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RIGIDITY THEOREM OF GRAPH-DIRECTED FRACTALS∗

LI-FENG XI† AND YING XIONG‡

Abstract. In this paper, we identify two fractals if and only if they are bilipschitz equivalent.
Fix a ratio r, for dust-like graph-directed sets with ratio r and integer characteristic, we obtain a
rigid theorem that these graph-directed sets are uniquely determined by their Hausdorff dimension
(or integer characteristic) in the sense of bilipschitz equivalence. Using this rigidity theorem, we
show that in a suitable class of self-similar sets, two totally disconnected self-similar sets without
complete overlaps are bilipschitz equivalent. We also provide an algorithm to test complete overlaps
in polynomial time.
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1. Introduction.

1.1. Rigidity of geometry. Roughly speaking, a rigidity theorem states that
every element in a class of mathematical objects is uniquely determined by less infor-
mation. For example, harmonic functions on the unit disk are rigid in the sense that
they are uniquely determined by their boundary values.

In metric spaces, the uniformization theorem on quasisymmetric equivalence
(Proposition 15.11 of [5]) states: a compact metric space is quasisymmetrically equiva-
lent to the symbolic space Σ2 = {0, 1}∞ if and only if it is doubling, uniformly perfect
and uniformly disconnected. In other words, the doubling, uniform perfectness and
uniform disconnectedness are complete characteristics of symbolic space in the sense
of quasisymmetric equivalence.

How about the rigidity theorem in geometry of fractals? What characteristics
can be used to provide the main information in the rigidity theorem on fractals? It
seems not a good choice to characterize fractals by quasisymmetric equivalence since
quasisymmetric mappings do not preserve fractal dimensions. Falconer and Marsh [12]
stated: “topology” may be regarded as the study of equivalence classes of sets under
homeomorphism; in the same vein, “fractal geometry” is sometimes thought of as the
study of equivalence classes of fractals under bilipschitz mappings. This leads to the
following definition.

Definition 1. We identify two metric spaces (X1, ρ1) and (X2, ρ2), denoted
by X1 ' X2, if and only if they are bilipschitz equivalent, i.e., there is a bijection
f : (X1, ρ1) → (X2, ρ2) such that for all x, y ∈ X1, C−1ρ1(x, y) ≤ ρ2(f(x), f(y)) ≤
ρ1(x, y), where C > 1 is a constant.

Bilipschitz mappings preserve many geometric properties, such as
• fractal dimensions: Hausdorff dimension, packing dimension etc;
• properties of measures: doubling, Ahlfors-David regularity etc;
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• metric properties: uniform perfectness, uniform disconnectedness etc.
Consequently, bilipschitz equivalence provides much more information than fractal
dimensions. Another motivation of studying bilipschitz equivalence of fractals comes
from geometric group theory (see [3, 13]).

Falconer and Marsh [11] obtained a rigidity theorem on fractals in the sense of
bilipschitz equivalence: the quasi-self-similar-circles are uniquely determined by their
Hausdorff dimensions, i.e., two such circles are bilipschitz equivalent if and only if
they have the same Hausdorff dimension. In this paper, we will show that this also
holds for a suitable class of graph-directed fractals.

1.2. Graph-directed fractals with integer characteristic.

Definition 2 (graph-directed sets [10, 25]). Let (X, ρ) be a complete metric
space. Let G = (V, E) be a directed graph with vertex set V and directed-edge set E .
We write Ei,j for the set of edges from vertex i to vertex j, and Eki,j for the set of
sequences of k edges (e1, . . . , ek) which form a directed path from vertex i to vertex j.

Suppose that for each edge e ∈ E , there is a corresponding similarity Se : X → X
of ratio re ∈ (0, 1), i.e., Se satisfies ρ(Se(x), Se(y)) = reρ(x, y). The graph-directed sets
on G with the similarities {Se}e∈E are defined to be the unique nonempty compact
sets {Ki}i∈V satisfying

Ki =
⋃
j∈V

⋃
e∈Ei,j

Se(Kj) for i ∈ V. (1.1)

In particular, if (1.1) is a disjoint union for each i ∈ V, we call {Ki}i∈V the dust-like
graph-directed sets on (V, E).

We say that graph-directed sets {Ki}i have ratio r if all the ratios re are equal to a
common r ∈ (0, 1). If there is only one vertex in V, the dust-like graph-directed set K
is a self-similar set. Suppose that the number of edges is m. Let Σrm = {1, 2, . . . ,m}∞
be the symbolic space equipping with the metric

ρ(x0x1 . . . , y0y1 . . . ) = rmin{k : xk 6=yk}.

Then K ' Σrm if K has ratio r. To see this, notice that Σrm can also be regarded as
a dust-like self-similar set generated by m similitudes of ratio r.

Hence a natural question is: if there are two or more vertexes, what conditions
ensure that the dust-like graph-directed sets are bilipschitz equivalent to the symbolic
space Σrm. To answer this question, we introduce the notion of integer characteristic.

Let A = (ai,j)i,j∈V be the adjacency matrix of G defined by ai,j = #Ei,j , the
number of Ei,j . We say that dust-like graph-directed sets {Ki}i with ratio r have
integer characteristic m ≥ 2 if there is a positive vector v > 0 such that

Av = mv. (1.2)

A directed graph is said to be transitive if for any vertices i, j, there exists a
directed path starting at i and ending at j. In this case, the adjacency matrix A
is irreducible. By the Perron-Frobenius Theorem for non-negative matrices, assump-
tion (1.2) on a transitive graph is equivalent to that the Perron-Frobenius eigenvalue
of A is an integer m ≥ 2.

It will be proved in Section 3.3 that assumption (1.2) is equivalent to

0 < Hs(Ki) <∞ for i ∈ V with s = − logm/ log r. (1.3)
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Therefore, if {Ki}i are bilipschitz equivalent to the symbolic space Σrm, they must
have integer characteristic m. The following theorem states that the converse is also
true and hence provides a natural and intrinsic characterization of the dust-like graph-
directed sets which are bilipschitz equivalent to the symbolic space Σrm.

Theorem 1. Let {Ki}Ni=1 be dust-like graph-directed sets with ratio r. Then
K1, . . . ,KN are bilipschitz equivalent to Σrm if and only if they have integer charac-
teristic m.

We remark that Theorem 1 doesn’t need the transitive condition on the directed
graph. In other words, the adjacency matrix A is not required to be irreducible.

Deng and He [6] first studied the Lipschitz equivalence of graph-directed frac-
tals with integer characteristic. They proved the if part of Theorem 1 under some
additional conditions which require the adjacency matrix to be “rearrangeable” or
primitive (Theorem 1.3 and 1.4 in [6]). Such conditions are needed in their argument
to avoid some complicated situations. We prove the general case by a careful analysis
of the graph-directed structure (see the beginning of Section 4) and by making use of
the technique of extension of bilipschitz mappings (see the proof of Proposition 4).

Let Ar =
⋃∞
m=2 A

r
m, where

Arm =
{
K : K = K1 for some dust-like graph-directed sets {Ki}i

with ratio r and integer characteristic m
}
.

As a corollary of Theorem 1, we have

Theorem 2. Two graph-directed fractals K ∈ Ar1m1
and K ′ ∈ Ar2m2

are bilipschitz

equivalent if and only if rk11 = rk22 , mk1
1 = mk2

2 for some integers k1, k2 ≥ 1.

The paper is organized as follows. In Section 2, we apply Theorem 1 to study
the bilipschitz equivalence of a class of self-similar sets without complete overlaps and
obtain Theorem 3. Section 2.3 provides an algorithm to test complete overlaps in
polynomial time. We present some preliminaries in Section 3 including the techniques
of number theory, non-negative matrix and bilipschitz equivalence. Section 4 is the
proofs of Theorems 1 and 2. Section 5 is devoted to the proof of Theorem 3, in which
total disconnectedness implies the graph-directed structure and the loss of complete
overlaps insures the integer characteristic. The last section discusses some related
open questions.

2. Bilipschitz equivalence of self-similar fractals.

2.1. Results on bilipschitz equivalence. The known results on the bilipschitz
equivalence of self-similar sets can be divided into two main categories, according to
whether the self-similar sets have overlaps or not. A self-similar set is said to be
without overlaps if the strong separation condition (SSC) holds. Otherwise, it is said
to be with overlaps.

Falconer and Marsh [12] gave two necessary conditions for self-similar sets sat-
isfying the SSC (without overlaps) to be bilipschitz equivalent. Xi [37] further ob-
tained a necessary and sufficient condition. For other characterizations of bilipschitz
equivalence in this case, please also refer to Mattila and Saaranen [24], Llorente and
Mattila [22], Deng, Wen, Xiong and Xi [8], Rao, Ruan and Wang [29] and Rao and
Zhang [32].



