ON SINGULAR VARIETIES ASSOCIATED TO A POLYNOMIAL MAPPING FROM \mathbb{C}^n TO \mathbb{C}^{n-1} *

NGUYEN THI BICH THUY[†] AND MARIA APARECIDA SOARES RUAS[‡]

Abstract. We construct singular varieties \mathcal{V}_G associated to a polynomial mapping $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ where $n \geq 2$. Let $G: \mathbb{C}^3 \to \mathbb{C}^2$ be a local submersion, we prove that if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any variety \mathcal{V}_G is trivial then G is a fibration. In the case of a local submersion $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ where $n \geq 4$, the result is still true with an additional condition.

Key words. Complex polynomial mappings, intersection homology, singularities at infinity.

Mathematics Subject Classification. 14P10, 14R15, 32S20, 55N33.

1. Introduction. Let $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ be a non-constant polynomial mapping $(n \geq 2)$. It is well known [20] that G is a locally trivial fibration outside the bifurcation set B(G) in \mathbb{C}^{n-1} . In a natural way appears a fundamental question: how to determine the set B(G). In [12], Ha Huy Vui and Nguyen Tat Thang gave, for a generic class of $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ $(n \geq 2)$, a necessary and sufficient condition for a point $z \in \mathbb{C}^{n-1}$ to be in the bifurcation set B(G) in term of the Euler characteristic of the fibers at nearby points. The case n=2 was previously given in [11].

In this paper, we want to construct singular varieties \mathcal{V}_G associated to a polynomial mapping $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ $(n \ge 2)$ such that the intersection homology of \mathcal{V}_G can characterize the bifurcation set of G. The motivation for this paper comes from the paper [21], where Anna and Guillaume Valette constructed real pseudomanifolds, denoted V_F , associated to a given polynomial mapping $F:\mathbb{C}^n\to\mathbb{C}^n$, such that the singular part of the variety V_F is contained in $(S_F \times K_0(F)) \times \{0^p\}$ (p > 0), where $K_0(F)$ is the set of critical values and S_F is the set of non-proper points of F. In the case of dimension n=2, the homology or intersection homology of V_F describes the geometry of the singularities at infinity of the mapping F. With Anna and Guillaume Valette, the first author generalized this result [18] for the general case $F:\mathbb{C}^n\to\mathbb{C}^n$ $(n \ge 2)$. The idea to construct varieties V_F is the following: considering the polynomial mapping $F:\mathbb{C}^n\to\mathbb{C}^n$ as a real one $F:\mathbb{R}^{2n}\to\mathbb{R}^{2n}$, then if we take a finite covering $\{V_i\}$ by smooth submanifolds of $\mathbb{R}^{2n}\backslash SingF$, the mapping F induces a diffeomorphism from V_i into its image $F(V_i)$. We use a technique in order to separate these $\{F(V_i)\}\$ by embedding them in a higher dimensional space, then V_F is obtained by gluing $\{F(V_i)\}$ together along the set $S_F \cup K_0(F)$.

A natural question is that how can we apply this construction to the case of polynomial mappings $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$, or, $G: \mathbb{R}^{2n} \to \mathbb{R}^{2n-2}$. The main difficulty of this case is that if we take an open submanifold V in $\mathbb{R}^{2n} \setminus SingF$, then locally we do not have a diffeomorphism from V into its image G(V). So we consider a generic (2n-2)- real dimensional submanifold in the source space \mathbb{R}^{2n} , denoted \mathcal{M}_G , which

^{*}Received March 16, 2016; accepted for publication April 5, 2017. The research was partially supported by the post-doctoral FAPESP 2013/18706-7 (for the first author) and FAPESP Proc. 2014/00304-2 and CNPq Proc. 305651/2011-0 (for the second author).

[†]Ibilce-Unesp, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Letras e Ciências Exatas, Rua Cristovão Colombo, 2265, São José do Rio Preto, Brazil (bich.thuy@unesp.br).

[‡]Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação - USP, Avenida Trabalhador São-Carlense, 400 - Centro, Brazil (maasruas@icmc.usp.br).

is called the Milnor set of G. Then we can apply the construction of singular varieties V_F in [21] for $F := G|_{\mathcal{M}_G}$ the restriction of G to the Milnor set \mathcal{M}_G .

We obtain the following result: let $G: \mathbb{C}^3 \to \mathbb{C}^2$ be a local submersion, then if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any among of the constructed varieties \mathcal{V}_G is trivial then G is a fibration (Theorem 5.1). In the case of a local submersion $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ where $n \geq 4$, the result is still true with an additional condition (Theorem 5.2). Comparing with the paper [12], we obtain the Corollary 5.9.

- 2. Preliminaries and basic definitions. In this section we set-up our framework. All the varieties we consider in this article are semi-algebraic.
- **2.1. Notations and conventions.** Given a topological space X, singular simplices of X will be semi-algebraic continuous mappings $\sigma: T_i \to X$, where T_i is the standard i-simplex in \mathbb{R}^{i+1} . Given a subset X of \mathbb{R}^n we denote by $C_i(X)$ the group of i-dimensional singular chains (linear combinations of singular simplices with coefficients in \mathbb{R}); if c is an element of $C_i(X)$, we denote by |c| its support. By Reg(X) and Sing(X) we denote respectively the regular and singular locus of the set X. Given $X \subset \mathbb{R}^n$, \overline{X} will stand for the topological closure of X. The smoothness to be considered as the differentiable smoothness.

Notice that, when we refer to the homology of a variety, the notation $H^c_*(X)$ refers to the homology with compact supports, the notation $H^{cl}_*(X)$ refers to the homology with closed supports (see [1]).

2.2. Intersection homology. We briefly recall the definition of intersection homology; for details, we refer to the fundamental work of M. Goresky and R. MacPherson [6] (see also [1]).

DEFINITION 2.1. Let X be a m-dimensional semi-algebraic set. A semi-algebraic stratification of X is the data of a finite semi-algebraic filtration

$$X = X_m \supset X_{m-1} \supset \cdots \supset X_0 \supset X_{-1} = \varnothing,$$

such that for every i, the set $S_i = X_i \setminus X_{i-1}$ is either empty or a manifold of dimension i. A connected component of S_i is called a *stratum* of X.

We denote by cL the open cone on the space L, the cone on the empty set being a point. Observe that if L is a stratified set then cL is stratified by the cones over the strata of L and a 0-dimensional stratum (the vertex of the cone).

DEFINITION 2.2. A stratification of X is said to be locally topologically trivial if for every $x \in X_i \backslash X_{i-1}$, $i \ge 0$, there is an open neighborhood U_x of x in X, a stratified set L and a semi-algebraic homeomorphism

$$h: U_x \to (0;1)^i \times cL,$$

such that h maps the strata of U_x (induced stratification) onto the strata of $(0;1)^i \times cL$ (product stratification).

The definition of perversities as originally given by Goresky and MacPherson:

DEFINITION 2.3. A perversity is an (m + 1)-uple of integers $\bar{p} = (p_0, p_1, p_2, p_3, \dots, p_m)$ such that $p_0 = p_1 = p_2 = 0$ and $p_{k+1} \in \{p_k, p_k + 1\}$, for $k \ge 2$.

