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ON SINGULAR VARIETIES ASSOCIATED TO A POLYNOMIAL
MAPPING FROM Cn TO Cn´1˚
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Abstract. We construct singular varieties VG associated to a polynomial mapping G : Cn Ñ

Cn´1 where n ě 2. Let G : C3 Ñ C2 be a local submersion, we prove that if the homology or the
intersection homology with total perversity (with compact supports or closed supports) in dimension
two of any variety VG is trivial then G is a fibration. In the case of a local submersion G : Cn Ñ Cn´1

where n ě 4, the result is still true with an additional condition.
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1. Introduction. Let G : Cn Ñ Cn´1 be a non-constant polynomial mapping
(n ě 2). It is well known [20] that G is a locally trivial fibration outside the bifurcation
set BpGq in Cn´1. In a natural way appears a fundamental question: how to determine
the set BpGq. In [12], Ha Huy Vui and Nguyen Tat Thang gave, for a generic class
of G : Cn Ñ Cn´1 (n ě 2), a necessary and sufficient condition for a point z P Cn´1

to be in the bifurcation set BpGq in term of the Euler characteristic of the fibers at
nearby points. The case n=2 was previously given in [11] .

In this paper, we want to construct singular varieties VG associated to a poly-
nomial mapping G : Cn Ñ Cn´1 (n ě 2) such that the intersection homology of VG
can characterize the bifurcation set of G. The motivation for this paper comes from
the paper [21], where Anna and Guillaume Valette constructed real pseudomanifolds,
denoted VF , associated to a given polynomial mapping F : Cn Ñ Cn, such that the
singular part of the variety VF is contained in pSF ˆK0pF qq ˆ t0

pu ( p ą 0), where
K0pF q is the set of critical values and SF is the set of non-proper points of F . In the
case of dimension n “ 2, the homology or intersection homology of VF describes the
geometry of the singularities at infinity of the mapping F . With Anna and Guillaume
Valette, the first author generalized this result [18] for the general case F : Cn Ñ Cn
(n ě 2). The idea to construct varieties VF is the following: considering the poly-
nomial mapping F : Cn Ñ Cn as a real one F : R2n Ñ R2n, then if we take a finite
covering tViu by smooth submanifolds of R2nzSingF , the mapping F induces a dif-
feomorphism from Vi into its image F pViq. We use a technique in order to separate
these tF pViqu by embedding them in a higher dimensional space, then VF is obtained
by gluing tF pViqu together along the set SF YK0pF q.

A natural question is that how can we apply this construction to the case of
polynomial mappings G : Cn Ñ Cn´1, or, G : R2n Ñ R2n´2. The main difficulty
of this case is that if we take an open submanifold V in R2nzSingF , then locally we
do not have a diffeomorphism from V into its image GpV q. So we consider a generic
p2n´ 2q- real dimensional submanifold in the source space R2n, denoted MG, which
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is called the Milnor set of G. Then we can apply the construction of singular varieties
VF in [21] for F :“ G|MG

the restriction of G to the Milnor set MG.
We obtain the following result: let G : C3 Ñ C2 be a local submersion, then if the

homology or the intersection homology with total perversity (with compact supports
or closed supports) in dimension two of any among of the constructed varieties VG
is trivial then G is a fibration (Theorem 5.1). In the case of a local submersion
G : Cn Ñ Cn´1 where n ě 4, the result is still true with an additional condition
(Theorem 5.2). Comparing with the paper [12], we obtain the Corollary 5.9.

2. Preliminaries and basic definitions. In this section we set-up our frame-
work. All the varieties we consider in this article are semi-algebraic.

2.1. Notations and conventions. Given a topological space X, singular sim-
plices of X will be semi-algebraic continuous mappings σ : Ti Ñ X, where Ti is the
standard i-simplex in Ri`1. Given a subset X of Rn we denote by CipXq the group
of i-dimensional singular chains (linear combinations of singular simplices with coef-
ficients in R); if c is an element of CipXq, we denote by |c| its support. By RegpXq
and SingpXq we denote respectively the regular and singular locus of the set X.
Given X Ă Rn, X will stand for the topological closure of X. The smoothness to be
considered as the differentiable smoothness.

Notice that, when we refer to the homology of a variety, the notation Hc
˚pXq refers

to the homology with compact supports, the notation Hcl
˚ pXq refers to the homology

with closed supports (see [1]).

2.2. Intersection homology. We briefly recall the definition of intersection ho-
mology; for details, we refer to the fundamental work of M. Goresky and R. MacPher-
son [6] (see also [1]).

Definition 2.1. Let X be a m-dimensional semi-algebraic set. A semi-algebraic
stratification of X is the data of a finite semi-algebraic filtration

X “ Xm Ą Xm´1 Ą ¨ ¨ ¨ Ą X0 Ą X´1 “ H,

such that for every i, the set Si “ XizXi´1 is either empty or a manifold of dimension
i. A connected component of Si is called a stratum of X.

