold (M, g). Given a linear
representation of the corresponding spin group, Q induces a spinor bundle S through
the associated vector bundle construction. One then shows that S carries a globally-
defined “internal” Clifford multiplication TM⊗S → S , which turns S into a bundle of
modules over the Clifford bundle Cl(M, g). This allows one to lift a metric connection
on (M, g) to a connection on S and to define a corresponding Dirac operator. This
construction generalizes to Spinc and Spinq structures [5], which can also be used
to construct “spinor bundles” with globally-defined internal Clifford multiplication.
Thus, existence of such a spinorial structure implies existence of a bundle of Clifford
modules over (M, g), but the converse is not always true.1

For various applications, it is important to develop spin geometry starting from
the assumption that (M, g) admits a bundle of Clifford modules S, without first
choosing by hand a particular spinor structure to which S is associated. The condition
that S be a bundle of Clifford modules is equivalent to the requirement that S be
endowed with a globally-defined “internal” Clifford multiplication TM ⊗ S → S. In
general, this condition is weaker than existence of a spin structure, as illustrated by
the theory of Spinc and Spinq structures. However, a systematic study of the necessary
and sufficient conditions under which a bundle S of Clifford modules exists on (M, g)
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1A well-known variant [1, 6] starts with a Pin structure, leading to a bundle S which need not

admit an “internal” Clifford multiplication, but rather a map that takes TM ⊗ S into a bundle S′
which (depending on dimension and signature) may be non-isomorphic with S. In that case, one
can sometimes define a “modified” version of the Dirac operator (see, for example, [7, 8, 9]). We
stress that in this paper we are interested only in vector bundles S which admit an internal Clifford
multiplication TM ⊗ S → S. A brief discussion of external and internal Clifford multiplications can
be found in Appendix B.
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does not appear to have been carried out for the case of real Clifford representations.
The purpose of the present paper is to perform such a study.

Our approach relies on an equivalence of categories (which we establish in Section
7) between the groupoid of bundles of real Clifford modules obeying a certain “weak
faithfulness” condition and the groupoid of so-called real Lipschitz structures, a notion
which generalizes that of complex Lipschitz structure which was introduced in [10].
This result allows us to extract the necessary and sufficient conditions under which
(M, g) admits a bundle of real Clifford modules with given fiberwise representation
type.

A real Lipschitz structure is a generalization of a spin structure where the spin
group is replaced by a so-called real Lipschitz group. The latter is the group of all
implementers of pseudo-orthogonal transformations through operators acting in the
representation space of a weakly faithful real Clifford representation γ and arises
naturally as the automorphism group of γ in a certain category of real Clifford rep-
resentations and unbased morphisms. The character of the Lipschitz group depends
on γ and on the signature (p, q) of g. When γ is irreducible, then it is automatically
weakly faithful and the character of its Lipschitz group depends on the mod 8 re-
duction of p − q. We identify all such elementary Lipschitz groups as well as certain
homotopy-equivalent reduced forms thereof, the latter being summarized in Table 0.1.
The Spino(V, h) structures arising when p−q ≡8 3, 7 (and whose real Lipschitz groups
are discussed in Subsection 2.3) appear to be new and are studied in detail in the com-
panion paper [11].

p− q
mod 8

Reduced Lipschitz group

0, 2 Pin(V, h)
3, 7 Spino(V, h)
4, 6 Pinq(V, h)
1 Spin(V, h)
5 Spinq(V, h)

Table 0.1

The reduced elementary Lipschitz group of a pseudo-Riemannian manifold (M, g) of dimension
d = p+ q and signature (p, q).

We also study certain representations of Lipschitz groups, which turn out to play
an important role for further developments of the theory. Using these results, we
extract the topological obstructions to existence of bundles of irreducible real Clifford
modules on (M, g) in any dimension and signature. This allow us to identify the
minimal requirements for developing a version of real spin geometry based on such
bundles.

Our study is motivated, in particular, by physical theories such as supergravity
and string theory, where it is important to understand the weakest assumptions under
which certain models can be defined globally. As we shall show in later papers, this
leads to new questions and problems which do not appear to have been systematically
considered before and which are of mathematical and physical interest.

The results of this paper lead to various questions which may be of interest for
further study. For example, one can ask what modifications may arise in the index
theorem for Dirac operators defined on pinor bundles which are associated to real
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Lipschitz structures in various dimensions and signatures. Our results afford a sys-
tematic study of Killing spinors and generalized Killing spinors on the most general
pseudo-Riemannian manifolds admitting bundles of irreducible real Clifford modules.
For example, they could be used to extend Wang’s results [12] from spin manifolds
to manifolds of arbitrary signature which admit bundles of irreducible real Clifford
modules. Killing spinors [13] and generalized Killing spinors [14] were studied in the
literature on manifolds admitting Spin, Spinc and Spinq structures [15, 16]; more
general spinorial structures (whose associated vector bundles need not be bundles
of irreducible Clifford modules) are studied in references [17, 18]. However, Killing
spinors on Spino manifolds do not seem to have been studied systematically. In ad-
dition, and especially for applications to supergravity and string theory, it would be
very interesting to perform an analysis similar to the one presented in this work for the
case of bundles of irreducible as well as faithful Clifford modules over the even bundle
of Clifford algebras of the underlying manifold. Work in this direction is already in
progress.

The paper is organized as follows. Section 1 summarizes some facts on real Clifford
algebras and associated groups, with the purpose of fixing terminology and notation;
it also proves some results which will be needed later on, some of which are not read-
ily available in the literature. Section 2 summarizes certain enlargements of the Spin
group which will turn out to provide models for the reduced Lipschitz group of irre-
ducible real Clifford representations in various dimensions and signatures. The same
section considers certain representations of these groups. Section 3 considers a cer-
tain category of real Clifford representations and unbased morphisms and discusses
certain subspaces associated to such representations as well as the notion of weak
faithfulness. Section 4 defines real Lipschitz groups and discusses some properties of
their elementary representations in a general setting. Section 5 considers the case of
irreducible real Clifford representations, which always turn out to be weakly faithful.
In that section, we classify the Lipschitz groups of such representations and establish
isomorphisms between their reduced versions and various enlarged spinor groups intro-
duced in Section 2. We also describe the elementary representations of such Lipschitz
groups and connect them to those of the enlarged spinor groups. Section 6 discusses
bundles of weakly faithful real Clifford modules as well as real Lipschitz structures,
establishing a general equivalence between the corresponding groupoids. Section 7
discusses certain enlarged spinorial structures which are relevant later on. Section 8
considers the case of bundles of irreducible real Clifford modules and the correspond-
ing Lipschitz structures, which we call elementary. Using the results of the previous
sections, we determines the topological obstructions to existence of such bundles in
every dimension and signature. Section 9 discusses a direct application of our results
to the global formulation of M-theory on an eleven-dimensional Lorentzian manifold.
Section 10 outlines the relation of our work with certain results in the literature. The
appendices contain technical material.

0.1. Notations, conventions and terminology. In this paper, a quadratic
vector space means a pair (V, h), where V is a finite-dimensional R-vector space and
h : V × V → R is a non-degenerate symmetric bilinear form. Throughout the paper,
we assume V �= 0. The Clifford algebra Cl(V, h) is considered only over R. We use
the plus convention for Clifford algebras, so Cl(V, h) is the unital associative algebra
generated by V over R with the relations:

v2 = h(v, v) ∀v ∈ V .
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A Clifford representation is a finite-dimensional unital representation γ : Cl(V, h) →
EndR(S) through endomorphisms of a real finite-dimensional vector space S — we
never use the complexification of Cl(V, h) or the complexification of S. An irreducible
Clifford representation is always assumed to be realized in a space S of positive di-
mension (i.e. S �= 0).

Given two groups A,B such that A×B contains a given central Z2 subgroup C,
we use the notation A ·B for the quotient A×B/C. Let Gm � Zm denote the group
of complex roots of unity of order m ∈ N>0 and D4 � Z2 × Z2 denote the dihedral
group of order 4.

For S ∈ {R,C,H} any of the three finite-dimensional associative division algebras
over R, let | | : S → R+ denote the canonical norm and U(S) denote the group of unit
norm elements:

U(S) =

⎧⎨⎩
G2 S = R

U(1) S = C

Sp(1) S = H

.

For the algebras R,C and H, we define M : S → R+ through M(s)
def.
= |s|2. For

the algebra D of hyperbolic (a.k.a. split complex) numbers, let M : D → R denote
the hyperbolic modulus and U(D) denote the group of unit hyperbolic numbers (see
Appendix A).

Let Alg denote the category of finite-dimensional associative and unital R-
algebras, Gp denote the category of groups and Set denote the category of sets. For
any ring R, let R× denote its group of invertible elements. For any category C, let
C× denote its unit groupoid (the groupoid obtained from C by keeping as morphisms
only the isomorphisms of C). The symbol �C indicates existence of an isomorphism
between two objects of C. For notational uniformity, we define:

Ô(V, h)
def.
=

{
O(V, h) if d = ev
SO(V, h) if d = odd

for any finite-dimensional quadratic vector space (V, h) over R.
All manifolds M considered in the paper are connected, Hausdorff and paracom-

pact (hence also second countable). All fiber bundles considered are smooth. We
assume dimM > 0 throughout.

1. Real Clifford algebras and extended Clifford groups. This section sum-
marizes various facts about Clifford algebras and associated spinor groups, with the
purpose of fixing notations and terminology; some statements which are well-known
or easily established are given without proof. We draw the reader’s attention to our
discussion of extended Clifford groups, extended Clifford norms and extended Pin
groups as well as to the delicate distinction between twisted and untwisted vector
representations. The extended (sometimes called “untwisted”) Clifford group Ge(V, h)
consists of those elements of the multiplicative subgroup of Cl(V, h) whose untwisted
adjoint action fixes V . It differs from the ordinary (or “twisted”) Clifford group G(V, h)
by elements belonging to the center of Cl(V, h). Unlike the ordinary Clifford group,
the extended Clifford group need not be Z2-graded, since it may contain inhomoge-
neous elements from the center of the Clifford algebra. The extended Clifford group
and its untwisted vector representation (adjoint representation restricted to V ) are
classical, but have seen decreased use after the work of [1], which promoted the use of
the ordinary Clifford group and of its twisted vector representation — none of which
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are, however, natural for our purpose. In this paper, the extended Clifford group and
its vector representation will play a central role since, as we shall see in later sec-
tions, these objects relate most directly to the Lipschitz group of irreducible Clifford
representations and to the natural representation of that Lipschitz group on V . The
distinction between the twisted and untwisted vector representations of pin groups will
also be essential when discussing topological obstructions to existence of elementary
real Lipschitz structures. As is well-known, that distinction also plays an important
role in the theory of Pin structures and associated Dirac operators [7, 8, 9, 6].

1.1. The category of real quadratic spaces. A real quadratic space is a pair
(V, h), where V �= 0 is a finite-dimensional R-vector space and h : V × V → R is
a non-degenerate symmetric bilinear pairing on V . A morphism of quadratic spaces
from (V, h) to (V ′, h′) (also known as an isometry) is an R-linear map ϕ : V → V ′ such
that h′(ϕ(v1), ϕ(v2)) = h(v1, v2) for all v1, v2 ∈ V . Quadratic spaces over R and their
morphisms form a category Quad whose unit groupoid Quad× we call the groupoid of
real quadratic spaces; its objects coincide with those of Quad while its morphisms are
the invertible isometries. When h is positive-definite, an isometry ϕ : (V, h) → (V ′, h′)
is necessarily injective.

1.2. Non-degenerate vectors and reflections. Let (V, h) be a real quadratic
space.

Definition 1.1. The signature ε(v) ∈ {−1, 0, 1} of a vector v ∈ V is the signa-
ture of the real number h(v, v). The vector v is called non-degenerate if h(v, v) �= 0.
It is called a unit vector if |h(v, v)| = 1.

The reflection determined by a non-degenerate vector v ∈ V is the linear map Rv ∈
O(V, h) given by:

Rv(x)
def.
= x− 2

h(x, v)

h(v, v)
v = x− 2ε(v)

h(x, v)

|h(v, v)|v , (1.1)

which describes the h-orthogonal reflection of V with respect to the hyperplane v⊥ =
{y ∈ V |h(y, v) = 0} ⊂ V orthogonal to v. We have Rv = Rλv for any λ ∈ R

×.

1.3. The category of real Clifford algebras. The Clifford algebra construc-
tion gives a functor Cl : Quad → Alg, where Alg denotes the category of unital
associative R-algebras and unital algebra morphisms. For each object (V, h) of Quad,
Cl(V, h) is the Clifford algebra of the quadratic space (V, h) while for each isometry
ϕ : (V, h) → (V ′, h′), Cl(ϕ) : Cl(V, h) → Cl(V ′, h′) denotes the unique unital mor-
phism of algebras which satisfies the condition Cl(ϕ)|V = ϕ. The image of the functor
Cl is a non-full sub-category of Alg which we denote by Cl and whose unit groupoid
we denote by Cl×. Namely:

Definition 1.2. A morphism of Clifford algebras is a morphism α : Cl(V, h) →
Cl(V ′, h′) in the category Cl, i.e. a morphism of unital algebras which satisfies
α(V ) ⊂ V ′ and hence is necessarily of the form α = Cl(ϕ) for a (uniquely-determined)
isometry ϕ : (V, h) → (V ′, h′), given by ϕ def.

= α|V .
By definition, isomorphisms of Clifford algebras are the morphisms of Cl×. These

are those isomorphisms of unital algebras α : Cl(V, h) → Cl(V ′, h′) which satisfy
α(V ) = V ′ and hence are of the form α = Cl(ϕ) for a uniquely-determined invertible
isometry ϕ : (V, h) → (V ′, h′) (given by ϕ = α|V ). The corestriction of the functor Cl
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to its image gives an isomorphism of categories Quad � Cl, which in turn restricts to
an isomorphism Quad× � Cl×. Note that two Clifford algebras may be isomorphic as
unital associative algebras without being isomorphic as Clifford algebras (i.e. without
being isomorphic in the category Cl � Quad).

The category Quad admits a skeleton whose objects are the standard quadratic
spaces Rp,q def.

= (Rp+q, hp,q), where hp,q : Rp+q ×R
p+q → R is the standard symmetric

bilinear form of signature (p, q):

hp,q(x, y)
def.
=

p∑
i=1

xiyi −
p+q∑

j=p+1

xjyj ∀x, y ∈ R
p+q .

The objects of this skeleton form a countable set indexed by the pairs (p, q) ∈ N×N.
Accordingly, the category Cl admits a skeleton whose objects are the standard real
Clifford algebras Clp,q

def.
= Cl(Rp,q).

1.4. Parity, reversion and twisted reversion. The Clifford algebra Cl(V, h)
admits three canonical involutive (anti-)automorphisms:
1. The parity involution of Cl(V, h) is the unique unital R-algebra automorphism

π ∈ AutAlg(Cl(V, h)) such that π(v) = −v for all v ∈ V .
2. The reversion is the unique unital anti-automorphism τ of Cl(V, h) such that τ(v) =

v for all v ∈ V .
3. The twisted reversion is the unique unital anti-automorphism τ̃ of Cl(V, h) such

that τ̃(v) = −v.
We have:

π2 = τ2 = τ̃2 = idCl(V,h) , τ̃ = τ ◦ π = π ◦ τ
and the group {idCl(V,h), π, τ, τ̃} is isomorphic with D4.

Remark 1.1. The underlying vector space of Cl(V, h) is canonically isomorphic
with ∧V through the Chevalley-Riesz-Crumeyrolle isomorphism [19] (which depends
on h). This gives a decomposition Cl(V, h) = ⊕d

k=0Clk(V, h), where Clk(V, h) is the
subspace corresponding to ∧kV (this decomposition does not give a Z-grading of the
associative algebra Cl(V, h)). We have:

π|Clk(V,h) = (−1)kidClk(V,h) , τ |Clk(V,h) = (−1)
k(k−1)

2 idClk(V,h) .

1.5. The canonical Z2-grading. The algebra Cl(V, h) admits the canonical
Z2-grading:

Cl(V, h) = Cl+(V, h)⊕ Cl−(V, h) , Cl±(V, h)
def.
= ker(π ∓ idCl(V,h)) .

Namely, Cl+(V, h) is the subalgebra generated by all Clifford monomials v1 . . . vk
(vj ∈ V ) with even k and Cl−(V, h) is the subspace generated by all Clifford monomials
with odd k.

1.6. The group of Clifford units and its adjoint and twisted adjoint
actions. The group of Clifford units is the group Cl(V, h)× formed by all invertible
elements of the algebra Cl(V, h). Let Cl×±(V, h)

def.
= Cl(V, h)× ∩ Cl±(V, h). Then:

Cl×hom(V, h)
def.
= Cl×+(V, h) � Cl×−(V, h)
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is a subgroup of Cl(V, h)× called the group of homogeneous units. This group is
Z2-graded by the disjoint union decomposition given above.

The adjoint action of Cl(V, h)× is the group morphism AdCl : Cl(V, h)× →
AutAlg(Cl(V, h)) given by:

AdCl(a)(x)
def.
= axa−1 ∀a ∈ Cl(V, h)× ∀x ∈ Cl(V, h) ,

which gives a representation of Cl(V, h)× through unital R-algebra automorphisms of
Cl(V, h).

The twisted adjoint action of Cl(V, h)× is the group morphism Ãd
Cl

: Cl(V, h)× →
AutR(Cl(V, h)) given by:

Ãd
Cl
(a)(x)

def.
= π(a)xa−1 ∀a ∈ Cl(V, h)× ∀x ∈ Cl(V, h) .

This gives a representation of the group of units through automorphisms of the under-
lying vector space of Cl(V, h), which (unlike the adjoint action) need not be R-algebra
automorphisms. We have:

Ãd
Cl|Cl×±(V,h) = ±AdCl|Cl×±(V,h) .

Notice that π(Cl×±(V, h)) = Cl×±(V, h) as well as the relations:

AdCl ◦ π|Cl×hom(V,h) = AdCl|Cl×hom(V,h) , Ãd
Cl ◦ π|Cl×hom(V,h) = Ãd

Cl|Cl×hom(V,h) .

1.7. Clifford volume elements. Any orientation of V determines a Clifford
volume element ν = e1 . . . ed ∈ Cl(V, h)×, where (e1, . . . ed) is any oriented orthonor-
mal basis of (V, h). This element is independent of the choice of oriented orthonormal
basis; it depends only on h and on the chosen orientation of V . Moreover, the Clifford
volume element determined by the opposite orientation of V equals −ν. The Clifford
volume element has the following properties, which will be used intensively later on:

ν2 = σp,q
def.
= (−1)q+[

d
2 ] =

{
(−1)

p−q
2 if d = even

(−1)
p−q−1

2 if d = odd
=

{
+1 if p− q ≡4 0, 1
−1 if p− q ≡4 2, 3

(1.2)

τ(ν) = (−1)
d(d−1)

2 ν = (−1)[
d
2 ]ν =

{
+ν if d ≡4 0, 1
−ν if d ≡4 2, 3

=

{
(−1)

p+q
2 ν if d = even

(−1)
p+q−1

2 ν if d = odd

τ(ν) =d=odd

{ −(−1)qν if p− q ≡8 3, 7
+(−1)qν if p− q ≡8 1, 5

, ν2 =d=odd

{ −1 if p− q ≡8 3, 7
+1 if p− q ≡8 1, 5

.

Notice that τ(ν) = (−1)qν−1.

1.8. The volume grading. We have:

AdCl(ν) = πd−1 =

{
idCl(V,h) if d = odd
π if d = even

. (1.3)

In particular, π is an inner automorphism of Cl(V, h) when d is even. The involutive
R-algebra automorphism AdCl(ν) ∈ AutAlg(Cl(V, h)) induces a Z2-grading called the
volume grading of Cl(V, h):

Cl0(V, h)
def.
= {x ∈ Cl(V, h)|AdCl(ν)(x) = +x} ,

Cl1(V, h)
def.
= {x ∈ Cl(V, h)|AdCl(ν)(x) = −x} . (1.4)

Relation (1.3) implies:
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1. For odd d, we have Cl0(V, h) = Cl(V, h) and Cl1(V, h) = 0 and hence the volume
grading is concentrated in degree zero.

2. For even d, we have Cl0(V, h) = Cl+(V, h) and Cl1(V, h) = Cl−(V, h) and hence
the volume grading coincides with the canonical Z2-grading.

1.9. The Clifford center and pseudocenter.

Definition 1.3. An element x ∈ Cl(V, h) is called:
1. Central, if it commutes with all elements of Cl(V, h):

xy = yx ∀y ∈ Cl(V, h)

2. Twisted central if it satisfies the condition:

xy = π(y)x ∀y ∈ Cl(V, h)

3. Pseudocentral, if it is central or twisted central.

Let Z(V, h), A(V, h) and T (V, h) denote the subspaces of Cl(V, h) consisting of all
central, twisted central and pseudocentral elements, respectively. Then Z(V, h) is
the center of the Clifford algebra, while T (V, h) is called its pseudocenter. Clearly
both Z(V, h) and T (V, h) are unital subalgebras of Cl(V, h), while A(V, h) is only a
subspace. Since Cl(V, h) is generated by V (over R), we have:

Z(V, h) = {x ∈ Cl(V, h)|xv = vx ∀v ∈ V }
A(V, h) = {x ∈ Cl(V, h)|xv = −vx ∀v ∈ V } .

Moreover, it is easy to see that Z(V, h) ∩ A(V, h) = 0 and that T (V, h) has the
decomposition:

T (V, h) = Z(V, h)⊕A(V, h) ,

which gives a Z2-grading of the algebra T (V, h) with components T 0(V, h)
def.
= Z(V, h)

and T 1(V, h)
def.
= A(V, h).

Proposition 1.1. We have:

T (V, h) = R⊕ Rν �Alg R[ν]/(ν2 = σp,q) �Alg

{
D if p− q ≡4 0, 1
C if p− q ≡4 2, 3

,

where D is the R-algebra of hyperbolic (a.k.a. split complex, or double) numbers (see
Appendix A) and ν corresponds to the hyperbolic unit j ∈ D or to the imaginary unit
i ∈ C. Moreover:
1. When d is even, we have ν ∈ Cl+(V, h), Z(V, h) = R and A(V, h) = Rν.
2. When d is odd, we have ν ∈ Cl−(V, h), A(V, h) = 0 and:

Z(V, h) = T (V, h) �Alg

{
D if p− q ≡8 1, 5
C if p− q ≡8 3, 7

.

Proof. The statements regarding Z(V, h) are well-known (for example, see [20]).
For the statements regarding A(V, h), distinguish the cases:
1. d is even. Then clearly ν belongs to A(V, h). For any x ∈ A(V, h), we thus have

xν ∈ Z(V, h) = R, which implies x ∈ Rν since ν2 = σp,q. Thus A(V, h) = Rν in
this case.
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2. d is odd. Then ν is central in Cl(V, h) and belongs to Cl−(V, h). These two facts
imply that any x ∈ A(V, h) satisfies both xν = νx and xν = −νx, which implies
xν = 0 and hence x = 0 since ν is invertible in Cl(V, h). Thus A(V, h) = 0.

The statements regarding T (V, h) now follow immediately.

When d is odd, the above gives isomorphisms of groups:

Z(V, h)× �d=odd

{
D

× � R>0 ×U(D) if p− q ≡8 1, 5
C

× � R>0 ×U(1) if p− q ≡8 3, 7
. (1.5)

Remark 1.2. Notice that T (V, h) does not coincide with the super-center
Zsuper(V, h) of Cl(V, h), when the latter is viewed as a Z2-graded associative alge-
bra. By definition of the super-center, we have:

Zsuper(V, h) = Z(V, h) ∩ Cl+(V, h)⊕A(V, h) ∩ Cl−(V, h) = R .

In particular Zsuper(V, h) is a sub-superalgebra of Cl(V, h), while T (V, h) is not.

1.10. Normal, simple and quaternionic cases. It is useful to distinguish
various cases according to whether Cl(V, h) is a simple R-algebra and according to
the isomorphism type of the centralizer (a.k.a. Schur algebra) S of the irreps of
Cl(V, h). This gives the following classification controlled by the value of p−q mod 8
(see Table 1.1):
A. Simple cases:

1 The normal simple case, when p− q ≡8 0, 2
2 The complex case, when p− q ≡8 3, 7
3 The quaternionic simple case, when p− q ≡8 4, 6

B. Non-simple cases:
1 The normal non-simple case, when p− q ≡8 1
2 The quaternionic non-simple case, when p− q ≡8 5

p− q
mod 8

S type simplicity Z(V, h) A(V, h) T (V, h) ν2

0, 2 R normal simple R Rν D,C 1,−1
3, 7 C complex simple C 0 C −1
4, 6 H quaternionic simple R Rν D,C 1,−1
1 R normal non-simple D 0 D +1
5 H quaternionic non-simple D 0 D +1

Table 1.1

Classification of Clifford algebras. Here, ν is the Clifford volume element with respect to an
orientation of V while Z(V, h) and T (V, h) are the center and pseudocenter of Cl(V, h). Moreover,
A(V, h) denotes the subspace of twisted-central elements. Finally, S ⊂ EndR(S) the Schur algebra
(centralizer) of any irreducible representation of Cl(V, h) (see Section 3).

1.11. Clifford norm and twisted Clifford norm. The Clifford norm is the
map N : Cl(V, h) → Cl(V, h) defined through:

N(x)
def.
= τ(x)x .
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The twisted Clifford norm is the map Ñ : Cl(V, h) → Cl(V, h) defined through:

Ñ(x)
def.
= τ̃(x)x .

These maps are R-quadratic, in particular we have N(λx) = λ2N(x) for any x ∈
Cl(V, h) and a similar relation for Ñ . We also have:

N(1) = Ñ(1) = 1

N(v) = −Ñ(v) = h(v, v) for v ∈ V .

Notice the relation:

Ñ |Cl±(V,h) = ±N |Cl±(V,h) .

1.12. The ordinary Clifford group. The ordinary Clifford group2 is the fol-
lowing subgroup of the group of homogeneous units:

G(V, h)
def.
= {a ∈ Cl×hom(V, h)|AdCl(a)(V ) = V } ⊂ Cl×hom(V, h) .

It admits the Z2-grading inherited from Cl×hom(V, h), which has components:

G±(V, h)
def.
= {a ∈ Cl×±(V, h)|AdCl(a)(V ) = V } ⊂ Cl×±(V, h) .

This Z2-grading is induced by the signature morphism δ̃ : G(V, h) → G2:

δ̃(a) =

{
+1 if a ∈ G+(V, h)
−1 if a ∈ G−(V, h)

. (1.6)

The subgroup G+(V, h) is called the special Clifford group. Since G(V, h) is generated
by non-degenerate vectors, the restriction of the Clifford norm to the ordinary Clifford
group takes values in R

× and hence gives a group morphism NG
def.
= N |G(V,h) :

G(V, h) → R
×. Composing this with the absolute value epimorphism R

× | |−→ R>0

gives a surjective group morphism |NG| def.
= | | ◦NG : G(V, h) → R>0 called absolute

Clifford norm. We also have Ñ(G(V, h)) ⊂ R
× and the twisted Clifford norm gives a

group morphism ÑG
def.
= Ñ |G(V,h) : G(V, h) → R

×. We have Ñ |G±(V,h) = ±N |G±(V,h)

and hence |ÑG| = |NG|, where |ÑG| def.= | | ◦ ÑG.

1.13. Vector representations of the ordinary Clifford group.

Definition 1.4. The untwisted vector representation of G(V, h) is the group
morphism AdCl

0 : G(V, h) → O(V, h) given by:

AdCl
0 (a)

def.
= AdCl(a)|V ∀a ∈ G(V, h) .

The twisted vector representation of G(V, h) is the group morphism Ãd
Cl

0 : G(V, h) →
O(V, h) given by:

Ãd
Cl

0 (a)
def.
= Ãd

Cl
(a)|V ∀a ∈ G(V, h) .

2Sometimes called the twisted Clifford group (“groupe de Clifford tordu” in reference [20]).
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We have AdCl
0 (v) = −Rv and Ãd0(v) = +Rv for any non-degenerate vector v ∈ V .

This implies the following well-known results (see, for example, [20]):

Proposition 1.2. The ordinary Clifford group G(V, h) is generated by non-
degenerate vectors v ∈ V and we have:

det ◦Ãd
Cl

0 = δ̃ . (1.7)

Proposition 1.3. The twisted vector representation of the ordinary Clifford
group satisfies Ãd

Cl

0 (G(V, h)) = O(V, h) and gives a short exact sequence:

1 −→ R
× ↪→ G(V, h)

˜Ad
Cl

0−→ O(V, h) −→ 1 , (1.8)

which restricts to a short exact sequence:

1 −→ R
× ↪→ G+(V, h)

˜Ad
Cl

0 |G+(V,h)=AdCl
0 |G+(V,h)−→ SO(V, h) −→ 1 . (1.9)

Let:

Ô(V, h)
def.
=

{
O(V, h) if d = even
SO(V, h) if d = odd

. (1.10)

Proposition 1.4. The untwisted vector representation of the ordinary Clifford
group satisfies AdCl

0 (G(V, h)) = Ô(V, h) and gives a short exact sequence:

1 −→ R
× ↪→ G(V, h)

AdCl
0−→ Ô(V, h) −→ 1 , (1.11)

which restricts to (1.9).

Consider the morphism of groups f : O(V, h) → O(V, h) given by f(R)
def.
= (detR)R.

Proposition 1.5. We have AdCl
0 = f ◦ Ãd

Cl

0 on G(V, h). Moreover:
1. When d is even, f is an automorphism of O(V, h).
2. When d is odd, f induces an isomorphism O(V, h)/{−idV , idV } � SO(V, h). In
this case, the map ϕ

def.
= f × det : O(V, h)

∼→ SO(V, h) × G2 given by ϕ(R) =
(f(R), detR) is an isomorphism of groups and we have:

AdCl
0 × δ̃ = ϕ ◦ Ãd

Cl

0 .

Proof. The relation det f(R) = (detR)d+1 gives:

f(O(V, h)) =

{
O(V, h) if d = even
SO(V, h) if d = odd

, ker f =

{ {idV } if d = even
{−idV , idV } if d = odd

.

The remaining statements are obvious.

Remark 1.3. In general, the group O(p, q) has non-trivial outer automorphisms.
Determining the full outer automorphism group of O(p, q) for general p, q turns out
to be a surprisingly subtle problem.

Remark 1.4. It is well-known that the ordinary Clifford group can also be
described as:

G(V, h) = {a ∈ Cl(V, h)×|Ãd
Cl
(a)(V ) = V } .
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1.14. The pin and spin groups and their vector representations.

Definition 1.5. The pin group Pin(V, h) is the subgroup of G(V, h) gener-
ated by the vectors v ∈ V satisfying |h(v, v)| = 1. The spin group is the subgroup
Spin(V, h)

def.
= Pin(V, h) ∩ Cl+(V, h).

The decomposition Pin(V, h) = Pin+(V, h) � Pin−(V, h), where Pin+(V, h)
def.
=

Spin(V, h) and Pin−(V, h)
def.
= Pin(V, h) ∩ Cl−(V, h) gives a Z2-grading of the pin

group. We have ker |NG| = Pin(V, h) and an exact sequence:

1 −→ Pin(V, h) ↪→ G(V, h)
|NG|−→ R>0 −→ 1 , (1.12)

which restricts to an exact sequence:

1 −→ Spin(V, h) ↪→ G+(V, h)
|NG+

|−→ R>0 −→ 1 , (1.13)

where NG+

def.
= N |G+(V,h). In particular, G(V, h) � R>0 × Pin(V, h) is homotopy-

equivalent with Pin(V, h) while G+(V, h) � R>0 × Spin(V, h) is homotopy-equivalent
with Spin(V, h).

Definition 1.6. The untwisted vector representation of Pin(V, h) is the restric-
tion of AdCl

0 to Pin(V, h). The twisted vector representation of Pin(V, h) is the re-

striction of Ãd
Cl

0 to Pin(V, h). The vector representation of Spin(V, h) is the common

restriction of AdCl
0 or Ãd

Cl

0 to Spin(V, h).

The twisted vector representation gives an exact sequence:

1 −→ G2 ↪→ Pin(V, h)
˜Ad

Cl

0−→ O(V, h) −→ 1 (1.14)

which restricts to an exact sequence:

1 −→ G2 ↪→ Spin(V, h)
˜Ad

Cl

0 |Spin(V,h)=AdCl
0 |Spin(V,h)−→ SO(V, h) −→ 1 . (1.15)

The situation is summarized in the following commutative diagram with exact rows
and columns, where sq(x) = x2 for x ∈ R

×:

1

��

1

��
1 �� G2

��

�� Pin(V, h)
˜Ad

Cl

0 ��

��

O(V, h) �� 1

1 �� R× ��

sq

��

G(V, h)
˜Ad

Cl

0 ��

|NG|
��

O(V, h) �� 1

R>0

��

R>0

��
1 1

(1.16)
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The untwisted vector representation gives an exact sequence:

1 −→ G2 ↪→ Pin(V, h)
AdCl

0−→ Ô(V, h) −→ 1 (1.17)

which restricts to (1.15) and we have a commutative diagram similar to (1.16).

