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DETERMINATION OF A RIEMANNIAN MANIFOLD FROM THE
DISTANCE DIFFERENCE FUNCTIONS∗

MATTI LASSAS† AND TEEMU SAKSALA†

Abstract. Let (N, g) be a Riemannian manifold with the distance function d(x, y) and an open
subset M ⊂ N . For x ∈ M we denote by Dx the distance difference function Dx : F × F → R,
given by Dx(z1, z2) = d(x, z1) − d(x, z2), z1, z2 ∈ F = N \M . We consider the inverse problem of
determining the topological and the differentiable structure of the manifold M and the metric g|M on
it when we are given the distance difference data, that is, the set F , the metric g|F , and the collection
D(M) = {Dx; x ∈ M}. Moreover, we consider the embedded image D(M) of the manifold M , in
the vector space C(F × F ), as a representation of manifold M . The inverse problem of determining
(M, g) from D(M) arises e.g. in the study of the wave equation on R×N when we observe in F the
waves produced by spontaneous point sources at unknown points (t, x) ∈ R×M . Then Dx(z1, z2) is
the difference of the times when one observes at points z1 and z2 the wave produced by a point source
at x that goes off at an unknown time. The problem has applications in hybrid inverse problems and
in geophysical imaging.
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1. Introduction.

1.1. Motivation of the problem. Let us consider a body in which there spon-
taneously appear point sources that create propagating waves. In various applications
one encounters a geometric inverse problem where we detect such waves either outside
or at the boundary of the body and aim to determine the unknown wave speed inside
the body. As an example of such situation, one can consider the micro-earthquakes
that appear very frequently near active faults. The related inverse problem is whether
the surface observations of elastic waves produced by the micro-earthquakes can be
used in the geophysical imaging of Earth’s subsurface [25, 58], that is, to determine
the speed of the elastic waves in the studied volume. In this paper we consider a
highly idealized version of the above inverse problem: We consider the problem on
an n dimensional manifold N with a Riemannian metric g. The distance function
determined by this metric tensor corresponds physically to the travel time of a wave
between two points. The Riemannian distance of points x, y ∈ N is denoted by
d(x, y). For simplicity we assume that the manifold N is compact and has no bound-
ary. Instead of considering measurements on boundary, we assume that the manifold
contains an unknown part M ⊂ N and the metric is known outside the set M . When
a spontaneous point source produces a wave at some unknown point x ∈ M at some
unknown time t ∈ R, the produced wave is observed at the point z ∈ N \M at time
Tx,t(z) = d(z, x)+ t. These observation times at two points z1, z2 ∈ N \M determine
the distance difference function

Dx(z1, z2) = Tx,t(z1)− Tx,t(z2) = d(z1, x)− d(z2, x). (1)

Physically, this function corresponds to the difference of times at z1 and z2 of the waves
produced by the point source at (x, t), see Fig 1. and Section 3. The assumption that
there is a large number point sources and that we do measurements over a long time
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Fig. 1. The distance difference functions are related to observation on the closed manifold N
that contains an unknown open subset M and its known complement F = N \M . The distance
difference function Dx associated to a source point x ∈M has, at the observation points z1, z2 ∈ F ,
the value Dx(z1, z2) = d(x, z1)−d(x, z2). Consider the wave equation and a wave that is produced by
a point source at x that goes off at an unknown time and that is observed on F . Then the difference
of the times when the wave is observed at the points z1 and z2 is equal to Dx(z1, z2). The time
difference inverse problem is to determine the topology and the isometry type of (N, g) from such
observations when x runs over a dense subset of M .

can be modeled by the assumption that we are given the set N \M and the family of
functions

{Dx ; x ∈ X} ⊂ C((N \M)× (N \M)),

where X ⊂ M is either the whole manifold M or its dense subset, see Remark 2.5
below.

1.2. Definitions and the main result. Let (N1, g1) and (N2, g2) be compact
and connected Riemannian manifolds without boundary. Let dj(x, y) denote the
Riemannian distance of points x, y ∈ Nj , j = 1, 2. Let Mj ⊂ Nj be open sets and
define closed sets Fj = Nj \Mj . Suppose F int

j �= ∅. This is a crucial assumption and

we provide a counterexample for a case F int
j = ∅ in Appendix A.

Below, we assume that we know Fj as a differentiable manifold, that is, we know
the atlas of C∞-smooth coordinates on Fj , and the metric tensor gj |Fj

on Fj , but we
do not know the manifold (Mj , gj |Mj

). We assume Fj to be a smooth manifold with
smooth boundary ∂Fj = ∂Mj .

Definition 1.1. For j = 1, 2 and all points x ∈ Nj we define the distance
difference function

Dj
x : Fj × Fj → R, Dj

x(z1, z2) := dj(z1, x)− dj(z2, x)

where Fj = Nj \ Mj. Recall that here dj is the Riemannian distance function of
manifold Nj. We denote by

Dj : Nj → C(Fj × Fj), Dj(x) = Dj
x

the map from a point x to the corresponding distance difference function Dj
x. The

pair (Fj , gj |Fj
) and the collection

Dj(Mj) = {Dj
x ; x ∈Mj} ⊂ C(Fj × Fj)
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of the distance difference functions of the points x ∈ Mj is called the distance differ-
ence data for the set Mj.

We emphasize that the above collections {Dj
x(·, ·); x ∈Mj} are given as unindexed

subsets of C(Fj × Fj), that is, for a given element Dj
x(·, ·) of this set we do not know

what is the corresponding “index point” x.
To prove the uniqueness of this inverse problem, we assume the following:

There is a diffeomorphism φ : F1 → F2 such that φ∗g2|F2 = g1|F1 , (2)

{D1
x(·, ·) ; x ∈M1} = {D2

y(φ(·), φ(·)) ; y ∈M2}. (3)

The following proposition states that using the small data Dj(Mj) we can con-
struct the bigger data set Dj(Nj).

Proposition 1.2. Assume that (2)-(3) are valid. Then:
(i) The map φ : F1 → F2, is a metric isometry, that is, d1(z, w) = d2(φ(z), φ(w))

for all z, w ∈ F1.
(ii) The collections Dj(Nj) = {Dj

x(·, ·); x ∈ Nj} ⊂ C(Fj × Fj) are equivalent in
the following sense

{D1
x(·, ·) ; x ∈ N1} = {D2

y(φ(·), φ(·)) ; y ∈ N2}. (4)

We postpone the proof of this proposition and the other results in the introduction
and give the proofs later in the paper.

The main theorem of the paper is the following:

Theorem 1.3. Let (N1, g1) and (N2, g2) be compact and connected Riemannian
manifolds, without boundary, of dimension n ≥ 2. Let Mj ⊂ Nj be open sets and
define closed sets Fj = Nj \ Mj. Assume that F int

j �= ∅ and that Fj is a smooth
manifold with smooth boundary ∂Fj = ∂Mj. Also, suppose that assumptions (2)-(3)
are valid, that is, the distance difference data for sets M1 and M2 are equivalent.
Then the manifolds (N1, g1) and (N2, g2) are isometric.

We prove Theorem 1.3 in Section 2. This proof is divided into 5 subsections.
In the first we set notations and consider some basic facts about geodesics. In the
second we prove Proposition 1.2. In the third we show that manifolds (Nj , gj) are
homeomorphic. In the fourth subsection we will construct smooth atlases with which
we show that manifolds (Nj , gj) are diffeomorphic. In the fifth subsection we will
use techniques developed in papers [46] and [43] to prove that manifolds (Nj , gj) are
isometric.

Finally, in Section 3 we give an example how the main result can be applied for
an inverse source problem for a geometric wave equation.

1.3. Embeddings of a Riemannian manifold. A classical distance function
representation of a Riemannian manifold is the Kuratowski-Wojdyslawski embedding,

K : x �→ distM (x, · ),

from M to the space of continuous functions C(M) on it. The mapping K : M →
C(M) is an isometry so that K(M) is an isometric representation of M in a vector
space.

Another important example is the Berard-Besson-Gallot representation [10]

G : M → C(M × R+), G(x) = ΦM (x, · , · )
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where (x, y, t) �→ ΦM (x, y, t) is the heat kernel of the manifold (M, g). The asymp-
totics of the heat kernel ΦM (x, y, t), as t→ 0, determines the distance d(x, y), and by
endowing C(M × R+) with a suitable topology, the image G(M) ⊂ C(M × R+) can
be considered as an embedded image of the manifold M .

Theorem 1.3 implies that the set D(M) = {Dx; x ∈M} can be considered as an
embedded image (or a representation) of the manifold (M, g) in the space C(F×F ) in
the embedding x �→ Dx. Moreover, in the proof of Theorem 1.3 we show that (F, g|F )
and the set D(M) determine uniquely an atlas of differentiable coordinates and a
metric tensor on D(M). These structures make D(M) a Riemannian manifold that is
isometric to the original manifold M . Note that the metric is different than the one
inherited from the inclusion D(M) ⊂ C(F ×F ). Hence, D(M) can be considered as a
representation of the manifold M , given in terms of the distance difference functions,
and we call it the distance difference representation of the manifold of M in C(F ×F ).

The embedding D is different to the above embeddings K and G in the following
way that makes it important for inverse problems: With D one does not need to know
a priori the set M to consider the function space C(F × F ) into which the manifold
M is embedded. Similar types of embedding have been also considered in the context
of boundary distance functions, see Subsection 1.4.1.

