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AUTOMORPHISM GROUPS OF SMOOTH QUINTIC THREEFOLDS∗

KEIJI OGUISO† AND XUN YU‡

Dedicated to Professor Shigeru Mukai on the occasion of his sixtieth birthday

Abstract. We study automorphism groups of smooth quintic threefolds. Especially, we describe
all the maximal ones with explicit examples of target quintic threefolds. There are exactly 22 such
groups.
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1. Introduction. Throughout this paper, we work over the complex number
field C.

The aim of this paper, is to study the automorphism group Aut (X) of a smooth
quintic threefold X, a most basic example of Calabi-Yau threefolds. Our main results
are Theorems 2.2 and 10.4. It turns out that there are exactly 22 maximal groups
which act faithfully on some smooth quintic threefolds. This answers a question raised
by [LOP13].

From now, we just call a smooth quintic threefold, simplly a QCY3 (quintic
Calbai-Yau threefold).

Let X be a QCY3 defined by a homogeneous polynomial F of degree 5.
By a result of Matsumura-Monsky ([MM63]),

Aut (X) = {ϕ ∈ PGL(5,C)|ϕ(X) = X} ,

Aut (X) is always a finite group, and two QCY3s are isomorphic if and only if they are
projective linearly isomorphic, i.e., by a suitable change of homogeneous coordinates,
the defining equations are the same. Moreover, Bir (X) = Aut (X) asX is a projective
minimal model of Picard number one ([Ka08]). So, the classification of all possible
groups of birational automorphisms of QCY3 is equivalent to the following projective
linear algebra problem in the classical invariant theory:

Find all finite subgroups G ⊂ PGL(5,C) such that there is a homogeneous poly-
nomial F of degree 5, which is smooth, such that for each g ∈ G there is A ∈ GL(5,C)
such that [A] = g, i.e., A a representative of g, and A(F ) = F .

This is in principle possible but practically hard in general, which we first explain.
As usual in the finite group theory, we proceed our classification of G in the following
three steps:

(i) determine all possible prime orders of elements of Aut (X) of some QCY3 X
(Section 5). It turns out that they are 2, 3, 5, 13, 17, 41;

(ii) determine all possible Sylow p-subgroups of Aut (X) of some QCY3 X (Sec-
tions 5, 6, 7);
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(iii) determine all possible “combinations” of Sylow p-subgroups which result in
Aut (X) for some QCY3 X (Sections 5, 6, 7, 8).

In each step:

(I) the existence of smooth F is essential. In fact, many groups are excluded by
showing that they can act only on singular quintic threefolds. For this, we will give
some useful criterions for (non-)smoothness of hypersurfaces (Lemma 3.2, Proposition
3.4) in Section 3. We also mildly use Mathematica to check smoothness.

If there is a subgroup G̃ ⊂ GL(5,C) such that G̃ � G under A �→ [A], such that
A(F ) = F for all A ∈ G̃, we call G F -liftable. The problem is further reduced to a
linear algebraic problem of the classical invariant theory for F -liftable G.

The other involving issues are group theorectical ones (II), (III):

(II) the fact that in general G are not F -liftable when 5|G .

In our case, with a help of Schur multiplier theory (see Section 4), we find that
there are only very few groups which are not F -liftable.

(III) The numbers of groups whose orders are the product of powers of smaller
primes are too huge to control just by hand.

As in Mukai’s ([Mu88]) classification of finite symplectic action on K3 surfaces,
(III) is a combersome problem. In his case, it arises for groups of order 2a3b, especially
the cases 2n, which is overcome with a help of classifications of 2-groups of order ≤ 26

in his paper. In our case, problems arise for order 2a3b5c. We treat them by using
now a quite useful tool, GAP software. GAP shows all possible linear representation
and subgroups etc. in the range of order ≤ 2000 (except 1024). With its help, we
control the cases where ≤ 2000 and then larger orders cases are reduced to these cases
in PC free way.

On the other hand, the case where G has a larger prime order element, Theorem
of Brauer (see Theorem 5.11) is quite effective to determine possible G in our case.
We also note that this is used in [Ad78] to show the simplicity of the automorphism
group of the Klein cubic threefold. In our case, we use it to determine G of which
order is divisible by larger primes, say, 13, 17 or 41. It is also worth noticing that
the full automorphism group is never cyclic of prime orders in these cases, i.e., there
is no QCY3 X such that Aut (X) � C13, C17 or C41 (Theorem 5.15, Theorem 5.13,
Theorem 5.14), while there are QCY3 whose automorphism group is isomorphic to
{e}, C2, C3 and C5 (see Remark 3.11).

Throughout this paper, we use so-called the differential method (Theorem 3.5,
Theorem 3.8) to compute full automorphism group Aut(X) when F is “special”.

We believe that our methods to determine G can be applied to classify auto-
morphism groups of smooth hypersurfaces of other types, especially automorphism
groups of smooth cubic threefolds (cf. [Ad78]) and those of smooth cubic fourfolds (cf.
[GL11]), the later of which may also be applicable to study interesting automorphisms

of hyperkaehler fourfolds of (K3)
[2]

type ([BCS14]).

To close Introduction, we remark some possible applications and motivations.

From a group theoretical point, it is particularly interested in the solvability
of the groups and what kind of non-commutative simple groups are realized as an
automorphism subgroup of QCY3. Our project actually started by motivating a
discovery of simple non-commutative groups acting on QCY3. It turns out that there
is only one non-commutative simple group A5, the simple non-commutative group of
the smallest order, and that all automorphism subgroups are solvable unless they do
contain A5 as a subgroup. In fact, there are exactly 8 non-solvable ones: A5, S5,
A5 × C5, S5 × C5, C

3
5 �A5, C

3
5 � S5, C

4
5 �A5, C

4
5 � S5.
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In the topological mirror symmetry of Calabi-Yau threefolds, finite Gorenstein
automorphisms played important roles in constructing mirror families ([CDP93],
[BD96]). For example, a natural mirror family of quintic Calabi-Yau threefolds is
given by a crepant resolution Yλ of the Gorenstein quotient of

Xλ = (x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − 5λx1x2x3x4x5 = 0)

by μ3
5 � μ4

5/μ5. The manifolds Yλ (λ5 �= 1) are smooth Calabi-Yau threefolds of

h1,1(Yλ) = 101 = h1,2(Xλ) , h1,2(Yλ) = 1 = h1,1(Xλ) .

Now Yλ is also understood by the derived McKay correspondece developed by [BKR01]
and also computation of these Hodge numbrs are given by the classical McKay cor-
respondeces due to [IR96], [BD96]. It will be also interesting to see what kind of
manifolds appear as the non-Gorenstein quotients.

In this paper, we will not touch these interesting questions. However, we hope
that our classification with explicit equations of target QCYs will provide handy
useful global test examples for further study in birational geometry of threefolds such
as McKay correspondence problems mentioned above or its possible generalizations
for non-Gorenstein quotient.

Notations and conventions. We use the following notations to describe groups.
In this paper, if A ∈ GL(n,C), then we use [A] denote the corresponding element

in PGL(n,C).
In := the identity matrix of rank n;
ξk := e

2πi
k a k-th primitive root of unity, where k is a positive integer;

If A ∈ GL(n,C) and α1, ..., αn are eigenvalues (considering multiplicities) of A,
then we use χA(t) = (t−α1) · · · (t−αn) to denote the characteristic polynomial of A.
If B1, ..., Bk are square matrices, then we use diag(B1, ..., Bk) to denote the obvious
block diagonal matrix.

We use π : GL(n,C) −→ PGL(n,C) to denote the natural quotient map.
Let G be a finite group and p be a prime. If no confusion causes, we use Gp to

denote a Sylow p-subgroup of G.
The following is the list of symbols of finite groups used in this article:
Cn: a cyclic group of order n,
D2n: a dihedral group of order 2n,
Sn(An): a symmetric (alternative) group of degree n,
Q8: a quaternion group of order 8.

2. Examples of group actions and main Theorem. Let us begin with ex-
plicit examples (1)-(22). It turns out that the 22 groups essentially classify the all
automorphism groups of smooth quintic 3-folds (see Theorem 2.2 for a precise state-
ment).

Example 2.1. (1) Fermat quintic threefold X: F = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0.

Let G be the subgroup of PGL(5,C) generated by the following seven matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠
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A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 ξ5 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A5 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ5 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A6 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ5 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A7 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G is isomorphic to C4
5 � S5 and |G| = 23 · 3 · 55 = 75000.

(2) Let X : F = x4
1x2 + x5

2 + x5
3 + x5

4 + x5
5 = 0 and let G be the subgroup of

PGL(5,C) generated by the following six matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ4 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ5 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A5 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ5 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A6 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C4 × (C3
5 � S3), and |G| = 23 · 3 · 53 = 3000.

(3) Let X : F = x4
1x2 + x5

2 + x4
3x4 + x5

4 + x5
5 = 0, and let G be the subgroup of

PGL(5,C) generated by the following five matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ4 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ4 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
ξ5 0 0 0 0
0 ξ5 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ5 0 0
0 0 0 ξ5 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A5 =

⎛
⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G is isomorphic to (C2
5 × C2

4 )� C2 and |G| = 25 · 52 = 800.

(4) Let X : F = x4
1x2 + x4

2x3 + x5
3 + x5

4 + x5
5 = 0 and let G be the subgroup of
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PGL(5,C) generated by the following four matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ16 0 0 0 0
0 ξ−4

16 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ5 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C16 × (C2
5 � C2) and |G| = 25 · 52 = 800.

(5) Let X : F = x4
1x2 + x4

2x1 + x5
3 + x5

4 + x5
5 = 0 and let G be the subgroup of

PGL(5,C) generated by the following seven matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ5 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ5 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A5 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠A6 =

⎛
⎜⎜⎜⎜⎝
ξ3 0 0 0 0
0 ξ23 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A7 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= S3 × (C3
5 � S3) and |G| = 22 · 32 · 53 = 4500.

(6) Let X : F = x4
1x2 + x4

2x3 + x5
3 + x4

4x5 + x5
5 = 0, and let G be the subgroup of

PGL(5,C) generated by the following three matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ16 0 0 0 0
0 ξ−4

16 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ4 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A6 =

⎛
⎜⎜⎜⎜⎝
ξ5 0 0 0 0
0 ξ5 0 0 0
0 0 ξ5 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C5 × C16 × C4 and |G| = 26 · 5 = 320.

(7) Let X : F = x4
1x2 + x4

2x3 + x4
3x4 + x5

4 + x5
5 = 0, and let G be the subgroup of
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PGL(5,C) generated by the following two matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ64 0 0 0 0
0 ξ−4

64 0 0 0
0 0 ξ1664 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C64 × C5 and |G| = 26 · 5 = 320.

(8) Let X : F = x4
1x2 + x5

2 + x4
3x4 + x4

4x3 + x5
5 = 0, and let G be the subgroup of

PGL(5,C) generated by the following five matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ4 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
ξ5 0 0 0 0
0 ξ5 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ3 0 0
0 0 0 ξ23 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A5 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C2
5 × C4 × S3 and |G| = 23 · 3 · 52 = 600.

(9) Let X : F = x4
1x2 + x4

2x3 + x4
3x1 + x5

4 + x5
5 = 0, and let G be the subgroup of

PGL(5,C) generated by the following five matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
ξ13 0 0 0 0
0 ξ−4

13 0 0 0
0 0 ξ313 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ5 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A5 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= (C2
5 � C2)× (C13 � C3) and |G| = 2 · 3 · 52 · 13 = 1950.

(10) Let X : F = x4
1x2 +x4

2x3 +x5
3 +x4

4x5 +x4
5x4 = 0, and let G be the subgroup
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of PGL(5,C) generated by the following four matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ16 0 0 0 0
0 ξ−4

16 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ3 0
0 0 0 0 ξ23

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ5 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C16 × (C5 × S3) and |G| = 25 · 3 · 5 = 480.

(11) Let X : F = x4
1x2 + x4

2x3 + x4
3x4 + x4

4x5 + x5
5 = 0 and let G be the subgroup

of PGL(5,C) generated by the following matrix:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ256 0 0 0 0
0 ξ−4

256 0 0 0
0 0 ξ16256 0 0
0 0 0 ξ−64

256 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C256 and |G| = 28 = 256.

(12) Let X : F = x4
1x2 +x5

2 +x4
3x4 +x4

4x5 +x4
5x3 = 0, and let G be the subgroup

of PGL(5,C) generated by the following four matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ4 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
ξ5 0 0 0 0
0 ξ5 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ13 0 0
0 0 0 ξ−4

13 0
0 0 0 0 ξ313

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C4 × C5 × (C13 � C3) and |G| = 22 · 3 · 5 · 13 = 780.

(13) Let X : F = x4
1x2 +x4

2x3 +x4
3x4 +x4

4x1 +x5
5 = 0, and let G be the subgroup

of PGL(5,C) generated by the following four matrices:

A1 =

⎛
⎜⎜⎜⎜⎝

ξ17 0 0 0 0
0 ξ−4

17 0 0 0
0 0 ξ1617 0 0
0 0 0 ξ417 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎜⎝

ξ3 0 0 0 0
0 ξ23 0 0 0
0 0 ξ3 0 0
0 0 0 ξ23 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠
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Then G acts on X, G ∼= C5 × (C51 � C4) and |G| = 22 · 3 · 5 · 17 = 1020.

(14) Let X : F = x4
1x2 + x4

2x1 + x4
3x4 + x4

4x3 + x5
5 = 0 and let G be the subgroup

of PGL(5,C) generated by the following seven matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ3 0 0 0 0
0 ξ23 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
ξ5 0 0 0 0
0 ξ5 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ3 0 0
0 0 0 ξ23 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ5 0 0
0 0 0 ξ5 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A5 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A6 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A7 =

⎛
⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= (C2
5 × C2

3 )�D8 and |G| = 23 · 32 · 52 = 1800.

(15) Klein quintic threefold X : F = x4
1x2 + x4

2x3 + x4
3x4 + x4

4x5 + x4
5x1 = 0 and

let G be the subgroup of PGL(5,C) generated by the following three matrices:

A1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 ξ5 0 0 0
0 0 ξ25 0 0
0 0 0 ξ35 0
0 0 0 0 ξ45

⎞
⎟⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎜⎝

ξ41 0 0 0 0
0 ξ−4

41 0 0 0
0 0 ξ1641 0 0
0 0 0 ξ1841 0
0 0 0 0 ξ1041

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C205 � C5 and |G| = 52 · 41 = 1025.

(16) Let X : F = x4
1x2+x4

2x3+x4
3x1+x4

4x5+x4
5x4 = 0 and let G be the subgroup

of PGL(5,C) generated by the following five matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ13 0 0 0 0
0 ξ−4

13 0 0 0
0 0 ξ313 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ3 0
0 0 0 0 ξ23

⎞
⎟⎟⎟⎟⎠A5 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 ξ5 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C5 × S3 × (C13 � C3) and |G| = 2 · 32 · 5 · 13 = 1170.

(17) Let X : F = ((x4
1+x4

2)+(2+4ξ23)x
2
1x

2
2)x3+(−(x4

1+x4
2)+(2+4ξ23)x

2
1x

2
2)x4+

x4
3x4 + x4

4x3 + x5
5 = 0 and let G be the subgroup of PGL(5,C) generated by the
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following five matrices:

A1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎜⎝

ξ38 0 0 0 0
0 ξ8 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎜⎝

− 1√
2
ξ8

1√
2
ξ8 0 0 0

1√
2
ξ38

1√
2
ξ38 0 0 0

0 0 ξ3 0 0
0 0 0 ξ23 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A5 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C5 × ((SL(2, 3).C2)� C2) and |G| = 25 · 3 · 5 = 480.

(18) Let X : F = ((x4
1 + x4

2)+ (2+ 4ξ23)x
2
1x

2
2)x3 +((x4

1 + x4
2)− (2+ 4ξ23)x

2
1x

2
2)x4 +

x4
3x4 + x4

4x3 + x2
3x

2
4x5 + x5

5 = 0 and let G be the subgroup of PGL(5,C) generated by
the following four matrices:

A1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
−ξ4 0 0 0 0
0 ξ4 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎜⎝
− 1√

2
ξ8

1√
2
ξ8 0 0 0

1√
2
ξ38

1√
2
ξ38 0 0 0

0 0 ξ3 0 0
0 0 0 ξ23 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A4 =

⎛
⎜⎜⎜⎜⎝
ξ4 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= SL(2, 3)� C4 and |G| = 25 · 3 = 96.

(19) Let X : F = x4
1x2 + x4

2x1 + x4
3x2 + x4

4x1 + x5
5 + x3

2x3x4 − x3
1x3x4 = 0 and let

G be the subgroup of PGL(5,C) generated by the following four matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
ξ3 0 0 0 0
0 ξ23 0 0 0
0 0 ξ3 0 0
0 0 0 ξ23 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ4 0 0
0 0 0 ξ34 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C5 × (C3 �Q8) and |G| = 23 · 3 · 5 = 120.

(20) Let X : F = x4
1x2 + x4

2x1 + x4
3x2 + x4

4x1 + x5
5 + x3

1x3x4 + x3
2x3x4 = 0 and let
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G be the subgroup of PGL(5,C) generated by the following four matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
ξ3 0 0 0 0
0 ξ23 0 0 0
0 0 ξ3 0 0
0 0 0 ξ23 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠A3 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 ξ4 0 0
0 0 0 ξ34 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C5 ×D24 and |G| = 23 · 3 · 5 = 120.

(21) Let X : {x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + x5

6 = x1 + x2 + x3 + x4 + x5 = 0} ⊆ P
5

and let G be the subgroup of PGL(6,C) generated by the following four matrices:

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

A4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 ξ5

⎞
⎟⎟⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C5 × S5 and |G| = 23 · 3 · 52 = 600.

(22) Let X : F = x4
1x2 + x4

2x3 + x4
3x4 + x5

4 + x4
5x3 + x2

2x4x
2
5 = 0, and let G be the

subgroup of PGL(5,C) generated by the following two matrices:

A1 =

⎛
⎜⎜⎜⎜⎝
ξ32 0 0 0 0
0 ξ−4

32 0 0 0
0 0 ξ1632 0 0
0 0 0 1 0
0 0 0 0 ξ432

⎞
⎟⎟⎟⎟⎠A2 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠

Then G acts on X, G ∼= C32 × C2 and |G| = 26 = 64.

Our main theorem is the following (cf. [Mu88]):

Theorem 2.2. For a finite group G, the following two conditions are equivalent
to each other:

(i) G is isomorphic to a subgroup of one of the 22 groups above, and

(ii) G has a faithful action on a smooth quintic threefold.
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We will prove Theorem 2.2 in Section 9.

Remark 2.3. Let Y be a smooth quintic threefold. Let Xi be the smooth
quintic threefold in Example (i) above, 1 ≤ i ≤ 22. It turns out that if i ≤ 17, then
Aut(Y ) ∼= Aut(Xi) if and only if, up to change of coordinates, Y and Xi are the same.

This remark is a byproduct of our proof of Theorem 2.2.

3. Smoothness of hypersurfaces and the differential method.

Definition 3.1. Let F = F (x1, ..., xn) be a homogeneous polynomial of degree
d > 0 and let m = m(x1, ..., xn) be a monomial of degree d. Then we say m is in F
(or m ∈ F ) if the coefficient of m is not zero in the expression of F .

Lemma 3.2. Let Fd = Fd(x1, ..., xn+1) be a nonzero homogeneous polynomial of
degree d ≥ 3 and let M := {Fd = 0} ⊆ P

n. Let a and b be two nonnegative integers,
and 2a+b ≤ n. The hypersurface M is not smooth if there exist a+b distinct variables
xi1 , . . . , xia+b

such that Fd ∈ (xi1 , . . . , xia) + (xia+1
, . . . , xia+b

)2, where (xk1
, · · · , xkm

)
means the ideal of C[x1, ..., xn+1] generated by xk1 , · · · , xkm .

Proof. Without loss of generality, we may assume that ij = j for 1 ≤ j ≤ a+b. So
Fd can be written as Fd = x1G1 + . . .+ xaGa +H for some Gi ∈ C[x1, ..., xn+1], H ∈
(xa+1, . . . , xa+b)

2.
We take the partial derivatives of Fd:
∂Fd

∂x1
= G1 + x1

∂G1

∂x1
+ x2

∂G2

∂x1
+ . . .+ xa

∂Ga

∂x1
+ ∂H

∂x1
;

...
∂Fd

∂xa
= x1

∂G1

∂xa
+ x2

∂G2

∂xa
+ . . .+Ga + xa

∂Ga

∂xa
+ ∂H

∂xa
;

∂Fd

∂xa+1
= x1

∂G1

∂xa+1
+ x2

∂G2

∂xa+1
+ . . .+ xa

∂Ga

∂xa+1
+ ∂H

∂xa+1
;

...
∂Fd

∂xn+1
= x1

∂G1

∂xn+1
+ x2

∂G2

∂xn+1
+ . . .+ xa

∂Ga

∂xn+1
+ ∂H

∂xn+1
.

Define Z := {x1 = · · · = xa+b = G1 = · · · = Ga = 0} ⊆ P
n. Z �= ∅ since

2a+ b ≤ n.
Then ∂Fd

∂x1
= · · · = ∂Fd

∂xn+1
= 0 at Z and hence M is singular at Z.

Proposition 3.3. Let M = {Fd = 0} ⊆ P
n be a smooth hypersurface of degree

d ≥ 3. Then for i such that 1 ≤ i ≤ n+ 1, xd−1
i xj ∈ Fd for some j = j(i).