1.15. Relation between the twisted and untwisted vector representa-
tions of G(V, h) and Pin(V, h) for even d. The following result relates the groups
G(V, h) and G(V,−σp,qh) when d is even (cf. [8]):

Proposition 1.6. When d is even, there exists an isomorphism of groups ϕ :

G(V, h)
∼→ G(V,−σp,qh) such that AdCl

0 ◦ϕ = Ãd
Cl

0 . This restricts to an isomorphism
from Pin(V, h) to Pin(V,−σp,qh) having the same property. Thus:
1. When p− q ≡8 0, 4, there exists an isomorphism of groups ϕ : G(V, h)

∼→ G(V,−h)

such that AdCl
0 ◦ ϕ = Ãd

Cl

0 . This restricts to an isomorphism from Pin(V, h) to
Pin(V,−h) having the same property.

2. When p− q ≡8 2, 6, there exists a group automorphism ϕ : G(V, h)
∼→ G(V, h) such

that AdCl
0 ◦ ϕ = Ãd

Cl

0 . This restricts to an automorphism of Pin(V, h) having the
same property.

Proof. Since d is even, we have:

ν2 = σp,q = (−1)q+
d
2 = (−1)

p−q
2 =

{
+1 if p− q ≡8 0, 4
−1 if p− q ≡8 2, 6

.

Moreover, ν anticommutes with v for all v ∈ V and hence (νv)2 = −σp,qv
2. Therefore,

the map V � v → νv ∈ V ′ def.
= νV ⊂ Cl(V, h) extends (upon identifying the vector

space V ′ with V ) to a unital isomorphism of R-algebras ϕ0 : Cl(V, h)
∼→ Cl(V,−σp,qh),

which restricts to an isomorphism ϕ : G(V, h)
∼→ G(V,−σp,qh). For any non-

degenerate vectors v1, . . . vk ∈ V , we have:

AdCl
0 (ϕ(v1 . . . vk)) = AdCl

0 (νv1) ◦ . . . ◦AdCl
0 (νvk) =

AdCl
0 (ν) ◦AdCl

0 (v1) ◦ . . . ◦AdCl
0 (ν) ◦AdCl

0 (vk) = Ãd
Cl

0 (v1 . . . vk) ,

where we noticed that AdCl
0 (ν) = −idV since d is even. Thus AdCl

0 (ϕ(g)) = Ãd
Cl

0 (g)
for all g ∈ G(V, h).

1.16. Connected components of the pin and pseudo-orthogonal groups.
When pq �= 0, the group Spin(V, h) has two connected components given by:

Spin±(V, h) def.
= {a ∈ Spin(V, h)|N(a) = ±1} ,

where Spin+(V, h) is the connected component of the identity. The decomposition
Spin(V, h) = Spin+(V, h) � Spin−(V, h) is the Z2-grading induced by the group mor-
phism N |Spin(V,h) : Spin(V, h) → G2. Accordingly, Pin(V, h) has four connected com-
ponents given by:

Pinηε (V, h) = {a ∈ Pin(V, h)|δ̃(a) = ε , N(a) = η} , (ε, η ∈ {−1, 1}) ,

where Pin++(V, h) = Spin+(V, h) is the connected component of the identity. The
decomposition Pin(V, h) = �ε,η∈{−1,+1}Pin

η
ε (V, h) is the D4-grading induced by the
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group morphism (δ̃|Pin(V,h))× (N |Pin(V,h)) → G2 ×G2. In particular, the component
group π0(Pin(V, h)) = Pin(V, h)/Spin(V, h) is isomorphic with D4. Since N(−1) =
N(1) = 1, the Clifford norm descends through the 2-fold covering map of (1.14) to
a group morphism N0 : O(V, h) → G2. Similarly, we have δ̃(−1) = δ̃(1) = 1 and δ̃
descends to the determinant morphism det : O(V, h) → G2. These two morphisms give
a D4-grading O(V, h) = �ε,η∈{−1,+1}Oη

ε (V, h) which coincides with the decomposition
of O(V, h) into connected components:

Oη
ε (V, h) = {a ∈ O(V, h)| det a = ε , N0(a) = η} .

The group O+
+(V, h) is the connected component of the identity and the component

group π0(O(V, h)) = O(V, h)/SO(V, h) is isomorphic with D4. Accordingly, the group
SO(V, h) = {a ∈ O(V, h)| det a = +1} has two connected components distinguished
by the morphism N0, which gives a Z2-grading of SO(V, h):

SO±(V, h) = {a ∈ SO(V, h)|N0(a) = ±1} ,

where SO+(V, h) = O+
+(V, h) is the connected component of the identity. The groups

O(V, h), SO(V, h) and SO+(V, h) are homotopy equivalent with their maximal com-
pact forms O(p)×O(q), S[O(p)×O(q)] and SO(p)× SO(q) respectively. When p = 0
and q �= 0, we have O(V, h) � O(q) while for p �= 0 and q = 0 we have O(V, h) � O(p),
hence in these cases SO(V, h) is connected and O(V, h) has two connected components
distinguished by the determinant; similar remarks apply to Spin(V, h) and Pin(V, h).

1.17. Presentation of the pin group in terms of the spin group. For any
d, we have ν ∈ Pin(V, h) and:

AdCl
0 (ν) = (−1)d−1idV , Ãd

Cl

0 (ν) = −idV .

Thus:

Ãd
Cl

0 (νa) = Ãd
Cl

0 (ν)Ãd
Cl

0 (a) = −Ãd
Cl

0 (a) for a ∈ Pin(V, h) .

When d is even, we have ν ∈ Spin(V, h) and AdCl
0 (ν) = −idV ∈ SO(V, h). When d is

odd, we have ν ∈ Pin−(V, h), AdCl
0 (ν) = idV ∈ SO(V, h), Ãd

Cl

0 (ν) = −idV ∈ O−(V, h)
and every element of Pin−(V, h) can be written as νa for a uniquely-determined a ∈
Spin(V, h). Thus:

Pin−(V, h) =d=odd Spin(V, h)ν

and:

Pin(V, h) =d=odd Spin(V, h)〈ν〉 �
{

Spin(V, h)×G2 if p− q ≡8 1, 5
Spin(V, h) ·G4 if p− q ≡8 3, 7

. (1.18)

In this presentation, the twisted adjoint representation of Pin(V, h) for odd d is given
as follows:
1. If p− q ≡8 1, 5, then:

Ãd0(a, g) = gAd0(a) ∀a ∈ Spin(V, h) and g ∈ G2

2. If p− q ≡8 3, 7, then:

Ãd0([a, g]) = g2Ad0(a) ∀a ∈ Spin(V, h) and g ∈ G4
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Notice that Ad0(−a) = Ad0(a) and Ãd0(−a) = Ãd0(a) for all a ∈ Pin(V, h).

Remark 1.5. Notice the equivalences:

p− q ≡8 3 ⇐⇒ q − p ≡8 5 , p− q ≡8 7 ⇐⇒ q − p ≡8 1 , (1.19)

which interchange the complex case in signature (p, q) with the non-simple case in
signature (q, p). In fact, the interchange p ↔ q corresponds to h ↔ −h. Since
d (which is assumed odd) is invariant under this transformation, the volume forms
νh = νp,q and ν−h = νq,p (taken with respect to some fixed orientation of V ) are
central in Cl(V, h) and Cl(V,−h), respectively and we have:

ν2−h = −ν2h .

Since Spin(V,−h) � Spin(V, h), we have:

Pin(V,−h) �
{

Spin(V, h) ·G4 if p− q ≡8 1, 5
Spin(V, h)×G2 if p− q ≡8 3, 7

.

The group Pin(V,−h) is sometimes denoted Pin−(V, h) and is used in the theory of
Pin− structures [6].

1.18. The extended Clifford group.

Definition 1.7. The extended Clifford group3 Ge(V, h) is the subgroup of
Cl(V, h)× defined through:

Ge(V, h)
def.
= {x ∈ Cl(V, h)×|AdCl(x)(V ) = V } .

The ordinary Clifford group G(V, h) coincides with the subgroup formed by those
elements of Ge(V, h) which are homogeneous with respect to the canonical Z2-grading
of Cl(V, h). We have:

Ge(V, h) ∩ Cl±(V, h) = G±(V, h) , Ge(V, h) ∩ Cl×hom(V, h) = G(V, h) .

Proposition 1.7. We have:

Ge(V, h) = Z(V, h)×G(V, h)

Z(Ge(V, h)) = Z(V, h)×

Z(G(V, h)) = G(V, h) ∩ Z(V, h)×

and Ge(V, h) � [G(V, h)× Z(V, h)×]/Z(G(V, h)). Namely:
A. When d is even, we have Ge(V, h) = G(V, h).
B. When d is odd, we have:

Z(G(V, h)) = R
×�R×ν �Gp R>0×{1, ν,−1,−ν} �Gp

{
R>0 ×D4 if p− q ≡8 1, 5
R>0 ×G4 if p− q ≡8 3, 7

.

and:

Ge(V, h) �Gp

{
R>0 ×G(V, h) if p− q ≡8 1, 5
[U(1)×G(V, h)] /G4 if p− q ≡8 3, 7

.

3Sometimes called the untwisted Clifford group or simply the “Clifford group” in older literature
such as [20].
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Furthermore:

Z(V, h)×/Z(G(V, h)) �Gp

{
U(D)/D4 �Gp R>0 if p− q ≡8 1, 5
U(1)/G4 �Gp U(1) if p− q ≡8 3, 7

and there exists a short exact sequence:

1 −→ G(V, h) ↪→ Ge(V, h) −→ Z(V, h)×/Z(G(V, h)) −→ 1 . (1.20)

Proof. The extended Clifford group is generated by the Clifford group and
by the elements of Z(V, h)× (see [20]), thus Ge(V, h) = Z(V, h)×G(V, h). Let
e1 . . . ed be an orthonormal basis of (V, h). Since ei ∈ G(V, h) ⊂ Ge(V, h), any
a ∈ Z(Ge(V, h)) satisfies aei = eia for all i = 1 . . . d, which implies av = va for
all v ∈ V . Thus a ∈ Z(V, h)×. This shows that Z(Ge(V, h)) ⊂ Z(V, h)× and
also that Z(G(V, h)) ⊂ Z(V, h)×. Since the inverse to the first inclusion is ob-
vious, we conclude that Z(Ge(V, h)) = Z(V, h)×. Since Z(G(V, h)) ⊂ Z(V, h)×,
we have Z(G(V, h)) ⊂ G(V, h) ∩ Z(V, h)×. The inverse of this inclusion is ob-
vious, so we have Z(G(V, h)) = G(V, h) ∩ Z(V, h)×. The surjective morphism
of groups given by G(V, h) × Z(V, h)× � (a, α) → αa ∈ Ge(V, h) has kernel
equal to {(α−1, α)|α ∈ Z(G(V, h))} � Z(G(V, h)), which shows that Ge(V, h) �
[G(V, h) × Z(V, h)×]/Z(G(V, h)). Proposition 1.1 implies statements A. and B.,
where in the case p − q ≡8 1, 5 we used the isomorphisms D

× � R>0 × U(D) and
U(D) � U++(D)×D4 � R>0 ×D4 (see Appendix A).

Proposition 1.8. The following statements hold:
A. When d is even, we have Ge(V, h) = G(V, h) �Gp R>0 × Pin(V, h).
B. When d is odd, we have:

Ge(V, h) �Gp Z(V, h)×Pin(V, h) �Gp

{
[D× × Pin(V, h)] /D4 if p− q ≡8 1, 5
[C× × Pin(V, h)] /G4 if p− q ≡8 3, 7

and:

Ge(V, h) �Gp Z(V, h)×Spin(V, h) �Gp

{
D

× · Spin(V, h) if p− q ≡8 1, 5
C

× · Spin(V, h) if p− q ≡8 3, 7

Proof. Follows from relations (1.18) and Proposition 1.7.

1.19. The vector representation of the extended Clifford group.

Definition 1.8. The vector representation of Ge(V, h) is the group morphism
Ade0 : Ge(V, h) → Ô(V, h) given by:

Ade0(a)
def.
= AdCl(a)|V (a ∈ Ge(V, h)) .

Its restriction to G(V, h) coincides with the untwisted vector representation of G(V, h).

When d is even, the vector representation of the extended Clifford group gives
the exact sequence (1.11):

1 −→ Z(V, h)× = R
× ↪→ Ge(V, h) = G(V, h)

Ade
0=AdCl

0−→ O(V, h) −→ 1

while when d is odd it gives an exact sequence (cf. [20, Proposition (1.1.8)]):

1 −→ Z(V, h)× ↪→ Ge(V, h)
Ade

0−→ SO(V, h) −→ 1 ,

where Z(V, h)× was given in (1.5).
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1.20. Volume grading of the extended Clifford group. The volume grad-
ing of Cl(V, h) induces a grading of Ge(V, h). From the properties of the volume
grading of Cl(V, h) we obtain the following proposition.

Proposition 1.9. The following statements hold:
A. When d is even, the volume grading of Ge(V, h) coincides with the canonical Z2-
grading of G(V, h).

B. When d is odd, the volume grading of Ge(V, h) is concentrated in degree zero:

Ge(V, h)0 = Ge(V, h) , Ge(V, h)1 = ∅ .

1.21. The improved reversion and improved Clifford norm. Since
τ(Z(V, h)) ⊂ Z(V, h), we have N(Z(V, h)) ⊂ Z(V, h), which implies N(Ge(V, h)) ⊂
Z(V, h)×. Since Z(V, h)× is an Abelian group, it follows that the restriction of N
gives a group morphism from Ge(V, h) to Z(V, h)×. In general, N(Ge(V, h)) is larger
than R

×. Let:

εd
def.
= −(−1)[

d
2 ] =

{ −1 if d ≡4 0, 1
+1 if d ≡4 2, 3

. (1.21)

Definition 1.9. The improved reversion is the unique unital anti-automorphism
τe of Cl(V, h) which satisfies τe(v) = εdv for all v ∈ V , namely:

τe(x)
def.
= τ ◦ π 1−εd

2 =

{
τ̃ = τ ◦ π if d ≡4 0, 1
τ if d ≡4 2, 3

.

With this definition, we have:

τe(ν) =

{ −ν if d ≡4 1, 2, 3
+ν if d ≡4 0

.

In particular, τe(ν) = −ν when d is odd (d ≡4 1, 3). Thus τe acts as conjugation of
Z(V, h) � C in the complex case p − q ≡8 3, 7 and as conjugation of Z(V, h) � D

in the normal non-simple and quaternionic non-simple cases p − q ≡8 1, 5, i.e. in all
cases when Z(V, h) is not reduced to R.

Definition 1.10. The improved Clifford norm is the map Ne : Cl(V, h) →
Cl(V, h) defined through:

Ne(x)
def.
= τe(x)x =

{
Ñ(x) if d ≡4 0, 1
N(x) if d ≡4 2, 3

(x ∈ Cl(V, h)) . (1.22)

Notice that Ne(x) = x2 for all x ∈ R.

Proposition 1.10. The improved Clifford norm satisfies Ne(Z(V, h)) ⊂ R and

Ne|Z(V,h) = M ,

namely:
1. When d is even, Ne|Z(V,h) coincides with the squared absolute value (and hence
with the squaring function) on Z(V, h) = R
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2. When p−q ≡8 3, 7, Ne|Z(V,h) coincides with the squared absolute value on Z(V, h) �
C

3. When p−q ≡ 1, 5, Ne|Z(V,h) coincides with the hyperbolic modulus on Z(V, h) � D.

Proof. The case of even d is obvious (since Z(V, h) = R in that case). For odd d
and α, β ∈ R, we have:

Ne(ν) = −ν2 =

{
+1 if p− q ≡8 3, 7
−1 if p− q ≡8 1, 5

and:

Ne(α+ βν) =

{
α2 + β2 = |z|2 if p− q ≡8 3, 7
α2 − β2 = M(z) if p− q ≡8 1, 5

,

where:

z =

{
α+ iβ ∈ C if p− q ≡8 3, 7
α+ jβ ∈ D if p− q ≡8 1, 5

.

Proposition 1.11. Ne induces a group morphism Ne|Ge(V,h) : G
e(V, h) → R

×.

Proof. Since N(G(V, h)) ⊂ R
× and Ñ(G(V, h)) ⊂ R

×, it is clear that
Ne(G(V, h)) ⊂ R

×. The conclusion follows from the previous proposition using the
fact that Ge(V, h) = Z(V, h)×G(V, h).

Composing Ne|Ge(V,h) with the absolute value morphism | | : R× → R>0 gives a group
morphism |Ne| : Ge(V, h) → R>0:

|Ne|(x) = |Ne(x)| ∀x ∈ Ge(V, h) .

For any v ∈ V , we have:

Ne(v) =

{ −N(v) if d ≡4 0, 1
+N(v) if d ≡4 2, 3

and hence:

|Ne|G(V,h) = |N ||G(V,h) . (1.23)

1.22. The extended pin group.

Definition 1.11. The extended pin group is defined through:

Pine(V, h)
def.
= ker (|Ne| : Ge(V, h) → R>0) (1.24)

We have a short exact sequence:

1 −→ Pine(V, h) ↪→ Ge(V, h)
|Ne|−→ R>0 −→ 1 (1.25)
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and a commutative diagram with exact rows and columns:

1

��

1

��
1 �� U(Z(V, h))

��

�� Pine(V, h)
Ade

0 ��

��

Ô(V, h) �� 1

1 �� Z(V, h)× ��

|M|
��

Ge(V, h)
Ade

0 ��

|Ne|
��

Ô(V, h) �� 1

R>0

��

R>0

��
1 1

(1.26)

where |M| def.= | | ◦M and:

U(Z(V, h))
def.
= {x ∈ Z(V, h)||Ne(x)| = 1} = {x ∈ Z(V, h)||M(x)| = 1}

=

⎧⎨⎩
G2 p− q ≡8 0, 2, 4, 6
U(1) p− q ≡8 3, 7
U(D) p− q ≡8 1, 5

. (1.27)

In all cases, we have Z(V, h)× = {z ∈ Z(V, h)|M(z) �= 0} and any element
z ∈ Z(V, h)× can be written as z = u

√|M(z)|, where u ∈ U(Z(V, h)) is uniquely
determined by z. Thus:

Ge(V, h) = R>0Pin
e(V, h) � R>0 × Pine(V, h) . (1.28)

In particular, Ge(V, h) is homotopy equivalent with Pine(V, h).

Definition 1.12. Define:

Spinc(V, h)
def.
= Spin(V, h) ·U(1)

Spinh(V, h)
def.
= Spin(V, h) ·U(D) . (1.29)

Proposition 1.12. We have Pine(V, h) = U(Z(V, h))Pin(V, h), namely:
1. In the simple normal and simple quaternionic cases (p − q ≡8 0, 2, 4, 6), we have

Pine(V, h) = Pin(V, h).
2. In the complex case (p − q ≡8 3, 7), we have Pine(V, h) = Spin(V, h)U(1) �

Spinc(V, h).
3. In the non-simple cases (p − q ≡8 1, 5), we have Pine(V, h) = Spin(V, h)U(D) �

Spinh(V, h).

Proof.
1. Follows from the fact that d is even and hence Z(V, h) = R and Ge(V, h) = G(V, h)
in the simple normal and simple quaternionic cases.
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2. and 3. In the complex and non-simple cases, d is odd and any x ∈ Ge(V, h) can
be written as x = za for some z ∈ Z(V, h)× and a ∈ Spin(V, h). Since |Ne(a)| =
|N(a)| = 1, we have |Ne(x)| = |Ne(z)| = |M(z)|, which equals 1 iff z ∈ U(Z(V, h)). In
both cases we have U(Z(V, h)) ∩ Spin(V, h) = {−1, 1}, which gives the conclusion.

Proposition 1.7 implies Z(Pine(V, h)) = U(Z(V, h)). The situation is summarized in
Table 1.2.

p− q
mod 8

type Z(V, h) U(Z(V, h)) Pine(V, h)

0, 2 normal simple R G2 Pin(V, h)
3, 7 complex simple C U(1) Spinc(V, h)
4, 6 quat. simple R G2 Pin(V, h)

1 normal non-simple D U(D) Spinh(V, h)

5 quat. non-simple D U(D) Spinh(V, h)

Table 1.2

Extended pin groups.

Table 1.3 summarizes the relation of some low-dimensional Clifford algebras with
certain classical algebras and our notation for the latter4. Table 1.4 describes the
corresponding Spin,Pin and Pine groups.

Cl(V, h) name of numbers notation Z(V, h)
isomorphic
descriptions

Cl0,1 complex C C C

Cl1,0 double/split/hyperbolic D D R⊕ R

Cl0,2 quaternions H R H

Cl2,0 � Cl1,1 para/split/co-quaternions P R Mat(2,R)

Cl0,3 split biquaternions DH D H⊗R D � H⊕H

Cl3,0 biquaternions CH C H⊗R C = Mat(2,C)

Table 1.3

Some classical Clifford algebras and their isomorphic descriptions.

2. Enlarged spinor groups and their elementary representations. In this
section, we discuss certain enlargements of Spin(V, h) which, together with the spin
and pin groups, will arise later as canonical models of the reduced Lipschitz group L
of irreducible real representations of Cl(V, h) for various dimensions and signatures.
Depending on the value of p − q mod 8, L turns out to be isomorphic with one
of the groups Spin(V, h), Pin(V, h), Spinq(V, h), Pinq(V, h) or Spino±(V, h) discussed
below, while certain natural representations of L are isomorphic with the elementary
representations discussed in this section. The groups Spinq(V, h) and their elementary
representations were studied in [5] for the case p = d, q = 0. To our knowledge, the
groups Spino±(V, h) and their elementary representations were not considered before
in this context; they are studied in detail in [11], to which we refer the reader for more
information.

4Notice that other references, such as [20], use a convention in which p and q are interchanged.
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Cl(V, h)
p− q
mod 8

type Spin(V, h) Pin(V, h) Pine(V, h)

Cl0,1 7 complex G2 G4 Spinc
0,1=U(1)

Cl1,0 1 normal non-simple G2 D4 Spinh
1,0=U(D)

Cl0,2 6 quat. simple U(1) Pin0,2 Pin0,2

Cl2,0 2 normal simple U(1) Pin2,0 Pin2,0

Cl0,3 5 quat. non-simple Sp(1) Pin0,3 Spinh
3,0=Sp(1)·U(D)

Cl3,0 3 complex Sp(1) Pin3,0 Spinc
3,0=Sp(1)·U(1)

Table 1.4

The groups Spin(V, h), Pin(V, h) and Pine(V, h) for some classical Clifford algebras.

2.1. The group Pinq(V, h) and its elementary representations.

Definition 2.1. Define:

Pinq(V, h)
def.
= Pin(V, h) · Sp(1) = [Pin(V, h)× Sp(1)]/{−1, 1} . (2.1)

Let Ad• : Sp(1) = U(H) → SO(ImH) = SO(3,R) be the adjoint representation5 of
U(H) = Sp(1):

Ad•(q)(u) = quq−1 ∀q ∈ U(H) , ∀u ∈ ImH ,

where ImH = R
3 is endowed with the canonical scalar product. We have:

Ad•(q) = AdH(q)|ImH ∀q ∈ U(H) = Sp(1) ,

where AdH : U(H) → AutAlg(H) is the morphism of groups given by:

AdH(q)(q
′) def.

= qq′q−1 ∀q ∈ U(H) = Sp(1) ∀q′ ∈ H .

The latter gives a four-dimensional representation over R which decomposes as a
direct sum of the trivial representation (whose underlying subspace is R1H) and the
representation Ad• (which is supported on ImH).

Definition 2.2. The vector representation of Pinq(V, h) is the group morphism
λ : Pinq(V, h) → Ô(V, h) given by:

λ([a, q])
def.
= Ad0(a) ∀[a, q] ∈ Pinq(V, h) .

The twisted vector representation of Pinq(V, h) is the group morphism λ̃ :
Pinq(V, h) → O(V, h) given by:

λ̃([a, q])
def.
= Ãd0(a) ∀[a, q] ∈ Pinq(V, h) .

The characteristic representation of Pinq(V, h) is the group morphism μ : Pinq(V, h) →
SO(3,R) given by:

μ([a, q])
def.
= Ad•(q) ∀[a, q] ∈ Pinq(V, h) ,

5This coincides with the vector representation of Spin(3) � Sp(1) � SU(2), Ad• being the double
covering morphism Spin(3) → SO(3,R).
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The basic representation of Pinq(V, h) is the group morphism ρ
def.
= λ × μ :

Pinq(V, h) → Ô(V, h)× SO(3,R):

ρ([a, q])
def.
= (Ad0(a),Ad•(q)) . (2.2)

The twisted basic representation of Pinq(V, h) is the group morphism ρ̃
def.
= λ̃ × μ :

Pinq(V, h) → O(V, h)× SO(3,R):

ρ̃([a, q])
def.
= (Ãd0(a),Ad•(q)) . (2.3)

We have exact sequences:

1 −→ Z2 ↪→ Pinq(V, h)
ρ−→ Ô(V, h)× SO(3,R) −→ 1 , (2.4)

and:

1 −→ Z2 ↪→ Pinq(V, h)
ρ̃−→ O(V, h)× SO(3,R) −→ 1 , (2.5)

where Z2 = {[−1, 1] = [1,−1], [1, 1] = [−1,−1]}.
Proposition 2.1. Let d be even and ϕ : Pin(V, h)

∼→ Pin(V,−σp,qh) be the
isomorphism of Proposition 1.6. Then the isomorphism of groups θ : Pinq(V, h)

∼→
Pinq(V,−σp,qh) defined through:

θ([a, q])
def.
= [ϕ(a), q] ∀a ∈ Pin(V, h) and q ∈ U(H) ,

satisfies ρ ◦ θ = ρ̃.

Proof. Follows from Proposition 1.6.

2.2. The group Spinq(V, h) and its elementary representations. Define:

Spinq(V, h)
def.
= Spin(V, h) · Sp(1) = [Spin(V, h)× Sp(1)]/{−1, 1} . (2.6)

In the case p = d, q = 0, this group was studied in [5].

Definition 2.3. The vector representation λ : Spinq(V, h) → SO(V, h) is the
restriction of any of the vector representations of Pinq(V, h). The characteristic rep-
resentation μ : Spinq(V, h) → SO(3,R) is the restriction of the characteristic rep-
resentation of Pinq(V, h). The basic representation ρ

def.
= λ × μ : Spinq(V, h) →

SO(V, h)×SO(3,R) is the restriction of any of the basic representations of Pinq(V, h).

The sequences (2.4) and (2.5) restrict to the same exact sequence:

1 −→ Z2 ↪→ Spinq(V, h)
ρ−→ SO(V, h)× SO(3,R) −→ 1 . (2.7)

2.3. The group Spinoα(V, h) and its elementary representations. In this
subsection, we assume that d = p + q is odd. Let α ∈ {−1, 1} be a sign factor and
define:

Pin2(α)
def.
=

{
Pin2,0 if α = +1
Pin0,2 if α = −1

.
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Definition 2.4. Define:

Spinoα(V, h) = Spin(V, h) · Pin2(α) def.
= [Spin(V, h)× Pin2(α)]/{−1, 1} .

Let Ad(2)0 : Pin2(α) → O(2,R) and Ãd
(2)

0 : Pin2(α) → O(2,R) be the untwisted and
twisted vector representations of Pin2(α). In signatures (2, 0) and (0, 2), Proposition
1.6 gives an automorphism of Pin2(α) which exchanges the two representations Ad

(2)
0

and Ãd
(2)

0 . Notice that Spin(2) � SO(2,R) � U(1) and that U(1)/{−1, 1} � U(1).

Definition 2.5.
1. The vector representation of Spinoα(V, h) is the group morphism λ : Spinoα(V, h) →

O(V, h) defined through:

λ([a, u])
def.
= det(Ad

(2)
0 (u))Ad0(a) ∀[a, u] ∈ Spinoα(V, h) .

2. The characteristic representation of Spinoα(V, h) is the group morphism μ :
Spinoα(V, h) → O(2,R) defined through:

μ([a, u])
def.
= Ad

(2)
0 (u) ∀[a, u] ∈ Spinoα(V, h) .

3. The basic representation is the group morphism ρ
def.
= λ × μ : Spinoα(V, h) →

S[O(V, h)×O(2,R)]:

ρ([a, u])
def.
= (det(Ad

(2)
0 (u))Ad0(a),Ad

(2)
0 (u)) .

We have a short exact sequence:

1 −→ Spin(V, h) −→ Spinoα(V, h)
μ−→ O(2,R) −→ 1 .

Since d is odd, we also have short exact sequences:

1 −→ U(1) −→ Spinoα(V, h)
λ−→ O(V, h) −→ 1

(where U(1) = Spin(2) ⊂ Pin2(α) ⊂ Spinoα(V, h)) and:

1 −→ Z2 −→ Spinoα(V, h)
ρ−→ S[O(V, h)×O(2,R)] −→ 1 ,

where Z2 = {[1, 1] = [−1,−1], [1,−1] = [−1, 1]} ⊂ Spinoα(V, h). One can identify
Pin2(α) with the abstract group O2(α) defined below.

Definition 2.6. Let O2(α) be the compact non-Abelian Lie group with underlying
set U(1)× Z2 and composition given by:

(z1, 0̂)(z2, 0̂) = (z1z2, 0̂) , (z1, 0̂)(z2, 1̂) = (z1z2, 1̂) ,

(z1, 1̂)(z2, 0̂) = (z1z̄2, 1̂) , (z1, 1̂)(z2, 1̂) = (αz1z̄2, 0̂) , (2.8)

where Z2 =
{
0̂, 1̂

}
. The unit in O2(α) is given by 1 ≡ (1, 0̂).

The group U(1) embeds into O2(α) as the non-central subgroup U(1) × {0̂}. The
element c

def.
= (1, 1̂) ∈ O2(α) satisfies c2 = (α, 0̂) = α1 and c−1 = (α, 1̂) = αc.

Thus c has order two when α = 1 and order four when α = −1. This element
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generates a subgroup Γc of O2(α) which is isomorphic with Z2 when α = +1 and
with G4 when α = −1. Together with c, the subgroup U(1) generates O2(α). In fact,
O2(α) = {z|z ∈ U(1)} � {zc|z ∈ U(1)} is the group generated by U(1) and c with the
relations c2 = α1 and cz = z̄c. We have:

Ad(c)(x) = K(x) , ∀x ∈ O2(α) ,

where K : O2(α) → O2(α) is the conjugation automorphism, given by:

K(z, κ) = (z̄, κ) , ∀ z ∈ U(1) , κ ∈ Z2 .

Notice that K(z) = z̄ for z ∈ U(1), K(c) = c and K2 = idO2(α). The group O2(α)
admits a Z2-grading with homogeneous components:

O2(α)
+ = {(z, 0̂)|z ∈ U(1)} � U(1) , O2(α)

− = {(z, 1̂)|z ∈ U(1)} = U(1)c .

These coincide with the connected components of O2(α). We have Z(O2(α)) =
{−1, 1} = G2.

Definition 2.7. The abstract determinant is the grading morphism ηα :
O2(α) → G2 of O2(α):

ηα(x)
def.
= (−1)pr2(x) ,

where pr2(z, κ)
def.
= κ for any (z, κ) ∈ O2(α).

We have ηα(z) = 1, ηα(c) = −1 and a short exact sequence:

1 −→ U(1) −→ O2(α)
ηα−→ G2 −→ 1 . (2.9)

Moreover:
1. For α = +1, the sequence (2.9) splits (a splitting morphism θ : G2 → O2(α)

being given by θ(1) = 1 and θ(−1) = c) and we have6 O2(+) �Gp O(2,R) by an
isomorphism which identifies U(1) with SO(2,R) and c with reflection of R2 with
respect to some axis.

2. For α = −1, the sequence (2.9) presents O2(−) as a non-split extension of Z2 by
U(1). In particular, we have O2(−) �� O(2,R).

Definition 2.8. The squaring morphism is the surjective group morphism σα :
O2(α) → O2(+) given by:

σα(z, κ)
def.
= (z2, κ) , ∀(z, κ) ∈ O2(α) .

We have a short exact sequence:

1 −→ {−1, 1} ↪→ O2(α)
σα−→ O2(+) −→ 1 .

In particular, O2(+) � Pin2,0 and O2(−) � Pin0,2 are inequivalent central extensions
of O(2,R) by Z2. The reflection:

C0 =

[
1 0
0 −1

]
∈ O−(2,R) (2.10)

6This is the well-known isomorphism between Pin2,0 � O2(+) and the orthogonal group O(2,R).
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of R2 with respect to the horizontal axis (=real axis of C ≡ R
2) gives isomorphisms

of groups Φ(±)
0 : O2(+)

∼→ O(2,R) through the formula:

Φ
(±)
0 (eiθ, 0̂) = R(±θ) , Φ

(±)
0 (eiθ, 1̂) = R(±θ)C0 , (2.11)

where θ ∈ R and:

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ SO(2,R) . (2.12)

Let e1, e2 be the canonical basis of R
2 and ν2(α) = e1e2 be the Clifford volume

element of Cl2(α)
def.
=

{
Cl2,0 if α = +1
Cl0,2 if α = −1

with respect to the standard orientation

of R2. The following result is proved in [11]:

Proposition 2.2. There exists an isomorphism of Z2-graded groups ψα :
O2(α)

∼→ Pin2(α) which satisfies:

ψα(i) = ν2 = e1e2 and ψα(c) = e1 .