In addition to the above tensor g on N , let us consider a sequence of metric tensors
gk, k ∈ Z+ on the manifold N and assume that gk|F = g|F on F ⊂ N . We denote the
Riemannian manifolds (N\F, gk|N\F ), having the boundary ∂F , by (Mk, gk). Also, we
denote by D(Mk) ⊂ C(F ×F ) the distance difference representations of the manifolds
(Mk, gk) and let dH(X1, X2) denote the Hausdorff distance of sets X1, X2 ⊂ C(F×F ).
When dH(D(Mk),D(M)) → 0, as k → ∞, an interesting open question is, if the
manifolds (Mk, gk) converge to (M, g) in the Gromov-Hausdorff topology. This type
of questions have been studied for other representations e.g. in [2, 10], but this question
is outside the context of this paper.

1.4. Earlier results and the related inverse problems. The inverse problem
for the distance difference function is closely related to many other inverse problems.
We review some results below:

1.4.1. Boundary distance functions and the inverse problem for a wave
equation. The reconstruction of a compact Riemannian manifold (M, g) with bound-
ary from distance information has been considered e.g. in [27, 30]. There, one defines
for x ∈ M the boundary distance function rx : ∂M → R given by rx(z) = d(x, z).
Assume that one is given the boundary ∂M and the collection of boundary distance
functions corresponding to all x ∈M , that is,

∂M and R(M) := {rx ∈ C(∂M); x ∈M}. (5)

It is shown in [27, 30] that only knowing the boundary distance data (5) one can
reconstruct the topology of M , the differentiable structure of M (i.e., an atlas of C∞-
smooth coordinates), and the Riemannian metric tensor g. Thus R(M) ⊂ C(∂M)
can be considered as an isometric copy of M , and the pair (∂M,R(M)) is called
the boundary distance representation of M , see [27, 30]. Similar results for non-
compact manifolds are considered in [17]. Constructive solutions to determine the
metric from the boundary distance functions have been developed in [14, 15] using
a Riccati equation [56] for metric tensor in boundary normal coordinates and in [55]
using the properties of the conformal killing tensor.

Physically speaking, functions rx are determined by the wave fronts of waves
produced by the delta-sources δx,0 that take place at the point x at time s = 0.
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The distance difference functions D∂M
x are determined by the wave fronts of waves

produced by the delta-sources δx,s that take place at the point x at an unknown time
s ∈ R.

Many hyperbolic inverse problems with time-independent metric reduce to the
problem of reconstructing the isometry type of the manifold from its boundary dis-
tance functions. Indeed, in [26, 27, 29, 31, 32, 35, 51, 52] it has been show that
the boundary measurements for the scalar wave equation, Dirac equation, and for
Maxwell’s system (with isotropic scalar impedance) determine the boundary distance
functions of the Riemannian metric associated to the wave velocity.

1.4.2. Hybrid inverse problems. Hybrid inverse problems are based on cou-
pling two physical models together. In a typical setting of these problems, the first
physical system is such that by controlling the boundary values of its solution, one can
produce high amplitude waves, that create, e.g. due to energy absorption, a source
for the second physical system. Typically, the second physical system corresponds to
a hyperbolic equation with the metric

ds2 = c(x)−2((dx1)2 + · · ·+ (dxn)2)

corresponding to the wave speed c(x). Examples of such hybrid inverse problems are
encountered in thermo-acoustic and photo-acoustic imaging see e.g. [1, 5, 6, 7, 8, 59,
61, 60, 57] and quantitative elastography [4, 22, 23]. In some cases one can use beam
forming in the first physical system to make the source for the second physical system
to be strongly localized, that is, to be close to a point-source, see e.g. [4, 23].

To simplify the above hybrid inverse problem, one often can do approximations
by assuming that the wave speed in the second physical system is either a constant
or precisely known. Usually one also assumes that the time moment when the source
for the second physical system is produced is exactly known. However, when these
approximations are not made, the wave speed c(x) needs to be determined, too. When
the source of the second physical system is produced at the given time in the whole
domain M , the problem is studied in [42, 62]. In the cases when the source of the
second physical system are close to a point sources, one can try to determine c(x)
from the wavefronts that are produced by the point sources and are observed outside
the domain M . This problem can be uniquely solved by Theorem 1.3 and we consider
it in detail below in Section 3.

1.4.3. Inverse problems of micro-earthquakes. The earthquakes are pro-
duced by the accumulated elastic strain that at some time suddenly produce an
earthquake. As mentioned above, the small magnitude earthquakes (e.g. the micro-
earthquakes of magnitude 1 < M < 3) appear so frequently that the surface observa-
tions of the produced elastic waves have been proposed to be used in the imaging of
the Earth near active faults [25, 58]. The so-called time-reversal techniques to study
the inverse source and medium problems arising from the micro-seismology have been
developed in [3, 16, 24].

In geophysical studies, one often approximates the elastic waves with scalar waves
satisfying a wave equation. Let us also assume that the sources of such earthquakes
are point-like and that one does measurements over so long time that the source-points
are sufficiently dense in the studied volume. Then the inverse problem of determining
the the speed of the waves in the studied volume from the surface observations of
the micro-earthquakes is close to the problem studied in this paper. We note that
the above assumptions are highly idealized: For example, considering the system of



178 M. LASSAS AND T. SAKSALA

elastic equations would lead to a problem where travel times are determined by a
Finsler metric instead of a Riemannian one. One possible way to continue the line
of research conducted in this paper, would be to study, if the result of Theorem 1.3
holds on Finsler manifolds. The authors have not yet addressed this issue.

1.4.4. Broken scattering relation. If the sign in the definition of the distance
difference functions is changed in (1), we come to distance sum functions

D+
x (z1, z2) = d(z1, x) + d(z2, x), x ∈M, z1, z2 ∈ N \M. (6)

This function gives the length of the broken geodesic that is the union of the shortest
geodesics connecting z1 to x and the shortest geodesics connecting x to z2. Also, the
gradients of D+

x (z1, z2) with respect to z1 and z2 give the velocity vectors of these
geodesics. The functions (6) appear in the study of the radiative transfer equation
on manifold (N, g), see [13, 47, 48, 49, 54]. Also, the inverse problem of determining
the manifold (M, g) from the broken geodesic data, consisting of the initial and the
final points and directions, and the total length, of the broken geodesics, has been
considered in [33].

2. Proof of the main result.

2.0.5. Notations and basic facts on pre-geodesics. When we are concerning
only one manifold, we use the shorthand notations M,N,F, and g instead of ones with
sub-indexes.

Let (N, g) be a compact and connected Riemannian n-manifold without boundary
and n ≥ 2. We assume that M ⊂ N is an open set of N and the set F = N \M is
compact, F contains an open set and has a smooth boundary. We suppose that the
Riemannian structure of (F, g|F ) is known.

We denote the Riemannian connection of the metric g by∇. A unit speed geodesic
of (N, g) emanating from a point (p, ξ) ∈ SN is denoted by γp,ξ(t) = expp(tξ). Here,
SN = {(p, ξ) ∈ TN ; ‖ξ‖g = 1}. We use a short hand notation Dt := ∇γ̇p,ξ(t) for the
covariant differentiation in the direction γ̇p,ξ for vector fields along geodesic γp,ξ.

Let p ∈ N and choose some smooth coordinates (U,X) at the point p. Denote
the Christoffel symbols of connection ∇ by Γk

i,j .
We say that a curve α([t1, t2]) is distance minimizing if the length of this curve

is equal to the distance between its end points α(t1) and α(t2). Also, a geodesic that
is distance minimizing is called a minimizing geodesic.

We say that a curve α([t1, t2]) is a pre-geodesic, if α(t) is a C1-smooth curve such
that α̇(t) �= 0 on t ∈ [t1, t2], and α([t1, t2]) can be re-parameterized so that it becomes
a geodesic.

Let us next recall some properties of the pre-geodesics. Let us consider a geodesic
curve γ : R→ N , satisfying in local coordinates the equation

Dtγ̇(t) =
d2γk

dt2
(t) + Γk

i,j(γ(t))
dγi

dt
(t)

dγj

dt
(t) = 0, k ∈ {1, . . . , n}. (7)

We need the following result, often credited to Levi-Civita [38].

Lemma 2.1. Let κ : R → R be continuous and γ̃ : R → N be a C2-curve that
satisfies the equation

d2γ̃k

ds2
(s) + Γk

i,j(γ̃(s))
dγ̃i

ds
(s)

dγ̃j

ds
(s) = κ(s)

dγ̃k

ds
(s), k ∈ {1, . . . , n}. (8)
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Then there exists a change of parameters t : R→ R satisfying

dt

ds
(s) = exp

( s∫
0

κ(τ)dτ

)
. (9)

such that curve γ(t) := γ̃(s(t)) solves the geodesic equation (7). Here s(t) is the
inverse function for t(s).

Proof. The proof is a direct computation.

