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EQUIVARIANT MINIMAL SURFACES IN CH
2 AND THEIR HIGGS

BUNDLES∗

JOHN LOFTIN† AND IAN MCINTOSH‡

Abstract. This paper gives a construction for all minimal immersions f of the Poincaré disc into
the complex hyperbolic plane CH

2 which are equivariant with respect to an irreducible representation
ρ of a hyperbolic surface group into PU(2, 1). We exploit the fact that each such immersion is a
twisted conformal harmonic map and therefore has a corresponding Higgs bundle. We identify the
structure of these Higgs bundles and show how each is determined by properties of the map, including
the induced metric and a holomorphic cubic differential on the surface. We show that the moduli
space of pairs (ρ, f) is a disjoint union of finitely many complex manifolds, whose structure we
fully describe. The holomorphic (or anti-holomorphic) maps provide multiple components of this
union, as do the non-holomorphic maps. Each of the latter components has the same dimension as
the representation variety for PU(2, 1), and is indexed by the number of complex and anti-complex
points of the immersion. These numbers determine the Toledo invariant and the Euler number of the
normal bundle of the immersion. We show that there is an open set of quasi-Fuchsian representations
of Toledo invariant zero for which the minimal surface is unique and Lagrangian.
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1. Introduction. In this article we provide a complete classification of ρ-
equivariant minimal immersions f : D → CH

2 and a parametrisation for their moduli
space as a union of complex manifolds. Here D is the Poincaré disc and ρ is an ir-
reducible (or more generally, reductive) representation of a hyperbolic surface group
(i.e., the fundamental group π1Σ of a closed orientable surface Σ of genus at least
two) into the group PU(2, 1) = U(2, 1)/centre. Recall that a minimal immersion of
a surface is the same thing as a conformal harmonic map. To say f is ρ-equivariant
means it intertwines the action of a Fuchsian group on D with the action of ρ on the
complex hyperbolic plane CH2 by holomorphic isometries. One can also think of f as
a section of a CH

2-bundle over Σ or, when ρ is a discrete embedding, as a minimal
immersion f : Σ→ CH

2/ρ into the quotient manifold.
We classify these pairs (ρ, f) up to PU(2, 1)-equivalence, i.e., up to the natural

left action of PU(2, 1) by conjugation of ρ and the simultaneous ambient isometry of
f . In particular, the space of such pairs has a natural “forgetful” map to the moduli
space

R(G) = Hom+(π1Σ, G)/G,

of conjugacy classes of reductive representations into G = PU(2, 1). Recall that this
is a real analytic variety whose connected components are indexed by the Toledo
invariant τ(ρ) ∈ 2

3Z, |τ(ρ)| ≤ −χ(Σ) (see, e.g., [19]). We show that there are families
of pairs for every value of τ .

We achieve this classification by exploiting the powerful machinery which links
equivariant harmonic maps to the Yang-Mills-Higgs equations over a compact Rie-
mann surface and thereby to Higgs bundles [10, 29, 9, 43], Our starting point is two
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facts: (i) to each irreducible ρ and marked conformal structure on Σ (i.e., conjugacy
class of Fuchsian representations) there is a ρ-equivariant harmonic map f [10, 9];
(ii) when this information is encoded into a G-Higgs bundle (E,Φ) f is weakly con-
formal precisely when tr Φ2 = 0. It is surprising that this approach has not, to our
knowledge, been exploited before, since it provides a very effective way to understand
the moduli as holomorphic data and avoids a direct analysis of the Gauss-Codazzi
equations for minimal surfaces (cf. [44]).

When G = PU(2, 1) the structure of the Higgs bundles and their moduli space
is quite well understood [52, 22, 3]. In this case the bundle E splits into a sum
V ⊕ L of a rank two sub-bundle V and a rank one sub-bundle L which are mapped
to each other by the Higgs field, i.e., we can write Φ = (Φ1,Φ2) where Φ1 : L→ KV
and Φ2 : V → KL for K the canonical bundle determined by the marked conformal
structure. In fact by projective equivalence we may assume that L = 1, the trivial
bundle. The Higgs field Φ corresponds to the differential of f . To be precise, it
corresponds to

∂f : T 1,0D → TC
CH

2,

and the components Φ1,Φ2 correspond to the components of ∂f with respect to the
type decomposition of TCCH

2. For a minimal surface there are two possibilities: (i)
f is holomorphic (Φ2 = 0) or anti-holomorphic (Φ1 = 0), or (ii) f is neither and
has isolated complex and anti-complex points which give finite divisors D2 and D1

over Σ (where, respectively, Φ2 and Φ1 have zeroes). We treat these two possibilities
separately, and in fact it is the latter which we treat first, in §2 and §3. An important
role is played by a cubic holomorphic differential Q which can be naturally assigned to
any minimal surface in a Kähler manifold of constant holomorphic section curvature
[51]. It vanishes identically for holomorphic or anti-holomorphic immersions (but not
only for them). When f is neither holomorphic nor anti-holomorphic we show that,

with the two bilinear forms γj =
1
2 tr ΦjΦ

†
j , which carry the information of the metric

γ induced by f , the data (γ1, γ2,Q) completely determines the minimal immersion up
to ambient isometries. The principal results of §2 and §3 (Theorems 2.3 and 3.1) can
be summarised as follows.

Theorem 1.1. Let ρ be irreducible and f be minimal and ρ-equivariant. If f is
neither holomorphic nor anti-holomorphic then the pair (ρ, f) is faithfully determined,
up to G-equivalence, by data (Σc, D1, D2, ξ) where: c is a marked conformal structure
on Σ, D1 and D2 are effective divisors on Σ whose degrees d1, d2 satisfy

2d1 + d2 < 6(g − 1) and d1 + 2d2 < 6(g − 1),

and ξ ∈ H1(Σc,K
−2(D1 + D2)) represents an extension class which determines V

as an extension of K−1(D1) by K(−D2). The Higgs bundle is then E = V ⊕ 1
equipped with a Higgs field determined by the extension class. Under the Dolbeault
isomorphism this extension class corresponds to the cohomology class of −Q̄/γ1γ2 in
H0,1(Σc,K

−2(D1 +D2)), and ξ = 0 if and only if Q = 0. In this correspondence, ρ
has Toledo invariant τ(ρ) = 2

3 (d2 − d1), and the Euler number of the normal bundle
of f is χ(TΣ⊥) = 2(g − 1)− d1 − d2.

In particular, the integers d1, d2 determine, and are determined by, the Toledo
invariant of ρ and the Euler number of the normal bundle of f .

The correspondence is constructive in the sense that, given data (Σc, D1, D2, ξ)
satisfying the conditions above, we give an explicit construction of a stable Higgs
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bundle (E,Φ) with tr Φ2 = 0. The divisors D1, D2 are precisely the divisors of anti-
complex and complex points of the minimal immersion. For f to be strictly an
immersion they must have no common points, but the construction still works to
produce branched minimal immersions if they intersect, with branch points at the
intersections.

This construction includes and greatly extends the construction of minimal La-
grangian embeddings we gave in [37]. Indeed, up to this time we were not aware
of any other examples of non-holomorphic equivariant minimal immersions into CH

2

(save for the Lagrangian examples whose existence is a consequence of the “mountain-
pass” solutions to the Gauss equation described in [31]). The theorem above not only
gives all examples for reductive representations (when we allow branch points) but
allows us to describe the structure of the moduli space of these as a complex manifold
(Theorem 1.3 below).

By a theorem of Wolfson [50], f is Lagrangian precisely when it has no complex
or anti-complex points, and is therefore parametrised by the pair (Σc, ξ). The em-
beddings constructed in [37] all have the property that the exponential map on the
normal bundle provides a diffeomorphism between TD⊥ and CH

2. It follows that ρ
has a finite fundamental domain (given by the normal bundle over a finite fundamental
domain for the action of π1Σ on D). Here we call such embeddings almost R-Fuchsian,
because they are deformations of the embedding RH

2 → CH
2, which is equivariant

with respect to every Fuchsian representation into SO(2, 1) ⊂ PU(2, 1). In §4 we im-
prove on the results in [37] by showing that whenever f is minimal Lagrangian with
‖Q‖2γ < 2 it is almost R-Fuchsian and the unique ρ-equivariant minimal immersion.
The R-Fuchsian case corresponds to Q = 0, and therefore ξ = 0 by the theorem above.
The uniqueness of f proved here implies that the data (Σc, ξ) also parametrises the
almost R-Fuchsian family, although at present we do not understand the appropriate
bound on ξ. It is preferable to have the parametrisation in terms of (Σc, ξ) since that
gets us directly to the Higgs bundle and therefore to ρ. The parametrisation in [37]
using Q requires an additional condition to provide a unique solution to the Gauss
equation of the immersion. We describe the subtleties of existence and uniqueness for
this equation in §4.1, which also draws on earlier work by Huang, Loftin & Lucia [31].

The minimal Lagrangian case suggests that it is important to understand those
minimal immersions for which Q = 0. These are treated in §5. We show that they
have a very interesting interpretation in terms of the Higgs bundle, for Q = 0 exactly
when the Higgs bundle is a Hodge bundle (or variation of Hodge structure). These are
known to be the critical points of the Morse-Bott function ‖Φ‖2L2 [22] and come in two
flavours: length two or length three. The length-two Hodge bundles all correspond
to holomorphic or anti-holomorphic maps. The following theorem summarises our
results regarding these.

Theorem 1.2. Let ρ be irreducible and f be branched holomorphic and ρ-
equivariant. Then the pair (ρ, f) is faithfully determined by data (Σc, B, L,C.η) where
B is an effective divisor of degree b, L is a holomorphic line bundle of degree l satis-
fying

3(g − 1) + 1
2b < l < 6(g − 1)− b, 0 ≤ b < 2(g − 1),

and C.η ∈ PH1(Σc,KL−1(B)) determines the isomorphism class of V as an extension
of K−1(B) by K−2L. The Toledo invariant of ρ is 2

3 (6g − 6− b− l) > 0.

This also accounts for anti-holomorphic immersions, since f is anti-holomorphic
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and ρ-equivariant if and only if f̄ is holomorphic and ρ̄-equivariant. The latter has
the dual Higgs bundle to ρ.

As with the non-holomorphic case, the extension class η corresponds to the Dol-
beault cohomology class of a tensor over Σc which has geometrical significance and is
related to the second fundamental form of f (see Theorem 5.2). We explain how the
limiting value η = 0 corresponds to reducible representations which are not maximal,
i.e., do not have τ = ±χ(Σ).

By contrast, the length-three Hodge bundles correspond to those pairs (ρ, f)
coming from Theorem 1.1 with ξ = 0. By using the method of harmonic sequences
[4, 7, 14, 15] we show that ξ = 0 precisely when the harmonic sequence of f contains a
holomorphic ρ-equivariant (and “timelike”) map into complex de Sitter 2-space. This
is a pseudo-Hermitian symmetric space, the analogue of the real 2-dimensional de
Sitter space which complements RH2.

In the final section, §6, we describe the moduli space

V = {(ρ, f) : ρ irreducible, f branched minimal}/G.

By the results stated above it is a union of components V(d1, d2) containing those
pairs described by Theorem 1.1 and W+(b, l) (respectively, W−(b, l)) containing the
holomorphic (resp., anti-holomorphic) immersions described in Theorem 1.2. Of these
we prove:

Theorem 1.3. Each V(d1, d2) is a complex manifold of dimension 8g − 8, while
each W±(b, l) is a complex manifold of dimension 3(g − 1) + l. All of these are
diffeomorphic to bundles over the Teichmüller space of Σ, and the fibres are complex
analytic submanifolds. For V(d1, d2) each fibre Vc(d1, d2) is a rank 5g − 5 − d1 − d2
vector bundle over Sd1Σc × Sd2Σc, while for W±(b, l) each fibre is a CP

l−b−g-bundle
over SbΣc × Picl(Σc).

We finish in §6.3 with a brief discussion of the map V → R(G) given by forgetting
the immersion. There is much yet to be understood about this map. For example, we
do not know if this map is onto for non-maximal representations, or the dimension of
its image on components of V . Nevertheless, we can make some salient remarks about
its restriction to any fibre over Teichmüller space. We point out that on the image
of V the L2-norm of the Higgs fields equals the area of the minimal immersion. The
critical points of ‖Φ‖2L2 are all accounted for by the Hodge bundles, and therefore lie
in the image of V . A comparison of the structure of Vc(d1, d2) with what is known
of the Morse index from [22], together with an area bound established in §3, suggests
that the fibres of the vector bundle Vc(d1, d2) map onto the downward Morse flow of
‖Φ‖2L2.