Traditionally we denote the zero perversity by $\overline{0}=(0,0,0,\ldots,0)$, the maximal perversity by $\overline{t}=(0,0,0,1,\ldots,m-2)$, and the middle perversities by $\overline{m}=(0,0,0,0,1,1,\ldots,\left[\frac{m-2}{2}\right])$ (lower middle) and $\overline{n}=(0,0,0,1,1,2,2,\ldots,\left[\frac{m-1}{2}\right])$ (upper middle). We say that the perversities \overline{p} and \overline{q} are complementary if $\overline{p}+\overline{q}=\overline{t}$.

Let X be a semi-algebraic variety such that X admits a locally topologically trivial stratification. We say that a semi-algebraic subset $Y \subset X$ is (\bar{p}, i) -allowable if

$$\dim(Y \cap X_{m-k}) \leq i - k + p_k$$
 for all k .

Define $IC_i^{\overline{p}}(X)$ to be the \mathbb{R} -vector subspace of $C_i(X)$ consisting in those chains ξ such that $|\xi|$ is (\overline{p}, i) -allowable and $|\partial \xi|$ is $(\overline{p}, i-1)$ -allowable.

DEFINITION 2.4. The i^{th} intersection homology group with perversity \overline{p} , denoted by $IH_i^{\overline{p}}(X)$, is the i^{th} homology group of the chain complex $IC_*^{\overline{p}}(X)$.

Notice that, the notation $IH_*^{\overline{p},c}(X)$ refer to the intersection homology with compact supports, the notation $IH_*^{\overline{p},cl}(X)$ refer to the intersection homology with closed supports.

Goresky and MacPherson proved that the intersection homology is independent of the choice of the stratification [6, 7].

The Poincaré duality holds for the intersection homology of a (singular) variety:

Theorem 2.5 (Goresky, MacPherson [6]). For any orientable compact stratified semi-algebraic m-dimensional variety X, generalized Poincaré duality holds:

$$IH_{k}^{\overline{p}}(X)\simeq IH_{m-k}^{\overline{q}}(X),$$

where \overline{p} and \overline{q} are complementary perversities.

For the non-compact case, we have:

$$IH_k^{\overline{p},c}(X) \simeq IH_{m-k}^{\overline{q},cl}(X).$$

A relative version is also true in the case where X has boundary.

- **2.3.** The bifurcation set, the set of asymptotic critical values and the asymptotic set. Let $G: \mathbb{C}^n \to \mathbb{C}^m$ where $n \ge m$ be a polynomial mapping.
- i) The bifurcation set of G, denoted by B(G) is the smallest set in \mathbb{C}^m such that G is not C^{∞} fibration on this set (see, for example, [20]).
 - ii) The set of asymptotic critical values, denoted by $K_{\infty}(G)$, is the set

$$K_{\infty}(G) = \{ \alpha \in \mathbb{C}^m : \exists \{z_k\} \subset \mathbb{C}^n, \text{ such that } |z_k| \to \infty, G(z_k) \to \alpha \text{ and } |z_k| |dG(z_k)| \to 0 \}.$$

The set $K_{\infty}(G)$ is an approximation of the set B(G). More precisely, we have $B(G) \subset K_{\infty}(G)$ (see, for example, [14] or [3]).

iii) When n = m, we denote by S_G the set of points at which the mapping G is not proper, *i.e.*

$$S_G = \{ \alpha \in \mathbb{C}^m : \exists \{z_k\} \subset \mathbb{C}^n, |z_k| \to \infty \text{ such that } G(z_k) \to \alpha \},$$

and call it the asymptotic variety. In the case of polynomial mappings $F: \mathbb{C}^n \to \mathbb{C}^n$, the following holds: $B(G) = S_G$ ([9]).

3. The variety \mathcal{M}_G . We consider polynomial mappings $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ as real ones $G: \mathbb{R}^{2n} \to \mathbb{R}^{2n-2}$. By Sing(G) we mean the singular locus of G, that is the set of points for which the (complex) rank of the Jacobian matrix is less than n-1. We denote by $K_0(G)$ the set of critical values. From here, we assume always $K_0(G) = \emptyset$.

DEFINITION 3.1. Let $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ be a polynomial mapping. Consider G as a real polynomial mapping $G: \mathbb{R}^{2n} \to \mathbb{R}^{2n-2}$. Let $\rho: \mathbb{C}^n \to \mathbb{R}$ be a real function such that $\rho(z) \geq 0$ for any $z \in \mathbb{C}^n$. Let

$$\varphi = \frac{1}{1+\rho}.$$

Consider (G, φ) as a mapping from \mathbb{R}^{2n} to \mathbb{R}^{2n-1} . Let us define

$$\mathcal{M}_G := Sing(G, \varphi) = \{x \in \mathbb{R}^{2n} \text{ such that } \operatorname{Rank} D_{\mathbb{R}}(G, \varphi)(x) \leq 2n - 2\},$$

where $D_{\mathbb{R}}(G,\varphi)(x)$ is the Jacobian matrix of $(G,\varphi):\mathbb{R}^{2n}\to\mathbb{R}^{2n-1}$ at x.

REMARK 3.2. Since $K_0(G) = \emptyset$, then Rank $D_{\mathbb{R}}(G) = 2n - 2$, so we have

$$Sing(G,\varphi) = \{x \in \mathbb{R}^{2n} \text{ such that } \operatorname{Rank} D_{\mathbb{R}}(G,\varphi) = 2n - 2\}.$$

Note that, from here, if we want to refer to the source space as a complex space, we will write $(G, \varphi) : \mathbb{C}^n \to \mathbb{R}^{2n-1}$, if we want to refer to the source space as a real space, we will write $(G, \varphi) : \mathbb{R}^{2n} \to \mathbb{R}^{2n-1}$. Moreover, in general, we denote by z a complex element in \mathbb{C}^n and by x a real element in \mathbb{R}^{2n} .

LEMMA 3.3. For any ρ, φ and (G, φ) as in the Definition 3.1 and for any $x = (x_1, \ldots, x_{2n}) \in \mathbb{R}^{2n}$, we have

$$\operatorname{Rank} D_{\mathbb{R}}(G,\varphi)(x) = \operatorname{Rank} D_{\mathbb{R}}(G,\rho)(x),$$

so we have

$$\mathcal{M}_G = Sing(G, \varphi) = Sing(G, \rho).$$

Proof. For any $x = (x_1, \ldots, x_{2n}) \in \mathbb{R}^{2n}$, we have

$$D_{\mathbb{R}}(G,\rho)(x) = \begin{pmatrix} D_{\mathbb{R}}(G) \\ \rho_{x_1} & \dots & \rho_{x_{2n}} \end{pmatrix},$$

$$D_{\mathbb{R}}(G,\varphi)(x) = \begin{pmatrix} D_{\mathbb{R}}(G) \\ \frac{-\rho_{x_1}}{(1+\rho)^2} & \cdots & \frac{-\rho_{x_{2n}}}{(1+\rho)^2} \end{pmatrix},$$

where ρ_{x_i} is the derivative of ρ with respect to x_i , for $i=1,\ldots,2n$. We have $\operatorname{Rank} D_{\mathbb{R}}(G,\varphi)(x) = \operatorname{Rank} D_{\mathbb{R}}(G,\rho)(x)$ for any $x \in \mathbb{R}^{2n}$ and $\mathcal{M}_G = Sing(G,\varphi) = Sing(G,\rho)$. \square

REMARK 3.4. From here, we consider the function ρ of the following form

$$\rho = a_1 |z_1|^2 + \dots + a_n |z_n|^2,$$

where $\Sigma_{i=1,\ldots,n} a_i^2 \neq 0$, $a_i \geq 0$, and $a_i \in \mathbb{R}$ for $i = 1,\ldots,n$.