Let us now consider a family C of C2-smooth curves defined on U . We denote by
Ω the subbundle of TU that is deternined by the velocity fields (c, ċ), c ∈ C. More
precisely a vector (p, v) ∈ TU satisfies (p, v) ∈ Ω if and only if there exist a, t ∈ R, c ∈
C such that (p, v) = (c(t), aċ(t)). Let f : Ω→ R be a function that satisfies

f(av) = af(v), for all a ∈ R and v ∈ Ω, (10)

i.e., it is homogeneous of degree 1. Moreover we assume that f satisfies the equation

d2γ̃k

ds2
(s) + Γk

i,j(γ̃(s))
dγ̃i

ds
(s)

dγ̃j

ds
(s) = f

(
dγ̃

ds
(s)

)
dγ̃k

ds
(s), (11)

for any γ̃ ∈ C. By Lemma 2.1 each γ̃ ∈ C is a pre-geodesic of connection ∇.
Next we will show that also the converse result for the pre-geodesics hold. Let

γ̃ a pre-geodesic passing over the point p. We assume that γ̃(0) = p. Let s(t) be
such a re-parametrization of γ̃ that γ̃(s(t)) =: γ(t) satisfies the geodesic equation (7),
s(0) = 0 and d

dt γ̃(s(t))|t=0 ∈ SpN . Then by the chain rule it holds that

d2γ̃k

ds2
(s) + Γk

i,j(γ̃(s))
dγ̃i

ds
(s)

dγ̃j

dt
(s) = − s̈(t)

ṡ(t)2
dγ̃k

ds
(s), k ∈ {1, . . . , n}.

Let Ω be the subbundle of TU that is determined by the velocity vectorfield (γ, γ̇).
We define f : Ω→ R

f(q, v) = ∓‖v‖g
s̈(t)

ṡ(t)2
, if

v

‖v‖g
= ±γ̇(t), for some t ∈ R.

Thus equations (7) and (11) are equivalent in the sense that curves satisfying the
latter one, for appropriate f , are also geodesics of metric g, but parametrized in a
different way.

The distance function of N is denoted by d(x, y) = dN (x, y) for x, y ∈ N . The
normal vector field of ∂M , pointing inside M , is denoted by ν. The boundary cut
locus function is τ∂M : ∂M → R+,

τ∂M (z) = sup{t > 0; d(γz,ν(t), ∂M) = t}. (12)

Also, we use the cut locus function of N that is τ : TN → R+,

τ(x, ξ) = sup{t > 0; d(expx(tξ), x) = t}. (13)

Functions τ∂M (z) and τ(x, ξ) are continuous and satisfy the inequality (see Lemma
2.13 of [27])

τ(z, ν(z)) > τ∂M (z), z ∈ ∂M. (14)
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2.1. Extension of data. In this subsection we prove Proposition 1.2.
Let z1, z2 ∈ ∂F = ∂M . Then using the triangular inequality and that d(z1, z2) =

Dz2(z1, z2) we see easily that

d(z1, z2) = sup
x∈M

Dx(z1, z2). (15)

Thus D(M) determines the distances of the boundary points, that is, the function
d|∂M×∂M : ∂M × ∂M → R.

Lemma 2.2. Suppose that (2)-(3) are valid. Then for every w, z ∈ F1 it holds
that d1(w, z) = d2(φ(w), φ(z)).

The proof of the lemma below is very simple, but as Lemma 2.2 shows how
the given data is extended to a larger data set, we present its proof. Notice that
Lemma 2.2 proofs (i) of the Proposition 1.2.

Proof. Let w, z ∈ F1. Let γ be a minimizing unit speed geodesic in N1 from z to
w and denote S = γ([0, d1(w, z)]) ∩ ∂M1. When S = ∅, using φ∗g2 = g1 we see that
d1(w, z) ≥ d2(φ(w), φ(z)).

Next, consider the case when S �= ∅. Let e1, e2 ∈ S be such that

d1(w, e1) = min{d1(w, x) : x ∈ S} and d1(z, e2) = min{d1(z, x) : x ∈ S}.

As (2)-(3) is valid, the formula (15) implies d1(e1, e2) = d2(φ(e1), φ(e2)). Since φ :
F1 → F2 satisfies φ∗g2 = g1,

d1(w, z) = d1(w, e1) + d1(e1, e2) + d1(e2, z)

≥ d2(φ(w), φ(e1)) + d2(φ(e1), φ(e2)) + d2(φ(e2), φ(z))

≥ d2(φ(w), φ(z)).

The opposite inequality follows by changing the roles of N1 and N2.

Let us consider the case when x ∈ F1. Then, Lemma 2.2 implies that for z1, z2 ∈
F1 we have

D1
x(z1, z2) = d1(x, z1)− d1(x, z2)

= d2(φ(x), φ(z1))− d2(φ(x), φ(z2))
= D2

φ(x)(φ(x), φ(z2)).
(16)

Hence,

{D1
x(·, ·) ; x ∈ F1} ⊂ {D2

y(φ(·), φ(·)) ; y ∈ F2}. (17)

Changing roles of N1 and N2 and considering φ−1 : F2 → F1 instead of the diffeo-
morphism φ : F1 → F2, we see that in formula (17) we have the equality. This and
formula (3), together with Lemma 2.2, imply Proposition 1.2. q.e.d.

2.2. Manifolds N1 and N2 are homeomorphic. To simplify the notations,
we will next in our considerations omit the sub-indexes of sets M1, N1, and F1 and
just consider the sets M,N , and F .

Let x ∈ N and define a function Dx : F × F → R by a formula

Dx(z1, z2) = d(x, z1)− d(x, z2).
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Let D : N → C(F ×F ) be given by D(x) = Dx. Next, we consider the function space
C(F × F ) with the norm ‖f‖∞ = supx,y∈F |f(x, y)|

Theorem 2.3. The image D(N) = {Dx; x ∈ N} ⊂ C(F × F ) is a topological
manifold homeomorphic to manifold N . Moreover, D(M) is homeomorphic to M .

Proof. The proof consists of four short steps.

Step 1. First, we will show that D is 2-Lipschitz and therefore continuous. Let
x, y ∈ N . Using the triangular inequality we see that

‖Dx −Dy‖∞ = sup
z1,z2∈F

|Dx(z1, z2)−Dy(z1, z2)|

≤ sup
z1,z2∈F

|d(x, z1)− d(y, z1)|+ |d(x, z2)− d(y, z2)| (18)

≤ 2d(x, y).

Step 2. Next we will show that D is injective. Suppose that x, y ∈ N are such
that Dx = Dy and x �= y. Let q ∈ F int and denote �x = d(q, x) and �y = d(q, y).
Next, without loss of generality, we assume that �x ≤ �y. Also, let η ∈ SqN be
such that γq,η([0, �x]) is a minimizing geodesic from q to x. Let s1 > 0 be such that
s1 < min(�x, �y) and γq,η([0, s1]) ⊂ F int. Consider a point p = γq,η(s) with s ∈ [0, s1].
Then we see that

(d(q, p) + d(p, y))− d(q, y) = d(q, p) +Dy(p, q)

= d(q, p) +Dx(p, q)

= (d(q, p) + d(p, x))− d(q, x) = 0

and hence p is on a minimizing geodesic from q to y.
Let us consider a minimizing geodesic α from p to y with the length �y − s.

Then the union of the geodesics γq,η([0, s]) and α is a distance minimizing curve
from q to y and thus this union is a geodesic. This implies that α is a continuation
of the geodesics γq,η([0, s]) and hence y = γq,η(�y). Summarizing, γq,η([0, �x]) and
γq,η([0, �y]) are distance minimizing geodesics from q to x and y, respectively. Since
x �= y, we have �x �= �y. Then, as we have assumed that �x ≤ �y, we see that �x < �y.

Let q̂ ∈ F int be a such point that q̂ is not on the curve γq,η(R). Clearly, such

a point exists as N has the dimension n ≥ 2. Let �̂x = d(q̂, x) and �̂y = d(q̂, y).

Also, let η̂ ∈ Sq̂N be such that γq̂,η̂([0, �̂x]) is minimizing geodesic from q̂ to x. As

above, we see that then γq̂,η̂([0, �̂x]) and γq̂,η̂([0, �̂y]) are distance minimizing geodesics
from q̂ to x and y, respectively. However, the geodesics γq,η(R) and γq̂,η̂(R) do not

coincide as point sets and hence the vectors γ̇q,η(�x) ∈ TxN and γ̇q̂,η̂(�̂x) ∈ TxN are

not parallel. Recall that �x < �y. In the case when �̂x < �̂y, let β be the geodesic

segment γq̂,η̂([�̂x, �̂y]) connecting x to y. In the case when �̂x > �̂y, let β be the

geodesic segment γq̂,η̂([�̂y, �̂x]) connecting x to y.
Then we see that the union of the paths γq,η([0, �x]) and β is a distance minimizing

path from q to y. As the vectors γ̇q,η(�x) and γ̇q̂,η̂(�̂x) are not parallel, we see that the
union of these curves is not a geodesic. This is a contradiction and hence there are
no x, y ∈ N such that Dx = Dy and x �= y. Thus, D : N → C(F × F ) is an injection.