For us, one of the outstanding challenges is to use this construction to study
the quasi-Fuchsian representations, where “quasi-Fuchsian” is meant in the sense of
Parker & Platis [41], i.e., a convex cocompact, totally loxodromic, discrete embed-
ding. Recent work of Guichard & Wienhard [25, Thm 1.8] has shown that ρ is a
convex cocompact embedding precisely when it is an Anosov embedding. Since the
latter are totally loxodromic, the notions “quasi-Fuchsian”, “convex cocompact em-
bedding” and “Anosov embedding” coincide for PU(2, 1) (and more generally, any
semisimple Lie group of real rank one). One knows from [24] that quasi-Fuchsian rep-
resentations comprise an open subset of the representation variety R(G). Examples
for every even value of τ(ρ) were constructued by Goldman, Kapovich & Leeb [20],
while Parker & Platis [40] constructed a open family of quasi-Fuchsian representations
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in the Toledo invariant zero component. The latter family are perturbations of the
Fuchsian representations corresponding to the totally geodesic and Lagrangian embed-
ding RH

2 ⊂ CH
2, so they must overlap with the almost R-Fuchsian representations

constructed in [37] (all of which are quasi-Fuchsian).
Beyond these examples, there is very little known; it is not even known whether

there are any quasi-Fuchsian representations for non-integral values of the Toledo in-
variant. One compelling reason for looking to minimal immersions to provide more
insight is the theorem of Goldman & Wentworth [21], that for convex cocompact rep-
resentations the harmonic map energy functional on Teichmüller space is a proper
function. It therefore has at least one critical point, and it is a well-known result of
Sacks & Uhlenbeck [42] that each critical point corresponds to a weakly conformal
harmonic (i.e., branched minimal) map. Since our construction includes branched
minimal maps, it follows that the map V → R(G) has all quasi-Fuchsian representa-
tions in its image.
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2. Minimal surfaces and their Higgs bundles. We begin by setting up the
notation and standard constructions for the minimal surfaces and the Higgs bundles
we will be working with.

2.1. Equivariant minimal surfaces in CH
2. Our model for CH2 will be the

projective model, as follows. Let C2,1 denote the vector space C3 equipped with the
(indefinite) Hermitian metric

〈v, v〉 = v1v̄1 + v2v̄2 − v3v̄3.

Let C
2,1
− = {v ∈ C2,1 : 〈v, v〉 < 0}, so that CH

2 
 PC
2,1
− . Thus we consider CH

2 as

the orbit of the line [0, 0, 1] ∈ PC
2,1
− under the standard action of G = PU(2, 1). Con-

sequently CH
2 
 G/H , where H 
 P (U(2)× U(1)) is a maximal compact subgroup

of G. We equip CH
2 with its Hermitian metric of constant holomorphic sectional

curvature −4; so that its sectional curvature has bounds −4 ≤ κ ≤ −1. We write the
Hermitian metric on CH

2 as h = g − iω, where ω(X,Y ) = g(JX, Y ), and recall that
(CH2, h) is a Kähler-Einstein manifold.

We will always think of a minimal immersion f : D → CH
2 as a conformal

harmonic immersion, so the induced metric γ = f∗g is conformally equivalent to the
hyperbolic metric μ, with γ = euμ for a smooth function u : Σ→ R. To say that f is
ρ-equivariant means it intertwines ρ with a Fuchsian representation π1Σ→ Isom(D).
The conjugacy class of such a representation is equivalent to a choice of a marked
conformal structure on Σ, i.e., a point c ∈ Tg in the Teichmüller space of Σ. We will
write Σc to denote the surface with this structure. From now on we will assume f is
ρ-equivariant.

To understand the properties of such minimal immersions we need some notation
for the type decomposition of the (complexified) differential df : TCD → TCCH

2.
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Both the domain and the codomain are complex manifolds, so to distinguish between
the type decompositions of their tangent vectors we will write

TCD = T 1,0D ⊕ T 0,1D, TC
CH

2 = T ′
CH

2 + T ′′
CH

2.

The projections will be such that X = X1,0 + X1,0 (or X ′ + X ′ as appropriate)
whenever X is real. Our primary model for TC

CH
2 will be the projective model: viz,

at any point � ∈ PC
2,1
− we use the isomorphism

T ′
�CH

2 ⊕ T ′′
� CH

2 → Hom(�, �⊥)⊕Hom(�⊥, �) ⊂ End(C2,1); (2.1)

(Z,W ) �→ (π⊥
� ◦ Z, π� ◦W ),

where π� : C
2,1 → � is the orthogonal projection and we think of Z,W as operations

of differentiation on local sections of CH2 ×C3. In particular, conjugation in TCCH
2

corresponds to taking the Hermitian transpose in End(C2,1), i.e., whose fixed subspace
is u(2, 1). The isomorphism can be derived from the symmetric space model for CH2,
which we will occasionally need to use (cf. the related model for CPn in, for example,
[5]). For that model, let g = su(2, 1) and let h ⊂ g denote the Lie subalgebra for H .
Then the symmetric space decomposition is g = h+m where m = h⊥ with respect to
the Killing form, and TCH2 
 [m] = G×H m, where the action of H on m is its right
adjoint action. It is easy to check that the fibre of [mC] at � agrees with the codomain
of (2.1), and that the metric corresponds to g(A,B) = 1

2 tr(AB) whenever A,B ∈ m.
By extending � to mean the tautological sub-bundle the Hermitian metric h on

T ′CH2 is then equivalent to the inner product

h(Z1, Z2) = 〈π⊥
� Z1σ0, π

⊥
� Z2σ0〉, σ0 ∈ Γ(�), 〈σ0, σ0〉 = −1.

Then type decomposition induces an isometry TCH2 → T ′CH2. These type decom-
positions give four complex linear parts of df :

∂f ′ : T 1,0D → T ′
CH

2, ∂f ′′ : T 1,0D → T ′′
CH

2, (2.2)

∂̄f ′ : T 0,1D → T ′
CH

2, ∂̄f ′′ : T 0,1D → T ′′
CH

2, (2.3)

which are related by ∂̄f ′′ = ∂f ′ and ∂̄f ′ = ∂f ′′ using simultaneously the conjugation
in TCD and TCCH

2. Since f is ρ-equivariant, so is df , i.e., dfdδ = dρ(δ)df whenever
δ ∈ π1Σ ⊂ Isom(D). Therefore we can think of df as a section of the bundle TCΣ∗ ⊗
(f−1TCCH

2/ρ) over Σc. In particular,

∂f = ∂f ′ + ∂f ′′,

is a smooth section of the vector bundle K ⊗ (f−1TCCH
2/ρ) over Σc, where K is the

canonical bundle of Σc.
One says that f has a complex point at p = f(z) when ∂f ′′ vanishes at p (i.e., when

df(T 1,0D) ⊂ T ′
CH

2), and an anti-complex point when ∂f ′ vanishes at p. The Levi-
Civita connexion induces a holomorphic structure on f−1TCCH

2/ρ which preserves

type decomposition, and f is harmonic when ∇CH
2

Z̄
∂f(Z) = 0 for local holomorphic

sections Z of T 1,0D, i.e., when

∇CH
2

Z̄ ∂f ′(Z) = 0 and ∇CH
2

Z̄ ∂f ′′(Z) = 0.

Thus ∂f ′ and ∂f ′′ are holomorphic sections of their respective bundles; so a harmonic
immersion which is not holomorphic or anti-holomorphic must have isolated anti-
complex and complex points. We will denote the divisors of zeroes of ∂f ′ and ∂f ′′ on
Σ by D1 and D2 respectively .
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Through these identifications there is a sesqui-linear form h(df ′, df ′) on TCΣ which
gives the induced metric as γ = Reh(df ′, df ′) = g(df ′, df ′). The map f is weakly
conformal when

h(∂f ′, ∂̄f ′) = 0,

and conformal when additionally df ′ does not vanish. Therefore, for conformal maps
the induced metric and the pull-back of the Kähler form are expressed, with respect
to a local complex coordinate z, as

γ = f∗g = (u2
1 + u2

2)|dz|2, f∗ω =
i

2
(u2

1 − u2
2)dz ∧ dz̄. (2.4)

where

u1 = ‖∂f ′(Z)‖, u2 = ‖∂f ′′(Z)‖, Z = ∂/∂z. (2.5)

The functions u1, u2 are locally real analytic and vanish precisely at the anti-complex
and complex points, respectively. They correspond to Hermitian metrics

γ1 = h(∂f ′, ∂f ′) = u2
1dzdz, γ2 = h(∂f ′′, ∂f ′′) = u2

2dzdz (2.6)

on K−1(D1) and K−1(D2) respectively. Note that, to apply γ to all elements of TCΣ
consistently, the meaning of “|dz|2” above is

|dz|2 = 1
2 (dzdz + dz̄dz̄),

in terms of the local complex linear forms dz, dz̄. For this reason we do not write
γ = γ1 + γ2.

Because the forms γ, f∗ω live on Σ we can use some of the arguments which
apply to compact minimal surfaces in Kähler-Einstein manifolds [48, 50, 6] to relate
numerical invariants of a minimal immersion.

Theorem 2.1. Let f : D → CH
2 be a ρ-equivariant minimal immersion which

is neither holomorphic nor anti-holomorphic. Let d1, d2 be the degrees of the divisors
D1 and D2 of anti-complex and complex points. Then

c1(ρ) = d1 − d2, (2.7)

χ(Σ) + χ(TΣ⊥) = −d1 − d2, (2.8)

where c1(ρ) is the first Chern class of the bundle f−1TCH2/ρ over Σ and TΣ⊥ ⊂
f−1TCH2/ρ is the normal sub-bundle.

Wolfson also showed that in the absence of complex or anti-complex points a
minimal immersion into a Kähler-Einstein surface of negative scalar curvature must
be Lagrangian [50, Thm 2.1]. His argument extends to ρ-equivariant maps, so that in
the setting of the previous theorem f will be Lagrangian if and only if d1 = 0 = d2.

Now we recall that the Toledo invariant τ(ρ) is the integer

τ(ρ) =
2

π

∫
Σ

f∗ω. (2.9)

This is the normalisation which fits with the metric of holomorphic sectional curvature
−4. It is known that for any representation ρ into PU(2, 1), |τ(ρ)| ≤ −χ(Σ) [11] and
τ(ρ) ∈ 2

3Z [20]. Since CH
2 has Einstein constant −6, equation (2.7) tells us that

τ(ρ) = − 2
3c1(ρ) =

2
3 (d2 − d1). (2.10)
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Finally, as well as the degenerate metrics γj above, there is a third important invariant
of minimal equivariant immersions [51, Cor 2.7], the cubic holomorphic differential
Q ∈ H0(Σ,K3) defined by

Q(Z,Z, Z) = h(∇CH
2

Z ∂f ′(Z), ∂̄f ′(Z̄)) = −h(∂f ′(Z),∇CH
2

Z̄ ∂̄f ′(Z̄)), (2.11)

for Z ∈ T 1,0D. It follows at once from this that Q vanishes identically for holomorphic
or anti-holomorphic immersions (but not only for them, as we shall see). When f is
neither holomorphic nor anti-holomorphic we will see later that the quantities γ1, γ2,Q
uniquely determine f up to ambient isometries.

2.2. G-Higgs bundles and representations. As well as fixing our notation for
Higgs bundles, we also need to summarise their correspondence with (projectively) flat
connexions, and hence representations and harmonic maps, since we will be making
explicit use of this correspondence for most of this article. A good general introduction
to Higgs bundles can be found in, for example, [16, 17], while details for their moduli
spaces in the case G = PU(2, 1) can be found in [22, 52].

Suppose Σ has been given a fixed conformal structure. With the notation of the
previous section, a G-Higgs bundle for G = PU(2, 1) is a projective equivalence class
of U(2, 1)-Higgs bundles. The latter are pairs (E,Φ) consisting of a holomorphic rank
three vector bundle E over Σ equipped with a splitting E = V ⊕L into a rank two sub-
bundle V and a line sub-bundle L (both holomorphic) together with a holomorphic
section

Φ ∈ H0(K ⊗ [Hom(L, V )⊕Hom(V, L)]), (2.12)

called the Higgs field. Projective equivalence identifies pairs (E,Φ) and (E′,Φ′) when
there is a holomorphic line bundle L for which E′ = E ⊗ L and Φ′ = Φ.

We will write Φ = (Φ1,Φ2) to denote the two summands implied by the direct
sum (2.12). It is also convenient to write the holomorphic structure on E as a ∂̄-
operator on smooth sections, ∂̄E : E0(E) → E0,1(E). A Higgs bundle is stable if for
any proper (non-zero) Φ-invariant sub-bundle W ⊂ E the slope condition

deg(W )

rk(W )
< 1

3 deg(E), (2.13)

is satisfied. It is polystable when it is either stable or the direct sum of stable proper
Higgs sub-bundles all having the same slope (these latter type are called strictly
polystable). These properties are independent of the choice of pair (E,Φ) representing
the projective equivalence class. Now we recall that each polystable U(2, 1) Higgs
bundle admits a C2,1 metric and compatible projectively flat connexion, and thereby
produces a flat PU(2, 1)-bundle.

Theorem 2.2 (Prop 3.9, [3]). Fix a Kähler metric on Σc in the conformal class
c, with Kähler 2-form ωc, normalised so that Σc has area 2π. For each polystable
stable U(2, 1)-Higgs bundle (E,Φ) of slope μ there is a C2,1 metric on E for which
L = V ⊥ and the corresponding Chern connexion ∇E and Hermitian adjoint Φ† yield
a projectively flat connexion ∇ = ∇E +Φ− Φ†, i.e.,

R∇ = R∇E + [Φ ∧ Φ†] = −iμωcIE . (2.14)

The connexion ∇ induces a flat connexion on the principal PU(2, 1)-bundle whose
associated bundle is PE. The holonomy of this flat connexion yields a reductive
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representation ρ : π1Σ→ PU(2, 1) (determined up to conjugacy) which is irreducible
precisely when (E,Φ) is stable (hence strictly polystable Higgs bundles correspond to
reducible reductive representations).