PROPOSITION 3.5. Let $G = (G_1, \ldots, G_{n-1}) : \mathbb{C}^n \to \mathbb{C}^{n-1}$ $(n \ge 2)$ be a polynomial mapping such that $K_0(G) = \emptyset$ and $\rho : \mathbb{C}^n \to \mathbb{R}$ be such that $\rho = a_1|z_1|^2 + \cdots + a_n|z_n|^2$, where $\Sigma_{i=1,\ldots,n}a_i^2 \ne 0$, $a_i \ge 0$ and $a_i \in \mathbb{R}$, for $i=1,\ldots,n$. Denote by \mathbf{v}_i the determinant of the cofactor of $\frac{\partial}{\partial z_i}$ of the matrix

$$\mathbf{V}(z) = \begin{pmatrix} \frac{\partial}{\partial z_1} & \cdots & \frac{\partial}{\partial z_n} \\ \frac{\partial G_1}{\partial z_1} & \cdots & \frac{\partial G_1}{\partial z_n} \\ & \cdots & \\ \frac{\partial G_{n-1}}{\partial z_1} & \cdots & \frac{\partial G_{n-1}}{\partial z_n} \end{pmatrix},$$

for i = 1, ..., n. Then we have

$$\mathcal{M}_G = h^{-1}(0),$$

where

$$h: \mathbb{C}^n \to \mathbb{C}, \quad h(z) = 2\Sigma a_i \mathbf{v}_i(z) \overline{z_i}.$$

Proof. Let $G = (G_1, \ldots, G_{n-1}) : \mathbb{C}^n \to \mathbb{C}^{n-1}$ $(n \ge 2)$ and $\rho : \mathbb{C}^n \to \mathbb{R}$ such that $\rho = a_1|z_1|^2 + \cdots + a_n|z_n|^2$, where $\Sigma_{i=1,\ldots,n}a_i^2 \ne 0$, $a_i \ge 0$ and $a_i \in \mathbb{R}$. Let us consider the vector field

$$\mathbf{V}(z) = \begin{pmatrix} \frac{\partial}{\partial z_1} & \cdots & \frac{\partial}{\partial z_n} \\ \frac{\partial G_1}{\partial z_1} & \cdots & \frac{\partial G_1}{\partial z_n} \\ & \cdots & \\ \frac{\partial G_{n-1}}{\partial z_1} & \cdots & \frac{\partial G_{n-1}}{\partial z_n} \end{pmatrix}.$$

We have

$$\mathbf{V}(z) = \mathbf{v}_1 \frac{\partial}{\partial z_1} + \dots + \mathbf{v}_n \frac{\partial}{\partial z_n},$$

where \mathbf{v}_i is the determinant of the cofactor of $\frac{\partial}{\partial z_i}$, for i = 1, ..., n. The vector field $\mathbf{V}(z)$ is tangent to the curve G = c. Let $R(z) = a_1 z_1^2 + \cdots + a_n z_n^2$, then we have $\mathcal{M}_G = h^{-1}(0)$, where

$$h: \mathbb{C}^n \to \mathbb{C}, \quad h(z) = \langle \mathbf{V}(z), \operatorname{Grad} R(z) \rangle.$$

More precisely, we have $h(z) = 2\sum a_i \mathbf{v}_i(z) \overline{z_i}$. \square

PROPOSITION 3.6. For an open and dense set of polynomial mappings $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ such that $K_0(G) = \emptyset$, the variety \mathcal{M}_G is a smooth manifold of dimension 2n-2.

Proof. The question is of local nature. In a neighbourhood of a point z_0 in \mathbb{C}^n , we can choose coordinates such that the level curve G = c, where $c = G(z_0) \in \mathbb{C}^{n-1}$ is parametrized

$$\gamma: (\mathbb{C},0) \to (\mathbb{C}^n,z_0)$$

$$s \mapsto (\gamma_1(s), \dots, \gamma_n(s)).$$

Since $\rho = a_1|z_1|^2 + \cdots + a_n|z_n|^2$, then $\rho \circ \gamma : (\mathbb{C}, 0) \to \mathbb{R}$ and

$$\rho \circ \gamma(s) = a_1 |\gamma_1(s)|^2 + \dots + a_n |\gamma_n(s)|^2.$$

If z_0 is a singular point of $\rho|_{G=c}$, then

$$\rho \circ \gamma(0) = \rho(\gamma(0)) = \rho(z_0),$$

$$(\rho \circ \gamma)'(0) = 0.$$

For an open and dense set of G, we have

$$(\rho \circ \gamma)''(0) \neq 0.$$

Hence, z_0 is a Morse singularity of $\rho|_{G=c}$. In particular, it is an isolated point of the level curve G=c. When c varies in \mathbb{C}^{n-1} , it follows that the set \mathcal{M}_G has dimension 2n-2

We prove now that \mathcal{M}_G is smooth. By Proposition 3.5, the variety \mathcal{M}_G is the set of solutions of h = 0, where

$$h(z) = 2\Sigma a_i \mathbf{v}_i(z) \overline{z_i},$$

and \mathbf{v}_i is the determinant of the cofactor of $\frac{\partial}{\partial z_i}$ of $\mathbf{V}(z)$, for $i=1,\ldots,n$. Since $K_0(G)=\varnothing$ then $\mathbf{V}(z)=(\mathbf{v}_1(z),\ldots,\mathbf{v}_n(z))\neq 0$. We can assume that $\mathbf{V}(z_0)\neq 0$ for a fixed point z_0 . For a generic polynomial mapping, we can solve the equation h=0 in a neighbourhood of z_0 . This shows that h=0 is smooth in a neighbourhood of z_0 . Then M_G is smooth. \square

Remark 3.7. From here, we consider always generic polynomial mappings $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ as in the Propostion 3.6.

4. The variety \mathcal{V}_G .

4.1. The construction of the variety \mathcal{V}_G . Let $G:\mathbb{C}^n\to\mathbb{C}^{n-1}$ and $\rho,\varphi:\mathbb{C}^n\to\mathbb{R}$ such that

$$\rho = a_1|z_1|^2 + \dots + a_n|z_n|^2, \quad \varphi = \frac{1}{1+\rho},$$

where $\Sigma_{i=1,...,n}a_i^2 \neq 0$, $a_i \geq 0$ and $a_i \in \mathbb{R}$. Let us consider:

- a) $F := G_{|\mathcal{M}_G}$ the restriction of G on \mathcal{M}_G ,
- b) $\mathcal{N}_G = \mathcal{M}_G \backslash F^{-1}(K_0(F)).$

Since the dimension of \mathcal{M}_G is 2n-2 (Proposition 3.6), then locally, in a neighbourhood of any point x_0 in \mathcal{M}_G , we get a mapping $F: \mathbb{R}^{2n-2} \to \mathbb{R}^{2n-2}$. Now, we can apply the construction of singular varieties V_F in [21] for $F:=G_{|\mathcal{M}_G}$: there exists a covering $\{U_1,\ldots,U_p\}$ of \mathcal{N}_G by open semi-algebraic subsets (in \mathbb{R}^{2n}) such that on every element of this covering, the mapping F induces a diffeomorphism onto its image (see Lemma 2.1 of [21], see also [16]). We can find semi-algebraic closed subsets $V_i \subset U_i$ (in \mathcal{N}_G) which cover \mathcal{N}_G as well. Thanks to Mostowski's Separation Lemma

(see Separation Lemma in [15], page 246), for each i = 1, ..., p, there exists a Nash function $\psi_i : \mathcal{N}_G \to \mathbb{R}$, such that ψ_i is positive on V_i and negative on $\mathcal{N}_G \setminus U_i$.