Step 3. So far we have proved the continuity and injectivity of mapping D. Since
the domain N of the mapping D is compact and

(
C(F×F ), ‖·‖∞

)
is a Hausdorff space
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q

p

q̂ p̂

x y
β

∂M

Fig. 2. The setting in Step 2 in the proof of Theorem 2.3. We consider points x, y ∈ N and
points p and q such that p is on a distance minimizing geodesic from q to x. Then this geodesic can
be extended to a distance minimizing geodesic from q to y. Similarly, the point p̂ is on a distance
minimizing geodesic from q̂ to x and this geodesic can be extended to a distance minimizing geodesic
from q̂ to y. Then the union of the (blue) geodesic from q to x and the (red) geodesic β is a length
minimizing curve from q to y that is not a geodesic.

as a metric space, it holds by basic results of topology that mapping D : N → D(N)
is a homeomorphism.

Step 4. By assumption M ⊂ N is open and therefore mapping D : M → D(M)
is open. This proves that the mapping D : M → D(M) is a homeomorphism.

Define a mapping

Φ : C(F2 × F2)→ C(F1 × F1), Φ(f) = f ◦ (φ× φ). (19)

Here f × h : X ×X → Y × Y is defined as (f × h)(x1, x2) = (f(x1), h(x2)) ∈ Y × Y
for mappings f, h : X → Y .

Theorem 2.4. Suppose that Riemannian manifolds (N1, g1) and (N2, g2) are as
in Section 1.2 and the assumptions of the Proposition 1.2 are valid. Let Φ be given
by (19). Then the mapping

Ψ := D−1
1 ◦ Φ ◦ D2 : N2 → N1 (20)

is a homeomorphism. In addition, it holds that Ψ−1|F1
= φ.

Proof. Due the Theorem 2.3, for the first claim, we only have to prove that
mapping Φ is a homeomorphism. Note that mapping Φ has an inverse mapping
h �→ h ◦ (φ−1 × φ−1). Let (x, y) ∈ F1 × F1 and f, h ∈ C(F2 × F2) then it follows

|(Φ(f)− Φ(h))(x, y)| = |f(φ(x), φ(y))− h(φ(x), φ(y))| ≤ ‖f − h‖∞.

This proves the continuity of Φ. A similar argument where φ is replaced by φ−1 proves
that mapping Φ is a homeomorphism.

Let x ∈ F1 and denote y = φ(x). Then

Ψ−1(x) = (D−1
2 ◦ Φ−1 ◦ D1)(x) = D−1

2 (D1
x(φ

−1(·)× φ−1(·)))
(16)
= D−1

2 (D2
y) = y.

Remark 2.5. As the map D : M → D(M), x �→ Dx, is a homeomorphism, we
see that for a dense set X ⊂M we have

D(M) = cl(D(X)) = cl{Dx ; x ∈ X} ⊂ C(F × F )},
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where the closure cl is taken with respect to the topology of C(F × F ). This means
that the distance difference functions corresponding to x in a dense set X determine
the distance difference functions corresponding to the points in the whole set M .

2.3. Manifolds N1 and N2 are diffeomorphic. Our next goal is to construct
such smooth atlases for manifolds Ni that homeomorphism Ψ : N2 → N1 of Theorem
2.4 is a diffeomorphism.

Lemma 2.6. Let (N, g) be a compact Riemannian manifold of dimension n, x ∈ N
and ξ ∈ TxN , ‖ξ‖g = 1. Let γx,ξ : [0, �] → N be a distance minimizing geodesic. Let
0 < h < �, z = γx,ξ(h). Then there exists a neighborhood V of z such that the set

U = {(zi)ni=1 ∈ V n : dim span((F (zi)− ξ)ni=1) = n} (21)

is open and dense in V n := V × V × . . .× V . Here F (q) := (expx)
−1(q)

‖(expx)
−1(q)‖g

, q ∈ V .

Moreover for every (zi)
n
i=1 ∈ U there exists an open neighborhood W of x such

that

H : W → R
n, H(y) = (d(y, zi)− d(y, z))ni=1 (22)

is a smooth coordinate mapping.

x

γx,ξ

z

z1

z2

W

Fig. 3. A schematic picture of the coordinate system H.

Proof. Since the geodesic γx,ξ([0, �]) is distance minimizing, the geodesic segment
γx,ξ([0, h]) from x to z has no cut points. Moreover, there exist neighborhoods Vx

and V of x and z such that the mapping (p, q) �→ d(p, q) is smooth on Vx × V . As
the geodesic γx,ξ([0, h]) has no cut points, the differential of expx at v := hξ ∈ TxN
is invertible. In particularly the map F : V → SxN is well defined and smooth.

Now we study the properties of the set U , given in (21). Consider the function

T : (SxN)n → R, T ((vi)
n
i=1) = det(v1 − ξ, . . . , vn − ξ).

Then it holds that (zi)
n
i=1 ∈ U if and only if T ((F (zi))

n
i=1) �= 0. Therefore the set U

is open.
We define a set

O := T−1(R \ {0}) ⊂ (SxN)n.



184 M. LASSAS AND T. SAKSALA

Then O is open. Our aim is to prove that the set O is also dense. We note that (SxN)n

is a real analytic manifold and the map T is real analytic since, it is a polynomial.
Also the constant map 0 =: (vi)

n
i=1 �→ 0 is real analytic. By Lemma 4.3 of [20]

the functions T and 0 coincide in (SxN)n if and only if they coincide in some open
subset of (SxN)n. Thus to prove that O is dense, it suffices to prove that there exists
(vi)

n
i=1 ∈ (SxN)n such that T ((vi)

n
i=1 �= 0.

To simplify the notations we assume SxN = Sn−1 ⊂ R
n and ξ = en, where

e1, . . . , en is the standard orthonormal basis of Rn. Denote vi = ei, i ∈ {1, . . . , n− 1}
and vn = v1+v2√

2
. Then T ((vi)

n
i=1) �= 0, since

span(v1 − ξ, . . . , vn−1 − ξ,
v1 + v2√

2
− ξ) = span(e1, . . . , en−1, en) = R

n.

We conclude that the set U is dense in V n, since O ⊂ (SxN)n is dense and F is an
open map.

Finally we will show that the mapping H, defined in (22), is a smooth coordinate
map at some neighborhood W of x. Choose (zj)

n
j=1 ∈ U . By the preparations made

above, it holds that the gradients

−∇
(
d(·, zi)− d(·, z)

)∣∣
x
= F (zi)− ξ

are linearly independent. Then due to the Inverse function theorem, there exists such
a neighborhood W of x that the function

H : W → R
n, H(y) = (d(y, zi)− d(y, z))ni=1

is a smooth coordinate mapping.

Next we consider the homeomorphism Ψ : N2 → N1 of Theorem 2.4.

Theorem 2.7. Suppose that Riemannian manifolds (N1, g1) and (N2, g2) are as
in section 1.2 and Proposition 1.2 is valid. Then mapping Ψ : N2 → N1, given in
formula (20), is a diffeomorphism.

Proof. Note that for any p ∈ N2 and all q, r ∈ F2 it holds that

D2
p(q, r) = D1

Ψ(p)(Ψ(q),Ψ(r)). (23)

Let x ∈ N2, y ∈ F int
2 and denote x̃ = Ψ(x) and ỹ = Ψ(y). Let h ∈ (0, d2(x, y)) be such

that z := γx,ξ2(h) ∈ F int
2 and γx,ξ2([h, d2(x, y)]) ⊂ F int

2 , where γx,ξ2 is a minimizing
unit speed geodesic from x to y and z̃ = Ψ(z) ∈ F int

1 . Note that by the choice of z it
holds that it is not a cut point of x on curve γx,ξ2 . Therefore mapping p �→ D2

p(r, q) is
C∞-smooth, when p is sufficiently close to x and r, q are sufficiently close to z. Since

D2
x(y, z) = D1

x̃(ỹ, z̃), d2(z, y) ≥ d1(z̃, ỹ) and d2(x, y) = d2(x, z) + d2(z, y),

we deduce using the triangle inequality that

d1(x̃, ỹ) = d1(x̃, z̃) + d1(z̃, ỹ).

Therefore, there exists a unit speed distance minimizing geodesic γx̃,ξ1 from x̃ to ỹ
that contains the point z̃. Hence, the mapping p̃ �→ D1

p̃(r̃, q̃) is smooth, when p̃ is
sufficiently close to x̃ and r̃, q̃ are sufficiently close to z̃.
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Choose a neighborhood V2 of z such that the map F2 : V2 → SxN2, F2(q) :=
(expx)

−1(q)
‖(expx)

−1(q)‖g
, q ∈ V2 is well defined. Since Ψ is homeomorphism we may assume that

Ψ(V2) = V1, which is a neighborhood of z̃ such that the map F1 : V1 → SxN1, F1(q) :=
(expx)

−1(q)
‖(expx)

−1(q)‖g
, q ∈ V1 is well defined.

We want to show that there exist points (zi)
n
i=1 ∈ V2 for which the collections

((F2(zi)− ξ2))
n
i=1 ∈ TxN2 and ((F1(Ψ(zi))− ξ1))

n
i=1 ∈ Tx̃N1

are linearly independent. Let us define

Ui := {(zj)nj=1 ∈ V n
i : dim span((Fi(zj)− ξi)

n
j=1) = n}, i ∈ {1, 2}.

