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ON SINGULAR VARIETIES ASSOCIATED TO A POLYNOMIAL
MAPPING FROM C" TO C"—1*
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Abstract. We construct singular varieties Vg associated to a polynomial mapping G : C" —
C"~! where n > 2. Let G : C3> — C2 be a local submersion, we prove that if the homology or the
intersection homology with total perversity (with compact supports or closed supports) in dimension
two of any variety Vg is trivial then G is a fibration. In the case of a local submersion G : C* — C*~!
where n > 4, the result is still true with an additional condition.
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1. Introduction. Let G : C* — C"~! be a non-constant polynomial mapping
(n = 2). Tt is well known [20] that G is a locally trivial fibration outside the bifurcation
set B(G) in C"~!. In a natural way appears a fundamental question: how to determine
the set B(G). In [12], Ha Huy Vui and Nguyen Tat Thang gave, for a generic class
of G: C" — C" ! (n = 2), a necessary and sufficient condition for a point z € C*~*
to be in the bifurcation set B(G) in term of the Euler characteristic of the fibers at
nearby points. The case n=2 was previously given in [I1] .

In this paper, we want to construct singular varieties Vg associated to a poly-
nomial mapping G : C* — C"~! (n > 2) such that the intersection homology of Vg
can characterize the bifurcation set of G. The motivation for this paper comes from
the paper [2I], where Anna and Guillaume Valette constructed real pseudomanifolds,
denoted Vg, associated to a given polynomial mapping F' : C* — C™, such that the
singular part of the variety Vg is contained in (Sg x Ko(F)) x {0P} (p > 0), where
K(F) is the set of critical values and Sg is the set of non-proper points of F. In the
case of dimension n = 2, the homology or intersection homology of V describes the
geometry of the singularities at infinity of the mapping F. With Anna and Guillaume
Valette, the first author generalized this result [I§] for the general case F : C" — C"
(n = 2). The idea to construct varieties V is the following: considering the poly-
nomial mapping F : C* — C" as a real one F : R?” — R2", then if we take a finite
covering {V;} by smooth submanifolds of R?"\SingF, the mapping F induces a dif-
feomorphism from V; into its image F(V;). We use a technique in order to separate
these {F(V;)} by embedding them in a higher dimensional space, then V is obtained
by gluing {F(V;)} together along the set Sp U Ko(F).

A natural question is that how can we apply this construction to the case of
polynomial mappings G : C* — C" !, or, G : R?®» — R?*~2, The main difficulty
of this case is that if we take an open submanifold V in R?™\SingF, then locally we
do not have a diffeomorphism from V' into its image G(V'). So we consider a generic
(2n — 2)- real dimensional submanifold in the source space R?", denoted M, which
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is called the Milnor set of G. Then we can apply the construction of singular varieties
Vi in [21] for F := G|, the restriction of G to the Milnor set M.

We obtain the following result: let G : C3 — C? be a local submersion, then if the
homology or the intersection homology with total perversity (with compact supports
or closed supports) in dimension two of any among of the constructed varieties Vg
is trivial then G is a fibration (Theorem [5.1). In the case of a local submersion
G : C* —» C* ! where n > 4, the result is still true with an additional condition
(Theorem [5.2)). Comparing with the paper [I2], we obtain the Corollary

2. Preliminaries and basic definitions. In this section we set-up our frame-
work. All the varieties we consider in this article are semi-algebraic.

2.1. Notations and conventions. Given a topological space X, singular sim-
plices of X will be semi-algebraic continuous mappings ¢ : T; — X, where T} is the
standard i-simplex in RiT!. Given a subset X of R™ we denote by C;(X) the group
of i-dimensional singular chains (linear combinations of singular simplices with coef-
ficients in R); if ¢ is an element of C;(X), we denote by |c| its support. By Reg(X)
and Sing(X) we denote respectively the regular and singular locus of the set X.
Given X c R", X will stand for the topological closure of X. The smoothness to be
considered as the differentiable smoothness.

Notice that, when we refer to the homology of a variety, the notation Hg(X) refers
to the homology with compact supports, the notation H¢ (X) refers to the homology
with closed supports (see [1]).

2.2. Intersection homology. We briefly recall the definition of intersection ho-
mology; for details, we refer to the fundamental work of M. Goresky and R. MacPher-
son [6] (see also [I).