LEMMA 4.1. We can choose the Nash functions ψ_i such that $\psi_i(x_k)$ tends to zero when $\{x_k\} \subset \mathcal{N}_G$ tends to infinity.

Proof. If ψ_i is a Nash function, then with any $N_i \in (\mathbb{N} \setminus \{0\})$, the function

$$\psi_i'(x) = \frac{\psi_i(x)}{(1+|x|^2)^{N_i}},$$

where $x \in \mathcal{N}_G$, is also a Nash function, for $i = 1, \ldots, p$. The Nash function ψ_i' satisfies the property: ψ_i' is positive on V_i and negative on $\mathcal{N}_G \backslash U_i$. With N_i large enough, $\psi_i'(x_k)$ tends to zero when $\{x_k\} \subset \mathcal{N}_G$ tends to infinity, for $i = 1, \ldots, p$. We replace the function ψ_i by ψ_i' . \square

DEFINITION 4.2. Let the Nash functions ψ_i and ρ be such that $\psi_i(x_k)$ tends to zero and $\rho(x_k)$ tends to infinity when $x_k \subset \mathcal{N}_G$ tends to infinity. Define a variety \mathcal{V}_G associated to (G, ρ) as

$$\mathcal{V}_G := \overline{(F, \psi_1, \dots, \psi_p)(\mathcal{N}_G)}.$$

REMARK 4.3. For a given polynomial mapping $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$, the variety \mathcal{V}_G is not unique. It depends on the choice of the function ρ and the Nash functions ψ_i .

PROPOSITION 4.4. The real dimension of V_G is 2n-2.

Proof. By Proposition 3.6, in the generic case, the real dimension of \mathcal{M}_G is 2n-2. Moreover, F is a local immersion in a neighbourhood of a point in \mathcal{M}_G . So, the real dimension of $F(\mathcal{M}_G)$ is also 2n-2. Since

$$F(\mathcal{N}_G) = F(\mathcal{M}_G) \backslash K_0(F),$$

so the real dimension of $F(\mathcal{N}_G)$ is 2n-2. By Definition 4.2, the real dimension of \mathcal{V}_G is 2n-2. \square

DEFINITION 4.5 (see, for example, [4]). Let $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ be a polynomial mapping and $\rho: \mathbb{C}^n \to \mathbb{R}$ a real function such that $\rho \geqslant 0$. Define

 $S_G := \{ \alpha \in \mathbb{C}^{n-1} : \exists \{z_k\} \subset Sing(G, \rho), \text{ such that } z_k \text{ tends to infinity, } G(z_k) \text{ tends to } \alpha \}.$

REMARK 4.6. a) For any real function $\rho: \mathbb{C}^n \to \mathbb{R}$ such that $\rho \geq 0$, we have

$$B(G) \subset \mathcal{S}_G \subset K_{\infty}(G)$$
,

where B(G) is the bifurcation set and $K_{\infty}(G)$ is the set of asymptotic critical values of G (see, for example, [4]).

b) By Lemma 3.3, we have $Sing(G, \rho) = \mathcal{M}_G$, so the set \mathcal{S}_G can be written

 $\mathcal{S}_G := \{ \alpha \in \mathbb{C}^{n-1} : \exists \{x_k\} \subset \mathcal{M}_G, \text{ such that } x_k \text{ tends to infinity}, G(x_k) \text{ tends to } \alpha \}.$

DEFINITION 4.7. The singular set at infinity of the variety \mathcal{V}_G is the set

$$\{\beta \in \mathcal{V}_G : \exists \{x_k\} \subset \mathcal{N}_G, x_k \to \infty, (G, \psi_1, \dots, \psi_p)(x_k) \to \beta\}.$$

PROPOSITION 4.8. The singular set at infinity of the variety V_G is contained in the set $S_G \times \{0_{\mathbb{R}^p}\}$.

Proof. At first, by Proposition 3.6, for the generic case, the real dimension of \mathcal{V}_G associated to $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ is 2n-2. Moreover, we have the following facts:

- a) $S_G \subset K_\infty(G)$,
- b) $\dim_{\mathbb{C}}(K_{\infty}(G)) \leq n-2$ (see [14]), so $\dim_{\mathbb{R}}(K_{\infty}(G)) \leq 2n-4$.

Hence, we have $\dim_{\mathbb{R}} \mathcal{S}_G \times \{0_{\mathbb{R}^p}\} \leq 2n-4$. Moreover, by Proposition 4.4, we have $\dim_{\mathbb{R}} \mathcal{V}_G = 2n-2$. Let β be a singular point at infinity of the variety \mathcal{V}_G , then there exists a sequence $\{x_k\}$ in \mathcal{N}_G tending to infinity such that $(G, \psi_1, \ldots, \psi_p)(x_k)$ tends to β . Assume that $G(x_k)$ tends to α , then α belongs to \mathcal{S}_G . Moreover, the Nash function $\psi_i(x_k)$ tends to 0, for any $i=1,\ldots,p$. So $\beta=(\alpha,0_{\mathbb{R}^p})$ belongs to $\mathcal{S}_G \times \{0_{\mathbb{R}^p}\}$. Notice that, by Definition of \mathcal{V}_G , the set $\mathcal{S}_G \times \{0_{\mathbb{R}^p}\}$ is contained in \mathcal{V}_G . Then $\mathcal{S}_G \times \{0_{\mathbb{R}^p}\}$ contains the singular set at infinity of the variety \mathcal{V}_G . \square

REMARK 4.9. The singular set at infinity of \mathcal{V}_G depends on the choice of the function ρ , since when ρ changes, the set \mathcal{S}_G also changes. But, the property $B(G) \subset \mathcal{S}_G$ does not depend on the choice of the function ρ (see, for example, [4]).

The previous results show the following Proposition:

PROPOSITION 4.10. Let $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ be a polynomial mapping such that $K_0(G) = \emptyset$ and let $\rho: \mathbb{C}^n \to \mathbb{R}$ be a real function such that

$$\rho = a_1 |z_1|^2 + \dots + a_n |z_n|^2,$$

where $\Sigma_{i=1,...,n}a_i^2 \neq 0$, $a_i \geq 0$ and $a_i \in \mathbb{R}$ for i=1,...,n. Then, there exists a real variety \mathcal{V}_G in \mathbb{R}^{2n-2+p} , where p>0, such that:

- 1) The real dimension of V_G is 2n-2,
- 2) The singular set at infinity of the variety \mathcal{V}_G is contained in $\mathcal{S}_G \times \{0_{\mathbb{R}^p}\}$.

REMARK 4.11. The variety \mathcal{V}_G depends on the choice of the function ρ and the functions ψ_i . From now, we denote by $\mathcal{V}_G(\rho)$ any variety \mathcal{V}_G associated to (G, ρ) . If we refer to \mathcal{V}_G , that means a variety \mathcal{V}_G associated to (G, ρ) for any ρ .