Remark 2.1. This theorem can be thought of as an example of the Donaldson-
Uhlenbeck-Yau correspondence between stable bundles over compact Kähler mani-
folds and Hermitian-Einstein connections (Garcia-Prada gives a good overview which
fits our context in [16]). For G-Higgs bundles such a correspondence is due to Hitchin
for G = SL(2,C) [29] and Simpson [43] when G is a complex reductive algebraic
group.

Note that the usual statement of the previous theorem gives the existence of a
Hermitian metric on E. This is equivalent, since one can simply swap the sign of
the metric on L, and the condition (2.12) on the Higgs field ensures that the adjoint
remains the same. This makes the C2,1 metric negative definite on L, and therefore L
determines a smooth section of the CH

2 bundle PE− (where E− denotes the bundle
of negative length vectors in E). Since PE− 
 D×ρ CH

2 this section is equivalent to
a ρ-equivariant map f : D → CH

2 in such a way that Φ = ∂f . Moreover, ∇E induces
a metric connexion on f−1TCH2 which agrees with the pull-back of the Levi-Civita
connexion, so that the equation ∂̄EΦ = 0 is the harmonic map condition for f .

In the reverse direction, a representation ρ : π1Σ → G determines the projective
bundle PE uniquely and therefore a class of projectively equivalent C2,1 bundles, each
with a projectively flat connexion. By Corlette’s results [9], there is a ρ-equivariant
harmonic map f : D → CH

2 precisely when ρ is reductive, and this map is unique
when ρ is irreducible . The map corresponds to a line sub-bundle L ⊂ E and therefore
a splitting E = L⊥ ⊕ L. The splitting determines a bundle automorphism σ ∈
End(E,E) for which σ|L⊥ = 1 and σ|L = −1, and therefore a decomposition ∇ =
∇E +Ψ, where

∇E = 1
2 (∇+ σ∇σ), Ψ = 1

2 (∇− σ∇σ).

The Higgs field is Φ = Ψ1,0. The harmonic map equation, when paired with the
projective flatness of ∇, asserts that ∂̄EΨ

1,0 = 0, and thus the Higgs field satisfies
(2.12) when we take V = L⊥.

Two such bundles, (E,∇) and (E′,∇′), are projectively equivalent when there is a
line bundle L equipped with a connexion ∇L for which E′ 
 E⊗L and ∇′ 
 ∇⊗∇L
(the induced connexion on the tensor product). In particular, by taking L = L−1

equipped with the connexion obtained from the restriction of ∇ to L, we may assume
without loss of generality that E = V ⊕1, where 1 denotes the trivial bundle, and the
restriction of ∇ to 1 is the canonical flat connexion. In that case the Toledo invariant
of ρ is − 2

3 deg(V ).

Remark 2.2. The alternative normalisation, used by Xia [52], is to note that
since deg(E⊗L) = deg(E)+3 deg(L) one can normalise by degree, i.e., insist that 0 ≤
deg(E) < 3. In particular, the topological type of PE is determined by deg(E) mod 3,
and the representation ρ only lifts to SU(2, 1) when there exists an L for which
E ⊗ L 
 D ×ρ̂ C

2,1 for some representation ρ̂ : π1Σ → U(2, 1). This happens if and
only if deg(E) ≡ 0 mod 3, i.e., when τ ∈ 2Z.

Remark 2.3. From the Higgs bundle perspective, the Toledo invariant is some-
times defined to be 2

3 deg(V L−1) (see, for example, [52]). This differs by a sign from
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our convention, since

2
3 deg(V L−1) = 2

3 degHom(L, V ) = 2
3c1(ρ) = −τ(ρ). (2.15)

2.3. Minimal surfaces and their Higgs bundles. We are now in a position
to classify, in terms of Higgs bundle data, the minimal ρ-equivariant surfaces which
are neither holomorphic nor anti-holomorphic, when ρ is irreducible.

Theorem 2.3. An irreducible representation ρ ∈ Hom(π1Σ, G) admits a ρ-
equivariant minimal immersion f : D → CH

2 which is neither holomorphic nor
anti-holomorphic if and only if it corresponds to a Higgs bundle (E,Φ) for which
E = V ⊕ 1 where V is a rank 2 holomorphic extension

0→ K−1(D1)
Φ1→ V

Φ2→ K(−D2)→ 0. (2.16)

Here D1, D2 are effective divisors with no common points, whose degrees d1, d2 satisfy
the stability inequalities

2d1 + d2 < 6(g − 1) and d1 + 2d2 < 6(g − 1), (2.17)

where g is the genus of Σ. The Higgs field is given by Φ = (Φ1,Φ2), after making the
canonical identifications

Hom(K−1(D1), V ) 
 K(−D1)⊗Hom(1, V ),

Hom(V,K(−D2)) 
 K(−D2)⊗Hom(V, 1). (2.18)

These divisors are, respectively, the divisors of anti-complex and complex points of the
minimal immersion f . The representation ρ has τ(ρ) = 2

3 (d2 − d1).

Proof. Given ρ we obtain a projectively flat C2,1 bundle of the form E = V ⊕ 1,
and then f provides holomorphic sections

Φ1 = ∂f ′ ∈ H0(K ⊗Hom(1, V )) 
 H0(Hom(K−1, V )),

Φ2 = ∂f ′′ ∈ H0(K ⊗Hom(V, 1)) 
 H0(Hom(V,K)),

whose sum is Φ = ∂f . Since f is conformal we have

0 = g(∂f, ∂f) = 1
2 tr(Φ

2).

From this we can show that Φ2 ◦ Φ1 = 0, by the following local frame argument.
Neither of Φ1,Φ2 are identically zero since f is not ±-holomorphic. So, away from its
zero locus, the image of Φ1 is a rank one sub-bundle V1 ⊂ V . We can locally frame E
by sections σ1, σ2 of V and σ3 of 1 such that σ1 generates V1, and we may assume this
is a U(2, 1) frame with respect to the metric on E. It follows that there are locally
holomorphic sections a, b, c of K for which

Φ2(σ1) = aσ3, Φ2(σ2) = bσ3, Φ1(σ3) = cσ1.

Since f is not anti-holomorphic c �= 0. Now

tr(Φ2) = tr(Φ1 ◦ Φ2 +Φ2 ◦ Φ1)

= 〈Φ1 ◦Φ2(σ1), σ1〉+ 〈Φ1 ◦ Φ2(σ2), σ2〉 − 〈Φ2 ◦ Φ1(σ3), σ3〉
= 2ac.
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Therefore tr(Φ2) = 0 implies a = 0, i.e., Φ2 ◦ Φ1 = 0. Thus

K−1 Φ1→ V
Φ2→ K,

has the image of Φ1 in the kernel of Φ2. Now Φ1 vanishes precisely on anti-complex
points, while Φ2 vanishes precisely on complex points, so we have

0→ K−1(D1)
Φ1→ V

Φ2→ K(−D2)→ 0.

This must be exact at the middle since V has rank 2.

For stability we need to identify the Φ-invariant sub-bundles. With respect to the
local frame σ1, σ2, σ3 above Φ is represented by the matrix

⎛
⎝0 0 c
0 0 0
0 b 0

⎞
⎠ .

It follows that the only Φ-invariant proper sub-bundles of E are the image V1 of Φ1

and V1 ⊕ 1. So stability requires

deg(V1) <
1
3 deg(E), 1

2 deg(V1) <
1
3 deg(E).

Since deg(V1) = d1 − 2(g − 1) and deg(E) = d1 − d2 these inequalities are equivalent
to the inequalities (2.17).

Reversing the argument is straightforward: when the Higgs bundle has this form
we have Φ2 ◦ Φ1 = 0, hence tr(Φ2) = 0. So when the Higgs bundle is stable the sub-
bundle 1 ⊂ E provides a conformal harmonic ρ-equivariant map f for some irreducible
ρ.

The proof works perfectly well in the case where D1, D2 have common points,
in which case the map f is a branched minimal immersion with branch points on
D1 ∩D2. We will follow common usage and say D1, D2 are co-prime when they are
disjoint.

The Higgs bundle data which appears in the previous theorem can be written
as a quadruple (Σc, D1, D2, ξ), where ξ ∈ H1(Σc,K

−2(D1 + D2)) is the extension
class of (2.16). The theorem shows that this data determines the pair (ρ, f) up
to G-equivalance, i.e., up to the simultaneous action of G by conjugacy of ρ and
ambient isometry of f . The exact sequence (2.16), which gives us V and Φ1,Φ2, is
completely and uniquely determined by its extension class ξ [26, Ch. 5]. Moreover,
since the isomorphisms (2.18) require D1, D2, not just their linear equivalence classes,
the assignment from (Σc, D1, D2, ξ) to the G-equivalance class of (ρ, f) is bijective.
The moduli space parametrised by this data will be described in §6.

Remark 2.4. The proof above shows that when (E,Φ) has tr(Φ2) = 0 it cannot
split into a direct sum of Φ-invariant sub-bundles unless one of Φ1 or Φ2 is identically
zero. It follows that a reducible ρ can only admit ρ-equivariant minimal surfaces which
are holomorphic or anti-holomorphic. We describe all these reducible representations
in Remark 5.1 below. However, there are also irreducible representations which admit
holomorphic or anti-holomorphic surfaces: we give a complete classification in §5.
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3. The Higgs bundle data in terms of minimal surface data. In this
section we will give the explicit correspondence between the minimal surface data
(γ1, γ2,Q) and the Higgs bundle data (Σc, D1, D2, ξ) of the previous section. This
is achieved by exploiting the harmonic sequence for a minimal surface in CH

2. It
provides us with a preferred system of local U(2, 1) frames for the bundle E in Theorem
2.3, and which we will call Toda frames. These frames are explictly determined by
the minimal surface data, and through them we calculate the extension class ξ of
the bundle V in Theorem 2.3. The correspondence between the Higgs data and the
minimal surface data then comes through the Dolbeault isomorphism

H1(Σc,K
−2(D1 +D2)) 
 H0,1(Σc,K

−2(D1 +D2)).

Theorem 3.1. Let the pair (ρ, f) correspond to the Higgs data (Σc, D1, D2, ξ)
as in the previous section. Let γ1, γ2,Q be the minimal surface data determined by f
through (2.6) and (2.11). Then the extension class ξ corresponds, under the Dolbeault
isomorphism, to the cohomology class

−
[ Q̄
γ1γ2

]
∈ H0,1(Σc,K

−2(D1 +D2)).

Moreover ξ = 0 if and only if Q = 0.

In particular, this means that (γ1, γ2,Q) determines (Σc, D1, D2, ξ), since we get
the conformal structure of the induced metric and the divisors D1, D2 from γ1, γ2.
Therefore Theorems 2.3 and 3.1 together have the following corollary.

Corollary 3.2. If two ρ-equivariant minimal surfaces have the same data
(γ1, γ2,Q) then they are identical up to ambient isometry.

Before we begin the proof of Theorem 3.1 we describe the local Toda frames which
link the minimal surface data to the local geometry of the Higgs bundle. Fix a pair
(ρ, f) and let E = V ⊕1 be the Higgs bundle over Σc corresponding to them as above,
equipped with its Higgs field Φ, its C2,1 metric and the Chern connexion ∇E .

Lemma 3.3. Let (U, z) be holomorphic chart on Σc for which U contains no
complex or anti-complex points of f . Then over U there is a local trivialisation ϕ :
E|U → U × C3 for which

ϕ ◦ ∂̄E ◦ ϕ−1 = dz̄

⎡
⎣ ∂

∂z̄
+

⎛
⎝−Z̄ log u1 −Q̄/u1u2 0

0 Z̄ log u2 0
0 0 0

⎞
⎠
⎤
⎦ (3.1)

and

ϕ ◦ Φ ◦ ϕ−1 =

⎛
⎝0 0 u1

0 0 0
0 u2 0

⎞
⎠ dz, (3.2)

where Z̄ = ∂/∂z̄ and u1, u2, Q are given by (2.5) and (2.11).

Proof. For notational convenience, let us set �0 = 1 ⊂ E. Then V = �⊥0 with
respect to the C2,1 metric, and �0 is the section of PE− which represents f . Thus
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∂f ′, ∂̄f ′ ∈ Ω1
Σ(Hom(�0, �

⊥
0 )) and they determine line sub-bundles �1, �2 ⊂ �⊥0 via their

images, i.e.,

�2 ⊗ K̄
∂̄f ′

← �0
∂f ′

→ �1 ⊗K. (3.3)

These two sub-bundles are orthogonal since f is conformal. We give each of these line
bundles the holomorphic structure it inherits from ∂̄E , i.e., a local section σj of �j is
holomorphic when πj ∂̄Eσj = 0, where πj : E → �j is the orthogonal projection. Note
that since Φ ∈ Hom(�0, �

⊥
0 ) this holomorphic structure on each �j agrees with the one

induced by the projectively flat connexion ∇ = ∇E + Φ + Φ†. Then ∂f ′ = Φ1 is a
holomorphic map, while ∂̄f ′ = Φ†

2 is anti-holomorphic, since f is harmonic. Since ∇
induces the canonical flat connexion on 1 we can choose a globally flat section f0 of
1, i.e., 〈∇f0, f0〉 = 0 with 〈f0, f0〉 = −1.