We denote by cL the open cone on the space L, the cone on the empty set being
a point. Observe that if L is a stratified set then cL is stratified by the cones over the
strata of L and a 0-dimensional stratum (the vertex of the cone).

Definition 2.2. A stratification of X is said to be locally topologically trivial if
for every x P XizXi´1, i ě 0, there is an open neighborhood Ux of x in X, a stratified
set L and a semi-algebraic homeomorphism

h : Ux Ñ p0; 1qi ˆ cL,

such that h maps the strata of Ux (induced stratification) onto the strata of p0; 1qiˆcL
(product stratification).

The definition of perversities as originally given by Goresky and MacPherson:

Definition 2.3. A perversity is an pm ` 1q-uple of integers p̄ “

pp0, p1, p2, p3, . . . , pmq such that p0 “ p1 “ p2 “ 0 and pk`1 P tpk, pk ` 1u, for
k ě 2.
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Traditionally we denote the zero perversity by 0 “ p0, 0, 0, . . . , 0q, the maxi-
mal perversity by t “ p0, 0, 0, 1, . . . ,m ´ 2q, and the middle perversities by m “

p0, 0, 0, 0, 1, 1, . . . , rm´2
2 sq (lower middle) and n “ p0, 0, 0, 1, 1, 2, 2, . . . , rm´1

2 sq (upper
middle). We say that the perversities p and q are complementary if p` q “ t.

Let X be a semi-algebraic variety such that X admits a locally topologically
trivial stratification. We say that a semi-algebraic subset Y Ă X is pp̄, iq-allowable if

dimpY XXm´kq ď i´ k ` pk for all k.

Define ICpi pXq to be the R-vector subspace of CipXq consisting in those chains ξ
such that |ξ| is pp, iq-allowable and |Bξ| is pp, i´ 1q-allowable.

Definition 2.4. The ith intersection homology group with perversity p, denoted
by IHp

i pXq, is the ith homology group of the chain complex ICp˚pXq.

Notice that, the notation IHp,c
˚ pXq refer to the intersection homology with com-

pact supports, the notation IHp,cl
˚ pXq refer to the intersection homology with closed

supports.
Goresky and MacPherson proved that the intersection homology is independent

of the choice of the stratification [6, 7].
The Poincaré duality holds for the intersection homology of a (singular) variety:

Theorem 2.5 (Goresky, MacPherson [6]). For any orientable compact stratified
semi-algebraic m-dimensional variety X, generalized Poincaré duality holds:

IHp
k pXq » IHq

m´kpXq,

where p and q are complementary perversities.

For the non-compact case, we have:

IHp,c
k pXq » IHq,cl

m´kpXq.

A relative version is also true in the case where X has boundary.

2.3. The bifurcation set, the set of asymptotic critical values and the
asymptotic set. Let G : Cn Ñ Cm where n ě m be a polynomial mapping.

i) The bifurcation set of G, denoted by BpGq is the smallest set in Cm such that
G is not C8 - fibration on this set (see, for example, [20]).

ii) The set of asymptotic critical values, denoted by K8pGq, is the set

K8pGq “ tα P Cm : Dtzku Ă Cn, such that |zk| Ñ 8, Gpzkq Ñ α and |zk||dGpzkq| Ñ 0u.

The set K8pGq is an approximation of the set BpGq. More precisely, we have BpGq Ă
K8pGq (see, for example, [14] or [3]).

iii) When n “ m, we denote by SG the set of points at which the mapping G is
not proper, i.e.

SG “ tα P Cm : Dtzku Ă Cn, |zk| Ñ 8 such that Gpzkq Ñ αu,

and call it the asymptotic variety. In the case of polynomial mappings F : Cn Ñ Cn,
the following holds: BpGq “ SG ([9]).
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3. The variety MG. We consider polynomial mappings G : Cn Ñ Cn´1 as real
ones G : R2n Ñ R2n´2. By SingpGq we mean the singular locus of G, that is the set
of points for which the (complex) rank of the Jacobian matrix is less than n´ 1. We
denote by K0pGq the set of critical values. From here, we assume always K0pGq “ H.

Definition 3.1. Let G : Cn Ñ Cn´1 be a polynomial mapping. Consider G as
a real polynomial mapping G : R2n Ñ R2n´2. Let ρ : Cn Ñ R be a real function such
that ρpzq ě 0 for any z P Cn. Let

ϕ “
1

1` ρ
.

Consider pG,ϕq as a mapping from R2n to R2n´1. Let us define

MG :“ SingpG,ϕq “ tx P R2n such that RankDRpG,ϕqpxq ď 2n´ 2u,

where DRpG,ϕqpxq is the Jacobian matrix of pG,ϕq : R2n Ñ R2n´1 at x.

Remark 3.2. Since K0pGq “ H, then RankDRpGq “ 2n´ 2, so we have

SingpG,ϕq “ tx P R2n such that RankDRpG,ϕq “ 2n´ 2u.