By Lemma 2.6 the sets Ui are open and dense. Since Ψ : N2 → N1 is a homeomor-
phism, also the map Ψn : Nn

2 → Nn
1 defined by

Ψn((qi)
n
i=1) = (Ψ(qi))

n
i=1

is a homeomorphism. Therefore U1 ∩ Ψn(U2) is open and dense in V n
1 . Due to the

choice of vector ξ1 ∈ Sx̃N1, there exist points (zi)
n
i=i ∈ U2 that satisfy (Ψ(z1))

n
i=1 ∈

U1.
By Lemma 2.6 there exists a neighborhood W2 of z such that the map

H : W2 → R
n, H(y) = (d2(y, zi)− d2(y, z))

n
i=1

is a smooth coordinate map, W1 := Ψ(W2) is a neighborhood of x̃ and moreover the
map

H̃ : W1 → R
n, H̃(y) = (d1(y,Ψ(zi))− d2(y, z̃))

n
i=1

is also a smooth coordinate map. We conclude that by equation (23) we have shown

H(W2) = H̃(W1) and more importantly

H̃ ◦Ψ ◦H−1 = Id

Since the point x ∈ N2 above is arbitrary and H and H̃ are smooth coordinate
mappings for x and x̃, respectively, the above implies that Ψ is a diffeomorphism.

2.4. Riemannian metrics g1 and Ψ∗g2 coincide in N1. In this section we
will show that manifolds (N1, g1) and (N2, g2) that satisfy (2)-(3) are isometric.

Definition 2.8. Let z1 ∈ F and ξ ∈ Sz1N . Define a set σ(z1, ξ) by

σN (z1, ξ) := {x ∈ N ;Dx(·, z1) is C1-smooth in a neighborhood

of z1 and ∇Dx(·, z1)|z1 = ξ}. (24)

Lemma 2.9. Let z1 ∈ F and ξ ∈ Sz1N . Then it follows

σN (z1, ξ) = γz1,−ξ({s ; 0 < s < τ(z1,−ξ)}), (25)

Roughly speaking, Lemma 2.9 means that sets σN (z1, ξ), that can be determined
using data (4), are unparameterized geodesics on N .
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Proof. First we recall that for all x ∈ N the distance function d(·, x) is not smooth
near y ∈ N \ {x} if and only if point y is in a cut locus of x. See for instance Section
9 of Chapter 5 of [56].

First, consider the case when x ∈ σN (z1, ξ). Then by the definition of σN (z1, ξ)
the distance function d(·, x) is C∞-smooth in a neighbourhood z1 so that z1 is not in
a cut locus of x, or equivalently, x is not in a cut locus of z1. Also, have that x �= z1.
Hence, there exists an unique distance minimizing unit speed geodesic from x to z1.
Since this geodesic has the velocity

∇d(·, x)|z1 = ∇Dx(·, z2)|z1 = ξ

at z1, it follows that x ∈ γz1,−ξ({s ; 0 < s < τ(z1,−ξ)}).
Second, consider the case when x ∈ γz1,−ξ({s ; 0 < s < τ(z1,−ξ)}). Then

function Dx(·, z1) is smooth near z1 and

∇Dx(·, z1)|z1 = γ̇(d(x, z1)) = −γ̇z1,−ξ(0) = ξ.

Thus, x ∈ σN (z1, ξ).

The Lemma 2.9 will be the key element to prove that the mapping Ψ is an
isometry.

Definition 2.10. Let N be a smooth manifold and let g and g̃ be metric tensors
on N . We say that metric tensors g and g̃ are geodesically equivalent, if for all
geodesics γ : I1 → N of metric g and γ̃ : Ĩ1 → N of metric g̃ there exist changes of
parameters α : I2 → I1 and α̃ : Ĩ2 → Ĩ1 such that

γ ◦ α is a geodesic of metric g̃

and

γ̃ ◦ α̃ is a geodesic of metric g.

A trivial example of two geodesically equivalent Riemannian metrics are g and cg,
where c > 0 is a constant. Other, more interesting examples of geodesically equivalent
Riemannian metrics are

(1) The Southern hemisphere of the sphere S2 and the plane R
2 and that are

mapped to each other in a gnomonic projection, i.e. the great circles are
mapped to straight line.

(2) Unit disc in R
2 and the Beltrami-Klein model of a hyperbolic plane.

Our first goal is to show that when the distance difference data on N1 and N2

satisfy (2)-(3), we have that metric tensors g1 and (Ψ−1)∗g2 are geodesically equiva-
lent. By Lemma 2.9 we know all the geodesics of N1 that exit unknown region M1, as
point sets. Next we will show that this information is enough to deduce the geodesic
equivalence of g1 and (Ψ−1)∗g2.

Since the mapping Ψ is a diffeomorphism, it holds that each geodesic of (N2, g2)
is mapped to some smooth curve of (N1, g1). By formula (4) and Lemma 2.9, it
holds that sets σN (z, ξ) ⊂ N1, with z ∈ F1 and ξ ∈ SzN1, are images of geodesics of
(N2, g2) in the mapping Ψ. Note that the geodesic segments σN (z, ξ) ⊂ N1 are not
self-intersecting, since a cut point occurs before a geodesic stops being one-to-one.
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Let z ∈ F2, ξ ∈ SzN2 and t2 = τ2(z,−ξ). Then t �→ Ψ(γ2
z,−ξ(t)), t ∈ [0, t2) is

smooth and not self-intersecting curve on N1. By Proposition 1.2 and Theorem 2.4
we have

Ψ(γ2
z,−ξ((0, t2))) = σN1

(Ψ(z),Ψ∗ξ) = σN1
(φ−1(z), (φ−1)∗ξ). (26)

Let w = φ−1(z) and η = (φ−1)∗ξ. Then by Lemma 2.9 we have σN1
(w, η) =

γ1
w,−η({s; 0 < s < t1}), where t1 = τ1(w,−η). Furthermore, it is easy to see that

there is a re-parametrization

s : (0, t1)→ (0, t2) such that γ1
w,−η(t) = Ψ(γ2

z,−ξ(s(t))), t ∈ (0, t1). (27)

For p ∈ N1, we define a collection C(p) of geodesics γ of (N1, g1) and real numbers
t0 ∈ R, given by

C(p) = {(γ, t0) ; γ : (a, b)→ N1 is a geodesic of (N1, g1),

γ(t0) = p, and there are z ∈ F int
1 , ξ ∈ SzN1

such that γ((a, b)) = σN1(z, ξ)}.

Here γ is given as a pair of the set dom(γ) = (a, b) ⊂ R, −∞ ≤ a < b ≤ ∞, where the
mapping γ is defined and the function γ : dom(γ)→ N1. Also, t0 ∈ (a, b). Moreover,
above γ((a, b)) = σN1(z, ξ) means that the sets γ((a, b)) ⊂ N1 and σN1(z, ξ) ⊂ N1 are
the same, or equivalently, that γ((a, b)) and σN1(z, ξ) are the same as unparameterized
curves.

For a moment we consider only metric g1. Assume that p is a point in N1 and q
is point of F int

1 such that q = γp,ξ(�), � > 0 and the geodesic γp,ξ([0, �]) has no cut
points. Then there is a neighborhood U ⊂ F int

1 of q and a neighborhood V ⊂ TpN1

of �ξ such that expp : V → U is a diffeomorphism. Assuming that the neighborhood
V is small enough, we see that for any �v ∈ V , ‖v‖g1 = 1, there is s > 0 such that
the geodesic γp,v([−s, �]) has no cut points. Let s0(p, v) ∈ (0,∞] be the supremum
of such s. Then, for the geodesic γp,v : (−s0(p, v), �) → N1 we have (γp,v, 0) ∈ C(p).
This proves that set

Ωp := {v ∈ TpN1; there are (c, tp) ∈ C(p), c(tp) = p

and ċ(tp) is proportional to ±v}

contains a non-empty open double cone Σp, that is, an open set that satisfies rv ∈ Σp

for all v ∈ Σp and r ∈ R\{0}. Note that the complement of Ωp in TpN1 is non-empty,
if in manifold M1 there are closed geodesics, or geodesics that are trapping in both
directions in M1 and go through the point p.

Let point p ∈ N1 and (U,X) be coordinates near p, X : U → R
n, and denote

X(q) = (xj(q))nj=1. Recall that a pre-geodesic γ̃ on (N1, g1) satisfies the formula (11),
that is, [

d2γ̃k

ds2
(s) + Γk

i,j(γ̃(s))
dγ̃i

ds
(s)

dγ̃j

ds
(s)

]∣∣∣∣
s=sp

= f

(
dγ̃

ds

)
dγ̃k

ds
(s)

∣∣∣∣
s=sp

, (28)

k ∈ {1, 2, . . . , n}. Here γ(sp) = p and f is some function that is homogeneous of
degree 1 on the subbundle of TU that is determined by the velocity vectorfield of γ̃.
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Σp

∂M1

Fig. 4. For all p ∈ M1 there exists an open conic set Σp ⊂ TpN1 such that for every ξ ∈ Σp

the geodesic γp,ξ of (N1, g1) can be extended to a distance minimizing geodesic (blue curve in the
figure) that enters the set F = N \M . When the distance difference data for g1 and g2 coincide,
these geodesics have to be pre-geodesic also with respect to the metric Ψ∗g2. Note that there may be
g1-geodesics emanating from p to directions ξ �∈ Σp that do not intersect the set F . Such geodesics
can be e.g. closed loops in M1 (red curve).