Moreover, the untwisted vector representation of Pin2(α) agrees with the squaring
morphism σα through the isomorphisms ψα and Φ

(−α)
0 :

Ad
(2)
0 ◦ ψα = Φ

(−α)
0 ◦ σα . (2.13)

and the abstract determinant agrees with the grading morphism det ◦Ad
(2)
0 of Pin2(α):

det ◦Ad
(2)
0 ◦ ψα = ηα . (2.14)

2.4. Adapted Spino groups.

Definition 2.9. Let (V, h) be a quadratic vector space belonging to the complex
case, i.e. such that the signature (p, q) of (V, h) satisfies p− q ≡8 3, 7 (in particular,
d = p+ q is odd). Let αp,q

def.
= (−1)

p−q+1
4 . Then the adapted Spino group of (V, h) is

defined through:

Spino(V, h)
def.
= Spinoαp,q

(V, h) =

{
Spino−(V, h) if p− q ≡8 3
Spino+(V, h) if p− q ≡8 7

.

2.5. The canonical spinor group and its elementary representations.
It is convenient to introduce a group depending on p − q mod 8 which, as we shall
see later on, provides a canonical presentation of the reduced Lipschitz group of real
Clifford irreps.

Definition 2.10. The canonical spinor group Λ(V, h) of (V, h) is defined as
follows:
1. In the normal simple case, we set Λ(V, h) def.

= Pin(V, h).
2. In the complex case, we set Λ(V, h) def.

= Spino(V, h).
3. In the quaternionic simple case, we set Λ(V, h) def.

= Pinq(V, h).
4. In the normal non-simple case, we set Λ(V, h) def.

= Spin(V, h).
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5. In the quaternionic non-simple case, we set Λ(V, h) def.
= Spinq(V, h).

The situation is summarized in Table 2.1.

p− q
mod 8

type Λ(V, h)

0, 2 normal simple Pin(V, h)
3, 7 complex Spino(V, h)
4, 6 quaternionic simple Pinq(V, h)
1 normal non-simple Spin(V, h)
5 quaternionic non-simple Spinq(V, h)

Table 2.1

Canonical spinor groups

Definition 2.11. The vector representation λ of Λ(V, h) is defined as follows:
1. In the normal simple case, λ def.

= AdCl
0 : Pin(V, h) → O(V, h) is the untwisted

vector representation of Pin(V, h).
2. In the complex case, λ : Spino(V, h) → O(V, h) is the vector representation of

Spinoαp,q
(V, h).

3. In the quaternionic simple case, λ : Pinq(V, h) → O(V, h) is the untwisted vector
representation of Pinq(V, h).

4. In the normal non-simple case, λ def.
= AdCl

0 : Spin(V, h) → SO(V, h) is the vector
representation of Spin(V, h).

5. In the quaternionic non-simple case, λ : Spinq(V, h) → SO(V, h) is the vector
representation of Spinq(V, h).

Definition 2.12. The characteristic representation μ of Λ(V, h) is defined as
follows:
1. In the normal simple case, μ : Pin(V, h) → 1 is the trivial one-dimensional repre-
sentation.

2. In the complex case, μ : Spino(V, h) → O(2,R) is the characteristic representation
of Spinoαp,q

(V, h).
3. In the quaternionic simple case, μ : Pinq(V, h) → SO(3,R) is the characteristic
representation of Pinq(V, h).

4. In the normal non-simple case, μ : Spin(V, h) → 1 is the trivial one-dimensional
representation.

5. In the quaternionic non-simple case, μ : Spinq(V, h) → SO(3,R) is the character-
istic representation of Spinq(V, h).

Definition 2.13. The basic representation of Λ(V, h) is the representation ρ =
λ× μ, namely:
1. In the normal simple case, ρ = λ : Pin(V, h) → O(V, h) is the untwisted vector
representation of Pin(V, h).

2. In the complex case, ρ : Spino(V, h) → S[O(V, h) × O(2,R)] is the basic represen-
tation of Spinoαp,q

(V, h).
3. In the quaternionic simple case, ρ : Pinq(V, h) → O(V, h) × SO(3,R) is the un-

twisted basic representation of Pinq(V, h).
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4. In the normal non-simple case, ρ : Spin(V, h) → SO(V, h) is the vector representa-
tion of Spin(V, h).

5. In the quaternionic non-simple case, ρ : Spinq(V, h) → SO(V, h)× SO(3,R) is the
basic representation of Spinq(V, h).

3. Clifford representations over R. In this section, we discuss finite-
dimensional real Clifford representations, the notion of weak faithfulness for such
representations as well as certain natural subspaces associated to them. Real Lips-
chitz groups (to be introduced in the next section) arise most naturally as the auto-
morphism groups of weakly faithful real Clifford representations in a certain category
which has more morphisms than the usual category of representations. Therefore, we
start by introducing that category.

3.1. The unbased category of Clifford representations over R. Defi-
nition 3.1. A Clifford representation over R is a morphism of unital algebras
γ : Cl(V, h) → EndR(S), where S is a finite-dimensional R-vector space.

Let γ : Cl(V, h) → EndR(S) and γ′ : Cl(V ′, h′) → EndR(S
′) be two Clifford represen-

tations.

Definition 3.2. A morphism from γ to γ′ is a pair (f0, f) such that:
1. f0 : V → V ′ is an isometry from (V, h) to (V ′, h′)
2. f : S → S′ is an R-linear map
3. γ′(Cl(f0)(x)) ◦ f = f ◦ γ(x) for all x ∈ Cl(V, h).

A based morphism is a morphism (f0, f) such that f0 = idV . A (not necessarily
based) isomorphism from γ to itself is called an automorphism.

In our language, a morphism of representations in the traditional sense corre-
sponds to a based morphism. Since Cl(V, h) is generated by V while Cl(V ′, h′) is
generated by V ′, condition (3) is equivalent with the weaker requirement:

γ′(f0(v)) ◦ f = f ◦ γ(v) ∀v ∈ V ,

and can also be written as (see the diagram in Figure 3.1):

Rf ◦ γ′ ◦ f0 = Lf ◦ γ|V or Rf ◦ γ′ ◦ Cl(f0) = Lf ◦ γ ,

where Lf : EndR(S) → HomR(S, S
′) and Rf : EndR(S

′) → HomR(S, S
′) are defined

through:

Lf (ϕ)
def.
= f ◦ ϕ , Rf (ψ) = ψ ◦ f , ∀ϕ ∈ EndR(S) and ψ ∈ EndR(S

′) .

Cl(V ′, h′)
γ′ �� EndR(S′)

Rf

��
HomR(S, S

′)

Cl(V, h)

Cl(f0)

��

γ
�� EndR(S)

Lf

��

(3.1)

Fig. 3.1. Commutativity of the diagram is the condition that (f0, f) gives an unbased morphism
of Clifford representations.
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With this definition, Clifford representations form a category denoted ClRep, were
compatible morphisms (f0, f) and (f ′

0, f
′) compose pairwise, i.e. (f ′

0, f
′) ◦ (f0, f) def.

=
(f ′

0 ◦ f0, f
′ ◦ f). The forgetful functor Π : ClRep → Cl which takes γ into Cl(V, h)

and (f0, f) into Cl(f0) is a fibration whose fiber above Cl(V, h) is the usual category
Rep(Cl(V, h)) of representations of Cl(V, h) (whose morphisms are the based mor-
phisms of representations). Isomorphisms in Rep(Cl(V, h)) are the usual equivalences
of representations. Hence equivalences of representations of Clifford algebras coincide
with based isomorphisms of ClRep; in particular, any isomorphism class of Clifford
representations in the category ClRep decomposes as a disjoint union of equivalence
classes. The surjective functor F = Cl−1 ◦Π : ClRep → Quad sends Cl(V, h) to (V, h)
and (f0, f) to f0. A morphism (f0, f) is an isomorphism in ClRep iff both f0 and f
are bijective.

Proposition 3.1. Let (f0, f) : γ
∼→ γ′ be an isomorphism of Clifford represen-

tations. Then Ad(f)(γ(V )) = γ′(V ′) and γ′ ◦ f0 = Ad(f) ◦ γ|V , where the unital
isomorphism of algebras Ad(f) : EndR(S) → EndR(S

′) is defined through:

Ad(f)(ϕ)
def.
= f ◦ ϕ ◦ f−1

for all ϕ ∈ EndR(S).

Proof. Follows immediately from the fact that Cl(f0)|V = f0.

When (f0, f) is an isomorphism, condition 3. in Definition 3.2 becomes:

γ′ ◦ Cl(f0) = Ad(f) ◦ γ , (3.2)

being equivalent with the condition γ′ ◦ f0 = Ad(f) ◦ γ|V , which states that f imple-
ments the isometry f0 : (V, h) → (V ′, h′) at the level of the representation spaces.

3.2. Clifford image, vector image and Schur algebra.

Definition 3.3. The Clifford image of γ is the unital subalgebra C(γ)
def.
=

γ(Cl(V, h)) ⊂ EndR(S). The vector image is the subspace W (γ)
def.
= γ(V ) ⊂ C(γ).

Notice that the Clifford image coincides with the unital subalgebra of EndR(S)
generated by the vector image and hence C(γ) is uniquely determined byW (γ). Every
element w ∈ W (γ) can be written as w = γ(v) for some v ∈ V , but this presentation
need not be unique7.

Definition 3.4. The Schur algebra S(γ) is the centralizer algebra of C(γ) in-
side the algebra (EndR(S), ◦). It consists of all R-linear endomorphisms of S which
commute with every element of C(γ).

Since C(γ) is generated by W (γ), we have:

S(γ) = {a ∈ EndR(S)|aw = wa ∀w ∈ W (γ)}
= {a ∈ EndR(S)|aγ(v) = γ(v)a ∀v ∈ V } . (3.3)

Since S := S(γ) is a unital subalgebra of EndR(S), we can view S as a left S-module
upon defining the left multiplication with scalars through:

sξ
def.
= s(ξ) ∀s ∈ S , ξ ∈ S ,

7It is unique when γ is weakly faithful, see below.
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where s(ξ) denotes the result of applying the operator s to ξ. Also notice that EndR(S)
is an S-bimodule (with external multiplications given by composition from the left
and from the right with operators belonging to S). To simplify notation, we will often
denote composition of operators by juxtaposition. Let:

EndS(S)
def.
= {a ∈ EndR(S)|a(sξ) = sa(ξ) ∀ξ ∈ S and s ∈ S}
= {a ∈ EndR(S)|as = sa ∀s ∈ S} , (3.4)

denote the unital algebra of S-linear maps (endomorphisms of S as an S-module) and
AutS(S) denote the group of invertible S-linear maps (S-module automorphisms). By
the definition of C(γ), we have:

C(γ) ⊂ EndS(S) .

Remark 3.1. Recall that Cl(V, h) is a semisimple R-algebra. This implies that
any finite-dimensional Cl(V, h)-module (i.e. any Clifford representation γ : Cl(V, h) →
EndR(S)) decomposes as a direct sum of inequivalent irreps γi : Cl(V, h) → EndR(Si)
(i = 1 . . . n) with multiplicities mi, namely S = ⊕n

i=1Si ⊗R Ui with Ui = R
mi and

γ(x) = ⊕n
i=1γi(x)⊗R idUi

. Schur’s lemma implies the decomposition:

S(γ) = EndCl(V,h)(S) = ⊕n
i=1S(γi)⊗R EndR(Ui) , (3.5)

where S(γi) are division algebras over R, hence each S(γi) is isomorphic with one of
the R-algebras R, C or H.

3.3. Pseudocentralizer, anticommutant subspace and Schur pairing.

Definition 3.5. The anticommutant subspace of the Clifford representation
γ : Cl(V, h) → EndR(S) is the following subspace of EndR(S):

A(γ)
def.
= {a ∈ EndR(S)|aw = −wa ∀w ∈ W (γ)}
= {a ∈ EndR(S)|aγ(v) = −γ(v)a ∀v ∈ V }
= {a ∈ EndR(S)|aγ(x) = γ(π(x))a ∀x ∈ Cl(V, h)} . (3.6)

Let A := A(γ). We have SA ⊂ A and AS ⊂ A, so A is an S-bimodule (a
submodule of the S-bimodule EndR(S)). For any a1, a2 ∈ A, we have a1a2 ∈ S, so the
composition of EndR(S) induces an R-bilinear map:

m : A×A → S . (3.7)

In particular, a ∈ A implies a2 ∈ S, so A consists of square roots of elements of S
(taken in EndR(S)). These observations imply that the subspace S + A is a unital
subalgebra of EndR(S).

Definition 3.6. The pseudocentralizer of γ is the unital subalgebra T(γ)
def.
=

S(γ) +A(γ) of EndR(S).

Definition 3.7. The Schur pairing of γ is the symmetric R-bilinear pairing
pγ : A(γ)×A(γ) → S(γ) obtained by symmetrizing the composition map (3.7):

pγ(a1, a2)
def.
=

1

2
(a1a2 + a2a1) , ∀a1, a2 ∈ A(γ) .
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Notice that S× ∩A = ∅ if W (γ) �= 0. Hence:

S ∩A ⊂ S \ S× if W (γ) �= 0 .

In particular, we have S ∩ A = {0} when W (γ) �= 0 and S is a division algebra (for
example, when γ is an irreducible representation with S �= 0).

Remark 3.2. Let (f0, f) : γ
∼→ γ′ be an isomorphism of Clifford representations.

Then Ad(f)(W (γ)) = W (γ′). Since Ad(f) is a unital R-algebra isomorphism from
EndR(S) to EndR(S

′), this implies Ad(f)(C(γ)) = C(γ′) and:

Ad(f)(S(γ)) = S(γ′) , Ad(f)(A(γ)) = A(γ′) , Ad(f)(T(γ)) = T(γ′) .

Hence restriction gives bijective maps:

Ads(f)
def.
= Ad(f)|S(γ) : S(γ) → S(γ′)

AdA(f)
def.
= Ad(f)|A(γ) : A(γ) → A(γ) (3.8)

AdT(f)
def.
= Ad(f)|T (γ) : T(γ) → T(γ) .

Notice that Ads(f) and AdT(f) are unital isomorphisms of R-algebras while
(Ads(f),AdA(f)) is a twisted isomorphism of left modules (see Appendix C) from
the S(γ)-module A(γ) to the S(γ′)-module A(γ′). Since these maps behave well un-
der composition, this gives functors S : ClRep× → Alg×, A : ClRep× → TwMod×

(where TwMod is the category of left modules over unital associative R-algebras
and twisted morphisms between such) and T : ClRep× → Alg× which respec-
tively associate to γ the objects S(γ), A(γ) and T(γ) and to f the morphisms
S(f) = Ads(f), A(f) = (Ads(f),AdA(f)) and T(f) = AdT(f). When γ′ = γ and
(f0, f) ∈ Aut(γ), we have Ads(f) ∈ AutAlg(S(γ)), AdA(f) ∈ AuttwS(γ)(A(γ)) and
AdT(f) ∈ AutAlg(T(γ)). The fact that AdT(f) is an algebra automorphism implies
pγ ◦ (AdA(f) ⊗R AdA(f)) = Ads(f) ◦ pγ and hence AdA(f) ∈ AuttwS(γ)(A(γ), pγ) (see
Appendix C for notation).

3.4. The pinor volume element and the volume grading of EndR(S). Let
us fix an orientation of V and let ν denote the corresponding Clifford volume element.

Definition 3.8. The element ωγ
def.
= γ(ν) ∈ C(γ) ⊂ EndR(S) is called the pinor

volume element of γ determined by the chosen orientation of V .

The pinor volume element ω := ωγ satisfies:

ω2 = (−1)q+
d(d−1)

2 idS , ωw = (−1)d−1wω ∀w ∈ W . (3.9)

Thus ω ∈ S for odd d and ω ∈ A for even d. The first relation implies that Ad(ω) is
an involutive automorphism of the algebra EndR(S):

Ad(ω)2 = idEndR(S)

and hence induces a Z2-grading EndR(S) = End0R(S)⊕End1R(S) of this algebra, where:

End0R(S)
def.
= ker(Ad(ω)− idEndR(S)) = {a ∈ EndR(S)|aω = ωa}

End1R(S)
def.
= ker(Ad(ω) + idEndR(S)) = {a ∈ EndR(S)|aω = −ωa} .
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In particular, End0R(S) is a unital subalgebra of EndR(S). Since ω = γ(ν), we have:

Ad(ω) ◦ γ = γ ◦Ad(ν) ,

which gives:

Proposition 3.2. The morphism of R-algebras γ : Cl(V, h) → EndR(S) is
homogeneous of degree zero with respect to the Z2-gradings induced by ν on Cl(V, h)
and by ω on EndR(S):

γ(Clκ(V, h)) ⊂ EndκR(S) ∀κ ∈ Z2 .

When d is even, we have Cl0(V, h) = Cl+(V, h) and Cl1(V, h) = Cl−(V, h) and the
proposition gives C+(γ)

def.
= γ(Cl+(V, h)) ⊂ End0R(S) and C−(γ)

def.
= γ(Cl−(V, h)) ⊂

End1R(S). In this case, we have C(γ) = C+(γ) ⊕ C−(γ) and C(γ) is a homogeneous
subalgebra of EndR(S) with respect to the Z2-grading introduced above. When d is
odd, we have Cl(V, h) = Cl0(V, h) and the proposition gives C(γ) ⊂ End0R(S).

3.5. Weakly faithful and rigid Clifford representations.

Definition 3.9. A Clifford representation γ : Cl(V, h) → EndR(S) is called
weakly faithful if the restriction γ0

def.
= γ|V : V → EndR(S) is an injective map. It is

called rigid if γV = idV .

When γ is weakly faithful, we can use the injection γ|V to identify V with the
subspace W (γ) ⊂ EndR(S). Let ClRepw (respectively ClRepr) denote the full sub-
categories of ClRep whose objects are the weakly faithful (respectively rigid) Clifford
representations and ClRep×w (respectively ClRep×r ) denote the corresponding unit
groupoids (which are full sub-groupoids of ClRep×). Notice that any faithful or rigid
Clifford representation is weakly faithful. When γ and γ′ are weakly faithful and
(f0, f) : γ → γ′ is an isomorphism of Clifford representations, Proposition 3.1 shows
that we have Ad(f)(γ(V )) = γ′(V ′) and that f0 is uniquely determined by f through
the relation:

f0 = (γ′|V ′)−1 ◦Ad(f) ◦ γ|V . (3.10)

It is easy to see that the converse also holds, so we have:

Proposition 3.3. Assume that γ and γ′ are weakly faithful. Then any isomor-
phism (f0, f) : γ → γ′ is determined by the linear isomorphism f : S → S′. Namely,
we have Ad(f)(γ(V )) = γ′(V ′) and f0 is given by relation (3.10). Conversely, any
linear isomorphism f : S → S′ which satisfies Ad(f)(γ(V )) = γ′(V ′) determines an
isomorphism of quadratic spaces f0 : (V, h) → (V ′, h′) through relation (3.10) and we
have (f0, f) ∈ HomClRep×(γ, γ

′).

In view of this, we denote isomorphisms of weakly faithful Clifford representations
only by f (since f determines f0 in this case) and we identify HomClRep×w (γ, γ

′) with
a subset of the set IsomR(S, S

′) of linear isomorphisms from S to S′:

HomClRep×w (γ, γ
′) ≡ {f ∈ IsomR(S, S

′)|Ad(f)(γ(V )) = γ′(V ′)}
for γ, γ′ ∈ Ob(ClRepw) . (3.11)

Remark 3.3. One can show that the full inclusion functor ClRep×r ↪→ ClRep×w
is an equivalence of categories. This equivalence of categories can be used to show
equivalence of our approach with the real version of the formalism of “spin spaces”
which was used in [10] for the case of complex Clifford representations.
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4. Real Lipschitz groups and their elementary representations. In this
section, we introduce the real Lipschitz group of a weakly faithful real Clifford repre-
sentation, which coincides with the automorphism group of the latter in the category
ClRep introduced in the previous section. We also study certain elementary repre-
sentations of real Lipschitz groups. The results of this section apply to any weakly
faithful real Clifford representation γ, which need not be irreducible.

4.1. The Lipschitz group of a weakly faithful real Clifford representa-
tion. When γ : Cl(V, h) → EndR(S) is a weakly faithful real Clifford representation,
restriction gives a linear isomorphism:

γ|V : V
∼→ W (γ)

which can be used to transport h to a symmetric and non-degenerate bilinear form
gγ : W (γ)×W (γ) → R:

gγ(w1, w2)
def.
= h((γ|V )−1(w1), (γ|V )−1(w2)) ∀w1, w2 ∈ W (γ) .

Thus (W (γ), gγ) is a quadratic space and γ|V : (V, h)
∼→ (W (γ), gγ) is an invertible

isometry.

Definition 4.1. Let γ be a weakly faithful real Clifford representation. The group
L(γ)

def.
= {a ∈ AutR(S)|Ad(a)(W (γ)) ⊂ W (γ)} is called the real Lipschitz group of γ.

For simplicity, we will often denote W (γ) by W , gγ by g, L(γ) by L etc.

4.2. The vector representation of the Lipschitz group. For any a ∈ L
and any w ∈ W , we have Ad(a)(w) ∈ W and Ad(a)(w)2 = Ad(a)(w2). Since
w2 = g(w,w)idS and Ad(a)(w)2 = g(Ad(a)(w),Ad(a)(w))idS , this implies Ad(a)|W ∈
O(W, g).

Definition 4.2. The group morphism Adγ0 : L(γ) → O(W (γ), gγ) given by:

Adγ0(a)
def.
= Ad(a)|W

is called the vector representation of L(γ).

It is easy to see that the group S(γ)× of units of S(γ) coincides with the kernel of
Adγ0 :

ker(Adγ0) = S(γ)× ⊂ L . (4.1)

Proposition 4.1. Let γ be a weakly faithful real Clifford representation.
Then the Lipschitz group L(γ) is naturally isomorphic with the automorphism group
AutClRepw

(γ) of γ in the category ClRepw. Therefore, the isomorphism class of L(γ)
depends only on the isomorphism class of γ in the category ClRepw.

Proof. Any a ∈ L induces an invertible isometry a0 ∈ O(V, h) through relation
(3.10), namely:

a0 = (γ|V )−1 ◦Adγ0(a) ◦ (γ|V ) ∈ O(V, h) , (4.2)

which implies:

γ ◦ Cl(a0) = Ad(a) ◦ γ . (4.3)
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Thus (a0, a) is the unique automorphism of γ in the category ClRep whose second
component equals a. Conversely, we have a ∈ L(γ) for any (a0, a) ∈ AutClRepw

(γ) =
AutClRep(γ) (see Proposition 3.1) and a0 is determined by a through relation (4.2)
(see Proposition 3.3). Hence the map F1 : AutClRep(γ) → L(γ) given by F1(a0, a) = a
is an isomorphism of groups which allows us to identify L(γ) with AutClRep(γ).

For what follows, we fix a weakly faithful Clifford representation γ : Cl(V, h) →
EndR(S) and set L := L(γ), C := C(γ), W := W (γ), g := gγ , S := S(γ), A := A(γ)

and Ad0 := Adγ0 . Fixing an orientation on V , we orient W such that γ|V : V
∼→ W

is orientation-preserving and let ν and ω = γ(ν) denote the corresponding Clifford
volume and pinor volume element. Since the quadratic spaces (V, h) and (W, g) are
isometric, we will sometimes identify them using the isometry γ|V , in which case we
view the vector representation of L as a group morphism Ad0 : L → O(V, h).

Remark 4.1. An element w ∈ W is invertible in EndR(S) iff it is nondegenerate
in the quadratic space (W, g). In this case, its inverse w−1 = 1

g(w,w)w also belongs to
W . If w ∈ W is a unit vector, then so is w−1.

4.3. Volume grading of the Lipschitz group. Let det : O(W, g) → G2 be
the determinant morphism and L = L0 � L1 be the Z2-grading of L induced by the
group morphism det ◦Ad0 : L → G2:

L0 def.
= {a ∈ L| det(Ad0(a)) = +1} = Ad−1

0 (SO(W, g)) ,

L1 def.
= {a ∈ L| det(Ad0(a)) = −1} = Ad−1

0 (O−(W, g)) .

Definition 4.3. The subgroup L0 ⊂ L is called the special Lipschitz group.

Proposition 4.2. We have:

Ad(ω)(a) = det(Ad0(a))a , ∀a ∈ L (4.4)

and:

L0 = L ∩ End0R(S) , L1 = L ∩ End1R(S) . (4.5)

Proof. If e1 . . . ed is an oriented orthonormal basis of (W, g), then:

ε1
def.
= (γ|V )−1(e1), . . . , εd

def.
= (γ|V )−1(ed) ,

is an oriented orthonormal basis of (V, h). Thus ν = ε1 . . . εd and hence ω = γ(ν) =
e1 . . . ed. For any a ∈ L, we have:

ω′ def.
= Ad(a)(ω) = Ad0(a)(e1) . . .Ad0(a)(ed) = e′1 . . . e

′
d ,

where e′k
def.
= Ad0(a)(ek) ∈ W form an orthonormal basis of (W, g) (because Ad0(a) ∈

O(W, g)). Thus ε′1
def.
= (γ|V )−1(e′1), . . . , ε

′
d

def.
= (γ|V )−1(e′d) is an orthonormal basis

of (V, h) which satisfies ε′k = a0(εk), where a0 ∈ O(V, h) is given by (4.2). Hence
ν′ def.

= ε′1 . . . ε
′
d = det(a0)ε1 . . . εd = det(a0)ν, which implies ω′ = γ(ν′) = det(a0)ω.

Relation (4.2) gives detAd0(a) = det(a0) ∈ {−1, 1} and hence ω′ = det(Ad0(a))ω.
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Thus Ad(a)(ω) = det(Ad0(a))ω, which is equivalent with (4.4) upon using the relation
Ad0(a) = Ad0(a

−1) ∀a ∈ L. Hence:

Ad(ω)(a) = (−1)αa ∀a ∈ Lα (α ∈ Z2) . (4.6)

and hence Lα ⊂ EndαR(S) for all α ∈ Z2. Since L = L0�L1 and End0R(S)∩End1R(S) =
{0} while 0 �∈ L, this implies (4.5).

Remark 4.2. Notice that ω ∈ L since Ad(ω)(w) = (−1)d−1w ∈ W for all w ∈ W .
Since Ad(ω)(ω) = +ω, we have ω ∈ End0R(S) and relations (4.5) imply ω ∈ L0.

Proposition 4.3. Let w ∈ W be a non-degenerate vector. Then w ∈ L and
Ad0(w) equals minus the orthogonal reflection of (W, g) in the hyperplane orthogonal
to w:

Ad0(w) = −Rw (4.7)

Proof. Follows by direct computation using the relations w−1 = 1
g(w,w)w and

wx+ xw = 2g(x,w) for x ∈ W as well as relation (1.1).

Remark 4.3. Let w ∈ W be non-degenerate. Since Ad(ω)(w) = (−1)d−1w,
relations (4.5) give:
1. When d is even, then w ∈ L1

2. When d is odd, then w ∈ L0.

4.4. Image subgroups of the Lipschitz group.

Proposition 4.4. We have γ(Ge(V, h)) ⊂ L, where Ge(V, h) is the extended
Clifford group.

Proof. Since γ is a unital morphism of R-algebras, we have γ(Cl(V, h)×) ⊂ C× ⊂
AutR(S). Moreover, we have:

Ad(γ(x))(γ(y)) = γ(AdCl(x)(y)) ∀x ∈ Cl(V, h)× and y ∈ Cl(V, h) , (4.8)

which also reads:

Rγ ◦Ad ◦ γ = Lγ ◦AdCl .

Since γ|V : V
∼→ W is a bijection, any element w ∈ W can be written as w = γ(v)

with v = γ−1(w) ∈ V . Applying (4.8) to y = v gives:

Ad(γ(x))(w) = γ(AdCl(x)(v)) ∀x ∈ Cl(V, h)× .

When x ∈ Ge(V, h), we have AdCl(x)(v) ∈ V and the relation above gives
Ad(γ(x))(w) ∈ γ(V ) = W , which implies γ(x) ∈ L.

Definition 4.4. The image extended Clifford group of γ is the subgroup
γ(Ge(V, h)) ⊂ L. The image Clifford group of γ is the subgroup γ(G(V, h)) ⊂
γ(Ge(V, h)). The image pin group of γ is the subgroup γ(Pin(V, h)) ⊂ γ(G(V, h)).
The image spin group of γ is the subgroup γ(Spin(V, h)) ⊂ γ(Pin(V, h)).

Recall that G(V, h) is generated by the non-degenerate vectors of (V, h) while
Pin(V, h) is generated by the unit vectors of (V, h). Since γ|V is an invertible isometry
from (V, h) to (W, g), we have:
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Proposition 4.5. The image Clifford group γ(G(V, h)) coincides with the sub-
group of AutR(S) generated by all non-degenerate vectors of (W, g), while the image
pin group γ(Pin(V, h)) coincides with the subgroup of AutR(S) generated by all unit
vectors of (W, g)

The Z2-grading of L induces Z2-gradings on all image subgroups defined above. For
example, we have γ(Ge(V, h))κ = γ(Ge(V, h))∩Lκ, γ(Pin(V, h))κ = γ(Pin(V, h))∩Lκ

for κ ∈ Z2. Relation (4.5) implies:

γ(Ge(V, h))κ = γ(Ge(V, h)) ∩ EndκR(S) ,

γ(G(V, h))κ = γ(G(V, h)) ∩ EndκR(S) ,

γ(Pin(V, h))κ = γ(Pin(V, h)) ∩ EndκR(S) .

When d is even, the gradings of γ(G(V, h)) and γ(Pin(V, h)) coincide with those
induced by the canonical Z2-grading of Cl(V, h). When d is odd, we have:

γ(G(V, h)) = γ(G(V, h))0 ⊂ L0 , γ(Pin(V, h)) = γ(Pin(V, h))0 ⊂ L0 .

Remark 4.4. In general, L1 can be non-empty even when d is odd (since L need
not be generated by invertible elements from W ). We will see later that this indeed
happens for certain irreducible Clifford representations. On the other hand, Ge(V, h)
is generated by Z(V, h)× and G(V, h) and we have γ(Z(V, h)×) ⊂ S

× ⊂ L0. This
implies γ(Ge(V, h)) ⊂ L0 when d is odd. When d is even, we have Ge(V, h) = G(V, h)
and γ(Ge(V, h)) = γ(G(V, h)).

4.5. Twisting elements and twisted image pin groups.

Definition 4.5. We say that γ admits twisting elements if the intersection A(γ)∩
AutR(S) is non-empty. In this case, a twisting element of γ is an invertible element
of the anticommutant subspace A(γ), i.e. an element of the set A(γ) ∩ AutR(S). A
twisting element μ ∈ A(γ) ∩ AutR(S) is called nondegenerate if the endomorphism
idS + μ ∈ EndR(S) is invertible and special if μ2 = −idS.

Proposition 4.6. Any special twisting element is non-degenerate.

Proof. If μ is a special twisting element, then 1
2 (idS−μ)(idS+μ) = idS and hence

idS + μ is invertible with inverse 1
2 (idS − μ).

For any twisting element μ and any w ∈ W , we have Ad(μ)(w) = −w. Thus twisting
elements form a subset of L. This set is invariant under multiplication with elements
of R×. The subset of special twisting elements is invariant under changes of sign
(μ → −μ).

Definition 4.6. Let μ be a twisting element. The μ-twisted image pin group of
γ is the sub-group Pinμ(γ) ⊂ AutR(S) generated by the elements μw, where w runs
over the unit vectors of (W, g).

Any element of Pinμ(γ) can be brought to the form (−1)
k(k−1)

2 μkw1 . . . wk, where
w1, . . . , wk are unit vectors of (W, g), but this presentation need not be unique.

Proposition 4.7. Let μ be a special twisting element. Then the μ-twisted image
pin group is isomorphic with the image pin group, namely:

Ad(idS + μ)(γ(Pin(V, h))) = Pinμ(γ) (4.9)
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and we have:

Ad(a)(W ) = W ∀ a ∈ Pinμ(γ) . (4.10)

Moreover, the isomorphism of groups ϕμ
def.
= Ad(idS + μ)|γ(Pin(V,h)) : γ(Pin(V, h))

∼→
Pinμ(γ) satisfies:

AdW ◦ ϕμ ◦ γ|Pin(V,h) = Ad(γ|V ) ◦ Ãd0 , (4.11)

where the group morphism AdW : Pinμ(γ) → O(W, g) is defined through AdW (a) =

Ad(a)|W for all a ∈ Pinμ(γ) and Ãd0 : Pin(V, h) → O(V, h) is the twisted vector
representation of Pin(V, h). Hence the representation AdW ◦ϕμ◦γ|Pin(V,h) of Pin(V, h)
is equivalent with the twisted vector representation.