Proof. We may assume i = 1. If otherwise, Fd ∈ (x2, · · · , xn+1)
2. Then by

Lemma 3.2 with a = 0, b = n, M is singular, a contradiction to smoothness of M .

Proposition 3.4. Let M be a hypersurface in P
4 defined by a nonzero homo-

geneous polynomial F5 of degree 5. Then M is singular if one of the following three
conditions is true:

(1) There exists 1 ≤ i ≤ 5, such that for all 1 ≤ j ≤ 5, x4
ixj /∈ F5;

(2) There exists 1 ≤ p, q ≤ 5, p �= q, such that F5 ∈ (xp, xq);
(3) There exist three distinct variables xi, xj , xk, such that F5 ∈ (xi) + (xj , xk)

2.

Proof. We check case by case:
(1) We may assume i = 1. Then for all 1 ≤ j ≤ 5, x4

1xj /∈ F5. Then M is singular
by Proposition above.

(2) We may assume Fd ∈ (x1, x2). Then by Lemma 3.2 with a = 2, b = 0, M is
singular.
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(3) We may assume Fd ∈ (x1) + (x2, x3)
2. Then by Lemma 3.2 with a = 1, b = 2,

M is singular.

Let F = F (x1, x2, ..., xn) be a nonzero homogeneous polynomial. In general, it
is an interesting but difficult problem to determine all the projective linear automor-
phisms of the hypersurface {F = 0} ⊂ P

(n−1). The differential method which we
shall introduce below is a powerful general method especially when F has a very few
monomials like Fermat.

Let F = F (x1, x2, ..., xn) be a homogeneous polynomial of degree d ≥ 1 in terms of
variables x1, ..., xn, and G = G(y1, y2, ..., yn) be a homogeneous polynomial of degree
d in terms of variables y1, ..., yn.

For 1 ≤ i ≤ d, we have the natural i-th order differential map naturally defined
by F :

DF
i : Di(x1, ..., xn) → C[x1, ..., xn] ,

where Di(x1, ..., xn) is the vector space of i-th order differential operators. For exam-

ple, DF
1 (

∂
∂xj

) = ∂F
∂xj

, DF
2 (

∂2

∂xi∂xj
) = ∂2F

∂xi∂xj
, and so on. Obviously, DF

i is a C-linear

map, and we denote the dimension of the image space of DF
i as rank(DF

i ).
The next Theorem, which we call the differential method, is quite effective.

Theorem 3.5. If F (x1, ..., xn) = G(y1, ..., yn) under an invertible linear change
of coordinates, in other words, there exists an invertible matrix L = (lij)1≤i,j≤n, such

that F (x1, ..., xn) = G(

n∑
i=1

l1ixi, ...,

n∑
i=1

lnixi), then rank(DF
i ) = rank(DG

i ), for all

1 ≤ i ≤ d.

Remark 3.6. For example, if F (x1, x2) = x2
1 + 2x1x2 + x2

2, G(y1, y2) = y21 , then
the image space of DF

1 spanned by 2x1 + 2x2, and the image space of DG
1 is spanned

by 2y1. So rank(DF
1 ) = rank(DG

1 ). This equality also follows from Theorem 3.5,
because F (x1, x2) = G(x1 + x2, x2). Theorem 3.5 is inspired by [Po05].

Proof. The result simply follows from the linearality of the change of coordinates
and the chain rule. To convince the readers, we shall give a detailed proof for i = 1.
Consider the following diagram,

D1(x1, ..., xn)

p

��

DF
1 �� C[x1, ..., xn]

D1(y1, ..., yn)
DG

1 �� C[y1, ..., yn] ,

q

��

where the map p is given by chain rule, more explicitly,

p(
∂

∂xi
) =

n∑
j=1

lji
∂

∂yj
,

and the map q is induced by the linear change of coordinantes, more explicitly, if
H = H(yi, ..., yn) is a polynomial in terms of y1, ..., yn, then

q(H) = H(
n∑

i=1

l1ixi, ...,

n∑
i=1

lnixi) .



AUTOMORPHISM GROUPS OF SMOOTH QUINTIC THREEFOLDS 213

This diagram commutes by definition and the chain rule. As both p and q are iso-
morphisms, it follows that rank(DF

1 ) = rank(DG
1 ).

Definition 3.7. Let A ∈ GL(n,C). We say A is semi-permutation if A is
a diagonal matrix up to permutation of columns, or equivalently, A has exactly n
nonzero entries. In literatures, such an A is also called a generalized permutation
matrix and a monomial matrix.

Theorem 3.8. Suppose X is one of the Examples (1)-(16) in Example 2.1. Then
the group G in the same example is the full automorphism group Aut(X) of X.

Proof. By easy computation G is the subgroup of Aut(X) generated by semi-
permutation matrices preserving X. So in order to prove the theorem we are reduced
to show that the full automorphism group Aut(X) is generated by semi-permutation
matrices.

We give a full proof when X is the Example (15) (Klein quintic threefold). If X
is one of the other 15 examples, then by similar arguments (the differential method)
as below we can also show that the full automorphism group Aut(X) is generated by
semi-permutation matrices.

Suppose L = (lij) ∈ GL(5,C) induces an automorphism of X. Denote change of

coordinates: yi =

5∑
j=1

lijxj , for 1 ≤ i ≤ 5. Then we may assume

x4
1x2 + x4

2x3 + x4
3x4 + x4

4x5 + x4
5x1 = y41y2 + y42y3 + y43y4 + y44y5 + y45y1. (3.1)

Then apply the operator ∂
∂x1

to both sides of the identity (3.1), we get

(4x3
1x2 + x4

5) = (4y31y2 + y45)l11 + (4y32y3 + y41)l21 + (4y33y4 + y42)l31

+ (4y34y5 + y43)l41 + (4y35y1 + y44)l51.
(3.2)

Let us denote the polynomial on the right hand side of the identity (3.2) as
h = h(y1, y2, y3, y4, y5).

Notice that rank(D
4x3

1x2+x4
5

1 ) = 3. We expect rank(Dh
1 ) is also equal to 3.

Lemma 3.9. rank(Dh
1 ) = 3 if and only if exactly one of the complex numbers

l11, l21, l31, l41, l51 is not equal to zero.

Proof. “If ” part is trivial. We only need to show “only if” part.

Suppose rank(Dh
1 ) = 3. Then, at least one of li1 is not equal to zero. Without

loss of generality, we may assume l11 �= 0. Let us compute ∂h
∂yi

(see Table 1):

∂h
∂y1

= 12l11y
2
1y2 + 4l21y

3
1 + 4l51y

3
5 ,

∂h
∂y2

= 4l11y
3
1 + 12l21y

2
2y3 + 4l31y

3
2 ,

∂h
∂y3

= 4l21y
3
2 + 12l31y

2
3y4 + 4l41y

3
3 ,

∂h
∂y4

= 4l31y
3
3 + 12l41y

2
4y5 + 4l51y

3
4 ,

∂h
∂y5

= 4l11y
3
5 + 4l41y

3
4 + 12l51y

2
5y1.
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Table 1: Matrix form of the coefficients of the partial derivatives

y21y2 y31 y35 y22y3 y32 y23y4 y33 y24y5 y34 y25y1
∂h
∂y1

12l11 4l21 4l51
∂h
∂y2

4l11 12l21 4l31
∂h
∂y3

4l21 12l31 4l41
∂h
∂y4

4l31 12l41 4l51
∂h
∂y5

4l11 4l41 12l51

As ∂h
∂y1

, ∂h
∂y2

, ∂h
∂y5

are linearly independent, rank(Dh
1 ) ≥ 3. It is not hard to see

that if one of l21, l31, l41, l51 is not also equal to zero, then rank(Dh
1 ) ≥ 4. Therefore,

l21, l31, l41, l51 are all zero.

By symmetry and Lemma 3.9, it is clear that each column of the matrix L has ex-
actly one nonzero entry. Since L is invertible, Lmust be semi-permutation. Therefore,
the full automorphism group Aut(X) is generated by semi-permutation matrices.

Remark 3.10. Notice that the efficiency of the differential method depends
on the dimension and the degree of the hypersurface in question. For example, let
X : x2

1x2 + x2
2x3 + x2

3x4 + x2
4x5 + x2

5x1 = 0 be the Klein cubic threefold in P
4.

Then, Aut(X) is not generated by semi-permutation matrices by the main result of
[Ad78] based on Klein’s work. However, it turns out that for quintic threefolds, our
differential method is quite useful.

Remarks 3.11. Using the differential method, we can give explicit examples of
smooth quintic threefolds such that the defining equations are of simple forms but
the full automorphism groups are very small. We believe that these examples are of
their interest.

a) If X := {x5
1 + x4

2x1 + x4
3x2 + x4

4x3 + x4
5x4 + x5

5 = 0} then Aut(X) is trivial (cf.
[Po05, Table 1]).

b) If X := {x4
1x2 + x4

2x3 + x4
3x4 + x4

4x5 + x5
5 + x2

1x
3
5 = 0} then Aut(X) ∼= C2 and

[A] ∈ Aut(X), where A = diag(−1, 1, 1, 1, 1)

c) If X := {x4
1x2 + x4

2x1 + x5
3 + x4

4x3 + x4
5x4 + x3

1x4x5 = 0} then Aut(X) ∼= C3

and [A] ∈ Aut(X), where A := diag(ξ3, ξ
2
3 , 1, 1, 1).

d) If X := {x5
1 + x4

2x1 + x4
3x2 + x4

4x3 + x5
4 + x5

5 = 0} then Aut(X) ∼= C5 and
[A] ∈ Aut(X), where A := diag(1, 1, 1, 1, ξ5).

However, there do not exist smooth quintic threefolds whose full automorphism
group Aut(X) are Cp if p is a prime larger than 5 (see Theorem 5.13, Theorem 5.14,
and Theorem 5.15).

4. Schur multiplier and liftablility of group actions. Let G be a finite
group. The Schur multiplier is by definition the second cohomology group H2(G,C∗).
We denote it by M(G).

Theorem 4.1 (Hochschild-Serre exact sequence) (See, for example, [Su82, Chap-
ter 2, (7.29)]). Let H be a central subgroup of G. Consider the natural exact sequence:

1 −→ H −→ G −→ G/H −→ 1 .
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Then the induced sequence

1 → Hom(G/H,C∗) → Hom(G,C∗) → Hom(H,C∗) → M(G/H) → M(G)

is exact.

Theorem 4.2 (See, for example, [Su82, Chapter 2, Corollary 3 to Theorem 7.26]).
Let p be a prime number. Let P be a Sylow p-subgroup of G. Then the restriction
map M(G) −→ M(P ) induces an injective homomorphism M(G)p −→ M(P ).

Notation 4.3. Let A = (aij) ∈ GL(n,C), and let F ∈ C[x1, ..., xn] be a homo-
geneous polynomial of degree d. We denote by A(F ) the homogeneous polynomial

F (
n∑

i=1

a1ixi, · · · ,
n∑

i=1

anixi) .

Definition 4.4. (1) We say F is A-invariant if A(F ) = F . In this case, we also
say A leaves F invariant, or F is invariant by A. We say F is A-semi-invariant if
A(F ) = λF, for some λ ∈ C

∗.
For example, let A = diag(1, ξ5, ξ

2
5 , ξ

3
5 , ξ

4
5) and F = x4

1x2 + x4
2x3 + x4

3x4 + x4
4x5 +

x4
5x1, then A(F ) = ξ5F , so F is A-semi-invariant but not A-invariant.

(2) Let G be a finite subgroup of PGL(n,C). We say F is G-invariant if for all
g ∈ G, there exists Ag ∈ GL(n,C) such that g = [Ag] and Ag(F ) = F .

For example, let X be a smooth quintic threefold defined by F and G is a finite
subgroup of PGL(5,C). Then F is G-invariant if and only if G is a subgroup of
Aut(X).

(3) Let G be a finite subgroup of PGL(n,C). We say a subgroup G̃ < GL(n,C)

is a lifting of G if G̃ and G are isomorphic via the natural projection π : GL(n,C) →
PGL(n,C). We call G liftable if G admits a lifting.

Remark 4.5. Subgroups of PGL(n,C) do not necessarily admit liftings to
GL(n,C).

For example consider the dihedral group D8 := 〈a, b|a4 = b2 = 1, b−1ab = a−1〉.
Then the map

ρ(a) =

(
ξ8 0
0 ξ−1

8

)
, ρ(b) =

(
0 ξ4
ξ4 0

)

defines a projective representation ρ : D8 −→ PGL(2,C). However, this is not induced
by any linear representation D8 −→ GL(2,C), that is, this D8 does not admit a lifting
(see e.g.[Og05]).

Definition 4.6. (1) Let G be a finite subgroup of PGL(n,C) and F ∈
C[x1, ..., xn] be a homogeneous polynomial of degree d. We say G is F -liftable if
the following two conditions are satisfied:

1) G admits a lifting G̃ < GL(n,C); and

2) A(F ) = F , for all A in G̃.

In this case, we say G̃ is an F -lifting of G.
We say G is F -semi-liftable if 2) is replaced by the following:
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2)′ for all A in G̃, A(F ) = λAF , for some λA ∈ C
∗ (depending on A).

(2) Let h be an element in PGL(n,C) of finite order. As a special case, we say
H ∈ GL(n,C) is an F -lifting of h if π(H) = h and the group 〈H〉 is an F -lifting of
the group 〈h〉.

Example 4.7. a) Let F = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 and let G be the sub-

group of PGL(5,C) generated by [A1] and [A2], where A1 = diag(ξ5, 1, 1, 1, 1), A2 =
diag(1, ξ5, 1, 1, 1). Then, clearly, G ∼= C2

5 and G is F -liftable.
b) Let F = x4

1x2 + x4
2x3 + x4

3x4 + x4
4x5 + x4

5x1 and let G be the subgroup of
PGL(5,C) generated by [A1] and [A2], where

A1 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 ξ5 0 0 0
0 0 ξ25 0 0
0 0 0 ξ35 0
0 0 0 0 ξ45

⎞
⎟⎟⎟⎟⎠ .

Then F is G-invariant, but G is not F -semi-liftable (in fact, G is not liftable).

Theorem 4.8. Let G be a finite subgroup of PGL(n,C). Let F ∈ C[x1, ..., xn] be
a nonzero homogeneous polynomial of degree p, where p is a prime number. Suppose
F is G-invariant. Let Gp be a Sylow p-subgroup. Then G is F -liftable if the following
two conditions are satisfied:

(1) Gp is F -liftable; and
(2) either Gp has no element of order p2 or G has no normal subgroup of index p.

Proof. Suppose both (1) and (2) are satisfied.

Let G̃p be an F -lifting of Gp. Define H = {g ∈ G|order of g coprime to p}. Let
h ∈ H and m be the order of h. Then there exists a unique F -lifting of h. In fact, for
any Ah ∈ π−1(h), there is λ ∈ C

∗ such that Am
h = λIn. Let α be a complex number

such that αm = 1
λ . Then (αAh)

m = In. Replacing Ah by αAh, we obtain Am
h = In.

Since F is G-invariant we have Ah(F ) = λ′F for some λ′ ∈ C
∗. Since F =

(Am
h )(F ) = (λ′)mF we have (λ′)m = 1. So λ′ = ξjm for some 1 ≤ j ≤ m. Since

m and p are coprime so there exists i ∈ Z, such that pi + j ≡ 0 (mod m). Then
(ξimAh)(F ) = ξpimξjmF = ξpi+j

m F = F . So ξimAh is an F -lifting of h. Hence an
F -lifting of h exists. For a similar reason, h has a unique F -lifting.

We define H̃ = {Ah ∈ GL(n,C)|h ∈ H,Ah is the unique F -lifting of h}. Let G̃

be the subgroup of GL(n,C) generated by G̃p and H̃.
We have the exact sequence

1 → Kerπ|
˜G → G̃

π|
˜G−−→ G → 1.

Here Kerπ|
˜G is either trivial or is generated by diag(ξp, · · · , ξp).

If Kerπ|
˜G = 1, then G̃ is an F -lifting of G and hence we are done.

Next we consider the case when Kerπ|
˜G is generated by diag(ξp, · · · , ξp). We have

the following commutative diagram:

1 ��

��

1

��

�� G̃p

��

�� Gp

��

�� 1

��

1 �� Kerπ|
˜G

�� G̃ �� G �� 1 ,
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where the vertical maps are natural inclusion maps. Applying Theorem 4.1, we get
the commutative diagram:

1 �� Hom(Gp,C
∗) �� Hom(G̃p,C

∗) �� 1 �� M(Gp)

1 ��

��

Hom(G,C∗)

��

�� Hom(G̃,C∗)

��

Res �� Hom(Kerπ|
˜G,C

∗)

��

Tra �� M(G)

φ

��

By Theorem 4.2, the map φ|M(G)p : M(G)p → M(Gp) is injective. Since
Hom(Kerπ|

˜G,C
∗) is isomorphic to Cp, the map Tra is the trivial map. So the map

Res is surjective.
Therefore, there exists a homomorphism f : G̃ −→ C

∗ such that the restriction
f |Kerπ|

˜G
is injective.

If Gp has no element of order p2, the Sylow p-subgroup of f(G̃) is the group
consisting of the p-th roots of unity. So, there exists a surjective homomorphism
α : f(G̃) −→ Cp. Then Ker(α ◦ f) is an F -lifting of G.

WhenG has no normal subgroup of index p, we take any surjective homomorphism
β : f(G̃) −→ Cp. Then Ker(β ◦ f) is an F -lifting of G.

In the rest of this section, let X ⊂ P
4 be a smooth quintic threefold defined by F .

Theorem 4.9. Assume that g ∈ Aut(X) and ord(g) = 5n (n ≥ 1). Then n = 1,
i.e. g is necessarily of order 5.

Proof. It suffices to show that there is no g ∈ Aut(X) such that ord(g) = 52.
Assume to the contrary that there is g ∈ Aut(X) such that ord(g) = 52.
Without loss of generality we may assume g = [A] and A =

diag(ξa1
25 , ξ

a2
25 , ξ

a3
25 , ξ

a4
25 , ξ

a5
25 ), and F is A-semi-invariant.

There are two possible cases: 1) x5
i ∈ F for some i; 2) x5

i /∈ F for all i.
Case 1): We may assume x5

1 ∈ F . Replacing A by ξ−a1
25 A, we may assume

A = diag(1, ξa2
25 , ξ

a3
25 , ξ

a4
25 , ξ

a5
25 ). Then A(F ) = F . Clearly A must have order 25. We

may assume a2 = 1 and hence A = diag(1, ξ25, ξ
a3
25 , ξ

a4
25 , ξ

a5
25 ).

By Proposition 3.3, x4
2xj ∈ F for some j. But both x4

2x1 and x5
2 can not be in

F since A(x4
2x1) �= x4

2x1 and A(x5
2) �= x5

2. Then we may assume x4
2x3 is in F . Then

A(x4
2x3) = x4

2x3 implies a3 ≡ −4(mod 25).
Similarly, we may successively assume x4

3x4 ∈ F , x4
4x5 ∈ F . Then A =

diag(1, ξ25, ξ
−4
25 , ξ1625 , ξ

11
25).

Hence, then x4
5xi /∈ F for all 1 ≤ i ≤ 5, a contradiction by Proposition 3.3.

So the case 1) is impossible.
Case 2) We shall see the case 2) is impossible by argue by contradiction. We may

assume x4
1x2 ∈ F and A = (1, ξa2

25 , ξ
a3
25 , ξ

a4
25 , ξ

a5
25 ). Then there are three possibilities:

Case 2)-i) The number a2 is coprime to 5. Then we may assume A =
(1, ξ25, ξ

a3
25 , ξ

a4
25 , ξ

a5
25 ) and then A(F ) = ξ25F .

As in case 1) above, using A(F ) = ξ25F and Proposition 3.3, we may successively
assume x4

2x3 ∈ F , x4
3x4 ∈ F , x4

4x5 ∈ F . Then A = diag(1, ξ25, ξ
−3
25 , ξ1325 , ξ

−1
25 ). Then

x4
5xi /∈ F for all i, a contradiction by Proposition 3.3. So the case a2 is coprime to 5

is impossible.
Case 2)-ii) a2 is divided by 5 but not by 25. Then we may assume a2 = 5 and

hence A = (1, ξ525, ξ
a3
25 , ξ

a4
25 , ξ

a5
25 ). Then A(F ) = ξ525F . Using similar arguments to case

2)-i), we see that this case is also impossible.



218 K. OGUISO AND X. YU

Case 2)-iii) a2 is divided by 25. Then A = (1, 1, ξa3
25 , ξ

a4
25 , ξ

a5
25 ). So, we may assume

a3 = 1 and hence A = (1, 1, ξ25, ξ
a4
25 , ξ

a5
25 ). We have A(F ) = F since A(x4

1x2) = x4
1x2.

Using similar arguments to the case 2)-i), we see that this case is also impossible.
Therefore, the case 2) is impossible.

Remark 4.10. By Theorem 4.9, if G ⊂ PGL(5,C) is a subgroup of Aut(X), the
condition (2) in Theorem 4.8 is always satisfied and hence G is F -liftable if and only
if G5 is F -liftable.

Lemma 4.11. Let A = diag(a1, ..., an) and A′ = diag(a′1, ..., a
′
n) be two diagonal

n × n matrices. Suppose B := (bij) is also an n × n matrix and BA = A′B. Then
bij = 0 if aj �= a′i.