Note that, from here, if we want to refer to the source space as a complex space,
we will write pG,ϕq : Cn Ñ R2n´1, if we want to refer to the source space as a real
space, we will write pG,ϕq : R2n Ñ R2n´1. Moreover, in general, we denote by z a
complex element in Cn and by x a real element in R2n.

Lemma 3.3. For any ρ, ϕ and pG,ϕq as in the Definition 3.1 and for any x “
px1, . . . , x2nq P R2n, we have

RankDRpG,ϕqpxq “ RankDRpG, ρqpxq,

so we have

MG “ SingpG,ϕq “ SingpG, ρq.

Proof. For any x “ px1, . . . , x2nq P R2n, we have

DRpG, ρqpxq “

ˆ

DRpGq
ρx1

. . . ρx2n

˙

,

DRpG,ϕqpxq “

˜

DRpGq
´ρx1

p1`ρq2
. . .

´ρx2n

p1`ρq2

¸

,

where ρxi
is the derivative of ρ with respect to xi, for i “ 1, . . . , 2n. We have

RankDRpG,ϕqpxq “ RankDRpG, ρqpxq for any x P R2n and MG “ SingpG,ϕq “
SingpG, ρq.

Remark 3.4. From here, we consider the function ρ of the following form

ρ “ a1|z1|
2 ` ¨ ¨ ¨ ` an|zn|

2,
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where Σi“1,...,na
2
i ‰ 0, ai ě 0, and ai P R for i “ 1, . . . , n.

Proposition 3.5. Let G “ pG1, . . . , Gn´1q : Cn Ñ Cn´1 pn ě 2q be a polynomial
mapping such that K0pGq “ H and ρ : Cn Ñ R be such that ρ “ a1|z1|

2`¨ ¨ ¨`an|zn|
2,

where Σi“1,...,na
2
i ‰ 0, ai ě 0 and ai P R, for i “ 1, . . . , n. Denote by vi the

determinant of the cofactor of B
Bzi

of the matrix

Vpzq “

¨

˚

˚

˝

B
Bz1

¨ ¨ ¨ B
Bzn

BG1

Bz1
¨ ¨ ¨ BG1

Bzn
¨ ¨ ¨

BGn´1

Bz1
¨ ¨ ¨

BGn´1

Bzn

˛

‹

‹

‚

,

for i “ 1, . . . , n. Then we have

MG “ h´1p0q,

where

h : Cn Ñ C, hpzq “ 2Σaivipzqzi.

Proof. Let G “ pG1, . . . , Gn´1q : Cn Ñ Cn´1 pn ě 2q and ρ : Cn Ñ R such that
ρ “ a1|z1|

2 ` ¨ ¨ ¨ ` an|zn|
2, where Σi“1,...,na

2
i ‰ 0, ai ě 0 and ai P R. Let us consider

the vector field

Vpzq “

¨

˚

˚

˝

B
Bz1

¨ ¨ ¨ B
Bzn

BG1

Bz1
¨ ¨ ¨ BG1

Bzn
¨ ¨ ¨

BGn´1

Bz1
¨ ¨ ¨

BGn´1

Bzn

˛

‹

‹

‚

.

We have

Vpzq “ v1
B

Bz1
` ¨ ¨ ¨ ` vn

B

Bzn
,

where vi is the determinant of the cofactor of B
Bzi

, for i “ 1, . . . , n. The vector field

Vpzq is tangent to the curve G “ c. Let Rpzq “ a1z
2
1 ` ¨ ¨ ¨ ` anz

2
n, then we have

MG “ h´1p0q, where

h : Cn Ñ C, hpzq “ă Vpzq,GradRpzq ą .

More precisely, we have hpzq “ 2Σaivipzqzi.

Proposition 3.6. For an open and dense set of polynomial mappings G : Cn Ñ
Cn´1 such that K0pGq “ H, the variety MG is a smooth manifold of dimension
2n´ 2.

Proof. The question is of local nature. In a neighbourhood of a point z0 in Cn,
we can choose coordinates such that the level curve G “ c, where c “ Gpz0q P Cn´1

is parametrized

γ : pC, 0q Ñ pCn, z0q
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s ÞÑ pγ1psq, . . . , γnpsqq.

Since ρ “ a1|z1|
2 ` ¨ ¨ ¨ ` an|zn|

2, then ρ ˝ γ : pC, 0q Ñ R and

ρ ˝ γpsq “ a1|γ1psq|
2 ` ¨ ¨ ¨ ` an|γnpsq|

2.

If z0 is a singular point of ρ|G“c, then

ρ ˝ γp0q “ ρpγp0qq “ ρpz0q,

pρ ˝ γq1p0q “ 0.

For an open and dense set of G, we have

pρ ˝ γq2p0q ‰ 0.

Hence, z0 is a Morse singularity of ρ|G“c. In particular, it is an isolated point of the
level curve G “ c. When c varies in Cn´1, it follows that the set MG has dimension
2n´ 2.