Now fix a chart (U, z) and for any section σ of E|U write Xσ to mean ∇Xσ with
respect to the projectively flat connexion ∇. Then the maps above can be written
locally as

�2
π⊥

0 Z̄← �0
π⊥

0 Z→ �1.

Define local sections σj ∈ Γ(U, �j), j = 1, 2 by

σ1 = ∂f ′(Z)f0 = π⊥
0 Zf0, σ2 = ∂̄f ′(Z̄)f0 = π⊥

0 Z̄f0.

We assume that U does not contain any complex or anti-complex points, and therefore
the functions u1, u2 in (2.5) are non-vanishing. Clearly |σj | = uj , and we set fj =
σj/uj. Then f1, f2, f0 is a U(2, 1) frame for E. We claim that these satisfy the
equations

Zf1 = (Z log u1)f1 + (Q/u1u2)f2, (3.4)

Zf2 = −(Z log u2)f2 + u2f0, (3.5)

Zf0 = u1f1. (3.6)

The last of these is obvious, since Zf0 = π⊥
0 Zf0.

Next consider

Zf1 = 〈Zf1, f1〉f1 + 〈Zf1, f2〉f2.

Since f0 is holomorphic, so is σ1, and therefore Z〈σ1, σ1〉 = 〈Zσ1, σ1〉. Thus

〈Zf1, f1〉 = u−1
1 〈Z(u−1

1 σ1), σ1〉
= −Z log(u1) + u−2

1 Z〈σ1, σ1〉
= Z log(u1).

Now

〈Zf1, f2〉 = 〈Z(σ1/u1), σ2/u2〉
= 〈Zσ1, σ2〉/u1u2

= 〈π⊥
0 Zπ⊥

0 Zf0, π
⊥
0 Z̄f0〉/u1u2.



84 J. LOFTIN AND I. MCINTOSH

On the other hand, using (2.11) and the fact that ∇CH
2

is the connexion on
Hom(�0, �

⊥
0 ) induced by the connexions on each bundle �0, �

⊥
0 , we have

Q = 〈[∇CH
2

Z ∂f ′(Z)]f0, ∂̄f
′(Z̄))f0〉

= 〈π⊥
0 Z[∂f ′(Z)f0]− ∂f ′(Z)[π0Zf0], ∂̄f

′(Z̄))f0〉
= 〈π⊥

0 Zπ⊥
0 Zf0, π

⊥
0 Z̄f0〉 − 〈π⊥

0 Zπ0Zf0, π
⊥
0 Z̄f0〉. (3.7)

The second term in the last line vanishes since �−1 is orthogonal to �1. Thus
〈Zf1, f2〉 = Q/u1u2.

Finally, consider

Zf2 = 〈Zf2, f2〉f2 − 〈Zf2, f0〉f0.

For the first term we note that σ2 is anti-holomorphic since f0 is, so

0 = 〈Zσ2, f2〉 = Zu2 + u2〈Zf2, f2〉.

Since 〈f2, f0〉 = 0 the second term yields

−〈Zf2, f0〉 = 〈f2, Z̄f0〉 = 〈f2, σ2〉 = u2.

Now that we have established the equations for the frame f1, f2, f0, we take ϕ to be
the corresponding trivialisation. In this frame the equations (3.4)-(3.6) show us that

ϕ ◦ ∇1,0 ◦ ϕ−1 = dz

⎛
⎝ ∂

∂z
+

⎛
⎝Z log u1 0 u1

Q/u1u2 −Z log u2 0
0 u2 0

⎞
⎠
⎞
⎠ (3.8)

Thus (3.1) and (3.2) follow.

At complex or anti-complex points we require a slight adjustment of the frame
above. We may choose the chart (U, z) so that U contains precisely one complex or
anti-complex point, at z = 0. Thus one of σ1, σ2 vanishes at z = 0. To treat all
cases simultaneously, let p, q be the non-negative integers for which z−qσ1 and z̄−pσ2

are respectively holomorphic and anti-holomorphic, and do not vanish at z = 0: at
most one of p, q is non-zero. It follows that the functions u1/|z|q = |z−qσ1| and
u2/|z|p = |z̄−pσ2| do not vanish. By setting

f̃1 =
z−qσ1

|z−qσ1|
= (|z|/z)qf1, f̃2 = (|z|/z̄)pf2 = (z/|z|)pf2,

we obtain a U(2) frame f̃1, f̃2 for V throughout U , with corresponding trivialisation
ϕ̃. This is easiest to work with by writing it as

ϕ̃ = S(ϕ|V ), S =

(
(z/|z|)q 0

0 (|z|/z)p
)
. (3.9)

The next step towards Theorem 3.1 is to represent the extension class ξ of V using
a 1-cocycle with values in K−2(D1 +D2). For this computation, we choose an atlas
U = {(Uj, zj)} for Σc of contractible charts for which each complex or anti-complex
point lies only in one chart, at zj = 0, and for simplicity assume charts containing
distinct complex or anti-complex points are disjoint.
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Lemma 3.4. There is a holomorphic atlas U = {(Uj, zj)} for Σc in which ξ is
represented by the 1-cocycle {(ξjk, Uj, Uk)} ∈ H1(U ,K−2(D1 +D2)) for which

ξjk = ajz
−(pj+qj)dz−2

j − akdz
−2
k on Uj ∩ Uk, (3.10)

for smooth functions aj on Uj satisfying

∂aj/∂z̄j = −
Q̄jz

pj+qj
j

u2
1ju

2
2j

,

(assuming Uk contains no complex or anti-complex points).

Proof. For simplicity, set w = z/|z|. Using the previous lemma and the transfor-
mation (3.9) we have, on V over a single chart (U, z),

ϕ̃ ◦ ∂̄E ◦ ϕ̃−1 = dz̄

[
∂

∂z̄
+

(
−Z̄ log(u1/|z|q) −Q̄wp+q/u1u2

0 Z̄ log(u2/|z|p)

)]
.

Now suppose Uj ∩Uk �= ∅, and assume without loss of generality that Uk contains no
complex or anti-complex points, so that pk = 0 = qk and ϕ̃k = ϕk|V . Then we have
transition relations ϕ̃j = cjkϕ̃k where

cjk =

(
w

qj
j

dzj/dzk
|dzj/dzk| 0

0 w
−pj

j
|dzj/dzk|
dzj/dzk

)
,

where we have used that fact that

dz̄j/dz̄k
|dz̄j/dz̄k|

=
dzj/dzk
|dzj/dzk|

=
|dzj/dzk|
dzj/dzk

.

It follows that, as a smooth bundle, V 
 K−1(D1)⊕K(−D2).
To elucidate its holomorphic structure we find local trivialisations χj in which

χj ◦ ∂̄E ◦ χ−1
j = dz̄j

∂

∂z̄j
,

i.e., we seek local gauge transformations χj = Rjϕ̃j for which

Rj [ϕ̃ ◦ ∂̄E ◦ ϕ̃−1]R−1
j = dz̄j

∂

∂z̄j
.

A straightforward calculation shows that this is achieved by taking

Rj =

(
1 aj
0 1

)(
(u1j/|zj |qj )−1 0

0 u2j/|zj|pj

)
,

where

∂aj
∂z̄j

= − Q̄jz
pj+qj

u2
1ju

2
2j

, (3.11)

throughout Uj . Such a function aj exists, by the ∂̄-Poincaré Lemma, because the
right hand side is smooth throughout Uj since Qj vanishes to at least order pj + qj at
zj = 0 by (2.11). Thus the transition between two such charts χj = bjkχk is given by

bjk = RjcjkR
−1
k =

(
z
qj
j dzj/dzk λjk

0 z
−pj

j dzk/dzj

)
,
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where

λjk = ajz
−pj

j

dzk
dzj

− akz
qj
j

dzj
dzk

,

and this is holomorphic on Uj∩Uk (this follows easily from (3.11)). Now using the same
convention as [26, p74] this determines the 1-cocycle with values in K−2(D1 + D2)
given by

ξjk = (z
qj
j

dzj
dzk

)−1λjkdz
−2
k

= ajz
−(pj+qj)
j dz−2

j − akdz
−2
k .

Proof of Theorem 3.1. For notational simplicity, set L = K−2(D1 +D2). In Uj

the quantity

z
−(pj+qj)
j dz−2

j

is a local holomorphic section of L. Therefore we have local smooth sections

ηj = ajz
−(pj+qj)
j dz−2

j ∈ Γ(Uj , E0(L)),

which provide a 0-cochain η for the sheaf E0(L) of locally smooth sections of L. By
(3.10) the 1-cocyle {(ξjk, Uj , Uk)} is, as a smooth cocycle, the coboundary of η. Now
recall that the Dolbeault isomorphism H1(U ,L) → H0,1(U ,L) is derived from the
short exact sequence

0→ O(L)→ E0(L) ∂̄→ E0,1(L) ∂̄→ 0,

by taking the cohomology class of ∂̄η. But

∂̄ηj = −
Q̄j

u2
1ju

2
2j

dz−2
j d̄zj .

So ∂̄η is represented by the cohomology class of the smooth form

−Q̄/γ1γ2 ∈ Γ(Σc, E0,1(L)).

Finally, we show that this vanishes when it is ∂̄-exact, by showing that it is harmonic
with respect to Hermitian metric B = γ1γ2 on L. With respect to the Hodge inner
product on E∗,∗(L) determined by B on L and the induced metric γ on Σc, the adjoint
of ∂̄ : E0(L)→ E0,1(L) is given by

E0,1(L) ∂̄∗

→ E0(L); ∂̄∗ = −�̄∂̄�̄,

where �̄ is the conjugate linear Hodge star operator for our choice of metrics (see, for
example, [49, p168]). It therefore suffices for us to show that

∂̄�̄(Q̄/γ1γ2) = 0.
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Let (U, z) be a chart in which the divisor D1 +D2 has at most one point, of degree d
at z = 0. Then τ = z−ddz−2 is a local holomorphic trivialising section of L over U
and

E0,1(U,L) �̄→ E1,0(U,L∗); aτdz̄ �→ −iāB(·, τ)dz,

for any locally smooth complex function a over U . Now in U we write

Q̄/γ1γ2 =
Q̄zd

u2
1u

2
2

τdz̄,

and therefore

∂̄�̄(Q̄/γ1γ2) = −i
∂

∂z̄

(
Qz̄d‖τ‖2
u2
1u

2
2

)
(zddz2)dz̄ ∧ dz.

But

‖τ‖2 = B(τ, τ) = |z|−2du2
1u

2
2,

and therefore ∂̄�̄(Q̄/γ1γ2) = 0 throughout U since Q is holomorphic.

We finish this section by giving a global expression which relates the curvatures
of the immersion f to the norms of Q and Q/γ1γ2 with respect to the induced metric.
This in turn provides an area bound for such immersions.

First we note that a straightfoward calculation using (3.8) shows that the projec-
tive flatness of the connexion ∇ is equivalent to the local equations

ZZ̄ log u2
1 = 2u2

1 + |Q|2/u2
1u

2
2 − u2

2, (3.12)

ZZ̄ log u2
2 = 2u2

2 + |Q|2/u2
1u

2
2 − u2

1, (3.13)

in a chart (U, z) containing no complex or anti-complex points. These are the appro-
priate version of the Toda equations for this geometry (cf. [4] for the CP

n version).
They are also related to the two equations Wolfson derived for the Kähler angle in
[50]. Recall that the Kähler angle is a continuous function θ : Σc → R for which
f∗ω = cos(θ)vγ , where vγ is the area form for the induced metric. Wolfson showed
that, except at complex or anti-complex points where θ is not differentiable,

i∂∂̄ log tan2(θ/2) = f∗ Ric, (3.14)

i∂∂̄ log sin2(θ) = (κγ + κ⊥)vγ , (3.15)

where Ric is the Ricci form and κγ , κ
⊥ are the Gaussian and normal curvatures of the

immersion respectively. In our case we have, from (2.4), cos(θ) = (u1
1−u2

2)/(u
2
1+u2

2).
Therefore

tan2(θ/2) =
u2
2

u2
1

, sin2(θ) =
4u2

1u
2
2

(u2
1 + u2

2)
2
,

and (3.14) is just the difference of (3.12) and (3.13) since f∗ Ric = −6f∗ω. Now

ZZ̄ log sin2 θ = ZZ̄u2
1 + ZZ̄u2

2 − 2ZZ̄ log(u2
1 + u2

2)

= u2
1 +

2|Q|2
u2
1u

2
2

+ u2
2 −

2

u2
1 + u2

2

[ZZ̄ log(u2
1 + u2

2)](u
2
1 + u2

2),
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using (3.12) and (3.13). The second term on the right contains the local expression
for κγ , so substituting this equation into (3.15) reveals that

κ⊥ − κγ = 2

(
1 +

2|Q|2
u2
1u

2
2(u

2
1 + u2

2)

)
.

The right hand side can be written in terms of the quantities

‖Q‖γ =
2
√
2|Q|

(u2
1 + u2

2)
3/2

, ‖ Q
γ1γ2

‖γ =
|Q|

√
u2
1 + u2

2√
2u2

1u
2
2

.

It is easy to check that their product is smooth everywhere, so that we obtain the
global identity

κ⊥ − κγ = 2(1 + ‖ Q
γ1γ2

‖γ‖Q‖γ). (3.16)

By integration over Σ, and using (2.8), we arrive at the following conclusion.

Proposition 3.5. Let f be a ρ-equivariant minimal immersion which is neither
holomorphic nor anti-holomorphic, with induced metric γ, cubic holomorphic differ-
ential Q, d1 anti-complex points and d2 complex points. Then

(4(g − 1)− d1 − d2)π ≥ Areaγ(Σ) +

∫
Σ

‖Q‖2γvγ , (3.17)

with equality if and only if either Q = 0 or when f is Lagrangian.