REMARK 4.12. 1) In the construction of singular varieties \mathcal{V}_G , we can put $F := (G, \varphi)_{|\mathcal{M}_G}$, that means F is the restriction of (G, φ) on \mathcal{M}_G . In this case, since the dimension of \mathcal{M}_G is 2n-2 then locally, in a neighbourhood of any point x_0 in \mathcal{M}_G , we get a mapping $F : \mathbb{R}^{2n-2} \to \mathbb{R}^{2n-1}$. The construction of singular varieties \mathcal{V}_G can be applied also in this case.

2) The construction of singular varieties \mathcal{V}_G can be applied for polynomial mappings $G: \mathbb{C}^n \to \mathbb{C}^p$ where p < n-1 if the Milnor set \mathcal{M}_G is smooth is this case.

4.2. A variety V_G in the case of the Broughton's Example.

EXAMPLE 4.13. We compute in this example a variety V_G in the case of the Broughton's example [2]:

$$G: \mathbb{C}^2 \to \mathbb{C}, \qquad G(z, w) = z + z^2 w.$$

We see that $K_0(G) = \emptyset$ since the system of equations $G_z = G_w = 0$ has no solutions. Let us denote

$$z = x_1 + ix_2,$$
 $w = x_3 + ix_4,$

where $x_1, x_2, x_3, x_4 \in \mathbb{R}$. Consider G as a real polynomial mapping, we have

$$G(x_1, x_2, x_3, x_4) = (x_1 + x_1^2 x_3 - x_2^2 x_3 - 2x_1 x_2 x_4, x_2 + 2x_1 x_2 x_3 + x_1^2 x_4 - x_2^2 x_4).$$

Let $\rho = |w|^2$, then

$$\varphi = \frac{1}{1+\rho} = \frac{1}{1+|w|^2} = \frac{1}{1+x_3^2+x_4^2}.$$

The Jacobian matrix of (G, ρ) is

$$D_{\mathbb{R}}(G,\rho) = \begin{pmatrix} 1 + 2x_1x_3 - 2x_2x_4 & -2x_2x_3 - 2x_1x_4 & x_1^2 - x_2^2 & -2x_1x_2 \\ 2x_2x_3 + 2x_1x_4 & 1 + 2x_1x_3 - 2x_2x_4 & 2x_1x_2 & x_1^2 - x_2^2 \\ 0 & 0 & 2x_3 & 2x_4 \end{pmatrix}.$$

By an easy computation, we have $\mathcal{M}_G = Sing(G, \rho) = M_1 \cup M_2$, where

$$M_1 := \{(x_1, x_2, 0, 0) : x_1, x_2 \in \mathbb{R}\},\$$

$$M_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 1 + 2x_1x_3 - 2x_2x_4 = 2x_2x_3 + 2x_1x_4 = 0\}.$$

 $M_1 := \{(x_1, x_2, 0, 0) : x_1, x_2 \in \mathbb{R}\},$ $M_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 1 + 2x_1x_3 - 2x_2x_4 = 2x_2x_3 + 2x_1x_4 = 0\}.$ Let us consider G as a real mapping from $\mathbb{R}^4_{(x_1, x_2, x_3, x_4)}$ to $\mathbb{R}^2_{(\alpha_1, \alpha_2)}$, then:

- a) If $x = (x_1, x_2, 0, 0) \in M_1$, we have $G(x) = (x_1, x_2)$.
- b) If $x = (x_1, x_2, x_3, x_4) \in M_2$, then we have $G(x) = (\alpha_1, \alpha_2)$, where

$$\alpha_1 = \frac{-x_3}{4(x_3^2 + x_4^2)}, \qquad \alpha_2 = \frac{x_4}{4(x_3^2 + x_4^2)}.$$

Let $F := G_{|\mathcal{M}_G}$. We can check easily that $K_0(F) = \emptyset$. Choosing \mathcal{M}_G as a covering of \mathcal{M}_G itself. We choose the Nash function $\psi = \varphi$, then ψ is positive on all \mathcal{M}_G . So, by Definition 4.2, we have

$$\mathcal{V}_G = \overline{(F,\varphi)(\mathcal{M}_G)} = \overline{(G,\varphi)(\mathcal{M}_G)} = (G,\varphi)(M_1) \cup (G,\varphi)(M_2) \cup (\mathcal{S}_G \times 0_{\mathbb{R}}),$$

where $(G,\varphi):\mathbb{R}^4_{(x_1,x_2,x_3,x_4)}\to\mathbb{R}^3_{(\alpha_1,\alpha_2,\alpha_3)}$. Then

- a) $(G, \varphi)(M_1)$ is the plane $\{\alpha_3 = 1\} \subset \mathbb{R}^3_{(\alpha_1, \alpha_2, \alpha_3)}$.
- b) Assume that $(\alpha_1, \alpha_2, \alpha_3) \in (G, \varphi)(M_2)$, and let

$$x_3 = r\cos\theta, \qquad x_4 = r\sin\theta,$$

where $r \in \mathbb{R}$, r > 0 and $0 \le \theta \le 2\pi$, then

$$\alpha_1^2 + \alpha_2^2 = \frac{1}{16r^2}, \qquad \alpha_3 = \frac{1}{1+r^2}.$$

So $(G, \varphi)(M_2)$ is a 2-dimensional open cone. In fact, when r tends to infinity, then α_1, α_2 and α_3 tend to 0, but the origin does not belong to this cone.

Moreover, by an easy computation, we can verify that the set \mathcal{S}_G is $0 = (0,0) \in \mathbb{R}^2_{(\alpha_1,\alpha_2)}$. So the origin 0 of $\mathbb{R}^3_{(\alpha_1,\alpha_2,\alpha_3)}$ belongs to \mathcal{V}_G . In conclusion, the variety \mathcal{V}_G is the union of the plane $\alpha_3 = 1$ and a 2-dimensional cone \mathcal{C} with vertex 0, where the cone \mathcal{C} tends to infinity and asymptotic to the plane $\alpha_3 = 1$ in $\mathbb{R}^3_{(\alpha_1,\alpha_2,\alpha_3)}$ (see Figure 1).

Fig. 1. A variety V_G in the case of the Broughton's Example $G(z, w) = z + z^2w$.

REMARK 4.14. We can use the Proposition 3.5 with the view of mixed functions (see [19]) to determine the variety \mathcal{M}_G . Let us return to the Example 4.13. In this case $\rho = |w|^2$, then

$$\mathcal{M}_G = \left\{ (z, w) \in \mathbb{C}^2 : \frac{\partial G}{\partial z} \overline{w} = 0 \right\}.$$

Hence we have $(1+2zw)\overline{w}=0$, that implies the following two cases:

- i) $\overline{w} = 0$: We have $x_3 = x_4 = 0$, where $w = x_3 + ix_4$.
- ii) $\overline{w} \neq 0$ and $z = -\frac{1}{2w} = -\frac{\overline{w}}{2|w|^2}$: We have

$$x_1 = \frac{-x_3}{2(x_3^2 + x_4^2)},$$
 $x_2 = \frac{x_4}{2(x_3^2 + x_4^2)},$

where $z = x_1 + ix_2$.

So we get $\mathcal{M}_G = M_1 \cup M_2$ as the computations and notations in the Example 4.13.