1130 L.-F. XI AND Y. XIONG

Self-similar sets with overlaps have very complicated structures. Various condi-
tions had been proposed to control the overlaps. For example, Moran [26], Hutchinson
[16], Bandt and Graf [1] and Schief [34] studied the open set condition (OSC). Lau
and Ngai [19] and Zerner [42] studied the weak separation condition. Ngai and Wang
[27] and Lau and Ngai [20] studied the finite type condition.

There are also many efforts devoted to the study of bilipschitz equivalence of self-
similar sets with overlaps. Wen and Xi [36] constructed two self-similar arcs which
have the same dimension but are not Lipschitz equivalent. David and Semmes [5]
asked whether two special self-similar sets, the {1,3,5}-set and {1,4,5}-set, are Lip-
schitz equivalent or not. Rao, Ruan and Xi [30], Xi and Xiong [40, 41] gave an
affirmative answer to this problem in R1 and higher dimensional spaces respectively.
In the case of different contraction ratios, Xi and Ruan [38], Ruan, Wang and Xi [33]
studied the self-similar sets with touching structure on the line. Luo and Lau [23]
and Deng, Lau and Luo [7] researched the Lipschitz equivalence of self-similar sets by
using hyperbolic boundaries of trees.

Recently, Xi and Xiong [39] obtained a general result on the problem of the
Lipschitz equivalence of self-similar sets in the OSC case. However, the argument
in [39] is quite involved. As an application of Theorem 1, we can give a much simpler
proof for self-similar sets without complete overlaps.

Definition 3. Let {S1, . . . , Sm} be an IFS. We say that the corresponding self-
similar set E =

⋃m
i=1 Si(E) has complete overlaps, if there are two distinct sequences

i1 . . . it, j1 . . . jt′ such that

Si1 ◦ · · · ◦ Sit = Sj1 ◦ · · · ◦ Sjt′ .

For surveys of the Hausdorff dimension of self-similar sets with complete overlaps,
we refer to Kenyon [17] and Rao and Wen [31].

2.2. A class of self-similar fractals in A1/n. Let Γ be a discrete additive
group in Rl and G a finite subgroup of the isometric group on Γ, i.e., for any g ∈ G,
we have g : Γ → Γ, g(0) = 0 and |g(a1) − g(a2)| = |a1 − a2| for all a1, a2 ∈ Γ. This
implies that each g ∈ G can be extended to a linear isometry of Rl. In particular,
g(B(0, δ)) = B(0, δ) for any closed ball with center 0 and radius δ. Fix an integer
n ≥ 2. Consider the similitude

S(x) = g(x)/n+ b, where g ∈ G and b ∈ Γ. (2.1)

Let Λ be the collection of all the self-similar sets in Rl generated by contractive
similitudes in the form of (2.1).

As an application of Theorem 1, we will prove the following theorem on the
bilipschitz equivalence. For a one-dimensional analogue, we refer to [6, Theorem 3.7].

Theorem 3. Suppose E =
⋃m
i=1( giEn + bi) ∈ Λ is a totally disconnected self-

similar set without complete overlaps. Then E ∈ A1/n with characteristic m, and

thus E is bilipschitz equivalent to Σ
1/n
m .

We present some examples in the remainder of this subsection and give an algo-
rithm to test complete overlaps in Section 2.3.

Example 1. Let n ≥ 2, Γ1 = Z2 and Γ2 = {(a2 ,
√

3
2 b) : a, b ∈ Z and a ≡ b(mod2)},

then Γi are discrete additive groups as in Figure 1. The isometric group of Γ2 has 12
elements, including rotations and reflections.
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Fig. 1. Discrete groups on the plane
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Fig. 2. Initial pattern and first three steps in construction

Example 2. Let n = 3 and Γ = Γ2 as in Example 1. As in Figure 2, we take
4 small colored triangles and select the corresponding isometries. We also show the
first three steps in construction.

Example 3. Let Γ = Zl with l ≥ 2; then its isometric group contains the element:

g(x1, . . . , xl) = (s1xσ(1), s2xσ(2), . . . , slxσ(l)),

where σ is a permutation on {1, . . . , l} and sign si ∈ {−1, 1} for all i.

F'F

Fig. 3. Different structures in F and F ′

Example 4. For n = 5 and l = 1, let

F =
F

5
∪ −F + 4

5
∪ F + 4

5
, F ′ =

F ′

5
∪ F

′ + 3

5
∪ F

′ + 4

5
.

Due to the minus sign in the similarity x 7→ −x+4
5 , these two self-similar sets are

quite different (Figure 3). It is easy to show that F and F ′ are totally disconnected
self-similar sets without complete overlaps. Then it follows from Theorem 3 that F
and F ′ are bilipschitz equivalent.
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Finally, we consider the self-similar set E generated by

Si(x) = x/n+ bi with bi ∈ Ql for i = 1, . . . ,m.

Let Γ be the additive group generated by {bi}i. Suppose n > m; then dimHE ≤
logm/ log n < 1 which implies E is totally disconnected. Theorem 3 implies that

if E has no complete overlaps, then E is bilipschitz equivalent to Σ
1/n
m . Please see

Example 6 for the self-similar set E = E
5 ∪ (E5 + 7

10 ) ∪ (E5 + 8
10 ).

2.3. Algorithm in polynomial time to test complete overlaps in Λ. First
we give the sketch of our algorithm. Considering the IFS in the form of (2.1), we
can construct a directed graph (Steps 1-2) and calculate all vertexes named original
vertexes and boundary vertexes (Step 3). Our algorithm is based on a criterion
(Proposition 1) which states that the complete overlap exists if and only if there exists
a directed path from an original vertex to a boundary vertex. By the criterion, we
can use Dijkstra’s algorithm [9] to test the existence of such a directed path (Step 4).

Now we describe our algorithm in detail. Given E =
⋃m
i=1( giEn + bi) ∈ Λ, let

M = 2 max
1≤i≤m

|bi|/(n− 1).

Step 1. Set the vertex set

V = {x ∈ Γ: |x| ≤M} ×G×G.

The elements of vertex set can be written to be (x, f, f ′).
Step 2. Set the edge set as follows.
We set an edge from vertex (x, f, f ′) to vertex (x1, f1, f

′
1), if and only if there is

a pair (i, j) ∈ {1, . . . ,m}2 such that

(x1, f1, f
′
1) = (nx+ f(bi)− f ′(bj), fgi, f ′gj),

where f ◦ gi is written as fgi to simplify the notation. We denote this edge by

(x, f, f ′)
(i,j)−−−→ (x1, f1, f

′
1).

Step 3. Calculate all original vertexes and boundary vertexes.
The vertex (x, f, f ′) is called an original vertex, if (x, f, f ′) = (bi − bj , gi, gj) for

some i 6= j. We say that (x1, f1, f
′
1) is a boundary vertex, if x1 = 0 and f1 = f ′1. Using

these definition, we can calculate all original vertexes and boundary vertexes.
Step 4. Test the existence of complete overlap by Dijkstra’s algorithm.
Through steps 1–3, we obtain a finite graph since Γ is discrete and G is finite.

We have the following criteria to test the existence of complete overlap.

Proposition 1. E has complete overlaps if and only if there is a directed path
starting at an original vertex and ending at a boundary vertex.

Applying Dijkstra’s algorithm, we can test whether there is such a directed path
in polynomial time. Roughly speaking, Dijkstra’s algorithm is an algorithm for finding
the shortest paths between vertexes in a graph, runs in time O((#V )2) where #V is
the cardinality of the vertex set. When equipping each directed edge with weight 1,
we find a directed path from one vertex to another if and only if their shortest distance
between these two vertexes is finite. Suppose E ⊂ Rl. Let δ = minx∈Γ\{0} |x| be the
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least distance between any two distinct elements in Γ, then #V = O(M lδ−l(#G)2).
Thus the running time is at most O

(
M2lδ−2l(#G)4

)
.

We provide two examples to illustrate the above algorithm.

Example 5. Let n = 3. Suppose F ⊂ R2 is generated by

S1(x) =
x

3
, S2(x) =

x

3
+ α, S3(x) =

x

3
+ 8α, S4(x) =

g(x)

3
+ 8β,

where α = (1, 0), β = (1/2,
√

3/2), and g is an isometry such that

g2 = id, g(α) = β and g(β) = α.

One can verify that the strong separation condition fails, i.e., there are overlaps. We
will check the fact that there is no complete overlaps by the above algorithm. In fact,
we have

Γ = {k1α+ k2β : k1, k2 ∈ Z}

and G = {id, g}. Notice that b1 = 0, b2 = α, b3 = 8α, b4 = 8β, and g1 = g2 = g3 = id
and g4 = g. We obtain that M = 2 max1≤i≤4 |bi|/(n− 1) = 8. By programming, the
set {x ∈ Γ: |x| ≤M} has 225 elements and the corresponding directed graph has 900
vertexes. Twelve original vertexes are

(α, id, id), (7α, id, id), (8α, id, id), (−α, id, id),

(−7α, id, id), (−8α, id, id), (−8β, id, g), (α− 8β, id, g),

(8α− 8β, id, g), (8β, g, id), (8β − α, g, id), (8β − 8α, g, id),

and two boundary vertexes are (0, id, id) and (0, g, g). Using Dijkstra’s algorithm, we
find that there does not exist any directed path from original vertexes to boundary
vertexes. Therefore F is a self-similar set without complete overlaps.