We prove now that MG is smooth. By Proposition 3.5, the variety MG is the
set of solutions of h “ 0, where

hpzq “ 2Σaivipzqzi,

and vi is the determinant of the cofactor of B
Bzi

of Vpzq, for i “ 1, . . . , n. Since
K0pGq “ H then Vpzq “ pv1pzq, . . . ,vnpzqq ‰ 0. We can assume that Vpz0q ‰ 0 for
a fixed point z0. For a generic polynomial mapping, we can solve the equation h “ 0
in a neighbourhood of z0. This shows that h “ 0 is smooth in a neighbourhood of z0.
Then MG is smooth.

Remark 3.7. From here, we consider always generic polynomial mappings G :
Cn Ñ Cn´1 as in the Propostion 3.6.

4. The variety VG.

4.1. The construction of the variety VG. Let G : Cn Ñ Cn´1 and ρ, ϕ :
Cn Ñ R such that

ρ “ a1|z1|
2 ` ¨ ¨ ¨ ` an|zn|

2, ϕ “
1

1` ρ
,

where Σi“1,...,na
2
i ‰ 0, ai ě 0 and ai P R. Let us consider:

a) F :“ G|MG
the restriction of G on MG,

b) NG “MGzF
´1pK0pF qq.

Since the dimension of MG is 2n´2 (Proposition 3.6), then locally, in a neighbourhood
of any point x0 in MG, we get a mapping F : R2n´2 Ñ R2n´2. Now, we can apply
the construction of singular varieties VF in [21] for F :“ G|MG

: there exists a cover-
ing tU1, . . . , Upu of NG by open semi-algebraic subsets (in R2n) such that on every
element of this covering, the mapping F induces a diffeomorphism onto its image
(see Lemma 2.1 of [21], see also [16]). We can find semi-algebraic closed subsets
Vi Ă Ui (in NG) which cover NG as well. Thanks to Mostowski’s Separation Lemma
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(see Separation Lemma in [15], page 246), for each i “ 1, . . . , p, there exists a Nash
function ψi : NG Ñ R, such that ψi is positive on Vi and negative on NGzUi.

Lemma 4.1. We can choose the Nash functions ψi such that ψipxkq tends to zero
when txku Ă NG tends to infinity.

Proof. If ψi is a Nash function, then with any Ni P pNzt0uq, the function

ψ1ipxq “
ψipxq

p1` |x|2q
Ni
,

where x P NG, is also a Nash function, for i “ 1, . . . , p. The Nash function ψ1i satisfies
the property: ψ1i is positive on Vi and negative on NGzUi. With Ni large enough,
ψ1ipxkq tends to zero when txku Ă NG tends to infinity, for i “ 1, . . . , p. We replace
the function ψi by ψ1i.

Definition 4.2. Let the Nash functions ψi and ρ be such that ψipxkq tends to
zero and ρpxkq tends to infinity when xk Ă NG tends to infinity. Define a variety VG
associated to pG, ρq as

VG :“ pF,ψ1, . . . , ψpqpNGq.

Remark 4.3. For a given polynomial mapping G : Cn Ñ Cn´1, the variety VG
is not unique. It depends on the choice of the function ρ and the Nash functions ψi.

Proposition 4.4. The real dimension of VG is 2n´ 2.

Proof. By Proposition 3.6, in the generic case, the real dimension of MG is 2n´2.
Moreover, F is a local immersion in a neighbourhood of a point in MG. So, the real
dimension of F pMGq is also 2n´ 2. Since

F pNGq “ F pMGqzK0pF q,

so the real dimension of F pNGq is 2n´ 2. By Definition 4.2, the real dimension of VG
is 2n´ 2.

Definition 4.5 (see, for example, [4]). Let G : Cn Ñ Cn´1 be a polynomial
mapping and ρ : Cn Ñ R a real function such that ρ ě 0. Define

SG :“ tα P Cn´1 : Dtzku Ă SingpG, ρq, such that zk tends to infinity, Gpzkq tends to αu.

Remark 4.6. a) For any real function ρ : Cn Ñ R such that ρ ě 0, we have

BpGq Ă SG Ă K8pGq,

where BpGq is the bifurcation set and K8pGq is the set of asymptotic critical values
of G (see, for example, [4]).

b) By Lemma 3.3, we have SingpG, ρq “MG, so the set SG can be written

SG :“ tα P Cn´1 : Dtxku ĂMG, such that xk tends to infinity, Gpxkq tends to αu.
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Definition 4.7. The singular set at infinity of the variety VG is the set

tβ P VG : Dtxku Ă NG, xk Ñ8, pG,ψ1, . . . , ψpqpxkq Ñ βu.

Proposition 4.8. The singular set at infinity of the variety VG is contained in
the set SG ˆ t0Rpu.

Proof. At first, by Proposition 3.6, for the generic case, the real dimension of VG
associated to G : Cn Ñ Cn´1 is 2n´ 2. Moreover, we have the following facts:

a) SG Ă K8pGq,

b) dimCpK8pGqq ď n´ 2 (see [14]), so dimRpK8pGqq ď 2n´ 4.