DEFINITION 2.1. Let X be a m-dimensional semi-algebraic set. A semi-algebraic
stratification of X is the data of a finite semi-algebraic filtration

X=XmDXm,13---DX()DX,1=®,

such that for every ¢, the set S; = X;\X;_1 is either empty or a manifold of dimension
1. A connected component of S; is called a stratum of X.

We denote by cL the open cone on the space L, the cone on the empty set being
a point. Observe that if L is a stratified set then cL is stratified by the cones over the
strata of L and a 0-dimensional stratum (the vertex of the cone).

DEFINITION 2.2. A stratification of X is said to be locally topologically trivial if
for every x € X;\X,_1, i = 0, there is an open neighborhood U, of z in X, a stratified
set L and a semi-algebraic homeomorphism

h:U, — (0;1) x cL,

such that h maps the strata of U, (induced stratification) onto the strata of (0;1)* xcL
(product stratification).

The definition of perversities as originally given by Goresky and MacPherson:

DEFINITION  2.3. A perversity is an (m + 1)-uple of integers p =

(p07p17p27p37"'5p’m) such that Po = P1 = P2 = 0 and Pr+1 € {pk7pk + 1}a for
k= 2.



POLYNOMIAL MAPPINGS FROM C™ to C*—1 1159

Traditionally we denote the zero perversity by 0 = (0,0,0,...,0), the maxi-
mal perversity by ¢ = (0,0,0,1,...,m — 2), and the middle perversities by m =
(0,0,0,0,1,1,...,[™52]) (lower middle) and @ = (0,0,0,1,1,2,2,...,[™+L]) (upper
middle). We say that the perversities p and q are complementary if p + g = t.

Let X be a semi-algebraic variety such that X admits a locally topologically

trivial stratification. We say that a semi-algebraic subset Y < X is (p, i)-allowable if
dim(Y n X,,_x) <i—k + pg for all k.

Define IC?(X) to be the R-vector subspace of C;(X) consisting in those chains &
such that |¢] is (P, ¢)-allowable and |0¢| is (P, ¢ — 1)-allowable.

DEFINITION 2.4. The it" intersection homology group with perversity p, denoted
by TH?(X), is the i*" homology group of the chain complex IC%(X).

Notice that, the notation IHE°(X) refer to the intersection homology with com-

pact supports, the notation I H. E’CZ(X ) refer to the intersection homology with closed

supports.

Goresky and MacPherson proved that the intersection homology is independent
of the choice of the stratification [6l [7].

The Poincaré duality holds for the intersection homology of a (singular) variety:

THEOREM 2.5 (Goresky, MacPherson [6]). For any orientable compact stratified
semi-algebraic m-dimensional variety X, generalized Poincaré duality holds:

TH{(X) ~ IH},_,(X),

where p and q are complementary perversities.

For the non-compact case, we have:

THPC(X) ~ THZY, (X).

m—k
A relative version is also true in the case where X has boundary.

2.3. The bifurcation set, the set of asymptotic critical values and the
asymptotic set. Let G: C®" — C™ where n > m be a polynomial mapping.

i) The bifurcation set of G, denoted by B(G) is the smallest set in C"™ such that
G is not C* - fibration on this set (see, for example, [20]).

ii) The set of asymptotic critical values, denoted by Ko (G), is the set
Ky (G) = {aeC™:3{z,} < C", such that |zx| — 0, G(z;) — « and |z;||dG(zk)| — 0}.

The set Ko (G) is an approximation of the set B(G). More precisely, we have B(G) <
K (G) (see, for example, [14] or [3]).

iii) When n = m, we denote by Sg the set of points at which the mapping G is
not proper, i.e.

Sa ={aeC™:3{z} = C",|2k| — o0 such that G(zx) — a},

and call it the asymptotic variety. In the case of polynomial mappings F : C* — C",
the following holds: B(G) = Sg ([9]).
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3. The variety M. We consider polynomial mappings G : C* — C"~! as real
ones G : R?" — R?"~2, By Sing(G) we mean the singular locus of G, that is the set
of points for which the (complex) rank of the Jacobian matrix is less than n — 1. We
denote by Ko(G) the set of critical values. From here, we assume always Ko(G) = .