Note that the stability inequalities (2.17) confirm that the left hand side is pos-
itive. The last statement follows because if Q �= 0 equality requires ‖Q/γ1γ2‖γ =
‖Q‖γ , which in turn requires u1 = u2, whence cos(θ) = 0.

Remark 3.1. The local equations (3.12), (3.13) are clearly invariant under any
unimodular scaling Q �→ eiαQ. Globally this corresponds to the symmetryQ �→ eiαQ,
and by Theorem 3.1 this corresponds in turn to ξ �→ e−iαξ. In fact this is equivalent
to the well-known symmetry of the equations (2.14) Φ �→ eiψΦ (taking α = 2ψ) which
Hitchin showed is a Hamiltonian circle action on the moduli space of SL(2,C)-Higgs
bundles [29]. To see this equivalence it is enough to perform the following gauge
transformation for ∂E + eiψΦ using the local gauge (3.8):

Ad

⎛
⎝e−2iψ0 0

0 1 0
0 0 e−iψ

⎞
⎠ ·

⎛
⎝ ∂

∂z
+

⎛
⎝Z log u1 0 eiψu1

Q/u1u2 −Z log u2 0
0 eiψu2 0

⎞
⎠
⎞
⎠

=
∂

∂z
+

⎛
⎝ Z log u1 0 u1

e2iψQ/u1u2 −Z log u2 0
0 u2 0

⎞
⎠ (3.18)

Note in particular that, unlike the SL(2,C) case, the map (E,Φ) �→ (E,−Φ) fixes
every PU(2, 1)-Higgs bundle since ∂E + Φ and ∂E − Φ are gauge equivalent (by the
symmetric space involution).
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4. Minimal Lagrangian immersions. By Wolfson’s theorem [50, Thm 2.1]
Theorem 2.3 yields minimal Lagrangian immersions when both divisors D1, D1 are
zero. Therefore Theorem 2.3 implies the following characterisation of all equivariant
minimal Lagrangian immersions.

Corollary 4.1. Given a closed oriented surface Σ of hyperbolic type, minimal
Lagrangian immersions f : D → CH

2 which are equivariant with respect to an irre-
ducible representation of π1Σ into PU(2, 1) are in one-to-one correspondence with the
Higgs data (Σc, ξ), where c is a point in Teichmüller space and ξ ∈ H0,1(Σc,K

−2).

It is not strictly necessary to say that ρ is irreducible in this statement: this is
implied by a combination of Corlette’s result that twisted harmonic maps correspond
to reductive representations [9] and Remark 2.4.

For a Lagrangian immersion the Kähler angle satisfies sin θ = 1, so that (3.15)
implies κ⊥ = −κγ . Moreover, ‖Q‖2γ = 2‖Af‖2, where Af is the shape operator of f
[38, Lemma 2.8] and

‖Af‖2 = sup{ 12 (trγ Af (ν)
2) : ν ∈ TpD⊥, |ν| = 1}.

Since CH
2 has constant Lagrangian sectional curvature −1, (3.16) reduces to the

Gauss (and Ricci) equation for minimal Lagrangian immersions:

−1 = κγ + 2‖Af‖2. (4.1)

In [37] we wrote this as an equation for the conformal factor γ = euμ of the induced
metric with respect to the hyperbolic metric μ:

Δμu− 2‖Q‖2μe−2u − 2eu + 2 = 0. (4.2)

We gave existence results for this in terms of pairs (Σc,Q), and showed that there is a
constant k, independent of c ∈ Tg, for which ‖Q‖μ ≤ k yields a minimal ρ-equivariant
embedding for which the normal bundle exponential map exp⊥ : TD⊥ → CH

2 is a
diffeomorphism. We then showed that ρ is quasi-Fuchsian, since the image under
exp⊥ of a fundamental domain for π1Σ gives a globally finite fundamental domain
for ρ. Taking Q = 0 gives the R-Fuchsian representations, i.e., those which factor
through the canonical inclusion SO(2, 1) → PU(2, 1). It is therefore convenient to
adopt here the following terminology (similar terminology is used in the study of
minimal surfaces in RH

3, where it was introduced in [34]).

Definition 4.2. A representation ρ ∈ Hom(π1, PU(2, 1)) will be called almost
R-Fuchsian if it admits a ρ-equivariant minimal Lagrangian embedding f : D → CH

2

whose normal bundle exponential map exp⊥ is a diffeomorphism. We will call f an
almost R-Fuchsian embedding.

A necessary and sufficient condition for exp⊥ to be an immersion is that ‖Q‖2γ ≤ 2
[37, Thm 7.1]. The following theorem improves substantially on the existence results in
[37] by showing that almost R-Fuchsian immersions exist, and are the unique minimal
immersion, up to this optimal bound on Q: this is the direct analogue of Uhlenbeck’s
result [46, Thm 3.3] for almost Fuchsian minimal surfaces in RH

3.

Theorem 4.3. Let f be a ρ-equivariant minimal Lagrangian immersion for which
‖Q‖2γ < 2. Then f is an almost R-Fuchsian embedding (and ρ is almost R-Fuchsian).
Moreover, f is the unique ρ-equivariant minimal immersion.
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Remark 4.1. This theorem should also be compared with the parametrisation of
hyperbolic affine sphere immersions D → R3 equivariant with respect to an irreducible
representation into PSL(3,R), or equally, to the parametrisation of all convex real
projective structures on Σ [47, 36, 35]. The data is a pair (Σc,Q) where Q is a cubic
holomorphic differential. By a theorem of Choi & Goldman [8] this data parametrises
an entire component, the Hitchin component, of the representation spaceR(SL(3,R)).
Labourie [35] directly related the hyperbolic affine sphere data to the Higgs bundles
identified by Hitchin in [30]. In that case the Hitchin component is parametrized by
Higgs bundles over Σc with bundle K−1 ⊕ 1⊕K and Higgs field⎛

⎝ 0 1 0
0 0 1
Q 0 0

⎞
⎠ .

Theorem 4.3 shows that Corollary 4.1 provides a similar parametrisation of the almost
Fuchsian locus inside the τ = 0 component R(PU(2, 1)). It is unlikely, however, to
parametrise the entire component. In the analogous case of equivariant minimal
surfaces in RH

3, there are examples of quasi-Fuchisan hyperbolic 3-manifolds which
admit more than one minimal surface [1, 32].

We will break the proof of Theorem 4.3 into two parts, starting with the proof that
f is an embedding. For this we need to recall from [37, §7] an explicit expression for
exp⊥ : TD⊥ → CH

2 when f is minimal Lagrangian. In this case the frame f1, f2, f0
used in the proof of Theorem 3.1 has the simple form

f1 =
1

s
(f0)z, f2 =

1

s
(f0)z̄, s = u1 = u2.

Let S− ⊂ C
2,1
− be the pseudo-sphere into which f0 maps, and π : S− → CH

2 be the

projection. When f is Lagrangian TD⊥ = Jf∗TD is a Lagrangian 2-plane in TCH2.
This implies that exp⊥(TzD⊥) is a totally geodesic Lagrangian disc normal to f(D)
at f(z). This Lagrangian disc has the form

{π[(ia− b)f1(z) + (ia+ b)f2(z) + f0(z)] : a
2 + b2 < 1

2}.
Let Δ ⊂ C denote the open disc of radius 1/2. Then we have an identification between
TD⊥ and D ×Δ for which exp⊥ is represented by the map

Θ : D ×Δ→ CH
2; Θ(z, w) = π(−w̄f1(z) + wf2(z) + f0(z)).

The following result improves [37, Thm 8.1].

Lemma 4.4. When ‖Q‖2γ < 2 the pullback metric Θ∗g is complete, and therefore
Θ is a proper map and hence a diffeomorphism. In that case f is an embedding and
ρ is almost R-Fuchsian.

Proof. Fix a point p ∈ D. We can normalise the frame f1, f2, f0 so that these are
the standard basis vectors e1, e2, e3 at p, and choose a conformal normal coordinate
z centred at p so that γ(p) = |dz|2 (i.e., s(0) = 1/

√
2) with sz = 0 = sz̄ at this point.

We may also rotate z so that Q0 = Q(p) is real and non-negative. Since Q = Q0dz
3

and ‖dz‖ =
√
2 we have 0 ≤ Q0 < 1

2 . With such choices, in [37, §7], we computed the
differential of Θ (in affine coordinates) at p to be given by⎛

⎜⎜⎝
dΘ1

dΘ̄1

dΘ2

dΘ̄2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
l k 0 −1
k̄ l −1 0
k̄ l 1 0
l k 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
dz
dz̄
dw
dw̄

⎞
⎟⎟⎠ ,
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where

l = 1√
2
(1 + |w|2), k = −2Q0w − 1√

2
w̄2.

Now set φ = ldz + kdz̄ and notice that in affine coordinates Θ(p) = (−w̄, w). Then
at p we compute the pull-back of g to be

(Θ∗g)p =

2∑
i,j=1

1

1− ‖Θ‖2
(
δij +

Θ̄iΘj

1− ‖Θ‖2
)
dΘidΘ̄j

=
1

1− 2|w|2
[(

1 +
(−w)(−w̄)
1− 2|w|2

)
(φ − dw̄)(φ̄− dw)

+

(
0 +

(−w)w
1− 2|w|2

)
(φ− dw̄)(φ̄+ dw̄)

+

(
0 +

w̄(−w̄)
1− 2|w|2

)
(φ̄+ dw)(φ̄ − dw)

+

(
1 +

w̄w)

1− 2|w|2
)
(φ̄+ dw)(φ + dw̄)

]

=
1

(1− 2|w|2)2
(
[2|φ|2 − (wφ + w̄φ̄)2] + [2|dw|2 + (wdw̄ − w̄dw)2]

)
. (4.3)

Now consider the two terms in this expression:

θ1 =
1

(1− 2|w|2)2
(
2|φ|2 − (wφ+ w̄φ̄)2

)
, θ2 =

1

(1− 2|w|2)2
(
2|dw|2 + (wdw̄ − w̄dw)2

)
.

The term θ2, which is the induced metric on Δ, is just the Klein model for the
hyperbolic plane and reflects the fact that the fibres of exp⊥ are totally geodesic.
The first term θ1 is the expression at p for the metric induced by the immersion
ϕw : D → CH

2, ϕw(z) = Θ(z, w). We can think of each vector (−w̄, w) as determining
a section of TD⊥, and ϕw is the image of this under exp⊥. We claim that there is a
constant ε1 > 0 for which, for every w,

ϕ∗
wg(X,X) ≥ ε1γ(X,X), ∀X ∈ TpD.

It follows that Θ∗g = θ1 + θ2 is bounded below by ε2γ + θ2. The latter is a product
of complete metrics on D ×Δ and therefore Θ∗g is also complete.

To prove the claim, write w = w1 + iw2 and φ = φ1 + iφ2 for real and imaginary
parts, and set r2 = |w|2 < 1/2. Then

θ1 =
1

(1 − 2r2)2
(
φ1 φ2

)(2− 4w2
1 4w1w2

4w1w2 2− 4w2
2

)(
φ1

φ2

)
. (4.4)

The eigenvalues of the matrix are 2 and 2−4r2. Therefore, using the smaller eigenvalue
2− 4r2,

θ1 ≥
2

1− 2r2
|φ|2 ≥ 2|φ|2.

It now suffices to show that

|φ|2 ≥ ε2γ = ε2(dx
2 + dy2),
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for a constant ε2 > 0 independent of w, where z = x+ iy. For this, write k = k1+ ik2
so that (

φ1

φ2

)
= B

(
dx
dy

)
for B =

(
l + k1 k2
k2 l − k1

)
. (4.5)

The components of the metric |φ|2 are the entries of BtB = B2, and the eigenvalues
are the roots of

λ2 − 2(l2 + |k|2)λ+ (l2 − |k|2)2 = 0,

and are therefore (l ± |k|)2. Thus for any unit vector X ∈ TpD,

|φ|2(X,X) ≥ (l − |k|)2.

Now

l − |k| = l2 − |k|2
l+ |k| ,

and l + |k| is clearly bounded above, so it suffices to show that l2 − |k|2 is bounded
below by a positive constant independent of w. We compute

l2 − |k|2 = 1
2 (1 + r2)2 − (2Q0w + 1√

2
w̄2)(2Q0w̄ + 1√

2
w2)

= r2(1− 4Q2
0) +

1
2 −Q0(

√
2r)3 cos(3α), (4.6)

where w = reiα. NowQ0 < 1
2 and

√
2r < 1, so 1−4Q2

0 > 0 and 1
2−2

√
2Q0r

3 cos(3α) >
0. With Q fixed we get a uniform positive lower bound over r, α. Thus the metric
Θ∗g is complete on D × Δ. We conclude, as in [37], that Θ is a proper map and a
diffeomorphism, whence f is an embedding and ρ is almost R-Fuchsian.

To prove that f is unique we first need a result which can be given in greater
generality than our current situation. Let (N, g) be a complete Riemannian manifold.

Proposition 4.5. Let f : M → (N, g) be a compact embedded minimal subman-
ifold for which exp⊥ : TM⊥ → N is a diffeomorphism. For a local section η of TM⊥

of unit length and a positive constant r, set ϕr = exp⊥(rη) and let vr be the volume
form for the metric ϕ∗

rg on an open subset of M . Suppose dvr/dr > 0 for all r and
for every η. Then f is the unique minimal immersion of M transverse to the fibres
of exp⊥.