Remark 4.5. In the proposition, γ|V is viewed as an invertible isometry from
(V, h) to (W, g), so Ad(γ|V ) is a unital isomorphism of algebras from EndR(V ) to
EndR(W ) which restricts to an isomorphism of groups from O(V, h) to O(W, g).

Proof. Let μ be a special twisting element. Then the map V � v → μγ(v) ∈
EndR(S) satisfies (μγ(v))2 = γ(v)2 = h(v, v)idS and hence induces a unital morphism
of algebras γμ : Cl(V, h) → EndR(S) such that γμ(v) = μγ(v) for all v ∈ V . The
identity μγ(v) = (idS + μ)γ(v)(idS + μ)−1 = Ad(idS + μ)(γ(v)) implies that this
representation is equivalent with γ, namely:

γμ = Ad(idS + μ) ◦ γ . (4.12)

Since γμ(Pin(V, h)) = Pinμ(γ), relation (4.12) implies (4.9). For every w ∈ W and
any unit vector u of (W, g), we have:

Ad(μu)(w) = μuw(μu)−1 = μuwu−1μ−1 = −uwu−1 = Ru . (4.13)

This implies Ad(μu)(W ) ⊂ W and shows that (4.10) holds. Taking u = γ(v) and
w = γ(v′) with v = (γ|V )−1(u) ∈ V a unit vector of (V, h) and v′ = (γ|V )−1(w) ∈ V
in (4.13) gives:

(Ad ◦ ϕμ ◦ γ)(v)(w) = Ad(μγ(v))(γ(v′)) = γ|V (Ãd0(v)(v
′)) ,

which gives (4.11).

4.6. Surjectivity conditions for the vector representation.

Proposition 4.8. Let μ be any twisting element and w ∈ W be a non-degenerate
vector. Then μw ∈ L and Ad0(μw) equals the g-orthogonal reflection of W in the
hyperplane orthogonal to w:

Ad0(μw) = +Rw .

In particular, we have Pinμ(γ) ⊂ L.

Proof. It suffices to consider the case when w is a unit vector, so we can assume
g(w,w) = ε ∈ {−1, 1}. Then w2 = g(w,w)idS = εidS , so w is invertible and w−1 =
εw. For any x ∈ W , we compute:

Ad(μw)(x) = Ad(μ)(wxw−1) = εAd(μ)(wxw) = −εwxw = −Ad(w)(x) = +Rw ,

where we used (4.7).

Theorem 4.9. The following statements hold:
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1. The image of the vector representation of L0 equals the special orthogonal group of
(W, g), so we have a short exact sequence:

1 −→ S
× ↪→ L0 Ad0−→ SO(W, g) −→ 1 . (4.14)

2. Suppose that d is even or that γ admits a twisting element. Then the vector repre-
sentation of L is surjective and we have a short exact sequence:

1 −→ S
× ↪→ L

Ad0−→ O(W, g) −→ 1 . (4.15)

Proof. Since L contains all non-degenerate vectors of (W, g), Proposition 4.3
shows that the group Ad0(L) contains all minus reflections Ad0(w) = −Rw of
O(W, g). By the definition of the grading of L, we have Ad0(L

0) ⊂ SO(W, g) and
Ad0(L

1) ⊂ O−(W, g), where O−(W, g) ⊂ O(W, g) denotes the set of improper orthog-
onal transformations. Thus Ad0(L

0) and Ad0(L
1) are disjoint. We distinguish the

cases:
1. When d is even, the minus reflections have determinant −1 and they generate

O(W, g), thus Ad0(L) = O(W, g), which establishes part of the second statement.
2. When d is odd, minus reflections have determinant +1 and generate SO(W, g),

thus SO(W, g) ⊂ Ad0(L). Since Ad0(L
0) ⊂ SO(W, g) and Ad0(L

1) ⊂ O−(W, g) are
disjoint, we must have SO(W, g) = Ad0(L

0), which establishes the first statement.
Suppose now that d is arbitrary but that γ admits a twisting element μ. Then the
previous proposition shows that L contains Pinμ(γ) and that Ad0(L) contains all
reflections Ad(μw) = Rw of (W, g), which generate O(W, g) by the Cartan-Dieudonne
theorem. This completes the proof of the second statement.

4.7. The Schur representation.

Proposition-Definition 4.10. For any a ∈ L, we have Ad(a)(S) = S. Thus
Ad induces a Schur representation:

Ads : L → AutAlg(S) , Ads(a)
def.
= Ad(a)|S (a ∈ L)

through unital algebra automorphisms of S. Furthermore, we have:

kerAds = L ∩ EndS(S) (4.16)

Proof. Given a ∈ L, any vector w ∈ W can be written as w = Ad(a)(w′) for some
w′ ∈ W , namely w′ = Ad(a−1)(w). For any s ∈ S, we have:

Ad(a)(s)w = Ad(a)(s)Ad(a)(w′) = Ad(a)(sw′) = Ad(a)(w′s)
= Ad(a)(w′)Ad(a)(s) = wAd(a)(s) , (4.17)

where we used the fact that s ∈ S commutes with w′ ∈ W . This shows that Ad(a)(s)
commutes with any w ∈ W and hence that Ad(a)(s) belongs to S. Thus Ad(a)(S) ⊂ S.
Since Ad(a) is R-linear and bijective while S is finite-dimensional over R, we in fact
have Ad(a)(S) = S. The fact that Ads(a) is a unital morphism of algebras is obvious,
as is the remaining statement.
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4.8. The anticommutant representation.

Proposition 4.11. The anticommutant subspace is invariant under the vector
representation of L:

Ad(a)(A) = A , ∀a ∈ L

and hence Ad induces a linear representation AdA : L → AutR(A), AdA(a)
def.
=

Ad(a)|A in the space A. Moreover, AdA is a representation of L through Ads-twisted
S-module automorphisms which are twisted-orthogonal with respect to the Schur pair-
ing p, so the following relations hold for all a ∈ L:

AdA(a)(sx) = Ads(a)(s)AdA(a)(x) ∀s ∈ S and x ∈ A (4.18)

and:

p(AdA(a)(x1),AdA(a)(x2)) = Ads(a)(p(x1, x2)) , ∀x1, x2 ∈ A . (4.19)

We refer the reader to Appendix C for the notion of twisted module automorphism
and for the notation used in the proposition.

Proof. For any a ∈ L, x ∈ A and w ∈ W , we have:

Ad(a)(x)w = axAd(a−1)(w)a−1 = −aAd(a−1)(w)xa−1 = −wAd(a)(x) , (4.20)

where in the middle equality we used the fact that a−1 ∈ L (since L is a group), which
implies that Ad(a−1)(w) belongs to W and hence that it anticommutes with x ∈ A
(by the definition of A). Relation (4.20) shows that Ad(a)(x) anticommutes with w
for any w ∈ W and hence Ad(a)(x) belongs to A for any x ∈ A, thus Ad(a)(A) = A
for any a ∈ L. Relation (4.18) is obvious. For any x1, x2 ∈ A, we have:

p(Ad(a)(x1),Ad(a)(x2)) =
1

2
[Ad(a)(x1x2) + Ad(a)(x2x1)] = Ad(a)(p(x1, x2)) ,

which gives (4.19) since p(x1, x2) ∈ S.

Definition 4.7. The group morphism:

AdA : L → AuttwS (A, p)

is called the anticommutant representation of L.

4.9. Adapted pairings and Lipschitz norms.

Definition 4.8. A non-degenerate R-bilinear pairing B : S × S → R is called
adapted to γ if it has the following properties:
(a) B is symmetric or skew-symmetric, that is:

B(ξ, ξ′) = σBB(ξ′, ξ) ∀ξ, ξ′ ∈ S ,

where σB ∈ {−1, 1} is called the symmetry of B.
(b) wt = εBw for all w ∈ W , where t : EndR(S) → EndR(S) denotes the B-transpose

and εB ∈ {−1, 1} is called the type of B.
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Remark 4.6. Since an adapted pairing is either symmetric or skew-symmetric,
the B-transpose is an involutive unital R-algebra anti-automorphism of EndR(S).
Notice that an admissible bilinear pairing (in the sense of [21, 22]) of an irreducible
Clifford representation is adapted; in fact, an admissible pairing is an adapted pairing
which has a definite “isotropy” (see op. cit.).

Definition 4.9. We define O(S,B) to be the automorphism group of (S,B),
namely:

O(S,B) = {a ∈ EndR(S) | B(ax, ay) = B(x, y)} , (4.21)

for all x, y ∈ S. It consists of all B-orthogonal invertible linear operators acting in
S:

O(S,B) =
{
a ∈ EndR(S) |at ◦ a = idS

}
.

Let B be an adapted pairing on S.

Definition 4.10. The Lipschitz norm determined by B is the map NB :
EndR(S) → EndR(S) defined through:

NB(a)
def.
= at ◦ a (a ∈ EndR(S)) .

Notice that NB(a)t = NB(a), so the image of the Lipschitz norm consists of B-
symmetric linear operators. We have NB(w) = εBw2 = εBg(w,w)idS for all w ∈ W .
Notice that an operator a ∈ EndR(S) is B-orthogonal if and only if NB(a) = idS ; in
particular, the intersection:

W ∩O(S,B) = {w ∈ W |g(w,w) = εB}

coincides with the set of unit vectors of signature equal to εB and we have:

L ∩O(S,B) = {a ∈ L | NB(a) = idS} . (4.22)

However, the restriction NB|L does not generally give a group morphism, because the
elements of NB(L) need not commute with those of L or Lt. As we shall see below,
the situation is somewhat better for the image extended Clifford group γ(Ge(V, h)).

Definition 4.11. The modified reversion determined by B is the unital anti-
automorphism of Cl(V, h) given by:

τB(x) = τ ◦ π 1−εB
2 =

{
τ if εB = +1
τ̃ = τ ◦ π if εB = −1

.

The modified Clifford norm determined by B is the map NB : Cl(V, h) → R defined
through:

NB(x)
def.
= τB(x)x =

{
N if εB = +1

Ñ if εB = −1
(x ∈ Cl(V, h)) .
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Notice that τB(v) = εBv for all v ∈ V . For any x ∈ Cl(V, h), we have:

γ(x)t = γ(τB(x)) ,

which implies:

NB ◦ γ = γ ◦NB . (4.23)

In particular, we have NB(C(γ)) ⊂ C(γ).

Proposition 4.12. We have NB(γ(G(V, h))) ⊂ R
×idS and:

NB(γ(Ge(V, h))) ⊂ γ(NB(Ge(V, h))) ⊂ Z(S) ∩ S
× = Z(S)× . (4.24)

In particular, we have NB(γ(Ge(V, h)) ⊂ R
×idS if NB coincides with the improved

Clifford norm.

Proof. Since N(G(V, h)) ⊂ R
× and Ñ(G(V, h)) ⊂ R

×, we have NB(G(V, h)) ⊂
R

× and (4.23) gives NB(γ(G(V, h))) ⊂ R
×idS . The first inclusion in (4.24) also

follows from (4.23). Since N(Ge(V, h)) ⊂ Z(V, h)× and Ñ(Ge(V, h)) ⊂ Z(V, h)×,
we have NB(Ge(V, h)) ⊂ Z(V, h)×. Since γ(Z(V, h)) ⊂ Z(S), we obtain the second
inclusion of (4.24).

Since N and Ñ are equal on Spin(V, h), we have NB = N on Spin(V, h) and (4.23)
gives:

NB(γ(a)) =

{
+idS if a ∈ Spin+(V, h)
−idS if a ∈ Spin−(V, h)

In particular, we have γ(Spin+(V, h)) ⊂ O(S,B) and hence any adapted pairing is in-
variant under the action of the subgroup γ(Spin+(V, h)) ⊂ L. Notice that an adapted
pairing need not be invariant under the γ-action of the full spin group Spin(V, h).
Also notice that the full subgroup L∩O(S,B) consisting of those elements of L which
preserve an adapted pairing B can be strictly larger than γ(Spin+(V, h)), even when
B is an admissible pairing of an irreducible Clifford representation.

Remark 4.7. In general, the set NB(L) is larger that Z(S)×. The decomposition
(3.5) implies:

Z(S) = ⊕n
i=1Z(Si)idUi �Alg ⊕n

i=1Z(Si) , Z(S)× �Gp ⊕n
i=1Z(Si)

× ,

where Si
def.
= S(γi) are the Schur algebras of the inequivalent irreducible components

of γ. We have:

Z(Si)
× �

⎧⎨⎩
R

× , Si �Alg R

C
× , Si �Alg C

R
× , Si �Alg H

.

5. Lipschitz groups of irreducible real Clifford representations. In this
section, we study the Lipschitz groups of irreducible real Clifford representations (all
of which turn out to be weakly faithful and to form a single unbased isomorphism
class in every signature) as well as their elementary representations. In particular,
we show that the reduced Lipschitz groups of such representations (which we call
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elementary reduced Lipschitz groups) are isomorphic with the canonical spinor groups
introduced in Section 2.5 and that their elementary representations agree with those of
the canonical spinor groups. This shows, in particular, that the canonical spinor group
of (V, h) arises naturally as the Lipschitz group of the unique unbased isomorphism
class of the irreps of (V, h), which is always weakly faithful. Notice that this provides
a unifying perspective on various extended spinor groups arising in spin geometry,
while also including the groups Spino(V, h), new in the literature, and identifying
the precise spinor group which is relevant when considering irreducible real Clifford
representations in every dimension and signature. One should compare this with
the traditional approach, where a spinor group is chosen apriori, without worrying
about irreducibility of the corresponding Clifford representation. In our approach,
irreducibility of the Clifford representation is the central feature of interest.

5.1. Basics.

Definition 5.1. A real pin representation is an irreducible finite-dimensional
real Clifford representation γ : Cl(V, h) → EndR(S), where V �= 0 and S �= 0.

A real pin representation γ : Cl(V, h) → EndR(S) is faithful iff Cl(V, h) is simple as
an associative R-algebra, which happens when p − q �≡8 1, 5 (the simple case). The
pinor volume element ω = γ(ν) is proportional to idS iff we are in the non-simple case
p − q ≡8 1, 5. In the simple case, all pin representations of Cl(V, h) are equivalent.
In the non-simple case, Cl(V, h) admits two inequivalent irreducible representations,
which can be realized in the same space S. In each of these irreps, the Clifford volume
element ν ∈ Cl(V, h) defined by a given orientation of V satisfies:

ω
def.
= γ(ν) = εγ idS ,

where εγ ∈ {−1, 1} is a sign factor called the signature of the irrep γ. The two irreps
are distinguished by the value of εγ and we denote them by γ± : Cl(V, h) → EndR(S)
(where εγ± = ±1). We have:

γ+ = γ− ◦ π , (5.1)

where π : Cl(V, h) → Cl(V, h) is the parity automorphism, which satisfies π(ν) = −ν
since d = dimV = p + q is odd in the non-simple case. Though inequivalent,
these two irreps are isomorphic in the category ClRep through the isomorphism
(f0, f) = (−idV , idS), where −idV ∈ O−(V, h). Indeed, we have π|V = −idV hence
Cl(−idV ) = π and (5.1) reads AdidS

◦γ+ = γ−◦Cl(−idV ) (cf. (3.2)), which shows that
(f0, f) : γ+ → γ− is an isomorphism in ClRep. Notice that (f0, f) ◦ (f0, f) = idγ+

, so
(f0, f)

−1 = (f0, f). The kernel of γε is given by:

ker γε = {x ∈ Cl(V, h)|xν = −εx} . (5.2)

and we have8 dim(ker γε) = dim(imγε) =
1
2 dimCl(V, h) = 2d−1.

Proposition 5.1. Let (V, h) be a quadratic space. Then all real irreducible repre-
sentations of Cl(V, h) are weakly faithful. Moreover, there exists a single isomorphism
class of such representations in the category ClRep, which is uniquely determined
by the isomorphism class of (V, h) and hence by the signature of h. In the simple

8In the non-simple case, we have ν2 = +1 and multiplication with ν gives a non-unital involutive
algebra endomorphism of Cl(V, h).
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cases, this isomorphism class is also an equivalence class of representations. In the
non-simple cases, this isomorphism class decomposes into two equivalence classes of
representations, each of which is determined by the signature of h.

Proof. Injectivity of γ|V can fail only when γ is not faithful and V ∩ ker γ �= {0},
which by relation (5.2) can happen only when dimV = 2 since right multiplication
with ν maps V into the subspace of Cl(V, h) which corresponds to ∧d−1V through
the Riesz-Chevalley-Crumeyrolle isomorphism. However, γ is always faithful when
dimV = 2, since in this case p − q ∈ {−2, 0, 2} and hence p − q ≡8 0, 2, 6, which
corresponds to the simple case. The remaining statements follow from the discussion
above.

Proposition 5.2. In the simple case, γ gives a bijection between Cl(V, h) and
the Clifford image C = imγ. In the non-simple case, we have C = C+ = C− and γ
restricts to linear bijections between Cl±(V, h) and C. In this case, the restriction of
γ to Cl+(V, h) is a unital isomorphism of algebras from Cl+(V, h) to C.

Proof. In the simple case, γ is faithful and hence induces a bijection between
Cl(V, h) and C

def.
= γ(Cl(V, h)). In the non-simple case, we have ω = γ(ν) = εidS ,

where ε
def.
= εγ . Recall that C±

def.
= γ(Cl±(V, h)) and hence C = γ(Cl(V, h)) = C+ +

C−. The dimension of V is odd and the right multiplication Rν : Cl(V, h) → Cl(V, h)
with the Clifford volume element ν maps Cl±(V, h) into Cl∓(V, h). This implies that
the right multiplication Rω : EndR(S) → EndR(S) with ω satisfies Rω(C±) = C∓.
Since ω = εidS , we have Rω(C±) = C± and we conclude that C = C+ = C−
since C± are subspaces of EndR(S). Since ν2 = 1 in the simple cases, we have
(Rν)

2 = idCl(V,h). Hence the linear map Rν : Cl+(V, h) → Cl−(V, h) is bijective
and thus dimR Cl+(V, h) = dimR Cl−(V, h) = 1

2 dimR Cl(V, h) = dim(imγ) = dimC,
which implies that γ restricts to bijections between Cl±(V, h) and C. Since C+ =
γ(Cl+(V, h)) and Cl+(V, h) is a unital subalgebra of Cl(V, h), the unital morphism of
algebras γ restricts to a unital isomorphism of algebras from Cl+(V, h) to C+.

5.2. The Schur algebra.

Definition 5.2. Let U be an oriented three-dimensional Euclidean vector space.
The quaternion algebra of U is the normed unital associative R-algebra HU whose
underlying set equals R⊕ U and whose multiplication is defined through:

(q0 + q)(q′0 + q′) def.
= q0q

′
0 − (q,q′) + q0q

′ + q′0q+ q× q′ ∀q0, q′0 ∈ R, q,q′ ∈ U ,

where ( , ) and × denote scalar and vector products of U . The norm of q := q0 +q ∈
HU is defined through:

||q||U def.
=

√
cU (q)q =

√
q20 + ||q||2 ,

where || || is the norm of U and cU : HU → HU is the conjugation of HU , i.e. the
unital anti-automorphism given by:

cU (q0 + q) = q0 − q .

The standard algebra H of quaternions is the quaternion algebra of R3, when the latter
is endowed with its canonical scalar product and orientation. Any quaternion algebra
HU is of course isomorphic with H as a unital associative normed algebra through
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some (non-unique) isomorphism which takes ImH = R
3 into U . The following result

characterizes the Schur algebra of pin representations (see, for example, [23]):

Proposition 5.3. The Schur algebra of pin representations is as follows:
1. In the normal (simple or non-simple) case, we have S = Rid, which we identify
with R through the isomorphism R � x

∼−→ xidS ∈ S. In this case, we set c = idS
and endow S with the norm induced from R.

2. In the complex case, we have S = RidS ⊕ Rω, which we identify with C through
the isomorphism C � z = x + iy

	−→ x + yω ∈ S (in this case, we have ν2 = −1

and hence ω2 = −idS). Accordingly, we let J
def.
= ω denote the imaginary unit

of S. In particular, S is a normed R-algebra whose norm and conjugation c do
not depend on the choice of orientation of V (and hence are invariant under the
change ω → −ω). The subspace ImS

def.
= Rω is also independent of the choice of

orientation of V .
3. In the quaternionic (simple or non-simple) case, we have a direct sum decompo-
sition S = RidS ⊕ U of the underlying R-vector space of S (where U = U(γ) is
an oriented Euclidean vector space determined by γ) and S is isomorphic with the
quaternion algebra of U through the map HU � (q0,q) → (q0idS ,q) ∈ S. In par-
ticular, S has a natural structure of normed R-algebra, hence there exists a (non-
unique) unital isomorphism of normed algebras f : H

∼→ S such that f(ImH) = U .
The conjugation c = cU of S is uniquely determined by γ.

In the quaternionic case, we set ImS
def.
= U . The isomorphisms of the proposition

map the groups of unit norm elements U(R),U(C) and U(H) to the corresponding
subgroup of S, which we denote by U(S). In the complex case, the isomorphism
C � S of Proposition 5.3 depends on the choice of orientation of V ; changing that
orientation amounts to postcomposing that isomorphism with the conjugation c of S
or to precomposing it with the conjugation of C. The following proposition clarifies
the role of the isomorphism f in the quaternionic case.

Proposition 5.4. Let S be a unital R-algebra such that S �Alg H and let m :

S× S → S, m(q1, q2)
def.
= q1q2 denote the multiplication map of S. Then there exists a

surjective map Φ : IsomAlg(H, S) → B(S), where:
(a) IsomAlg(H, S) is the set of unital isomorphisms of R-algebras f : H

∼→ S

(b) B(S) is the set of R-subspaces U ⊂ S such that S = R1S ⊕ U , endowed with a
Euclidean scalar product ( , ) and orientation such that the following condition is
satisfied:
(C) The restriction m|U×U : U × U → S of the multiplication map has the form:

mU (s, s
′) = −(s, s′) + s× s′ ,

where × : U × U → U is the vector product of U .
Namely, we have Φ(f) def.

= f(ImH) and the scalar product and orientation of Φ(f) are
induced by f from those of ImH. For any U ∈ B(S), the preimage Φ−1(U) is a torsor
for the right action of AutAlg(H):

f → f ◦ ϕ , ϕ ∈ AutAlg(H) �Gp SO(3,R) .

and hence we have a bijection B(S) �Set IsomAlg(H, S)/SO(3,R). For any f ∈
Φ−1(U) and any q ∈ H we have f(q̄) = cU (f(q)), where cU : S → S is the invo-
lutive unital anti-automorphism of the algebra S given by cU = idR1S ⊕ (−idU ).
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Proof. Surjectivity of Φ follows by picking an oriented orthonormal basis
(e1, e2, e3) of U and noticing that U = f(ImH) for the unique R linear map f : H → S

which satisfies f(1H) = 1S and f(εi) = ei, where ε1, ε2, ε3 is a canonically-oriented
orthonormal basis of R3. It is easy to see that this map is a unital isomorphism of
R-algebras. That Φ−1(U) is an SO(3,R)-torsor is obvious.

Remark 5.1. Notice that m is completely determined by the Euclidean scalar
product of U and by its orientation through the formula:

m(s0 + s, s′0 + s′) def.
= s0s

′
0 − (s, s′) + s0s

′ + s′0s+ s×U s′ ∀s0, s′0 ∈ R ∀s, s′ ∈ U .

Conversely, m determines both the scalar product and orientation of U though con-
dition (C).

5.3. The anticommutant subspace. For the remainder of this section, we fix
a real pin representation γ : Cl(V, h) → EndR(S). Let αp,q ∈ {−1, 1} be defined as
follows:
1. For the normal simple case:

αp,q
def.
= σp,q = (−1)

p−q
2 =

{
+1 if p− q ≡8 0
−1 if p− q ≡8 2

2. For the complex case:

αp,q
def.
= (−1)

p−q+1
4 =

{ −1 if p− q ≡8 3
+1 if p− q ≡8 7

3. For the quaternionic simple case:

αp,q
def.
= σp,q = (−1)

p−q
2 =

{
+1 if p− q ≡8 4
−1 if p− q ≡8 6

.

Proposition 5.5. The following statements hold:
I. In the non-simple cases, we have A = 0.
II. In the simple cases, A is a rank one free S-module. Namely, there exists an
element u ∈ A such that:
(a) u is a basis of A over S
(b) u satisfies u2 = αp,qidS (in particular, u is invertible)
(c) u satisfies:

Ads(u) =

⎧⎨⎩
idS for the normal simple case
c for the complex case
idS for the quaternionic simple case

In the normal simple and quaternionic simple cases, there exist only two elements
u ∈ A with these properties, namely u = ±ω. In the complex case, any two
elements u ∈ A which have these properties are related by u′ = su where s =
eθJ idS ∈ U(S) ( θ ∈ R) corresponds to a complex number of unit modulus under
the isomorphism S �Alg C of Proposition 5.3.

Proof. Consider first the non-simple cases. Then x ∈ A must satisfy xγ(v) =
−γ(v)x for all v ∈ V , which implies xγ(ν) = −γ(ν)x since d is odd. On the other
hand, in these cases we have ω = γ(ν) = εidS (with ε ∈ {−1, 1}), so the relation
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xω = −ωx becomes 2εx = 0, which implies x = 0. We conclude that A = 0 in the
non-simple cases.

Consider now the simple cases. It was shown in [23] that the element:

u
def.
=

⎧⎨⎩
ω for the normal simple case
D for the complex case
ω for the quaternionic simple case

(5.3)

(where D was defined in [23]) satisfies conditions (a),(b) and (c). Let u′ ∈ A be
another element satisfying these three conditions. Then u′ = su for some s ∈ S

×

and hence (u′)2 = (su)2 = susu = sAds(u)(s)u
2. Since u2 = (u′)2 = αp,qidS , this

gives sAds(u)(s) = idS . In the normal simple and normal quaternionic cases, we have
Ads(u) = idS, so the previous relation gives s2 = idS and hence s ∈ {−idS , idS} since
the only square roots of unity in the algebras C and H are −1 and +1 (because R and
H are associative division algebras). It is clear that −u satisfies (a), (b) and (c). In the
complex case, we have Ads(u) = c, so the relation above becomes sc(s) = idS . This
shows that s corresponds to a complex number of unit modulus under the isomorphism
S �Alg C of Proposition 5.3. In this case, it is obvious that eθJu satisfies the three
conditions for any θ ∈ R.

Corollary 5.6. In the simple cases, any element u satisfying conditions (a),
(b), (c) of Proposition 5.5 is a twisting element for γ. Moreover:
1. In the normal simple case, u = ω is a special twisting element iff p− q ≡8 2.
2. In the complex case, u = D is a special twisted element iff p− q ≡8 3.
3. In the quaternionic simple case, u = ω is a special twisting element iff p− q ≡8 6.
When p − q ≡8 4, the element μ = Jω ∈ A is a special twisting element for any
J ∈ ImS ∩U(S) (we have J2 = −idS).

Proof. Follows immediately from Proposition 5.5.

5.4. The Schur pairing in the simple case. Assume that (V, h) belongs to
the simple case and let u ∈ A be an element having the properties given in Proposition
5.5. Then the Schur pairing p : A × A → S can be identified with a symmetric R-
bilinear map pu : S× S → S given by:

pu(s1, s2)
def.
= p(s1u, s2u) =

1

2
[(s1u)(s2u) + (s2u)(s1u)] ,

(see Appendix C). Identifying S with R, C or H as in Proposition 5.3, we find:

Proposition 5.7. In the simple cases, the Schur pairing can be identified with
one of the following:
1. In the normal simple case p − q ≡8 0, 2, the Schur pairing can be identified with
the map pu : R× R → R given by:

pu(x1, x2) = αp,qx1x2 , where αp,q = σp,q = (−1)
p−q
2 .

2. In the complex case p− q ≡8 3, 7, the Schur pairing can be identified with the map
pu : C× C → C given by:

pu(z1, z2) = αp,qRe(z̄1z2) ∈ R ⊂ C , where αp,q = (−1)
p−q+1

4 .

3. In the quaternionic simple case p − q ≡8 4, 6, the Schur pairing can be identified
with the map pu : H×H → H given by:

pu(q1, q2) = αp,q
1

2
(q1q2 + q2q1) , where αp,q = σp,q = (−1)

p−q
2 .
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5.5. Pseudocentralizers of pin representations.

Proposition 5.8. For any real pin representation, we have S∩A = 0. Hence the
pseudocentralizer T of γ is a Z2-graded algebra with homogeneous subspaces T0 = S

and T
1 = A. In the simple cases, we have A = Su (where u is as in Proposition 5.5),

which gives the following unital isomorphisms of R-algebras:
1. In the normal simple case:

T �Alg
Z2

{
Cl1,0 �Alg D if p− q ≡8 0
Cl0,1 �Alg C if p− q ≡8 2

2. In the complex case:

T �Alg
Z2

{
Cl0,2 �Alg H if p− q ≡8 3
Cl2,0 � Cl1,1 �Alg P if p− q ≡8 7

,

3. In the quaternionic simple case:

T �Alg
Z2

{
Cl0,3 �Alg DH if p− q ≡8 4
Cl3,0 �Alg CH if p− q ≡8 6

,

In the non-simple cases, we have T = T
0 = S.

Proof. Let x ∈ S ∩ A. Then xw = −wx = wx for all w ∈ W = γ(V ), which
implies wx = 0. Since W � V �= 0 by our general assumption, there exists a non-
degenerate vector w0 in (W, g). Since w0 is invertible in the algebra EndR(S), the
relation w0x = 0 implies x = 0. Thus S∩A = 0. Since T = S+A, we have T = S⊕A,
which is a Z2-grading of the algebra T by the discussion of Subsection 3.3. The
remaining statements follow from Proposition 5.5.

The situation is summarized in Table 5.1

p− q
mod 8

type S u u2 Ads(u) T

0 normal simple R ω +1 idS Cl1,0 � D

2 normal simple R ω −1 idS Cl0,1 � C

3 complex simple C D −1 c Cl0,2 � H

7 complex simple C D +1 c Cl2,0 � P

4 quaternionic simple H ω +1 idS Cl0,3 � DH

6 quaternionic simple H ω −1 idS Cl3,0 � CH

1 normal non-simple R −− −− −− Cl0,0 � R

5 quaternionic non-simple H −− −− −− Cl0,2 � H

Table 5.1

Pseudocentralizers of pin representations

5.6. The Schur representation.

Definition 5.3. Let:

Lγ
def.
=

{
γ(Ge(V, h) if p− q �≡8 1, 5 (the simple case)
γ(G+(V, h)) if p− q ≡8 1, 5 (the non simple case)

. (5.4)
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Proposition 5.9. For any real pin representation, the Clifford image is given
by C = EndS(S) and the kernel of the Schur representation of L equals Lγ :

kerAds = Lγ = L ∩ C = L ∩ C× . (5.5)

Furthermore:
1. In the simple case, γ restricts to an isomorphism of groups between Ge(V, h) and

Lγ .
2. In the non-simple case, we have L = L0 and γ restricts to an isomorphism of
groups between G+(V, h) and Lγ .

Proof. The fact that C = EndS(S) is well-known (see, for example, [23]). Thus
(4.16) gives kerAds = L ∩ C. Let:

C× def.
= {a ∈ C|∃b ∈ C : ab = ba = idS}

denote the group of invertible elements of the subalgebra C of EndR(S). Since C =
EndS(S), we have9 C ∩ AutR(S) = C×, i.e. an element of C is invertible in EndR(S)
iff it is invertible in C. Since L ⊂ AutR(S), this implies L ∩ C ⊂ C× and hence
L ∩ C = L ∩ C×. To show that L ∩ C× = Lγ , we distinguish the cases:
1. In the simple case, γ restricts to unital isomorphism of algebras between Cl(V, h)

and C and between V and W
def.
= γ(V ) ⊂ C. In particular, we have C× =

γ(Cl(V, h)×). Using the definitions of L and Ge(V, h), this implies:

L ∩ C× = {a ∈ C×|Ad(a)(W ) = W} =

= γ({x ∈ Cl(V, h)×|Ad(x)(V ) = V }) = γ(Ge(V, h)) ,

showing that kerAds = L ∩ C = L ∩ C× equals Lγ . It is clear that γ restricts to
an isomorphism of groups between Ge(V, h) and kerAds = Lγ = γ(Ge(V, h)).

2. In the non-simple case, γ restricts to a unital isomorphism of algebras from
Cl+(V, h) to C = EndS(S) (see Proposition 5.2) and to an isomorphism of vec-
tor spaces from V to W = γ(V ). In particular, we have C× = γ(Cl+(V, h)

×).
Using the definitions of L and G+(V, h), this implies:

L ∩ C× = {a ∈ C×|Ad(a)(W ) = W} =

= γ({x ∈ Cl+(V, h)
×|Ad(x)(V ) = V }) = γ(G+(V, h)) ,

showing that kerAds = Lγ . We have ω = γ(ν) = εγ idS , hence Ad(ω) = idEndR(S)

and the volume grading of EndR(S) (see Subsection 3.4) is given by End0R(S) =
EndR(S) and End1R(S) = 0. Thus the volume grading of the Lipschitz group (see
Subsection 4.3) is given by L0 = L ∩ End0R(S) = L and L1 = L ∩ End1R(S) = ∅.
Since G+(V, h) ⊂ Cl+(V, h), it follows that γ restricts to an isomorphism of groups
between G+(V, h) and kerAds = Lγ = γ(G+(V, h)).