If G = {id}, we need only consider the graph with the vertex set {x ∈ Γ: |x| ≤
M}, there is an edge from vertex x to vertex x1, if and only if there is a pair (i, j) ∈
{1, . . . ,m}2 such that x1 = nx+ bi − bj . We denote the edge by x

(i,j)−−−→ x1.

Example 6. Let 5 = n > m = 3 and E = E
5 ∪ (E5 + 7

10 ) ∪ (E5 + 8
10 ). Here

n = 5, G = {id}, Γ = Z/10, M = 0.4

and {x ∈ Γ: |x| ≤ M} = {−0.4,−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4}. The original

vertices are {−0.1, 0.1} and the unique boundary vertex is {0}. If x
(i,j)−−−→ 0 for some

x ∈ {x ∈ Γ: |x| ≤M}, then 0 = 5x+ bi − bj , that is

5x = bj − bi.

However, bj − bi ∈ P = {−0.8,−0.7,−0.1, 0, 0.1, 0.7, 0.8} and

P ∩ {5x : x ∈ Γ, |x| ≤M} = {0}.

Therefore, x = 0. This means there is no directed path from original vertices to
boundary vertices. Then E is totally disconnected self-similar set without complete

overlaps and thus E is bilipschitz equivalent to Σ
1/5
3 .
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3. Preliminaries.

3.1. Combinatorial lemma from Frobenius coin problem. It is easy to
check that {2k1 + 5k2 : k1, k2 ∈ N ∪ {0}} ⊃ {m : m > 3}. This is a special case
of the so called Frobenius coin problem [28], which can be stated as follows. Given
positive integers α1, α2, . . . , α` with gcd(α1, α2, . . . , α`) = 1, find the largest integer
that cannot be expressed as a sum k1α1 + k2α2 + · · ·+ k`a`, where k1, k2, . . . , k` are
non-negative integers. We denote such integer by φ(α1, . . . , α`). Hence φ(2, 5) = 3.

Lemma 1. Fix positive integers γ and α1, α2, . . . , α` (` ≥ 2) with
gcd(α1, . . . , α`) = 1. Write φ∗ = φ(α1, . . . , α`) + max1≤j≤` αj. Let (βω)ω∈Ω be a
sequence of positive integers, where Ω is a finite index set, such that

(i) βω ∈ {α1, . . . , α`} for all ω ∈ Ω;

(ii)
∑
ω∈Ω βω = b · γ for positive integers b > 2φ∗

∑`
j=1 αj and γ ≥ 1;

(iii) for every 1 ≤ j ≤ `, #{ω ∈ Ω: βω = αj} ≥ γφ∗.
Then there is a decomposition Ω =

⋃
1≤t≤γ Ωt such that Ωi ∩ Ωj = ∅ for i 6= j and∑

ω∈Ωt

βω = b for every 1 ≤ t ≤ γ.

Proof. We will prove this by inductive on the integer γ ≥ 1. It is trivial when
γ = 1. Now suppose this is true for γ − 1 ≥ 1, we shall prove that so does γ.

By (iii), there are disjoint Ω′1, . . . ,Ω
′
` ⊂ Ω such that, for 1 ≤ j ≤ `,

βω = αj for ω ∈ Ω′j and #Ω′j = γφ∗. (3.1)

Let Ω∗ = Ω \
⋃`
j=1 Ω′j . By (ii), (3.1) and γ ≥ 2, we have

∑
ω∈Ω∗

βω =
∑
ω∈Ω

βω −
∑̀
j=1

∑
ω∈Ω′j

βω = γ

(
b− φ∗

∑̀
j=1

αj

)
≥ γb/2 ≥ b.

Combining this with (i), we can select Ω∗0 ⊂ Ω∗ such that

φ(α1, . . . , α`) < b−
∑
ω∈Ω∗0

βω ≤ φ(α1, . . . , α`) + max
1≤j≤`

αj = φ∗.

This together with the definition of the Frobenius number implies that we can find
non-negative integers k1, . . . , k` such that

k1α1 + · · ·+ k`α` = b−
∑
ω∈Ω∗0

βω ≤ φ∗. (3.2)

Clearly, kj ≤ φ∗ for every 1 ≤ j ≤ `.
By (3.1), we can take Ω∗j ⊂ Ω′j with #Ω∗j = kj ≤ φ∗ for every 1 ≤ j ≤ `. Now let

Ω1 = Ω∗0 ∪
⋃`
j=1 Ω∗j . Then by (3.1) and (3.2), we have

∑
ω∈Ω1

βω =
∑
ω∈Ω∗0

βω +
∑̀
j=1

∑
ω∈Ω∗j

βω =
∑
ω∈Ω∗0

βω +
∑̀
j=1

kjαj = b.
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Let Ω′ = Ω \ Ω1, then∑
ω∈Ω′

βω =
∑
ω∈Ω

βω −
∑
ω∈Ω1

βω = γb− b = (γ − 1)b.

And for every 1 ≤ t ≤ `, we have

#{ω ∈ Ω′ : βω = αj} ≥ #Ω′j −#Ω∗j = γφ∗ − kj ≥ γφ∗ − φ∗ = (γ − 1)φ∗.

Hence the lemma follows by applying the inductive assumption to Ω′.

3.2. Connected blocks of directed Graphs. Given a directed graph G, we
give an equivalent relation on the vertex set as follows: let i ∼ i; for distinct vertices i
and j,

i ∼ j ⇐⇒ there are directed paths from i to j and from j to i.

We call the equivalence class [i] = {j : j ∼ i} a connected block.
We also define a partial order among connected blocks as follows:

[j] ≺ [j′] ⇐⇒ there is a directed path from a vertex in [j] to a vertex in [j′].

Under this partial order, we write

B0 = {[i] : [i] is maximal}.

Inductively, let

Bk =

{
[i] : [i] is maximal in the complement of

⋃
q≤k−1

Bq

}
.

We say that a vertex has rank k if this vertex belongs to a connected block in Bk.
By the definition of Bk, we have

Lemma 2. Given a vertex i of rank k, then any directed path starting at i will
end either at some vertex of rank ≤ k − 1 or at some vertex j of rank k with i ∼ j.

3.3. Integer characteristic.

Lemma 3. Assumptions (1.2) and (1.3) on integer characteristic are equivalent.

Proof. Suppose the vertex set V = {1, 2, . . . , N}. If assumption (1.3) holds, then
by the definition of the adjacency matrix, we have

Hs(Ki) = rs
N∑
j=1

ai,jHs(Kj) for i ∈ {1, 2, . . . , N},

where s = − logm/ log r. Since rs = 1/m, we have

Av = mv

with v = (Hs(K1), . . . ,Hs(Kp))
T > 0.
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If assumption (1.2) holds, we first show that Hs(Ki) <∞ for any vertex i. Take

v > 0 such that Av = mv and v > (1, . . . , 1)T . Let Ak = (a
(k)
i,j )i,j . Then∑

i,j

a
(k)
i,j = (1, . . . , 1)Ak(1, . . . , 1)T ≤ (1, . . . , 1)Akv = mk((1, . . . , 1) · v). (3.3)

For any k, we have Ki =
⋃
j

⋃
e∗∈Eki,j

Se∗(Kj), where Se∗ = Se1 ◦ · · · ◦ Sek for e∗ =

(e1, . . . , ek). By (3.3), for each i, we have

Hs(Ki) ≤ lim
k→∞

∑
j

a
(k)
i,j

 · (rk)s max
j
|Kj |s ≤ lim

k→∞

∑
i,j

a
(k)
i,j

 ·m−k max
j
|Kj |s

≤ ((1, . . . , 1)v) ·max
j
|Kj |s <∞.

where |Kj | denotes the diameter of Kj .
Then we will show Hs(Ki) > 0 for all i by induction on the rank of i.
Let i be a vertex of rank 0. By a permutation if necessary, we can assume that

[i] = {1, 2, . . . , p}. According to the definition of rank 0, every edge starting at a
vertex in [i] is also ending at a vertex in [i]. Hence the adjacency matrix A must have
the form

A =

(
Bp×p 0
Cp×q Dq×q

)
with p+ q = N.

Here Bp×p is a irreducible matrix since for any j1, j2 ∈ [i] = {1, 2, . . . , p}, there is a
directed path starting at j1 and ending at j2.