The proof is given in Appendix A.
Now we can complete the proof of Theorem 4.3. Since ρ is quasi-Fuchsian the

quotient CH2/ρ is a manifold, and by the previous lemma f : Σ→ CH
2/ρ is a minimal

embedding such that exp⊥ : TΣ⊥ → CH
2/ρ is a diffeomorphism. Now if ϕ : D → CH

2

is any ρ-equivariant immersion then it must be transverse to the fibres of exp⊥, since
dϕ ◦ dδ = dρ(δ) ◦ dϕ for every δ ∈ π1Σ and the action of ρ is transverse to the fibres.
Therefore the uniqueness claim in Theorem 4.3 follows from the previous proposition
and the following lemma.

Lemma 4.6. Under the assumptions of Theorem 4.3, if vr is the area form for
the metric ϕ∗

rg induced by any local immersion of the form ϕr = exp⊥(rη) for a local
section η of TM⊥ of unit length and a positive constant r, then dvr/dr > 0.
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Proof. Since ϕr(z) = Θ(z, reiα) for some fixed r and α, the induced metric ϕ∗
rg

at a point p ∈ Σ is given by θ1 from the proof of Lemma 4.4. Using the expression
(4.4) we can write

ϕ∗
rg =

1

(1− 2r2)2
(
dx dy

)
Bt

(
2− 4w2

1 4w1w2

4w1w2 2− 4w2
2

)
B

(
dx
dy

)
,

where B is given by (4.5). The determinant of the matrix in the middle is 2(2− 4r2),
so that vr = a(r)dx ∧ dy where

a(r) =
1

(1− 2r2)2
2
√
1− 2r2(l2 − |k|2)

=
1

(1− 2r2)3/2

(
1 + 2r2(1 − 4Q2

0)− 4
√
2Q0r

3 cos(3α)
)
,

using (4.6). A calculation shows that

da

dr
=

4r

(1− 2r2)3/2

[
(1 + r2)(1 − 4Q2

0) +
3
2 (1− 2

√
2Q0r cos(3α))

]
.

Now Q0 < 1
2 , r < 1/

√
2 and cos(3α) ≤ 1, so da/dr > 0.

4.1. Families of solutions to the Gauss equation. Theorem 4.3 shows that
the norm ‖Q‖γ gives control over uniqueness of minimal Lagrangian immersions,
but at present we have no clear way of relating it to the parametrisation by the
extension class ξ. Moreover, since this norm depends upon the solution to (4.2) it
is difficult to control a priori. On the other hand, the combined results of [37] and
[31] show that a bound on ‖Q‖μ must be combined with a condition the solution of
(4.2) to get existence and uniqueness. One knows that the zero solution u ≡ 0 is the
unique solution for Q = 0, and that for ‖Q‖μ small and non-zero there are always
solutions [37], but these are not unique [31]. The challenge is to understand how
solutions behave as one moves along a ray tQ0, t ≥ 0, given a fixed cubic holomorphic
differential Q0. To study solutions along such rays, Huang et. al [31] introduced the
following terminology.

Definition 4.7. A solution u to (4.2) is F -stable if the linearised operator

L = −Δμ + 2eu − 4‖Q‖2μe−2u, (4.7)

is positive.

This condition ensures, by the Implicit Function Theorem in the appropriate
Sobolov spaces, that there is locally a smooth curve u(t) of solutions to

H(u, t) = Δμu− 2‖tQ0‖2μe−2u − 2eu + 2 = 0, (4.8)

nearby any F -stable solution u(t0). Our aim here is to show that, given Q0, the F -
stable solutions form a continuous curve terminated at one end by the zero solution
and at the other end by the first solution which is not F -stable. This, together with
the results of [37, 31], gives the following summary of the behaviour of solutions to
(4.2) as the cubic differential is scaled.

Theorem 4.8. Fix a non-zero cubic holomorphic differential Q0 on Σc. Set

T0 =
√
4/27(sup

Σ
‖Q0‖μ)−1.

Then:
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(i) there exists a T2 > T0 such that (4.8) has no solutions for t ≥ T2;
(ii) there exists T0 ≤ T1 < T2 such that for t < T1 there is a unique continuous

family of F-stable solutions to (4.8). All F-stable solutions lie on this family
and the limiting solution u(T1) is not F-stable;

(iii) for t < T0 the F-stable solutions yield almost Fuchsian embeddings;
(iv) for 0 < t < T1 there is at least one solution which is not F-stable.

Remark 4.2. This result is analogous to Uhlenbeck’s description of the bifur-
cation in families of solutions to the Gauss equation for minimal surfaces in RH

3

[46, Thm 4.4]. We note that for Uhlenbeck the right notion of stability was stability
with respect to the area functional. In our case that gives no extra control, since all
minimal Lagrangian surfaces in CH

2/ρ are stable by a theorem of Oh [39].

Part (i) comes from [37], while (iii) comes from [37] and Theorem 4.3 above. Part
(iv) and the existence of a local family of unique F -stable solutions for t < T1 come
from [31]. Here we provide the rest of (ii) via the following lemma.

Lemma 4.9. Let Q0 be a holomorphic cubic differential on Σc, and let τ > 0
be such that u(τ) is an F-stable solution. Let u(t) be the local family of F-stable
solutions to (4.8) through u(τ). Then u̇(τ) ≤ 0 on all of Σc.

Proof. By differentiating (4.8) we find that u̇ satisfies

−Lτ u̇ = 4τ‖Q0‖2μe−2u.

Elliptic regularity implies u̇ is C∞. Now define u̇+ = max{u̇(τ), 0}.
Then u̇+ is in the Sobolev space H(Σ) and du̇+ = 0 wherever u̇ ≤ 0 (see e.g.[18]).

Recall we define

〈−Δμu̇
+, u̇+〉 =

∫
Σ

‖du̇+‖2μ dAμ

in this case. Let v = 4τ‖Q0‖2μe−2u, and let εj ↘ 0 be regular values of u̇ (as
guaranteed by Sard’s Theorem). Thus we can integrate by parts, as each {u̇ = εj} =
∂{u̇ > εj} is a smooth 1-manifold. Let wj = max{u̇− εj, 0}. Now since L > 0,

0 ≥ 〈−Lu̇+, u̇+〉

=

∫
Σ

[
−‖du̇+‖2μ + (−2eu + 4‖Q0‖2μe−2u)(u̇+)2

]
dAμ

=

∫
{u̇>0}

[
−‖du̇‖2μ + (−2eu + 4‖Q0‖2μe−2u)u̇2

]
dAμ

= lim
j→∞

∫
{u̇>εj}

[
−‖dwj‖2μ + (−2eu + 4‖Q0‖2μe−2u)u̇2

]
dAμ

= lim
j→∞

∫
{u̇>εj}

[
wjΔμwj + (−2eu + 4‖Q0‖2μe−2u)u̇2

]
dAμ

= lim
j→∞

∫
{u̇>εj}

[
(u̇− εj)Δμu̇+ (−2eu + 4‖Q0‖2μe−2u)u̇2

]
dAμ

=

∫
{u̇>0}

(−Lu̇)u̇ dAμ

=

∫
{u̇>0}

vu̇ dAμ ≥ 0.
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(The limits above are valid by the Dominated Convergence Theorem.)
Since v is positive almost everywhere, the last inequality is strict if u̇ > 0 anywhere

on Σ. Thus by contradiction u̇(τ) ≤ 0 everywhere on Σ.

Proof of Thm 4.8(ii). Let u(τ) be an F -stable solution, with local family u(t)
and let Lt be the corresponding family of linearised operators (4.7). Now

L̇ = 2u̇eu + 8t‖Q‖2μe−2u(u̇ − t),

which is nonpositive for t > 0 by the previous Lemma. Thus Lτ > 0 implies Lt > 0
for all t ∈ [0, τ ] in the path of solutions.

The Maximum Principle shows that every solution to (4.8) is nonpositive. Thus
for any t in an interval of the form (τ0, τ ] the proposition implies 0 ≥ ut ≥ uτ , and
thus we have uniform L∞ bounds on ut for all t ∈ (τ0, τ ]. Then the Lp theory, applied
to (4.8), and standard bootstrapping show that the limit

lim
t→τ+

0

ut

exists and is a solution uτ0 to the equation. This provides a closedness argument
for the continuity method. On the other hand the Lt > 0 condition, verified in the
previous paragraph, provides openness as well, and thus we can extend the solution
space back down to t = 0.

5. Surfaces with zero cubic holomorphic differential. Minimal (possibly
branched) immersions for which Q = 0 have particularly important properties. They
include all the holomorphic and anti-holomorphic immersions and, by Theorem 3.1,
the extension class zero cases when f is not holomorphic or anti-holomorphic. In all
such cases, the Higgs bundle E is a Hodge bundle (or variation of Hodge structure),
i.e., E = ⊕m

i=1Ei for proper sub-bundles Ei for which Φ : Ei → Ei+1 ⊗ K, with
Em+1 = 0. For PU(2, 1) the length m of the Hodge bundle must be either two
or three [22]. We will show below that the length-two Hodge bundles correspond
to holomorphic or anti-holomorphic immersions, while immersions which arise from
Theorem 3.1 with ξ = 0 give length-three Hodge bundles.

Hodge bundles play the central role in calculating the Betti numbers of the smooth
components of the moduli space H(Σc, G) of polystable Higgs bundles, and therefore
the Betti numbers of the representation space R(G). For on smooth components the
Hitchin function ‖Φ‖2L2 : H(Σc, G) → R, is a perfect Morse-Bott function, whose
critical points are the Hodge bundles. The length-two Hodge bundles are minima,
while the length-three Hodge bundles have non-zero Morse index [22].

5.1. Holomorphic and anti-holomorphic surfaces. By Toledo’s theorem
[45] every maximal representation (those for which τ(ρ) = ±χ(Σ)) leaves invariant a
complex line and acts on that line as a Fuchsian representation. Such representations
are reducible. To understand the non-maximal ρ-equivariant holomorphic or anti-
holomorphic immersions, we will start by describing their Hodge bundles. First we
note that for any holomorphic ρ-equivariant immersion f : D → CH

2 the area form vγ
for the induced metric equals f∗ω. It follows from the definition (2.9) that τ(ρ) > 0.
For anti-holomorphic immersions f∗ω = −vγ so that τ(ρ) < 0. The next lemma com-
pletely characterises the Higgs bundle data for representations which admit either
holomorphic or anti-holomorphic branched immersions.

Theorem 5.1. An irreducible representation ρ admits a branched holomorphic
ρ-equivariant immersion if and only if it corresponds to a Hodge bundle (V ⊕ 1,Φ)
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with Φ = (Φ1, 0) and V a non-trivial extension bundle of the form

0→ K−1(B)
Φ1→ V → K−2L→ 0. (5.1)

Here B is an effective divisor of degree b ≥ 0 (the divisor of branch points of the
immersion) and L is a line bundle of degree l, only determined up to isomorphism,
satisfying the inequalities

3(g − 1) + 1
2b < l < 6(g − 1)− b, 0 ≤ b < 2(g − 1). (5.2)

In particular, τ(ρ) = 2
3 (6g − 6− b− l) and 0 < τ(ρ) < 2(g − 1)− b.

Moreover, (E,Φ) corresponds to a branched anti-holomorphic immersion f if and
only if f̄ is the branched holomorphic immersion determined by (E∗,Φt).

Note that by f̄ we mean the post-composition of f with the natural anti-
holomorphic involution on CH

2 which descends from complex conjugation on C2,1.
Clearly f is ρ-equivariant precisely when f̄ is ρ̄-equivariant. The map ρ �→ ρ̄ is an
involution on Hom(πΣ, G)/G for which τ(ρ̄) = −τ(ρ): it fixes the representations with
values in SO(2, 1).

Proof. First suppose (E,Φ), with E = V ⊕ 1 and Φ = (Φ1,Φ2), is a length-
two Hodge bundle with deg(V ) < 0. In this case by [22, §3] we have Φ2 = 0. The
corresponding representation ρ admits a ρ-equivariant harmonic map f : D → CH

2

determined by the sub-bundle 1 as a section PE− with df ′ = Φ. Therefore ∂̄f ′ = 0
and f is holomorphic. Conversely, suppose ρ admits a holomorphic immersion f .
Taking V = f−1T ′CH2 and Φ = ∂f ′ : 1→ KV gives a length-two Hodge bundle with
deg(V ) < 0. The involution (E,Φ) → (E∗,Φt) on Higgs bundles maps length-two
Hodge bundles with Φ2 = 0 to those with Φ1 = 0. In the latter case V 
 f−1T ′′CH2

with the opposite complex structure, and the map f is anti-holomorphic.
Now the structure of (V ⊕ 1,Φ) follows a simplified version of the argument in

the proof of Theorem 2.3. We can think of Φ1 as a holomorphic section of KV ,
with divisor B ≥ 0 corresponding to the branch divisor of f . The bundle injection
Φ1 : K−1(B) → V has image V1 and quotient line bundle V2 = V/V1. Provided V
is not the direct sum V1 ⊕ V2 the Φ-invariant sub-bundles of E are V1, V1 ⊕ 1 and V .
The stability inequalities are therefore

deg(V1) <
1
3 deg(V ), 1

2 deg(V1) <
1
3 deg(V ), 1

2 deg(V ) < 1
3 deg(V ).

On the other hand, if V is the direct sum then V2 is also Φ-invariant and stability
requires the additional inequality

deg(V2) <
1
3 deg(V ), i.e., 2

3 deg(V ) < deg(V1),

so this is not possible. For later convenience we write V2 = K−2L and the inequalities
(5.2) follow from deg(V1) = b− 2(g − 1) and deg(V2) = l − 4(g − 1).