DEFINITION 3.1. Let G : C* — C"! be a polynomial mapping. Consider G as
a real polynomial mapping G : R?” — R?"=2, Let p : C* — R be a real function such
that p(z) = 0 for any z € C™. Let

1
¥ = m
Consider (G, ) as a mapping from R?" to R?"~!. Let us define
Mg = Sing(G, ¢) = {x € R*" such that RankDg(G, ¢)(z) < 2n — 2},
where Dg(G, ¢)(z) is the Jacobian matrix of (G, ) : R — R?"~1 at z.

REMARK 3.2. Since Ko(G) = ¢, then RankDg(G) = 2n — 2, so we have

Sing(G, ) = {x € R*" such that RankDg(G, ) = 2n — 2}.

Note that, from here, if we want to refer to the source space as a complex space,
we will write (G, ) : C* — R?"~! if we want to refer to the source space as a real
space, we will write (G, ) : R?® — R27"~1 Moreover, in general, we denote by z a
complex element in C” and by x a real element in R?".

LEMMA 3.3. For any p,¢ and (G, ) as in the Deﬁnition and for any x =
(21,...,72,) € R, we have

RankDg(G, ¢)(z) = RankDg(G, p)(x),

so we have
Me = Sing(G, ¢) = Sing(G, p).
Proof. For any = = (x1,...,22,) € R?™ we have
Dg(G) >
Dr(G, p)(z) = ,
=(G,)(=) <pml o P
Dg(G)
Dr(G,¢)(@) = | —ps, ~pra |
(1+p)? o (1+p)*
where p,, is the derivative of p with respect to z;, for ¢ = 1,...,2n. We have

RankDg (G, )(z) = RankDg(G,p)(x) for any z € R*® and Mg = Sing(G,¢) =
Sing(G, p). O

REMARK 3.4. From here, we consider the function p of the following form

p=ai|zi]? + -+ anlza|?
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where Ei=1w,naf #0, a;=>0,and a; eRfori=1,...,n.

PROPOSITION 3.5. Let G = (Gy,...,Gn_1) : C* — C" ! (n = 2) be a polynomial
mapping such that Ko(G) = & and p : C* — R be such that p = ay|z1|>+- - -+ an|2n|?,
where X;—1,.. naf # 0, a; 20 and a; € R, for i = 1,...,n. Denote by v; the
determinant of the cofactor of % of the matrix

0 9
0 2
e och
V(Z) — 0z1 0zn ,
0Gpn_1 0Gn—1
0z1 0zn
fori=1,...,n. Then we have
Mg = h71(0),
where

h:C"—>C, h(z)=2%a;vi(2)7.

Proof. Let G = (G1,...,Gp_1) : C* - C" 1 (n > 2) and p : C* — R such that
p=ai|z1|*+ -+ anlzn|?, where ;1 na? # 0, a; >0 and a; € R. Let us consider
the vector field

2 2
V(Z) — 0z1 0zn
(Gn71 aGn 1
0z1 U 0zn
We have
0 0
V(z)=viz—+ -+ vy,
(2) ! 071 "0z
where v; is the determinant of the cofactor of %, for i = 1,...,n. The vector field

V(z) is tangent to the curve G = c¢. Let R(z) = a1z} + -+ + a,22, then we have
Mg = h71(0), where

h:C"—-C, h(z)=<V(z),Grad R(z) > .

More precisely, we have h(z) = 2Xa;v;(2)z;. O

PROPOSITION 3.6. For an open and dense set of polynomial mappings G : C"* —
C" 1 such that Ko(G) = &, the variety Mg is a smooth manifold of dimension
2n — 2.

Proof. The question is of local nature. In a neighbourhood of a point zy in C”,
we can choose coordinates such that the level curve G = ¢, where ¢ = G(z) € C"~!
is parametrized

v (C,O) - (Cnv'zo)
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s = ('71(5)7 e 77n(8))‘

Since p = ay|z1]? + - - + an|zn|?, then po~y: (C,0) > R and

po(s) =ailvi(s)]* + - + anlyn(s)*.

If 2y is a singular point of p|g=., then

po(0) = p(7(0)) = p(20),

(po7)(0) = 0.

For an open and dense set of G, we have

(po7)"(0) # 0.

Hence, zp is a Morse singularity of p|g=.. In particular, it is an isolated point of the
level curve G = ¢. When ¢ varies in C"*, it follows that the set Mg has dimension
2n — 2.