Next, we change the point of view and consider the equation (28) as a system of

equations for the “unknown” (Γ, f) with the given coefficients dγ̃
ds (s)|s=sp ∈ Ωp and

d2γ̃
ds2 (s)|s=sp where (γ̃, sp) ∈ C(p). Here Γ stands for a collection of Christoffel symbols
Γk
i,j and f : Ω→ R is a function that satisfies equation (10) on the subbundle

Ω :=
⋃
p∈U

Ωp ⊂ TU.

Suppose that we also have another Riemannian connection which Christoffel sym-
bols Γ̃k

i,j in the (U,X)-coordinates have the form

Γ̃k
i,j = Γk

i,j + δki ϕj + δkj ϕi, (29)

for some smooth functions ϕi : U → R, i = 1, 2, . . . , n. Here, δki is one when k = i and
zero otherwise. Let ϕ(x) = ϕi(x)dx

i be a smooth 1-form that has functions (ϕi)
n
i=1

as the coefficients. We need the following consequence of Lemma 2.1:

Lemma 2.11. Let (U,X) a smooth coordinate chart. If the Christoffel symbols

Γ̃ and Γ satisfy the equation (29) for some 1-form ϕ and pair (f,Γ), f : Ω → R is
homogenous of degree 1, is a solution of (11), with s = sp, for all (γ̃, sp) ∈ C(p), then
pair (Γ̃, f̃) where

f̃(v) = f(v) + 2ϕ(v), v ∈ Ω. (30)

is also a solution of (11), with s = sp, for all (γ̃, sp) ∈ C(p).
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Proof. Let (γ̃, sp) ∈ C(p). A direct computation shows that

(δki ϕj + δkj ϕi)
dγ̃i

ds
(s)

dγ̃j

ds
(s) = ϕj

dγ̃k

ds
(s)

dγ̃j

ds
(s) + ϕi

dγ̃i

ds
(s)

dγ̃k

ds
(s)

= 2
dγ̃k

ds
(s)

(
ϕi

dγ̃i

ds
(s)

)
= 2

dγ̃k

ds
(s)ϕ

(
dγ̃

ds
(s)

)
.

(31)

Use this and substitute equation (29) into equation (11) to obtain

d2γ̃k

ds2
(s) + Γ̃k

i,j(p)
dγ̃i

ds
(s)

dγ̃j

ds
(s)

∣∣∣∣∣
s=sp

=
dγ̃k

ds
(s)

[
f

(
dγ̃

ds
(s)

)
+ 2ϕ

(
dγ̃

ds
(s)

)]

that proves the claim.

The following lemma gives a converse result for Lemma 2.11. It is obtained by
using, in a quite straightforward way, results of V. Matveev [46, Sec. 2] for general
affine connections on pseudo-Riemannian manifolds. However, for the convenience of
the reader, we give a detailed proof for the lemma and analyze at the same time the
smoothness of the 1-form x �→ ϕ(x) in a local coordinate neighborhood U ⊂M .

Lemma 2.12. Let (U,X) a smooth coordinate chart. Let functions f : Ω → R

and f̃ : Ω→ R be homogeneous of degree 1. Suppose that pairs (f,Γ) and (Γ̃, f̃) both
solve at all points p ∈ U the system (11) for all such coefficients dγ

ds (s)|s=sp ∈ Ωp and
d2γ
ds2 (s)|s=sp that (γ, sp) ∈ C(p). Then the Christoffel symbols Γ and Γ̃ satisfy equation
(29) in U with a C∞-smooth 1-form ϕ in U .

Proof. Define a pair (f,Γ) as

f = f − f̃ and Γ
k

i,j = Γk
i,j − Γ̃k

i,j .

As a difference of two connection coefficients, Γ is a tensor. By substitution of pairs
(f,Γ) and (Γ̃, f̃) into equation (11) and by subtracting the obtained equations, we
obtain at p ∈ U

Γ
k

i,jv
ivj = f(v)vk, for every v ∈ Ωp. (32)

Note that (32) defines a smooth extension of f : Ω→ R to TU \ {0}, given by

f(v) =
f(v)vkgk�v

�

g(v, v)
=

Γ
k

i,j(p)v
ivjgk�(p)v

�

gab(p)vavb
, (p, v) ∈ TU \ {0}. (33)

Here, the rightmost term is smooth in TU \ {0}.
Recall that Ωp contains an open double cone Σp ⊂ Ωp. Our next goal is to show

that there exist a linear function ϕ : TpN → R such that the restriction of function
f , to Σp ⊂ Ωp, is equal to 2ϕ|Σp

. Define a family of symmetric bi-linear mappings

σk : TpN × TpN → R, σk(u, v) = Γ
k

i,jv
iuj , k ∈ {1, . . . , n}.
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Since mappings σk are symmetric, the parallelogram equation

0 = σk(u+ v, u+ v) + σk(u− v, u− v)− 2σk(u, u)− 2σk(v, v)

holds.
Next, let u ∈ Σp, u �= 0. Then there is ε = ε(u) > 0 such that, if v ∈ TpN satisfies

‖v‖ < ε, then u− v ∈ Σp.
Let us next consider v ∈ Σp with ‖v‖ < ε. Then u− v, u+ v ∈ Σp ⊂ Ωp. By the

parallelogram equality for the function σk and (32) we have

0 = f(u+ v)(u+ v) + f(u− v)(u− v)− 2f(u)u− 2f(v)v

=
(
f(u+ v) + f(u− v)− 2f(u)

)
u+

(
f(u+ v)− f(u− v)− 2f(v)

)
v.

(34)

If vectors u and v are linearly independent, we get a system{
f(u+ v) + f(u− v)− 2f(u) = 0

f(u+ v)− f(u− v)− 2f(v) = 0.
(35)

By summing up these two equations, we get

f(u+ v) = f(u) + f(v). (36)

Observe that the system (35) is valid also when v = λu, λ ∈ R. Recall that the

mappings f and f̃ are solutions of (11) and therefore, they satisfy the equation (10),
i.e., they commute with scalar multiplication in Ωp.

So far we have proved that f(u+ ·) and f(u) + f(·) coincide in set Bp(0, ε) ∩Σp.
Since f is homogeneous of degree 1 it holds by (36) that

f(u+ av) = f(u) + af(v), v ∈ Bp(0, ε) ∩ Σp, −1 < a < 1. (37)

We define a linear function

2ϕ : TpN → R, 2ϕ(v) = lim
r→0

f(u+ rv)− f(u)

r
= ∇uf(u) · v. (38)

If v ∈ Σp and r is small enough, then rv ∈ Bp(0, ε) ∩ Σp and therefore by formula
(37) it holds that

2ϕ(v) = f(v) for every v ∈ Σp. (39)

As Σp is open, and ϕ and f are linear, this holds for all v ∈ TpN and thus ϕ(v) given
by the formula (38) is independent on the choice of used u ∈ Σp. In local coordinates
(U,X) we have by (33) and (39) that

ϕ

(
∂

∂x�

)
:=

1

2

n∑
i,k,j=1

1

g��(x)
Γ
k

i,j(x)δ
i
�δ

j
�gk�(x)

defines a C∞-smooth 1-form x �→ ϕ(x) in U , that is an extension of f : Ω→ R.
Define a connection

Γ̂k
i,j := Γ̃k

i,j + δki ϕj + δkj ϕi,
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and choose v = d
dsγ(s)|s=sp ∈ Σp. Since pairs (f,Γ) and (Γ̃, f̃) are both solutions of

(11) the above considerations yield[
d2γk

ds2
(s) + Γk

i,j(p)
dγi

ds
(s)

dγj

ds
(s)

]∣∣∣∣
s=sp

=

[
f

(
dγ

ds
(s)

)
dγk

ds
(s)

]∣∣∣∣
s=sp

=
dγk

ds
(s)

[
2ϕ

(
dγ

ds
(s)

)
+ f̃

(
dγ

ds
(s)

)]∣∣∣∣
s=sp

=

[
d2γk

ds2
(s) + Γ̃k

i,j(p)
dγi

ds
(s)

dγj

ds
(s)

]∣∣∣∣
s=sp

+
dγk

ds
(s)

[
2ϕ

(
dγ

ds
(s)

)]∣∣∣∣
s=sp

(31)
=

[
d2γk

ds2
(s) + Γ̂k

i,j(p)
dγi

ds
(s)

dγj

ds
(s)

]∣∣∣∣
s=sp

.

Therefore we have

Γk
i,j(p)

dγi

ds
(s)

dγj

ds
(s)

∣∣∣∣
s=sp

= Γ̂k
i,j(p)

dγi

ds
(s)

dγj

ds
(s)

∣∣∣∣
s=sp

. (40)

Thus we have shown that for all v ∈ Σp the equation

Γk
i,j(p)v

ivj = Γ̂k
i,j(p)v

ivj (41)

is valid. Since set Σp is open, it holds that

Γk
�,m(p) =

1

2
∂v�vmΓk

i,j(p)v
ivj =

1

2
∂v�vm Γ̂k

i,j(p)v
ivj = Γ̂k

�,m(p).

As above p ∈ U is arbitrary, this proves the claim.

Proposition 2.13. Suppose that Riemannian manifolds (N1, g1) and (N2, g2)
are as in Section 1.2 and (2)-(3) are valid. Let p ∈ N1 and (U,X) be coordinates in

a neighborhood of p. Then it holds that the Christoffel symbols Γ and Γ̃ of metrics g1
and (Ψ−1)∗g2, respectively, satisfy equation (29) in U with some 1-form ϕ, where Ψ
is as in (20).