Proof. By an easy computation, BA = (ajbij) and A′B = (a′ibij). Then ajbij =
a′ibij because BA = A′B. Hence bij = 0 whenever aj �= a′i.

Remark 4.12. The above simple fact is very helpful to determine the “shape”
of the matrices we will consider, and it will be used frequently (either explicitly or
implicitly) in the rest of this paper.

The next two lemmas tell us a very useful fact: if a group G ⊂ PGL(5,C) is a
subgroup of Aut(X), G is isomorphic to C5 or C2

5 , and G is not F -liftable, then G
must be generated by “very special” matrices.

Lemma 4.13. Let g ∈ Aut(X) with ord(g) = 5. The group 〈g〉 is not F -
liftable if and only if, up to change of coordinates, g = [A] and A(F ) = ξ5F and
x4
1x2, x

4
2x3, x

4
3x4, x

4
4x5, x

4
5x1 ∈ F , where A = diag(1, ξ5, ξ

2
5 , ξ

3
5 , ξ

4
5).

Proof. We may assume g = [A], where A := diag(1, ξa5 , ξ
b
5, ξ

c
5, ξ

d
5) with 0 ≤

a, b, c, d ≤ 4.
Since A(F ) �= F , we have x5

1 /∈ F . By the smoothness of F , we may assume
x4
1x2 ∈ F .

Then a �= 0. We may assume a = 1. Then A(F ) = ξ5F as A(x4
1x2) = ξ5x

4
1x2.

Then by the smoothness of F and Proposition 3.4 (1), we may successively assume
x4
2x3, x

4
3x4, x

4
4x5 ∈ F . Then A(F ) = ξ5F implies b = 2, c = 3, d = 4. Furthermore,

the smoothness of F implies x4
5x1 ∈ F . The lemma is proved.

Lemma 4.14. Suppose C2
5
∼= N < Aut(X). The group N is not F -liftable if

and only if, up to change of coordinates, N is generated by [A1] and [A2], where
A1 = diag(1, ξ5, ξ

2
5 , ξ

3
5 , ξ

4
5) and

A2 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

Proof. “If” part is clear. We prove “only if” part.
Suppose N is not F -liftable. We may assume N = 〈[A1], [A2]〉 and A5

1 = A5
2 = I5.

Since N is abelian, A2A1 = ξk5A1A2 for some 0 ≤ k ≤ 4.
Case (i) k = 0. Then A2A1 = A1A2. Therefore, A1 and A2 can be diago-

nalized simultaneously under suitable change of coordinates. So we may assume
A1 = diag(1, ξ5, 1, ξ

a
5 , ξ

b
5), and A2 = diag(1, 1, ξ5, ξ

c
5, ξ

d
5). Then by Lemma 4.13, we
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must have A1(F ) = A2(F ) = F . However, then 〈A1, A2〉 is an F -lifting of N , a
contradiction to our assumption. So k �= 0.

Case(ii) k �= 0. Replacing A2 by Aj
2 for suitable j if necessary, we may assume

k = 1. Then A2A1A
−1
2 = ξ5A1. We may assume A1 = diag(1, ξ5, ξ

a
5 , ξ

b
5, ξ

c
5), where

0 ≤ a ≤ b ≤ c ≤ 4. The matrices A1 and ξ5A1 must have the same characteristic
polynomials. Therefore,

(t− 1)(t− ξ5)(t− ξa5 )(t− ξb5)(t− ξc5) = (t− ξ5)(t− ξ25)(t− ξa+1
5 )(t− ξb+1

5 )(t− ξc+1
5 ).

This implies a = 2, b = 3 and c = 4, i.e., A1 = diag(1, ξ5, ξ
2
5 , ξ

3
5 , ξ

4
5).

By the identity A2A1 = ξ5A1A2 and Lemma 4.11, we may assume

A2 =

⎛
⎜⎜⎜⎜⎝

0 a1 0 0 0
0 0 a2 0 0
0 0 0 a3 0
0 0 0 0 a4
a5 0 0 0 0

⎞
⎟⎟⎟⎟⎠

for some a1, a2, a3, a4, a5. Here a1a2a3a4a5 = 1 as A5
2 = I5. Then after changing of

coordinates x′
1 = x1, x

′
2 = a1x2, x

′
3 = a1a2x3, x

′
4 = a1a2a3x4, x

′
5 = a1a2a3a4x5, we

have A1 = diag(1, ξ5, ξ
2
5 , ξ

3
5 , ξ

4
5) and

A2 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

In many cases, subgroups of small order imply F -liftability of G.

Lemma 4.15. Let G < Aut(X) and |G| = 5nq, where q and 5 are coprime, and
n = 1 or 2. If G contains a subgroup of order 2 · 5n, then the group G is F -liftable.

Proof. Suppose H < G and |H| = 2 · 5n.
By Theorem 4.8, it suffices to show that H is F -liftable.
If n = 1, then H ∼= C10 or D10.
Suppose H ∼= C10 and H is not F -liftable. By Lemma 4.13, we may as-

sume there exists g ∈ H such that ord(g) = 5, g = [A], A(F ) = ξ5F and
x4
1x2, x

4
2x3, x

4
3x4, x

4
4x5, x

4
5x1 ∈ F . Here A = diag(1, ξ5, ξ

2
5 , ξ

3
5 , ξ

4
5). Let h ∈ H

with order 2 then we can find B ∈ GL(5,C) such that h = [B], B(F ) = F and
ord(B) = ord(h) = 2.

Since gh = hg, it follows that AB = λBA for some nonzero constant λ. By
considering eigenvalues, we find λ = 1. In fact, ABA−1 = λB implies λ2 = 1,
and B−1AB = λA implies λ5 = 1, and hence λ = 1. Then AB = BA. By
Lemma 4.11, B must be a diagonal matrix. So B=diag(±1, ±1, ±1, ±1, ±1). Since
x4
1x2, x

4
2x3, x

4
3x4, x

4
4x5, x

4
5x1 ∈ F and B(F ) = F , we have B = diag(1, 1, 1, 1, 1), which

is absurd.
So H must be F -liftable if H ∼= C10.
Similarly, if H ∼= D10 or n = 2, then H is also F -liftable. The arguments are

slightly more involved (e.g. use Lemma 4.14 in the case n = 2), but the idea and
computations are quite similar. So we may leave detailed proofs for the readers.
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5. Sylow p-subgroups of Aut(X) if p �= 2, 5. Our main results of this section
are Theorems 5.7, 5.8, 5.9, 5.10, 5.13, 5.14 and 5.15.

5.1. All possible prime factors of |Aut(X)|.
Theorem 5.1 ([GL13, Theorem 1.3]). Let n ≥ 1 and d ≥ 3 be integers, and

(n, d) �= (1, 3), (2, 4). Let q be a primary number, i.e., q = pk for some prime p,
such that gcd(q, d) = gcd(q, d − 1) = 1. Then q is the order of an automorphism
of some smooth hypersurface of dimension n and degree d if and only if there exists
l ∈ {1, ..., n+ 2} such that

(1− d)l ≡ 1 mod q.

Proof. We include the proof here for the reader’s convenience (cf. [GL13, Theo-
rem 1.3] and the proof there).

To prove the “only if” part, suppose F ∈ C[x1, ..., xn+2] is a homogeneous poly-
nomial of degree d such that the hypersurface X := {F = 0} ⊂ P

n+1 is smooth and
admits an automorphism ϕ of order q, with gcd(q, d) = gcd(q, d−1) = 1. Without loss
of generality, we may assume ϕ = [A], where A = diag(ξσ1

q , ..., ξ
σn+2
q ), 0 ≤ σi ≤ q − 1,

for all 1 ≤ i ≤ n+ 2.
We have A(F ) = ξaqF . Let b be an integer such that db ≡ −a mod q. Such a

b always exists as gcd(q, d) = 1. Then (ξbqA)(F ) = ξdb+a
q F = F . So replacing A

by ξbqA if necessary, we may assume A(F ) = F . Now choose an index k1 such that

gcd(σk1
, q) = 1. By smoothness of F (see Proposition 3.3), xd−1

k1
xk2

∈ F for some

k2 ∈ {1, ..., n+ 2}. Because of A(F ) = F , we have A(xd−1
k1

xk2
) = xd−1

k1
xk2

so that

σk2 ≡ (1− d)σk1 mod q. (5.1)

Furthermore, since gcd(q, d−1) = 1, we have σk2 �= 0 mod q, and since gcd(q, d) =
1 we have k2 �= k1.

Applying the above argument with k1 replaced by k2, we let k3 be an index
such that A(xd−1

k2
xk3

) = xd−1
k2

xk3
and xd−1

k2
xk3

∈ F . Iterating this process, for all

i ∈ {4, ..., n + 3} we find ki ∈ {1, ..., n + 2} such that A(xd−1
ki−1

xki) = xd−1
ki−1

xki and

xd−1
ki−1

xki
∈ F .

By the equation (5.1), we have

for all i ∈ {3, ..., n+ 3}, σki
≡ (1− d)σki−1

≡ (1− d)2σki−2
≡ (1− d)i−1σk1

mod q,

and all of the σki
are non-zero.

Since ki ∈ {1, ..., n + 2}, there are at least two i, j ∈ {1, ..., n + 3}, i > j such
that ki = kj . Thus σki = σkj , and since σki ≡ (1 − d)i−1σk1 mod q and σkj ≡
(1−d)j−1σk1 mod q, we have (1−d)i−1σk1 ≡ (1−d)j−1σk1 mod q. Then (1−d)i−j ≡
1 mod q as gcd(1− d, q) = gcd(σk1

, q) = 1. This finishes the proof of “only if” part.
To prove “if” part, let q be a positive integer such that gcd(q, d) = gcd(q, d−1) =

1, and assume that there exists l ∈ {1, ..., n + 2} such that (1 − d)l ≡ 1 mod q. We

let F ∈ C[x1, ..., xn+2] be the homogeneous polynomial F =

l−1∑
i=1

xd−1
i xi+1 +

n+2∑
i=l+1

xd
i .

By construction, the hypersurface X := {F = 0} ⊂ P
n+1 admits the automorphism

[A], where A = diag(ξq, ξ
1−d
q , ..., ξ

(1−d)l−1

q , 1, ..., 1). One can check the smoothness of
X by the Jacobian criterion (cf [GL13, Example 3.5]).
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In the rest of this section, let X ⊂ P
4 be a smooth quintic threefold defined by F .

Let us consider the numbers (1 − 5)l − 1, for 1 ≤ l ≤ 5. These five numbers
are −5, 15,−65, 255,−1025. Since 15 = 3 · 5, 65 = 5 · 13, 255 = 3 · 5 · 17, and
1025 = 52 · 41, all possible primary orders of elements in Aut(X) are 2a, 3, 5b, 13, 17
and 41 by Theorem 5.1.

Lemma 5.2. Let g ∈ Aut(X). Suppose ord(g) = pa, where a > 0 and p =
2, 3, 13, 17 or 41. Then under suitable change of coordinates, we may assume g = [A],
where A := diag(ξpa , ξb1pa , ξb2pa , ξb3pa , ξb4pa) (b1, ..., b4 are integers) and A(F ) = F .

Proof. By Theorem 4.8, g has an F -lifting, say A. Then g = [A], ord(A) =
ord(g) = pa and A(F ) = F . Clearly by suitable change of coordinates if necessary,
we may assume A = diag(ξpa , ξb1pa , ξb2pa , ξb3pa , ξb4pa).

Lemma 5.3. Suppose [A] ∈ Aut(X) and A(F ) = F . If ξ is an eigenvalue of A
with multiplicity ≥ 3, then ξ5 = 1.

Proof. Suppose ξ is an eigenvalue of A with multiplicity ≥ 3. We may assume
A = diag(ξ, ξ, ξ, α, β). Since X is smooth and defined by F , F can not be written as
x4H+x5G, for someH andG. Then there exists monomial xi1

1 xi2
2 xi3

3 ∈ F , i1+i2+i3 =
5, ij ≥ 0. Since A(F ) = F , it follows that A(xi1

1 xi2
2 xi3

3 ) = ξ5xi1
1 xi2

2 xi3
3 = xi1

1 xi2
2 xi3

3 , so
ξ5 = 1.

5.2. Sylow p-subgroups of Aut(X) for p = 3, 13, 17 or 41.

Lemma 5.4. Suppose g ∈ Aut(X) and ord(g) = 3. Then we may assume g = [A]
and A(F ) = F , where A = diag(ξ3, ξ

2
3 , 1, 1, 1) or diag(ξ3, ξ

2
3 , ξ3, ξ

2
3 , 1).

Proof. By Lemma 5.2, we may assume g = [A], A = diag(ξ3, ξ
b1
3 , ξb23 , ξb33 , ξb43 )

and A(F ) = F . Then note that X is smooth. So, by Proposition 3.4 (1)
and A(x5

1) �= x5
1, we may assume x4

1x2 in F and hence b1 ≡ 2(mod 3). Then
A = diag(ξ3, ξ

2
3 , ξ

b2
3 , ξb33 , ξb43 ).

If A = diag(ξ3, ξ
2
3 , ξ3, 1, 1), then F ∈ (x2) + (x4, x5)

2, a contradiction to the
smoothness of X by Proposition 3.4 (3). So A �= diag(ξ3, ξ

2
3 , ξ3, 1, 1). Similarly,

A �= diag(ξ3, ξ
2
3 , ξ

2
3 , 1, 1).

By Lemma 5.3, the multiplicities of ξ3 and ξ23 as eigenvalues of A are less than or
equal to two.

Therefore, we may assume A = diag(ξ3, ξ
2
3 , 1, 1, 1) or diag(ξ3, ξ

2
3 , ξ3, ξ

2
3 , 1).

Lemma 5.5. The group C3
3 can not be a subgroup of Aut(X).

Proof. Assume to the contrary that there exists G < Aut(X) such that G ∼= C3
3 .

By Theorem 4.8, G has an F -lifting, say G̃. Then by Lemma 5.4 we may assume
that G̃ = 〈A1, A2, A3〉, where A1 = diag(ξ3, ξ

2
3 , ξ

b2
3 , ξb33 , ξb43 ), x4

1x2 ∈ F and A2, A3 are
diagonal matrices whose eigenvalues are the third roots of unity.

Replacing A2 by Ai
1A2 for some i if necessary, we may assume A2 =

diag(1, 1, ξc23 , ξc33 , ξc43 ).

Then by Lemma 5.4 we may assume A2 = diag(1, 1, ξ3, ξ
2
3 , 1) and hence x4

3x4 ∈ F .

Again replacing A3 by Ai
1A3 for some i if necessary, we may assume A3 =

diag(1, 1, ξd2
3 , ξd3

3 , ξd4
3 ).

Since x4
3x4 ∈ F , replacing A3 by Ai

2A3 for some i if necessary, we may assume
A3 = diag(1, 1, 1, 1, ξj3), j = 1 or 2.
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Then A3(x
4
5xk) �= x4

5xk for any 1 ≤ k ≤ 5. However, then x4
5xk /∈ F for all k, a

contradiction to the smoothness of X by Proposition 3.4 (1).

Remark 5.6. In general, if an abelian group acts on a smooth quintic threefold
(assuming the action is F -liftable), then the matrices inducing the action are often of
very special kind. In fact, the proofs of Lemmas 5.4 and 5.5 tell us how to determine
such matrices. First, we may assume those matrices are diagonal. Then by smoothness
of F and computation (using Mathematica), we can exclude many possibilities and
only few possibilities for those matrices are left.

Theorem 5.7. Let G be a subgroup of Aut(X) such that |G| is divided by 3.
Then G3

∼= C3 or C2
3 .

Proof. Clearly it suffices to show that there exists no groups of order 27 acting
on smooth quintic threefolds.

Assume to the contrary that H < G and |H| = 27.
By the classification of groups of order 27, there are five different (up to isomor-

phism) groups of order 27: C27, C9×C3, UT (3, 3) (it is, by definition, the unitriangular
matrix group of degree three over the field of three elements), C9 � C3, C

3
3 .

By Lemma 5.4 H is not isomorphic to C27, C9 × C3 or C9 � C3. By Lemma 5.5,
H is not isomorphic to C3

3 .
So H must be isomorphic to UT (3, 3). Then, by Theorem 4.8, H has an F -lifting,

say H̃ < GL(5,C). This subgroup H̃ is a faithful five dimensional linear representation
of UT (3, 3). By looking at the character table of UT (3, 3) (see e.g. GAP and Section

6 for more details about GAP), H̃ contains a matrix which has ξ3 as an eigenvalue of
multiplicity 3, a contradiction to Lemma 5.3.

Theorem 5.8. Let G < Aut(X). Suppose |G| is divided by 13. Then G13
∼=

C13. Let g be a generator of G13. Then we may assume g = [A], A(F ) = F,A =
diag(ξ13, ξ

−4
13 , ξ313, 1, 1) and

F = x4
1x2 + x4

2x3 + x4
3x1 + x1x2x3G(x4, x5) +H(x4, x5)

where G and H are of degree 2 and 5 respectively.

Proof. By Theorem 5.1, C132 can not act on X. In order to show G13
∼= C13, it

suffices to show that C2
13 can not act on X.

Suppose G has a subgroup, say H, isomorphic to C2
13. By Theorem 4.8, H has

an F -lifting, say H̃. We may assume H̃ = 〈A1, A2〉. So A1(F ) = A2(F ) = F
and A1A2 = A2A1. We may assume that both A1 and A2 are diagonal and A1 =
diag(ξ13, ξ

b1
13, ξ

b2
13, ξ

b3
13, ξ

b4
13).

Now we argue by the same way as in Lemmas 5.4 and 5.5.
By A1(F ) = F we may assume x4

1x2 ∈ F . Then A1(F ) = F implies b1 ≡
−4(mod 13). So A1 = diag(ξ13, ξ

−4
13 , ξb213, ξ

b3
13, ξ

b4
13).

Similarly we may assume x4
2x3 ∈ F . Then A1 = diag(ξ13, ξ

−4
13 , ξ313, ξ

b3
13, ξ

b4
13) and

b3 ≡ b4 ≡ 0(mod 13).
Therefore A1 = diag(ξ13, ξ

−4
13 , ξ313, 1, 1).

Note that a degree five monomial xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 is left invariant by A1 if and

only if

i1 − 4i2 + 3i3 ≡ 0(mod 13).
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Then by computing (e.g., by using Mathematica) invariant monomials of A1, we
have

F = a1x
4
1x2 + a2x

4
2x3 + a3x

4
3x1 + x1x2x3G(x4, x5) +H(x4, x5).

By Proposition 3.3, a1a2a3 �= 0. We may assume a1 = 1. By adjusting variables
x2 and x3 by nonzero multiples we may further assume a2 = a3 = 1. Then replacing
A2 by Aj

1A2 for some j if necessary we may assume A2 = diag(1, ξc113, ξ
c2
13, ξ

c3
13, ξ

c4
13).

By the expression of F and A2(F ) = F , we must have c1 ≡ c2 ≡ 0(mod 13), i.e.,
A2 = diag(1, 1, 1, ξc313, ξ

c4
13). Therefore, C

2
13 can not act on X.

So G13
∼= C13. Furthermore, by arguments above we may assume G13 is generated

by [diag(ξ13, ξ
−4
13 , ξ313, 1, 1)] and

F = x4
1x2 + x4

2x3 + x4
3x1 + x1x2x3G(x4, x5) +H(x4, x5)

as wanted.

Theorem 5.9. Let G < Aut(X). Suppose |G| is divided by 17. Then G17
∼=

C17. Let g be a generator of G17. Then we may assume g = [A], A(F ) = F,A =
diag(ξ17, ξ

−4
17 , ξ1617 , ξ

4
17, 1) and

F = x4
1x2+x4

2x3+x4
3x4+x4

4x1+x5
5+ax1x2x3x4x5+bx1x3x

3
5+cx2x4x

3
5+dx2

1x
2
3x5+ex2

2x
2
4x5,

where a, b, c, d, e are complex numbers (possibly zero).

Proof. Similar to proof of Theorem 5.8.

Theorem 5.10. Let G < Aut(X). Suppose |G| is divided by 41. Then G41
∼=

C41. Let g be a generator of G41. Then we may assume g = [A], A(F ) = F,A =
diag(ξ41, ξ

−4
41 , ξ1641 , ξ

18
41 , ξ

10
41) and

F = x4
1x2 + x4

2x3 + x4
3x4 + x4

4x5 + x4
5x1 + ax1x2x3x4x5,

where a is a complex numbers (possibly zero).

Proof. Similar to proof of Theorem 5.8.

5.3. Brauer’s Theorem and Aut(X).

Theorem 5.11 ([Br42, Theorem 3]). Let p be a prime number and G be a finite
group such that Gp

∼= Cp and Gp is not a normal subgroup. Then the degree of any
faithful representation of G is not smaller than p−1

2 .

Theorem 5.12. Let X be a smooth quintic threefold. Let G be a subgroup of
Aut(X). Suppose |G| is divided by p, where p is one of 41, 17, 13. Then Gp is a
normal subgroup of G.

Proof. Our proof is inspired by [Ad78].
Since p = 13, 17, or 41, we have Gp

∼= Cp by Theorems 5.8, 5.9 and 5.10.
The group G is a finite subgroup of PGL(5,C) = PSL(5,C). We have an exact

sequence

1 → Z
i−→ SL(5,C)

θ−→ PSL(5,C) → 1 ,

where Z denotes the center of SL(5,C), a group of order 5. Denote by G the preimage
θ−1(G) of G in SL(5,C) under θ. The order of G is 5·|G|. Let Gp be a Sylow p-subgroup
of G. Then Gp

∼= Cp by our assumption of p.
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Applying Theorem 5.11, Gp is normal in G. In fact, 5 < p−1
2 . So π(Gp) is normal

in G, which means Gp is normal in G.