5. Results.

THEOREM 5.1. Let $G = (G_1, G_2) : \mathbb{C}^3 \to \mathbb{C}^2$ be a polynomial mapping such that $K_0(G) = \varnothing$. If one the groups $IH_2^{\overline{t},c}(\mathcal{V}_G,\mathbb{R})$, $IH_2^{\overline{t},cl}(\mathcal{V}_G,\mathbb{R})$, $H_2^c(\mathcal{V}_G,\mathbb{R})$ and $H_2^{cl}(\mathcal{V}_G,\mathbb{R})$ is trivial then the bifurcation set B(G) is empty.

THEOREM 5.2. Let $G=(G_1,\ldots,G_{n-1}):\mathbb{C}^n\to\mathbb{C}^{n-1}\ (n\geqslant 4)$ be a polynomial mapping such that $K_0(G)=\varnothing$ and $\mathrm{Rank}_{\mathbb{C}}(D\hat{G}_i)_{i=1,\ldots,n-1}>n-3$, where \hat{G}_i

1167

is the leading form of G_i , that is the homogenous part of highest degree of G_i , for $i=1,\ldots,n-1$. Then if one the groups $IH_2^{\bar{t},c}(\mathcal{V}_G,\mathbb{R})$, $IH_2^{\bar{t},cl}(\mathcal{V}_G,\mathbb{R})$, $H_2^c(\mathcal{V}_G,\mathbb{R})$, $H_2^c(\mathcal{V}_G,\mathbb{R})$ and $H_{2n-4}^{cl}(\mathcal{V}_G,\mathbb{R})$ is trivial then the bifurcation set B(G) is empty.

Before proving these Theorems, we recall some necessary Definitions and Lemmas.

DEFINITION 5.3. A semi-algebraic family of sets (parametrized by \mathbb{R}) is a semi-algebraic set $A \subset \mathbb{R}^n \times \mathbb{R}$, the last variable being considered as parameter.

REMARK 5.4. A semi-algebraic set $A \subset \mathbb{R}^n \times \mathbb{R}$ will be considered as a family parametrized by $t \in \mathbb{R}$. We write A_t , for "the fiber of A at t", *i.e.*:

$$A_t := \{ x \in \mathbb{R}^n : (x, t) \in A \}.$$

LEMMA 5.5 ([21]). Let β be a j-cycle and let $A \subset \mathbb{R}^n \times \mathbb{R}$ be a compact semi-algebraic family of sets with $|\beta| \subset A_t$ for any t. Assume that $|\beta|$ bounds a (j+1)-chain in each A_t , t > 0 small enough. Then β bounds a chain in A_0 .

DEFINITION 5.6 ([21]). Given a subset $X \subset \mathbb{R}^n$, we define the "tangent cone at infinity", called "contour apparent à l'infini" in [16] by:

$$C_{\infty}(X) := \{ \lambda \in \mathbb{S}^{n-1}(0,1) \text{ such that } \exists \eta : (t_0,t_0+\varepsilon] \to X \text{ semi-algebraic,} \\ \lim_{t \to t_0} \eta(t) = \infty, \lim_{t \to t_0} \frac{\eta(t)}{|\eta(t)|} = \lambda \}.$$

LEMMA 5.7 ([18]). Let $G = (G_1, \ldots, G_m) : \mathbb{R}^n \to \mathbb{R}^m$ be a polynomial mapping and V the zero locus of $\hat{G} := (\hat{G}_1, \ldots, \hat{G}_m)$, where \hat{G}_i is the leading form of G_i . If X is a subset of \mathbb{R}^n such that G(X) is bounded, then $C_{\infty}(X)$ is a subset of $\mathbb{S}^{n-1}(0,1) \cap V$, where $V = \hat{G}^{-1}(0)$.

Proof of the Theorem 5.1. Recall that in this case, $\dim_{\mathbb{R}} \mathcal{V}_G = 4$ (Proposition 4.4) and $\mathcal{V}_G \setminus (\mathcal{S}_G \times \{0_{\mathbb{R}^p}\})$ is not smooth in general. Consider a stratification of \mathcal{V}_G , the strata of which are the strata of $\mathcal{S}_G \times \{0_{\mathbb{R}^p}\}$ union the strata of the stratification of $K_0(F)$ defined by the rank, according to Thom [20]. Assume that $B(G) \neq \emptyset$, then by Remark 4.6, the set \mathcal{S}_G is not empty. This means that there exists a complex Puiseux arc in \mathcal{M}_G

$$\gamma: D(0,\eta) \to \mathbb{R}^6, \quad \gamma = uz^{\alpha} + \dots,$$

(with α negative integer and u is an unit vector of \mathbb{R}^6) tending to infinity such a way that $G(\gamma)$ converges to a generic point $x_0 \in \mathcal{S}_G$. Then, the mapping $h_F \circ \gamma$, where $h_F = (F, \varphi_1, \dots, \varphi_p)$ and F is the restriction of G on \mathcal{M}_G provides a singular 2-simplex in \mathcal{V}_G that we will denote by c. We prove now the simplex c is $(\bar{t}, 2)$ -allowable for total perversity \bar{t} . In fact, by [14], in this case we have $\dim_{\mathbb{C}} \mathcal{S}_G \leqslant 1$, then $\alpha = \operatorname{codim}_{\mathbb{R}} \mathcal{S}_G \geqslant 2$. The condition

$$0 = \dim_{\mathbb{R}} \{x_0\} = \dim_{\mathbb{R}} ((\mathcal{S}_G \times \{0_{\mathbb{R}^p}\}) \cap |c|) \leqslant 2 - \alpha + t_{\alpha},$$

implies $t_{\alpha} \geq \alpha - 2$, with $\alpha \geq 2$, which is true for total perversity \bar{t} . Take now a stratum V_i of $\mathcal{V}_G \setminus (\mathcal{S}_G \times \{0_{\mathbb{R}^p}\})$. Denote by $\beta = \operatorname{codim}_{\mathbb{R}} V_i$. If $\beta \geq 2$, we can choose

the Puiseux arc γ such that c lies in the regular part of $\mathcal{V}_G \setminus (\mathcal{S}_G \times \{0_{\mathbb{R}^p}\})$. In fact, this comes from the generic position of transversality. So c is $(\overline{t}, 2)$ -allowable in this case. We need to consider only the cases $\beta = 0$ and $\beta = 1$. We have the following two cases:

1) If V_i intersects c, again by the generic position of transversality, we can choose the Puiseux arc γ such that $0 \leq \dim_{\mathbb{R}}(V_i \cap |c|) \leq 1$. The condition

$$\dim_{\mathbb{R}}(V_i \cap |c|) \leq 2 - \beta + t_{\beta}$$

holds since $2 - \beta + t_{\beta} \ge 1$, for $\beta = 0$ and $\beta = 1$.

2) If V_i does not meet c, then the condition

$$-\infty = \dim_{\mathbb{R}} \emptyset = \dim_{\mathbb{R}} (V_i \cap |c|) \leq 2 - \beta + t_{\beta}$$

holds always.

So the simplex c is $(\bar{t}, 2)$ -allowable for total perversity \bar{t} .