Proof. Let (U,X) be a local coordinate system in N1. Our aim is to use the
Lemma 2.12 to prove the claim of this Lemma. To do so we need to construct a
function f̃ : Ω → R that satisfies (10) and moreover for any q ∈ U the pair (Γ̃, f̃)

solves the system (11) for all such coefficients dγ
ds (s)|s=sq ∈ Ωq and d2γ

ds2 (s)|s=sq that
(γ, sq) ∈ C(q).

Let p ∈ U and (c1, t1) ∈ C(p). With out loss of generality we may assume that
t1 = 0 and ċ1(0) = ξ ∈ SpN ∩Ωp. By definition of C(p), it holds that there is a unique
reparametrization t �→ sξ(t) =: s(t) of c1 such that for curves c1 and c2 = c1 ◦ s we
have s(0) = p, ċ2(0) = ξ and{

c̈k1(t) + ċi1(t)ċ
j
1(t)Γ

k
i,j(c1(t)) = 0,

c̈k2(t) + ċi2(t)ċ
j
2(t)Γ̃

k
i,j(c2(t)) = 0.

(42)
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Using the chain rule we can write the latter equation as

c̈k1(s(t)) + ċi1(s(t))ċ
j
1(s(t))Γ̃

k
i,j(c1(s(t))) = −

s̈(t)

ṡ(t)2
ċk1(s(t)).

We define f : Ω→ R

f(q, v) =
s̈v(t)

ṡv(t)2
, if v = γ̇(0) for some (γ, 0) ∈ C(q).

Above sv is such a reparametrization of γ that, sv(0) = 0,
d
dtγ(s(t))|t=0 = v and (42) is valid, when c1 is replaced with γ and c2 is replaced
with γ ◦ sv. Note that function f is well defined and satisfies the equation (10), since
geodesic equation (7) is preserved under affine re-parametrizations. Therefore it holds

that for any q ∈ U the pairs (Γ, 0) and (Γ̃, f) both solve the system (11) for all such

coefficients dγ
ds (s)|s=sq ∈ Ωq and d2γ

ds2 (s)|s=sq that (γ, sq) ∈ C(q). The claim follows
then from Lemma 2.12.

Lemma 2.14. Suppose that the connections Γ and Γ̃ corresponding to metric
tensors g and g̃, respectively, satisfy the equation (29) with a 1-form ϕ. Then the
metric tensors g and g̃ are geodesically equivalent.

Proof. Let γ(t) be a geodesic with respect to the metric g. Then γ satisfies the

geodesic equation (7). Substitute Γ with Γ̃ into (7) to get the equation

d2γk

dt2
(t) + Γ̃k

i,j(γ(t))
dγi

dt
(t)

dγj

dt
(t) = 2

dγk

dt
(t)ϕ

(
dγ

dt
(t)

)
.

Write κ(t) = 2ϕ(γ̇(t)) and use Lemma 2.1 to show that there exists a change of

parameters s �→ t(s) such that s �→ γ(t(s)) is a geodesic with respect to the metric Γ̃.
As the roles of g and g̃ can be exchanged, the claim follows.

By the Lemma 2.14, the equivalence of the distance difference data (2)-(3) implies
the geodesic equivalence of metric tensors g and Ψ∗g2 on N1. In the following theo-
rem, that shows that metric tensors g and Ψ∗g2 coincide also in N1, we will use the
implications of the Matveev-Topalov theorem [43]. Their result is also concerned in
the appendix of the extended preprint version of this paper [37] and its generalizations
have been considered in [11, 63].

Lemma 2.15. Suppose that manifold N satisfies assumptions of Section 1.2 and
g and g̃ are two metric tensors on N . Suppose that these metrics are geodesically
equivalent on manifold N and coincide in set F int �= ∅. Then g = g̃ in whole N .

Proof. Define a smooth mapping I0 : TN → R as

I0((x, v)) =

(
det(gx)

det(g̃x)

) 2
n+1

g̃x(v, v), (43)

where g̃x(v, v) = g̃jk(x)v
jvk. Note that the function x �→ det(gx)

det(g̃x)
is coordinate invari-

ant.
Let γg be a geodesic of metric g. Define a smooth path β in TN as β(t) =

(γg(t), γ̇g(t)), i.e., β is an integral curve of the geodesic flow of metric g. The Matveev-
Topalov theorem [43] states that if g and g̃ are geodesically equivalent, then there are
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several invariants related to the (1, 1)-tensor G = g−1g̃, given in local coordinates by
Gj

k(x) = gji(x)g̃ik(x), that are constants along integral curves β(t). In particular, the
function t �→ I0(β(t)) is a constant.

A corollary of Matveev-Topalov theorem, [43, Cor. 2] (see also [44, Cor. 2] and
[11, Thm. 3]), is that the number n(x) of the different eigenvalues of the map G(x) :
TxN → TxN is constant at almost every point x ∈ N . Since G(x) = I for x ∈ F int,
we have that n(x) = 0 in the set F int having a positive measure. This implies that
n(x) = 0 for almost all x ∈ N . Hence for almost all x ∈ N there is c(x) ∈ R+ such
that we have G(x) = c(x)I, so that g̃ik(x) = c(x)gik(x). As G is continuous, this holds
for all x ∈ N . Summarizing, the first implication of the Matveev-Topalov theorem is
that g and g̃ are conformal on the whole manifold N .

Let x0 be a point of N . Since we assumed that metrics g and g̃ coincide in set F ,
we have for any point z ∈ F and vector v ∈ TzN that formula (43) has form

I0(z, v) = g̃z(v, v) = gz(v, v). (44)

Let γ(t) := γg
z,ξ(t), ξ ∈ SzN, z ∈ F be a g-geodesic passing through x0 such that

x0 = γ(t0) for some t0 ≥ 0. The I0((z, ξ)) = 1 and by the Matveev-Topalov theorem,
I0 is constant along the integral curves of geodesic flow of g. Thus, we have

I0(x0, γ̇(t0)) = I0(z, ξ) = 1. (45)

Define Wx0 to be the set of all g-unit vectors of Tx0N with respect to metric g, such
that every vector in Wx0

is a velocity vector of some g-geodesic starting from F and
passing trough x0. Recall that set W

int
x0
⊂ Sx0

N is not empty.
Let X = (x1, . . . , xn) be any coordinate chart at x0. Formula (45) shows that for

every ξ ∈Wx0 we have

gij(x0)ξ
iξj = 1 = I0(x0, ξ) =

(
det(gx0)

det(g̃x0
)

) 2
n+1

g̃ij(x0)ξ
iξj . (46)

Consider an open cone

W int
x0
· R+ := {tw ∈ Tx0

N : t > 0, w ∈W int
x0
}.

Then the equation (46) holds for all ξ ∈W int
x0
·R+ and since the set W int

x0
·R+ is open

and both sides of equation (46) are smooth in ξ, we obtain the equation

gij(x0) =

(
det(gx0

)

det(g̃x0
)

) 2
n+1

g̃ij(x0), for all i, j ∈ {1, . . . , n}, (47)

as a second order derivative with respect to ξ of equation (46).

Denote f(p) := det(g(p))
det(g̃(p)) . Then the above yields

(f(x0))
2

n+1 g̃jk(x0) = gjk(x0), for all j, k ∈ {1, . . . , n}. (48)

Taking determinants of both sides of (48) we see that

(f(x0))
2n

n+1−1 = 1. (49)

Since we we have assumed the dimension of manifold N is at least 2, we see from
equation (49) that f(x0) = 1. By formula (48) this implies g = g̃ on M .

Theorem 1.3 follows now from Theorems 2.4 and 2.7 and Lemmas 2.14 and 2.15.
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3. Application for an inverse problem for a wave equation. Here we
consider an application of Theorem 1.3 for an inverse problem for a wave equation
with spontaneous point sources.

3.0.1. Support sets of waves produced by point sources. Let (N, g) be a
closed Riemannian manifold. Denote the Laplace-Beltrami operator of metric g by
Δg. We consider a wave equation{

(∂2
t −Δg)G(·, ·, y, s) = κ(y, s)δy,s(·, ·), in N

G(x, t, y, s) = 0, for t < s, x ∈ N.
(50)

where N = N × R is the space-time. The solution G(x, t, y, s) is the wave produced
by a point source located at the point y ∈ M and time s ∈ R having the magnitude
κ(y, s) ∈ R \ {0}. Above, we have δy,s(x, t) = δy(x)δs(t) corresponds to a point source
at (y, s) ∈ N .

3.0.2. Inverse coefficient problem with spontaneous point source data.
Assume that there are two manifolds (N1, g1) and (N2, g2) satisfying the assumptions
given in Section 1.2 and

There exists an isometry φ : F1 → F2 (51)

W1 = W2 (52)

where W1 and W2 are collections of supports of waves produced by point sources
taking place at unknown points at unknown time, that is,

W1 = {supp (G1(·, ·, y1, s1)) ∩ (F1 × R) ; y1 ∈M1, s1 ∈ R} ⊂ 2F1×R

and

W2 = {supp (G2(φ(·), ·, y2, s2)) ∩ (F1 × R) ; y2 ∈M2, s2 ∈ R} ⊂ 2F1×R

where functions Gj , j = {1, 2} solve equation (50) on manifold Nj . Here 2Fj×R =
{V ; V ⊂ Fj × R} is the power set of Fj × R. Roughly speaking, Wj corresponds to
the data that one makes by observing, in the set Fj , the waves that are produced by
spontaneous point sources that that go off, at an unknown time and at an unknown
location, in the set Mj .