Using Theorem 5.12, we shall study Aut(X) when |Aut(X)| is divided by 41, 17
or 13 (Theorems 5.13, 5.14 and 5.15).

Theorem 5.13. Suppose Aut(X) contains an element of order 17. Then Aut(X)
is isomorphic to a subgroup of the group appears in Example (13) in Example 2.1, and
|Aut(X)| is divided by 2.

Proof. By Theorem 5.9, Aut(X)17 ∼= C17. Let g be a generator of Aut(X)17.
Then we may assume g = [A], A(F ) = F,A = diag(ξ17, ξ

−4
17 , ξ1617 , ξ

4
17, 1) and F is of the

form (just compute invariant monomials of A using Mathematica)

F = x4
1x2+x4

2x3+x4
3x4+x4

4x1+x5
5+ax1x2x3x4x5+bx1x3x

3
5+cx2x4x

3
5+dx2

1x
2
3x5+ex2

2x
2
4x5,

where a, b, c, d, e are complex numbers (possibly zero).

By Theorem 5.12, Aut(X)17 is normal in Aut(X).

Let h be an element of Aut(X). Suppose h = [B] for some B ∈ GL(5,C). We
can choose B such that B(F ) = F . By normality of Aut(X)17 we have hgh−1 =
gk for some k. Then BAB−1 = λAk for some nonzero constant λ. Clearly F =
(BAB−1)(F ) = (λAk)(F ) = λ5F . Then λ5 = 1. Since A and λAk must have the
same set of eigenvalues we have λ17 = 1. Then λ = 1, i.e., BAB−1 = Ak. By the
shape of A (eigenvalues), k ≡ 1,−4, 16 or 4(mod 17). By BA = AkB and Lemma
4.11, we can show that B must be a semi-permutation matrix.

Then by the shape of F above, B must leave F ′ := x4
1x2+x4

2x3+x4
3x4+x4

4x1+x5
5

invariant. Let G ⊂ PGL(5,C) be the group as in Example (13) in Example 2.1.
Therefore, Aut(X) is a subgroup of G by Theorem 3.8.

Notice that no matter what a, b, c, d, e are, the following matrix can always act
on X: ⎛

⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Therefore, Aut(X) contains an element of order two.

Theorem 5.14. Suppose Aut(X) contains an element of order 41. Then Aut(X)
is isomorphic to a subgroup of the group appears in Example (15) in Example 2.1, and
|Aut(X)| is divided by 5.

Proof. The proof is the same as that of Theorem 5.13.

Theorem 5.15. Suppose Aut(X) contains an element of order 13. Then Aut(X)
is isomorphic to a subgroup of one of the three groups G which appear in Example
(9), Example (12) and Example (16) in Example 2.1 and |Aut(X)| is divided by 3.

Proof. Proof is the same as that of Theorem 5.13 except that there are 3 possible
maximal G.
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6. Sylow 2-subgroups. In this section, X is always a smooth quintic threefold
defined by F .

In this section, we study Sylow 2-subgroups of Aut(X).
In the rest of the paper, we extensively use the mathematical software GAP. In

GAP library, groups of order ≤ 2000 are stored (except groups of order 1024). In GAP,
all the information (structure descriptions, subgroups, character tables, automorphism
groups, etc.) of these groups we need are included.

A terminology used in GAP: SmallGroup(a, b):= the b-th group of order a.
For example, by classification, up to isomorphism, there are exactly five different

groups of order 8: C8, C4 × C2, D8, Q8, C
3
2 . In GAP, these five groups are stored

in a specific order. In fact, SmallGroup(8, 1) ∼= C8, SmallGroup(8, 2) ∼= C4 × C2,
SmallGroup(8, 3) ∼= D8, SmallGroup(8, 4) ∼= Q8, SmallGroup(8, 5) ∼= C3

2 .
In the rest of this paper, if no confuse causes, we use the following:

Convention. Let a be a positive integer less than or equal to 2000, and a �= 1024.
Suppose, up to isomorphism, there are ka many different groups of order a. Let b be a
positive integer less than or equal to ka. Then we denote by [a, b] a group isomorphic to
SmallGroup(a, b). In fact, in GAP, [a, b] is regarded as the “ID” of SmallGroup(a, b).
We also call [a, b] the “GAP ID” of groups isomorphic to SmallGroup(a, b). For
example, [8, 3] is a group isomorphic to the dihedral group D8.

Using GAP, one can quickly find all possible 2-groups which are isomorphic to
a subgroup of the 22 groups in Section 2. There are 25 such 2-groups. For reader’s
convenience, we list all of them below (including their GAP IDs):
[2, 1] ∼= C2, [4, 1] ∼= C4, [4, 2] ∼= C2

2 , [8, 1]
∼= C8,[8, 2] ∼= C4 × C2, [8, 3] ∼= D8, [8, 4] ∼=

Q8, [16, 1] ∼= C16, [16, 2] ∼= C2
4 , [16, 5] ∼= C8 × C2, [16, 6], [16, 7] ∼= D16, [16, 8],

[16, 9], [16, 13], [32, 1] ∼= C32, [32, 3] ∼= C8 × C4, [32, 11], [32, 16] ∼= C16 × C2, [32, 42],
[64, 1] ∼= C64, [64, 26] ∼= C16 ×C4, [64, 50] ∼= C32 ×C2, [128, 1] ∼= C128, [256, 1] ∼= C256.

Our goal is to show that the 25 groups above are all possible 2-groups which acts
on a smooth quintic threefold. In other words, we exclude all other 2-groups.

Theorem 6.1. Let G < Aut(X). Suppose G is a 2-group. Then G is isomorphic
to a subgroup of one of the 22 groups in the Examples (1)-(22) in Example 2.1.

Remark 6.2. Here we explain the main ideas of the proof.
We will exclude groups inductively (from smaller orders to larger orders). Our

strategies to exclude groups consist of two steps:
Step one: Let G be a 2-groups of order 2n. If Theorem 6.1 has been proved for

orders strictly less than 2n and G contains a proper subgroup which is not isomorphic
to one of the above 25 groups then the group G is excluded.

In the sequel, we call this method of excluding groups as sub-test. We always use
GAP to do sub-test. The detailed GAP codes can be found on the second author’s
personal website [Yu]. (Sub-test will also be used in Sections 8 and 10.) Surprisingly,
it turns out that sub-test is quite effective in our study.

Step two: If G survives after sub-test and G is not one of the above 25 groups,
we just do case by case consideration.

We now start to prove Theorem 6.1.

Proof. 1) |G| = 2: Trivial.
2) |G| = 4: Trivial.
3) |G| = 8: It suffices to exclude [8, 5] ∼= C3

2 .

Lemma 6.3. C3
2 can not be a subgroup of Aut(X).
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Proof. Suppose N < Aut(X) and N ∼= C3
2 . Then we may assume N =

〈[A1], [A2], [A3]〉, where A1 = diag(1,−1, 1, 1, (−1)a), A2 = diag(1, 1,−1, 1, (−1)b),
A3 = diag(1, 1, 1,−1, (−1)c), and A1(F ) = A2(F ) = A3(F ) = F. Then
xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 ∈ F only if i1 �= 0 or i5 �= 0. Therefore, F = x1H + x5G, for

some degree 4 polynomials H and G, a contradiction to the smoothness of X.

Lemma 6.4. Let g ∈ Aut(X). Suppose ord(g) = 2 and A is an F -lifting of g.
Then the trace of A must be positive (more precisely, 1, or 3).

Proof. Just apply Lemma 5.3.

Remark 6.5. It turns out this simple lemma is extremely useful to exclude
groups in the rest of this paper. It is a little mysterious why it is so useful in our
study.

4) |G| = 16: after sub-test, one sees that it suffices to exclude: [16, 4], [16, 12].

Lemma 6.6. [16, 4] ∼= C4 � C4 is not a subgroup of Aut(X).

Proof. Assume to the contrary that [16, 4] ∼= G < Aut(X). Then by Theorem 4.8,
G is F -liftable, i.e., there exists a faithful representation of degree 5, say ρ, of [16, 4]
such that A(F ) = F for all matrices A belonging to ρ.

Next we look at the character table of [16, 4], see Figure 1.
As the group [16, 4] is not abelian, the faithful representation ρ must contain a 2-

dimensional irreducible representation. By character values of the conjugacy class 2a
and Lemma 6.4, ρ must be of type 2⊕1⊕1⊕1 (i.e., ρ decomposes into one 2-dimension
irreducible representation, and three 1-dimensional irreducible representations).

If the 2-dimensional irreducible representation contained in ρ is X.9, then by
character values of conjugacy class 2b and faithfulness of ρ, one of X.5, X.6, X.7, X.8
must be contained in ρ. Then the trace of the conjugacy class 2c must be negative, a
contradiction to Lemma 6.4. Therefore, X.9 is not contained in ρ.

Similarly, X.10 is also not contained in ρ.
But one of X.9 or X.10 must be in ρ, a contradiction.

Lemma 6.7. [16, 12] ∼= C2 ×Q8 is not a subgroup of Aut(X).

Proof. Similar to [16, 4]. For the character table of [16, 12], see the website [Yu].

5) |G| = 32: Again, after sub-test, it suffices to exclude: [32, 4], [32, 12], [32, 15],
[32, 17], [32, 18], [32, 19], [32, 20], [32, 38].

Lemma 6.8. Neither [32, 4] ∼= C8 � C4 nor [32, 12] ∼= C4 � C8 is a subgroup of
Aut(X).

Proof. Similar to [16,4] case.

For the remaining 6 cases we need some new tools to exclude.

Lemma 6.9. Let g ∈ Aut(X) be of order 8. Suppose A ∈ GL(5,C) is an F -lifting
of g. Then:

(i) −1 is one of the eigenvalues of A;
(ii) If ξ8 is an eigenvalue of A, then the multiplicity of ξ8 as an eigenvalue of A

is exactly one; and
(iii) If −1 is an eigenvalue of A of multiplicity two, then, up to replacing A by its

odd power, we may assume A = diag(ξ8,−1, 1,−1, 1).
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gap> Display(CharacterTable(SmallGroup(16,4)));

CT1

 2  4  3  3  4  4  3  3  3  4  3

 1a 4a 4b 2a 2b 4c 4d 4e 2c 4f

X.1  1  1  1  1  1  1  1  1  1  1

X.2  1 -1  1  1  1 -1 -1  1  1 -1

X.3  1  1 -1  1  1 -1  1 -1  1 -1

X.4  1 -1 -1  1  1  1 -1 -1  1  1

X.5  1  A  1  1 -1  A -A -1 -1 -A

X.6  1 -A  1  1 -1 -A  A -1 -1  A

X.7  1  A -1  1 -1 -A -A  1 -1  A

X.8  1 -A -1  1 -1  A  A  1 -1 -A

X.9  2  .  . -2  2  .  .  . -2  .

X.10  2  .  . -2 -2  .  .  .  2  .

A = E(4)

 = Sqrt(-1) = i

Fig. 1. Character table of [16, 4]

Proof. We may assume A = diag(ξ8, ξ
a
8 , ξ

b
8, ξ

c
8, ξ

d
8), where 0 ≤ a, b, c, d ≤ 7. Since

A(F ) = F , then x5
1 /∈ F . We may assume x4

1x2 ∈ F . Then a = 4. So, −1 is an
eigenvalue of A, and i) is proved.

For ii), assume to the contrary that ξ8, as eigenvalue of A, is of multiplicity greater
than one.

We may assume A = diag(ξ8,−1, 1, ξ8, ξ
d
8), 0 ≤ d ≤ 7. (Since 1 must be an

eigenvalue of A.) By Lemma 5.3, d can not be odd; otherwise, −1 is an eigenvalue of
A4 of multiplicity three.

If d = 0, 2, 6, computing invariant monomials of A (e.g., using Mathematica), we
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have F ∈ (x2)+ (x3, x5)
2, a contradiction to Proposition 3.4 (3). If d = 4, computing

invariant monomials of A (e.g., using Mathematica), we have F ∈ (x3) + (x1, x4)
2, a

contradiction. So ii) is proved.

For iii), suppose, −1 is an eigenvalue of A of multiplicity two. Then we may
assume A = diag(ξ8,−1, 1,−1, ξd8), where 0 ≤ d ≤ 7. Clearly d �= 1 by ii) above. Also
d �= 4.

If d = 2, 3, 5, 6, 7, then as before, we have F ∈ (x3) + (x1, x5)
2, a contradiction.

Therefore, iii) is proved.

Lemma 6.10. Let g ∈ Aut(X) of order 4. Suppose A ∈ GL(5,C) is an F -lifting
of g. Then the trace of A is not equal to −1.

Proof. Assume to the contrary that trA = −1.

Then, up to change of coordinates, A = diag(ξ4,−ξ4,−1,−1, 1) or
diag(ξ4,−ξ4, ξ4,−ξ4,−1).

If A = diag(ξ4,−ξ4, ξ4,−ξ4,−1), computing invariant monomials of A as in the
proof of Lemma 6.9, we have F ∈ (x5), a contradiction.

If A = diag(ξ4,−ξ4,−1,−1, 1), then we have F ∈ (x5)+(x1, x2)
2, a contradiction,

as before.

Lemma 6.11. Neither [32, 15] ∼= C4.(C4×C2) nor [32, 28] ∼= (C8×C2)�C2is not
a subgroup of Aut(X).

Proof. We only give a proof for [32, 15]. Proof of [32, 28] is similar. Assume to the
contrary. Then we may assume ρ is a 5 dimensional faithful representation of [32, 15]
which leaves F invariant.

By character table of [32, 15] (see Figure 2), since ρ is faithful, the trace of the
conjugacy class 2a must be positive and the trace of the conjugacy class 4a is not
equal to −1, we have that ρ is of type 2⊕ 1⊕ 1⊕ 1, and the 2 dimensional irreducible
representation is one of X.11 ∼ X.14.

Considering values of conjugacy classes 8a, 8b, 8c, by Lemma 6.9, we see that all
8a, 8c must have −1 as one of their eigenvalues.

If X.2 is not in ρ, then by eigenvalue consideration of 8a, X.4 must be in ρ. Then
by eigenvalue consideration of 8c, X.3 must be in ρ. Then 8b has −1 as an eigenvalue
of multiplicity greater than one, a contradiction to Lemma 6.9.

So X.2 must be in ρ.

Then X.3 is not in ρ (otherwise, 8c has −1 as eigenvalue of multiplicity greater
than one), and X.4 is also not in ρ (otherwise, 8a has −1 as eigenvalue of multiplicity
greater than one). Then one of X.7 and X.8 must be in ρ (by eigenvalue consideration
of 8b), and one of X.5 and X.6 must be in in ρ (by eigenvalue consideration of 8h).
However, then trace of 2b must be negative, a contradiction.

So such ρ does not exist and the lemma is proved.

Lemma 6.12. If C16
∼= N �G < Aut(X). Then G = CG(N).

Proof. We may assume N = 〈[A]〉, A = diag(ξ16, ξ
−4
16 , 1, ξa16, ξ

b
16), A(F ) = F ,

and 0 ≤ a ≤ b ≤ 15. Suppose G �= CG(N), then there exists [B] ∈ G, such that
BAB−1 = Aα, 1 < α ≤ 15. Since A and Aα have the same characteristic polynomial,
so α is odd.
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gap> Display(CharacterTable(SmallGroup(32,15)));

CT3

 2  5  3  4  4  5  5  3  3  4  4  4  5  3  4

 1a 8a 8b 4a 4b 2a 8c 8d 8e 8f 2b 4c 8g 8h

X.1  1  1  1  1  1  1  1  1  1  1  1  1  1  1

X.2  1 -1  1  1  1  1 -1 -1  1  1  1  1 -1  1

X.3  1  1 -1  1  1  1 -1  1 -1 -1  1  1 -1 -1

X.4  1 -1 -1  1  1  1  1 -1 -1 -1  1  1  1 -1

X.5  1  A  1  1 -1  1  A -A -1  1 -1 -1 -A -1

X.6  1 -A  1  1 -1  1 -A  A -1  1 -1 -1  A -1

X.7  1  A -1  1 -1  1 -A -A  1 -1 -1 -1  A  1

X.8  1 -A -1  1 -1  1  A  A  1 -1 -1 -1 -A  1

X.9  2  .  . -2  2  2  .  .  .  . -2  2  .  .

X.10  2  .  . -2 -2  2  .  .  .  .  2 -2  .  .

X.11  2  .  B  .  C -2  .  .  D -B  . -C  . -D

X.12  2  . -B  .  C -2  .  . -D  B  . -C  .  D

X.13  2  .  B  . -C -2  .  . -D -B  .  C  .  D

X.14  2  . -B  . -C -2  .  .  D  B  .  C  . -D

A = E(4)= Sqrt(-1) = i

B = E(8)+E(8)^3= Sqrt(-2) = i2

C = 2*E(4)= 2*Sqrt(-1) = 2i

D = -E(8)+E(8)^3= -Sqrt(2) = -r2

Fig. 2. Character table of [32, 15]

Case (1): α = 3. Then

χA(t) = (t− ξ16)(t− ξ−4
16 )(t− 1)(t− ξa16)(t− ξb16)

= (t− ξ316)(t− ξ416)(t− 1)(t− ξ3a16 )(t− ξ3b16)

= χA3(t).



230 K. OGUISO AND X. YU

As (t− ξ316)(t− ξ416) divides χA3(t), so (t− ξ316)(t− ξ416) divides χA(t), too. Therefore,
a = 3, b = 4. Then (t − ξ916) divides χA3(t) but (t − ξ916) does not divide χA(t), a
contradiction. Therefore, α = 3 is impossible.

Case (2): α = 5. By the same argument as in Case (1), α = 5 is also impossible.
Case (3): α = 7. Then χA(t) = χA7(t) implies a = 4 and b = 7. Then F ∈

(x3) + (x1, x5)
2, contradiction. So this case is also impossible.

Case (4): α = 9. χA(t) = χA9(t) implies (a, b) = (2, 9), (4, 9), (6, 9), (8, 9), (9, 10),
(9, 12), (9, 14). If (a, b) = (2, 9) or (9, 10), then x4

5xi /∈ F , for all 1 ≤ i ≤ 5, so X is
singular, a contradiction. If (a, b) = (4, 9), or (9, 12), computing invariant monomials
of A (e.g., using Mathematica), we have F ∈ (x3) + (x1, x4)

2, a contradiction. If
(a, b) = (6, 9), (8, 9), or (9, 14), then F ∈ (x2, x3), a contradiction. Therefore, α = 9
is impossible.

Case (5): α = 11. By the same argument as in Case (1), α = 11 is also impossible.
Case (6): α = 13. By the same argument as in Case (1), α = 13 is also impossible.
Case (7): α = 15. χA(t) = χA15(t) implies (a, b) = (4, 15), but then F ∈

(x3) + (x1, x4)
2, a contradiction.

Therefore, we must have G = CG(N).

Lemma 6.13. None of [32, 17], [32, 18], [32, 19], [32, 20] is a subgroup of Aut(X).

Proof. By GAP, these four groups are non-abelian and contain a subgroup iso-
morphic to C16. So, just apply Lemma 6.12.

This completes the proof for |G| = 32.
6) |G| = 64, after sub-test, it suffices to exclude five groups: [64, 2], [64, 3], [64, 27],

[64, 44], [64, 51].

Lemma 6.14. C8 × C8
∼= [64, 2] can not be a subgroup of Aut(X).

Proof. Suppose C8 × C8
∼= N < Aut(X). Then we may assume N =

〈[A1], [A2]〉, A1 = diag(ξ8, ξ
−4
8 , 1, ξa8 , ξ

b
8), A2 = diag(1, 1, 1, ξ8, ξ

−4
8 ), A1(F ) = A2(F ) =

F . Then we may assume a = 0. Then b = 0 since x4
4x5 ∈ F . A1(F ) = A2(F ) = F

implies F ∈ (x3) + (x1, x4)
2, a contradiction.

Lemma 6.15. None of [64, 3] ∼= C8 �C8, [64, 27] ∼= C16 �C4, [64, 44] ∼= C4 �C16

is isomorphic to a subgroup of Aut(X).

Proof. Similar to [16,4] case. (Character tables we need are on the website [Yu].)

Lemma 6.16. If C32
∼= N �G < Aut(X), then G = CG(N).

Proof. We may assume N = 〈[A]〉, A = diag(ξ32, ξ
−4
32 , ξ1632 , 1, ξ

a
32), A(F ) = F , and

0 ≤ a ≤ 31. Let [B] ∈ G. Then we may assume BAB−1 = Aα. If α = 1, then
[B] ∈ CG(N). If α �= 1, then 32 > α > 1 and α is odd. As χA(t) = χAα(t), we have
α = a = 17. But then A(F ) = F implies F ∈ (x2, x4), a contradiction. Therefore, α
must be 1, and hence G = CG(N).

Lemma 6.17. [64, 51] ∼= C32 � C2 is not a subgroup of Aut(X).

Proof. Just apply Lemma 6.16.

7) |G| = 128, by sub-test we need to exclude five groups: [128, 128], [128, 129],
[128, 153], [128, 159], [128, 160].