We have:

AutAlg(S) =

⎧⎨⎩
{idS} S � R

{idS, c} S � C

U(S)/{−idS , idS} S � H

,

9If a ∈ C ∩ AutR(S) = EndS(S) ∩ AutR(S), then the relation as = sa with s ∈ S implies
a−1s = sa−1 and hence a−1 ∈ EndS(S) = C, where a−1 is the inverse of a in EndR(S). Thus
C ∩AutR(S) ⊂ C×. The opposite inclusion is obvious.
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For the third entry, recall that H is central simple as an R-algebra, so all of its R-
algebra automorphisms are inner by the Noether-Skolem theorem. We have an exact
sequence:

1 −→ R
× ↪→ H

× Ad−→ AutAlg(H) −→ 1 ,

which restricts to an exact sequence:

1 −→ {−1, 1} ↪→ U(H)
Ad−→ AutAlg(H) −→ 1

and hence induces isomorphisms AutAlg(H) � H
×/R× � U(H)/{−1, 1}. We have

U(H) = Sp(1) � Spin(3) and hence AutAlg(H) � Spin(3)/{−1, 1} � SO(3,R). The
isomorphism AutAlg(H) � SO(3,R) takes α ∈ AutAlg(H) into α|ImH ∈ SO(ImH).

Theorem 5.10. For any pin representation, we have a short exact sequence:

1 −→ Lγ ↪→ L
Ads−→ AutAlg(S) −→ 1 . (5.6)

Moreover:
1. In the normal simple case, we have AutAlg(S) = AutAlg(R) �Gp 1 and:

L = Lγ = γ(G(V, h)) �Gp G(V, h)

L0 = γ(G+(V, h)) �Gp G+(V, h)

L1 = γ(G−(V, h)) �Set G−(V, h) .

2. In the complex case, we have AutAlg(S) � AutAlg(C) = {idS , c} �Gp Z2 and:

Lγ = L0 = γ(Ge(V, h)) �Gp Ge(V, h) = G(V, h)U(1)

L1 = uL0 = L0u �Set L
0 .

(where u ∈ A is as in Proposition 5.5) and:

Ads(a) =

{
idS if a ∈ L0

c if a ∈ L1 . (5.7)

3. In the quaternionic simple case, we have AutAlg(S) � AutAlg(H) �Gp SO(3,R)
and:

Lγ = γ(G(V, h)) �Gp G(V, h)

L = γ(G(V, h))U(S) �Gp γ(G(V, h)) ·U(S) �Gp G(V, h) · Sp(1)
L0 = γ(G+(V, h))U(S) �Gp γ(G+(V, h)) ·U(S) �Gp G+(V, h) · Sp(1)
L1 = γ(G−(V, h))U(S) �Set γ(G−(V, h))×U(S) �Set G−(V, h)× Sp(1) .

4. In the normal non-simple case, we have AutAlg(S) = AutAlg(R) �Gp 1 and:

L = Lγ = L0 = γ(G+(V, h)) �Gp G+(V, h) .

5. In the quaternionic non-simple case, we have AutAlg(S) = AutAlg(H) �Gp

SO(3,R):

Lγ = γ(G+(V, h)) �Gp G+(V, h)

L = L0 = γ(G+(V, h))U(S) �Gp γ(G+(V, h)) ·U(S) �Gp G+(V, h) · Sp(1) .
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Proof. The sequence (5.6) follows from (5.5) if we show that Ads is surjective.
For this, we distinguish the cases:
A. The normal simple case. We have AutAlg(R) = {idR} �Gp 1 so surjectivity

is automatic. Proposition 1.7 shows that Ge(V, h) = G(V, h) (since d is even
in the normal simple case) while Proposition 5.9 gives Lγ = γ(Ge(V, h)) =
γ(G(V, h)) �Gp G(V, h). Since AutAlg(R) �Gp 1, we have Lγ = kerAds = L and
hence L = Lγ = γ(G(V, h)). In this case, γ is a unital isomorphism of algebras
from Cl(V, h) to EndR(S), which implies (since ω = γ(ν) and d is even) that we
have End0R(S) = γ(Cl+(V, h)) and End1R(S) = γ(Cl−(V, h)) (cf. Subsection 1.8).
Thus L0 = L ∩ End0R(S) = γ(G(V, h) ∩ Cl+(V, h)) = γ(G+(V, h)) �Gp G+(V, h)
and L1 = L ∩ End1R(S) = γ(G(V, h)) ∩ Cl−(V, h)) = γ(G−(V, h)) �Set G−(V, h).

B. The complex case. In this case, we have Ads(u) = c and AutAlg(S) = {idS , c}.
Since u ∈ L, it follows that Ads is surjective and (5.6) holds. Recalling that
J = ω = γ(ν) (see Proposition 5.3), we have L0 = L ∩ ker(Ad(ω) − idS) =
L ∩ ker(Ad(J)− idS) = L ∩ EndS(S) = L ∩ C = kerAds = Lγ = γ(Ge(V, h)) �Gp

Ge(V, h), where we used Proposition 5.9. The relation Ads(ua) = Ads(u) ◦
Ads(a) = c ◦ Ads(a) (a ∈ L) together with the sequence (5.6) and the fact that
c2 = idS implies uL0 = L1 and also gives relation (5.7). Similarly, the relation
Ads(au) = Ads(a) ◦ Ads(u) = Ads(a) ◦ c for a ∈ L implies L0u = L1. Thus
L1 = uL0 = L0u and (5.7) holds.

C. The normal non-simple case. That L = L0 and Lγ = γ(G+(V, h)) �Gp G+(V, h)
follows from Proposition 5.9. In this case, we have AutAlg(R) = {idR} and hence
Lγ = kerAds = L.

D. The quaternionic (simple or non-simple) case. In this case, every ϕ ∈ AutAlg(S)
has the form ϕ = Ad(s) for some s ∈ U(S) (because all automorphisms of S � H

are inner). Since U(S) ⊂ S
× ⊂ L, we have ϕ ∈ Ads(L), which proves that Ads is

surjective and hence (5.6) holds. We have S∩C = S∩EndS(S) = Z(S) = RidS since
S � H and Z(H) = R. This implies S× ∩C = R

×idS and U(S)∩C = {−idS , idS}.
The map f : Lγ ×U(S) → L given by:

f(a0, s)
def.
= sa0 = a0s

is a morphism of groups since every element of S commutes with every element of
Lγ ⊂ C. Given a ∈ L, we can write Ads(a) ∈ AutAlg(S) as Ads(a) = Ads(s) for
some s ∈ U(S) ⊂ L. Then Ads(s

−1a) = idS and hence s−1a ∈ kerAds = Lγ (see
Proposition 5.9), thus a = sa0 = f(a0, s) for some a0 ∈ Lγ . This shows that f is
surjective and hence L = U(S)Lγ = LγU(S). On the other hand, f(s, a0) = idS
implies a0 = s−1 ∈ U(S) ∩ Lγ ⊂ U(S) ∩ C = {−idS , idS}, which gives ker f =
{(−1,−idS), (1, idS)} upon noticing that f(−a0,−s) = f(a0, s). Thus f induces
an isomorphism L � Lγ ·U(S) and we have L = LγU(S) = U(S)Lγ � Lγ ·U(S).

In the quaternionic simple case, Propositions 5.9 gives Lγ = γ(Ge(V, h)) �
Ge(V, h) while Proposition 1.7 gives Ge(V, h) = G(V, h) since d is even. In this
case, we have ω = γ(ν) ∈ Lγ . Since γ restricts to a bijection between G(V, h) and
Lγ while U(S) ⊂ End0R(S), we have Lκ = L ∩ EndκR(S) = (Lγ ∩ EndκR(S))U(S)
for all κ ∈ Z2, which gives L0 = γ(G+(V, h))U(S) �Gp γ(G+(V, h)) · U(S) and
L1 = γ(G−(V, h))U(S) �Set γ(G−(V, h)) × U(S) since {−1, 1} ⊂ G+(V, h). We
thus obtain the statements at point 3. In the quaternionic non-simple case, Propo-
sition 5.9 gives Lγ = γ(G+(V, h)) � G+(V, h) and L = L0, so we obtain the
statements at point 5.
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For α ∈ {−1, 1}, let:

G2(α) =

{
G2,0 �Gp R>0 × Pin2(+) �Gp R>0 ×O2(+) if α = +1
G0,2 �Gp R>0 × Pin2(−) �Gp R>0 ×O2(−) if α = −1

,

where O2(α) is the isomorphic model of Pin2(α) discussed in Section 2.3 and Gp,q

denotes the ordinary Clifford group of Rp,q.

Proposition 5.11. In the complex case, we have an isomorphism of groups:

L �Gp [G+(V, h)×G2(αp,q)]/{(λ1, λ−11)|λ ∈ R
×} �Gp R>0 × Spino(V, h) , (5.8)

where αp,q = (−1)
p−q+1

4 =

{ −1 if p− q ≡8 3
+1 if p− q ≡8 7

and Spino(V, h)
def.
= Spinoαp,q

(V, h)

is the adapted Spino group of (V, h) defined in Subsection 2.4.

Proof. In the complex case, γ is faithful and hence induces a unital isomorphism
of R-algebras from Cl(V, h) to C, which restricts to a unital isomorphism of R-algebras
between Z(V, h) = R ⊕ Rν and S = R ⊕ Rω (this isomorphism takes ν into ω = J).
Let s : C

∼→ S be the unital isomorphism of R-algebras which takes 1 into idS and
i into J . Since d is odd, we have G−(V, h) = νG+(V, h) and hence Ge(V, h) =
Z(V, h)×G(V, h) = Z(V, h)×G+(V, h). Thus γ(Ge(V, h)) = S

×γ(G+(V, h)). We have
Z(V, h)× ∩ G+(V, h) = R

×. Theorem 5.10 implies that any b ∈ L is of the form
s(z)γ(a) or s(z)γ(a)u for some z ∈ C

× and some a ∈ G+(V, h). Hence the map
ϕ : G+(V, h)× C

× × Z2 → L given by:

ϕ(a, z, 0̂) = s(z)γ(a) , ϕ(a, z, 1̂) = s(z)γ(a)u

is surjective. We have:

(s(z1)γ(a1))(s(z2)γ(a2)) = s(z1z2)γ(a1a2) ,

(s(z1)γ(a1))(s(z2)γ(a2)u) = s(z1z2)γ(a1a2)u ,

(s(z1)γ(a1)u)(s(z2)γ(a2)) = s(z1z̄2)γ(a1a2)u ,

(s(z1)γ(a1)u)(s(z2)γ(a2)u) = αp,qs(z1z̄2)γ(a1a2) , (5.9)

and ϕ(1, 1, 0̂) = idS , which shows that ϕ is a morphism of groups from G+(V, h) ×
G2(αp,q) to L (notice that G2(±) �Set C

× × Z2). We have kerϕ = {(a, z, 0̂) ∈
G+(V, h) × C

× × Z2|γ(a) = s(z−1)} = {(λ, λ−1, 0̂) ≡ (λ1G+(V,h), λ
−11G2(αp,q)|λ ∈

R
×}, since γ(G+(V, h)) ∩ S

× = γ(G+(V, h) ∩ Z(V, h)×) = R
×idS and γ and s are

injective. This gives the first isomorphism in (5.8). The second isomorphism follows
from G+(V, h) �Gp= R>0 × Spin(V, h) and G2(±) �Gp R>0 × Pin2(±).

Proposition 5.12. Assume that we are in the complex case with p−q ≡8 7. Then
the sequence (5.6) splits and we have L �Gp Ge(V, h)�ϕZ2 �Gp R>0× (Spinc(V, h)�
Z2), where ϕ : Z2 → AutGp(G

e(V, h)) is the group morphism given by:

ϕ(0̂) = idGe(V,h) , ϕ(1̂) = π|Ge(V,h)

and π is the parity automorphism of Cl(V, h).

Proof. In this case, we have u2 = +idS and the map ψ : AutAlg(S) = {idS , c} → L
given by ψ(idS) = idS and ψ(c) = u is a group morphism which splits the sequence
(5.6). Thus L � γ(Ge(V, h)) �ϕ̂ {idS , c}, where ϕ̂ : {idS , c} → AutGp(γ(G

e(V, h)))
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is the morphism of groups given by ϕ̂(idS) = idGe(V,h) and ϕ̂(c) = Ad(u)|γ(Ge(V,h)).
Since Ad(u)(w) = −w for all w ∈ W = γ(V ) and γ is injective, we have Ad(u) ◦ γ =
γ ◦ π, which shows that L � Ge(V, h) �ϕ Z2. The second isomorphism given in the
statement follows from Proposition 1.8.

Remark 5.2. The isomorphism L �Gp R>0 × (Spinc(V, h) � Z2) also follows
from Proposition 5.11 and from the fact that Spino(V, h) �Gp Spinc(V, h)� Z2 when
p− q ≡8 7 (see [11]).

5.7. The canonical pairing. Let γ : Cl(V, h) → EndR(S) be a pin represen-
tation. Recall that a γ-admissible pairing on S is a γ-adapted pairing (in the sense
of Subsection 4.9) which has a definite “isotropy”. See [21, 22] and [23] for details on
admissible pairings. Recall that c : S → S is the R-linear map which corresponds to
conjugation when S �Alg C,H, while c = idS when S �Alg R.

Proposition-Definition 5.13. Up to rescaling by a non-zero real number,
there exists a single γ-admissible pairing Be (called canonical pairing) which has the
following properties, where εe is the type of Be and te : EndR(S) → EndR(S) denotes
Be-transposition:
(a) We have:

εe =

{
+εd = −(−1)[

d
2 ] in the simple cases

−εd = +(−1)[
d
2 ] in the non− simple cases

,

where εd was defined in (1.21).
(b) ste = c(s) ∀s ∈ S (which amounts to U(S) ⊂ O(S,Be)).
(c) In the complex case, we have ute = u−1, i.e. u ∈ O(S,Be), where u is as in

Proposition 5.5.

Proof. We distinguish the cases:
1. Normal simple case (p− q ≡8 0, 2). In this case, d is even and there exist two ad-

missible pairings B± (each determined up to rescaling by a non-zero real number)
which are distinguished by their type ε± = ±1 (see [21, 22, 23]). Hence we must
have Be = B

(−1)
1+[ d2 ]

. In this case, S = RidS and c = idS, thus condition (b) is

trivially satisfied.
2. Normal non-simple case (p − q ≡8 1). In this case, d is odd and there exists a

single (up to scale) admissible pairing B, whose type is given by ε = (−1)[
d
2 ] (see

[21, 22, 23]). Hence Be = B satisfies condition (a). It obviously also satisfies
condition (b).

3. Complex case (p− q ≡8 3, 7). Up to scale, there exist four admissible pairings Bκ

(κ = 0 . . . 3) whose types equal εκ = (−1)1+[
κ
2 ] (see [21, 22, 23]). Hence we must

have Be = Bκe
for some κe ∈ {0, 1, 2, 3}. Condition (a) requires:[κe

2

]
≡2

[
d

2

]
=

d− 1

2
, (5.10)

where we used the fact that d is odd. On the other hand, relations [23, (3.16)] give:

u−tκ = (−1)κ+
p−q+1

4 u , J−tκ = (−1)[
κ
2 ]+[

d
2 ]J , (5.11)
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where J = ω = γ(ν) and tκ denotes Bκ-transpose. Thus condition (c) requires
κe ≡2

p−q+1
4 . This is equivalent with κe = 2

[
κe

2

]
+ t, where t def.

= p−q+1
4 mod 2 ={

1 if p− q ≡8 3
0 if p− q ≡8 7

. Thus (5.10) gives (recall that d > 0):

κe = d+ t− 1 mod 4 =

{
d mod 4 if p− q ≡8 3
d−1 mod 4 if p− q ≡8 7

.

Let Be = Bκe
, where κe is given by this choice. Then conditions (a) and (c) are

satisfied. On the other hand, relation (5.10) and the second relation in (5.11) give
J−te = J , which (since J2 = −idS) amounts to J te = −J , hence condition (b) is
also satisfied.

4. Quaternionic simple case (p− q ≡8 4, 6). In this case, d is even and there exist (up
to scale) eight admissible pairings Bε

k (where ε ∈ {−1, 1} and κ ∈ {0, 1, 2, 3}), of
which only the two so-called fundamental pairings (see [23, Subsection 3.4]) B+

0

and B−
0 satisfy condition (b). Indeed, let J1, J2, J3 ∈ S be the elements of S which

correspond to the quaternion units through the isomorphism of Proposition 5.3.
Then it was shown in Subsection 3.4.3 of op. cit. that Jk (k = 1, 2, 3) are B±

0 -
orthogonal and hence satisfy condition (b). Together with relation [23, (3.38)],
this implies that the Bε

k-transpose of Jl equals JkJlJk, which implies that only the
fundamental pairings satisfy condition (b). The fundamental pairings have type

εB±0
= ±1, so condition (a) requires Be = B

(−1)
1+[ d2 ]

0 .
5. Quaternionic non-simple case (p − q ≡8 5). In this case d is odd and there exist

four admissible pairings and a similar argument using the results of [23, Subsection
3.4] shows that only the basic pairing B0 satisfies condition (b). Hence we must
take Be = B0. The type of the basic pairing is ε0 = (−1)[

d
2 ], so condition (a) is

satisfied.

Remark 5.3. Since τ(ν) = (−1)[
d
2 ]ν, we have ωte = εde(−1)[

d
2 ]ω and condition

(a) implies:

ωte =

⎧⎨⎩ (−1)[
d
2 ]ω p− q ≡8 0, 2, 4, 6

−ω p− q ≡8 3, 7
+ω p− q ≡8 1, 5

. (5.12)

Since ω = σp,qω
−1, this gives:

ωte = βp,qω
−1 , where βp,q

def.
=

⎧⎨⎩
(−1)p p− q ≡8 0, 2, 4, 6
−σp,q p− q ≡8 3, 7
+σp,q p− q ≡8 1, 5

. (5.13)

5.8. The canonical Lipschitz norm.

Definition 5.4. The canonical Lipschitz norm Ne is the Lipschitz norm deter-
mined by the canonical pairing Be.

Remark 5.4. In the simple cases, we have τBe
= τe and hence NBe

= Ne. In
the non-simple cases, we have τBe = τe ◦ π. Together with the results of Subsection
1.21 and with the fact that U(S) ⊂ O(S,Be), this implies:
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1. In the simple cases, we have Ne ◦ γ = γ ◦Ne.
2. In the non-simple cases, we have Ne ◦ γ|Cl+(V,h) = γ ◦N |Cl+(V,h).
3. In all cases, we have Ne|S = M, where M is the square of the norm of S.

Proposition 5.14. For any pin representation, we have Ne(L) ⊂ R
×, hence the

restriction of Ne gives a group morphism:

Ne : L → R
×idS � R

× .

The restriction of Ne to Lγ is determined as follows:
1. In the simple cases, we have Ne ◦ γ|Ge(V,h) = Ne|Ge(V,h).
2. In the non-simple cases, we have Ne ◦ γ|G+(V,h) = N |G+(V,h).
Moreover, in the complex case we have Ne(u) = idS while in the quaternionic cases
we have Ne|S = M, where u is as in Proposition 5.5.

Proof. We consider each case in turn.
1. Normal simple case. In this case, L = γ(G(V, h)) (see Theorem 5.10) and the

conclusion follows because Ne(G(V, h)) ⊂ R
× (see Proposition 1.10) using Remark

5.4.
2. Normal non-simple case. In this case, L = γ(G+(V, h)) by Theorem 5.10 and the

conclusion follows from N(G+(V, h)) ⊂ R
× using Remark 5.4.

3. Complex case. By Remark 5.4 and Proposition 1.10, we have Ne(γ(G
e(V, h)) ⊂

γ(Ne(G
e(V, h)) ⊂ R

×idS . On the other hand, we have Ne(u) = uteu = idS . For
any a ∈ γ(Ge(V, h)), we thus have Ne(a) ∈ R

×idS and:

Ne(au) = uteateau = π(a)teπ(a) = π(atea) = π(Ne(a)) = Ne(a) ∈ R
×idS .

This implies Ne(L) ⊂ R
×idS by Theorem 5.10.

4. Quaternionic (simple or non-simple) case. In this case, we have Ne(s) = stes =
c(s)s = |s|2 for all s ∈ S, where | | is the norm on S which corresponds to the
quaternionic norm through the isomorphism of Proposition 5.3. Thus Ne(S) ⊂
R≥0. By Theorem 5.10, we have L = U(S)Lγ . Consider the subcases:
(a) In the quaternionic simple case, d is even and Lγ = γ(G(V, h)). Thus Ne(L) ⊂

Ne(S)γ(Ne(G(V, h))) ⊂ R
×, where we used Remark 5.4.

(b) In the quaternionic non-simple case, we have Lγ = γ(G+(V, h)). Since
N(G+(V, h)) ⊂ R

×, we again conclude Ne(L) ⊂ R
× using Remark 5.4.

The remaining statements follow from Remark 5.4 and from relation (5.4).

The composition of Ne|L with the absolute value morphism | | : R× → R>0 gives a
morphism of groups |Ne| : L → R>0.

5.9. The reduced Lipschitz group.

Definition 5.5. The reduced Lipschitz group L is the kernel of the group mor-
phism |Ne| : L → R>0.

We have a short exact sequence:

1 −→ L −→ L
|Ne|−→ R>0 −→ 1 . (5.14)

Every a ∈ L can be written as a =
√|Ne(a)|a0 for some uniquely determined a0 ∈ L.

Thus:

L = R>0L � R>0 × L . (5.15)
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The morphism of groups π0 : L → L given by projection on the second factor:

π0(a) = a0 =
1√|Ne(a)|

a (5.16)

will be called the normalization morphism. The adjoint representation Ad : L →
AutR(EndR(S)) of the Lipschitz group factors through this morphism:

Ad(a) = Ad(π0(a)) ∀a ∈ L . (5.17)

The volume grading of L induces a Z2-grading L = L0 � L1, where Lκ = L ∩ Lκ =
{a ∈ Lκ||Ne(a)| = 1} for all κ ∈ Z2.

Corollary 5.15. L is homotopy equivalent with L.

Proof. Follows from (5.15).

5.10. The canonical presentation of the reduced Lipschitz group. The
following result describes the reduced Lipschitz groups of all real pin representations,
and hence their automorphism group in the category ClRep.

Theorem 5.16. The following maps ϕ : Λ(V, h) → L are well-defined and give
isomorphisms of groups from the canonical spinor group Λ(V, h) of Section 2 to the
reduced Lipschitz group L of the pin representation γ : Cl(V, h) → EndR(S):
1. In the normal simple case, we have Λ(V, h) = Pin(V, h) and:

ϕ(x) = γ(x) ∀x ∈ Λ(V, h) = Pin(V, h) .

2. In the complex case, we have Λ(V, h) = Spino(V, h) and:

ϕν,u([x, ψα(e
iθ, κ)]) = γ(x)eiθJνuκ ∀x ∈ Spin(V, h) , ∀θ ∈ R , ∀κ ∈ Z2 ,

where Jν = γ(ν), ν is the Clifford volume element of (V, h) determined by an
orientation of V and u ∈ A is as in Proposition 5.5. Here, we have (eiθ, κ) ∈ O2(α)

and ψα : O2(α)
∼→ Pin2(α) is the isomorphism of Proposition 2.2, where α

def.
= αp,q.

3. In the quaternionic simple case, we have Λ(V, h) = Pinq(V, h) and:

ϕf ([x, q]) = γ(x)f(q) ∀x ∈ Pin(V, h) , ∀q ∈ U(H) = Sp(1) ,

where f : H
∼→ S is a unital isomorphism of normed R-algebras (thus f(ImH) =

U(γ)) as in Proposition 5.3.
4. In the normal non-simple case, we have Λ(V, h) = Spin(V, h) and:

ϕ(x) = γ(x) ∀x ∈ Spin(V, h) .

5. In the quaternionic non-simple case, we have Λ(V, h) = Spinq(V, h) and:

ϕf ([x, q]) = γ(x)f(q) ∀x ∈ Spin(V, h) , ∀q ∈ U(H) = Sp(1) ,

where f : H
∼→ S is a unital isomorphism of normed R-algebras (thus f(ImH) =

U(γ)) as in Proposition 5.3.

Proof. We consider each case in turn.
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1. Normal simple case. Theorem 5.10 gives L = γ(G(V, h)). By Proposition 5.14,
we have: |Ne|(γ(x)) = |Ne(γ(x))| = |Ne(x)| = |N |(x) for all x ∈ G(V, h).
Since γ is an isomorphism from G(V, h) to L, this gives L = ker(|Ne|L|) =
γ(ker(|NG|)) = γ(Pin(V, h)) and the statement follows.

2. Complex case. Theorem 5.10 gives L0 = γ(Ge(V, h)) and L1 = L0u. Since
uteu = idS, Proposition 5.14 gives: Ne(au) = Ne(a) for all a = γ(x) ∈ L0

(with x ∈ Ge(V, h)) and Proposition 5.14 gives |Ne|(au) = |Ne|(a), which
implies L0 = γ(Spinc(V, h)) and L1 = γ(Spinc(V, h))u since γ is injective.
This gives the desired statement.

3. Quaternionic simple case. Theorem 5.10 gives L = γ(G(V, h))U(S) while
Proposition 5.14 gives |Ne|(γ(x)) = |NG|(x) for x ∈ G(V, h), where we
used the fact that U(S) ⊂ O(S,Be). Since γ is injective, this gives
L = γ(ker |NG|) = γ(Pin(V, h)) and the statement follows.

4. Normal non-simple case. Theorem 5.10 gives L = γ(G+(V, h)) while Propo-
sition 5.14 gives |Ne|(γ(x)) = |N |(x) for x ∈ G+(V, h). Since γ|G+(V,h) is
injective, this gives L = γ(ker |N |G+(V,h)) = γ(Spin(V, h)) and the statement
follows.

5. Quaternionic non-simple case. Theorem 5.10 gives L = γ(G+(V, h)U(S))
while Proposition 5.14 gives |Ne|(γ(x)s) = |N |(x) for x ∈ G+(V, h) and
s ∈ U(S), where we used the fact that U(S) ⊂ O(S,Be). Since γ|G+(V,h) is
injective, this gives L = γ(ker |N |G+(V,h))U(S) = γ(Spin(V, h))U(S) and the
statement follows.

Definition 5.6. Any of the group isomorphisms given in the previous proposition
is called an admissible isomorphism from the enlarged spinor group Λ(V, h) to L.

Remark 5.5. In the normal (simple or non-simple case), the unique admissible
isomorphism is given by the restriction of γ and hence it is canonically determined
by γ. In the complex case, the admissible isomorphisms are determined by γ, by a
choice of orientation of V and by a choice of element u ∈ A as in Proposition 5.5. In
the quaternionic (simple or non-simple case), there exists an infinite set of admissible
isomorphisms, each of which is determined by γ and by a choice of unital isomorphism
f ∈ IsomAlg(H, S) satisfying f(ImH) = U(γ) (recall that the set of such f forms an
SO(3,R)-torsor).

5.11. The pairing induced by Be on EndR(S). The canonical pairing Be

induces an R-bilinear, symmetric and non-degenerate pairing ( , )e : EndR(S) ×
EndR(S) → R defined through:

(T1, T2)e
def.
=

1

dimR S
tr(T te

1 T2) , ∀T1, T2 ∈ EndR(S) . (5.18)

Symmetry of ( , )e follows from involutivity of te and from the property tr(T te) =
tr(T ) for all T ∈ EndR(S).

Proposition 5.17. For any a ∈ L and T ∈ EndR(S), we have:

Ad(a)(T )te = Ad(a)(T te) .

Moreover, the adjoint representation of L preserves the pairing (5.18):
(Ad(a)(T1),Ad(a)(T2))e = (T1, T2)e ∀a ∈ L , ∀T1, T2 ∈ EndR(S) .
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Proof. For all a ∈ L, we have Ne(a) = ±idS , hence ate = ±a−1 and Ad(a)(T ) =
aTa−1 = ±aTate . Thus Ad(a)(T )te = ±aT teate = aT tea−1 = Ad(a)(T te). This
gives:

(Ad(a)(T1),Ad(a)(T2))e =
1

dimR S
tr(Ad(a)(T te

1 )Ad(a)(T2)) =

=
1

dimR S
tr(Ad(a)(T te

1 T2)) =
1

dimR S
tr(T te

1 T2) = (T1, T2)e , (5.19)

where we used the cyclic property of the trace.

Let ( , )S and ( , )A denote the restrictions of ( , )e to the subspaces S and A
of EndR(S). Since ( , )e is invariant under the adjoint representation of L, these
restricted pairings are invariant respectively under the Schur and anticommutant rep-
resentations of L. In the complex and quaternionic cases, let ( , )ImS denote the
restriction of ( , ) to ImS.

Proposition 5.18. The pairing ( , )S coincides with the canonical Euclidean
scalar product on S (the scalar product which induces the norm of S). Moreover, the
Schur representation of the reduced Lipschitz group L preserves ( , )S.

Proof. The fact that AdS preserves ( , )S follows from Proposition 5.17. Since
ste = c(s) for all s ∈ S (see Proposition 5.13), we have:

(s1, s2)S =
1

dimR S
tr(c(s1)s2) ∀s1, s2 ∈ S . (5.20)

Thus:
1. In the normal simple or non-simple case, we have si = αiidS with αi ∈ R and

(s1, s2)S = α1α2, which is the Euclidean scalar product on S � R. In this case, we
have AdS(a) = idS for all a ∈ L.

2. In the complex case, we have si = αiidS + βiJ with αi, βi ∈ R, which gives:

c(s1)s2 = (α1α2 + β1β2)idS + (α1β2 − α2β1)J .

Since J te = c(J) = −J , we have tr(J) = 0. Thus (s1, s2)S = α1α2 + β1β2, which
is the canonical scalar product on S � C (that scalar product which induces the
canonically normalized norm of the normed algebra S). In this case, Theorem 5.10
gives:

AdS(a) =

{
idS if a ∈ L0

c if a ∈ L1 .

3. In the quaternionic case, let Ji be an orthonormal and oriented basis of ImS = U(γ).
We have si = αiidS +

∑3
k=1 β

k
i Jk with αi, β

k
i ∈ R, which gives:

c(s1)s2 = (α1α2 +

3∑
k=1

βk
1β

k
2 )idS +

3∑
k=1

(α1β
k
2 − α2β

k
1 )Jk −

3∑
k,l,m=1

εklmβk
1β

l
2Jm .

Since J te
k = c(Jk) = −Jk, we have tr(Jk) = 0. Thus (s1, s2)S = α1α2+

∑3
k=1 β

k
1β

k
2 ,

which is the canonical scalar product of the normed algebra S.
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Remark 5.6. Relation (5.20) implies that ( , )S satisfies the following identities
for all s1, s2 ∈ S:

(c(s1), c(s2))S = (s1, s2)S = (s2, s1)S , (5.21)

which shows that c : S → S is ( , )S-orthogonal (and hence also ( , )S-symmetric,
since c2 = idS).

Proposition 5.19. In the simple cases, the pairing ( , )A on A = Su agrees up
to sign with the pairing ( , )S:
1. In the normal and quaternionic simple cases, we have:

(s1ω, s2ω)A = (−1)p(s1, s2)S ∀s1, s2 ∈ S ,

where βp,q = (−1)p (see (5.13)).
2. In the complex case, we have:

(s1u, s2u)A = (s1, s2)S ∀s1, s2 ∈ S � C

Moreover, the anticommutant representation of L preserves the pairing ( , )A.

Proof. The last statement follows from the fact that the adjoint representation of
L preserves ( , )e. Statement 1. follows immediately from Proposition 5.5 using the
fact that ω commutes with the elements of S while ωteω = βp,qidS (see relation (5.13)),
where βp,q = (−1)p for p − q ≡8 0, 2, 4, 6. Statement 2 follows from Proposition 5.5
using the fact that Ads(u) = c while uteu = idS .

5.12. The vector representations of L and L. The following result shows
that the vector representation of L exhausts the full pseudo-orthogonal group in the
simple cases; this is a consequence of the fact that pin representations admit twisting
elements in the simple case (see Corollary 5.6). In the non-simple case, the vector
representation of L = L0 exhausts the special pseudo-orthogonal group. We identify
O(W, g) with O(V, h) using the invertible isometry γ|V : V

∼→ W , thus viewing the
vector representation of the Lipschitz group as a morphism from L to O(V, h).

Theorem 5.20. In the simple case, there exists a short exact sequence:

1 −→ S
× −→ L

Ad0−→ O(V, h) −→ 1 , (5.22)

which restricts to a short exact sequence:

1 −→ S
× −→ L0 Ad0−→ SO(V, h) −→ 1 . (5.23)

In the non-simple case, we have L = L0 and there exists a short exact sequence:

1 −→ S
× ↪→ L

Ad0−→ SO(V, h) −→ 1 . (5.24)

Proof. The simple case follows from Theorem 4.9 and Corollary 5.6. In the non-
simple case, we have L = L0 by Theorem 5.10. Hence the exact sequence (4.14) of
Theorem 4.9 becomes (5.24).