Therefore K1,K2, . . . ,Kp are graph-directed sets with irreducible adjacency ma-
trix B = Bp×p. Since Av = mv with v = (v1, . . . , vN ) > 0, we have

B(v1, . . . , vp)
T = m(v1, . . . , vp)

T with (v1, . . . , vp) > 0.

By the Perron-Frobenius Theorem for irreducible matrices, we have that m is the
spectral radius of B. Using Corollary 3.5 of [10], which concerns dust-like graph-
directed sets whose corresponding graphs are transitive, we have

0 < Hs(Ki) <∞ for i of rank 0.

Inductively, we assume Hs(Kj) > 0 for all j of rank ≤ k. Now, let i be a vertex
of rank k + 1 > 0. We have [i] ≺ [j] for some j of rank ≤ k. For otherwise, the rank
of the vertex i must be 0 by the definition of rank. The fact [i] ≺ [j] means that there
are i0 ∈ [i] and j0 ∈ [j] such that there is a directed path from i0 to j0. Since i ∼ i0
and j ∼ j0, there are also directed paths from i to i0 and from j0 to j. Consequently,
we can find a directed path e∗ from i to j. It follows from the inductive assumption
Hs(Kj) > 0 that Hs(Ki) > 0 since Ki ⊃ Se∗(Kj).

3.4. Non-negative matrices. A non-negative matrix A is said to be primitive
if Ah > 0 for some natural integer h. We say a matrix B is irreducible if B cannot be
conjugated into block upper triangular form by a permutation matrix P :

PBP−1 6=
(
D1 D2

0 D3

)
.
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The following lemma can be found in [2].

Lemma 4. Let Bn×n be a non-negative irreducible matrix, and ρ(B) > 0 its
Perron-Frobenius eigenvalue. For any positive vector x = (x1, . . . , xn)T > 0, we have

ρ(B) ≤ maxi
(Bx)i
xi

. And ρ(B) = maxi
(Bx)i
xi

if and only if Bx = ρ(B)x.

For any irreducible matrix B, Corollary 3.2.3B of [21] indicates that: if a non-
negative matrix B is irreducible, then there is a permutation matrix P and a natural
integer d such that

PBdP−1 = diag(B1, . . . , Bd),

where each Bi is primitive. Therefore, for each Bi there is a positive integer hi such
that (Bi)

hi > 0. Take u = d
∏d
i=1 hi, we have

Lemma 5. If a non-negative matrix B is irreducible, then there is a permutation
matrix P and a natural integer u such that

PBuP−1 = diag(D1, . . . , Dd),

where D1, . . . , Dd > 0 are positive square matrices.

3.5. Bilipschitz equivalence. We say that a bijection f from a metric
space (X1, ρ1) to another (X2, ρ2) is a bilipschitz mapping with bilipschitz constant
blip(f) ≥ 1 if

blip(f) = inf

{
c ≥ 1: c−1 ≤ ρ2(f(x), f(y))

ρ1(x, y)
≤ c for all x 6= y

}
(3.4)

is finite. The next lemma follows from [4, 12] or Proposition 11.8 of [5].

Lemma 6. Σr1n1
and Σr2n2

are bilipschitz equivalent if and only if there are k1, k2 ∈
N such that nk11 = nk22 and rk11 = rk22 .

Theorem 2.1 of [30] yields the following lemma.

Lemma 7. Suppose {Ki}`i=1 and {K ′i}
`
i=1 are dust-like graph-directed sets on the

same graph G satisfying

Ki =
⋃
j

⋃
e∈Ei,j

Se(Kj) and K ′i =
⋃
j

⋃
e∈Ei,j

S′e(K
′
j),

where Se and S′e are similitudes on complete metric spaces (X1, ρ1) and (X2, ρ2),
respectively. If for each edge e the corresponding similarities Se and S′e have the same
ratio re, then Ki and K ′i are bilipschitz equivalent for each i.

A special from of the following lemma is contained in [4, Proposition 2.2]. We
omit its proof since the main idea is similar.

Lemma 8. Suppose E is a dust-like self-similar set in a complete metric space.
Let K =

⋃
i fi(E) be a disjoint union such that fi is a bilipschitz mapping for each i.

Then K and E are bilipschitz equivalent.



1138 L.-F. XI AND Y. XIONG

3.6. Connectedness. Recall Lemma 2.3 and Lemma 2.4 of [40] as follows.

Lemma 9. Let Y be a compact subset of Rl. Suppose {Xk}k are connected
compact subsets of Y . Then there exist a subsequence {ki}i and a connected compact

set X such that Xki
dH−−→ X as i→∞, where dH is the Hausdorff metric.

Lemma 10. Let {Y1, Y2, . . . , Yk} be totally disconnected compact subsets of Rl.
Then Y =

⋃k
i=1 Yi is also totally disconnected.

4. Graph-directed fractals with integer characteristic. Suppose {Ki}Ni=1

are dust-like graph-directed sets with ratio r and integer characteristic m. For every
vertex in the corresponding directed graph, we let the rank of that vertex be defined
as in Section 3.2.

We notice that Theorem 2 follows from Theorem 1 and Lemma 6, where rk1 =
(r′)k2 and mk1 = (m′)k2 with k1, k2 ∈ N.

The necessary part of Theorem 1 follows from Lemma 3. We will prove the
sufficient part of Theorem 1 by induction on the rank of the vertices. To this end, we
first prove that Ki is bilipschitz equivalent to Σrm if i is of rank 0. Since {Kj}j∈[i] are
dust-like graph-directed sets with the adjacency matrix being irreducible, it suffices
to show that

Proposition 2. Let K1, . . . ,Kp be dust-like graph-directed sets of integer char-
acteristic m ≥ 2 and of ratio r such that the adjacency matrix is irreducible. Then
K1, . . . ,Kp are all bilipschitz equivalent to Σrm.

Then we assume inductively that Kj is bilipschitz equivalent to Σrm if j is of
rank ≤ k. Let i be a vertex of rank k + 1, we need to prove that Ki is bilipschitz
equivalent to Σrm.

Let Vi be the set of all vertices i0 such that [i] ≺ [i0] and [i] 6= [i0]. Then i0 is of
rank ≤ k for every i0 ∈ Vi since i is of rank k+ 1. Hence Ki0 is bilipschitz equivalent
to Σrm. By a permutation if necessary, we can assume that [i] = {1, 2, . . . , p} and
that Vi = {p + 1, . . . , p + q}. One can check that K1, . . . ,Kp+q are also dust-like
graph-directed sets and the adjacency matrix has the form(

Dp×p Cp×q
0 Bq×q

)
where Dp×p is irreducible and Cp×q 6= 0.

Thus we complete the induction by proving

Proposition 3. Let {K1, . . . ,Kp,Kp+1, . . .Kp+q} be dust-like graph-directed sets
with ratio r, integer characteristic m and block upper triangular adjacency matrix(

Dp×p Cp×q
0 Bq×q

)
,

where Dp×p is irreducible and Cp×q 6= 0. If Kp+1, . . . ,Kp+q are all bilipschitz equiv-
alent to Σrm, then Ki is also bilipschitz equivalent to Σrm for any 1 ≤ i ≤ p.

The reminder of this section is devoted to prove Propositions 2 and 3.
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4.1. Proof of Proposition 2. We assume that K1, . . . ,Kp are dust-like graph-
directed sets of ratio r with their adjacency matrix B irreducible such that

Bv = mv with v > 0.

By Lemma 5, we can assume that K1, . . . ,K` (` ≤ p) are dust-like graph-directed sets
of ratio ru with their adjacency matrix D1 > 0 such that

D1v
∗ = muv∗ with v∗ > 0. (4.1)

If ` = 1, we notice that K1 is a disjoint union of mu copies of itself with ratio
ru. We also notice that Σr

u

mu is a disjoint union of mu copies of itself with ratio ru,
and Σr

u

mu and Σrm are bilipschitz equivalent. Applying Lemma 7 to self-similar sets,
we have K1 and Σrm are bilipschitz equivalent.

Now, suppose ` ≥ 2. The proof consists of two steps:
Step 1. prove that {K1, . . . ,K`} are dust-like graph-directed sets on a suitable

graph G.
Step 2. construct a family of dust-like graph-directed sets on the same graph G such

that those sets are all bilipschitz equivalent to the symbolic space.
Then we use Lemma 7 to complete the proof.

Step 1. We can assume that

u = 1. (4.2)

Since m ∈ N and the entries of D1 are natural integers, there is an integer eigenvector
corresponding to the Perron-Frobenius eigenvalue m which is a simple eigenvalue,
which means that v∗ can be written as

v∗ = (α1, . . . , α`)
T with α1, . . . , α` ∈ N.

Without loss of generality, we suppose that

gcd(α1, . . . , α`) = 1.