From here, the proof of the Theorem follows the ideas of [21]: We can always choose the Puiseux arc such that the support of ∂c lies in the regular part of $\mathcal{V}_G \setminus (\mathcal{S}_G \times \{0_{\mathbb{R}^p}\})$. We have

$$H_1(\operatorname{Reg}(\mathcal{V}_G \setminus (\mathcal{S}_G \times \{0_{\mathbb{R}^p}\}))) = 0,$$

then the chain ∂c bounds a singular chain $e \in C^2(\text{Reg}(\mathcal{V}_G \setminus (\mathcal{S}_G \times \{0_{\mathbb{R}^p}\})))$, where e is a chain with compact supports or closed supports. So $\sigma = c - e$ is a $(\bar{t}, 2)$ -allowable cycle of \mathcal{V}_G , with compact supports or closed supports.

We claim that σ may not bound a 3-chain in \mathcal{V}_G . Assume otherwise, *i.e.* assume that there is a chain $\tau \in C_3(\mathcal{V}_G)$, satisfying $\partial \tau = \sigma$. Let

$$A := h_F^{-1}(|\sigma| \cap (\mathcal{V}_G \setminus (\mathcal{S}_G \times \{0_{\mathbb{R}^p}\}))),$$

$$B := h_F^{-1}(|\tau| \cap (\mathcal{V}_G \setminus (\mathcal{S}_G \times \{0_{\mathbb{R}^p}\}))).$$

By definition, $C_{\infty}(A)$ and $C_{\infty}(B)$ are subsets of $\mathbb{S}^{5}(0,1)$. Observe that, in a neighborhood of infinity, A coincides with the support of the Puiseux arc γ . The set $C_{\infty}(A)$ is equal to $\mathbb{S}^{1}.a$ (denoting the orbit of $a \in \mathbb{C}^{3}$ under the action of \mathbb{S}^{1} on \mathbb{C}^{3} , $(e^{i\eta}, z) \mapsto e^{i\eta}z$). Let V be the zero locus of the leading forms $\hat{G} := (\hat{G}_{1}, \hat{G}_{2})$. Since G(A) and G(B) are bounded, by Lemma 5.7, $C_{\infty}(A)$ and $C_{\infty}(B)$ are subsets of $V \cap \mathbb{S}^{5}(0, 1)$.

For R large enough, the sphere $\mathbb{S}^5(0,R)$ with center 0 and radius R in \mathbb{R}^6 is transverse to A and B (at regular points). Let

$$\sigma_R := \mathbb{S}^5(0,R) \cap A, \qquad \tau_R := \mathbb{S}^5(0,R) \cap B.$$

Then σ_R is a chain bounding the chain τ_R . Consider a semi-algebraic strong deformation retraction $\Phi: W \times [0;1] \to \mathbb{S}^1.a$, where W is a neighborhood of $\mathbb{S}^1.a$ in $\mathbb{S}^5(0,1)$ onto $\mathbb{S}^1.a$. Considering R as a parameter, we have the following semi-algebraic families of chains:

- 1) $\tilde{\sigma}_R := \frac{\sigma_R}{R}$, for R large enough, then $\tilde{\sigma}_R$ is contained in W,
- 2) $\sigma'_R = \tilde{\Phi_1}(\tilde{\sigma}_R)$, where $\Phi_1(x) := \Phi(x, 1)$, $x \in W$,
- 3) $\theta_R = \Phi(\tilde{\sigma}_R)$, we have $\partial \theta_R = \sigma_R' \tilde{\sigma}_R$,
- 4) $\theta'_R = \tau_R + \theta_R$, we have $\partial \theta'_R = \sigma'_R$.

As, near infinity, σ_R coincides with the intersection of the support of the arc γ with $\mathbb{S}^5(0,R)$, for R large enough the class of σ'_R in $\mathbb{S}^1.a$ is nonzero.

Let r = 1/R, consider r as a parameter, and let $\{\tilde{\sigma}_r\}$, $\{\sigma'_r\}$, $\{\theta_r\}$ as well as $\{\theta'_r\}$ the corresponding semi-algebraic families of chains.

Denote by $E_r \subset \mathbb{R}^6 \times \mathbb{R}$ the closure of $|\theta_r|$, and set $E_0 := (\mathbb{R}^6 \times \{0\}) \cap E$. Since the strong deformation retraction Φ is the identity on $C_{\infty}(A) \times [0,1]$, we see that

$$E_0 \subset \Phi(C_\infty(A) \times [0,1]) = \mathbb{S}^1 \cdot a \subset V \cap \mathbb{S}^5(0,1).$$

Denote by $E'_r \subset \mathbb{R}^6 \times \mathbb{R}$ the closure of $|\theta'_r|$, and set $E'_0 := (\mathbb{R}^6 \times \{0\}) \cap E'$. Since A bounds B, then $C_{\infty}(A)$ is contained in $C_{\infty}(B)$. We have

$$E_0' \subset E_0 \cup C_\infty(B) \subset V \cap \mathbb{S}^5(0,1).$$

The class of σ'_r in $\mathbb{S}^1.a$ is, up to a product with a nonzero constant, equal to the generator of $\mathbb{S}^1.a$. Therefore, since σ'_r bounds the chain θ'_r , the cycle $\mathbb{S}^1.a$ must bound a chain in $|\theta'_r|$ as well. By Lemma 5.5, this implies that $\mathbb{S}^1.a$ bounds a chain in E'_0 which is included in $V \cap \mathbb{S}^5(0,1)$.

The set V is a projective variety which is an union of cones in \mathbb{R}^6 . Since $\dim_{\mathbb{C}} V \leq 1$, so $\dim_{\mathbb{R}} V \leq 2$ and $\dim_{\mathbb{R}} V \cap \mathbb{S}^5(0,1) \leq 1$. The cycle $\mathbb{S}^1.a$ thus bounds a chain in $E'_0 \subseteq V \cap \mathbb{S}^5(0,1)$, which is a finite union of circles, that provides a contradiction. \square

Now we provides the proof of the Theorem 5.2.

Proof. [Proof of the Theorem 5.2]

The proof of this Theorem follows the idea of [18] and the proof of Theorem 5.1. Assume that $B(G) \neq \emptyset$. Similarly to the proof of the Theorem 5.1 and with the same notations in this proof but for the general case, we have: since

$$\operatorname{Rank}_{\mathbb{C}}(D\hat{G}_i)_{i=1,\dots,n-1} > n-3$$

then

$$\operatorname{corank}_{\mathbb{C}}(D\hat{G}_i)_{i=1,\dots,n-1} = \dim_{\mathbb{C}} V \leqslant 1,$$

so $\dim_{\mathbb{R}} V \leq 2$ and $\dim_{\mathbb{R}} V \cap \mathbb{S}^{2n-1}(0,1) \leq 1$. The cycle $\mathbb{S}^1.a$ bounds a chain in $E_0' \subseteq V \cap \mathbb{S}^{2n-1}(0,1)$, which is a finite union of circles, that provides a contradiction. So we have

$$IH_2^{\overline{t},c}(\mathcal{V}_G,\mathbb{R}) \neq 0$$
, $IH_2^{\overline{t},cl}(\mathcal{V}_G,\mathbb{R}) \neq 0$, $H_2^c(\mathcal{V}_G,\mathbb{R}) \neq 0$ and $H_2^{cl}(\mathcal{V}_G,\mathbb{R}) \neq 0$.