Hence, we have dimR SG ˆ t0Rpu ď 2n ´ 4. Moreover, by Proposition 4.4, we
have dimR VG “ 2n´ 2. Let β be a singular point at infinity of the variety VG, then
there exists a sequence txku in NG tending to infinity such that pG,ψ1, . . . , ψpqpxkq
tends to β. Assume that Gpxkq tends to α, then α belongs to SG. Moreover, the
Nash function ψipxkq tends to 0, for any i “ 1, . . . , p. So β “ pα, 0Rpq belongs to
SG ˆ t0Rpu. Notice that, by Definition of VG, the set SG ˆ t0Rpu is contained in VG.
Then SG ˆ t0Rpu contains the singular set at infinity of the variety VG.

Remark 4.9. The singular set at infinity of VG depends on the choice of the
function ρ, since when ρ changes, the set SG also changes. But, the property BpGq Ă
SG does not depend on the choice of the function ρ (see, for example, [4]).

The previous results show the following Proposition:

Proposition 4.10. Let G : Cn Ñ Cn´1 be a polynomial mapping such that
K0pGq “ H and let ρ : Cn Ñ R be a real function such that

ρ “ a1|z1|
2 ` ¨ ¨ ¨ ` an|zn|

2,

where Σi“1,...,na
2
i ‰ 0, ai ě 0 and ai P R for i “ 1, . . . , n. Then, there exists a real

variety VG in R2n´2`p, where p ą 0, such that:

1) The real dimension of VG is 2n´ 2,

2) The singular set at infinity of the variety VG is contained in SG ˆ t0Rpu.

Remark 4.11. The variety VG depends on the choice of the function ρ and the
functions ψi. From now, we denote by VGpρq any variety VG associated to pG, ρq. If
we refer to VG, that means a variety VG associated to pG, ρq for any ρ.

Remark 4.12. 1) In the construction of singular varieties VG, we can put F :“
pG,ϕq|MG

, that means F is the restriction of pG,ϕq on MG. In this case, since the
dimension of MG is 2n´ 2 then locally, in a neighbourhood of any point x0 in MG,
we get a mapping F : R2n´2 Ñ R2n´1. The construction of singular varieties VG can
be applied also in this case.

2) The construction of singular varieties VG can be applied for polynomial map-
pings G : Cn Ñ Cp where p ă n´ 1 if the Milnor set MG is smooth is this case.
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4.2. A variety VG in the case of the Broughton’s Example.

Example 4.13. We compute in this example a variety VG in the case of the
Broughton’s example [2]:

G : C2 Ñ C, Gpz, wq “ z ` z2w.

We see that K0pGq “ H since the system of equations Gz “ Gw “ 0 has no solutions.
Let us denote

z “ x1 ` ix2, w “ x3 ` ix4,

where x1, x2, x3, x4 P R. Consider G as a real polynomial mapping, we have

Gpx1, x2, x3, x4q “ px1 ` x
2
1x3 ´ x

2
2x3 ´ 2x1x2x4, x2 ` 2x1x2x3 ` x

2
1x4 ´ x

2
2x4q.

Let ρ “ |w|2, then

ϕ “
1

1` ρ
“

1

1` |w|2
“

1

1` x23 ` x
2
4

.

The Jacobian matrix of pG, ρq is

DRpG, ρq “

¨

˝

1` 2x1x3 ´ 2x2x4 ´2x2x3 ´ 2x1x4 x21 ´ x
2
2 ´2x1x2

2x2x3 ` 2x1x4 1` 2x1x3 ´ 2x2x4 2x1x2 x21 ´ x
2
2

0 0 2x3 2x4

˛

‚.

By an easy computation, we have MG “ SingpG, ρq “M1 YM2, where
M1 :“ tpx1, x2, 0, 0q : x1, x2 P Ru,
M2 “

 

px1, x2, x3, x4q P R4 : 1` 2x1x3 ´ 2x2x4 “ 2x2x3 ` 2x1x4 “ 0
(

.
Let us consider G as a real mapping from R4

px1,x2,x3,x4q
to R2

pα1,α2q
, then:

a) If x “ px1, x2, 0, 0q PM1, we have Gpxq “ px1, x2q.

b) If x “ px1, x2, x3, x4q PM2, then we have Gpxq “ pα1, α2q, where

α1 “
´x3

4px23 ` x
2
4q
, α2 “

x4
4px23 ` x

2
4q
.