Since the adjoint representation of L factors through the normalization morphism
(5.16) while the restriction of Ne to S equals the square norm morphismM : S → R>0,
we obtain:
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Corollary 5.21. In the simple case, there exists a short exact sequence:

1 −→ U(S) −→ L Ad0−→ O(V, h) −→ 1 , (5.25)

which restricts to a short exact sequence:

1 −→ U(S) −→ L0 Ad0−→ SO(V, h) −→ 1 . (5.26)

In the non-simple case, we have L = L0 and there exists a short exact sequence:

1 −→ U(S) ↪→ L Ad0−→ SO(V, h) −→ 1 . (5.27)

We have a commutative diagram with exact rows and columns:

1

��

1

��
1 �� U(S)

��

�� L Ad0 ��

��

O(V, h) �� 1

1 �� S× ��

M

��

L
Ad0 ��

Ne

��

O(V, h) �� 1

R
×

��

R
×

��
1 1

(5.28)

Remark 5.7. Recall the sign factor εd which was defined in (1.21) and notice
that L ∩ O(S,Be) = {a ∈ L|Ne(a) = +idS} ⊂ L. Also recall that Ne(u) = +idS in
the complex case. Relation (1.22) gives:

Ne|Spin(V,h) = N |Spin(V,h) , Ne|Pin−(V,h) = εdN |Pin−(V,h) ,

which implies:

ker(Ne : Pin(V, h) → R
×) = Spin+(V, h) � Pinεd− (V, h) .

When pq �= 0, these observations together with Proposition 5.14 show that the con-
nected components of the reduced Lipschitz group L are as follows:
1. In the normal simple case, L � Pin(V, h) has four connected components, which

are distinguished by the Z2 grading inherited from Cl(V, h) and by the value
of the canonical Lipschitz norm Ne. We have L ∩ O(S,Be) = γ(Spin+(V, h) �
Pinεd− (V, h)) �Gp Spin+(V, h) � Pinεd− (V, h), which has two connected components.

2. In the complex case, L � Spinoα(V, h) (where α
def.
= αp,q) has four connected com-

ponents, which are distinguished by the volume grading L = L0 � L1 (where
L0 �Gp Spinc(V, h) and L1 = uL0) and by the value ofNe. We have L∩O(S,Be) =
γ(Spin+(V, h) ·U(1)) � γ(Spin+(V, h) ·U(1))u �Gp Spin+(V, h) ·O2(α), which has
two connected components.
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3. In the quaternionic simple case, L � Pinq(V, h) has four connected components,
which are distinguished by the Z2 grading inherited from Cl(V, h) and by the
value of Ne. We have L ∩ O(S,Be) = γ(Spin+(V, h) � Pinεd− (V, h)) · Sp(1) �
[Spin+(V, h) � Pinεd− (V, h)] · Sp(1), which has two connected components.

4. In the normal non-simple case, L � Spin(V, h) has two connected components,
which are distinguished by the value ofNe. We have L∩O(S,Be) = γ(Spin+(V, h)),
which is connected.

5. In the quaternionic non-simple case, L � Spinq(V, h) has two connected com-
ponents, which are distinguished by the value of Ne. We have L ∩ O(S,Be) =
γ(Spin+(V, h)) · Sp(1) � Spin+(V, h) · Sp(1), which is connected.

5.13. The anticommutant representation of L in the simple case. As-
sume that we are in the simple case. Recall that A ⊂ EndR(S) denotes the an-
ticommutant subspace of γ : Cl(V, h) → EndR(S), which is a left S-module of
rank one (see Proposition (5.5)). Also recall the anticommutant representation
AdA : L → AuttwS (A, p) of the Lipschitz group (introduced in Subsection 4.8), where
AuttwS (A, p) denotes the group of those twisted automorphisms of the S-module A
which are twisted-orthogonal with respect to the Schur pairing p (see Appendix C).

Proposition 5.22. The following statements hold in the simple case:
1. In the normal simple case, we have AuttwS (A) = AutR(A) = R

×idA � R
× and

AuttwS (A, p) = {−idA, idA} � Z2.
2. In the complex case, we have AuttwS (A) � C

×
�ΦZ2 � GL(2,R) and AuttwS (A, p) �

U(1) �Φ Z2 � O(2,R), where Φ : Z2 → AutGp(C
×) is the group morphism given

by Φ(0̂)(z) = z and Φ(1̂)(z) = z̄ (z ∈ C
×).

3. In the quaternionic simple case, we have AuttwS (A) � (H×)op �Φ SO(3,R), where
Φ : SO(3,R) → AutGp(H

×) is the group morphism given by Φ([q]) = Ad(q)|H× for
all [q] ∈ U(H)/{−1, 1} = SO(3,R). We also have AuttwS (A, p) � {−idA, idA} ×
AutAlg(S) � Z2 × SO(3,R).

Proof.
1. Normal simple case. In this case, we have S � R and A = Rω. Since AutAlg(R) =

{idR}, Proposition C.2 of Appendix C gives AuttwS (A) = AutS(A) = R
×idA �

R
× � GL(1,R). Proposition 5.7 shows that the Schur pairing coincides up to

sign with the usual scalar product on R. Since AuttwS (A) = AutS(A), the p-
orthogonality condition (C.2) gives AuttwS (A, p) � O(1,R) � Z2.

2. In the complex case, we have AutAlg(S) = {idS, c} � Z2 and the element u = D
of Proposition 5.5 is a basis of A over S � C. Hence the splitting morphism
Gu : AutAlg(S) → AuttwS (A) in the proof of Proposition C.2 takes c into the twisted
morphism ϕ ∈ AuttwS (A) given by ϕ(sD) = c(s)D for all s ∈ S. Since c corresponds
to complex conjugation, Proposition C.2 gives AuttwS (A) � C

×
�Φ Z2 � O(2,R) if

we identify S with C as in Proposition 5.3. With this identification, Proposition 5.7
shows that the Schur pairing coincides (up to sign) with the Euclidean scalar prod-
uct on C ≡ R

2, which is R-valued. Hence the Schur pairing satisfies c(p(x1, x2)) =
p(x1, x2) and condition (C.2) gives AuttwS (A, p) � U(1)�Φ Z2 � O(2,R).

3. In the quaternionic simple case, we have AutAlg(S) � U(S)/{−idS , idS} � SO(3,R)
and the element u = ω generates A over S. The splitting morphism Gu :
AutAlg(S) → AuttwS (A) in the proof of Proposition C.2 takes [q] ∈ U(S)/{−idS , idS}
into the twisted morphism ϕq ∈ AuttwS (A) given by ϕq(sω) = Ad(q)(s)ω for
all s ∈ S. Identifying S with H as in Proposition 5.3, Proposition C.2 gives
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AuttwS (A) � (H×)op �Res AutAlg(H) � (H×)op �Φ SO(3,R). Any twisted auto-
morphism (ϕ0, ϕ) of A = Sω satisfies ϕ(ω) = σω for some σ ∈ S and has the
form:

ϕ0 = Ads(s0)

ϕ(sω) = ϕ0(s)σω

for some s0 ∈ U(S). Since s and ω commute, it is easy to see that (ϕ0, ϕ) satisfies
condition (C.2) with the Schur pairing given in Proposition 5.7 iff:

(ϕ0(s)σ)
2 = ϕ0(s

2) ∀ s ∈ S . (5.29)

For s = idS , this gives σ2 = idS , which amounts to σ ∈ {−idS , idS} (because S is a
division algebra); both of these solutions satisfy (5.29). Thus ϕ(sω) = ±Ad(s0)(s)ω
and AuttwS (A, p) � {−idS , idS} ×AutAlg(S).

Theorem 5.23. The following statements hold in the simple case:
1. In the normal simple case, the anticommutant representation gives a short exact
sequence:

1 −→ L0 ↪→ L
AdA−→ {−idA, idA} � Z2 −→ 1 , (5.30)

where L0 = γ(G+(V, h)) � G+(V, h) and L1 = γ(G−(V, h)) � G−(V, h). We have:

AdA(a) =

{
+idA if a ∈ L0 = γ(G+(V, h))
−idA if a ∈ L1 = γ(G−(V, h))

. (5.31)

2. In the complex case, the anticommutant representation of L gives a short exact
sequence:

1 −→ γ(G+(V, h)) ↪→ L
AdA−→ AuttwS (A, p) � O(2,R) −→ 1 (5.32)

which restricts to a short exact sequence:

1 −→ γ(G+(V, h)) ↪→ L0 = γ(Ge(V, h))
AdA−→ AutS(A, p) � SO(2,R) −→ 1 (5.33)

and for all a ∈ G+(V, h) and all θ ∈ R we have:

AdA(γ(ae
θν))(u) = AdA(γ(ae

θν)u)(u) = e2θJu . (5.34)

3. In the quaternionic simple case, we have L = γ(G(V, h))U(S) with L0 =
U(S)γ(G+(V, h))U(S) and L1 = γ(G−(V, h))U(S). The anticommutant represen-
tation of L gives a short exact sequence:

1 −→ γ(G+(V, h)) ↪→ L
AdA−→ AuttwS (A, p) � Z2 × SO(3,R) −→ 1 (5.35)

which restricts to a short exact sequence:

1 −→ γ(G+(V, h)) ↪→ L0 −→ SO(3,R) −→ 1 (5.36)

and for all s ∈ S we have:

AdA(a)(sω) =

{
+Ads(a)(s)ω if a ∈ L0

−Ads(a)(s)ω if a ∈ L1 . (5.37)
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Proof.
1. The normal simple case. We have A = Rω and AuttwS (A, p) = {idA,−idA}. Re-

lation (5.31) follows from the fact that a ∈ L commutes with ω iff a ∈ L0 and
anticommutes with ω iff a ∈ L1. Thus kerAdA = L0. The map γ induces an
isomorphism from G(V, h) to L and (since d is even) we have L0 = γ(G+(V, h))
and L1 = γ(G−(V, h)). The set L1 = γ(G−(V, h)) is non-empty since V �= 0; this
shows that AdA is surjective.

2. The complex case. In this case, we have A = Su for u as in Proposition 5.5
and AuttwS (A, p) � O(2,R). For a ∈ L0 = γ(Ge(V, h)), we have Ads(a) = idS,
hence Ad(a) is S-linear and AdA(a) corresponds to an element of SO(2,R). For
a ∈ L1 = uL0, we have Ads(a) = c (see Theorem 5.10), hence Ad(a) is S-antilinear
and AdA(a) corresponds to an element of O−(2,R). Thus AdA(a) = idA iff a =
γ(x) ∈ L0 for some x ∈ Ge(V, h) which satisfies Ad(u)(γ(x)) = γ(x). Since γ is
injective and Ad(u) ◦ γ = γ ◦ π, this amounts to π(x) = x i.e. x ∈ G+(V, h).
This shows that kerAdA = γ(G+(V, h)). We have Z(V, h) = R ⊕ Rν �Alg C and
ν ∈ Z(V, h). For any x, y ∈ R, we have ex+yν ∈ Z(V, h)× ⊂ Ge(V, h) (recall that
ν2 = −1 in the complex case). Since γ(ν) = ω = J , we have γ(Z(V, h)×) = S ⊂ L
and γ(eθν) = eθJ ∈ γ(Ge(V, h)) = L0. This implies (5.34) upon using the fact that
u and J anticommute. In particular, AdA(U(S)) corresponds to SO(2,R) � U(1)
and Ad(U(S)u) corresponds to O−(2,R). Thus AdA is surjective, the sequence
(5.32) holds and it restricts to (5.33).

3. The quaternionic simple case. In this case, we have A = Sω. Clearly a ∈ kerAdA
implies Ads(a) = idS and hence a ∈ Lγ = γ(G(V, h)) by Proposition 5.9. Since d
is even, we have Ad(a)(ω) = εω for a ∈ γ(Gε(V, h)) (where ε ∈ {−1, 1}) and we
conclude that kerAdA = γ(G+(V, h)). Since L = U(S)γ(G(V, h)), any a ∈ L can
be written as a = saa0 for some sa ∈ U(S) and some a0 ∈ γ(G(V, h)). Since sa
commutes with a0 and ω, we have Ad(a)(ω) = Ad(a0)(ω) and hence:

AdA(a)(ω) = εω for a0 ∈ γ(Gε(V, h)) . (5.38)

This gives:

AdA(a)(sω) = Ads(a)(s)AdA(a)(ω) = εAds(a)(s)ω for a0 ∈ γ(Gε(V, h)) .

Thus (5.37) holds. Since Ads(a0) = idS, we have Ads(a) = Ads(s0)Ads(a0) =
Ads(s0), which together by (5.37) implies that the sequences (5.35) and (5.36) are
exact.

5.14. Relation between the elementary representations of L and those
of Λ(V, h).

Definition 5.7. The characteristic representation μL of the reduced Lipschitz
group L is defined as follows:
1. In the normal simple or non-simple case, it is the Schur representation of L, i.e.
the trivial one-dimensional representation μL

def.
= AdS : L → 1.

2. In the complex case, it is the anticommutant representation μL
def.
= AdA : L →

O(A, ( , )A) � O(2,R).
3. In the quaternionic simple or non-simple case, μL : L → SO(ImS, ( , )S|ImS) �

SO(3,R) is the Schur representation restricted to ImS:

μL(a)
def.
= Ads(a)|ImS ∀a ∈ L .
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Definition 5.8. The basic representation of L is the representation ρL = Ad0×
μL.

Notice that ρL = Ad0 in the normal (simple and non-simple) cases.
To state the next result precisely, we need certain identifications which we discuss

in turn.
1. Recall that γ|V : V

∼→ W = γ(V ) is an invertible isometry between the
quadratic spaces (V, h) and (W, g). This induces an isomorphism of groups
Ad(γ|V ) : O(V, h)

∼→ O(W, g) given by:

Ad(γ|V )(R)
def.
= (γ|V ) ◦R ◦ (γ|V )−1 ∈ O(W, g) ∀R ∈ O(V, g)

and we have:

Ad0 ◦ γ|Ge(V,h) = Ad(γ|V ) ◦Ade0 , (5.39)

where Ade0 : Ge(V, h) → O(V, h) is the untwisted vector representation of the
extended Clifford group while Ad0 : L → O(W, g) is the vector representation of
the Lipschitz group.

2. In the complex case, any choice of orientation of V and of an element u ∈ A as in
Proposition 5.5 gives an R-linear isomorphism gν,u : R2 ∼→ A given by:

gν,u(x, y) = (x− αp,qyJν)u ∈ A ∀x, y ∈ R ,

where Jν = γ(ν) and ν is the Clifford volume element of V with respect to the
given orientation. This isomorphism transports both ( , )A and the Schur pairing p
to scalar products on R

2 which coincide up to sign with the canonical scalar prod-
uct. It follows that the unital isomorphism of R-algebras Ad(gν,u) : EndR(R

2)
∼→

EndR(A) restricts to an isomorphism of groups Ad(gν,u) : O(2,R)
∼→ O(A, ( , )A).

3. In the quaternionic (simple and non-simple) cases, any unital isomorphism of R-
algebras f : H

∼→ S induces a unital isomorphism of R-algebras Ad(f) : EndR(H) →
EndR(S) given by:

Ad(f)(g)
def.
= f ◦ g ◦ f−1 , ∀g ∈ EndR(H) .

Consider the morphism of groups AdS : U(S) → AutAlg(S) defined through:

AdS(s)(s
′) def.

= ss′s−1 ∀s ∈ U(S) ∀s′ ∈ S .

Then:

AdS ◦ f |U(H) = Ad(f) ◦AdH . (5.40)

When viewed as a linear representation of U(S) over R, AdS decomposes as a
direct sum of the trivial representation supported on the subspace RidS and the
representation Ad•S : U(S) → SO(ImS, ( , )S|ImS) given by Ad•S(s)

def.
= AdS(s)|ImS

for all s ∈ U(S). We have f(ImH) = ImS and f |ImH is a linear isomorphism from
ImH to ImS, which induces an isomorphism of groups Ad(f |ImH) : SO(ImH)

∼→
SO(ImS, ( , )S|ImS). Relation (5.40) implies:

Ad•S ◦ (f |U(H)) = Ad(f |ImH) ◦Ad• , (5.41)

where Ad• : U(H) → SO(ImH) = SO(3,R) is the adjoint representation of U(H) =
Sp(1) (see Section 2).
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Recall that λ, μ and ρ are the vector, characteristic and basic representations of the
extended spinor group Λ(V, h). The following result shows that the elementary repre-
sentations Ad0, μL and ρL of the reduced Lipschitz group L of a pin representation γ
agree with the elementary representations λ, μ and ρ of the enlarged spinorial group
Λ(V, h) studied in Section 2.

Theorem 5.24. Let ϕ : Λ(V, h)
∼→ L be any of the admissible isomorphisms

given in Theorem 5.16. Then:
1. In the normal (simple and non-simple) cases, we have ϕ = γ|Λ(V,h) and the follow-
ing relations hold:

Ad(γ|V ) ◦ λ = Ad0 ◦ ϕ ,

μ = μL ◦ ϕ , (5.42)
Ad(γ|V ) ◦ ρ = ρL ◦ ϕ .

2. In the complex case, ϕ = ϕν,u is determined by an orientation of (V, h) and by a
choice of element u ∈ A as in Proposition 5.5 and the following relations hold:

Ad(γ|V ) ◦ λ = Ad0 ◦ ϕν,u ,

Ad(gν,u) ◦ μ = μL ◦ ϕν,u , (5.43)
[Ad(γ|V )×Ad(gν,u)] ◦ ρ = ρL ◦ ϕν,u .

3. In the quaternionic (simple and non-simple) cases, ϕ = ϕf is determined by γ

and by a unital isomorphism of normed R-algebras f : H
∼→ S and the following

relations hold:

Ad(γ|V ) ◦ λ = Ad0 ◦ ϕf ,

Ad(f |ImH) ◦ μ = μL ◦ ϕf , (5.44)
[Ad(γ|V )×Ad(f |ImH)] ◦ ρ = ρL ◦ ϕf .

This result gives the intrinsic meaning of the elementary representations of the en-
larged spinor groups considered in Section 2. It also shows that one can use the
model Λ(V, h) of the reduced Lipschitz group L (which is homotopy equivalent with
the full Lipschitz group L) when developing the theory of Lipschitz structures for the
Lipschitz groups of pin representations.

Proof.
1. Normal simple case. In this case, we have ϕ = γ|Pin(V,h) : Pin(V, h)

∼→ L.
Since Pin(V, h) is a subgroup of Ge(V, h), relation (5.39) gives Ad0 ◦ ϕ =
Ad(γ|V )(AdCl

0 |Pin(V,h)) = Ad(γ|V ) ◦ λ, which is the first equation in (5.42). The
second relation holds since μ and μL are the trivial representations, while the last
relation in (5.42) holds because ρ = λ and ρL = Ad0|L.

2. Normal non-simple case. In this case, we have ϕ = γ|Spin(V,h) : Spin(V, h)
∼→ L,

with μL and μ trivial and ρ = λ = AdCl
0 |Spin(V,h), ρL = Ad0|L. Relations (5.42)

hold by an argument similar to that for the normal simple case.
3. Complex case. Let α := αp,q and ψ := ψα be the isomorphism of Proposition

2.2. We have Λ(V, h) = Spino(V, h) and ϕ([a, ψ(eiθ, κ)]) = γ(a)eθJνuκ for all
a ∈ Spin(V, h), with (eiθ, κ) ∈ O2(α), where θ ∈ R, κ ∈ Z2. Thus:

(Ad0 ◦ ϕ)([a, ψ(eiθ, κ)]) = (Ad0 ◦ γ)(a)Ad0(e
θJν )Ad0(u

κ) = (−1)κ(Ad0 ◦ γ)(a) ,
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where we used the fact that Ad0(e
θJν ) = idW (since eθJν ∈ S

×) and Ad0(u) =
−idW . This can also be written as:

(Ad0 ◦ ϕ)([a, ψ(eiθ, κ)]) = η(eiθ, κ)(Ad0 ◦ γ)(a) = η(eiθ, κ)Ad(γ|V ) ◦AdCl
0 (a) ,

where η := ηα : O2(α) → G2 is the abstract determinant introduced in Subsection
2.3 and in the last equality we used relations (5.39). Since η = det ◦Ad

(2)
0 ◦ ψ (see

Proposition 2.2), the relation above becomes:

(Ad0 ◦ ϕ)([a, ψ(eiθ, κ)]) = det(Ad
(2)
0 (ψ(eiθ, κ)))Ad(γ|V ) ◦AdCl

0 (a) =

= Ad(γ|V ) ◦ λ([a, ψ(eiθ, κ)]) ,

where in the last line we used Definition 2.5. This shows that the first relation of
(5.43) holds. Since μL = AdA, Theorem 5.23 gives:

(μL ◦ ϕ)([a, ψ(eiθ, κ)])(u) = AdA(γ(a)e
θJνuκ)(u) = e2θJνu ,

Setting g := gν,u, we have g(1) = u and g(e−2iαθ) = e2θJu and the relation above
gives:

(μL ◦ ϕ)([a, ψ(eiθ, κ)]) = Ad(g)(R(−2αθ)Cκ
0 ) =

= (Ad(g) ◦ Φ(−α)
0 ◦ σα)(e

iθ, κ) = (Ad(g) ◦Ad
(2)
0 )(ψ(eiθ, κ)) ,

where we identified R
2 = C and used Proposition 2.2 in the last line. Here, σα is

the squaring representation of O2(α) discussed in Subsection 2.3. This shows that
the second relation in (5.43) holds. The last relation in (5.43) now follows because
ρL = λL × μL and ρ = λ× μ.

4. Quaternionic simple case. In this case, we have Λ(V, h) = Pin(V, h) · Sp(1) and
ϕ([a, q]) = γ(a)f(q) ∈ L for all a ∈ Pin(V, h) and q ∈ Sp(1) = U(H), where
f : H

∼→ S is any unital isomorphism of normed R-algebras. Thus:

(Ad0 ◦ ϕ)([a, q]) = Ad0(γ(a))Ad0(f(q)) = Ad0(γ(a)) ,

where we used the fact that Ad0(s) = idW for all s ∈ U(S) (since W = γ(V ) ⊂ C).
Using relation (5.39), the equation above gives Ad0 ◦ ϕ = Ad(γ|V ) ◦ λ (where λ is
the vector representation of Pinq(V, h) introduced in Section 2), showing that the
first relation in (5.44) holds. For the Schur representation of L, we have:

(Ads ◦ ϕ)([a, q]) = Ads(γ(a))Ad(f(q))|S = AdS(f(q)) ,

where we used the fact that Ads(γ(a)) = idS. Restricting this to the subspace ImS

and using relation (5.41) gives the second relation in (5.44). The third relation
also holds, because ρL = λL × μL and ρ = λ× μ.

5. Quaternionic non-simple case. The argument is almost identical to that for the
quaternionic simple case.

6. Real pinor bundles and real Lipschitz structures. In this section, we
discuss real Lipschitz structures and bundles of Clifford modules over a pseudo-
Riemannian manifold (M, g), establishing an equivalence between the corresponding
groupoids. This shows that the classification of the former agrees with that of the
latter. For the case of bundles of irreducible Clifford modules, the relevant Lipschitz
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structures are called elementary and can be described using the enlarged spinor groups
of Section 2. Combining this with the results of Section 7 will allow us, in the next
section, to extract the topological obstructions to existence of elementary Lipschitz
structures and hence to existence of bundles of irreducible Clifford modules in each
dimension and signature.

Let (M, g) be a connected second countable smooth pseudo-Riemannian manifold
of dimension greater than zero and let g∗ denote the metric induced on T ∗M . For rea-
sons having to do with various applications (to be discussed in other papers), we choose
to work with the Clifford bundle of the pseudo-Euclidean vector bundle (T ∗M, g∗),
rather than with the Clifford bundle of (TM, g) (as is more customary). Since the
pseudo-Euclidean vector bundles (TM, g) and (T ∗M, g∗) are isometric through the
musical isomorphism, this is of course equivalent with the more traditional approach.

6.1. Real pinor bundles.

Definition 6.1. A real pinor bundle is a smooth bundle S �= 0 of finite-
dimensional modules over the Clifford bundle Cl(T ∗M, g∗), i.e. a pair (S, γ) where S
is a real vector bundle over M and γ : Cl(T ∗M, g∗) → End(S) is a smooth mor-
phism of vector bundles (called the structure morphism) such that the fiber map
γm : Cl(T ∗

m, g∗m) → EndR(Sm) is a unital morphism of associative R-algebras for
each m ∈ M .

Hence any fiber Sm is a real representation of the Clifford algebra Cl(T ∗
mM, g∗m) �

Cl(TmM, gm). For any based smooth morphism f ∈ Hom(S, S′) of real vector bundles,
we let Lf : End(S) → Hom(S, S′) and Rf : End(S′) → Hom(S, S′) denote the vector
bundle morphisms defined through:

Lf (ϕ)
def.
= f ◦ ϕ , Rf (ϕ

′) def.
= ϕ′ ◦ f , ϕ ∈ EndR(S) , ϕ′ ∈ EndR(S

′) .

Definition 6.2. A based morphism of real pinor bundles f : (S, γ) → (S′, γ′) is
a smooth based morphism f : S → S′ of real vector bundles such that:

Lf ◦ γ = Rf ◦ γ′ ,

i.e. such that the fiber fm : Sm → S′
m at any pointm ∈ M is a based morphism of Clif-

ford representations from γm : Cl(T ∗
mM, g∗m) → EndR(Sm) to γ′

m : Cl(T ∗
mM, g∗m) →

EndR(S
′
m).

Since M is connected, all quadratic spaces (T ∗
m, g∗m) are mutually isomorphic and

hence isomorphic to some model quadratic space (V, h). Similarly, all fibers of S are
isomorphic as R-vector spaces and hence isomorphic with some model vector space
S0. Using a common trivializing cover of TM and S, this implies that the real Clifford
representations γm : TmM → EndR(Sm) (m ∈ M) are mutually isomorphic in the
category ClRep and hence isomorphic with some model representation γ0 : Cl(V, h) →
EndR(S0). The isomorphism class of γ0 in ClRep is invariant under isomorphism of
real pinor bundles.

Definition 6.3. The type η of a real pinor bundle (S, γ) is the isomorphism class
of its fiberwise Clifford representation γm : (T ∗

mM, g∗m) → AutR(Sm) in the category
ClRep.

Definition 6.4. A real pinor bundle (S, γ) is called weakly faithful if γ|T∗M is
a monomorphism of vector bundles from T ∗M to End(S), i.e. if the map γm|T∗mM :



814 C. I. LAZAROIU AND C. S. SHAHBAZI

T ∗
mM → EndR(Sm) is injective (and thus a weakly faithful Clifford representation)
for each m ∈ M .

Let ClB(M, g) denote the category of real pinor bundles over (M, g) and based pinor
bundle morphisms and ClBw(M, g) denote the full sub-category whose objects are the
weakly faithful real pinor bundles. Clearly (S, γ) is weakly faithful iff its type is. If
η : Cl(V, h) → EndR(S) is a weakly faithful Clifford representation, we let ClBη

w(M, g)
denote the full sub-category of ClBw(M, g) consisting of all real pinor bundles of type
equal to the isomorphism class of η and ClBη

w(M, g)× denote the corresponding unit
groupoid.

6.2. The pseudo-orthogonal coframe bundle. Let (p, q) denote the signa-
ture of (M, g) and d = p+q denote the dimension ofM . Let (V, h) be a quadratic space
isomorphic with any (and hence all) fibers of the pseudo-Euclidean bundle (T ∗M, g∗).

Definition 6.5. The pseudo-orthogonal coframe bundle PO(V,h)(M, g) of
(M, g) relative to (V, h) is the principal bundle with structure group O(V, h) =
AutQuad×(V, h), total space:

PO(V,h)(M, g)
def.
= �m∈MHomQuad×((V, h), (T

∗
mM, g∗m))

and right O(V, h)-action given by right composition of r ∈ PO(V,h)(M, g)m with ele-
ments R ∈ O(V, h):

rR
def.
= r ◦R .

Notice that the group O(T ∗
mM, g∗m) acts from the left on each fiber PO(V,h)(M, g)m

by left composition:

Rmr
def.
= Rm ◦ r ∀r ∈ HomQuad×((V, h), (T

∗
mM, g∗m)) and Rm ∈ O(T ∗

mM, g∗m) .

The pseudo-orthogonal coframe bundle of (M, g) relative to Rp,q is denoted Pp,q(M, g)
and is called the canonical pseudo-orthogonal coframe bundle of (M, g). Its fiber at
m ∈ M is the set of all invertible isometries f : Rp,q → (T ∗

mM, g∗m), which can be
identified with the set of all pseudo-orthogonal frames of (T ∗

mM, g∗m) through the map:

f → (f(ε1), . . . , f(εd)) ,

where (ε1, . . . , εd) is the canonical basis of R
p+q. The pseudo-orthogonal coframe

bundle of (M, g) relative to any model (V, h) of the fiber of (T ∗M, g∗) is isomorphic
with the canonical pseudo-orthogonal coframe bundle.

Remark 6.1. Let (V0, h0) be an isometric model of the tangent spaces (TmM, gm)
of (M, g). The bundle PO(V0,h0)(M, g) of pseudo-orthogonal frames of (M, g) rel-

ative to (V0, h0) is the principal O(V0, h0)-bundle with fibers PO(V0,h0)(M, g)m
def.
=

HomQuad×((V0, h0), (TmM, gm)). Taking V0 = V ∗ = HomR(V,R) and canonically
identifying V ∗

0 = (V ∗)∗ with V , the musical ismorphism gives an invertible isometry
ζ : (V, h) → (V0, h0) defined through:

ζ(x)(y)
def.
= h(x, y) ∀x, y ∈ V0 .
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This induces an isomorphism of groups Ad(ζ) : O(V, h)
∼→ O(V0, h0) which identifies

the tautological representation of O(V0, h0) with the dual (a.k.a. contragradient)
representation of O(V, h):

Ad(ζ)(R)(η) = η ◦R−1 ∀η ∈ V0 = V ∗ ∀R ∈ O(V, h) .

This implies that PO(V0,h0)(M, g) is naturally isomorphic with PO(V,h)(M, g) and
that TM is associated to PO(V,h)(M,h) through the contragradient representation
of O(V, h).

6.3. Real Lipschitz structures. Let ϕ : H → G be a morphism of groups and
P be a principal G-bundle over M . We say that P admits a ϕ-reduction to H if there
exists a principal H-bundle Q over M and a ϕ-equivariant bundle map τ : Q → P ,
where ϕ-equivariance means that we have10 τ(qh) = τ(q)ϕ(h) for all q ∈ Q and
h ∈ H. In this case, the pair (Q, τ) is called a ϕ-reduction of P to H. Notice that we
do not require that ϕ be injective or surjective. Given two ϕ-reductions (Q, τ) and
(Q′, τ ′) of P to H, an isomorphism of ϕ-reductions from (Q, τ) to (Q′, τ ′) is a based
isomorphism of principal H-bundles f : Q → Q′ such that τ ′ ◦ f = τ . Notice that
ϕ-reductions of P to H form a groupoid whose morphisms are given by isomorphisms
of reductions.

Remark 6.2. Suppose that ϕ is not surjective and let I(ϕ)
def.
= ϕ(H), which

is a normal subgroup of G. Let j : I(ϕ) → G be the inclusion morphism and ϕ0 :
H → I(ϕ) be the corestriction of ϕ. Then P admits a ϕ-reduction to H iff P admits
a j-reduction (P ′, τ ′) to I(ϕ) and (P ′, τ ′) admits a ϕ0-reduction to H. Of course, a
j-reduction of P to I(ϕ) is the same as an ordinary reduction of structure group.

The principal bundle P admits a ϕ-reduction toH iff [P ] ∈ H1(M,G) lies in the image
of the induced map ϕ∗ : H1(M,H) → H1(M,G). In this case, we have ϕ∗([Q]) = [P ]
for any ϕ-reduction (Q, τ). Let η : Cl(V, h) → EndR(S0) be a weakly faithful Clifford
representation, L(η) def.

= AutClRep(η) be its Lipschitz group and Ad0 : L(η) → O(V, h)
be the vector representation of L(η).

Definition 6.6. Let P be a principal O(V, h)-bundle over M . A real Lipschitz
structure on P relative to η ∈ ClRep is an Ad0-reduction (Q, τ) of P to L(η). A real
Lipschitz structure on (M, g) relative to η is a real Lipschitz structure on PO(V,h)(M, g)
relative to η.

Ad0-equivariance for a real Lipschitz structure (Q, τ) on (M, g) means that the
following relation is satisfied by the map τm : Qm → PO(V,h)(M, g)m =
HomQuad×((V, h), (T

∗
mM, g∗m)) for all m ∈ M , q ∈ Qm and a ∈ L(η):

τm(qa) = τm(q) ◦Ad0(a) . (6.1)

Definition 6.7. Let (Q, τ) and (Q′, τ ′) be two real Lipschitz structures on (M, g)
relative to η. An isomorphism of Lipschitz structures from (Q, τ) to (Q′, τ ′) is an
isomorphism of Ad0-reductions of PO(V,h)(M, g) to L(η).