Note that while the splitting of V 
 f−1T ′CH2/ρ into TΣ⊕ TΣ⊥ is J-invariant,
the sub-bundle TΣ⊥ is not ∂̄E-invariant unless ρ is reducible. Indeed, the normal
bundle is ∂E-invariant (since it is paired with TΣ by the Hermitan metric) so the
induced structure of this splitting makes the normal bundle anti-holomorphic.

Remark 5.1 (Reducible representations). Although E = V ⊕ 1 cannot be stable
when V is a trivial extension, it can be polystable. This corresponds to a reducible
reductive representation. Such representations either:
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(i) factor through a maximal compact subgroup, or,
(ii) factor through P (U(1, 1)× U(1)).

This is easy to see. We may simplify things, by replacing ρ by ρ̄ if necessary, to assume
that τ(ρ) ≥ 0 and thus Φ2 = 0. To be strictly polystable (E,Φ) must decompose into
either

(i) (V, 0)⊕ (1, 0), or (ii) (1⊕ V1,Φ1)⊕ (V2, 0),

where V = V1 ⊕ V2 and Φ1 : 1 → V1. In the first case V must be a stable rank two
bundle of degree zero (to have the same slope as 1) and therefore the representation
lies in a maximal compact subgroup and has τ(ρ) = 0. We note that the correspond-
ing harmonic map f is constant. In the second case (1 ⊕ V1,Φ1) corresponds to a
representation into U(1, 1). In this case polystability requires

deg(V1) <
1
2 deg(V1 ⊕ 1) = 1

2 deg(V1), i.e., deg(V1) < 0,

together with the “same slope” condition 1
2 deg(V1) = deg(V2). When we write V1 =

K−1(B) as above we deduce that

b < 2(g − 1), deg(V2) =
1
2b− g + 1.

Thus b is even and

τ(ρ) = − 2
3 deg(V ) = − deg(V1) = 2g − 2− b ∈ 2Z.

In particular, such ρ can only admit an unbranched holomorphic map f when τ(ρ)
is maximal, i.e., when ρ factors through a Fuchsian representation. The map f :
D → CH

2 is a totally geodesic embedding onto a complex line. More generally, the
PU(1, 1) representation corresponding to the rank two Higgs bundle (1⊕ V1,Φ1) has
Toledo invariant − deg(Hom(1, V1)), which therefore equals τ(ρ). Every irreducible
representation into PU(1, 1) of even Toledo invariant lifts to SU(1, 1), and therefore
provides a representation into P (U(1, 1)× U(1)). Thus the whole structure of Higgs
bundles for irreducible representations in SU(1, 1) [29] lifts up to provide reducible
representations into PU(2, 1), and this is what we are seeing above. Note that those
which are non-maximal cannot be convex cocompact, since they preserve a complex
line but act non-cocompactly on this line.

Let η �= 0 be the extension class of the extension (5.1) for ρ irreducible. Since
L is only determined up to isomorphism the Higgs bundle only determines η up
to scale. Therefore each Higgs bundle in Theorem 5.1 corresponds to a quadruple
(Σc, B, L,C.η) where C.η is the line generated by η, i.e., a point in PH1(Σc,KL−1(B)).
In fact, it is not hard to show that the rescaling of η corresponds to the C∗-action
on the Higgs bundle (E,Φ) �→ (E, tΦ). Since Hodge bundles are invariant under this
action, this gives another way of interpreting the independence of the data on the
scale of η. However, once (ρ, f) is known there is a preferred representative for η
given by the geometric invariants of f via the Dolbeault isomorphism. First we need
to introduce the tensor

S ∈ E0(Σc,K
2K̄2), S = h(II2,0, II2,0),

where II2,0 = π⊥∇′∂f ′ is the (2, 0) component of the second fundamental form of f
(here π⊥ : f−1T ′CH2/ρ→ TΣ⊥ is projection onto the normal bundle). We will show
that II2,0 is a holomorphic section of K2 ⊗ TΣ⊥.
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Theorem 5.2. Let f : D → CH
2 be a ρ-equivariant branched holomorphic

immersion, with ρ irreducible and data (Σc, B, L,C.η). Then L 
 O(D), where D
is the divisor of zeroes of II2,0, and we can choose η so that under the Dolbeault
isomorphism it maps to the cohomology class

−[S/γ] ∈ H0,1(Σc,K(B −D)).

Proof. We follow the steps in the proof of Theorem 3.1 but using a local frame
more suited to holomorphic maps. As before, use �0 ⊂ E to denote 1 and write its
∂f ′ transform as �1 ⊗ K. But now take the further transform of �1, so we have a
harmonic sequence

�0
π⊥

0 Z→ �1
π⊥

1 Z→ �2
π⊥

2 Z→ 0,

in each chart (U, z). The last step terminates the sequence because π⊥
2 Z : �2 → �0 is

the adjoint to π⊥
0 Z̄ : �0 → �2, which represents ∂̄f ′ = 0. As before, let f0 ∈ Γ(�0) be

global and parallel with 〈f0, f0〉 = −1. Set

σ1 = π⊥
0 Zf0 = Zf0, σ2 = π⊥

1 Zσ1 = π⊥
1 ZZf0.

Since f0 is a holomorphic section of �0, σj is a holomorphic section of �j (by standard
harmonic sequence theory [4]). Under the isomorphism f−1T ′CH2/ρ 
 Hom(1, V ) 

V the image ∂f ′(T 1,0Σ) of the holomorphic tangent bundle of Σ is identified with �1,
i.e., �1 
 K−1(B). Clearly the induced metric of f is u2

1|dz|2 for u1 = |σ1|. Further,
since

(∇ZZ)f0 = π⊥
0 Zπ⊥

0 Zf0 − π⊥
0 Zπ0Zf0 = π⊥

0 ZZf0,

we have

II(Z,Z) = [π⊥(∇ZZ)]f0 = π⊥
1 ZZf0 = σ2.

In particular, II2,0 is a holomorphic section of K2 ⊗ �2. Set s2 = |σ2|. Then

S(Z,Z, Z̄, Z̄) = 〈II(Z,Z), II(Z,Z)〉 = |σ2|2 = s22.

Thus in a chart U in which neither u1 nor s2 vanishes we have a local U(2, 1) frame
given by f1, f2, f0 where f1 = σ1/u1, f2 = σ2/s2. Straighforward calculations as
before give

Zf1 = (Z log u1)f1 + u−1
1 s2f2, (5.3)

Zf2 = (Z log s2)f2,

Zf0 = u1f1.

From this we can read off the connexion 1-form for the projectively flat connexion ∇
in this frame. Now let ϕ : V |U → U ×C

2 be the local trivialisation corresponding to
f1, f2. Then

ϕ ◦ ∂̄E ◦ ϕ−1 = dz̄

[
∂

∂z̄
−
(
Z̄ log u1 s2/u1

0 Z̄ log s2

)]
.
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To deal with zeroes of u1 and s2, we may assume U only has these at z = 0, to order
p and q respectively. In such a chart we take the local frame f̃1 = w−pf1, f̃2 = w−qf2,
where w = z/|z|, and in the corresponding trivialisation ϕ̃ we have

ϕ̃ ◦ ∇0,1 ◦ ϕ̃−1 = dz̄

[
∂

∂z̄
−
(
Z̄ log(u1/|z|p) −s2wp−q/u1

0 Z̄ log(s2/|z|q)

)]
.

We obtain a local holomorphic trivialisation, with respect to ∂̄E , by applying a gauge
transformation of the form

R =

(
1 a
0 1

)(
|z|p/u1 0

0 |z|q/s2

)
,

i.e., for χ = Rϕ̃ we have χ ◦ ∂̄E ◦ χ−1 = dz̄(∂/∂z̄). This requires

∂a/∂z̄ = −s22zp−q/u2
1. (5.4)

When U is contractible this equation has a solution since s22/u
2
1 ∼ |z|2(q−p) near z = 0,

therefore the right hand side of (5.4) is smooth throughout U .
Now cover Σc by charts (Uj , zj) of the type used above, and index the local objects

living over Uj by j. Thus for V we have transition relations ϕ̃j = c̃jkϕ̃k where

c̃jk =

(
dzj/dzk
|dzj/dzk| 0

0
(dzj/dzk)

2

|dzj/dzk|2

)(
w

pj

j w−pk

k 0

0 w
qj
j w−qk

k

)
.

Therefore χj = bjkχk where

bjk = Rj c̃jkR
−1
k =

(
z
pj

j z−pk

k dzj/dzk λjk

0 z
qj
j z−qk

k (dzj/dzk)
2

)
, (5.5)

for

λjk = ajz
qj
j z−qk

k (dzj/dzk)
2 − akz

pj

j z−pk

k dzj/dzk, (5.6)

and we have used the fact that

u1k/u1j = |dzj/dzk|, s2k/s2j = |dzj/dzk|2.

In particular, this shows that V is an extension of the line bundle K−1(B) by the line
bundle K−2(D) where D is the divisor of zeroes of II2,0, and therefore we have fixed
an isomorphism L 
 O(D). As earlier, the extension class of V is given by the Čech
cohomology class η of the 1-cocycle {(ηjk, Uj , Uk)} where

ηjk = z
−pj

j zpk

k (dzk/dzj)λjkdzk

= ajz
qj−pj

j dzj − akz
qk−pkdzk.

This is plainly a coboundary for Čech cohomology in smooth sections of K(B−D) of
the form δτ where {(τj , Uj)} has τj = ajz

qj−pjdzj . Under the Dolbeault isomorphism
this corresponds to

∂̄τj = −
s22j
u2
1j

dzjdz̄j ,

which is the local expression for −S/γ.
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5.2. Surfaces arising from zero extension class. Theorems 2.3 and 3.1 im-
ply that Higgs bundles for non-holomorphic minimal surfaces with Q = 0 are exactly
the length-three Hodge bundles. When Q = 0 we have a trivial extension bundle and
can take

E1 ⊕ E2 ⊕ E3 = K(−D2)⊕ 1⊕K−1(D1),

to get Φ : Ei → KEi+1. Conversely, any length-three Hodge bundle is projectively
equivalent to one of this form and has tr Φ2 = 0. We will show that f is still related to
a holomorphic map, via its harmonic sequence (in the sense of Erdem & Glazebrook
[15], f is isotropic but non-holomorphic). To explain this, we first recall (from e.g.,
[4, 14]), the notion of the Gauss transforms ϕ1, ϕ2 of f .

The line bundles �1, �2 defined by (3.3) both lie inside the subset E+ consisting
of fibre vectors which have positive length with respect to the C2,1 metric. Let

C
2,1
+ = {v ∈ C

2,1 : 〈v, v〉 > 0}.

Then its projective space PC2,1
+ is an open submanifold of CP2 on which G = PU(2, 1)

acts transitively. We identify it with the orbit of the line [e2], with isotropy subgroup
H2 
 P (U(1, 1) × U(1)), so that PC

2,1
+ 
 G/H2. In fact we can think of it as the

complex version of two dimensional de Sitter space, and will henceforth denote it
by CdS2. Its tangent space at the base point [e2] is identified with the orthogonal
complement m2 = h⊥2 ⊂ su(2, 1) with respect to the Killing form − 1

2 tr(AB), and
the latter gives m2 an indefinite Hermitian metric. This extends to the tangent bun-
dle, isomorphic to G×H2

m2, and makes CdS2 a pseudo-Hermitian symmetric space.
Clearly PE+ 
 D×ρCdS

2 and therefore �1, �2 each determine a smooth ρ-equivariant
map ϕ1, ϕ2 : D → CdS2, and these will be conformal harmonic with respect to the
pseudo-Hermitian metric (they are isotropic in the sense of [15]). Following the ter-
minology of harmonic sequences, we call ϕ1 the ∂-Gauss transform of f , and ϕ2 the
∂̄-Gauss transform of f . An immersion into CdS2 is timelike when its induced metric
is negative definite (away from branch points).

Proposition 5.3. Let f : D → CH
2 be ρ-equivariant and not ±-holomorphic.

Then Q = 0 if and only if the ∂̄-transform ϕ2 : D → CdS2 of f is a timelike ρ-
equivariant holomorphic map, branched at the divisor of complex points D2 of f .

Proof. Let ϕ2 : D → CdS2 be the ∂̄-Gauss transform f . Write the differential of
ϕ2 as dϕ′

2 = ∂ϕ′
2 + ∂̄ϕ′

2 in terms of the type decomposition

ϕ−1
2 T�2CdS

2 = Hom(�2, �
⊥
2 )⊕Hom(�⊥2 , �2).

In local coordinates

∂̄ϕ′
2(Z̄) = π⊥

2 Z̄.

But from (3.7) and the fact that �0, �1, �2 are mutually orthogonal we have

Q = 〈π⊥
0 Zπ⊥

0 Zf0, π
⊥
0 Z̄f0〉,

= −〈π⊥
0 Zf0, π

⊥
2 Z̄π⊥

0 Z̄f0〉.

Therefore if neither π⊥
0 Zf0 nor π⊥

0 Z̄f0 is zero, Q vanishes if and only if π⊥
2 Z̄ is

identically zero on �2. Hence ∂̄ϕ′
2 vanishes and ϕ2 is holomorphic.
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Finally, we claim that when Q = 0 the induced metric for ϕ2 is −u2
2|dz|2. To see

this, let (f0, f1, f2) be a local Toda frame for f . Then by definition ϕ2 is given locally
by the family of lines [f2]. To calculate the differential we use (3.8) to deduce that in
this frame dϕ2 is represented by⎛

⎝ 0
Q/u1u2 0

u2

⎞
⎠ dz +

⎛
⎝ −Q̄/u1u2

0 u2

0

⎞
⎠ dz̄.