Let F :“ G|MG
. We can check easily that K0pF q “ H. Choosing MG as a covering

of MG itself. We choose the Nash function ψ “ ϕ, then ψ is positive on all MG. So,
by Definition 4.2, we have

VG “ pF,ϕqpMGq “ pG,ϕqpMGq “ pG,ϕqpM1q Y pG,ϕqpM2q Y pSG ˆ 0Rq,

where pG,ϕq : R4
px1,x2,x3,x4q

Ñ R3
pα1,α2,α3q

. Then

a) pG,ϕqpM1q is the plane tα3 “ 1u Ă R3
pα1,α2,α3,q

.

b) Assume that pα1, α2, α3q P pG,ϕqpM2q, and let

x3 “ rcosθ, x4 “ rsinθ,

where r P R, r ą 0 and 0 ď θ ď 2π, then

α2
1 ` α

2
2 “

1

16r2
, α3 “

1

1` r2
.
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So pG,ϕqpM2q is a 2-dimensional open cone. In fact, when r tends to infinity, then
α1, α2 and α3 tend to 0, but the origin does not belong to this cone.

Moreover, by an easy computation, we can verify that the set SG is 0 “ p0, 0q P
R2
pα1,α2q

. So the origin 0 of R3
pα1,α2,α3q

belongs to VG. In conclusion, the variety VG
is the union of the plane α3 “ 1 and a 2-dimensional cone C with vertex 0, where the
cone C tends to infinity and asymptotic to the plane α3 “ 1 in R3

pα1,α2,α3q
(see Figure

1).

 21/11/14 10:40 

 

Fig. 1. A variety VG in the case of the Broughton’s Example Gpz, wq “ z ` z2w.

Remark 4.14. We can use the Proposition 3.5 with the view of mixed functions
(see [19]) to determine the variety MG. Let us return to the Example 4.13. In this
case ρ “ |w|2, then

MG “

"

pz, wq P C2 :
BG

Bz
w “ 0

*

.

Hence we have p1` 2zwqw “ 0, that implies the following two cases:

i) w “ 0: We have x3 “ x4 “ 0, where w “ x3 ` ix4.

ii) w ‰ 0 and z “ ´ 1
2w “ ´

w
2|w|2 : We have

x1 “
´x3

2px23 ` x
2
4q
, x2 “

x4
2px23 ` x

2
4q
,

where z “ x1 ` ix2.
So we get MG “ M1 YM2 as the computations and notations in the Example

4.13.

5. Results.

Theorem 5.1. Let G “ pG1, G2q : C3 Ñ C2 be a polynomial mapping such

that K0pGq “ H. If one the groups IHt,c
2 pVG,Rq, IHt,cl

2 pVG,Rq, Hc
2pVG,Rq and

Hcl
2 pVG,Rq is trivial then the bifurcation set BpGq is empty.

Theorem 5.2. Let G “ pG1, . . . , Gn´1q : Cn Ñ Cn´1 pn ě 4q be a polyno-
mial mapping such that K0pGq “ H and RankCpDĜiqi“1,...,n´1 ą n ´ 3, where Ĝi
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is the leading form of Gi, that is the homogenous part of highest degree of Gi, for

i “ 1, . . . , n ´ 1. Then if one the groups IHt,c
2 pVG,Rq, IHt,cl

2 pVG,Rq, Hc
2pVG,Rq,

Hcl
2 pVG,Rq, Hc

2n´4pVG,Rq and Hcl
2n´4pVG,Rq is trivial then the bifurcation set BpGq

is empty.

Before proving these Theorems, we recall some necessary Definitions and Lemmas.

Definition 5.3. A semi-algebraic family of sets (parametrized by R) is a semi-
algebraic set A Ă Rn ˆ R, the last variable being considered as parameter.

Remark 5.4. A semi-algebraic set A Ă Rn ˆ R will be considered as a family
parametrized by t P R. We write At, for “the fiber of A at t”, i.e.:

At :“ tx P Rn : px, tq P Au.

Lemma 5.5 ([21]). Let β be a j-cycle and let A Ă Rn ˆ R be a compact semi-
algebraic family of sets with |β| Ă At for any t. Assume that |β| bounds a pj`1q-chain
in each At, t ą 0 small enough. Then β bounds a chain in A0.

Definition 5.6 ([21]). Given a subset X Ă Rn, we define the “tangent cone at
infinity”, called “contour apparent à l’infini” in [16] by:

C8pXq :“ tλ P Sn´1p0, 1q such that Dη : pt0, t0 ` εs Ñ X semi-algebraic,

lim
tÑt0

ηptq “ 8, lim
tÑt0

ηptq

|ηptq|
“ λu.

Lemma 5.7 ([18]). Let G “ pG1, . . . , Gmq : Rn Ñ Rm be a polynomial mapping
and V the zero locus of Ĝ :“ pĜ1, . . . , Ĝmq, where Ĝi is the leading form of Gi. If X
is a subset of Rn such that GpXq is bounded, then C8pXq is a subset of Sn´1p0, 1qXV ,

where V “ Ĝ
´1
p0q.