We have

D1(α1, . . . , α`)
T = m(α1, . . . , α`)

T . (4.3)

Here m is the Perron-Frobenius eigenvalue of positive matrix D1. Let (D1)k =

(d
(k)
i,j )1≤i,j≤`. Then for all k and all i, j, we have d

(k)
i,j ≥ C−1mk for some constant

C ≥ 1.
Now we use Lemma 1. Recall that φ∗ = φ(α1, . . . , α`) + max1≤j≤` αj . Take k∗

such that

mk∗ > 2φ∗
∑̀
j=1

αj and d
(k∗)
i,j ≥ C

−1mk∗ > αiφ
∗ for each i. (4.4)

For each i ∈ {1, . . . , `}, let Ωi =
⋃`
j=1 Ek

∗

i,j be the set of all directed paths of length k∗

and starting at i. For e∗ ∈ Ωi, let βe∗ = αj if e∗ is ending at j. Then

βe∗ ∈ {α1, . . . , α`} for e∗ ∈ Ωi. (4.5)
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By the definition of the adjacency matrix, we have

#{e∗ ∈ Ωi : βe∗ = αj} = d
(k∗)
i,j . (4.6)

It follows from (4.3) that

∑
e∗∈Ωi

βe∗ =
∑̀
j=1

d
(k∗)
i,j αj = mk∗ · αi. (4.7)

Applying Lemma 1 by b = mk∗ and γ = αi. It follows from (4.4)–(4.7) that the
conditions of Lemma 1 are fulfilled. Thus we get the decomposition

Ωi =

αi⋃
t=1

Ωi,t

such that for all 1 ≤ j ≤ αi, ∑
e∗∈Ωi,t

βe∗ = mk∗ . (4.8)

By the definition of the adjacency matrix, for each i, we have a disjoint union

Ki =

αi⋃
t=1

⋃
e∗∈Ωi,t

Se∗(Kj(e∗)), (4.9)

where j(e∗) is the end point of the directed path e∗. Note that Se∗ is a similitude
with ratio rk

∗
for all e∗. Therefore, {K1, . . . ,K`} are dust-like graph-directed sets

with ratio rk
∗

satisfying (4.9).

Step 2. For w = w1w2 . . . wk ∈ {1, 2, . . . ,mk∗}k, x = x1x2 · · · ∈ Σr
k∗

mk∗ and

A ⊂ Σr
k∗

mk∗ , write

w ∗ x = w1w2 . . . wkx1x2 . . . and w ∗A = {w ∗ x : x ∈ A}.

Let

[w] = w ∗ Σr
k∗

mk∗ = {x1x2 . . . ∈ Σr
k∗

mk∗ : xi = wi for 1 ≤ i ≤ k}

be the cylinder set. For integers α, β with 1 ≤ α ≤ β ≤ mk∗ , write

Πβ
α = [α] ∪ [α+ 1] ∪ · · · ∪ [β].

We claim that {Πα1
1 , . . . ,Πα`

1 } are dust-like graph-directed sets such that, for
each i,

Παi
1 =

αi⋃
t=1

⋃
e∗∈Ωi,t

Te∗(Π
βe∗
1 ), (4.10)

where Te∗ is a similitude with ratio rk
∗

for each e∗. Recall that βe∗ = αj if e∗ is
ending at j.
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If the claim is true, by (4.9) and (4.10), the two families {K1, . . . ,K`} and
{Πα1

1 , . . . ,Πα`
1 } of dust-like graph-directed sets are on the same graph and with

the same ratio rk
∗
. By Lemma 7, Ki ' Παi

1 ; by Lemma 8, Παi
1 ' Σr

k∗

mk∗ , since

Παi
1 = [1] ∪ · · · ∪ [αi] can be regard as αi copies of Σr

k∗

mk∗ ; by Lemma 6, Σr
k∗

mk∗ ' Σrm.
Consequently, Ki is bilipschitz equivalent to Σrm for every i.

To prove the claim, we first define the similitude Te∗ for each e∗ ∈ Ωi,t and each
i, t. Fix i, t, write #Ωi,t = Ni,t and Ωi,t = {e∗1, . . . , e∗Ni,t

}. For e∗ ∈ Ωi,t, say, e∗ = e∗j .
Write

Πe∗ = Πe∗j
= t ∗Π

λ(e∗j )+βe∗
j

λ(e∗j )+1

where λ(e∗) = λ(e∗j ) = βe∗1 + βe∗2 + · · ·+ βe∗j−1
. Then we define Te∗ : Πβe∗

1 → Πe∗ by

Te∗ : x1x2x3 . . . 7→ t ∗ (x1 + λ(e∗)) ∗ x2x3 . . .

Clearly, Te∗ is a similitude with ratio rk
∗
. Moreover, by (4.8), we have

⋃
e∗∈Ωi,t

Πe∗ =

Ni,t⋃
j=1

t ∗Π
λ(e∗j )+βe∗

j

λ(e∗j )+1 = t ∗ Σr
k∗

mk∗ = [t].

So

αi⋃
t=1

⋃
e∗∈Ωi,t

Te∗(Π
βe∗
1 ) =

αi⋃
t=1

⋃
e∗∈Ωi,t

Πe∗ =

αi⋃
t=1

[t] = Παi
1 .

Thus the claim is true and the proof of Proposition 2 is complete.

4.2. Proof of Proposition 3. Let A =

(
Dp×p Cp×q

0 Bq×q

)
and Ak = (a

(k)
i,j )i,j .

Suppose that v = (v1, . . . , vp, vp+1, . . . vp+q)
T , with vi ∈ N for all i, is the corre-

sponding eigenvector of adjacency matrix, i.e.,

Av = mv.

Let v∗ = (v1, . . . , vp)
T and v1 = (vp+1, . . . vp+q)

T > 0. Since C ≥ 0, C 6= 0 and
Dv∗ + Cv1 = mv∗, we have

Dv∗ ≤ mv∗ and Dv∗ 6= mv∗.

Lemma 11. There exists k∗ such that for any k ≥ k∗ and any 1 ≤ i ≤ p,

p∑
j=1

a
(k)
i,j vj < mk.

Proof. It suffices to verify that ρ(D) < m, where ρ(D) is the spectral radius of
D. Suppose otherwise that ρ(D) ≥ m.

For the irreducible matrix D, by Lemma 4, we have

m ≤ ρ(D) ≤ max
i

(Dv∗)i
(v∗)i

≤ m,
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which implies ρ(D) = maxi
(Dv∗)i
(v∗)i

= m. By using Lemma 4, we have

Dv∗ = mv∗.

This contradicts that Dv∗ 6= mv∗.

Let k∗ be as in Lemma 11. It is clear that

Ki =

p+q⋃
j=1

⋃
e∗∈Ek∗i,j

Se∗(Kj) for 1 ≤ i ≤ p+ q.

In other words, K1, . . . ,Kp+q can be regard as dust-like graph-directed sets with
ratio rk

∗
and the adjacency matrix

Ak
∗

=

(
Dk∗

p×p C̃p×q
0 Bk

∗

q×q

)
,

where Dk∗

p×p =
(
a

(k∗)
i,j

)
i,j∈{1,...,p} and C̃p×q 6= 0 since Cp×q 6= 0. By Lemma 11,

p∑
j=1

a
(k∗)
i,j ≤

p∑
j=1

a
(k∗)
i,j vj < mk∗ for 1 ≤ i ≤ p.

Since Σmr and Σm
k∗

rk∗
are bilipschitz equivalent, by rewriting Ak

∗
as A, mk∗ as m

and rk
∗

as r, Proposition 3 follows from

Proposition 4. Let K1, . . . ,Kp,Kp+1, . . . ,Kp+q be a family of dust-like graph-
directed sets with ratio r and the adjacency matrix

A = (ai,j)i,j =

(
Dp×p Cp×q

0 Bq×q

)
such that Av = mv for m ≥ 2, where v = (v1, . . . , vp+q)

T > 0 with vi ∈ N and

p∑
j=1

ai,j ≤
p∑
j=1

ai,jvj < m for 1 ≤ i ≤ p. (4.11)

If Kp+1, . . . ,Kp+q are all bilipschitz to Σrm, then Ki is also bilipschitz equivalent to
Σrm for any 1 ≤ i ≤ p.

Proof. For 1 ≤ i ≤ p, rewrite

Ki =

p+q⋃
j=1

⋃
e∈Ei,j

Se(Kj) = Ji ∪
p⋃
j=1

⋃
e∈Ei,j

Se(Kj), (4.12)

where

Ji =

p+q⋃
j=p+1

⋃
e∈Ei,j

Se(Kj) for 1 ≤ i ≤ p.