Let Lη(M, g) be the groupoid of real Lipschitz structures of (M, g) relative to η.

10The element q ∈ Q should not be confused with the number appearing in the signature (p, q) of
g.
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6.4. Relation between weakly faithful real pinor bundles and real Lip-
schitz structures. Let η : Cl(V, h) → EndR(S0) be a weakly faithful real Clifford
representation, where (V, h) is a model of the fiber of (T ∗M, g∗) and let L

def.
= L(η)

be the Lipschitz group of η. Let [η] be the isomorphism class of η in the cate-
gory ClRep. Recall the surjective functor F : ClRep → Quad of Subsection 3.1.
This sends every object γ′ : Cl(V ′, h′) → EndR(S

′
0) of ClRep to the quadratic space

(V ′, h′). Given two objects γi : Cl(Vi, hi) → EndR(S0i) (i = 1, 2) of ClRep, the func-
tor F sends any morphism (f0, f) ∈ HomClRep(γ1, γ2) (where f ∈ HomR(S01, S02) and
f0 ∈ HomQuad((V1, h1), (V2, h2))) to the morphism of quadratic spaces F (f0, f) = f0.
When γ1 and γ2 are weakly faithful and f is bijective, Proposition 3.3 shows that
f0 is also bijective and that it is uniquely determined by f (namely, we have
Ad(f)(γ1(V1)) = γ2(V2) and f0 = (γ2|V2

)−1 ◦ Ad(f)|γ1(V1) ◦ (γ1|V1
)). Moreover, mor-

phisms (f0, f) ∈ HomClRep×w (γ1, γ2) of the groupoid ClRep×w can be identified with
those linear isomorphisms f : S01 → S02 which satisfy Ad(f)(γ1(V1)) = γ2(V2) (see
(3.11)). We will use this identification throughout this subsection.

Proposition-Definition 6.1. There exists a correspondence between real pinor
bundles and real Lipschitz structures given as follows.
A. Let (S, γ) be a weakly faithful real pinor bundle of type η on (M, g). Let Q def.

=
Qη(S, γ) be the principal bundle with structure group L = L(η) = AutClRepw

(η),
total space:

Q
def.
= �m∈MHomClRep×(η, γm) ,

projection given by π(q) = m for q ∈ Qm = HomClRep×(η, γm) and right L-action

given by qa
def.
= q ◦ a for a ∈ L. Let τ def.

= τη(S, γ) : Qη(S, γ) → PO(V,h)(M, g) be
the map defined through:

τm(q) = F (q) = q0 ∈ HomQuad×((V, h), (T
∗
mM, g∗m)) = PO(V,h)(M, g)m . (6.2)

Then (Q, τ) is a Lipschitz structure on (M, g) relative to η, called the Lip-
schitz structure defined by (S, γ). A based isomorphism of weakly faithful
real pinor bundles f : (S, γ) → (S′, γ′) of type η induces an isomorphism
Qη(f) : (Qη(S, γ), τη(S, γ)) → (Qη(S

′, γ′), τη(S′, γ′)) of Lipschitz structures rel-
ative to η, which is defined through (notice that fm ∈ HomClRep×(γm, γ′

m) and
(fm)0 = F (fm) = idT∗mM ):

Qη(f)(q)
def.
= (idT∗mM , fm) ◦ q , ∀q ∈ Qη(S, γ)m = HomClRep×(η, γm) . (6.3)

B. Let (Q, τ) be a Lipschitz structure on (M, g) relative to η. Then the vector bundle
S := Sη(Q, τ)

def.
= Q×ρη

S0 associated to Q through the tautological representation
ρη : L → AutR(S0) of L becomes a weakly faithful real pinor bundle of type η when
endowed with the structure morphism γ := γ(Q, τ) : Cl(T ∗M, g∗) → EndR(S)
given by:

γm(x)([q, s]) = [q, η(Cl(τm(q)−1)(x))(s)] , ∀x ∈ Cl(T ∗
mM, g∗m) , (6.4)

for all q ∈ Qm and s ∈ S0. The pair Sη(Q, τ) = (S, γ) thus constructed
is called the real pinor bundle defined by the Lipschitz structure (Q, τ) (in
particular, it is weakly faithful). An isomorphism of Lipschitz structures f :
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(Q, τ) → (Q′, τ ′) relative to η induces a based isomorphism of real pinor bundles
Sη(f) = (Sη(Q, τ), γη(Q, τ)) → (Sη(Q

′, τ ′), γη(Q′, τ ′)) given by:

Sη(f)m([q, s]) = [fm(q), s] , ∀q ∈ Qm ∀s ∈ S0 . (6.5)

Furthermore, the correspondences defined above give functors Qη : ClBη
w(M, g)× →

Lη(M, g) and Sη : Lη(M, g) → ClBη
w(M, g)×.

At point B. of the proposition, notice that τm(q) ∈ HomQuad×((V, h), (T
∗
m, g∗m)),

is an invertible isometry which induces the unital isomorphism of R-algebras
Cl(τm(q)) : Cl(V, h)

∼→ Cl(T ∗
m, g∗m), whose inverse appears in relation (6.4). Thus

η ◦ [Cl(τm(q))]−1 = η ◦ Cl(τm(q)−1) : Cl(T ∗
m, g∗m) → EndR(S0) is a representation of

the Clifford algebra Cl(T ∗
m, g∗m) in the vector space S0. This representation is isomor-

phic with η in the category ClRep.

Remark 6.3. Notice that the definition of Qη(S, γ) is similar to that of the
pseudo-orthogonal coframe bundle PO(V,h)(M, g), where the groupoid of quadratic
spaces is replaced by the groupoid ClRep×w while the quadratic spaces (V, h) and
(T ∗

mM, g∗m) are replaced by the Clifford representations η : Cl(V, h) → EndR(S0) and
γm : Cl(T ∗

mM, g∗m) → EndR(Sm) (the former being a model of the latter in the cate-
gory ClRepw). In particular, the Lipschitz group L = L(η) is a model for the groups
AutClRepw

(γm) of automorphisms of the fibers of S, when the latter is considered as
a bundle of Clifford representations. It is crucial that these automorphisms are con-
sidered in the category ClRep (thus they need not be based) and not in the ordinary
category of representations of unital algebras. This is because η and γm can only
be identified if one picks an invertible isometry between (V, h) and (T ∗

mM, g∗m); this
forces one to use the structure group L = HomClRep×w (η) in order to make Q into a
principal bundle.

Proof. The fact that (6.2) is Ad0-equivariant follows from the relation (q ◦ a)0 =
q0a0 = q0 ◦ Ad0(a) (which holds because F is a functor which restricts to Ad0 on
L = HomClRep×w (η), in particular we have a0 = Ad0(a)). This implies that (6.1) holds
and hence (Q, τ) is a Lipschitz structure of type η. To show that (6.4) is well-defined,
notice that relation (3.2) gives Ad(a)◦η = η◦Cl(Ad0(a)) for any a ∈ L, which implies
(using [Cl(τm(q))]−1 = Cl(τm(q)−1) and Ad0(a

−1) = Ad0(a)
−1):

Ad(a−1)◦η ◦Cl(τm(q)−1) = η ◦Cl(Ad0(a
−1)◦τm(q)−1) = η ◦ [Cl(τm(q)◦Ad0(a))]

−1 .

Using relation (6.1), this gives:

Ad(a−1) ◦ η ◦ Cl(τm(q)−1) = η ◦ Cl(τm(qa)−1) ∀a ∈ L . (6.6)

Thus:

[qa−1, η(Cl(τm(qa−1)−1)(x))(as)] = [q, a−1η(Cl(τm(qa−1)−1)(x))(as)] =

[q, (Ad(a−1) ◦ η ◦ Cl(τm(qa−1)−1))(x)(s)] = [q, η(Cl(τm(q)−1)(x))(s)] , (6.7)

where in the last equality we used (6.6). This shows that (6.4) is well-defined. The fact
that γm defined in (6.4) is a Clifford representation is obvious, as are the remaining
statements.

Theorem 6.2. There exist invertible natural transformations:

Fη : Sη ◦Qη
∼→ idClBη

w(M,g)× and Gη : idLη(M,g)
∼→ Qη ◦ Sη .
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Hence the functors Qη and Sη are mutually quasi-inverse equivalences between the
groupoids ClBη

w(M, g)× and Lη(M, g).

Remark 6.4. Theorem 6.2 shows, in particular, that the classification of weakly
faithful real pinor bundles of type [η] over (M, g) (up to based isomorphism of real
pinor bundles) is equivalent with that of real Lipschitz structures relative to [η] (up
to isomorphism of Lipschitz structures). The first classification problem asks one to
determine the set of isomorphism classes of objects in the category ClBη

w(M, g), while
the latter asks for the set of isomorphism classes of objects in the category Lη(M, g).
The theorem implies that there exists a canonically-defined bijection between these
two sets.

Proof. Fixing η, we denote Fη by F and Gη by G for ease of notation.
I. Construction of F . Let (S, γ) be an object of ClBη

w(M, g), (Q, τ)
def.
= Qη(S, γ)

and (S′, γ′) def.
= Sη(Q, τ). For any m ∈ M , we have Qm = HomClRep×(η, γm) and

S′
m = Qm ×ρη

S0 = Qm × S0/ ∼, where ∼ is the following equivalence relation on
pairs (q, s) ∈ Qm × S0:

(q, s) � (q′, s′) if ∃a ∈ L = AutClRep(η) : q
′ = q ◦ a and s′ = a−1(s) .

The smooth map F̄ : Q× S0 → S given by:

F̄m(q, s) = q(s) ∈ Sm ∀(q, s) ∈ Qm × S0

satisfies F̄(qa, a−1(s)) = (q ◦ a)(a−1(s)) = q(s) and hence descends to a based mor-
phism of vector bundles F := FS,γ : S′ → S. Since q is an R-linear bijection from
S0 to Sm, the condition F̄(q, s) = 0 is equivalent with s = 0, which implies that Fm

is injective for all m ∈ M . Since S has type η, we have rkS′ = dimR S0 = rkS and
hence dimR S′

m = dimR Sm. Thus Fm is bijective for all m and hence F is a based
isomorphism of vector bundles. The bundle S′ is endowed with the Clifford module
structure given by:

γ′
m(x)([q, s]) = [q, η(Cl(τ(q)−1)(x))(s)] , ∀x ∈ Cl(T ∗

mM, g∗m) , (q ∈ Qm, s ∈ S0) ,

where τ(q) = q0 :∈ HomQuad×((V, h), (T
∗
mM, g∗m)) for any q ∈ Qm. Since

q−1 ∈ HomClRep×(γm, η) is an isomorphism of Clifford representations, we have
η◦Cl(τ(q)−1) = η◦Cl(q−1

0 ) = Ad(q−1)◦γm (see relation (3.2)). Thus η(Cl(τ(q)−1)(x))
= q−1 ◦ γm(x) ◦ q ∈ EndR(S0) and:

(Fm◦γ′
m(x))([q, s]) = Fm([q, q−1(γm(x)(q(s)))]) = γm(x)(q(s)) = (γm(x)◦Fm)([q, s]),

which shows that Fm ◦ γ′
m(x) = γm(x) ◦ Fm for all m ∈ M . Hence F = FS,γ is

a based isomorphism of pinor bundles, i.e. FS,γ ∈ HomClB(M,g)×((S
′, γ′), (S, γ)) =

HomClB(M,g)×((Sη ◦Qη)(S, γ), (S, γ)). To show that FS,γ is a natural transformation,
let (S1, γ1) and (S2, γ2) be two isomorphic weakly faithful pinor bundles of type η
and f ∈ HomClB(M,g)×((S1, γ1), (S2, γ2)) be a based isomorphism of pinor bundles.
Then fm ∈ HomClRep×(γ1,m, γ2,m) is an isomorphism of Clifford representations for

every m ∈ M . Let (Qi, τi)
def.
= Qη(Si, γi) and (S′

i, γ
′
i)

def.
= Sη(Qi, τi). Let Fi

def.
=

FSi,γi
: (S′

i, γ
′
i)

∼→ (Si, γi) be the based isomorphisms of pinor bundles constructed as
above. Finally, let g def.

= Qη(f) : (Q1, τ1)
∼→ (Q2, τ2) be the isomorphism of Lipschitz
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structures induced by f and f ′ def.
= Sη(g) = Sη(Qη(f)) : (S′

1, γ
′
1)

∼→ (S′
2, γ

′
2) be the

isomorphism of pinor bundles induced by g. For any [q1, s] ∈ S′
1,m = Q1,m ×ρη

S0 = HomClRep×(η, γ1,m) ×ρη
S0, we have f ′

m([q1, s]) = [g(q1), s] = [fm ◦ q1, s] (see
Proposition 6.1). Thus:

(F2 ◦ f ′)m([q1, s]) = (fm ◦ q1)(s) = fm(q1(s)) = (f ◦ F1)m([q1, s]) ,

which shows that F2 ◦ f ′ = f ◦F1, i.e. F2 ◦ (Sη ◦Qη)(f) = f ◦F1. Hence the diagram
in Figure 6.8 commutes. Thus F : Sη ◦ Qη

∼→ idClBη
w(M,g)× is an invertible natural

transformation.

(S′
1, γ

′
1)

(Sη◦Qη)(f)

��

F1 �� (S1, γ1)

f

��
(S′

2, γ
′
2)

F2 �� (S2, γ2)

(6.8)

II.Construction of G. Let (Q, τ) be an object of Lη(M, g) and (S, γ) = Sη(Q, τ).
Let (Q′, τ ′) def.

= Qη(S, γ). We have Q′
m = HomClRep×(η, γm) and τ ′m(q′) = q′0 for any

q′ ∈ Q′
m. On the other hand, we have Sm = Qm ×ρη

S0 and γm is given by (6.4). For
any q ∈ Qm, let Gm(q) : S0 → Sm be the linear map defined through:

Gm(q)(s) = [q, s] (s ∈ S0) .

Then Gm(q) is a linear isomorphism from S0 to Sm and for all a ∈ L and s ∈ S0 we
have Gm(qa)(s) = [qa, s] = [q, a(s)] = Gm(q)(a(s)), i.e.:

Gm(qa) = Gm(q) ◦ ρη(a) = Gm(q) ◦ a (a ∈ L) . (6.9)

For any x ∈ Cl(T ∗
mM, g∗m) and any s ∈ S0, relation (6.4) gives:

(γm(x) ◦ Gm(q))(s) = γm(x)([q, s]) = [q, η(Cl(τ(q)−1)(x))(s)]

= (Gm(q) ◦ η(Cl(τ(q)−1)(x)))(s) , (6.10)

i.e. γm(x) ◦ Gm(q) = Gm(q) ◦ η(Cl(τ(q)−1)(x)). Recall that τ(q) ∈ PO(V,h)(M, g)m =
HomQuad×((V, h), (T

∗
mM, g∗m)), so Cl(τ(q)) is a unital isomorphism of R-algebras from

Cl(V, h) to Cl(T ∗
mM, g∗m). Replacing x with Cl(τ(q))(y) where y ∈ Cl(V, h), the

relation above gives:

Ad(Gm(q)) ◦ η = γm ◦ Cl(τ(q)) .

Using relation (3.2), this shows that Gm(q) ∈ Q′
m = HomClRep×(η, γm) and that we

have:

τ ′(Gm(q)) = (Gm(q))0 = τ(q) ∈ HomQuad×((V, h), (T
∗
mM, g∗m)) . (6.11)

Relation (6.9) reads:

Gm(qa) = Gm(q)a ,

where in the right hand side we use the right L-action on the bundle Q′. Thus
(Gm)m∈M define a morphism of principal L-bundles G = GQ,τ : Q → Q′ (which is
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automatically an isomorphism). Relation (6.11) gives τ ′ ◦ G = τ , showing that we
have G ∈ HomLη(M,g)(Q,Q′).

To show that G gives a natural transformation from idLη(M,g) to Qη ◦Sη, consider

two isomorphic objects (Qi, τi) (i = 1, 2) of Lη(M, g) and let (Si, γi)
def.
= Sη(Qi, τi) and

(Q′
i, τ

′
i)

def.
= Qη(Si, γi). Let Gi

def.
= GQi,τi : Qi

∼→ Q′
i be the isomorphisms of Lipschitz

structures defined as above. For any isomorphism f ∈ HomLη(M,g)((Q1, τ1), (Q2, τ2))
and any elements q1 ∈ Q1,m and s ∈ S0, we have:

(G2 ◦ f)(q1)(s) = G2(f(q1))(s) = [f(q1), s] = Sη(f)([q1, s]) = Sη(f)(G1(q1)(s))

= (Sη(f) ◦ G1(q1))(s) = (Qη ◦ Sη)(f)(G1(q1))(s) , (6.12)

which implies G2◦f = (Qη◦Sη)(f)◦G1 and hence the diagram in Figure 6.13 commutes.
Thus G : idLη(M,g)

∼→ Qη ◦ Sη is an isomorphism of functors.

(Q1, τ1)

f

��

G1 �� (Q′
1, τ

′
1)

(Qη◦Sη)(f)

��
(Q2, τ2)

G2 �� (Q′
2, τ

′
2)

(6.13)

7. Some enlarged spinorial structures in general signature. In this sec-
tion, we discuss certain enlarged spinorial structures associated to the groups appear-
ing in the list of canonical spinor groups of Section 2. In particular, we discuss the
topological obstructions to existence of such structures (some of which are known or
are extensions of known results to arbitrary signature and some of which are new) as
well as the behavior of Pin and Pinq structures under sign reversal of the metric in
even dimensions.

7.1. Modified Stiefel-Whitney classes of a pseudo-Riemannian mani-
fold. Let M be a connected pseudo-Riemannian manifold (which need not be ori-
entable) and (V, h) be a quadratic vector space of signature (p, q) and dimension
d = p+ q. Let P be a principal O(V, h)-bundle. Recall that O(p)×O(q) is a maximal
compact form of O(p, q) and the inclusion morphism j : O(p) × O(q) → O(p, q)
is a deformation retract. On the other hand, any pseudo-orthonormal basis of
(V, h) determines an isomorphism of groups ξ : O(p, q)

∼→ O(V, h) and the isomor-
phisms determined by two such bases differ by conjugation. The morphism of groups
jξ

def.
= ξ ◦ j : O(p)×O(q) → O(V, h) is a deformation retract which induces a bijection

(jξ)∗ : H1(M,O(p))×H1(M,O(q))
∼→ H1(M,O(V, h)). It follows that every principal

O(V, h)-bundle P over M is isomorphic with a fiber product P+ ×M P−, where P+

is a principal O(p)-bundle and P− is a principal O(q)-bundle and where P+ and P−
are determined by P up to isomorphism. The same conclusion also follows from the
homotopy equivalence of classifying spaces BO(V, h) � BO(p)×BO(q). The modified
Stiefel-Whitney classes of P are defined [20] as the Stiefel-Whitney classes of P±:

w±
k (P )

def.
= wk(P±) ∈ Hk(M,Z2) .

Notice that w1(P ) = w+
1 (P ) + w−

1 (P ).
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Assume now that P = PO(V0,h0)(M, g) � PO(V,h)(M, g) is the pseudo-orthogonal
frame bundle of a connected pseudo-Riemannian manifold (M, g), where (V0, h0) is
an isometric model of the tangent spaces (TmM, gm) of M . Then:

w±
k (M, g)

def.
= w±

k (PO(V0,h0)(M, g)) = w±
k (PO(V,h)(M, g)) .

are called the modified Stiefel-Whitney classes of (M, g). Since TM is associated to
PO(V0,h0)(M, g) through the tautological representation of O(V0, h0), we have a corre-
sponding Whitney sum decomposition TM = T+M ⊕ T−M , where T±M are vector
sub-bundles of TM which are associated to O(p) and O(q) through the tautological
representations of those groups; these sub-bundles are determined only up to isomor-
phism 11. We have w±

k (M, g) = wk(T
±M) and w1(M) = w+

1 (M, g)+w−
1 (M, g), where

wk(M) are the usual Stiefel-Whitney classes of TM .

7.2. Spin structures in general signature. Recall that a spin structure on
(M, g) is an AdCl

0 -reduction of PO(V,h)(M, g) � PO(V0,h0)(M, g) to Spin(V, h). Since
Ad0(Spin(V, h)) = SO(V, h), Remark 6.2 implies that a spin structure can exist on
(M, g) only when the structure group of PO(V,h)(M, g) reduces to SO(V, h), i.e. only
when M is orientable. In that case, a spin structure is the same as an AdCl

0 -reduction
of PSO(V,h)(M, g) to Spin(V, h), where PSO(V,h)(M, g) is the bundle of positively-
oriented pseudo-orthogonal coframes (which is naturally isomorphic with the bun-
dle of positively-oriented pseudo-orthogonal frames) with respect to an orientation
of (M, g) determined by the spin structure. Notice that changing the orientation of
(M, g) changes PSO(V,h)(M, g) into an isomorphic bundle. The following result was
proved in [20]:

Proposition 7.1 ([20]). The following statements are equivalent:
(a) (M, g) admits a Spin structure
(b) The following conditions are satisfied:

w1(M) = 0 and w+
2 (M, g) + w−

2 (M, g) = 0 .

7.3. Twisted and untwisted Pin structures in even dimension. Assume
that d is even. In this case, both the twisted and untwisted vector representations of
Pin(V, h) are surjective onto O(V, h), hence one can define two kinds of pin structures
on (M, g).

Definition 7.1. A twisted pin structure on (M, g) is a Ãd
Cl

0 -reduction of
PO(V,h)(M, g) to Pin(V, h). An untwisted pin structure on (M, g) is an AdCl

0 -reduction
of PO(V,h)(M, g) to Pin(V, h).

Both twisted and untwisted pin structures on (M, g) form groupoids if one takes mor-
phisms to be isomorphisms of Ãd0-, respectively Ad0-reductions. Notice the equality
PO(V,h)(M, g) = PO(V,h)(M,−g). Proposition 1.6 implies the following relation be-
tween the two types of pin structure:

Proposition 7.2. When d is even, there exists an equivalence of categories
between the groupoid of twisted pin structures of (M, g) and the groupoid of untwisted
pin structures of (M,−σp,qg). Namely:

11They can be constructed as the sums of positive and negative eigenbundles of the g0-symmetric
endomorphism A of TM which represents g with respect to any Riemannian metric g0 onM ; changing
g0 leads to isomorphic bundles.



822 C. I. LAZAROIU AND C. S. SHAHBAZI

1. When p − q ≡8 0, 4, the groupoid of twisted pin structures of (M, g) is equivalent
with the groupoid of untwisted pin structures of (M,−g).

2. When p− q ≡8 2, 6, the groupoids of twisted and untwisted pin structures of (M, g)
are equivalent to each other.

In particular, twisted and untwisted pin structures are equivalent notions when p −
q ≡8 2, 6.

Proof. Let σ def.
= σp,q. If (Q, τ) is an untwisted pin structure on (M,−σg), define

Q′ to be the principal Pin(V, h)-bundle over M having the same total space as Q and
right group action given by:

q ∗ a def.
= qϕ(a) ∀q ∈ Q ∀a ∈ Pin(V, h) ,

where ϕ : Pin(V, h)
∼→ Pin(V,−σh) is the ismorphism of groups given in Proposition

1.6. Let τ ′ def.
= τ : Q → PO(V,−σh)(M,−σg) = PO(V,h)(M, g). Since AdCl

0 ◦ ϕ = Ãd
Cl

0 ,
we have:

τ ′(q ∗ a) = τ(qϕ(a)) = τ(q)AdCl
0 (ϕ(a)) = τ ′(q)Ãd

Cl

0 ∀q ∈ Q ∀a ∈ Pin(V, h) ,

where we used the fact that τ isAd0-equivariant. This shows that τ ′ is Ãd0-equivariant
and hence (Q′, τ ′) is a twisted pin structure on (M, g). Let (Q1, τ1), (Q2, τ2) be
untwisted pin structures on (M,−σg) and f : (Q1, τ1) → (Q,τ2) be an isomorphism
of untwisted pin structures. Let (Q′

1, τ
′
1) and (Q′

2, τ
′
2) be the twisted pin structures on

(M, g) defined by (Q1, τ1) and (Q2, τ2) as above. For all q1 ∈ Q1 and a ∈ Pin(V, h),
we have:

f(q1 ∗ a) = f(q1ϕ(a)) = f(q1)ϕ(a) = f(q1) ∗ a ,

and:

τ ′2 ◦ f = τ2 ◦ f = τ1 = τ ′1 ,

which shows that f ′ def.
= f is an isomorphism of twisted pin structures from (Q′

1, τ
′
1) to

(Q′
2, τ

′
2). It is easy to check that the correspondence defined above is an equivalence

of categories.

Remark 7.1. In most of the literature, the name “Pin structure” is reserved for
what we call a twisted pin structure. One sometimes also encounters the notion of
“Pin− structure” of (M, g), which is defined as a twisted pin structure of (M,−g).
The proposition implies the following:
1. When p − q ≡8 0, 4, the groupoid of Pin− structures of (M, g) is equivalent with

the groupoid of untwisted Pin structures of (M, g).
2. When p − q ≡8 2, 6, the groupoid of Pin− structures of (M, g) is equivalent with

the groupoid of untwisted Pin structures of (M,−g).

Proposition 7.3. Let d be even and σ
def.
= σp,q. Then the following statements

are equivalent:
(a) (M, g) admits an untwisted Pin structure
(b) (M,−σg) admits a twisted Pin structure
(c) The following condition is satisfied:

w+
2 (M, g) + w−

2 (M, g) + wσ
1 (M, g)2 +w−

1 (M, g)w+
1 (M, g) = 0 .
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Proof. The equivalence of (a) and (b) follows from Proposition 7.2. The equiva-
lence of (b) and (c) follows from [20, Proposition (1.1.26)] upon noticing the relation:

w±
1 (M,−g) = w∓

1 (M, g) .

7.4. Twisted and untwisted Pinq(V, h) structures in even dimension. In
even dimension, both the twisted and untwisted basic representation of Pinq(V, h)
have image equal to O(V, h)× SO(3,R) (see Subsection 2.1). This allows us to define
two kinds of Pinq structures on (M, g).

Definition 7.2. Let d be even. Then:
1. A twisted Pinq structure on (M, g) is a triplet (E,Q, τ), where E is a principal

SO(3,R)-bundle over M and (Q, τ) is a ρ̃-reduction of PO(V,h)(M, g) ×M E to
Pinq(V, h).

2. An untwisted Pinq structure on (M, g) is a triplet (E,Q, τ), where E is a principal
SO(3,R)-bundle over M and (Q, τ) is a ρ-reduction of PO(V,h)(M, g) ×M E to
Pinq(V, h).

Proposition 2.1 implies the following result, whose proof is similar to that of Propo-
sition 7.2:

Proposition 7.4. When d is even, there exists an equivalence of categories
between the groupoid of twisted Pinq(V, h) structures of (M, g) and that of untwisted
Pinq(V,−σp,qh) structures of (M, g). Namely:
1. When p− q ≡8 0, 4, the groupoid of twisted Pinq structures of (M, g) is equivalent
with the groupoid of untwisted Pinq structures of (M,−g).

2. When p−q ≡8 2, 6, the groupoids of twisted and untwisted Pinq structures of (M, g)
are equivalent to each other.

Proposition 7.5. Let d be even and σ
def.
= σp,q. Then the following statements

are equivalent:
(a) (M, g) admits an untwisted Pinq structure
(b) (M,−σg) admits a twisted Pinq structure
(c) There exists a principal SO(3,R)-bundle E over M such that the following con-

dition is satisfied:

w+
2 (M, g) + w−

2 (M, g) + wσ
1 (M, g)2 +w−

1 (M, g)w+
1 (M, g) = w2(E) .

Proof. Equivalence of (a) and (b) follows from Proposition 7.4. To show equiv-
alence of (b) and (c), notice that the short exact sequence (2.5) induces the exact
sequence of pointed sets:

H1(M,Pinq(V, h))
ρ̃∗−→ H1(M,O(V, h)× SO(3,R))

∂−→ H2(M,Z2) , (7.1)

where H1(M,O(V, h)× SO(3,R)) = H1(M,O(V, h))⊕H1(M, SO(3,R)). When P is
an O(V, h)-bundle on M , the connecting map is given by ∂([P ×M E]) = ∂′([P ]) +
w2([E]) = w+

2 (P ) + w−
2 (P ) + w−

1 (P )2 + w−
1 (P )w+

1 (P ) + w2(E), where we used the
fact that Sp(1) � Spin(3) = Spin3,0 and the connecting map in the sequence:

H1(M, Sp(1))
(Ad

(2)
0 )∗−→ H1(M, SO(3,R)) −→ H2(M,Z2)
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induced by the short exact sequence 1 → Z2 → Spin(3) → SO(3,R) → 1 is given by
[E] → w2(E), while the connecting map ∂′ in the sequence:

H1(M,Pin(V, h))
(˜Ad

Cl

0 )∗−→ H1(M,O(V, h))
∂′−→ H2(M,Z2)

induced by the exact sequence (1.14) is given by ∂′([P ]) = w+
2 (P ) + w−

2 (P ) +
w−

1 (P )2+w−
1 (P )w+

1 (P ) (see [20]). Thus (M, g) admits a twisted Pinq(V, h) structure
iff w+

2 (M, g) + w−
2 (M, g) + w−

1 (M, g)2 + w−
1 (M, g)w+

1 (M, g) = w2(E). Applying this
to (M,−σg) shows that (b) is equivalent with (c).

Remark 7.2. The connecting map ∂ in the sequence (7.1) can also be de-
termined directly as follows. First, notice that we must have ∂([P ] ⊕ [E]) =
a1w

+
2 (P ) + a2w

−
2 (P ) + a3w

−
1 (P )2 + a4w

−
1 (P )w+

1 (P ) + a5w
+
1 (P )2 + a6w2(E) (since

w1(E) = 0). When E is trivial, we have w2(E) = 0 and it is easy to see that the
bundle P×M E admits a twisted Pinq structure iff P admits a twisted pin structure12.
This implies that ∂([P ]) must be given by the expression computed in [20], i.e. we
must have a1 = a2 = a3 = a4 = 1 and a5 = 0. On the other hand, when p = d, q = 0
and w1(P ) = 0, a Pinq structure on P reduces to a Spinq structure on P , hence in
this case we have ∂([P ]⊕ [E]) = w2(P ) + w2(E) by the results of [5]; this shows that
a6 = 1.

7.5. Spinq structures in general signature. Let ρ : Spinq(V, h) → SO(V, h)×
SO(3,R) denote the basic representation of Spinq(V, h) (see Subsection 2.2).

Definition 7.3. A Spinq structure on (M, g) is a triplet (E,Q, τ), where E is a
principal SO(3,R)-bundle over M and (Q, τ) is a ρ-reduction of PO(V,h)(M, g)×M E
to Spinq(V, h).

Since the image of ρ equals SO(V, h) × SO(3,R), it follows that (M, g) can admit
a Spinq structure only when M is orientable; hence we can assume that w1(M) =
0. When this condition is satisfied, a Spinq structure is the same as a ρ-reduction
of PSO(V,h)(M, g) ×M E, where PSO(V,h)(M, g) is the principal bundle of positively-
oriented pseudo-orthogonal frames with respect to an orientation of M determined by
the Spinq structure. In fact, we have:

Proposition 7.6. The following statements are equivalent:
(a) (M, g) admits a Spinq structure
(b) There exists a principal SO(3,R)-bundle E over M such that the following con-

ditions are satisfied:

w1(M) = 0 and w+
2 (M, g) + w−

2 (M, g) = w2(E) .

Proof. The short exact sequence (2.7) induces the exact sequence of pointed sets:

H1(M, Spinq(V, h))
ρ∗−→ H1(M, SO(V, h)× SO(3,R))

∂−→ H2(M,Z2) ,

whose connecting map satisfies ∂([P ×M E]) = ∂′([P ]) + w2(E) = w+
2 (P ) + w−

2 (P ) +
w2(E), where we used the fact that the connecting map ∂′ in the sequence:

H1(M, Spin(V, h))
(AdCl

0 )∗−→ H1(M, SO(V, h))
∂′−→ H2(M,Z2)

12The inverse implication is obvious. For the direct implication, notice that the natural inclusion
Pin(V, h) � Pin(V, h) · Z2 ⊂ Pinq(V, h) allows one to reduce the structure group of a pin structure
Q to Pin(V, h) when E is trivial; indeed, the characteristic representation μ of Pinq(V, h) induces an
ismorphism Q/Pin(V, h) � E and E has a section when it is trivial.
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induced by (1.15) is given by ∂′([P ]) = w+
2 (P )+w−

2 (P ) (see [20]). Thus (M, g) admits
a Spinq(V, h) structure iff w1(M) = 0 and w+

2 (M, g) + w−
2 (M, g) = w2(E).