We prove now that Mg is smooth. By Proposition the variety Mg is the
set of solutions of h = 0, where

h(z) = 2Xa;v;(2)Z,

and v; is the determinant of the cofactor of 6%1 of V(z), for i = 1,...,n. Since
Ky(G) = & then V(z) = (v1(2),...,Vvn(2)) # 0. We can assume that V(zy) # 0 for
a fixed point zp. For a generic polynomial mapping, we can solve the equation h = 0
in a neighbourhood of zy. This shows that A = 0 is smooth in a neighbourhood of zg.
Then Mg is smooth. 0

REMARK 3.7. From here, we consider always generic polynomial mappings G :
C"™ — C™! as in the Propostion

4. The variety Vg.

4.1. The construction of the variety Vg. Let G : C* — C"! and p,p :
C™ — R such that
1

p=ailal +- -+ anlzl?, o= T+

where ¥;_1 n,a? #0, a; >0 and a; € R. Let us consider:
a) I := G|p, the restriction of G on Mg,
b) Ng = Mc\F~1(Ky(F)).

Since the dimension of Mg is 2n—2 (Proposition, then locally, in a neighbourhood
of any point xy in Mg, we get a mapping F : R>*~2 — R?"~2, Now, we can apply
the construction of singular varieties Vi in [21] for F' := G4, : there exists a cover-
ing {Un,...,U,} of N by open semi-algebraic subsets (in R*") such that on every
element of this covering, the mapping F induces a diffeomorphism onto its image
(see Lemma 2.1 of [21], see also [I6]). We can find semi-algebraic closed subsets
V; € U; (in Ng) which cover Ng as well. Thanks to Mostowski’s Separation Lemma
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(see Separation Lemma in [I5], page 246), for each ¢ = 1,...,p, there exists a Nash
function 1; : Ng — R, such that 1; is positive on V; and negative on Ng\U;.

LEMMA 4.1. We can choose the Nash functions 1; such that v;(xy) tends to zero
when {z1} € Ng tends to infinity.

Proof. If 4; is a Nash function, then with any N; € (N\{0}), the function

Yi(z
z/;;(:r) = #N»
(L +[z)™
where z € Ng, is also a Nash function, for i = 1,...,p. The Nash function 1] satisfies

the property: ) is positive on V; and negative on Ng\U;. With N; large enough,
¥} (zr) tends to zero when {x)} < Ng tends to infinity, for ¢ = 1,...,p. We replace
the function ¢; by ;. O

DEFINITION 4.2. Let the Nash functions 1; and p be such that 1;(zx) tends to
zero and p(z) tends to infinity when z < Ng tends to infinity. Define a variety Vg
associated to (G, p) as

VG = (F, 1?1’ e 7¢p)(NG)~

REMARK 4.3. For a given polynomial mapping G : C* — C"~!, the variety Vg
is not unique. It depends on the choice of the function p and the Nash functions ;.

PROPOSITION 4.4. The real dimension of Vg is 2n — 2.

Proof. By Proposition 3.6} in the generic case, the real dimension of Mg is 2n—2.
Moreover, F' is a local immersion in a neighbourhood of a point in M¢. So, the real
dimension of F(Mg) is also 2n — 2. Since

F(Ng) = F(Mg)\Ko(F),

so the real dimension of F(Ng) is 2n — 2. By Definition the real dimension of Vg
is2n—2. 0

DEFINITION 4.5 (see, for example, [4]). Let G : C* — C"~! be a polynomial
mapping and p : C* — R a real function such that p > 0. Define

Sc :={a e C" ' :3{z} < Sing(G, p), such that z tends to infinity, G(2) tends to a}.

REMARK 4.6. a) For any real function p : C® — R such that p > 0, we have
B(G) c SG c KOO(G),

where B(G) is the bifurcation set and K (G) is the set of asymptotic critical values
of G (see, for example, [4]).

b) By Lemma we have Sing(G, p) = Mg, so the set Sg can be written

Sg :={a e C" ' :3{x,} = Mg, such that z} tends to infinity, G(x) tends to a}.
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DEFINITION 4.7. The singular set at infinity of the variety Vg is the set

{BG VG' : H{mk} CNGVTk — 0, (G,¢17...,¢p)($k) - B}

PRrROPOSITION 4.8. The singular set at infinity of the variety Vg is contained in
the set Sg x {Og}.