Proof of the Theorem 5.1. Recall that in this case, dimR VG “ 4 (Proposition 4.4)
and VGzpSG ˆ t0Rpuq is not smooth in general. Consider a stratification of VG, the
strata of which are the strata of SG ˆ t0Rpu union the strata of the stratification of
K0pF q defined by the rank, according to Thom [20]. Assume that BpGq ‰ H, then by
Remark 4.6, the set SG is not empty. This means that there exists a complex Puiseux
arc in MG

γ : Dp0, ηq Ñ R6, γ “ uzα ` . . . ,

(with α negative integer and u is an unit vector of R6) tending to infinity such a
way that Gpγq converges to a generic point x0 P SG. Then, the mapping hF ˝ γ,
where hF “ pF,ϕ1, . . . , ϕpq and F is the restriction of G on MG provides a singular
2-simplex in VG that we will denote by c. We prove now the simplex c is pt, 2q-
allowable for total perversity t. In fact, by [14], in this case we have dimC SG ď 1,
then α “ codimRSG ě 2. The condition

0 “ dimRtx0u “ dimRppSG ˆ t0Rpuq X |c|q ď 2´ α` tα,

implies tα ě α ´ 2, with α ě 2, which is true for total perversity t̄. Take now a
stratum Vi of VGzpSG ˆ t0Rpuq. Denote by β “ codimRVi. If β ě 2, we can choose
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the Puiseux arc γ such that c lies in the regular part of VGzpSG ˆ t0Rpuq. In fact,
this comes from the generic position of transversality. So c is pt, 2q-allowable in this
case. We need to consider only the cases β “ 0 and β “ 1. We have the following two
cases:

1) If Vi intersects c, again by the generic position of transversality, we can choose
the Puiseux arc γ such that 0 ď dimRpVi X |c|q ď 1. The condition

dimRpVi X |c|q ď 2´ β ` tβ

holds since 2´ β ` tβ ě 1, for β “ 0 and β “ 1.
2) If Vi does not meet c, then the condition

´8 “ dimRH “ dimRpVi X |c|q ď 2´ β ` tβ

holds always.
So the simplex c is pt, 2q-allowable for total perversity t.

From here, the proof of the Theorem follows the ideas of [21]: We can always
choose the Puiseux arc such that the support of Bc lies in the regular part of VGzpSGˆ
t0Rpuq. We have

H1pRegpVGzpSG ˆ t0Rpuqqq “ 0,

then the chain Bc bounds a singular chain e P C2pRegpVGzpSG ˆ t0Rpuqqq, where e is
a chain with compact supports or closed supports. So σ “ c ´ e is a pt, 2q-allowable
cycle of VG, with compact supports or closed supports.

We claim that σ may not bound a 3-chain in VG. Assume otherwise, i.e. assume
that there is a chain τ P C3pVGq, satisfying Bτ “ σ. Let

A :“ h´1
F p|σ| X pVGzpSG ˆ t0Rpuqqq,

B :“ h´1
F p|τ | X pVGzpSG ˆ t0Rpuqqq.

By definition, C8pAq and C8pBq are subsets of S5p0, 1q. Observe that, in a neigh-
borhood of infinity, A coincides with the support of the Puiseux arc γ. The set
C8pAq is equal to S1.a (denoting the orbit of a P C3 under the action of S1 on
C3, peiη, zq ÞÑ eiηz). Let V be the zero locus of the leading forms Ĝ :“ pĜ1, Ĝ2q.
Since GpAq and GpBq are bounded, by Lemma 5.7, C8pAq and C8pBq are subsets of
V X S5p0, 1q.
For R large enough, the sphere S5p0, Rq with center 0 and radius R in R6 is transverse
to A and B (at regular points). Let

σR :“ S5p0, Rq XA, τR :“ S5p0, Rq XB.

Then σR is a chain bounding the chain τR. Consider a semi-algebraic strong deforma-
tion retraction Φ : W ˆ r0; 1s Ñ S1.a, where W is a neighborhood of S1.a in S5p0, 1q
onto S1.a. Considering R as a parameter, we have the following semi-algebraic families
of chains:

1) σ̃R :“ σR

R , for R large enough, then σ̃R is contained in W ,
2) σ1R “ Φ1pσ̃Rq, where Φ1pxq :“ Φpx, 1q, x PW ,
3) θR “ Φpσ̃Rq, we have BθR “ σ1R ´ σ̃R,
4) θ1R “ τR ` θR, we have Bθ1R “ σ1R.
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As, near infinity, σR coincides with the intersection of the support of the arc γ with
S5p0, Rq, for R large enough the class of σ1R in S1.a is nonzero.

Let r “ 1{R, consider r as a parameter, and let tσ̃ru, tσ
1
ru, tθru as well as tθ1ru

the corresponding semi-algebraic families of chains.
Denote by Er Ă R6 ˆ R the closure of |θr|, and set E0 :“ pR6 ˆ t0uq X E. Since

the strong deformation retraction Φ is the identity on C8pAq ˆ r0, 1s, we see that

E0 Ă ΦpC8pAq ˆ r0, 1sq “ S1.a Ă V X S5p0, 1q.