Here we use blank spaces to indicate the Lie subalgebra h2 ⊂ g of isotropy group H2:
relative to the frame dϕ2 takes values in h⊥2 . Therefore the induced metric is

− 1
2 tr(dϕ2)

2 = (
|Q|2
u2
1u

2
2

− u2
2)|dz|2.

Note that, since ∂ϕ′
2 : �2 → K�0, f is the ∂-Gauss transform of ϕ2.

6. Moduli. Theorems 2.3 and 5.1 provide parameterisations for different com-
ponents of the set

V = {(ρ, f) : ρ irreducible, f branched minimal}/G,

where the quotient is by the simultaneous action of G as conjugation of ρ and ambient
isometry of f . By those theorems it is natural to write V as a disjoint union of the
sets

V(d1, d2) = {(ρ, f) ∈ V : f has d1 anti-complex points and d2 complex points}

and

W+(b, l) = {(ρ, f) ∈ V : f holomorphic with deg(B) = b, deg(L) = l},
W−(b, l) = {(ρ, f) ∈ V : (ρ̄, f̄) ∈ W+(b, l)}.

These last two spaces are bijective under (ρ, f) �→ (ρ̄, f̄). We will now show that the
parametrisations give each component the structure of a complex manifold.

6.1. The structure of V(d1, d2). As explained at the end of §2, each point of
V(d1, d2) is parametrised by a quadruple (Σc, D1, D2, ξ). To understand the space
of these quadruples we must understand how H1(Σc,K

−2(D1 + D2)) varies with
(Σc, D1, D2). Note that

deg(K−2(D1 +D2)) = d1 + d2 − 4(g − 1) < 0,

by the inequalities (2.17). Whenever a holomorphic line bundle L over Σc has negative
degree d its first cohomology has, by the Riemann-Roch theorem, dimension

h1(L) = g − 1− d.

Therefore as L moves over Picd(Σc), the Picard component of degree d line bundles,
the dimension of H1(Σc,L) is constant. Now Σc × Picd(Σc) carries a tautological
line bundle P (sometimes called a Poincaré line bundle) whose fibre over (p,L) is the
fibre of L at p. The vector spaces H1(Σc,L) are the fibres of the higher direct image
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R1π∗(P) for the projection π : Σc × Picd(Σc)→ Picd(Σc) to the second factor. By a
theorem of Grauert [27, III, Cor 12.9] their constant dimension implies they form a
vector bundle over Picd(Σc). In particular, for d = d1 + d2 − 4(g − 1) this bundle has
rank

h1(K−2(D1 +D2)) = 5g − 5− d1 − d2.

The pairs (D1, D2) are parametrised by the product of symmetric products Sd1Σc ×
Sd2Σc (in which the co-prime pairs occupy an open subvariety). The bundle can be
pulled back along the holomorphic map

Sd1Σc × Sd2Σc → Picd(Σc); (D1, D2) �→ K−2(D1 +D2),

and the total space of the pullback parametrises the data (D1, D2, ξ). It is a connected
non-singular complex manifold of dimension 5g − 5.

As c varies over the Teichmüller space Tg of Σ we can take the disjoint union
Cg = ∪c∈Tg

Σc, and likewise for any of the objects SdΣc or Pic(Σd) above. In each
of these cases we obtain a complex analytic family over Tg, i.e., the total space is a
complex manifold for which the projection onto Tg is holomorphic map, and although
only a fibre bundle in the smooth category the fibre over c is a complex submanifold
biholomorphic to the structure determined by c. In particular, πC : Cg → Tg is called
the (universal) Teichmüller curve. About each point Cg has a permanent uniformising
local parameter, i.e., a complex chart (U , z) for which z = (z1, . . . , z3g−3, ζ) has the
properties that: (i) each non-empty intersection Uc = π−1

C (c) ∩ U is such that (Uc, ζ)
is a chart on Σc; (ii) the coordinates zj are constant on the fibres. The existence of
such a chart is an immediate consequence of Bers’ construction of Cg as a quotient of
an open submanifold Fg ⊂ Tg × C by a properly discontinuous action of π1Σ which
preserves the fibes over Tg [2] (this is also just the standard picture of Kodaira-Spencer
for unobstructed deformations of complex structure [33]). It follows that one can put
complex charts on the symmetric fibre-products of Cg over Tg, whose fibres are SdΣc,
to obtain non-singular complex analytic families over Tg. The corresponding families
of Picard components have been constructed by Earle [12].

Thus for each pair d1, d2 satisfying (2.17) we obtain a manifold parametrising the
data (Σc, D1, D2, ξ) with deg(Dj) = dj . Each is clearly a connected non-singular com-
plex manifold of dimension 8g − 8. Therefore we have proved the following theorem.

Theorem 6.1. Each set V(d1, d2) can be given the structure of a non-singular
complex manifold of dimension 8g − 8. With this structure V(d1, d2) is complex an-
alytic family over Teichmüller space Tg. The fibre over c ∈ Tg is a complex sub-
manifold biholomorphic to a holomorphic vector bundle over Sd1Σc × Sd2Σc of rank
5(g − 1)− d1 − d2.

6.2. The structure of W±(b, l). By Theorem 5.1 the set W+(b, l) is
parametrised by quadruples (Σc, B, L,C.η) with η ∈ H1(Σc,KL−1(B)) and η �= 0.
We want to show this cohomology space has constant dimension as the pair (B,L)
moves over SbΣc×Picl(Σc). Its suffices to see that, by the stability inequalities (5.2),

deg(KL−1(B)) = 2g − 2 + b− l < 1
2b− (g − 1) < 0,

and therefore

h1(KL−1(B)) = l + 1− b− g.
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By much the same argument as above, for each marked conformal structure c ∈ Tg
the triple (B,L,C.η) lies in a holomorphic CPl−b−g-bundle over SbΣc×Picl(Σc). The
total space of this bundle has dimension

(b+ g) + l− b− g = l.

As c moves through Tg we obtain a complex analytic manifold, fibred over Tg, of total
dimension 3(g − 1) + l.

Theorem 6.2. Each set W±(b, l) can be given the structure of a non-singular
complex manifold of dimension 3(g − 1) + l. It is a complex analytic family over Tg
whose fibre at c ∈ Tg is a complex analytic submanifold biholomorphic to a holomorphic

CP
l−b−g-bundle over SbΣc × Picl(Σc).

6.3. Map from V to R(G). In order to understand when we can use minimal
surface data to parametrise representations, we must understand the map

R : V → R(G), (ρ, f) �→ ρ. (6.1)

We can expect this to be smooth. From the results above, this is likely to be most
interesting on the components V(d1, d2) since these have the same dimension as R(G).
While a full understanding of this map will require further work, we can at least make
some interesting comments about its behaviour on the fibres Vc of V over Teichmüller
space. With a fixed conformal structure c we can identify R(G) with the moduli space
H(Σc, G) of G-Higgs bundles. Then R is injective on Vc, since it amounts to inclusion
(equally, this is a consequence of the uniqueness theorem for twisted harmonic maps
[9, 10]). Indeed

Vc = {(E,Φ) ∈ H(Σc, G) : tr Φ2 = 0},

and so it plays the role of the nilpotent cone inH(Σc, G). Let us consider the structure
of this in light of the discussion above. Recall that ‖Φ‖2L2 is a proper Morse-Bott
function on H(Σc, G) (at least at smooth points): we will normalise this by defining

F(E,Φ) =
i

2

∫
Σ

tr(Φ ∧ Φ†).

Whenever the twisted harmonic map determined by (E,Φ) is conformal, we have

F(E,Φ) =

∫
Σ

vγ = Areaγ(Σ),

for the induced metric γ. Now fix a non-maximal value τ for the Toledo invariant
and consider the connected component H(Σc, G)τ . Whenever d2 = 3

2τ + d1 this
component contains Vc(d1, d2). Inside the latter lies the locus ξ = 0 consisting of
length-three Hodge bundles, and this represents one connected critical manifold of F
(cf. [22, §3]). Since ξ = 0 exactly when Q = 0 we deduce from Prop. 3.5 that this
is the level F = (4g − 4 − d1 − d2)π. As we move along the fibres of the bundle
Vc(d1, d2) Prop. 3.5 tells us that F < (4g − 4 − d1 − d2)π. Moreover, a comparison
with [22, Prop 3.2] shows that the dimension of these fibres equals the Morse index of
the critical manifold. Indeed, we conjecture that the bundle Vc(d1, d2) is precisely the
unstable manifold of the vector field − gradF as a bundle over the critical manifold.
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This seems to be a manifestation of Hausel’s theorem [28, Thm 5.2]. He proved that
in the moduli space of stable GL(2,C)-Higgs bundles of odd degree, the downward
Morse flow coincides with the nilpotent cone. Although Hausel only gave the proof
for GL(2,C), the ingredients hold equally well in the case of the smooth components
of H(Σc, G) for a real form G [23].

By contrast the image of W±
c (b, l) in H(Σc, G) gives all the length-two Hodge

bundles, which are the absolute minima of F in their connected component. On the
smooth locus of H(Σc, G), hence particularly when τ �= 2Z, there is a single connected
component of minima for fixed τ (since F is a perfect Morse-Bott function). Hence for
fixed τ the “components” W±

c (b, l) should really be thought of as strata of the space
of holomorphic (or anti-holomorphic) branched immersions. Gothen [22, §3] explains
how to view each critical manifold of length-two Hodge bundles as a moduli space of
α-stable Bradlow pairs. A Bradlow pair is a rank 2 vector bundle equipped with a
holomorphic section. In our picture the Bradlow pair is (K⊗V,Φ). The stratification
of length-two Hodge bundles of fixed Toledo invariant by W±

c (b, l) amounts to fixing
the degree b of Φ.

Appendix A. Uniqueness of minimal embeddings. Here we give the
proof of Proposition 4.5. We are assuming that exp⊥ : TM⊥ → N is a diffeo-
morphism, and therefore there is a radial distance function ρ : N → R

+
0 given by

ρ(p) = ‖(exp⊥)−1(p)‖. The idea of the proof is to show that the condition on dvr/dr
means each ϕr = exp⊥(rη) must have non-zero mean curvature, and that by lo-
cal comparison every immersion must also have non-zero mean curvature at non-zero
maximum values of ρ. Note that this is a local argument: we do not need the existence
of global sections of TM⊥ of unit length (which will not, in general, exist).

First recall that for a family of immersions ϕt : M ×R→ (N, g) with variational
vector field V = ϕ∗∂/∂t a standard calculation gives

dvγ(t)

dt
|0 = d � g(V, dϕ)− g(V,Hϕ)vγ ,

where Hϕ = trγ IIϕ is the mean curvature for γ = ϕ∗g. In particular, for the mean
curvature Hr of the map ϕr,

dρ(Hr) = g(gradρ,Hr) = −
1

vr

dvr
dr

, (A.1)

since gradρ is a normal variation.
Next we show that a local embedding ϕ which comes from an arbitrary non-

vanishing local section ν of TM⊥ must have non-zero mean curvature at any point
at which |ν| has a local maximum.

Lemma A.1. Let ϕ : U → N be an embedding of the form ϕ = exp⊥(ν) for some
local section ν of TM⊥ which does not vanish on an open subset U ⊂M , and suppose
u = ‖ν‖ = ρ ◦ϕ has a local maximum at x ∈ U . For each r > 0 set ϕr = exp⊥(rν/u),
and let vr be the volume form for ϕ∗

rg. Suppose that dvr/dr > 0 at x for each r, then
ϕ must have non-zero mean curvature Hϕ at x.

Proof. Consider the expressions for the mean curvatures Hϕ and Hr, considered
as the tension fields τ(ϕ) and τ(ϕr), in terms the tension fields for u = ρ ◦ ϕ and the
constant function r = ρ ◦ ϕr. The composition formulas [13, 2.20] give

τ(u) = dρ(Hϕ) + trγ ∇dρ(dϕ, dϕ),

0 = τ(ρ ◦ ϕr) = dρ(Hr) + trγr
∇dρ(dϕr , dϕr),



EQUIVARIANT MINIMAL SURFACES 105

where γ = ϕ∗g and γr = ϕ∗
rg. Now τ(u) = trγ Hess(u) and at the local maximum x

we have du = 0, which implies dϕ = dϕu(x) and γ = γu(x). Therefore at x we have

dρ(Hϕ)|x = trγ Hess(u)|x + dρ(Hu(x))|x.

Since x is a local maximum we have trγ Hess(u)|x ≤ 0, and by assumption dρ(Hr)|x <
0 for all r > 0, using (A.1). Thus Hϕ cannot vanish at x.

Proof of Prop 4.5. Suppose ψ : M → N is any immersion transverse to the fibres
of exp⊥, other than f . The function ρ ◦ ψ must have a non-zero maximum at some
y ∈ M . Then there is a local section ν of TM⊥ and a local diffeomorphism α on M
for which ψ = ϕ ◦ α where ϕ = exp⊥(ν), and Hψ|y = Hϕ|α(y) as elements of Tψ(y)N .
Now (ϕ, α(y)) satisfy the conditions of Lemma A.1, so Hψ|y �= 0.
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