Proof. At first, by Proposition [3.6] for the generic case, the real dimension of Vg
associated to G : C* — C"~! is 2n — 2. Moreover, we have the following facts:

a) Sg € Ky (G),

b) dime (K (G)) < n —2 (see [14]), so dimp (K (G)) < 2n — 4.

Hence, we have dimg Sg x {Ogr} < 2n — 4. Moreover, by Proposition we
have dimg Vo = 2n — 2. Let 8 be a singular point at infinity of the variety Vg, then
there exists a sequence {z;} in Ng tending to infinity such that (G,1,...,¢p)(xk)
tends to B. Assume that G(zy) tends to «, then a belongs to S¢. Moreover, the
Nash function ;(zy) tends to 0, for any i = 1,...,p. So 8 = (a,0ge) belongs to
S x {Oge}. Notice that, by Definition of Vg, the set Sg x {Ore} is contained in Vg.
Then Sg x {Ogr} contains the singular set at infinity of the variety Vg. O

REMARK 4.9. The singular set at infinity of Vg depends on the choice of the
function p, since when p changes, the set S¢ also changes. But, the property B(G) <
S does not depend on the choice of the function p (see, for example, []).

The previous results show the following Proposition:

PROPOSITION 4.10. Let G : C* — C" ! be a polynomial mapping such that
Ko(G) = & and let p: C* — R be a real function such that

p=ailzn|?+- - +an|zl?

where Eizl,m’naf #0, a; =20 and a; € R fori =1,...,n. Then, there exists a real
variety Vg in R?"=2+P_ where p > 0, such that:

1) The real dimension of Vg is 2n — 2,

2) The singular set at infinity of the variety Vg is contained in Sg x {Og» }.

REMARK 4.11. The variety Vg depends on the choice of the function p and the
functions ;. From now, we denote by Vg (p) any variety Vg associated to (G, p). If
we refer to Vg, that means a variety Vg associated to (G, p) for any p.

REMARK 4.12. 1) In the construction of singular varieties Vg, we can put F :=
(G, )M that means F' is the restriction of (G, @) on Mg. In this case, since the
dimension of Mg is 2n — 2 then locally, in a neighbourhood of any point zg in Mg,
we get a mapping F : R?"~2 — R2"~! The construction of singular varieties Vg can
be applied also in this case.

2) The construction of singular varieties Vg can be applied for polynomial map-
pings G : C™ — CP where p < n — 1 if the Milnor set M is smooth is this case.
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4.2. A variety Vs in the case of the Broughton’s Example.

EXAMPLE 4.13. We compute in this example a variety Vg in the case of the
Broughton’s example [2]:

G:C?>—C, G(z,w) = z + 2*w.

We see that Ko(G) = J since the system of equations G, = G, = 0 has no solutions.
Let us denote

z =1x1 + 122, W = T3 + 1Ty,
where x1,z2, z3, 24 € R. Consider G as a real polynomial mapping, we have
G(z1, 22,23, 24) = (1 + !L‘%l‘g — x%mg, — 2T1X0X4, To + 212023 + m%m — x%m).
Let p = |w|?, then
1 1 1

T 1+4p 1+wP T+altad

4

The Jacobian matrix of (G, p) is

14+ 2z123 — 220004 —2T0x3 — 22124 x% — x% —2x129
Dgr(G,p) = 2Tox3 + 271 T4 1422103 — 2w074 22179 T2 — 23
0 0 213 2Ty

By an easy computation, we have Mg = Sing(G, p) = M1 U M, where
M1 = {((El,.’EQ,0,0) 1 X1,T2 € R},
My = {(1'1,1'2733‘3,.’)34) eR*: 1+ 20123 — 2T0T4 = 2Tox3 + 20174 = 0} .
Let us consider G as a real mapping from R‘(l ) to R% » then:
T1,T2,T3,T4 Qaq,02
a) If x = (x1,22,0,0) € My, we have G(z) = (1, x2).
b) If © = (x1, z2, x3,24) € Ma, then we have G(z) = (a1, aa), where

—x3 Ty

e 4(x3 + 23)’ @2 4(x3 + 29)

Let F':= G|a,. We can check easily that Ko(F) = J. Choosing Mg as a covering
of Mg itself. We choose the Nash function ¢ = ¢, then 1 is positive on all M. So,
by Definition |4.2] we have