Earlier, the inverse problem for the sources that are delta-distributions in time
and localized also in the space has been studied in [16] in the case when the metric
g is known. Theorem 1.3 yields the following result telling that the metric g can be
determined when a large number of waves produced by the point sources are observed:

Proposition 3.1. Let (Nj , gj), j = 1, 2 be a closed compact Riemannian n-
manifolds, n ≥ 2 and Mj ⊂ Nj be an open set such that Fj = Nj \Mj have non-empty
interior. If the spontaneous point source data of these manifolds coincide, that is, we
have (51)-(52), then (N1, g1) and (N2, g2) are isometric.

Proof. Let us again omit the sub-indexes of N,M , and F . For y ∈M , s ∈ R, and
z ∈ F we define a number

Ty,s(z) = sup{t ∈ R; the point (z, t) has a neighborhood

U ⊂ N such that G(·, ·, y, s)
∣∣
U
= 0}



DISTANCE DIFFERENCE FUNCTIONS 195

which tells us, what is the first time when the wave G(·, ·, y, s) is observed near the
point z. Using the finite velocity of the wave propagation for the wave equation, see
[21], we see that the support of G(·, ·, y, s) is contained in the future light cone of the
point q = (y, s) ∈ N given by

J+(q) = {(y′, s′) ∈ N ; s′ ≥ d(y′, y) + s}.

Next, for ξ = ξj ∂
∂xj ∈ TyN we denote the corresponding co-vector by ξ	 =

gjk(y)ξ
jdxk. Then the results of [18] and [19] on the propagation of singularities

for the real principal type operators, in particular for the wave operator, imply that
in the set N \{q} Green’s function G(·, ·, y, s) is a Lagrangian distribution associated
to the Lagranian sub-manifold

Σ0 = {(γy,η(t), s+ t; γ̇y,η(t)
	, dt) ∈ T ∗N ; η ∈ SyN, t > 0}

and its principal symbol on Σ0 is non-zero. In particular, [19, Prop. 2.1] implies that
Σ = Σ0 ∪ (T ∗

qN , \{0}) coincides with the wave front set WF(u) of the solution u =
G(·, ·, y, s). This means that a wave emanating from a point source (y, s) propagates
along the geodesics of manifold (N, g). The image of WF(u) in the projection π :
T ∗N → N coincides the singular support of u. Hence, we see that

singsupp
(
G(·, ·, y, s)

)
= S(q), where (53)

S(q) = {(expy(tη), s+ t) ∈ N ; η ∈ SyN, t ≥ 0}.

Since the Riemannian manifold N is complete, the space-time N is a globally hyper-
bolic Lorentzian manifold and we have ∂J+(q) = S(q), see [50]. Summarizing, the
above implies that the function G(·, ·, y, s) vanishes outside J+(q) and is non-smooth,
and thus it is non-vanishing in a neighborhood of arbitrary point of ∂J+(q). Thus,
for z ∈ F we have Ty,s(z) = d(z, y)−s. Hence the distance difference functions satisfy
equation

Dy(z1, z2) = Ty,s(z1)− Ty,s(z2). (54)

Thus, when formulas (51)-(52) are valid, we see using equation (54) that the distance
difference data of the manifolds N1 and N2 coincide, that is, we have (2)-(3). Hence,
the claim follows from Theorem 1.3.

Finally, we note that sets Wj are closely related to the light-observation sets
studied in [34] in the study of the inverse problems for non-linear hyperbolic problems
with a time-dependent metric. The light-observation set PU (q) corresponding to a
source point q = (y, s) and the observation set U is the intersection of U and the
future light cone emanating from q. In fact, the formula (53) implies that in the
space time N = N × R the sets Wj coincide with the light-observation sets PU (q)
corresponding to a source point q = (y, s) and the observation set U = F × R.
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Appendix A: Extensions of data. Assume that we are given the set F = N\M
and the metric g|F , but instead of the function Dx : F × F → R we know only its
restriction on the boundary ∂F = ∂M , that is, the map

Dx|∂F×∂F : ∂F × ∂F → R, Dx|∂F×∂F (z1, z2) := dN (z1, x)− dN (z2, x).

Lemma 3.2. The manifold F = N \ M , the metric g|F , and the restriction
Dx|∂F×∂F of the distance difference function corresponding to x ∈ M determine the
distance difference function Dx : F × F → R.

Proof. We can determine the map Dx : F × F → R by the formula

Dx(z1, z2) = inf
α

sup
β

(
L(α) +Dx|∂F×∂F (α(1), β(1))− L(β)

)
,

where the infimum is taken over the smooth curves α : [0, 1] → F from z1 to α(1) ∈
∂F and the supremum is taken over the smooth curves β : [0, 1] → F from z2 to
β(1) ∈ ∂F .

This raises the question, if the manifold (N, g) can be reconstructed when we are
given a submanifold of codimension 1, e.g. the boundary of the open set M considered
above, and the distance difference functions on this submanifold. To consider this,
assume that we are given a submanifold F̃ ⊂ N of dimension (n− 1), the metric g|

˜F

on F̃ , and the collection

{Dx
˜F,N

; x ∈ N} ⊂ C(F̃ × F̃ ),

where Dx
˜F,N

(z1, z2) = dN (x, z1) − dN (x, z2) for z1, z2 ∈ F̃ . The following counterex-

ample shows that such data do not uniquely determine the isometry type of (N, g).

Σ1Σ2

Σ3 Σ4

Σ1Σ2

R(Σ4) R(Σ3)

F̃1

F̃2

R(Σ3)

N1

N2

Fig. 5. An illustration of manifolds N1 and N2 in Example A1. When (n − 1)-dimensional

submanifolds ˜F1 = ˜F2 = ˜F are identified, the distance difference functions {Dx
˜F,N1

; x ∈ N1} and

{Dx
˜F,N2

; x ∈ N2} coincide.
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Example A1. Let Cr(y) = {(x1, x2) ∈ R
2; |x1 − y1|2 + |x2 − y2|2 = r2} be a

circle of radius r centered at y = (y1, y2). Let p1 = (2, 0), p2 = (−2, 0), L > 3, and

S0 = C1(0)× [−1, 1],
S1 = C1(p1)× [2, L],

S2 = C1(p2)× [2, L],

and K ⊂ R
2× [1, 2] be a 2-dimensional surface which boundary has three components,

C1(0) × {1}, C1(p1) × {2}, and C1(p2) × {2}, such that the union S0 ∪K ∪ S1 ∪ S2

is a smooth surface in R
3. Moreover, let R : (x1, x2, x3) �→ (x1, x2,−x3) denote the

reflection in the x3-variable. Observe that then R(S0) = S0. We define a smooth
surface

Σ0 = S0 ∪K ∪ S1 ∪ S2 ∪R(K) ∪R(S1) ∪R(S2).

The boundary of Σ0 consists of 4 circles, namely Γ1 = C1(p1) × {L}, Γ2 = C1(p1) ×
{−L}, Γ3 = C1(p2)× {L}, and Γ4 = C1(p2)× {−L}. Let us consider four embedded
Riemannian surfaces Σj ⊂ R

3, j = 1, 2, 3, 4, with boundaries ∂Σj are equal to Γj .
Assume that near ∂Σj the surfaces Σj are isometric to the Cartesian product of Γj

and an interval [0, ε] with ε > 0, and that the genus of Σj is equal to (j − 1). Also,
assume that Σj ∩ Σk = ∅ for j, k = 1, 2, 3, 4 and Σ0 ∩ Σj = Γj for j = 1, 2, 3, 4.

First, let us construct a manifold N1 by gluing surfaces Σ0 with Σ1,Σ2,Σ3, and
Σ4 such that the boundaries Γj are glued with ∂Σj , j ∈ {1, 2, 3, 4}.

Second, we construct a manifold N2 by gluing surfaces Σ0 with Σ1,Σ2,R(Σ3), and
R(Σ4) such that the boundaries Γj are glued with ∂Σj with j ∈ {1, 2} but Γ3 is glued
with R(∂Σ4) and Γ4 is glued with R(∂Σ3), see Fig. 5. For both manifolds N1 and N2

we give the induced Riemannian metric from R
3. Let F̃ = F̃1 = F̃2 = S0∩ (R2×{0}).

Let us assume that L above is larger than diam (K)+ 10. Then on N�, � = 1, 2 a

minimizing geodesic from x ∈ Σj , j ≥ 1 to z ∈ F̃ does not intersect the other sets Σk

with k ∈ {1, 2, 3, 4}\{j}. Using this we see that the sets {Dx
˜F,N�

; x ∈ N�} ⊂ C(F̃×F̃ )

are the same for � = 1, 2. As the manifolds N1 and N2 are not isometric, this implies
that the data (F̃ , g|

˜F ) and {Dx
˜F,N

; x ∈ N} do not determine uniquely the manifold

(N, g).
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