Lemma 6.18. C32 × C4
∼= [128, 128] is not isomorphic to a subgroup of Aut(X).
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Proof. Suppose C32 × C4
∼= N < Aut(X). We may assume N = 〈[A1], [A2]〉,

A1 = diag(ξ32, ξ
−4
32 , ξ1632 , 1, ξ

a
32), A2 = diag(1, 1, 1, 1, ξ4) and A1(F ) = A2(F ) = F . We

may assume 0 ≤ a ≤ 7. So a = 0, 1, 2, 3, 4, 5 or 6.

If a = 0, 1, 2, 3, 5, or 6, computing invariant monomials of A1 and A2 as before, we
have F ∈ (x2, x4), a contradiction. If a = 4, then F ∈ (x3)+(x1, x4)

2, a contradiction.

Therefore, C32 × C4 can not be a subgroup of Aut(X).

Lemma 6.19. [128, 129] ∼= C32 � C4 is not isomorphic to a subgroup of Aut(X).

Proof. Just apply Lemma 6.16.

Lemma 6.20. [128, 153] ∼= C4 � C32 is not isomorphic to a subgroup of Aut(X).

Proof. Similar to [16,4] case. (The character table of [128, 153] is on the website
[Yu]).

Lemma 6.21. C64 × C2
∼= [128, 159] is not isomorphic to a subgroup of Aut(X).

Proof. Suppose C64 × C2
∼= N < Aut(X). We may assume N = 〈[A1], [A2]〉,

A1 = diag(ξ64, ξ
−4
64 , ξ1664 , 1, ξ

a
64), A2 = diag(1, 1, 1, 1,−1) and A1(F ) = A2(F ) = F . We

may assume 0 ≤ a ≤ 31. If a �= 8, 12, 23 or 28, then F ∈ (x2, x4), a contradiction. If
a = 8, 12, 23 or 28, then F ∈ (x3) + (x1, x4)

2, a contradiction.

Therefore, C64 × C2 can not be a subgroup of Aut(X).

Lemma 6.22. If C64
∼= N �G < Aut(X), then G = CG(N).

Proof. Similar to Lemma 6.16.

Lemma 6.23. [128, 160] ∼= C64 � C2 is not a subgroup of Aut(X).

Proof. Just apply Lemma 6.22.

Now, the following Theorem completes the proof of Theorem 6.1:

Theorem 6.24. If Aut(X) contains a subgroup of order 2n with n ≥ 7, then
Aut(X) ∼= C128 or C256.

Proof. Let G < Aut(X) and |G| = 2n, n ≥ 7.

SinceG is a 2-group, G contains a subgroup, sayN , of order 128. Then, N ∼= C128,
by the results for |G| = 128 explained above. Then we may assume N = 〈[A]〉,
where A = diag(ξ128, ξ

−4
128, ξ

16
128, ξ

−64
128 , 1) and A(F ) = F . Then by computing (e.g.

Mathematica) the invariant monomials of A, we find that, F = x4
1x2 + x4

2x3 + x4
3x4 +

x4
4x5 + x5

5 + λx2
4x

3
5, for some λ ∈ C, up to change of coordinates. Then, applying

the differential method in Section 3, we can compute Aut(X) ∼= C256 if λ = 0 (cf.
Theorem 3.8) or Aut(X) ∼= C128 if λ �= 0.

7. Sylow 5-subgroups. In this section, X is a smooth quintic threefold defined
by F .

In this section, we study Sylow 5-subgroups of Aut(X).

Lemma 7.1. Suppose C2
5
∼= N < Aut(X). Then:

(i) N is generated by [A1], and [A2], A1A2 = A2A1, and both A1 and A2 have
order 5 as elements in GL(5,C); or
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(ii) up to change of coordinates, N is generated by [A1] and [A2], where A1 =
diag(1, ξ5, ξ

2
5 , ξ

3
5 , ξ

4
5) and

A2 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

Proof. See Lemma 4.14 and its proof.

Lemma 7.2. Let G = Aut(X). If |G5| = 125 and G5 is not abelian, then
there exist A1, A2, and A3 in GL(5,C), such that G = 〈[A1], [A2], [A3]〉, A1A2 =
A2A1, A1A3 = A3A1, and, for all i = 1, 2, 3, both Ai and [Ai] are of order 5 as
elements in GL(5,C) and PGL(5,C) respectively.

Proof. By Theorem 4.9, each nontrivial element in G5 has order 5. Then G5

contains a normal abelian subgroup N ∼= C2
5 . Since N ∩ Z(G5) �= ∅, where Z(G5) is

the center of the 5-group G5, we may assume N = 〈[A1], [A2]〉, and [A1] ∈ Z(G5), and
A1 = diag(1, ξ5, ξ

a
5 , ξ

b
5, ξ

c
5), 0 ≤ a ≤ b ≤ c ≤ 4, and A5

2 = I5 and F is Ai-semi-invariant,
i = 1, 2.

Then by Lemma 7.1, there are two possibilities:
(i) A2A1 = A1A2; or
(ii) A2A1 �= A1A2, and we can assume A1 = diag(1, , ξ5, ξ

2
5 , ξ

3
5 , ξ

4
5), and

A2 =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

We show that the case (ii) does not happen. Suppose that the case (ii) happens.
Then we can choose A3 ∈ GL(5,C), such that, [A3] ∈ G5 \ N , and A5

3 = I5 and F
is A3-semi-invariant. We first show that A1A3 �= A3A1 by argue by contradiction.
If A1A3 = A3A1, then A3 must be diagonal, and A3 = diag(1, 1, ξa

′
5 , ξb

′
5 , ξc

′
5 ). Since

N �G5, it follows that [A3][A2][A3]
−1 ∈ N , and

A3A2A
−1
3 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0

0 0 ξ−a′
5 0 0

0 0 0 ξa
′−b′

5 0

0 0 0 0 ξb
′−c′

5

ξc
′

5 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ = ξα5 A

i
1A

j
2 ,

where 0 ≤ α, i, j ≤ 4. Then j = 1 and α = 0. Therefore,⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0

0 0 ξ−a′
5 0 0

0 0 0 ξa
′−b′

5 0

0 0 0 0 ξb
′−c′

5

ξc
′

5 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 ξi5 0 0
0 0 0 ξ2i5 0
0 0 0 0 ξ3i5
ξ4i5 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .
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So, A3 = diag(1, 1, ξ−i
5 , ξ−3i

5 , ξ−6i
5 ). Then without loss of generality, we can

assume A3 = diag(1, 1, ξ5, ξ
3
5 , ξ5). Recall that A2(F ) = λ2F,A3(F ) = λ3F ,

where λ2, λ3 are nonzero complex numbers. Then (A2A3A
−1
2 )(F ) = A3(F ). So

diag(1, ξ5, ξ
3
5 , ξ5, 1)(F ) = diag(1, 1, ξ5, ξ

3
5 , ξ5)(F ). Then by smoothness of X, x5

1 ∈ F .
So A1(F ) = A2(F ) = F . Then xi1

1 xi2
2 xi3

3 xi4
4 xi5

5 ∈ F only if

i1 + i2 + i3 + i4 + i5 = 5, i3 + 3i4 + i5 ≡ 0(mod 5), i2 + 2i3 + 3i4 + 4i5 ≡ 0(mod 5) ,

and i1, ..., i5 ≥ 0. It follows that only x5
1, x

5
2, x

5
3, x

5
4, x

5
5, x1x2x3x4x5 can appear in F .

However, then |G5| ≥ 625 as G5 then contains the Sylow 5-subgroup of Gorenstein
automorphism groups of the Fermat quintic threefold (cf. Theorem 10.4), a contra-
diction. Hence A3A1 �= A1A3 in the case (ii) and we may assume A3A1 = ξ5A1A3.
Then by Lemma 4.11

A3 =

⎛
⎜⎜⎜⎜⎝

0 a1 0 0 0
0 0 a2 0 0
0 0 0 a3 0
0 0 0 0 a4
a5 0 0 0 0

⎞
⎟⎟⎟⎟⎠

for some a1, a2, a3, a4, a5 with a1a2a3a4a5 = 1. Then diag(a1, a2, a3, a4, a5) = A3A
−1
2 .

By replacing A3 by A3A
−1
2 , we are reduced to the previous situation (i.e. A3A1 =

A1A3. Therefore, the case (ii) is impossible.
Hence A2A1 = A1A2. Since [A1] ∈ Z(G5), if we choose A3 ∈ GL(5,C) such that

[A3] ∈ G5 \ N , and A5
3 = I5, then, by symmetry, we must also have A1A3 = A3A1.

So the lemma is proved.

Lemma 7.3. Let G = Aut(X). If |G5| = 125 and G5 is not abelian, then there
exist A1, A2, A3 ∈ GL(5,C) such that G = 〈[A1], [A2], [A3]〉, A1A2 = A2A1, A1A3 =
A3A1, det(A1) = 1, and for all i = 1, 2, 3, both Ai and [Ai] are of order 5 as elements
of GL(5,C) and PGL(5,C) respectively.

Proof. By Lemma 7.2, there exist A1, A2, A3 ∈ GL(5,C) such that G =
〈[A1], [A2], [A3]〉 and

A1A2 = A2A1, A1A3 = A3A1, A
5
i = I5, i = 1, 2, 3. (7.1)

We show det(A1) = 1. Since G5 is not abelian, the commutator subgroup [G5, G5]
is not the trivial subgroup. Then [G5, G5] = Z(G5) = 〈[A1]〉. So A2A3A

−1
2 A−1

3 =
ξi5A

α
1 . Since G5 is not abelian, so α �= 0(mod 5). Then

1 = det(A2A3A
−1
2 A−1

3 ) = det(ξi5A
α
1 ) = (det(A1))

α.

On the other hand, A5
1 = I5. Hence det(A1) = 1.

Proposition 7.4. Let G = Aut(X). If |G5| = 125, then G5 is abelian.

Proof. Assuming that G5 is not abelian, we shall get a contradiction. By Lemma
7.3, there exist A1, A2, and A3 ∈ GL(5,C) such that G = 〈[A1], [A2], [A3]〉, A1A2 =
A2A1, A1A3 = A3A1 and A5

i = I5, and det(A1) = 1. Notice that A1 has two or more
distinct eigenvalues.

Case (1) A1 has exactly two distinct eigenvalues. Then we may assume
A1 = diag(1, 1, 1, ξ5, ξ5) or diag(1, 1, 1, 1, ξ5). But det(diag(1, 1, 1, ξ5, ξ5)) �= 1, and
det(diag(1, 1, 1, 1, ξ5)) �= 1. So this case is impossible.
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Case (2) A1 has exactly three distinct eigenvalues. Then we may assume (i):
A1 = diag(1, 1, 1, ξ5, ξ

a
5 ), for some 1 < a < 5 or (ii): A1 = diag(1, 1, ξ5, ξ5, ξ

b
5), for

some 1 < b < 5.
For Case (2)-(i), det(A1) = 1 implies a = 4. Then A1A2 = A2A1 and A1A3 =

A3A1 imply A2 = diag(B2, ξ
p
5 , ξ

q
5) and A3 = diag(B3, ξ

m
5 , ξn5 ), where 0 ≤ p, q,m, n ≤ 4

and B2, B3 ∈ GL(3,C). As in the proof of Lemma 7.3, we have

A2A3 = ξi5A
α
1A3A2, for some i and α . (7.2)

By the equation (7.2) we have

diag(B2B3, ξ
p+m
5 , ξq+n

5 ) = diag(B3B2, ξ
p+m+i+α
5 , ξq+n+i+4α

5 ). (7.3)

By the equation (7.3), i = α = 0. However, then, by the equation (7.2), A2A3 =
A3A2, a contradiction. So the case (2)-(i) is impossible.

Case (2)-(ii) By det(A1) = 1, b = 3. Then by the equalities (7.1), A2 =
diag(B2, C2, ξ

p
5), A3 = diag(B3, C3, ξ

m
5 ), where B2, B3, C2, C3 ∈ GL(2,C), and B5

2 =
B5

3 = C5
2 = C5

2 = I2. Since G5 is not abelian, A2A3 �= A3A2. Therefore, ei-
ther B2B3 �= B3B2 or C2C3 �= C3C2. Without loss of generality, we may assume
B2B3 �= B3B2 and B2 = diag(1, ξ5). Then by the equation (7.2), we have

diag(B2B3, C2C3, ξ
p+m
5 ) = diag(ξi5B3B2, ξ

i+α
5 C3C2, ξ

p+m+i+3α
5 ). (7.4)

By the equality (7.4), B2B3 = ξi5B3B2, in particular, det(B2B3) = det(ξi5B3B2).
However, then ξ2i5 = 1 and i = 0, a contradiction to B2B3 �= B3B2. Therefore, Case
(2)-(ii) is impossible.

Case (3) A1 has exactly four distinct eigenvalues. Then we may assume A1 =
diag(1, 1, ξ5, ξ

a
5 , ξ

b
5), 2 ≤ a < b ≤ 4. But then det(A1) can not be 1. Hence Case (3) is

impossible.
Case (4) A1 has exactly five distinct eigenvalues. Then we may assume A1 =

diag(1, ξ5, ξ
2
5 , ξ

3
5 , ξ

4
5). Then by the equalities (7.1), A2 and A3 are both diagonal

matrices, and hence G5 is abelian, a contradiction. Therefore, Case (4) is impossible.
So, G5 has to be abelian if |G5| = 125.

Lemma 7.5. Suppose C3
5
∼= N < Aut(X). Then there exist A1, A2, A3 ∈ GL(5,C)

such that N = 〈[A1], [A2], [A3]〉, AiAj = AjAi, and A5
i = I5, where i, j = 1, 2, 3.

Proof. Similar to the proof of Lemma 7.2 (and actually easier).

Theorem 7.6. If C3
5 is isomorphic to a subgroup of Aut(X), then, up to linear

change of coordinates, X is defined by one of the following equations:
(i) x5

1 + x5
2 + x5

3 + x5
4 + x5

5 = 0;
(ii) x5

1 + x5
2 + x5

3 + x5
4 + x5

5 + ax1x2x3x4x5 = 0, a �= 0;
(iii) x5

1 + x5
2 + x5

3 + x5
4 + x5

5 + ax1x2x3x
2
5 = 0, a �= 0;

(iv) x5
1+x5

2+x5
3+x5

4+x5
5+ax1x

3
2x5+ bx2

1x2x
2
5 = 0, either a or b is not equal to zero;

(v) x5
1 + x5

2 + x5
3 + G(x4, x5) = 0, where G can not be written as x5

4 + x5
5 under any

change of coordinates.

Proof. Suppose C3
5
∼= N < Aut(X). By Lemma 7.5, there exist A1, A2, A3 ∈

GL(5,C) such that N = 〈[A1], [A2], [A3]〉, AiAj = AjAi, and A5
i = I5, where i, j =

1, 2, 3. Clearly, we may assume A1 = diag(1, ξ5, 1, 1, ξ
a
5 ), A2 = diag(1, 1, ξ5, 1, ξ

b
5),

A3 = diag(1, 1, 1, ξ5, ξ
c
5), where 0 ≤ a, b, c ≤ 4.
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Case (1) a, b, c are all equal to zero. In this case, A1 = diag(1, ξ5, 1, 1, 1), A2 =
diag(1, 1, ξ5, 1, 1), A3 = diag(1, 1, 1, ξ5, 1). Then Ai(F ) = F, i = 1, 2, 3. By computing
invariant monomials, F = a1x

5
2 + a2x

5
3 + a3x

5
4 +G(x1, x5). Then by suitable changing

of coordinates, the defining equation of X belongs to the case (i) or (v) in Theorem
7.6.

Case(2) exactly one of a, b, c is not equal to zero. We may assume a �= 0, b = 0, c =
0. Then A2 = diag(1, 1, ξ5, 1, 1), A3 = diag(1, 1, 1, ξ5, 1), and A1 = diag(1, ξ5, 1, 1, ξ5),
diag(1, ξ5, 1, 1, ξ

2
5), diag(1, ξ5, 1, 1, ξ

3
5), or diag(1, ξ5, 1, 1, ξ

4
5).

If A1 = diag(1, ξ5, 1, 1, ξ5), then replacing A1 by ξ5A
4
1A

4
2A

4
3, we are reduced to

case (1).

If A1 = diag(1, ξ5, 1, 1, ξ
3
5), then A2

1 = diag(1, ξ25 , 1, 1, ξ5), then by symme-
try (i.e. interchanging coordinates x2 and x5), we are reduced to the case
A1 = diag(1, ξ5, 1, 1, ξ

2
5). If A1 = diag(1, ξ5, 1, 1, ξ

4
5), then ξ5A1A

−1
2 A−1

3 =
diag(ξ5, ξ

2
5 , 1, 1, 1), again by symmetry we are reduced to case A1 = diag(1, ξ5, 1, 1, ξ

2
5).

Therefore, in the case (2), we may assume A1 = diag(1, ξ5, 1, 1, ξ
2
5), A2 =

diag(1, 1, ξ5, 1, 1), A3 = diag(1, 1, 1, ξ5, 1). Then, A1(F ) = A2(F ) = A3(F ) = F .
By computing invariant monomials of Ai, i = 1, 2, 3, we may assume F = x5

1 + x5
2 +

x5
3+x5

4+x5
5+λ1x1x

3
2x5+λ2x

2
1x2x

2
5 = 0. So, F belongs to case (i) or (iv) of Theorem

7.6.

Case (3) exactly two of a, b, c are not equal to zero. We may assume ab �= 0, c = 0.
By symmetry, we may assume 0 < a ≤ b ≤ 4. So (a, b) = (1, 1), (1, 2), (1, 3), (1, 4),
(2, 2), (2, 3), (2, 4), (3, 3), (3, 4), or (4, 4).

Case (3)-(i) (a, b) = (1, 1), (1, 2), (1, 3), or (1, 4). By computing invariant mono-
mials, up to changing of coordinates, F = x5

1 + x5
2 + x5

3 + x5
4 + x5

5, belonging to the
case (i) of Theorem 7.6.

Case (3)-(ii) (a, b) = (2, 2). Then, up to changing of coordinates, F belongs to
the case (iii) of Theorem 7.6.

Case (3)-(iii) (a, b) = (2, 3). Up to changing of coordinates, F belongs to the case
(i) of Theorem 7.6.

Case (3)-(iv) (a, b) = (2, 4), or (3, 3). Up to changing of coordinates, F belongs
to the case (i) or (iv) of Theorem 7.6.

Case (3)-(v) (a, b) = (3, 4), or (4, 4). Up to changing of coordinates, F belongs to
case (i) or (iii) of Theorem 7.6.

Case (4) abc �= 0. Again, A1(F ) = A2(F ) = A3(F ) = F . Suppose a monomial
m = xi1

1 xi2
2 xi3

3 xi4
4 xi5

5 ∈ F . Then i1 + i2 + i3 + i4 + i5 = 5, i2 + ai5 ≡ i3 + bi5 ≡
i4 + ci5 ≡ 0(mod 5). If i5 ≡ 0(mod 5), then i1 ≡ i2 ≡ i3 ≡ i4 ≡ 0(mod 5). So,
M = x5

1, x
5
2, x

5
3, x

5
4 or x5

5. If 0 < i5 < 5, then 0 < i2, i3, i4 < 5, and M = x2x3x4x5xj

for some 1 ≤ j ≤ 5. Furthermore, if x2x3x4x5xj1 ∈ F and x2x3x4x5xj2 ∈ F then
j1 = j2. To sum up, in the case of abc �= 0, up to changing of coordinates, F =
x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + λx2x3x4x5xj for some j. Hence F belongs to case (i), (ii) or

(iii) of Theorem 7.6.

This completes the proof.

Next we prove the following theorem:

Theorem 7.7. Suppose |Aut(X)5| ≥ 125. Then, Aut(X) is isomorphic to a
subgroup of one of the three groups in Examples (1), (2), (5) in Example 2.1.

Proof. If |Aut(X)5| = 53, then by Proposition 7.4, Aut(X)5 is abelian. If
|Aut(X)5| ≥ 625, then by a theorem of Burnside (Theorem 7.9 below), Aut(X)5
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has a maximal normal abelian subgroup of order ≥ 125. So, we may consider the 5
cases in Theorem 7.6.

Case (i) X : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0. Then Aut(X) ∼= C4

5 � S5.
Case (ii) X : x5

1 + x5
2 + x5

3 + x5
4 + x5

5 + ax1x2x3x4x5 = 0, a �= 0. Then using the
differential method introduced in Section 3, we can show that Aut(X) is generated by
semi-permutation matrices. So {x5

1 + x5
2 + x5

3 + x5
4 + x5

5 = 0} is preserved by Aut(X).
Hence Aut(X) is a subgroup of the group C4

5 � S5.
Case (iii) X : x5

1 + x5
2 + x5

3 + x5
4 + x5

5 + ax1x2x3x
2
5 = 0, a �= 0. Then Aut(X) is a

subgroup of C4
5 � S5. The proof is the same as in the case (ii).

Let us consider the cases (iv), (v). In these cases, the differential method reduces
to problem of automorphisms of plane curves and points. First consider the case (iv).