Vo = (F,9)(Ma) = (G, 9)(Ma) = (G, ) (M) v (G,¢)(Mz) U (Sa x Og),
where (G, ) : R{

— R3
T1,T2,T3,T4) (a1,02,003)

. Then
a) (G, p)(My) is the plane {ag = 1} <R} .
b) Assume that (o, as, a3) € (G, ¢)(Ms), and let

T3 = rcosb, T4 = r8ind,

where r e R, r > 0 and 0 < 6 < 2m, then

2 2
o) oy = —— a3z =
! 27 16r2
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So (G, )(Ms) is a 2-dimensional open cone. In fact, when r tends to infinity, then
aq,as and ag tend to 0, but the origin does not belong to this cone.

Moreover, by an easy computation, we can verify that the set Sg is 0 = (0,0) €
) So the origin 0 of R? belongs to Vg. In conclusion, the variety Vg

2
L (a1,02)" (a1,02,03) 7 . ;
is the union of the plane az = 1 and a 2-dimensional cone C with vertex 0, where the

cone C tends to infinity and asymptotic to the plane ag = 1 in R:()’al az,o8) (see Figure
1).

FIG. 1. A wariety Vg in the case of the Broughton’s Ezample G(z,w) = z + 2%w.

REMARK 4.14. We can use the Proposition [3.5] with the view of mixed functions
(see [19]) to determine the variety Mq. Let us return to the Example In this
case p = |w|?, then

Mg—{(z,w)e(CQ:aaC:w—O}.

Hence we have (1 4+ 2zw)w = 0, that implies the following two cases:

i) w = 0: We have 3 = x4 = 0, where w = x5 + 4.

g 1w,
ii)w#0and z = —5- = STz We have
—T3 T4
xr1 = To =

2(x3 + 23)’ 2(x3 + 23)’
where z = 21 + izs.
So we get Mg = M; U Ms as the computations and notations in the Example

E13

5. Results.

THEOREM 5.1. Let G = (G1,G2) :7(C3 — C? be a polynomial mapping such
that Ko(G) = &. If one the groups TH:*(Vg,R), THL? (Vg R), HS(Va,R) and
H$' Vg, R) is trivial then the bifurcation set B(G) is empty.

THEOREM 5.2. Let G = (Gy,...,Gno1) : C* — C*7' (n = 4) be a polyno-
mial mapping such that Ko(G) = & and Rankce(DG;) no1 > " — 3, where G;

i=1,..,
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is the leading form of G, that is the homogenous part of highest degree of G, for
i =1,...,n—1. Then if one the groups IHL*(Vg,R), THLY"(Va,R), HS5(Va,R),
HS$(Vg,R), HS, ,(Vg,R) and HS',_,(Vg,R) is trivial then the bifurcation set B(G)
15 empty.

Before proving these Theorems, we recall some necessary Definitions and Lemmas.

DEFINITION 5.3. A semi-algebraic family of sets (parametrized by R) is a semi-
algebraic set A < R™ x R, the last variable being considered as parameter.

REMARK 5.4. A semi-algebraic set A < R™ x R will be considered as a family
parametrized by t € R. We write A, for “the fiber of A at t”, i.e.:

Ay ={zxeR": (z,t) € A}.

LEMMA 5.5 ([21]). Let B be a j-cycle and let A < R™ x R be a compact semi-
algebraic family of sets with |3] € Ay for any t. Assume that |B| bounds a (j+1)-chain
in each Az, t > 0 small enough. Then [ bounds a chain in Ag.

DEFINITION 5.6 (J2I]). Given a subset X < R™, we define the “tangent cone at
infinity”, called “contour apparent a Uinfind’ in [16] by:

Cop(X) := {AeS"1(0,1) such that In : (tg,tp + €] — X semi-algebraic,
n(t)

tlirg)n(t) = oo,}gr&)m = A}

LemMA 5.7 ([I8]). Let G = (G1,...,Gn) : R" — R™ be a polynomial mapping

and V the zero locus of G := (G, . . ., Gon), where G, is the leading form of G;. If X
is a subset of R™ such that G(X) is bounded, then Cw(X) is a subset of S*~1(0,1) "V,

where V = G_l(O).