Denote by E1r Ă R6 ˆ R the closure of |θ1r|, and set E10 :“ pR6 ˆ t0uq X E1. Since
A bounds B, then C8pAq is contained in C8pBq. We have

E10 Ă E0 Y C8pBq Ă V X S5p0, 1q.

The class of σ1r in S1.a is, up to a product with a nonzero constant, equal to the
generator of S1.a. Therefore, since σ1r bounds the chain θ1r, the cycle S1.a must bound
a chain in |θ1r| as well. By Lemma 5.5, this implies that S1.a bounds a chain in E10
which is included in V X S5p0, 1q.

The set V is a projective variety which is an union of cones in R6. Since dimC V ď
1, so dimR V ď 2 and dimR V X S5p0, 1q ď 1. The cycle S1.a thus bounds a chain in
E10 Ď V X S5p0, 1q, which is a finite union of circles, that provides a contradiction.

Now we provides the proof of the Theorem 5.2.
Proof. [Proof of the Theorem 5.2]
The proof of this Theorem follows the idea of [18] and the proof of Theorem 5.1.
Assume that BpGq ‰ H. Similarly to the proof of the Theorem 5.1 and with the

same notations in this proof but for the general case, we have: since

RankCpDĜiqi“1,...,n´1 ą n´ 3

then

corankCpDĜiqi“1,...,n´1 “ dimC V ď 1,

so dimR V ď 2 and dimR V X S2n´1p0, 1q ď 1. The cycle S1.a bounds a chain in
E10 Ď V X S2n´1p0, 1q, which is a finite union of circles, that provides a contradiction.
So we have

IHt,c
2 pVG,Rq ‰ 0, IHt,cl

2 pVG,Rq ‰ 0, Hc
2pVG,Rq ‰ 0 and Hcl

2 pVG,Rq ‰ 0.

From the Goresky-MacPherson Poincaré duality Theorem, we have

IHt,c
2 pVG,Rq “ IH0,cl

2n´4pVG,Rq and IHt,cl
2 pVG,Rq “ IH0,c

2n´4pVG,Rq,

that implies Hc
2n´4pVG,Rq ‰ 0 and Hcl

2n´4pVG,Rq ‰ 0.

Remark 5.8. The variety VG associated to a polynomial mapping G : Cn Ñ
Cn´1 is not unique, but the result of the theorems 5.1 and 5.2 hold for any variety
VG among the constructed varieties VG associated to G.

With the conditions of Theorem 5.2, the result of [12] also holds, hence as a
consequence of Theorem 5.2 in this paper and Theorems 2.1 and 2.6 in [12], we obtain
the following corollary.

Corollary 5.9. Let G “ pG1, . . . , Gn´1q : Cn Ñ Cn´1, where n ě 4, be a
polynomial mapping such that K0pGq “ H. Assume that the zero set tz P Cn :
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Ĝipzq “ 0, i “ 1, . . . , n´ 1u has complex dimension one, where Ĝi is the leading form
of Gi. If the Euler characteristic of G´1pz0q is bigger than that of the generic fiber,
where z0 P Cn´1, then

1) H2pVGpρq,Rq ‰ 0, for any ρ,
2) H2n´4pVGpρq,Rq ‰ 0, for any ρ,

3) IHt
2pVGpρq,Rq ‰ 0, for any ρ, where t is the total perversity.

Proof. At first, since the zero set tz P Cn : Ĝipzq “ 0, i “ 1, . . . , n ´ 1u has
complex dimension one, then by the Theorem 2.6 in [12], any generic linear mapping
L is a very good projection with respect to any regular value z0 of G. Then if the Euler
characteristic ofG´1pz0q is bigger than that of the generic fiber, where z0 P Cn´1, then
by the Theorem 2.1 of [12], the set BpGq ‰ H. Moreover, the complex dimension of
the set tz P Cn : Ĝipzq “ 0, i “ 1, . . . , n´1u is the complex corank of pDĜiqi“1,...,n´1.

Hence RankCpDĜiqi“1,...,n´1 “ n´ 2, and by the Theorem 5.2, we finish the proof.

Example 5.10. Consider the suspension of the Broughton’s example:

G : C3 Ñ C2, Gpz, w, ζq “ pz ` z2w, ζq,

or, more general Gpz, w, ζq “ pz`z2w, gpζqq where gpζq is any polynomial of variable ζ

and g1pζq ‰ 0. We can check that, for any function ρ, we have always IHt
2pVG,Rq ‰ 0.

Remark 5.11. The condition BpGq “ H does not imply IHt
2pVG,Rq “ 0, since

in this case SG maybe not empty.

Example 5.12. Let

G : C3 Ñ C2, Gpz, w, ζq “ pz, zζ2 ` wq.

1) If we choose the function ρ “ |ζ|2, then SG “ H and IHt
2pVG,Rq “ 0.

2) If we choose the function ρ “ |w|2, then SG ‰ H and IHt
2pVG,Rq ‰ 0.
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miale, Thèse, Université d’Aix Marseille, http://tel.archives-ouvertes.fr/, ID : tel-
00875930.
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