Case (iv) X : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + ax1x

3
2x3 + bx2

1x2x
2
3 = 0, where either a

or b not equal to zero. By the differential method, we can show that if A ∈ GL(5,C)
and A(F ) = λF , then A = diag(B,α, β), where B ∈ GL(3,C) and B(G) = λG,G =
x5
1 + x5

2 + x5
3 + ax1x

3
2x3 + bx2

1x2x
2
3. Notice that we have the following exact sequence:

1 → C2
5

ψ−→ Aut(X)
ϕ−→ Aut(C) → 1 ,

where ψ(a, b) = [diag(1, 1, 1, ξa5 , ξ
b
5)], ϕ([diag(B,α, β)]) = [B] ∈ Aut(C).

We can compute Aut(C) using [Ha13, Theorem 2.1]. First, notice that D10 is a
subgroup of Aut(C), which is generated by [diag(1, ξ5, ξ

2
5)] and interchanging x1 and

x3. Notice the following Lemma:

Lemma 7.8. Suppose C is a smooth plane curve of degree 5, then C2
2 can not be

a subgroup of Aut(C).

Proof. Similar to Section 6 (and in fact much easier). We leave details to the
readers.

So, Aut(C) doesn’t belong to case (a-i), (b-ii), or (c) of [Ha13, Theorem 2.1]. If
Aut(C) belongs to the case (a-ii) or (b-i) of [Ha13, Theorem 2.1], then Aut(C) ∼=
D10. Therefore, Aut(X) is an extension of D10 by C2

5 . Actually, Aut(X) ∼= C3
5 �

C2, generated by [diag(1, 1, 1, ξ5, 1)], [diag(1, 1, 1, 1, ξ5)], [diag(1, ξ5, ξ
2
5 , 1, 1)] and the

involution x1 ↔ x3. In particular, Aut(X) is isomorphic to a subgroup of the group
C4

5 � S5.
Finally, we treat the case (v). In this case X : x5

1+x5
2+x5

3+G(x4, x5) = 0, where
G can not be written as x5

4 + x5
5 under any change of coordinates. Again, applying

the differential method, we can easily show that if A ∈ GL(5,C) and A(F ) = F , then
A = diag(α, β, γ,B), where B ∈ GL(2,C) and B(G) = G. Then applying Lemma
7.10 below, one finally finds that Aut(X) is isomorphic to either (C3

5 � S3) × D6,
(C3

5 � S3) × C4, (C
3
5 � S3) × C2, or C3

5 � S3. Here the factor C3
5 � S3 generated

by [diag(ξ5, 1, 1, 1, 1)], [diag(1, ξ5, 1, 1, 1)], [diag(1, 1, ξ5, 1, 1)] and permutations of the
first three variables x1, x2, x3 and the last factor D6, C4, C2 is the corresponding
automorphism groups in Lemma 7.10. Hence Aut(X) is isomorphic to a subgroup of
Examples (1),(2),(5) in Example 2.1.

This complete the proof.

Theorem 7.9 (See, for example, [Su82, Chapter 2, Corollary 2 to Theorem 1.17]).
Let A be an abelian normal subgroup of maximal order of a p-group G. If |G| = pn

and |A| = pa, we have 2n ≤ a(a+ 1).

Lemma 7.10. Let H = H(x1, x2) be a degree five homogeneous polynomial.
Suppose {H = 0} is a set of five distinct points in P

1. Let G ⊂ PGL(2,C) be the group
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which is generated by matrices leaving H invariant. Then, as an abstract group, G
has five possibilities:

1) G ∼= C5 � C2, an example of H: x5
1 + x5

2;
2) G ∼= S3, an example of H: x4

1x2 + x4
2x1;

3) G ∼= C4, an example of H: x4
1x2 + x5

2;
4) G ∼= C2, an example of H: x4

1x2 + x5
2 + x2

1x3;
5) G trivial group, an example of H: x5

1 + x5
2 + x4

1x2.

Proof. First, it is easy to show that all possible non-trivial Sylow subgroups of G
are: C2, C4, C3, C5. And then it is easy to show G has exactly five possibilities. Note
that for a given “nice” (for example, those in the theorem) H, it is possible to directly
compute (e.g. using Mathematica) all possible matrices which leave H invariant.

The detailed proof is by direct computation, so we skip it.

8. The cases where |G| divides 263252. In this section, X is a smooth quintic
threefold defined by F .

8.1. Solvable groups with order smaller than 2000. In the proof of Theorem
8.3, we use the following two results known in the group theory:

Theorem 8.1 (See, for example, [Su86, Chapter 4, Theorem 5.6]). Let G be a
solvable group. We can write

|G| = mn (m,n) = 1.

Then, the following propositions hold.
(i) There are subgroups of order m.
(ii) Any two subgroups of order m are conjugate.
(iii) Any subgroup whose order divides m is contained in a subgroup of order m.

Theorem 8.2 (Burnside normal p-complement Theorem, see [Bu11, Theorem
II, Section 243]). If a Sylow p-subgroup of a finite group G is in the center of its
normalizer then G has a normal p-complement. (Here, a normal p-complement of a
finite group for a prime p is a normal subgroup of order coprime to p and index a power
of p. In other words the group is a semidirect product of the normal p-complement
and any Sylow p-subgroup.)

Theorem 8.3. Let G be a finite solvable group such that |G| divides 263252 and
|G| ≤ 2000. Suppose G < Aut(X) and G2 �= 1. Then G is F -liftable.

Proof. By Theorem 4.8, G is F -liftable if G5 is trivial.
From now on, we may suppose that G5 not trivial and hence G5

∼= C5 or C2
5 .

Then |G| = 2a23a35a5 , 7 > a2 > 0 and a5 = 1 or 2. Since G is solvable, by Theorem
8.1, G has a subgroup of order 2a25a5 , say H.

If H has a subgroup of order 2 · 5a5 , G is F -liftable by Lemma 4.15 and Theorem
4.8.

If H has no subgroup of order 2 · 5a5 , then |H| = 245a5 and the normalizer of
H5 inside H is H5 itself by Sylow Theorems and |H||2652. Then by Theorem 8.2,
H2 is normal in H. However, by classification of subgroups of Aut(X) of order 16
(see Section 6), we have the order of automorphism group (which can be quickly
computed by GAP) of H2 is not divided by 5. Then H ∼= H2 ×H5, contradicting to
the assumption that H has no subgroups of order 2 · 5a5 .

Therefore, H always has a subgroup of order 2 · 5a5 , and we are done.
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Let G be a finite solvable group such that |G| divides 263252 and |G| ≤ 2000.
Using GAP, one finds all possible groups G (up to isomorphism) which also satisfy
the condition: G is isomorphic to a subgroup of the 22 groups in the Examples (1)-
(22) in Example 2.1. In fact, there are 184 such groups (including the trivial group).
(Their GAP IDs and structure descriptions can be find on the website [Yu].)

Theorem 8.4. Let G be a finite solvable group such that |G| divides 263252 and
|G| ≤ 2000. Suppose G < Aut(X). Then G is isomorphic to a subgroup of the 22
groups in the Examples (1)-(22) in Example 2.1.

Remark 8.5. In order to prove Theorem 8.4, we need to exclude all the other
groups except those 184 groups mentioned above. Like in Section 6, we exclude groups
in two steps: sub-test and case by case consideration. (See Remark 6.2.)

It turns out that we need to exclude 67 groups (not including p-groups since
we already treated them in previous sections.) in the second step (case by case
consideration). Again, their GAP IDs and structure descriptions can be found on the
website [Yu].

Although our main strategy is essentially the same as in Section 6, we need more
tricks to exclude those 67 groups. Roughly speaking, besides the smoothness of X
and F -liftability of G, we combine the following six tricks in various ways:

a) small order elements or subgroups consideration;

b) character table observation;

c) large abelian subgroup consideration;

d) invariant quintic consideration;

e) group structure consideration;

f) no five dimensional faithful representation.

In the proof of Theorem 8.4, we will only select some typical examples (more
precisely, 9 of them) among those 67 groups and show how to use the above six tricks
to exclude them in details. However, all the other groups can be excluded in similar
ways and more details can be found on the website [Yu].

Let us prove Theorem 8.4. In the proof, we often denote groups by their GAP
IDs.

Proof. As mentioned in Remark 8.5 above, we exclude groups inductively and it
turns out that we are reduced to exclude 67 groups. We will show in details how to
exclude the following 9 groups among these 67 groups: [12, 5], [24, 11], [40, 3], [40, 7],
[48, 5], [72, 39], [150, 9], [400, 50], and [480, 257].

Lemma 8.6. Let G < Aut(X). Suppose G ∼= C2 × C3. Let G̃ be an F -lifting of

G. Then, up to change of coordinates, G̃ is generated by either

(i) diag(ξ3, ξ
2
3 , 1, 1, 1) and diag(1, 1,−1, 1, 1);

(ii) diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1) and diag(1, 1,−1,−1, 1); or

(iii) diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1) and diag(1, 1,−1, 1, 1).

In particular, if A(F ) = F and ord([A]) = ord(A) = 6, then tr(A) = 0, 1, ξ23 − ξ3
or −ξ23 + ξ3

Proof. As before, the essential idea is to use F -liftablility of G, smoothness of X
(Proposition 3.4) and Mathematica.
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Since G̃ is an F -lifting of G, we may assume G̃ = 〈[A1], [A2]〉, where A1, A2 are
diagonal matrices and ord(A1) = 3, ord(A2) = 2. Then by Lemma 5.4, we may assume
A1 = diag(ξ3, ξ

2
3 , 1, 1, 1) or diag(ξ3, ξ

2
3 , ξ3, ξ

2
3 , 1).

Case 1) A1 = diag(ξ3, ξ
2
3 , 1, 1, 1).

Then by A1(F ) = F and the smoothness of F , both x4
1x2 and x4

2x1 are in F .
Then by A2(F ) = F we have A2 = diag(1, 1,±1,±1,±1). Then we may assume
A2 = diag(1, 1,−1, 1,±1) and x4

3x4 ∈ F . If A2 = diag(1, 1,−1, 1,−1) then A1(F ) =
A2(F ) = F implies F ∈ (x4) + (x1, x2)

2. This is a contradiction by Proposition 3.4.
So A2 = diag(1, 1,−1, 1, 1).

Case 2) A1 = diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1) and A2 has −1 as eigenvalue of multiplicity 2.

By A1(F ) = F and the smoothness of X we have x5
5 ∈ F . So A2 =

diag(±1,±1,±1,±1, 1).
By A1(F ) = F we may assume x4

1x2 ∈ F . Then A2 = diag(±1, 1,±1,±1, 1).
Then either x4

2x1 or x4
2x3 ∈ F .

If x4
2x1 ∈ F then A2 = diag(1, 1,−1,−1, 1). So A1 = diag(ξ3, ξ

2
3 , ξ3, ξ

2
3 , 1) and

A2 = diag(1, 1,−1,−1, 1), which is the same as in case ii) of the Lemma 8.6.
If x4

2x3 ∈ F then A2 = diag(−1, 1, 1,−1, 1). Interchanging coordinates x1 and x3,
we also get case ii) of the Lemma 8.6

Case 3): Suppose A1 = diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1) and A2 has −1 as eigenvalue of

multiplicity 1. Clearly, interchanging coordinates if necessary we may assume A1 =
diag(ξ3, ξ

2
3 , ξ3, ξ

2
3 , 1) and A2 = diag(1, 1,−1, 1, 1), which is case iii) of the Lemma 8.6.

Lemma 8.7. The group [12, 5] ∼= C2
2 × C3 is not a subgroup of Aut(X).

Proof. We mainly use tricks a) and d) in Remark 8.5.

Assume to the contrary that G < Aut(X) and G ∼= C2
2 × C3.

By Theorem 4.8, G has an F -lifting, say G̃. We may assume G̃ = 〈A1, A2, A3〉,
ord(A1) = 3, ord(A2) = ord(A3) = 2, and Ai are diagonal matrices for all i.

By Lemma 8.6, we may consider three cases.
Case i) A1 = diag(ξ3, ξ

2
3 , 1, 1, 1) and A2 = diag(1, 1,−1, 1, 1).

Then x4
1x2, x

4
2x1 ∈ F . We may assume x4

3x4 ∈ F . ThenA3 = diag(1, 1,±1, 1,±1).
Replacing A3 by A2A3 if necessary, we may assume A3 = diag(1, 1, 1, 1,−1). Then
A1(F ) = A2(F ) = A3(F ) = F implies that F ∈ (x4)+ (x1, x2)

2, which is a contradic-
tion by Proposition 3.4.

Case ii) A1 = diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1) and A2 = diag(1, 1,−1,−1, 1).

Then x4
1x2, x

4
2x1, x

4
3x2, x

4
4x1 and x5

5 ∈ F . Clearly A3 = diag(1, 1,±1,±1, 1) and
hence we may assume A3 = diag(1, 1, 1,−1, 1). Then A1 = diag(ξ3, ξ

2
3 , ξ3, ξ

2
3 , 1),

A2 = diag(1, 1,−1,−1, 1) and A3 = diag(1, 1, 1,−1, 1). Then Ai(F ) = F, i = 1, 2, 3
implies F ∈ (x1) + (x3, x5)

2, a contradiction.
Case iii) A1 = diag(ξ3, ξ

2
3 , ξ3, ξ

2
3 , 1) and A2 = diag(1, 1,−1, 1, 1).

Then x4
2x1, x

4
4x1 and x5

5 ∈ F . Then we may assume A3 = diag(1,±1, 1,±1, 1).
Since either x4

1x2 or x4
1x4 ∈ F , we may assume x4

1x2 ∈ F and A3 = diag(1, 1, 1,−1, 1).
Then A1 = diag(ξ3, ξ

2
3 , ξ3, ξ

2
3 , 1), A2 = diag(1, 1,−1, 1, 1) and A3 = diag(1, 1, 1,−1, 1).

By A1(F ) = A2(F ) = A3(F ) = F , as in case ii), we get F ∈ (x1) + (x3, x5)
2, a

contradiction.

Lemma 8.8. Suppose C3×C4
∼= G < Aut(X). Let G̃ be an F -lifting of G. Then,

up to change of coordinates, we may assume G̃ is generated by either one of (i)-(v)
below:

i) diag(ξ3, ξ
2
3 , 1, 1, 1), diag(1, 1, ξ4, 1, 1);
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ii) diag(ξ3, ξ
2
3 , 1, 1, 1), diag(1, 1, ξ4,−1, 1);

iii) diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1), diag(1, 1, ξ4, 1, 1);

iv) diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1), diag(1, 1, ξ4, ξ

3
4 , 1);

v) diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1), diag(1, 1, ξ4, ξ4, 1).

Proof. Similar to the proof of Lemma 8.6.

Lemma 8.9. The group [24, 11] = C3 ×Q8 is not a subgroup of Aut(X).

Proof. We mainly use tricks a), b) d), e) in Remark 8.5.

Assume to the contrary that G < Aut(X) and G ∼= C3×Q8. Let G̃ be an F -lifting

of G. Then G̃ can be naturally viewed as a five dimensional faithful representation of
C3 ×Q8.

Every matrix in G̃ with order 4 must have both ξ4 and ξ34 as eigenvalues by
representation theory of Q8.

Let A1 and A2 be diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1) and diag(1, 1, ξ4, ξ

3
4 , 1) respectively. By

Lemma 8.8, we may assume 〈A1, A2〉 is contained in G̃. Therefore, the five dimensional

faithful representation of Q8 induced by G̃ is of type 2⊕ 1⊕ 1⊕ 1.
Then all other matrices in G̃ with order 4 must of form diag(I2, B, 1), where I2

is the 2× 2 identity matrix and B ∈ GL(2,C).
On the other hand, A1 commutes with diag(I2, B, 1), hence B is a diagonal matrix.

Then we have a contradiction since Q8 is not an abelian group.

Lemma 8.10. Let G < Aut(X). Suppose G ∼= C2 × C5. Let G̃ be an F -lifting of

G. Then, up to change of coordinates, G̃ is generated by either
(i) ξi5 · diag(1, 1, ξ5, ξa5 , ξb5) and diag(−1, 1, 1, 1, 1) for some i, a, b; or
(ii) ξi5 · diag(1, 1, ξa5 , ξa5 , ξb5) and diag(−1, 1,−1, 1, 1) for some i, a, b.

Proof. Similar to the proof of Lemma 8.6.

Lemma 8.11. [40, 3] ∼= C5 � C8 is not a subgroup of Aut(X).

Proof. We mainly use tricks a) and b) in Remark 8.5.

Assume to the contrary. Then there exists a five dimensional faithful representa-
tion, say ρ, of [40, 3] such that ρ leaves F invariant.

By character table of [40, 3] (see Figure 3), ρ must be of type 4 ⊕ 1. The four
dimensional irreducible component of ρ must be X.10. Then by Lemma 8.10, [40, 3]
is excluded.

Lemma 8.12. Let G < Aut(X). Suppose G ∼= C2×C2×C5. Let G̃ be an F -lifting

of G. Then, up to change of coordinates, G̃ is generated by either
(i) ξi5 ·diag(1, 1, ξ5, ξ5, ξa5 ), diag(−1, 1, 1, 1, 1) and diag(1, 1,−1, 1, 1) for some i, a;
(ii) ξi5 · diag(1, 1, ξ5, 1, 1), diag(−1, 1, 1, 1, 1) and diag(1, 1, 1,−1, 1) for some i; or
(iii) ξi5 ·diag(1, 1, 1, 1, ξ5), diag(−1, 1,−1, 1, 1) and diag(1, 1,−1,−1, 1) for some i.

Proof. Similar to the proof of Lemma 8.6.

Lemma 8.13. Let H < G < Aut(X) and K � G. Suppose H ∼= C2 × C2 and
K ∼= C5 (so that H ∩K = 1, and H ×K can be viewed as a subgroup of G). Then
CG(H) = CG(H ×K).

Proof. Let H̃ and K̃ be F -liftings of H and K respectively. Then, we have three
cases, according to the 3 cases (i)-(iii) in Lemma 8.12:
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gap> Display(CharacterTable(SmallGroup(40,3)));

CT1

 2  3  3  3  3  1  3  3  3  1  3

 5  1  .  .  1  1  .  .  .  1  .

 1a  8a 4a 2a 5a  8b  8c 4b 10a  8d

 2P 1a  4a 2a 1a 5a  4b  4a 2a  5a  4b

 3P 1a  8b 4b 2a 5a  8a  8d 4a 10a  8c

 5P 1a  8c 4a 2a 1a  8d  8a 4b  2a  8b

 7P 1a  8d 4b 2a 5a  8c  8b 4a 10a  8a

X.1  1  1  1  1  1  1  1  1  1  1

X.2  1  -1  1  1  1  -1  -1  1  1  -1

X.3  1  A -1  1  1  -A  A -1  1  -A

X.4  1  -A -1  1  1  A  -A -1  1  A

X.5  1  B -A -1  1 -/B  -B  A  -1  /B

X.6  1 -/B  A -1  1  B  /B -A  -1  -B

X.7  1  /B  A -1  1  -B -/B -A  -1  B

X.8  1  -B -A -1  1  /B  B  A  -1 -/B

X.9  4  .  . -4 -1  .  .  .  1  .

X.10  4  .  .  4 -1  .  .  .  -1  .

A = -E(4)= -Sqrt(-1) = -i

B = -E(8)

Fig. 3. Character table of [40, 3]

Case i) H̃ = 〈A1 := diag(−1, 1, 1, 1, 1), A2 := diag(1, 1,−1, 1, 1)〉 and K̃ = 〈A3 :=
ξi5 · diag(1, 1, ξ5, ξ5, ξa5 )〉.

Let [B] ∈ CG(H). It follows that BA1 = A1B, and BA2 = A2B. Then the matrix
B must be of “special” form. Since K is normal in G, we have BA3B

−1 = ξj5A
k
3 . Then

by a direct computation, we must have j = 0, k = 1. So [B] ∈ CG(H ×K).
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The remaining two cases (ii) and (iii) are similar.

Lemma 8.14. [40, 7] ∼= C2 × (C5 � C4) is not a subgroup of Aut(X).

Proof. We mainly use tricks a), b), and e) in Remark 8.5.

Assume to the contrary, [40, 7] ∼= G < Aut(X). G̃ is an F -lifting of G and ρ is
the corresponding 5 dimensional representation of [40, 7].

Notice that [40, 7] has a subgroupH ∼= C2×C2×C5 such thatH contains elements
belongs to conjugacy classes 2a, 2b, 2c, 5a in the character table of [40, 7] (see Figure
4).

By Lemma 8.12, we may assume that H is generated by diag(−1, 1, 1, 1, 1),
diag(1, 1,−1, 1, 1) and diag(ξ25 , ξ

2
5 , ξ

3
5 , ξ

3
5 , 1).

Then ρ must be of type 2⊕2⊕1. Notice that by values of 4a the one dimensional
representation can not be X.3. Therefore ρ is of the form 2 ⊕ 2 ⊕X.1. Then by the
character table of [40, 7], 2a, 2b, 2c all have −1 as eigenvalue of multiplicity two.

But H has exactly one matrix which is of order 2 and has −1 as eigenvalue of
multiplicity two, a contradiction.

Lemma 8.15. Suppose C3 × C4
∼= G < Aut(X). Let G̃ be an F -lifting of G.

Then, up to change of coordinates, we may assume G̃ is generated by either one of:
i) diag(ξ3, ξ

2
3 , 1, 1, 1), diag(1, 1, ξ4, 1, 1).

ii) diag(ξ3, ξ
2
3 , 1, 1, 1), diag(1, 1, ξ4,−1, 1).

iii) diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1), diag(1, 1, ξ4, 1, 1).

iv) diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1), diag(1, 1, ξ4, ξ

3
4 , 1).

v) diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1), diag(1, 1, ξ4, ξ4, 1).