By (4.11), Ji 6= ∅. Hence by Lemma 8 and the fact that Kp+1, . . . ,Kp+q are all
bilipschitz equivalent to Σrm, we have

all Ji’s are bilipschitz equivalent to Σrm. (4.13)
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It suffices to prove that K1 and Σrm are bilipschitz equivalent. Let

Ẽki,j =

{
(e1, . . . , ek) ∈ Eki,j : (e1, . . . , el) ∈

p⋃
j=1

E li,j for all 1 ≤ l ≤ k
}

be the set consisting of all directed paths of length k which don’t pass though the
vertexes p+ 1, . . . , p+ q. We deduce from (4.12) that

K1 = J1 ∪
p⋃
j=1

⋃
e∈E1,j

Se(Kj) = J1 ∪
p⋃
j=1

⋃
e∈E1,j

Se(Jj) ∪
p⋃
j=1

⋃
e∗∈Ẽ21,j

Se∗(Kj)

= J1 ∪
2⋃
k=1

p⋃
j=1

⋃
e∗∈Ẽk1,j

Se∗(Jj) ∪
p⋃
j=1

⋃
e∗∈Ẽ31,j

Se∗(Kj) = · · ·

=

(
J1 ∪

⋃
k≥1

p⋃
j=1

⋃
e∗∈Ẽk1,j

Se∗(Jj)

)
∪
(⋂
k≥1

p⋃
j=1

⋃
e∗∈Ẽk1,j

Se∗(Kj)

)
=: J∞ ∪K∞.

(4.14)

Clearly, J∞ is dense in K1. We will find a dense subset J̃∞ ⊂ Σrm such that J∞ and

J̃∞ are bilipschitz equivalent.

By the definition of adjacency matrix, we have #Ei,j = ai,j for 1 ≤ i, j ≤ p + q.
By (4.11), for 1 ≤ i ≤ p,

p∑
j=1

#Ei,j =

p∑
j=1

ai,j < m. (4.15)

Hence there are injections πi :
⋃p
j=1 Ei,j → {1, . . . ,m} for 1 ≤ i ≤ p. Fix a such πi for

each i = 1, 2, . . . , p, we define an injection π :
⋃
k≥1

⋃p
j=1 Ẽk1,j →

⋃
k≥1{1, . . . ,m}k by

π : (e1, e2, . . . , ek) 7→ w1w2 . . . wk ∈ {1, . . . ,m}k,

where wl = πi(el) for 1 ≤ l ≤ k with i being the starting vertex of the edge el. For

e∗ ∈
⋃
k≥1

⋃p
j=1 Ẽk1,j , define Te∗ : Σrm → [π(e∗)] by

Te∗ : x1x2 . . . 7→ π(e∗) ∗ x1x2 . . . .

Let

J̃i = Σrm \
p⋃
j=1

⋃
e∈Ei,j

[πi(e)] for 1 ≤ i ≤ p.

Notice that J̃i 6= ∅ since πi is not a surjection by (4.15). Then

Σrm = J̃i ∪
p⋃
j=1

⋃
e∈Ei,j

[πi(e)] = J̃i ∪
p⋃
j=1

⋃
e∈Ei,j

Te(Σ
r
m) for 1 ≤ i ≤ p.
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It follows that

Σrm = J̃1 ∪
p⋃
j=1

⋃
e∈E1,j

Te(Σ
r
m) = J̃1 ∪

p⋃
j=1

⋃
e∈E1,j

Te(J̃j) ∪
p⋃
j=1

⋃
e∗∈Ẽ2i,j

Te∗(Σ
r
m)

= J̃1 ∪
2⋃
k=1

p⋃
j=1

⋃
e∗∈Ẽk1,j

Te∗(J̃j) ∪
p⋃
j=1

⋃
e∗∈Ẽ3i,j

Te∗(Σ
r
m) = · · ·

=

(
J̃1 ∪

⋃
k≥1

p⋃
j=1

⋃
e∗∈Ẽk1,j

Te∗(J̃j)

)
∪
(⋂
k≥1

p⋃
j=1

⋃
e∗∈Ẽk1,j

Te∗(Σ
r
m)

)
=: J̃∞ ∪ K̃∞.

(4.16)

Clearly, we also have J̃∞ is dense in Σrm.

Since J̃i is a disjoint finite union of cylinders, we have J̃i ' Σrm by Lemma 8.

So Ji ' J̃i for 1 ≤ i ≤ p by (4.13). Fix a bilipschitz bijections fi : Ji 7→ J̃i for each

1 ≤ i ≤ p. In view of (4.14) and (4.16), define f : J∞ 7→ J̃∞ by

f |J1 = f1 and f |Se∗ (Jj) = Te∗ ◦ fj ◦ S−1
e∗ for all e∗ ∈

⋃
k≥1

p⋃
j=1

Ẽk1,j .

Notice that Se∗ and Te∗ are similarities of same ratio rk, where k is the length of e∗.
We claim that f is a bilipschitz bijection. If the claim is true, we can extend f to be
a bilipschitz bijection from K1 onto Σrm since J∞ are dense in K1 and J̃∞ is dense
in Σrm. Hence the proof is complete.

It remains to prove the claim. Let

x, y ∈ J∞ = J1 ∪
⋃
k≥1

p⋃
j=1

⋃
e∗∈Ẽk1,j

Se∗(Jj).

There are three cases to consider.

Case 1. x, y ∈ J1 or x, y ∈ Se∗(Jj) for some e∗. Let c1 = max1≤i≤p blip(fi),
where blip(fi) is the bilipschitz constant of fi defined by (3.4). Then by the definition
of f , if x, y ∈ J1, then

ρ(f(x), f(y))

|x− y|
=
ρ(f1(x), f1(y))

|x− y|
∈ [c−1

1 , c1].

If x, y ∈ Se∗(Jj), recall that Se∗ and Te∗ are similarities of same ratio rk, where k is
the length of e∗. Hence

ρ(f(x), f(y))

|x− y|
=
ρ(Te∗ ◦ fj ◦ S−1

e∗ (x), Te∗ ◦ fj ◦ S−1
e∗ (y))

|x− y|

=
ρ(fj ◦ S−1

e∗ (x), fj ◦ S−1
e∗ (y))

r−k|x− y|

=
ρ(fj ◦ S−1

e∗ (x), fj ◦ S−1
e∗ (y))

|S−1
e∗ (x)− S−1

e∗ (y)|
∈ [c−1

1 , c1].
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Case 2. x ∈ J1 and y ∈ Se∗(Jj) for some e∗. Then y /∈ J1, and so

dist(J1,K1 \ J1) ≤ |x− y| ≤ |K1|,

where |K1| is the diameter of K1. By the definition of f , we also have f(x) ∈ J̃1 and

f(y) /∈ J̃1, and so

r−1 = dist(J̃1,Σ
r
m \ J̃1) ≤ ρ(f(x), f(y)) ≤ |Σrm| = 1.

Consequently, there exists c2 > 1 such that

ρ(f(x), f(y))

|x− y|
∈ [c−1

2 , c2].

Case 3. x ∈ Se∗1 (Jj1) and y ∈ Se∗2 (Jj2) for distinct e∗1 and e∗2. Suppose that

e∗1 = (e1, e2, . . . , ek, ek+1, . . . , el),

e∗2 = (e1, e2, . . . , ek, e
′
k+1, . . . , e

′
l′),

(4.17)

where ek+1 6= e′k+1. So e∗ = (e1, . . . , ek) be the common directed path prefixed to e∗1
and e∗2. There are two subcases to consider.

Case 3.1. e∗ = e∗1 or e∗ = e2. If e∗ = e∗1, then x ∈ Se∗(Jj1) and y ∈ Se∗(Kj1 \Jj1),

and so f(x) ∈ Te∗(J̃j1) and f(y) ∈ Te∗(Σ
r
m \ J̃j1). Recall that Se∗ and Te∗ are

similarities of the same ratio rk. Therefore,

rk min
1≤j≤p

dist(Jj ,Kj \ Jj) ≤ |x− y| ≤ rk max
1≤j≤p

|Kj |,

rk+1 = rk min
1≤j≤p

dist(J̃j ,Σ
r
m \ J̃j) ≤ ρ(f(x), f(y)) ≤ rk|Σrm| = rk.

The same conclusion holds in the case e∗ = e∗2.
Case 3.2. e∗ 6= e∗1 and e∗ 6= e∗2. By (4.17), let

e∗3 = (e1, . . . , ek, ek+1) and e∗4 = (e1, . . . , ek, e
′
k+1).

Let j, j3 and j4 be the end points of e∗, e∗3 and e∗4, respectively. Then we have

x, y ∈ Se∗(Kj), f(x), f(y) ∈ Te∗(Σrm)

and

x ∈ Se∗3 (Kj3) = Se∗ ◦ Sek+1
(Kj3), y ∈ Se∗4 (Kj4) = Se∗ ◦ Se′k+1

(Kj4),

f(x) ∈ Te∗3 (Σrm) = Te∗ ◦ Tek+1
(Σrm), f(y) ∈ Te∗4 (Σrm) = Te∗ ◦ Te′k+1

(Σrm).