From the Goresky-MacPherson Poincaré duality Theorem, we have

$$IH_2^{\overline{t},c}(\mathcal{V}_G,\mathbb{R}) = IH_{2n-4}^{\overline{0},cl}(\mathcal{V}_G,\mathbb{R}) \text{ and } IH_2^{\overline{t},cl}(\mathcal{V}_G,\mathbb{R}) = IH_{2n-4}^{\overline{0},c}(\mathcal{V}_G,\mathbb{R}),$$

that implies $H_{2n-4}^c(\mathcal{V}_G, \mathbb{R}) \neq 0$ and $H_{2n-4}^{cl}(\mathcal{V}_G, \mathbb{R}) \neq 0$. \square

REMARK 5.8. The variety \mathcal{V}_G associated to a polynomial mapping $G: \mathbb{C}^n \to \mathbb{C}^{n-1}$ is not unique, but the result of the theorems 5.1 and 5.2 hold for any variety \mathcal{V}_G among the constructed varieties \mathcal{V}_G associated to G.

With the conditions of Theorem 5.2, the result of [12] also holds, hence as a consequence of Theorem 5.2 in this paper and Theorems 2.1 and 2.6 in [12], we obtain the following corollary.

COROLLARY 5.9. Let $G = (G_1, \ldots, G_{n-1}) : \mathbb{C}^n \to \mathbb{C}^{n-1}$, where $n \geq 4$, be a polynomial mapping such that $K_0(G) = \emptyset$. Assume that the zero set $\{z \in \mathbb{C}^n : g \in \mathbb{C}^n$

 $\hat{G}_i(z) = 0, i = 1, ..., n-1$ has complex dimension one, where \hat{G}_i is the leading form of G_i . If the Euler characteristic of $G^{-1}(z^0)$ is bigger than that of the generic fiber, where $z^0 \in \mathbb{C}^{n-1}$, then

- 1) $H_2(\mathcal{V}_G(\rho), \mathbb{R}) \neq 0$, for any ρ ,
- 2) $H_{2n-4}(\mathcal{V}_G(\rho), \mathbb{R}) \neq 0$, for any ρ ,
- 3) $IH_2^{\bar{t}}(\mathcal{V}_G(\rho),\mathbb{R}) \neq 0$, for any ρ , where \bar{t} is the total perversity.

Proof. At first, since the zero set $\{z \in \mathbb{C}^n : \hat{G}_i(z) = 0, i = 1, \dots, n-1\}$ has complex dimension one, then by the Theorem 2.6 in [12], any generic linear mapping L is a very good projection with respect to any regular value z^0 of G. Then if the Euler characteristic of $G^{-1}(z^0)$ is bigger than that of the generic fiber, where $z^0 \in \mathbb{C}^{n-1}$, then by the Theorem 2.1 of [12], the set $B(G) \neq \emptyset$. Moreover, the complex dimension of the set $\{z \in \mathbb{C}^n : \hat{G}_i(z) = 0, i = 1, \dots, n-1\}$ is the complex corank of $(D\hat{G}_i)_{i=1,\dots,n-1}$. Hence $Rank_{\mathbb{C}}(D\hat{G}_i)_{i=1,\dots,n-1} = n-2$, and by the Theorem 5.2, we finish the proof. □

EXAMPLE 5.10. Consider the suspension of the Broughton's example:

$$G: \mathbb{C}^3 \to \mathbb{C}^2$$
, $G(z, w, \zeta) = (z + z^2 w, \zeta)$,

or, more general $G(z, w, \zeta) = (z + z^2 w, g(\zeta))$ where $g(\zeta)$ is any polynomial of variable ζ and $g'(\zeta) \neq 0$. We can check that, for any function ρ , we have always $IH_2^{\overline{t}}(\mathcal{V}_G, \mathbb{R}) \neq 0$.

REMARK 5.11. The condition $B(G) = \emptyset$ does not imply $IH_2^{\overline{t}}(\mathcal{V}_G, \mathbb{R}) = 0$, since in this case \mathcal{S}_G maybe not empty.

Example 5.12. Let

$$G: \mathbb{C}^3 \to \mathbb{C}^2$$
, $G(z, w, \zeta) = (z, z\zeta^2 + w)$.

- 1) If we choose the function $\rho = |\zeta|^2$, then $S_G = \emptyset$ and $IH_2^{\bar{t}}(\mathcal{V}_G, \mathbb{R}) = 0$.
- 2) If we choose the function $\rho = |w|^2$, then $S_G \neq \emptyset$ and $IH_2^{\bar{t}}(\mathcal{V}_G, \mathbb{R}) \neq 0$.

REFERENCES

- J-P. Brasselet, Introduction to intersection homology and perverse sheaves, Publicações Matemáticas do IMPA, 270 Colóquio Brasileiro de Matemática, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 2009.
- [2] A. BROUGHTON, On the topology of polynomial hypersurfaces, In "Singularities, Part 1 (Arcata, Calif., 1981)", volume 40 of Proc. Sympos. Pure Math., pp. 167–178.
- [3] L. R. G. DIAS, Regularity at infinity and global fibrations of real algebraic maps, Tese de doutorado.
- [4] L. R. G. DIAS, M. A. S. RUAS, AND M. TIBAR, Regularity at infinity of real mappings and a Morse-Sard Theorem, J. Topology, 5:2 (2012), pp. 323–340.
- [5] M. CHAPERON, Jets, transversalité, singularités: petite introduction aux grandes idées de René Thom, Exposé du 29 semtembre 2001.
- [6] M. GORESKY AND R. MACPHERSON, Intersection homology. II, Invent. Math., 72 (1983), pp. 77– 129.
- [7] M. GORESKY AND R. MACPHERSON, Intersection homology theory, Topology, 19 (1980), pp. 135–162.
- [8] R. HARDT, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math., 102:2 (1980), pp. 291–302.
- [9] Z. JELONEK, Testing sets for properness of polynomial mappings, Math. Ann., 315:1 (1999), pp. 1–35.
- [10] V. H. HA, Nombres de Lojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Ser. I, 311 (1990), pp. 429-432.

- [11] V. H. HA AND L. D. TRÁNG, Sur la topologie des polynomes complexes, Acta Math. Vietnamica, 9 (1984), pp. 21–32.
- [12] V. H. HA AND T. T. NGUYEN, On the topology of polynomial mappings from \mathbb{C}^n to \mathbb{C}^{n-1} , International Journal of Mathematics, 22:3 (2011), pp. 435–448.
- [13] O. H. KELLER, Ganze Cremonatransformationen Monatschr, Math. Phys., 47 (1939), pp. 229–306.
- [14] K. Kurdyka, P. Orro, and S. Simon, Semialgebraic Sard Theorem for generalized critical values, J. Differential Geometry, 56 (2000), pp. 67–92.
- [15] T. Mostowski, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3:2 (1976), pp. 245–266.
- [16] T. B. T. NGUYEN, Étude de certains ensembles singuliers associés à une application polynomiale, Thèse, Université d'Aix Marseille, http://tel.archives-ouvertes.fr/, ID: tel-00875930.
- [17] T. B. T. NGUYEN, La méthode des façons, ArXiv: 1407.5239.
- [18] T. B. T. NGUYEN, A. VALETTE, AND G. VALETTE, On a singular variety associated to a polynomial mapping, Journal of Singularities, 7 (2013), pp. 190–204.
- [19] M. Oka, A Non-degenerate mixed function, Kodai Math. J., 33 (2010), pp. 1–62.
- [20] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., 75:2 (1969), pp. 240–284.
- [21] A. VALETTE AND G. VALETTE, Geometry of polynomial mappings at infinity via intersection homology, Ann. I. Fourier, 64:5 (2014), pp. 2147–2163.