Proof. Similar to the proof of Lemma 8.6.

Lemma 8.16. Suppose C3 × C8
∼= G < Aut(X). Let G̃ be an F -lifting

of G. Then, up to change of coordinates, we may assume G̃ is generated by
diag(ξ3, ξ

2
3 , 1, 1, 1), diag(1, 1, ξ8, ξ

−4
8 , 1).

Proof. Use Lemma 8.15.

Lemma 8.17. [48, 5] ∼= C24 � C2 is not a subgroup of Aut(X).

Proof. We mainly use tricks a) and e) in Remark 8.5.

Assume to the contrary, [48, 5] ∼= G < Aut(X). Let G̃ be an F -lifting of G. By

the structure of [48, 5], we see that G̃ ∼= (C3 × C8) � C2 and Sylow 2-subgroup of G̃
is not abelian.

Let H ∼= C3 × C8 be a normal subgroup of G̃. Then by Lemma 8.16, we may
assume H is generated by diag(ξ3, ξ

2
3 , 1, 1, 1), A := diag(1, 1, ξ8, ξ

−4
8 , 1).

Let B ∈ GL(5,C). Then, a = 1 if BAB−1 = Aa by eigenvalue considerations.

However, then G̃ must have an abelian Sylow 2-subgroup, a contradiction.

Lemma 8.18. [72, 39] ∼= C2
3 � C8 is not a subgroup of Aut(X).

Proof. We mainly use tricks b) and f) in Remark 8.5.
If otherwise, then [72, 39] must have a 5 dimensional faithful representation, say

ρ. However, by the character table of [72, 39] (see Figure 5), ρ can not exist, a
contradiction.

Lemma 8.19. Let G < Aut(X). Suppose G ∼= C3 × C5 × C5. Let G̃ be an F -

lifting of G. (Existence of G̃ can be proved similarly as before.) Then, up to change

of coordinates, G̃ is generated by
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gap> Display(CharacterTable(SmallGroup(40,7)));

CT2

 2  3  3  3  3  2  3  3  3  2  2  2  3  2  2  2  2

 5  1  .  1  1  1  .  .  1  1  1  1  .  1  1  1  1

 1a 4a 2a 2b 5a 4b 4c 2c 10a 10b 5b 4d 10c 10d 10e 10f

 2P 1a 2b 1a 1a 5b 2b 2b 1a  5b  5b 5a 2b  5b  5a  5a  5a

 3P 1a 4c 2a 2b 5b 4d 4a 2c 10d 10e 5a 4b 10f 10a 10b 10c

 5P 1a 4a 2a 2b 1a 4b 4c 2c  2a  2b 1a 4d  2c  2a  2b  2c

 7P 1a 4c 2a 2b 5b 4d 4a 2c 10d 10e 5a 4b 10f 10a 10b 10c

X.1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1

X.2  1 -1 -1  1  1  1 -1 -1  -1  1  1  1  -1  -1  1  -1

X.3  1 -1  1  1  1 -1 -1  1  1  1  1 -1  1  1  1  1

X.4  1  1 -1  1  1 -1  1 -1  -1  1  1 -1  -1  -1  1  -1

X.5  1  A -1 -1  1 -A -A  1  -1  -1  1  A  1  -1  -1  1

X.6  1 -A -1 -1  1  A  A  1  -1  -1  1 -A  1  -1  -1  1

X.7  1  A  1 -1  1  A -A -1  1  -1  1 -A  -1  1  -1  -1

X.8  1 -A  1 -1  1 -A  A -1  1  -1  1  A  -1  1  -1  -1

X.9  2  . -2 -2  B  .  .  2  -B  -B *B  .  B -*B -*B  *B

X.10  2  . -2 -2 *B  .  .  2 -*B -*B  B  .  *B  -B  -B  B

X.11  2  . -2  2  B  .  . -2  -B  B *B  .  -B -*B  *B -*B

X.12  2  . -2  2 *B  .  . -2 -*B  *B  B  . -*B  -B  B  -B

X.13  2  .  2 -2  B  .  . -2  B  -B *B  .  -B  *B -*B -*B

X.14  2  .  2 -2 *B  .  . -2  *B -*B  B  . -*B  B  -B  -B

X.15  2  .  2  2  B  .  .  2  B  B *B  .  B  *B  *B  *B

X.16  2  .  2  2 *B  .  .  2  *B  *B  B  .  *B  B  B  B

A = -E(4)= -Sqrt(-1) = -i

B = E(5)^2+E(5)^3= (-1-Sqrt(5))/2 = -1-b5

Fig. 4. Character table of [40, 7]

(i) ξi5 · diag(1, 1, ξ5, 1, ξa5 ), ξj5 · diag(1, 1, 1, ξ5, ξb5) and diag(ξ3, ξ
2
3 , 1, 1, 1) for some

i, j, a, b; or

(ii) ξi5 ·diag(1, 1, ξ5, ξ5, 1), ξ5j ·diag(1, 1, 1, 1, ξ5) and diag(ξ3, ξ
2
3 , ξ3, ξ

2
3 , 1) for some

i, j.

In the case (ii), X is isomorphic to Example (14) in Example 2.1.
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gap> Display(CharacterTable(SmallGroup(72,39)));

CT1

 2  3  3  3  3  .  3  3  3  3

 3  2  .  .  .  2  .  .  .  .

 1a  8a 4a 2a 3a  8b  8c 4b  8d

 2P 1a  4a 2a 1a 3a  4b  4a 2a  4b

 3P 1a  8b 4b 2a 1a  8a  8d 4a  8c

 5P 1a  8c 4a 2a 3a  8d  8a 4b  8b

 7P 1a  8d 4b 2a 3a  8c  8b 4a  8a

X.1  1  1  1  1  1  1  1  1  1

X.2  1  -1  1  1  1  -1  -1  1  -1

X.3  1  A -1  1  1  -A  A -1  -A

X.4  1  -A -1  1  1  A  -A -1  A

X.5  1  B -A -1  1 -/B  -B  A  /B

X.6  1 -/B  A -1  1  B  /B -A  -B

X.7  1  /B  A -1  1  -B -/B -A  B

X.8  1  -B -A -1  1  /B  B  A -/B

X.9  8  .  .  . -1  .  .  .  .

A = -E(4)

 = -Sqrt(-1) = -i

B = -E(8)

Fig. 5. Character table of [72, 39]

Proof. Similar to the proof of Lemma 8.6. For the last statement, we use Mathe-
matica to compute invariant monomials.

Lemma 8.20. [150, 9] ∼= C3 × ((C5 × C5)� C2) is not a subgroup of Aut(X).

Proof. We mainly use tricks a), d), and e) in Remark 8.5.
By GAP, [150,9] isomorphic to C3×((C5×C5)�C2) and C2×C5 is not a subgroup
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of [150,9].
It suffices to consider two cases: (i), (ii) in the Lemma 8.19.
Case (i) C3 × C5 × C5 generated by A1 :=ξi5 · diag(1, 1, ξ5, 1, ξa5 ), A2 :=ξj5 ·

diag(1, 1, 1, ξ5, ξ
b
5) and A3 :=diag(ξ3, ξ

2
3 , 1, 1, 1) for some i, j, a, b.

By the structure of [150, 9] there exists [B] ∈ [150, 9] such that A3B =
BA3, BA1B

−1 = A−1
1 and BA2B

−1 = A−1
2 . It is easy to check such B can not

exist, a contradiction.
Case (ii) [150, 9] is not a subgroup of Aut(X) if X is isomorphic to Example (14)

in Example 2.1, a contradiction.

Lemma 8.21. Suppose C5×C5×C8
∼= G < Aut(X). Then Aut(X) is isomorphic

to a subgroup of the group in Example 4 in Example 2.1.

Proof. By a similar argument as before, we may assume G̃ is generated by ξi5 ·
diag(1, 1, 1, ξ5, 1), ξ5

j · diag(1, 1, 1, 1, ξ5) and diag(ξ8, ξ
−4
8 , 1, 1, 1) for some i, j.

Then using Mathematica we can compute the invariant monomials of G̃ and
obtain F = x4

1x2 + x4
2x3 + x5

3 + x5
4 + x5

5 + λx2
2x

3
3. Now, we may apply the differential

method in Section 3 to get the result.

Lemma 8.22. [400, 50] ∼= C2
5 � C16 is not a subgroup of Aut(X).

Proof. We mainly use tricks c), and e) in Remark 8.5.
By GAP, [400, 50] contains a subgroup isomorphic to C5 × C5 × C8. Then the

result follows from Lemma 8.21.

Lemma 8.23. Let A ∈ GL(5,C). Suppose [A] ∈ Aut(X) and both A and
[A] have order 8 (as elements in GL(5,C) and PGL(5,C) respectively). Then,
up to change of coordinates and up to odd power of A, A is one of the fol-
lowings: (i) diag(ξ8,−1, 1, 1, 1), (ii) diag(ξ8,−1, 1, 1, ξ28), (iii) diag(ξ8,−1, 1, 1, ξ38),
(iv) diag(ξ8,−1, 1, 1,−1), (v) diag(ξ8,−1, 1, 1, ξ58), (vi) diag(ξ8,−1, 1, 1, ξ68), (vii)
diag(ξ8,−1, 1, 1, ξ78), (viii) diag(ξ8,−1, 1, ξ28 , ξ

3
8), (ix) diag(ξ8,−1, 1, ξ28 , ξ

5
8), (x)

diag(ξ8,−1, 1, ξ28 , ξ
6
8), (xi) diag(ξ8,−1, 1, ξ28 , ξ

7
8), (xii) diag(ξ8,−1, 1, ξ58 , ξ

6
8).

Proof. Since A(F ) = F and A has order 8, we may assume A =
diag(ξ8, ξ

4
8 , 1, ξ

a
8 , ξ

b
8), 0 ≤ a ≤ b ≤ 7. Then one of a and b must be even, otherwise

trace of A4 is −1, a contradiction to Lemma 6.4.
Then for all possible pairs (a, b), we compute the monomials invariant by A and

use the smoothness of X and Proposition 3.4. In this way, the lemma can be proved.

Lemma 8.24. Suppose [96, 67] ∼= G < Aut(X). Then, up to change of coordi-
nates, an F -lifting of G is generated by the following four matrices:

A1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎝
ξ34 0 0 0 0
0 ξ4 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

A3 =

⎛
⎜⎜⎜⎜⎝
− 1√

2
ξ8

1√
2
ξ8 0 0 0

1√
2
ξ38

1√
2
ξ38 0 0 0

0 0 ξ3 0 0
0 0 0 ξ23 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ , A4 =

⎛
⎜⎜⎜⎜⎝
ξ4 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .
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Proof. Note that [96, 67] ∼= SL(2, 3)� C4. Let G̃ be an F -lifting of G.

Then G̃ induces a five dimensional faithful representation of [96, 67], say ρ :

[96, 67] −→ GL(5,C) such that Image of ρ = G̃. We look at the character table
of [96, 67] (see Figure 6)

gap> Display(CharacterTable(SmallGroup(96,67)));

CT131

 2  5  3  5  2  4  5  3  4  2  4  5  2  4  4  2  4

 3  1  .  1  1  .  1  .  .  1  .  1  1  .  .  1  .

 1a 8a 4a 3a 4b 2a 8b  4c 12a 2b 4d 6a  4e  4f 12b  4g

 2P 1a 4a 2a 3a 2a 1a 4d  2b  6a 1a 2a 3a  2b  2b  6a  2b

 3P 1a 8b 4d 1a 4b 2a 8a  4e  4d 2b 4a 2a  4c  4g  4a  4f

 5P 1a 8a 4a 3a 4b 2a 8b  4c 12a 2b 4d 6a  4e  4f 12b  4g

 7P 1a 8b 4d 3a 4b 2a 8a  4e 12b 2b 4a 6a  4c  4g 12a  4f

 11P 1a 8b 4d 3a 4b 2a 8a  4e 12b 2b 4a 6a  4c  4g 12a  4f

X.1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1

X.2  1 -1  1  1  1  1 -1  -1  1  1  1  1  -1  -1  1  -1

X.3  1  A -1  1  1  1 -A  A  -1 -1 -1  1  -A  A  -1  -A

X.4  1 -A -1  1  1  1  A  -A  -1 -1 -1  1  A  -A  -1  A

X.5  2  .  2 -1  2  2  .  .  -1  2  2 -1  .  .  -1  .

X.6  2  . -2 -1  2  2  .  .  1 -2 -2 -1  .  .  1  .

X.7  2  .  B -1  . -2  .  D  -A  . -B  1  /D  -D  A -/D

X.8  2  . -B -1  . -2  .  /D  A  .  B  1  D -/D  -A  -D

X.9  2  .  B -1  . -2  .  -D  -A  . -B  1 -/D  D  A  /D

X.10  2  . -B -1  . -2  . -/D  A  .  B  1  -D  /D  -A  D

X.11  3  1  3  . -1  3  1  -1  . -1  3  .  -1  -1  .  -1

X.12  3 -1  3  . -1  3 -1  1  . -1  3  .  1  1  .  1

X.13  3 -A -3  . -1  3  A  A  .  1 -3  .  -A  A  .  -A

X.14  3  A -3  . -1  3 -A  -A  .  1 -3  .  A  -A  .  A

X.15  4  .  C  1  . -4  .  .  A  . -C -1  .  .  -A  .

X.16  4  . -C  1  . -4  .  .  -A  .  C -1  .  .  A  .

A = -E(4)= -Sqrt(-1) = -i
B = -2*E(4)= -2*Sqrt(-1) = -2i
C = -4*E(4) = -4*Sqrt(-1) = -4i
D = 1+E(4)= 1+Sqrt(-1) = 1+i

Fig. 6. Character table of [96, 67]

Since G̃ is not abelian, ρ is one of the following types: (i) 4⊕ 1, (ii) 3⊕ 1⊕ 1, (iii)
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3⊕ 2, (iv) 2⊕ 1⊕ 1⊕ 1, (v) 2⊕ 2⊕ 1.
Case (i) ρ of type 4 ⊕ 1. This case is impossible by consideration of conjugacy

class “2a” and by Lemma 6.4.
Case (ii) ρ of type 3⊕1⊕1. This case is impossible by consideration of conjugacy

class “2a” and faithfulness of ρ.
Case (iii) ρ of type 3 ⊕ 2. Faithfulness of ρ and consideration of conjugacy class

“2a” imply trace of conjugacy class “4b” is −1, a contradiction to Lemma 6.10. So
this case is also impossible.

Case (iv) ρ of type 2⊕1⊕1⊕1. By faithfulness of ρ and consideration of conjugacy
class “2a”, the 2 dimensional component of ρ must be one of X.7-X.10. Then trace of
conjugacy class “6a” is 4, a contradiction to Lemma 8.6. So, this case is impossible.

In sum, ρ must be of type 2⊕ 2⊕ 1. Furthermore, by consideration of conjugacy
classes “2a” and “2b”, we have ρ = σ ⊕ X.5 ⊕ τ , σ is one of X.7-X.10 and τ is
one of X.1-X.4. By Lemma 8.23, τ can not be X.2. Then by Lemma 8.15 and
by consideration of conjugacy classes “4a”, “3a”, τ can not be X.3 or X.4, either.
Therefore, ρ = σ ⊕X.5⊕X.1, and σ is one of X.7-X.10.

Note that as characters of [96, 67], the complex conjugate of X.7 is X.8, X.7 ⊗
X.2=X.9, and the complex conjugate of X.7 ⊗ X.2 is X.10. Then, up to change of
coordinates, we may assume G̃ is generated by the four matrices Ai in Lemma 8.24.
(Notice that 〈A1, A2, A3〉 ∼= SL(2, 3), and G̃ = 〈A1, A2, A3〉� 〈A4〉.)

Lemma 8.25. [480, 257] ∼= (SL(2, 3)�C4)×C5 can not be a subgroup of Aut(X).

Proof. Assume to the contrary, [480, 257] ∼= G < Aut(X).

By Theorem 8.3, G has an F -lifting, say G̃. By Lemma 8.24, we may assume
G̃ = 〈A1, A2, A3, A4〉 × 〈A5〉, where A1, A2, A3, A4 are as in Lemma 8.24, and A5 is
of order 5.

Notice that a degree five monomial M = xa1
1 ...xa5

5 is in F only if M satisfies both
of the following two conditions:

(i) a1 + 3a2 ≡ 0(mod 4), a1 ≡ 0(mod 2) (as A2(F ) = F and (A2
4)(F ) = F );

(ii) If a1 = a2 = 0, then a3 + 2a4 ≡ 0(mod 3) (as A3(F ) = F ).
There are exactly 16 different monomials satisfying both (i) and (ii): x4

1x3, x
4
1x4,

x4
1x5, x

2
1x

2
2x3, x

2
1x

2
2x4, x

2
1x

2
2x5, x

4
2x3, x

4
2x4, x

4
2x5, x

4
3x4, x

3
3x

2
5, x

2
3x

2
4x5, x3x

4
4, x3x4x

3
5,

x3
4x

2
5, x

5
5.

Then we may write F as:

F = λ1x
4
1x3 + λ2x

4
2x3 + λ3x

2
1x

2
2x3 + λ4x

4
1x4 + λ5x

4
2x4 + λ6x

2
1x

2
2x4 + λ7x

4
1x5

+λ8x
4
2x5 + λ9x

2
1x

2
2x5 + λ10x

4
3x4 + λ11x

4
4x3 + λ12x

3
3x

2
5 + λ13x

3
4x

2
5

+λ14x3x4x
3
5 + λ15x

2
3x

2
4x5 + λ16x

5
5.

By A1(F ) = F , we have λ1 = λ2, λ4 = λ5, λ7 = λ8.
By A4(F ) = F , we have λ9 = 0, λ10 = λ11, λ12 = λ13.

Notice that A3(x
4
1 + x4

2)=−x4
1+6x2

1x
2
2+x4

2

2 . Then by A3(F ) = F , we have λ7 = 0.
Again, by A3(F ) = F , we have A3((λ1(x

4
1+x4

2)+λ3x
2
1x

2
2)x3)=(λ1(x

4
1+x4

2)+λ3x
2
1x

2
2)x3,

which implies

−λ1
x4
1 + 6x2

1x
2
2 + x4

2

2
+ λ3

x4
1 − 2x2

1x
2
2 + x4

2

4
= ξ23(λ1(x

4
1 + x4

2) + λ3x
2
1x

2
2).

Then λ3 = (2 + 4ξ23)λ1. Similarly, λ6 = −(2 + 4ξ23)λ4. Then A4(F ) = F implies
λ1 = λ4.
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In sum, we may rewrite F as:

F = λ1((x
4
1 + x4

2 + (2 + 4ξ23)x
2
1x

2
2)x3 + (x4

1 + x4
2 − (2 + 4ξ23)x

2
1x

2
2)x4)

+λ10(x
4
3x4 + x4

4x3) + λ12(x
3
3 + x3

4)x
2
5 + λ14x3x4x

3
5 + λ15x

2
3x

2
4x5 + λ16x

5
5.

By the smoothness of X and Proposition 3.4, λ1λ10λ16 �= 0.
Then by adjusting variables xi by suitable nonzero constants, we may assume

λ1 = λ10 = λ16 = 1.
Recall that, A5 is of order 5, and A5Ai = AiA5, for i = 1, 2, 3, 4. Then by

Lemma 4.11, A5 is diagonal, and we may assume A5=diag(ξa5 , ξ
b
5, ξ

c
5, ξ

d
5 , ξ

e
5), for some

0 ≤ a, b, c, d, e ≤ 4.
Then A5(F ) = F implies A5(x

4
1x3)=x4

1x3, A5(x
4
2x3)=x4

2x3, A5(x
4
3x4)=x4

3x4. So
a = b = c = d. So we may assume A5 = diag(1, 1, 1, 1, ξ5). Then A5(F ) = F implies
λ12 = λ14 = λ15 = 0.

To sum up above, we have proved that if [480, 257] is a subgroup of Aut(X), up
to change of coordinates, we may assume:

F = (x4
1+x4

2+(2+4ξ23)x
2
1x

2
2)x3+(x4

1+x4
2−(2+4ξ23)x

2
1x

2
2)x4+x4

3x4+x4
4x3+x5

5. (8.1)

However, then X is singular by a direct computation. Therefore, [480, 257] is
excluded.

In this way, we exclude the 67 groups remained after sub-test to obtain Theorem
8.4 (see the website [Yu] for details of the rest 67− 9 = 58 groups).

Remark 8.26. Recall that as we mentioned before, in the proof of Theorem 8.4,
we need to exclude 67 groups. As we see from the proof of Theorem 8.4 (especially, the
proof of Lemma 8.25), [480, 257] ∼= SL(2, 3) � C4 is very hard (probably the hardest
one!) to exclude. Notice that the polynomial in Example (17) in Example 2.1 and
the polynomial in the equation (8.1) are quite similar. Mysteriously, the first one is
smooth, but the second one is singular. There might be some deep reason behind this
phenomenon.

We also point out that the proofs of Lemma 8.24 and Lemma 8.25 contain useful
strategies to find explicit examples of smooth hypersurfaces with expected group
actions.

8.2. Other cases.

Theorem 8.27. Let G < Aut(X). If G ∼= C16 × C2
5 , then, up to change of

coordinates, X is the Example (4) in Example 2.1.

Proof. Suppose G ∼= C16 × C2
5 .