Therefore, we have

rkδ∗ ≤ |x− y| ≤ rk max
1≤j≤p

|Kj |,

rk+1 = rk min
e 6=e′

dist(Te(Σ
r
m), Te′(Σ

r
m)) ≤ ρ(f(x), f(y)) ≤ rk|Σrm| = rk,

where

δ∗ = min
1≤j,j3,j4≤p

{
dist(Se(Kj3), Se′(Kj4)) : e ∈ Ej,j3 , e′ ∈ Ej,j4 , e 6= e′

}
.

Combining Cases 3.1 and 3.2, we conclude that there exists c3 > 1 with

ρ(f(x), f(y))

|x− y|
∈ [c−1

3 , c3].

Combining all the cases, we have f is a bilipschitz bijection from J∞ onto J̃∞.
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5. Self-similar sets. In this section, under the assumptions of total disconnect-
edness and non-existence of complete overlaps, we will show that the self-similar sets
in Theorem 3 can be regarded as the graph-directed fractals with integer characteris-
tic. Thus Theorem 3 follows from Theorem 1. Finally we prove Proposition 1, which
is the basis of efficient algorithm to test the existence of complete overlaps.

5.1. Total disconnectedness and finite type. Let E be a totally discon-
nected self-similar set generated by {Si}mi=1, where

Si(x) = gi(x)/n+ bi

with the isometry gi ∈ G and bi ∈ Γ.
Fix a positive number r0 such that

B(0, r0) ⊃
m⋃
i=1

(
B(0, r0)

n
+ bi

)
(5.1)

and that

m⋃
i=1

(
B(0, r0)

n
+ bi

)
is connected, (5.2)

where B(0, r0) is the closed ball with center 0 and radius r0.
We introduce types to describe the structure of the self-similar set E. For (g, b) ∈

G × Γ, denote by S(g, b) the similarity x 7→ gx/n+ b and let

S = {S(g, b) : (g, b) ∈ G× Γ}. (5.3)

Definition 4. A finite set V ⊂ S is called a type if

χV :=
⋃
S∈V

S
(
B(0, r0)

)
is connected.

We say two types V1, V2 are equivalent, denoted by V1 ∼ V2, if there exists an isometry
I such that

V1 =
{
I ◦ S : S ∈ V2

}
. (5.4)

Denote by [V ] the equivalence class containing V .

If V is a type, we consider the compact set

KV =
⋃
S∈V

S(E). (5.5)

In particular, by (5.2), U1 = {S1, . . . , Sm} = {S(g1, b1), . . . , S(gm, bm)} is a type and

E = KU1 .

Lemma 12. If V1 ∼ V2, then KV1 = I(KV2) and χV1 = I(χV2) for some isometry
I.
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Proof. Since V1 ∼ V2, there is an isometry I satisfying (5.4). So

KV1
=
⋃
S∈V1

S(E) =
⋃
S∈V2

I ◦ S(E) = I

( ⋃
S∈V2

S(E)

)
= I(KV2

)

and

χV1
=
⋃
S∈V1

S(B(0, r0)) =
⋃
S∈V2

I ◦ S(B(0, r0)) = I

( ⋃
S∈V2

S(B(0, r0))

)
= I(χV2

).

Now substituting E =
⋃m
i=1 Si(E) into (5.5), we get

KV =
⋃
S∈V

S

( m⋃
i=1

Si(E)

)
=

1

n

⋃
S∈V

m⋃
i=1

n · S ◦ Si(E)

=
1

n

⋃
S(g,b)∈V

m⋃
i=1

(
ggiE

n
+ gbi + nb

)
=

1

n

⋃
S∈S(V )

S(E).

Here the set

S(V ) :=
{
n · S ◦ Si : S ∈ V, 1 ≤ i ≤ m

}
(5.6)

=
{
S(ggi, gbi + nb) : S(g, b) ∈ V, 1 ≤ i ≤ m

}
⊂ S,

since ggi ∈ G and gbi + nb ∈ Γ. We divide the set

χS(V ) =
⋃

S∈S(V )

S
(
B(0, r0)

)
=

⋃
S(g,b)∈V

m⋃
i=1

(
B(0, r0)

n
+ gbi + nb

)

into connected components. Since B(0, r0)/n are connected, every connected compo-
nent must have the form χU with U being a type. Let TV be the family of all such
types. Clearly, S(V ) =

⋃
U∈TV U .

Therefore, for each type V , we have a family S(V ) of similarities and a family TV
of types. Using TV , we get the decomposition

KV =
1

n

⋃
S∈S(V )

S(E) =
1

n

⋃
U∈TV

KU . (5.7)

{KU}U∈TV are disjoint since {χU}U∈TV are disjoint and

KU =
⋃
S∈U

S(E) ⊂
⋃
S∈U

S
(
B(0, r0)

)
= χU .

Here we use the fact that E ⊂ B(0, r0).
We say that U is generated by V directly (or after 1 step), denoted by V → U if

U ∈ TV . We also say that Vk is generated by V after k steps if

V → V1 → · · · → Vk.

We say U is generated by V if U is generated by V after k steps for some k ≥ 1.



1148 L.-F. XI AND Y. XIONG

We define the generation of equivalent classes similarly. [U ] is said to be generated
by [V ] directly (or after 1 step), denoted by [V ] → [U ] if V ′ → U ′ for some V ′ ∈ [V ]
and some U ′ ∈ [U ]. [Vk] is said to be generated by [V ] after k steps if

[V ]→ [V1]→ · · · → [Vk].

[U ] is said to be generated by [V ] if [U ] is generated by [V ] after k steps for some
k ≥ 1.

We present two lemmas on the types generated by U1 = {S1, . . . , Sm}, which is
the IFS of the self-similar set E.

Lemma 13. If U is generated by U1 after k steps, then{
S/nk : S ∈ U

}
⊂
{
Si1...ik+1

: i1 . . . ik+1 ∈ {1, . . . ,m}k+1
}
.

Proof. We prove this by induction on k. If k = 1, then U is generated by U1

directly. For every S ∈ U , we have S ∈ S(U1) since U ⊂ S(U1). By (5.6), every S ∈ U
has the form S = n · Si1 ◦ Si = nSi1i with i1i ∈ {1, . . . ,m}2 since U1 = {S1, . . . , Sm}.
So the lemma holds for k = 1.

Now suppose the lemma holds for all U∗ generated by U1 after k − 1 steps. If
U is generated by U1 after k steps, then U is generated by U∗ directly for some U∗

generated by U1 after k − 1 steps. For every S ∈ U , we have S ∈ S(U∗) since U ⊂
S(U∗). By (5.6), there are an S∗ ∈ U∗ and 1 ≤ i ≤ m such that S = n · S∗ ◦
Si. By induction assumption, we have S∗/nk−1 = Si1...ik−1

for some i1 . . . ik−1 ∈
{1, . . . ,m}k−1. Hence S/nk = nk−1S∗ ◦Si = Si1...ik−1i with i1 . . . ik−1i ∈ {1, . . . ,m}k.
This completes the proof.

The following lemma is the key point to describe the structure of the self-similar
set E.

Lemma 14. There are only finitely many equivalent classes of types generated by

[U1] = [{S1, . . . , Sm}].

To prove Lemma 14, we need a lemma related to the total disconnectedness of E.
Let Hk =

⋃
S∈S S(Ek) and H =

⋃
S∈S S(E), where

Ek =
⋃

i1...ik∈{1,...,m}k
Si1,...ik(B(0, r0)).

We have Ek
dH−−→ E and thus Hk ∩ B(0, r)

dH−−→ H ∩ B(0, r) for all r > 0. Note that
(5.1) implies that

E ⊂ Ek ⊂ B(0, r0) for all k ≥ 1. (5.8)

Lemma 15. There exists an integer k0 such that every connected component in
Hk0 touching B(0, r0) cannot touch {x : |x| ≥ r0 + 1}.

Proof. Suppose on the contrary that for each k there is a connected components
Xk in Hk touching B(0, r0) and {x : |x| ≥ r0 + 1}. Write

X̃k = Xk ∩B(0, r0 + 1) and X̂k = Xk ∩ {x : |x| ≥ r0 + 1}.
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Let Ak be a connected component of X̃k such that Ak ∩ B(0, r0) 6= ∅. We claim
that Ak touches {x : |x| = r0 + 1}. If otherwise, Ak ∩ {x : |x| = r0 + 1} = ∅, since

Ak is a component of X̃k, then for each x ∈ X̃k with |x| = r0 + 1, there are two

compact sets Ax and A∗x such that X̃k = Ax∪A∗x, Ax∩A∗x = ∅, x ∈ Ax and Ak ⊂ A∗x.