Proof of the Theorem H Recall that in this case, dimg Vg = 4 (Proposition
and Va\(Sg x {Oge}) is not smooth in general. Consider a stratification of Vg, the
strata of which are the strata of S¢ x {Orr} union the strata of the stratification of
Ky (F) defined by the rank, according to Thom [20]. Assume that B(G) # ¢, then by
Remark [4:6] the set S¢ is not empty. This means that there exists a complex Puiseux
arc in Mg

v:D(0,n) > RS, v =uz*+...,

(with o negative integer and u is an unit vector of R%) tending to infinity such a
way that G(7) converges to a generic point zy € Sg. Then, the mapping hg o 7,
where hp = (F,¢1,...,¢p) and F is the restriction of G on Mg provides a singular
2-simplex in Vg that we will denote by c¢. We prove now the simplex ¢ is (¢,2)-
allowable for total perversity . In fact, by [14], in this case we have dim¢ Sg < 1,
then o = codimpSg > 2. The condition

0 = dimg{zo} = dimr((Sg % {Ore}) N |c]) < 2 — a + 4,

implies t, > o — 2, with a > 2, which is true for total perversity . Take now a
stratum V; of Vg \(Sg % {Oge}). Denote by 8 = codimgV;. If 8 > 2, we can choose
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the Puiseux arc v such that c¢ lies in the regular part of Vg\(Sg x {Ore}). In fact,
this comes from the generic position of transversality. So c is (,2)-allowable in this
case. We need to consider only the cases § = 0 and 8 = 1. We have the following two
cases:

1) If V; intersects ¢, again by the generic position of transversality, we can choose
the Puiseux arc «y such that 0 < dimg(V; n |c|) < 1. The condition

dimp(V; nle]) <2 -6 +1g

holds since 2 — 8 +tg = 1, for 3 =0 and 8 = 1.
2) If V; does not meet ¢, then the condition

—oo = dimg & = dimg(V; n|c]) <2 -0+ tg

holds always.
So the simplex c is (¢,2)-allowable for total perversity t.

From here, the proof of the Theorem follows the ideas of [2I]: We can always
choose the Puiseux arc such that the support of dc lies in the regular part of Vi\(Sg x
{Ogr}). We have

Hy(Reg(Va\(Sa x {0re }))) =

then the chain dc bounds a singular chain e € C?(Reg(Ve\(Sg % {Orr}))), where e is
a chain with compact supports or closed supports. So o = ¢ — e is a (i, 2)-allowable
cycle of Vg, with compact supports or closed supports.

We claim that ¢ may not bound a 3-chain in Vg. Assume otherwise, i.e. assume
that there is a chain 7 € C3(Vg), satisfying 07 = o. Let

A= hip'(|o] 0 (Va\(Se x {0re}))),

B = hg'(Ir] 0 (Ve\(Sa x {Orr})))-

By definition, C,(A) and Cu (B) are subsets of S°(0,1). Observe that, in a neigh-
borhood of infinity, A coincides with the support of the Puiseux arc 7. The set
Cx(A) is equal to S'.a (denoting the orbit of @ € C* under the action of S' on
C3, (e,z) — €z). Let V be the zero locus of the leading forms G := (G, Gy).
Since G(A) and G(B) are bounded, by Lemma 5.7}, C (A) and Ci(B) are subsets of
V n$%(0,1).

For R large enough, the sphere S°(0, R) with center 0 and radius R in R® is transverse
to A and B (at regular points). Let

OR = SS(O,R)mAa TR -= S5(0,R)ﬁB

Then og is a chain bounding the chain 7. Consider a semi-algebraic strong deforma-
tion retraction ® : W x [0;1] — S'.a, where W is a neighborhood of St.a in S°(0, 1)
onto St.a. Considering R as a parameter, we have the following semi-algebraic families
of chains:

1) 6R: , for R large enough, then 6 is contained in W,
)UR— (O'R) where @4 (z) —<I>(9c 1), xeW,
3) 9R = ®(6R), we have 00p = 0, — G,
4) 0'r = TR + OR, we have 00}, = o',.
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As, near infinity, o coincides with the intersection of the support of the arc v with
S5(0, R), for R large enough the class of o5 in S'.a is nonzero.

Let r = 1/R, consider r as a parameter, and let {G,}, {o]}, {0,-} as well as {0/}
the corresponding semi-algebraic families of chains.