By Lemma 4.15 and Theorem 4.8, G has an F -lifting, say G̃.
Let A1 = diag(ξ16, ξ

−4
16 , 1, 1, 1), A2 = diag(1, 1, 1, ξ5, 1) and A3 =

diag(1, 1, 1, 1, ξ5).

Using linear change of coordinates if necessary, we may assume G̃ =
〈[A1], [A2], [A3]〉. Then by computing the invariant monomials of G̃, we have

F = ax4
1x2 + bx4

2x3 + cx5
3 + dx5

4 + ex5
5 ,

where a, b, c, d, e are nonzero complex numbers. Clearly, adjusting the coordinates by
nonzero multiples if necessary, we may assume a = b = c = d = e = 1. Then X is
just the Example (4) in Example 2.1.

Theorem 8.28. Let G < Aut(X). If G ∼= C2
4 × C2

5 , then, up to change of
coordinates, X is the Example (3) in Example 2.1.
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Proof. Similar to Theorem 8.27.

To prove Theorem 8.32 below, we need the following purely group theoretical
results:

Theorem 8.29. Let p be a prime. Let G be a finite group of order pαn, (p, n) = 1.
If Gp is abelian and the order of the automorphism group of Gp is coprime to n, then
G has a normal p-complement.

Proof. Since Gp is abelian and the order of the automorphism group of Gp is
coprime to n, then Gp is in the center of its normalizer NG(Gp). Then by Theorem
8.2, G must have a normal p-complement.

Theorem 8.30 ([HR07, Theorem 4.1]). Let p be a prime. Let H be the abelian
p-group Cpe1 × · · · × Cpen , 1 ≤ e1 ≤ · · · ≤ en. Define the following 2n numbers:

dk = max{r|er = ek}, ck = min{r|er = ek}

then one has in particular dk ≥ k, ck ≤ k, and

|Aut(H)| =
n∏

k=1

(pdk − pk−1)

n∏
j=1

(pej )n−dj

n∏
i=1

(pei−1)n−ci+1.

Proposition 8.31. Let G be a finite group. Suppose

G2
∼= C2e1 × · · · × C2en , 1 ≤ e1 < · · · < en.

Then G has a normal 2-complement and G is solvable.

Proof. By Theorem 8.30, the order of automorphism group of G2 is a power of
2. Then by Theorem 8.29, G has a normal 2-complement, say N . By Feit-Thompson
Theorem [FT63], N is solvable. Then G is solvable since both N and G/N are
solvable.

Theorem 8.32. Let G be a subgroup of Aut(X) whose order divides 263252.
Then G is isomorphic to a subgroup of one of the groups appearing in the Example
(1)-(22) in Example 2.1.

Proof. First, we assume G is solvable.
If |G| ≤ 2000, then we are done by Theorem 8.4.
If |G| > 2000, then |G| = 2400, 2880, 3600, 4800, 7200, or 14400.
Suppose |G| = 2400. Since G is solvable, G has a subgroup, say H, of order 800

by Theorem 8.1. By Theorem 8.4, H contains either C16 ×C2
5 or C2

4 ×C2
5 . However,

then by Theorem 8.27, Theorem 8.28 and Theorem 3.8, such G does not exist.
Suppose |G| = 2880. Since G is solvable, G has a subgroup of order 2632 = 576,

a contradiction to Theorem 8.4.
Suppose |G| = 3600 = 243252. Since G is solvable, G has a subgroup of order

144 = 2432, a contradiction to Theorem 8.4.
Suppose |G| = 4800 = 263152. Since G is solvable, G has a subgroup of order

2652 = 1600, a contradiction to Theorem 8.4.
Suppose |G| = 7200 = 253252 or 14400 = 263252. We get a contradiction similar

to previous cases.
Next, we assume G is non-solvable.



250 K. OGUISO AND X. YU

By Proposition 8.31, any finite group whose Sylow 2-subgroups are isomorphic to
C2m ×C2n , where m �= n, must be solvable. By Burnside’s paqb theorem, a3 > 0 and
a5 > 0. Therefore, |G| = 2a23a35a5 , where 2 ≤ a2 ≤ 5, 1 ≤ a3 ≤ 2, and 1 ≤ a5 ≤ 2.
So |G| has 16 possibilities. We will do case by case checking according to the order
|G|:

1) |G| = 22 · 3 · 5: By classification (using GAP), there is only one non-solvable
group of order 60: alternating group A5, which is clearly a subgroup of Aut(X).

2) |G| = 22 · 32 · 5: By classification, there is only one non-solvable group of
order 180: A5 × C3, which is not a subgroup of Aut(X) since it contains a subgroup
isomorphic to C2

2 × C3.
3) |G| = 22 · 3 · 52: By classification, there is only one non-solvable group of order

300: A5×C5, which could be a subgroup of Aut(X) (cf. the Example (21) in Example
2.1).

4) |G| = 22 · 32 · 52: By classification, there is only one non-solvable group of
order 900: A5 ×C15, which is not a subgroup of Aut(X) since it contains a subgroup
isomorphic to C2

2 × C3.
5) |G| = 23 · 3 · 5 = 120: By classification, there are three non-solvable groups of

order 120, A6×C2, S5, and SL(2, 5). By sub-test A6×C2 is excluded (cf. Lemma 6.3).
We know the symmetric group S5 is a subgroup of Aut(X) in examples in Example
2.1. So we are reduced to exclude the group SmallGroup(120, 5) ∼= SL(2, 5).

Lemma 8.33. Let A ∈ GL(5,C) of order 4. Suppose [A] ∈ Aut(X), ord([A]) = 4,
and A(F ) = F . Then tr(A) �= −1.

Proof. Similar to Lemma 8.6.

Lemma 8.34. The group SL(2, 5) is not a subgroup of Aut(X).

Proof. Assume to the contrary that G < Aut(X) and G ∼= SL(2, 5).
Since |G| = 23 · 3 · 5 and G has a subgroup of order 10 (could be checked by

GAP), by Lemma 4.15, G has an F−lifting, say G̃. The group G̃ corresponds to
five dimension faithful linear representation of SL(2, 5), say ρ. By the character table
(see Figure 7). SL(2, 5) has nine different characters X.1−X.9. The representation ρ
can not be a 5-dimensional irreducible representation (i.e., ρ = X.8 ) as X.8 is not a
faithful representation (note that X.8(2a) = 5, i.e., the character X.8 takes value 5 at
the conjugacy class 2a).

ρ can not be of type 4⊕ 1. Indeed:
1) X.7⊕X.1 is impossible by the value of 2a; and
2) X.6⊕X.1 is impossible by the value of 2a.
ρ cannot be of type 3⊕ 1⊕ 1 as this is not faithful, again because of values of 2a.
ρ cannot be of type 3⊕ 2 by the value of 4a and Lemma 8.33.
ρ cannot be of type 2 ⊕ 2 ⊕ 1 by the value of 2a (trace of order 2 matrices can

not be negative).
ρ can not be type 2⊕ 1⊕ 1⊕ 1 by value of 6a and Lemma 8.6.
ρ can not be type 1⊕ 1⊕ 1⊕ 1⊕ 1 since SL(2, 5) is not abelian.
Therefore, ρ with required properties does not exist. So we are done.
6) |G| = 23 · 32 · 5 = 360: By classification, there are six non-solvable groups of

order 360. By sub-test, five of them are excluded and only A6 survives. So we are
reduced to exclude A6.

Lemma 8.35. The alternating group A6 is not a subgroup of Aut(X).
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gap> Display(CharacterTable(SmallGroup(120,5)));

CT1

 2  3  1  1  2  1  1  1  3  1

 3  1  .  .  .  1  1  .  1  .

 5  1  1  1  .  .  .  1  1  1

 1a  5a  5b 4a 3a 6a 10a 2a 10b

 2P 1a  5b  5a 2a 3a 3a  5b 1a  5a

 3P 1a  5b  5a 4a 1a 2a 10b 2a 10a

 5P 1a  1a  1a 4a 3a 6a  2a 2a  2a

 7P 1a  5b  5a 4a 3a 6a 10b 2a 10a

X.1  1  1  1  1  1  1  1  1  1

X.2  2  A  *A  . -1  1  -A -2 -*A

X.3  2  *A  A  . -1  1 -*A -2  -A

X.4  3 -*A  -A -1  .  . -*A  3  -A

X.5  3  -A -*A -1  .  .  -A  3 -*A

X.6  4  -1  -1  .  1  1  -1  4  -1

X.7  4  -1  -1  .  1 -1  1 -4  1

X.8  5  .  .  1 -1 -1  .  5  .

X.9  6  1  1  .  .  .  -1 -6  -1

A = E(5)+E(5)^4 = (-1+Sqrt(5))/2 = b5

Fig. 7. Character table of SL(2, 5)

Proof. Assume to the contrary that G < Aut(X) and G ∼= A6. Notice that A6

has a subgroup of order 10, and then G5 is F−liftable by Lemma 4.15.
Then by Theorem 4.8, G has an F−lifting, say G̃. So G̃ corresponds to a five

dimensional faithful linear representation of A6. By linear representation theory of
A6, the group G̃ contains a matrix of order 4 whose trace is −1, a contradiction to
Lemma 8.33.
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7) |G| = 600, 1800, 240, 720, 1200, 480, 1440: These orders are all less than 2000,
so the methods to exclude groups are essentially the same as the methods for cases
(1)-(6), and we omit the details.

8) |G| = 25 · 3 · 52 = 2400: Because in GAP library, groups of order 2400 are not
approached by SmallGroup(−,−) function, we need to use slightly different methods.

Lemma 8.36. No non-solvable group of order 2400 is a subgroups of Aut(X).

Proof. Assume to the contrary that G < Aut(X), and G is non-solvable of order
2400.

Let N be a maximal proper normal subgroup of G. Then the quotient group
G/N must be a nontrivial simple group, and by classification of finite simple groups,
G/N ∼= C2, C3, C5 or A5.

If G/N ∼= C2, C3, or C5, then N must be a non-solvable subgroup of Aut(X) of
order 1200, 800, or 480, which is impossible by previous results.

If G/N ∼= A5, then N has order 40, then G has a subgroup of order 400. On the
other hand, by the classification (which we are done before) of subgroups of Aut(X)
of order 400, we can explicitly compute (using the differential method in Section 3)
Aut(X) if Aut(X) has a subgroup of order 400. In particular, Aut(X) can not contain
a non-solvable subgroup of order 2400 when 400 divides |Aut(X)|.

Therefore, G/N ∼= A5 is also impossible.

9) |G| = 3600, or 7200: Impossible by similar arguments above.

Therefore, the theorem is proved.

9. Proof of main Theorem. In this section, we prove our main Theorem (The-
orem 2.2).

Let G < Aut(X). Then, by our classification of Sylow subgroups of subgroups of
Aut(X) done in previous sections, it follows that

|G| = 2a23a35a513a1317a1741a41 ,

where 0 ≤ a2 ≤ 8, 0 ≤ a3 ≤ 2, 0 ≤ a5 ≤ 5, 0 ≤ a13 ≤ 1, 0 ≤ a17 ≤ 1, 0 ≤ a41 ≤ 1.
If a13, a17, or a41 is not zero, by Theorems 5.15, 5.13 or 5.14, G is isomorphic to

a subgroup of one of the 22 groups in Example 2.1.
In the rest of the proof we assume a13 = a17 = a41 = 0.
If a5 ≥ 3, then by Theorem 7.7, G is isomorphic to a subgroup of one of the

groups in Example 2.1.
Then we may furthermore assume a5 < 3, i.e.,

|G| = 2a23a35a5 ,

where 0 ≤ a2 ≤ 8, 0 ≤ a3 ≤ 2, 0 ≤ a5 ≤ 2.
If a2 = 7 or 8, then by Theorem 6.24, G is isomorphic to a subgroup of one of the

groups in Example 2.1.
If 0 ≤ a2 ≤ 6, then we may just apply Theorem 8.32.
Theorem 2.2 is thus proved.

10. Application-Gorenstein automorphism groups. In this section, X is
a smooth quintic threefold defined by F . In this section, we study the Gorenstein
automorphism group of X.

Definition 10.1. Let Y be a Calabi-Yau threefold. Let ωY be a nonzero holo-
morphic 3-form on Y . An automorphism of Y or an action of a group on Y is called
Gorenstein if it fixes ωY .
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Lemma 10.2. Let A ∈ GL(5,C). Suppose [A] ∈ Aut(X). Then the automorphism
[A] of X is Gorenstein if and only if A(F ) = det(A)F .

Proof. See, for instance, [Mu88, Lemma 2.1].

Lemma 10.3. Let H < Aut(X). Suppose H has an F -lifting, say H̃. Then H is

Gorenstein if and only if H̃ ⊂ SL(5,C).

Proof. By definition of F -lifting, for all A in H̃, we have A(F ) = F . Then just
apply Lemma 10.2.

Let Gi ⊂ PGL(5,C) and Xi (i = 1, 2, ..., 22) be the finite group and the smooth
quintic threefold defined in Example (i) in Example 2.1. Then by Lemma 10.2, we can
easily compute the Gorenstein subgroup (i.e., the subgroup consists of the Gorenstein
automorphism of Xi), say Hi, of Gi

∼= Aut(Xi):
Example (1): H1=〈[A4A

4
5], [A4A

4
6], [A4A

4
7], [A2], [A3]〉 ∼= C3

5 � A5, and |H1| =
22 · 3 · 54 = 7500. (The matrices Ai here are the same as those in Example (1) in
Example 2.1. We use similar convention below.)

Example (2): H2=〈[A2
1A2], [A3], [A4A

4
5], [A4A

4
6]〉 ∼= (C2

5 � C3) � C2, and |H2| =
2 · 3 · 52 = 150.

Example (3): H3=〈[A1A
3
2], [A3A

4
4], [A5]〉 ∼= D40, and |H3| = 23 · 5 = 40.

Example (4): H4=〈[A8
1A4], [A2A

4
3]〉 ∼= D10, and |H4| = 2 · 5 = 10.

Example (5): H5=〈[A1A7], [A2], [A3A
4
4], [A3A

4
5], [A6]〉 ∼= (C3 × (C2

5 � C3)) � C2,
and |H5| = 2 · 32 · 52 = 450.

Example (6): H6=〈[A4
1A

3
2]〉 ∼= C4, and |H6| = 22 = 4.

Example (7): H7=the trivial group.

Example (8): H8=〈[A2
1A3], [A

2
2A5], [A4]〉 ∼= C5 × S3, and |H8| = 2 · 3 · 5 = 30.

Example (9): H9=〈[A1], [A2], [A4A
4
5]〉 ∼= C5×(C13�C3), and |H9| = 3·5·13 = 195.

Example (10): H10=〈[A8
1A2], [A3]〉 ∼= S3, and |H10| = 2 · 3 = 6.

Example (11): H11=the trivial group.

Example (12: H12=〈[A3], [A4]〉 ∼= C13 � C3, and |H12| = 3 · 13 = 39.

Example (13): H13=〈[A1], [A2], [A
2
3]〉 ∼= C3 ×D34, and |H13| = 2 · 3 · 17 = 102.

Example (14): H14=〈[A1], [A3], [A2A
4
4], [A5A6], [A5A7]〉 ∼= (C5 × (C2

3 �C2))�C2,
and |H14| = 22 · 32 · 5 = 180.

Example (15): H15=〈[A1], [A3]〉 ∼= C41 � C5, and |H15| = 5 · 41 = 205.

Example (16): H16=〈[A1], [A2], [A4]〉 ∼= C3×(C13�C3), and |H16| = 32 ·13 = 117.

Example (17): H17=〈[A1], [A2], [A3]〉 ∼= GL(2, 3), and |H17| = 24 · 3 = 48.

Example (18): H18=〈[A1], [A2], [A3]〉 ∼= SL(2, 3), and |H18| = 23 · 3 = 24.

Example (19): H19=〈[A2], [A4]〉 ∼= C12, and |H19| = 22 · 3 = 12.

Example (20): H20=〈[A2], [A3], [A4]〉 ∼= D24, and |H20| = 23 · 3 = 24.

Example (21): H21=〈[A2], [A3]〉 ∼= A5, and |H21| = 22 · 3 · 5 = 60.
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Example (22): H22=〈[A16
1 A2]〉 ∼= C2, and |H22| = 2.

It turns out that the above examples cover almost all maximal (with respect to
inclusions) finite groups which can have an effective Gorenstein group action on a
smooth quintic threefold:

Theorem 10.4. Let H be a finite group. If H has an effective Gorenstein group
action on a smooth quintic threefold, then H is isomorphic to a subgroup of one of
the following 11 groups: C3

5 � A5, D40, (C3 × (C2
5 � C3)) � C2, C5 × (C13 � C3),

C3×D34, (C5× (C2
3 �C2))�C2, C41�C5, C3× (C13�C3), GL(2, 3), D24, which are

isomorphic to H1,H3,H5,H9,H13,H14,H15,H16,H17,H20 defined above, and C4 × C2.

Proof. First, if X : x4
1x4 + x4

2x5 + x4
3x4 + x5

4 + x5
5 + x1x2x

3
3 = 0, then A1 :=

diag(ξ4, ξ4,−1, 1, 1) and A2 := diag(1,−1,−1, 1, 1) act on X Gorensteinly. Therefore,
C4 × C2 has an effective Gorenstein group action on a smooth quintic threefold.

Since the main ideas and strategies of the rest of the proof already appear in the
previous sections, we only sketch it here.

Suppose H has an effective Gorenstein group action on X. We identify H with
the corresponding subgroup of PGL(5,C).

Of course, H must be isomorphic to a subgroup of the 22 groups in Example 2.1
by Theorem 2.2.

If |H| is divided by 128, 125,41,17 or 13, then, by using the results in previous
sections, we can easily determine H (more precisely, the matrices generate H) and
the defining equation F of X. Then by using Lemma 10.2 or 10.3, the theorem can
be proved in these cases.

Now it remains to treat the cases where

|H| = 2a23a35a5 , 0 ≤ a2 ≤ 6, 0 ≤ a3 ≤ 2, 0 ≤ a5 ≤ 2 .

In these cases, like in Section 6 and Section 8, we use GAP and the method explained
in Remark 6.2 (how to exclude groups). In fact, by sub-test, we are reduced to exclude
the following 21 groups (GAP IDs and their structure description): [12, 1] ∼= C3�C4,
[16, 1] ∼= C16, [16, 2] ∼= C4 × C4, [16, 5] ∼= C8 × C2, [16, 6] ∼= C8 � C2, [16, 7] ∼= D16,
[16, 9] ∼= Q16 (generalized quaternion group), [16, 13] ∼= (C4 × C2) � C2, [20, 1] ∼=
C5 � C4, [20, 3] ∼= C5 � C4, [20, 5] ∼= C10 × C2, [24, 1] ∼= C3 � C8, [24, 2] ∼= C24,
[24, 12] ∼= S4, [30, 4] ∼= C30, [36, 9] ∼= (C3 × C3)� C4, [40, 1] ∼= C5 � C8, [40, 2] ∼= C40,
[40, 11] ∼= C5 ×Q8, [50, 5] ∼= C10 × C5, [225, 6] ∼= C2

3 × C2
5 .

Notice that by results before about F -liftability we can easily show that if H
is isomorphic to one of the above 21 groups then H is F -liftable. Then the task
of excluding these groups is essentially reduced to show that they can not have a
five dimension faithful linear representation into SL(5,C) which leaves the smooth
polynomial F invariant. To give an example, we show how to exclude D16 here:

Lemma 10.5. The group D16 does not admit a Gorenstein action on a smooth
quintic threefold.

Proof. Assume to the contrary that H ∼= D16 has a Gorenstein action on a
smooth quintic threefold. By Theorem 4.8, H has an F -lifting, say H̃. Then there
exist matrices A1, A2 in GL(5,C) such that H̃ = 〈A1, A2〉, 〈A1〉 ∼= C8, 〈A2〉 ∼= C2,
and A2A1A

−1
2 = A−1

1 . By Lemma 10.2, det(A1) = 1 as A1(F ) = F .
Then by Lemma 8.23, we may assume A1=diag(ξ8,−1, 1, 1, ξ38) or

diag(ξ8,−1, 1, ξ58 , ξ
6
8). Then A1 and A−1

1 have different sets of eigenvalues, a
contradiction to A2A1A

−1
2 = A−1

1 .
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Therefore, D16 is excluded.

More details about how to exclude other groups can be found on the website
[Yu].
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[LOP13] V. Lazić, K. Oguiso, and T. Peternell, Automorphisms of Calabi-Yau threefolds
with Picard number three, Adv. Stud. Pure Math., 74 (2017), pp. 279-290.

[MM63] H. Matsumura and P. Monsky, On the automorphisms of hypersurfaces, Journal of
Mathematics of Kyoto University, 3:3 (1963), pp. 347–361.

[Mu88] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieur group,
Inventiones mathematicae, 94:1 (1988), pp. 183–221.

[Og05] K. Oguiso, A characterization of the Fermat quartic K3 surface by means of finite
symmetries, Compositio Mathematica, 141:02 (2005), pp. 404–424.

[Po05] B. Poonen, Varieties without extra automorphisms III: hypersurfaces, Finite Fields
and Their Applications, 11:2 (2005), pp. 230–268.

[Su82] M. Suzuki, Group theory I, New York: Springer, (1982).
[Su86] M. Suzuki, Group theory II, New York: Springer, (1986).



256 K. OGUISO AND X. YU

[Yu] X. Yu’s Homepage: https://sites.google.com/site/xunyuhomepage/home/quintic.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 100
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 100
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