7.6. Spino structures in signature p − q ≡8 3, 7. Assume that the signature
(p, q) of (M, g) belongs to the complex case, i.e. it satisfies p−q ≡8 3, 7 (in particular,

d = p + q is odd). Recall that αp,q
def.
= (−1)

p−q+1
4 =

{ −1 if p− q ≡8 3
+1 if p− q ≡8 7

. Let ρ :

Spino(V, h) → S[O(V, h)×O(2,R)] ⊂ O(V, h)×O(2,R) denote the basic representation
of the adapted Spino group Spino(V, h) = Spinoαp,q

(V, h) (see Subsection 2.3).

Definition 7.4. An adapted Spino structure on (M, g) is a triplet (E,Q, τ),
where E is a principal O(2,R)-bundle over M and (Q, τ) is a ρ-reduction of
PO(V,h)(M, g)× E to Spino(V, h).

The following result is proved in [11]:

Proposition 7.7 ([11]). Let d be odd and α
def.
= αp,q. Then the following

statements are equivalent:
(a) (M, g) admits an adapted Spino structure
(b) There exists a principal O(2,R)-bundle E over M such that the following two

conditions are satisfied:

w1(M) = w1(E)

and:

w+
2 (M, g) + w−

2 (M, g) = w2(E) + w1(E)(pw+
1 (M, g) + qw−

1 (M, g))

+

[
δα,−1 +

p(p+ 1)

2
+

q(q + 1)

2

]
w1(E)2 . (7.2)

8. Elementary real pinor bundles and elementary real Lipschitz struc-
tures. In this section, we consider the classification of bundles of irreducible Clifford
modules over (M, g) and extract the topological obstruction to existence of such bun-
dles in every dimension and signature. Let (M, g) be a connected and second countable
pseudo-Riemannian manifold of signature (p, q) and dimension d = p + q, where we
assume that d > 0. Let (V, h) be a model for the fibers of the pseudo-Euclidean vector
bundle (T ∗M, g∗).

Definition 8.1. An elementary real pinor bundle over (M, g) is a real pinor
bundle (S, γ) such that the Clifford representation γm : Cl(T ∗

mM, g∗m) → EndR(Sm) is
a pin representation for every point m ∈ M .

Notice that an elementary real pinor bundle is weakly faithful. If η : Cl(V, h) →
EndR(S0) is a real Clifford representation such that (S, γ) has type η, then (S, γ) is
elementary iff η is a pin representation.

Definition 8.2. A elementary real Lipschitz structure of (M, g) is a real Lip-
schitz structure relative to a pin representation η : Cl(V, g) → EndR(S0). A reduced
elementary real Lipschitz structure of (M, g) is a reduced real Lipschitz structure rel-
ative to a pin representation.

Definition 8.3. The characteristic group of (V, h) is the compact Lie group
G(V, h) defined as follows:
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1. G def.
= 1 (the trivial one-element group), in the normal simple or non-simple case

(i.e. if p− q ≡8 0, 1, 2)
2. G(V, h)

def.
= O(2,R), in the complex case (i.e. if p− q ≡8 3, 7)

3. G(V, h)
def.
= SO(3,R), in the quaternionic simple or non-simple case (i.e. if p−q ≡8

4, 5, 6).

Definition 8.4. A characteristic bundle for (M, g) is a principal bundle E over
M with structure group G(V, h).

In the normal (simple or non-simple) case, E is the trivial 1 : 1 cover bundle. Recall the
canonical spinor group Λ(V, h) and its vector, characteristic and basic representations
λ : Λ(V, h) → O(V, h), μ : Λ(V, h) → G(V, h) and ρ : Λ(V, h) → O(V, h) × G(V, h)
discussed in Subsection 2.5.

Definition 8.5. A canonical spinor structure on (M, g) is a λ-reduction (Q, τ1)
of PO(V,h) to the canonical spinor group Λ(V, h). A modified canonical spinor structure
on (M, g) is a triplet (E,Q, τ), where E is a characteristic bundle for (M, g) and (Q, τ)
is a ρ-reduction of PO(V,h) ×M E to Λ(V, h).

Canonical and modified canonical spinor structures on (M, g) form groupoids whose
morphisms are the isomorphisms of λ-reductions and ρ-reductions respectively.

Proposition 8.1. The groupoids of canonical and modified canonical spinor
structures on (M, g) are equivalent.

Proof. Given a canonical spinor structure (Q, τ1) on (M, g), the characteristic
morphism μ : Λ(V, h) → G(V, h) induces a principal G(V, h)-bundle E

def.
= Q ×μ

G(V, h) on M and a μ-equivariant bundle map τ2 : Q → E given by τ2(q)
def.
= [q, 1].

Since ρ = λ × μ, the bundle map τ
def.
= τ1 × τ2 : Q → PO(V,h)(M, g) ×M E is ρ-

equivariant, hence (E,Q, τ) is a modified canonical spinor structure on (M, g). Con-
versely, let (E,Q, τ) be a modified canonical spinor structure on PO(V,h)(M, g) and
set τ1 = π1 ◦ τ , where π1 : PO(V,h)(M, g) ×M E → PO(V,h)(M, g) is the bundle map
given by fiberwise projection on the first factor. Then (Q, τ1) is a canonical spinor
structure on (M, g). It is easy to see that the correspondences defined above extend
to mutually quasi-inverse functors between the groupoids of canonical and modified
canonical spinor structures on (M, g).

Theorem 8.2. The following groupoids are equivalent for any pseudo-
Riemannian manifold (M, g):
(a) The groupoid of elementary real pinor bundles of (M, g).
(b) The groupoid of elementary real Lipschitz structures.
(c) The groupoid of elementary reduced real Lipschitz structures.
(d) The groupoid of canonical spinor structures.
(e) The groupoid of modified canonical spinor structures.
Depending on the dimension and signature, this groupoid equals:
1. When p−q ≡8 0, 2 (normal simple case): the groupoid of untwisted Pin structures.
2. When p− q ≡8 3, 7 (complex case): the groupoid of Spino structures
3. When p − q ≡8 4, 6 (quaternionic simple case): the groupoid of untwisted Pinq

structures.
4. When p− q ≡8 1 (normal non-simple case): the groupoid of Spin structures.
5. When p− q ≡8 5 (quaternionic non-simple case): the groupoid of Spinq structures.
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Proof. The equivalence between the groupoids at (a) and (b) follows from The-
orem 6.2. For any pin representation η, the vector representation of L(η) factors
through the normalization morphism π0 : L(η) � R>0 × L(η) → L(η) of Subsection
5.9. The correspondence which takes a Lipschitz structure (Q, τ) into the reduced
Lipschitz structure (Q ×π0 L(η), τ0) (where τ0([q, a0])

def.
= τ(q)Ad0(a0) for all q ∈ Q

and a0 ∈ L(η)) induces an equivalence of categories between the groupoid of real Lip-
schitz structures relative to η and the groupoid of reduced real Lipschitz structures
relative to η. This establishes the equivalence between the groupoids at points (b) and
(c). The equivalence between the groupoids at (c) and (d) follows from Theorem 5.16
and Theorem 5.24. The equivalence between the groupoids at (d) and (e) follows from
Proposition 8.1. The remaining statements follow from the definition of the canonical
spinor group Λ(V, h) and of its basic representation.

Theorem 8.2 and the results of Section 7 immediately imply:

Theorem 8.3. Let σ def.
= σp,q.

1. In the normal simple case (p− q ≡8 0, 2), the following statements are equivalent:
(a) There exists an elementary real pinor bundle on (M, g)
(b) (M, g) admits an elementary real Lipschitz structure
(c) (M, g) admits an untwisted Pin(V, h) structure
(d) (M, g) admits a twisted Pin(V,−σh) structure
(e) The following condition is satisfied:

w+
2 (M, g) + w−

2 (M, g) + wσ
1 (M, g)2 +w−

1 (M, g)w+
1 (M, g) = 0 .

2. In the complex case, the following statements are equivalent:
(a) There exists an elementary real pinor bundle on (M, g)
(b) (M, g) admits an elementary real Lipschitz structure
(c) (M, g) admits a Spino structure
(d) There exists a principal O(2,R)-bundle E over M such that the following two

conditions are satisfied:

w1(M) = w1(E)

and:

w+
2 (M, g) + w−

2 (M, g) = w2(E) + w1(E)(pw+
1 (M, g) + qw−

1 (M, g))

+

[
δα,−1 +

p(p+ 1)

2
+

q(q + 1)

2

]
w1(E)2 (8.1)

3. In the quaternionic simple case (p− q ≡8 4, 6), the following statements are equiv-
alent:
(a) There exists an elementary real pinor bundle on (M, g)
(b) (M, g) admits an elementary real Lipschitz structure
(c) (M, g) admits an untwisted Pinq structure
(d) (M,−σg) admits a twisted Pinq structure
(e) There exists a principal SO(3,R)-bundle E over M such that the following

condition is satisfied:

w+
2 (M, g) + w−

2 (M, g) + wσ
1 (M, g)2 +w−

1 (M, g)w+
1 (M, g) = w2(E) .

4. In the normal non-simple case (p−q ≡8 1), the following statements are equivalent:
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(a) There exists an elementary real pinor bundle on (M, g)
(b) (M, g) admits an elementary real Lipschitz structure
(c) (M, g) admits a Spin structure
(d) The following two conditions are satisfied:

w1(M) = 0 and w+
2 (M, g) + w−

2 (M, g) = 0 .

5. In the quaternionic non-simple case (p − q ≡8 5), the following statements are
equivalent:
(a) There exists an elementary real pinor bundle on (M, g)
(b) (M, g) admits an elementary real Lipschitz structure
(c) (M, g) admits a Spinq structure
(d) There exists a principal SO(3,R)-bundle E over M such that the following two

conditions are satisfied:

w1(M) = 0 and w+
2 (M, g) + w−

2 (M, g) = w2(E) .

Remark 8.1. Since TM = T+M ⊕ T−M , we have w2(M) = w+
2 (M, g) +

w−
2 (M, g) + w+

1 (M, g)w−
1 (M, g). This allows one to express the conditions in the

Theorem in various equivalent forms. For example, the conditions for existence of a
spin structure can also be written as w1(M) = 0 and w2(M) = w−

1 (M, g)2.

9. Some remarks on the spin geometry of M-theory. In this section, we
apply our results to a theory of physical interest, deriving a no-go result regarding
the interpretation of its spinorial fields. Eleven-dimensional supergravity is a physical
theory formulated on a connected and paracompact smooth 11-manifold M , which
involves a metric g of Lorentzian signature, a four-form field strength F and a spin 3/2
fermion called the gravitino. In the standard local formulation, the gravitino is a real
local field ψα

μ carrying a covector index μ and a spinorial index α, the latter running
from 1 to 32. The theory admits supersymmetry transformations parameterized by
a real fermionic supersymmetry generator χα. It is natural to ask how the local
formulas appearing in the construction of this theory found in the Physics literature
should be interpreted globally and what are the minimal conditions on (M, g) under
which a consistent global interpretation is possible. When approaching this question,
one has to consider the two possible choices of Lorentzian signature:
1. “Mostly plus” signature, i.e. (p, q) = (10, 1), which belongs to the normal non-

simple case p− q ≡8 1. In this case, the smallest real representations of Cl10,1 are
the two irreducible representations, which have dimension 32 and are distinguished
by the choice of signature ε ∈ {−1, 1}.

2. “Mostly minus” signature, i.e. (p, q) = (1, 10), which belongs to the complex case
with p − q ≡8 7. In this case, the smallest real representation of Cl1,10 is the
irreducible real representation, which has dimension 64. However, the smallest
real representations of the even subalgebra Clev1,10 are the two real chiral (Majorana-
Weyl) representations, both of which have dimension 32 and are distinguished by
the condition that the Clifford volume element maps to εid in the representation
space, where ε ∈ {−1, 1}.

WhenM is non-compact, Lorentzian metrics onM always exist. WhenM is compact,
it is well-known that they exist iff the Euler characteristic of M vanishes. The results
of this paper imply the following.
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Proposition 9.1. Let (M, g) be a Lorentzian manifold of dimension d = 11
and “mostly plus” signature (p, q) = (10, 1). Then (M, g) admits an elementary real
pinor bundle if and only if it admits a spin structure, i.e. if and only if w1(M) = 0
and w+

2 (M, g) = 0, which is equivalent with the conditions w1(M) = 0 and w2(M) +
w−

1 (M, g)2 = 0. In that case, S has rank 32.

Proof. We have p − q ≡8 1, which corresponds to the normal non-simple case.
Hence a reduced elementary Lipschitz structure on (M, g) is a spin structure and the
topological condition for existence of such is w1(M) = w+

2 (M, g) + w−
2 (M, g) = 0.

We have w−
2 (M, g) = w2(T−M) = 0 since q = 1 and T−M is a real line bun-

dle, hence the second condition reduces to w+
2 (M, g) = 0. We also have w2(M) =

w2(T+M)+w2(T−M)+w1(T+M)w1(T−M) = w2(T+M)+w1(T−M)2, where we used
the condition w1(T+M) + w1(T−M) = w1(TM) = 0. Hence the second topological
condition is equivalent modulo the first with the condition w2(M) + w−

1 (M, g)2 = 0.

Remark 9.1. Suppose that (M, g) is time-orientable, i.e. it admits a globally-
defined timelike vector field X. Then we can take T−M to be the real line bundle
generated by X. Hence T−M is topologically trivial and we have w−

1 (M, g) = 0. In
this case, the structure group of PO(V,h)(M, g) reduces to O(10,R) and the topological
conditions for existence of a spin structure reduce to w1(M) = 0 and w2(M) = 0.
Notice that M admits a time-orientable Lorentzian metric iff it admits an arbitrary
Lorentzian metric.

The result above implies:

Assume that eleven-dimensional supergravity is formulated on a smooth Lorentzian
eleven-manifold (M, g) of mostly plus signature. Then the supersymmetry generator
χ of the theory can be interpreted as a smooth global section of a bundle S of irreducible
real Clifford modules if and only ifM is oriented and spin. In that case, the gravitino ψ
can be interpreted as a global section of the bundle T ∗M⊗S. Up to isomorphism, there
are in fact two real pinor bundles S which can be considered in that case (assuming
that the spin structure is fixed), which are distinguished by the signature ε.

Since physics should be invariant under changing g into−g, one expects a similarly
simple interpretation in mostly minus signature when (M, g) admits a spin structure.
In order to provide an argument in favor of the equivalence between the spinor bundles
in both signatures, when M admits a spin structure, we need to further elaborate on
the theory of Spino structures and hence we defer this analysis to Reference [11].

The global interpretation of the local formulas of supergravity is affected by cover
ambiguities. This implies that one is not forced apriori to interpret χ as a global
section of a bundle S of irreducible Clifford modules. In fact, eleven-dimensional
supergravity can be defined on unoriented eleven-manifolds, as explained in references
[26] and [27]. In the approach of op. cit., one assumes a Pin structure on (M, g) and
constructs the theory using the modified Dirac operator [9], even though a bundle of
irreducible real Clifford modules does not exist on (M, g). In view of this, the results
above tell us precisely when it is possible to globally construct the theory using a
vector bundle S endowed with internal Clifford multiplication. We show that this is
possible exactly when (M, g) admits a spin structure.

We mention that the situation is considerably more involved when considering
supergravity theories in lower dimensions (coupled to matter). As we show in forth-
coming work, the results of this paper can be used to construct certain such theories
without assuming that the corresponding space-time admits a Spin or Pin structure.



830 C. I. LAZAROIU AND C. S. SHAHBAZI

10. Relation to other work. Lipschitz groups for complex Clifford represen-
tations were considered in [10, 24, 25]. As apparent from the present work, the
corresponding theory for real Clifford representations is considerably more involved.
Spinq(V, h) structures in positive signature p = d, q = 0 were introduced in [5].
However, reference [5] considers so-called “quaternionic spinor bundles”, i.e. vector
bundles associated to a Spinq(V, h) structure through a quaternionic representation
γH : Cl(V, h) → EndH(S) which is irreducible over H. Here, S is a right H-module
and the representation is through H-module endomorphisms. Any such representa-
tion is also a real representation upon viewing S as an R-vector space by restriction of
scalars, but that real representation need not be irreducible as a representation over
R (since S may admit invariant R-subspaces which are not H-submodules). In fact,
a brief look at Table 1 on page 98 of [5] shows that the H-irreducible quaternionic
Clifford representations listed there are reducible over R except for d ≡8 4, which in
our terminology corresponds to a sub-case of the quaternionic simple case. We stress
that “quaternionic spinor bundles” based on H-irreducible quaternionic Clifford rep-
resentations (as in [5]) are not directly relevant for most physical theories, where one
is interested instead in elementary pinor bundles in the sense of this paper (namely,
vector bundles whose fibers are R-irreducible real Clifford representations). Similar
remarks apply to the work of [17, 18], which extend the constructions of [5] by replac-
ing Sp(1) = Spin(3) with a higher spin group. We study Spino structures in detail in
reference [11].
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The work of C. I. L. was supported by grant IBS-R003-S1. The work of C.S.S. is
supported by the ERC Starting Grant 259133 Observable String.

Appendix A. Hyperbolic numbers. Let D be the commutative algebra of
hyperbolic (a.k.a. split complex/double) numbers. Any element z ∈ D can be written
uniquely in the form z = x+jy, where x, y ∈ R and j2 = +1. The map ϕ : D → R×R

given by:

ϕ(x+ jy) = (x+ y, x− y)

is a unital isomorphism of R-algebras which satisfies ϕ(−1) = (−1,−1), ϕ(j) = (1,−1)
and ϕ(−j) = (−1, 1). In particular, ϕ induces an isomorphism of groups D

× �
R

× × R
× and the component maps ϕ± : D → R given by ϕ±(x + jy) = x ± y are

unital morphisms of R-algebras which satisfy ϕ±(j) = ±1 and ϕ±(D×) = R
×. The

group D
× has four connected components:

D
ε1,ε2 def.

= {z ∈ D
×|sign(ϕ+(z)) = ε1 , sign(ϕ−(z)) = ε2} ,

where ε1, ε2 ∈ {−1, 1}. This gives a D4-grading of D
× which corresponds to the

grading morphism z → (sign(ϕ+(z)), sign(ϕ−(z))) ∈ G2 ×G2 � D4. We have

(−1)Dε1,ε2 = D
−ε1,−ε2 , jDε1,ε2 = D

ε1,−ε2 , (−j)Dε1,ε2 = D
−ε1,ε2

and hence D
× � D

++ × D4. Moreover, we have D
++ � R>0 × R>0 and 1 ∈ D

++,
−1 ∈ D

−−.
Recall that hyperbolic conjugation is the unital R-algebra automorphism of D

defined through:

(x+ jy)∗ = x− jy ∀x, y ∈ R
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and that the hyperbolic modulus is the surjective map M : D → R given by:

M(x) = z∗z = x2 − y2 = ϕ+(z)ϕ−(z) ∀z = x+ jy ∈ D (x, y ∈ R) .

We have M(z1z2) = M(z1)M(z2), M(1) = 1, M(j) = −1 and M(jz) = −M(z) A
hyperbolic number z = x + jy ∈ D is invertible iff M(z) �= 0. The zero divisors of D
are characterized by M(z) = 0 and correspond to the union of the lines y = ±x. The
hyperbolic modulus induces a group morphism M : D× → R

×.
The group of unit hyperbolic numbers is the subgroup of D× given by:

U(D)
def.
= {z ∈ D

×||M(z)| = 1} = {z ∈ D|ϕ+(z)ϕ−(z) ∈ {−1, 1}} =

= {x+ jy ∈ D|x2 − y2 ∈ {−1, 1}} ,

and fits into the exact sequence:

1 −→ U(D) ↪→ D
× |M|−→ R>0 −→ 1 .

This group has four connected components given by Uε1,ε2(D)
def.
= U(D) ∩ D

ε1,ε2 and
we have U(D) � U++(D)×D4. The map:

R � θ → cosh θ + j sinh θ ∈ U++(D)

gives a group isomorphism U++(D) � (R,+) � R>0. Moreover, the map:

D
× � z → (|M(z)|, z√|M(z)| ) ∈ R>0 ×U(D)

is an isomorphism of groups and U(D) is homotopy-equivalent with D
×.

Appendix B. On internal and external Clifford multiplication. In this
appendix, we give a general construction of Clifford multiplication for weakly faithful
real Clifford representations and certain types of associated vector bundles, explaining
the difference between the “internal” and “external” versions of the former.

Let γ : Cl(V, h) → End(S0) be a weakly faithful real Clifford representation,
H be a Lie group and θ, θ′ : H → AutR(S0) be linear representations of H in S0.
Let λ : H → O(V, h) be a representation of H through isometries of (V, h) and
ρ : H → GL(V ⊗ S0) � AutR(V ) ⊗ AutR(S0) denote the inner tensor product of λ
and θ:

ρ(a)
def.
= λ(a)⊗ θ(a) ∀a ∈ H .

Consider the linear map μ : V ⊗ S0 → S0 given by μ(v, ξ)
def.
= γ(v)ξ.

Proposition B.1. The map μ is a based morphism of representations from ρ to
θ′ iff the following relation holds for all a ∈ H and all v ∈ V :

γ(λ(a)v) = θ′(a) ◦ γ(v) ◦ θ(a)−1 . (B.1)

In particular, θ and θ′ determine λ (since γ is weakly faithful).

Proof. We have:

(Lμ ◦ ρ)(a)(v ⊗ ξ) = (μ ◦ ρ(a))(v ⊗ ξ) = (γ(λ(a)(v)) ◦ θ(a))ξ
(θ′ ◦Rμ)(a)(v ⊗ ξ) = (θ′(a) ◦ μ)(v ⊗ ξ) = (θ′(a) ◦ γ(v))ξ .
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Recall that μ is a based morphism of representations iff μ ◦ ρ(a) = θ′(a) ◦ μ for all
a ∈ H, i.e. iff Lμ ◦ ρ = θ′ ◦ Rμ. Using the relations above, this amounts to the
condition:

γ(λ(a)v) ◦ θ(a) = θ′(a) ◦ γ(v) ∀v ∈ V , (B.2)

which amounts to (B.1).

Relation (B.1) says that the pair of representations (θ, θ′) of H in S0 “implements”
the pseudo-orthogonal representation λ of H in V . In particular, this relation requires
θ′(a) ◦ γ(V ) ◦ θ(a)−1 ⊂ γ(V ) for all a ∈ H, which is a non-trivial condition on θ and
θ′.

Let PO(V,h) be a principal O(V, h)-bundle over a manifold M and PH be a λ-
reduction of P . Let T be the vector bundle associated to PO(V,h) through the tauto-
logical representation of O(V, g) on V and S = PH×θS0, S′ = PH×θ′ S0 be the vector
bundles associated to PH through the representations θ and θ′ on S0. Notice that
T = PH ×λ V , i.e. T is associated to PH through the representation λ. It follows that
T⊗S is associated to PH through the representation ρ = λ⊗θ. Hence when condition
(B.2) holds, the morphism of representations μ induces a morphism of vector bundles
μ∗ : T ⊗ S → S′ which is called (generalized) Clifford multiplication. The Clifford
multiplication is called internal if θ and θ′ are equivalent representations of H. In
this case, the vector bundles S and S′ are isomorphic and we can identify them, thus
obtaining a map T ⊗ S → S which induces a fiberwise Cl(T )-module structure on S.
The Clifford multiplication is called external if θ and θ′ are inequivalent representa-
tions of H. When PO(V,h) is the orthogonal coframe bundle of a pseudo-Riemannian
manifold (M, g), we can take T = TM and have μ∗ : TM ⊗ S → S′, which in the
internal case makes S into a bundle of Clifford modules over (M, g). Consider the
following applications of this construction, in those dimensions and signature where
(B.1) can be satisfied with the choices listed below:
1. γ is irreducible over R, H = Spin(V, h), θ = θ′ = γ|Spin(V,h) and λ = Ad0, the

vector representation of Spin(V, h). In this case, S is a spinor bundle associated to
the spin structure PH and μ∗ : TM ⊗S → S is the ordinary Clifford multiplication
of S.

2. γ is irreducible over R, H = Pin(V, h), θ = θ′ = γ|Pin(V,h) and λ = Ad0, the un-
twisted vector representation of Pin(V, h). Then PH is an untwisted pin structure.
We have μ∗ : TM ⊗ S → S, i.e. Clifford multiplication with a vector maps S into
itself.

3. γ is irreducible over R, H = Pin(V, h), θ = γ|Pin(V,h), θ′ = θ ◦ π|Pin(V,h) and
λ = Ãd0, where π is the parity involution of Cl(V, h) (recall that π(Pin(V, h)) =
Pin(V, h)). In this case, PH is a twisted pin structure and the bundles S and S′

are generally non-isomorphic. In this case, we obtain a generally external Clifford
multiplication μ∗ : T ∗M ⊗ S → S′.

4. H = L (the reduced Lipschitz group) and θ = θ′ coincide with the tautological
representation of L on S. Then (B.1) can always be satisfied with λ = Ad0, the
vector representation of L. In this case, PH is a Lipschitz structure while S is
the pinor bundle associated to PH . We have μ∗ : TM ⊗ S → S, i.e. the Clifford
multiplication is internal.

In the case of twisted pin structures, the usual definition of the Dirac operator gives an
operator which maps S into S′, an inconvenient feature which (in the case of complex
pinor bundles) was noticed and discussed in [7, 8, 9]. Notice that Lipschitz structures
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always lead to well-defined internal Clifford multiplication on S. In fact, Lipschitz
structures are designed to make this happen.

Appendix C. Twisted automorphisms of S-modules and S-valued pair-
ings.

C.1. Twisted morphisms of modules. Let S, S′ be unital associative R-
algebras.

Definition C.1. A twisted morphism from a left S-module A to a left S′-module
A′ is a pair (ϕ0, ϕ), where ϕ0 ∈ HomAlg(S, S

′) is a unital morphism of R-algebras and
ϕ ∈ HomR(A,A′) is an R-linear map, such that the following condition is satisfied:

ϕ(sa) = ϕ0(s)ϕ(a) ∀s ∈ S and a ∈ A .

Left modules over unital associative R-algebras and twisted morphisms form a cat-
egory denoted TwMod. This fibers over the category Alg of unital associative R-
algebras through the forgetful functor which takes a left S-module A to S and a
twisted morphism (ϕ0, ϕ) to ϕ0. The fiber over S is the usual category ModS of left S-
modules and ordinary S-module morphisms (those twisted module morphisms (ϕ0, ϕ)
for which ϕ0 = idS).

C.2. Twisted automorphisms. Let AuttwS (A) denote the group of twisted au-
tomorphisms of the left S-module A and AutS(A) denote the group of usual S-module
automorphisms. We have the following obvious result:

Proposition C.1. There exists an exact sequence of groups:

1 −→ AutS(A) ↪→ AuttwS (A)
F−→ AutAlg(S) , (C.1)

where F (ϕ0, ϕ) = ϕ0.

C.3. S-valued symmetric pairings.

Definition C.2. An S-valued symmetric pairing on the left S-module A is an
R-bilinear symmetric map p : A×A → S. The image algebra I(p) determined by p is
the subalgebra of S generated by the set p(A×A) over R.

Notice that p is uniquely determined by its diagonal quadratic form pd : A → R, which
is defined through pd(a)

def.
= p(a, a). Indeed, we have the polarization identity:

p(a1, a2) =
1

2
(pd(a1 + a2)− pd(a1)− pd(a2)) ∀a1, a2 ∈ A .

We have pd(λa) = λ2pd(a) for all λ ∈ R and a ∈ A as well as the parallelogram
identity:

pd(a1 + a2) + pd(a1 − a2) = 2 [pd(a1) + pd(a2)] (a1, a2 ∈ A) .

Definition C.3. Let p be an S-valued symmetric pairing on the left S-module
A. A twisted automorphism (ϕ0, ϕ) ∈ AuttwS (A) is called p-orthogonal if the following
condition is satisfied:

p(ϕ(a1), ϕ(a2)) = ϕ0(p(a1, a2)) ∀a1, a2 ∈ A . (C.2)
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Notice that the restriction ϕ0|I(p) is uniquely determined by ϕ. Using the polarization
identity, condition (C.2) is equivalent with:

pd(ϕ(a)) = ϕ0(pd(a)) ∀a ∈ A . (C.3)

Let AuttwS (A, p) denote the group of p-orthogonal twisted automorphisms of A and
AutS(A, p) denote the subgroup of p-orthogonal module automorphisms (those p-
orthogonal twisted automorphism with ϕ0 = idS).

Definition C.4. The twist group of p is the following subgroup of AutAlg(S):

Gp
def.
= F (AuttwS (A, p)) ⊂ AutAlg(S) .

The sequence (C.1) induces a short exact sequence:

1 −→ AutS(A, p) ↪→ AuttwS (A, p)
F−→ Gp −→ 1 . (C.4)

Any R-algebra automorphism of S restricts to a group automorphism of S×. This
gives a morphism of groups Res : AutAlg(S) → AutGp(S

×) = AutGp((S
×)op). Let

F0 :
def.
= Res ◦ F : AuttwS (A) → AutGp(S

×) denote the morphism of groups induced by
the map F of (C.1).

C.4. The case of rank one free S-modules.

Proposition C.2. Let A be a free left S-module of rank one and u be a basis
of A over S. Then AutS(A) � (S×)op, the sequence (C.1) gives a split short exact
sequence:

1 −→ (S×)op → AuttwS (A)
F−→ AutAlg(S) −→ 1 (C.5)

and there exists an isomorphism of groups:

AuttwS (A) � (S×)op �Res AutAlg(S) . (C.6)

Proof. Since A is a free rank one left S-module with basis u, we have A = Su
and any x ∈ A can be written as x = su for some uniquely-determined s. Thus
any R-linear map ϕ ∈ EndR(A) defines an element σu(ϕ) ∈ S through the relation
ϕ(u) = σu(ϕ)u. Conversely, any s ∈ S defines an R-linear operator x → sx acting in
A, which takes u into su. This gives a surjective R-linear map:

σu : EndR(A) −→ S (C.7)

which satisfies σu(idA) = 1. For (ϕ0, ϕ), (ϕ
′
0, ϕ

′) ∈ AuttwS (A), we have:

σu(ϕ ◦ ϕ′) = ϕ0(σu(ϕ
′))σu(ϕ) = σu(ϕ) ·op ϕ0(σu(ϕ

′)) , (C.8)

where ·op denotes multiplication in S
op. It is easy to see that (C.8) implies the

inclusion σu(AuttwR (A)) ⊂ S
× as well as the relation:

σu(ϕ)
−1 = ϕ0(σu(ϕ

−1)) for (ϕ0, ϕ) ∈ AuttwS (A) .

When ϕ ∈ AutS(A) is an untwisted automorphism of A (thus ϕ0 = idS), we have
ϕ(su) = sϕ(u) = sσu(ϕ)u for all s ∈ S, which shows that ϕ is uniquely-determined
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by σu(ϕ) ∈ S
×. This implies that the map σu of (C.7) restricts to a bijection between

AutS(A) and S
× while (C.8) with ϕ0 = idS shows that this bijection is an isomorphism

of groups between AutS(A) and (Sop)× = (S×)op.
Relation (C.8) also implies that the map Tu : AuttwS (A) → (S×)op�ResAutAlg(S)

given by:

Tu(ϕ0, ϕ)
def.
= (σu(ϕ), ϕ0)

is a morphism of groups. This map is bijective since, for any pair (σ, ϕ0) ∈ S
× ×

AutAlg(S), there exists a unique ϕ ∈ AutR(A) such that (ϕ0, ϕ) ∈ AuttwS (A) and
σu(ϕ) = σ, namely:

ϕ(su) = ϕ0(s)σu (s ∈ S) ;

we have T−1
u (σ, ϕ0) = (ϕ0, ϕ). Taking σ = 1 shown that the map F of (C.1) is

surjective. In view of (C.1), its kernel coincides with AutS(A), which (as show above)
is isomorphic with (S×)op.

In fact, the morphism Gu : AutAlg(S) → AuttwS (A) given by Gu(ϕ0)
def.
=

T−1
u (1, ϕ0) is a section of F :

F ◦Gu = idAutAlg(S)

and hence splits the sequence (C.5). The semidirect product presentation (C.6) is the
one induced by the splitting morphism Gu.

For the following, we fix a basis u ∈ A. Identifying A with S through the isomorphism
S � s → su ∈ A, an S-valued R-bilinear symmetric form p on A corresponds to an
S-valued R-bilinear symmetric form:

pu : S× S → S (C.9)

on S, namely:

pu(s1, s2)
def.
= p(s1u, s2u) .

Using relation (C.6), a twisted p-orthogonal automorphism (ϕ0, ϕ) ∈ AuttwS (A, p)

corresponds to a pair (σu, ϕ0)
def.
= (σu(ϕ), ϕ0) ∈ S

× ×AutAlg(S) which satisfies:

pu(ϕ0(s1)σu, ϕ0(s2)σu) = ϕ0(pu(s1, s2)) ∀s1, s2 ∈ S . (C.10)

Accordingly, the group AuttwS (A, p) identifies with the subgroup of (S×)op�AutAlg(S)
consisting of all such pairs. Obviously, this is a subgroup of (S×)op ×Gp.
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