Denote by E,. = RS x R the closure of |6,|, and set Ey := (R® x {0}) n E. Since
the strong deformation retraction @ is the identity on Co(A) x [0, 1], we see that

Ey < ®(Crn(A) x [0,1]) =Sta c V A S%(0,1).

Denote by E/. = RS x R the closure of |0.], and set E}, := (R x {0}) n E’. Since
A bounds B, then Cy(A) is contained in Co(B). We have

Ej)c EyuCy(B) <V nS*0,1).

The class of o/ in St.a is, up to a product with a nonzero constant, equal to the
generator of S*.a. Therefore, since o”. bounds the chain 6., the cycle S*.a must bound
a chain in |0).| as well. By Lemma this implies that S'.a bounds a chain in E]
which is included in V' ~ §5(0, 1).

The set V is a projective variety which is an union of cones in R®. Since dim¢ V' <
1, so dimg V < 2 and dimg V n S%(0,1) < 1. The cycle S'.a thus bounds a chain in
Ej <V nS°(0,1), which is a finite union of circles, that provides a contradiction. O

Now we provides the proof of the Theorem

Proof. [Proof of the Theorem [5.2]

The proof of this Theorem follows the idea of [18] and the proof of Theorem [5.1

Assume that B(G) # . Similarly to the proof of the Theorem and with the
same notations in this proof but for the general case, we have: since

then

coranke(DGy),_, ,_, =dimc V <1,

.....

so dimg V' < 2 and dimg V n §?"71(0,1) < 1. The cycle S'.a bounds a chain in
Ey <V nS?"71(0,1), which is a finite union of circles, that provides a contradiction.
So we have

THY(Va,R) £0, THL(Vg,R) #0, HS(Vg,R) #0 and HS (Ve R) # 0.
From the Goresky-MacPherson Poincaré duality Theorem, we have
THY(Vg,R) = THY, (Vg, R) and THE (Vg R) = THYC ,(Va, R),
that implies HS, ,(Va,R) # 0 and H§, _,(Va,R) # 0. O

REMARK 5.8. The variety Vg associated to a polynomial mapping G : C" —
C"~! is not unique, but the result of the theorems and hold for any variety
Vi among the constructed varieties Vg associated to G.

With the conditions of Theorem the result of [I2] also holds, hence as a
consequence of Theoremin this paper and Theorems 2.1 and 2.6 in [I2], we obtain
the following corollary.

COROLLARY 5.9. Let G = (Gy,...,Gn_1) : C* — C" 1, where n = 4, be a
polynomial mapping such that Ko(G) = &. Assume that the zero set {z € C" :
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C;’Z(z) =0,i=1,...,n—1} has complex dimension one, where G, is the leading form
of G;. If the Euler characteristic of G=1(2°) is bigger than that of the generic fiber,
where 29 € C"1, then

1) Ho(Va(p),R) # 0, for any p,

2) Hap-1(Va(p),R) # 0, for any p,

3) THi(Vg(p),R) # 0, for any p, where t is the total perversity.

Proof. At first, since the zero set {z € C" : Gi(z) = 0,i = 1,...,n — 1} has
complex dimension one, then by the Theorem 2.6 in [I2], any generic linear mapping
L is a very good projection with respect to any regular value 2° of G. Then if the Euler
characteristic of G~1(2%) is bigger than that of the generic fiber, where 2° € C*~!, then
by the Theorem 2.1 of [12], the set B(G) # &. Moreover, the complex dimension of
the set {z € C": Gi(2) = 0,i = 1,...,n—1} is the complex corank of (Déi)i:L_“’n_l.

Hence Ranke(DG;) = n — 2, and by the Theorem we finish the proof. O

i=1,..n—1

ExaMPLE 5.10. Consider the suspension of the Broughton’s example:
G:C-C?% G(z,w, )= (z+2%w,0),

or, more general G(z,w,() = (z+2%w, g(¢)) where g(¢) is any polynomial of variable ¢
and ¢'(¢) # 0. We can check that, for any function p, we have always I H:(Vg, R) # 0.

REMARK 5.11. The condition B(G) = & does not imply IH}(Vg,R) = 0, since
in this case S¢ maybe not empty.

EXAMPLE 5.12. Let
G:C*—C? G(z,w, ()= (22 +w).

1) If we choose the function p = |(|?, then Sg = & and IH%JVG,R) =0.
2) If we choose the function p = |w|?, then Sg # & and THi(Vg,R) # 0.
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