Note that Ax is relative open in X̃k and X̃k ∩ {x : |x| = r0 + 1} is compact. So

there is a finite cover Ax1 , . . . , Axt of X̃k ∩ {x : |x| = r0 + 1}. Let A =
⋃t
i=1Axt and

A∗ =
⋂t
i=1A

∗
xt

. Then X̃k = A ∪ A∗, A ∩ A∗ = ∅ and X̃k ∩ {x : |x| = r0 + 1} ⊂ A. It

follows that A∗ ∩ X̂k = ∅ since A∗ ⊂ X̃k \ {x : |x| = r0 + 1}. Hence the two disjoint

nonempty compact sets X̂k ∪A and A∗ form a decomposition of Xk. This contradicts
the connectedness of Xk, and so the claim follows.

By Lemma 9, for some subsequence {ki}i, there is a connected compact set A∞

such that Aki
dH−−→ A∞. Since Ak ⊂ Hk ∩B(0, r0 + 1)

dH−−→ H∩B(0, r0) and Ak touches
B(0, r0) and {x : |x| = r0 + 1}, A∞ ⊂ H ∩ B(0, r0 + 1) is a connected set touching
B(0, r0) and {x : |x| = r0 + 1}. Hence H ∩B(0, r0 + 1) is not totally disconnected.

Recall that H∩B(0, r0 + 1) = B(0, r0 + 1)∩
⋃
S∈S S(E). By (5.3), there are only

finitely many S ∈ S such that S(E)∩B(0, r0+1) 6= ∅ since G is finite and Γ is a discrete
additive group. Thus, by Lemma 10 and the fact that the E is totally disconnected,
H∩B(0, r0 +1) is also totally disconnected. This contradiction completes the proof.

Proof of Lemma 14. Let k0 be as in Lemma 15. Note that there are only finitely
many types generated by U1 after k steps with k ≤ k0.

Let U be a type generated by U1 after k steps with k > k0. We claim that

χU/n
k0 ⊂ Hk0 . (5.9)

To prove the claim, we use Lemma 13 to see that{
S/nk0 : S ∈ U

}
⊂
{
nk−k0 · Si1...ik+1

: i1 . . . ik+1 ∈ {1, . . . ,m}k+1
}
.

Routine computations show that

nk−k0Si1...ik−k0+1
=
gi1 · · · gik−k0+1

n
+ (gi1 · · · gik−k0

bik−k0+1
+ · · ·+ nk−k0bi1).

By (5.3), we have nk−k0Si1...ik−k0+1
∈ S since Γ is a discrete additive group and G

is a finite subgroup of the isometric group on Γ. Combining this with Lemma 13, we
have

χU/n
k0 =

⋃
S∈U

S
(
B(0, r0)

)
/nk0 ⊂

⋃
i1...ik+1∈{1,...,m}k+1

nk−k0Si1...ik+1

(
B(0, r0)

)
=

⋃
i1...ik+1∈{1,...,m}k+1

nk−k0Si1...ik−k0+1
◦ Sik−k0+2...ik+1

(
B(0, r0)

)
⊂
⋃
S∈S

⋃
j1...jk0

S ◦ Sj1...jk0

(
B(0, r0)

)
= Hk0 .

Now pick S∗ ∈ S such that χU/n
k0 ∩ S∗

(
B(0, r0)

)
6= ∅. Since S∗

(
B(0, r0)

)
=

S∗(0) +B(0, r0)/n, we have(
χU/n

k0 − S∗(0)
)
∩B(0, r0) 6= ∅. (5.10)
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Let U∗ = {S − nk0S∗(0) : S ∈ U}. Notice that S∗(0) ∈ Γ, hence U∗ is also a type,
U∗ ∼ U and χU∗ = χU − nk0S∗(0). By (5.9) and (5.10),

χU∗/n
k0 ⊂ Hk0 − nk0S∗(0) = Hk0 and χU∗/n

k0 ∩B(0, r0) 6= ∅.

By Lemma 15,

χU∗/n
k0 ⊂ B(0, r0 + 1).

We conclude that, if U is generated by U1, then either U is generated by U1 after
at most k0 steps or there is an U∗ with U∗ ∼ U such that χU∗/n

k0 ⊂ B(0, r0 + 1).
Since Γ is discrete and G is finite, we get the finiteness of equivalent classes of types
generated by [U1].

5.2. Proof of Theorem 3. Lemmas 12 and 14 ensures the dust-like graph-
directed structure of fractals related to E. In fact, let

U1 = {S1, . . . , Sm}.

By Lemma 14, there are only finitely many equivalent classes generated by [U1].
Suppose all such classes are [U2], . . . , [Up] except for [U1]. Note that the equivalent
classes of types generated by [Ui], for 2 ≤ i ≤ p, must also be generated by [U1]. So
by (5.7) and Lemma 12, {KU1

,KU2
, . . . ,KUp

} forms a family of graph-directed sets
with ratio 1/n.

To show that these sets have integer characteristic m, letting A = (ai,j)1≤i,j≤p
be the corresponding adjacency matrix, it suffices to prove that, for 1 ≤ i ≤ p,

m ·#Ui =

p∑
j=1

ai,j#Uj . (5.11)

By (5.7), this is equivalent to that, for each V ∈ {U1, . . . , Up},

m ·#V =
∑
U∈TV

#U.

Note that
⋃
U∈TV U = S(V ) by the definition of TV . Combining this and (5.6), we

have ∑
U∈TV

#U = #S(V ) = #
{
S ◦ Si : S ∈ V, 1 ≤ i ≤ m

}
= m ·#V,

if we can show that S ◦ Si 6= S∗ ◦ Sj if (S, i) 6= (S∗, j).
To see this, suppose that [V ] is generated by [U1] after k steps and that

(S, i), (S∗, j) ∈ V × {1, . . . ,m} are distinct. By the definition of generation of the
equivalent classes of types and Lemma 13, there is an isometry I such that

S/nk, S∗/nk ∈
{
I ◦ Si1...ik+1

: i1 . . . ik+1 ∈ {1, . . . ,m}k+1
}
.

Therefore,

S ◦ Si = nkI ◦ Si1...ik+1i and S∗ ◦ Sj = nkI ◦ Sj1...jk+1j ,

where i1 . . . ik+1i 6= j1 . . . jk+1j since (S, i) 6= (S∗, j). We have S ◦ Si 6= S∗ ◦ Sj since
E has no complete overlaps.

We conclude that {KU1
,KU2

, . . . ,KUp
} are dust-like graph-directed sets with ratio

1/n and integer characteristic m. Therefore, it follows from Theorem 1 that E = KU1

is bilipschitz equivalent to Σ
1/n
m .
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5.3. Proof of Proposition 1. Recall that E is generated by {Si}mi=1, where

Si(x) = gi(x)/n+ bi.

The self-similar set E has complete overlaps if and only if there are two sequences
i1 · · · it and j1 · · · jt with i1 6= j1 such that

Si1 ◦ · · · ◦ Sit = Sj1 ◦ · · · ◦ Sjt .

This is equivalent to

gi1 · · · git = gj1 · · · gjt (5.12)

and Si1 ◦ · · · ◦ Sit(0) = Sj1 ◦ · · · ◦ Sjt(0) which means

bi1 +
gi1bi2
n

+ · · ·+
gi1 · · · git−1

bit
nt−1

= bj1 +
gj1bj2
n

+ · · ·+
gj1 · · · gjt−1

bjt
nt−1

. (5.13)

We will show that (5.12) and (5.13) are equivalent to that there is an edge chain
starting at an original vertex (bi1 − bj1 , gi1 , gj1) and ending at a boundary vertex
(0, gi1 · · · git , gj1 · · · gjt) with gi1 · · · git = gj1 · · · gjt , i.e.,

(bi1 − bj1 , gi1 , gj1)
(i2,j2)−−−−→ . . .

(it,jt)−−−−→ (0, ft, f
′
t), where ft = f ′t = gi1 · · · git . (5.14)

Thus Proposition 1 follows.
By the definition of edges (see Step 2 of the algorithm),

(bi1 − bj1 , gi1 , gj1) = (x1, f1, f
′
1)

(i2,j2)−−−−→ (x2, f2, f
′
2)

(i3,j3)−−−−→ · · · (ik,jk)−−−−→ (xk, fk, f
′
k)

(ik+1,jk+1)−−−−−−−→ · · · (it,jt)−−−−→ (xt, ft, f
′
t) = (xt, gi1 · · · git , gj1 · · · gjt),

where fk = gi1 · · · gik , f ′k = gj1 · · · gjk and

xk+1 = nxk + fkbik+1
− f ′kbjk+1

∈ Γ.

Therefore,

n−t+1xt = (bj1 − bi1) +

(
gj1bj2
n
− gi1bi2

n

)
+ · · ·+

(
gj1 · · · gjt−1

bjt
nt−1

−
gi1 · · · git−1

bit
nt−1

)
.

Consequently, if (5.12) and (5.13) hold, then xt = 0 and (5.14) follows. Con-
versely, if (5.14) holds, then ft = f ′t implies (5.12) and xt = 0 implies (5.13). This
completes the proof of Proposition 1.

6. Open questions.

Question 1. How to generalize the result to the case of irrational characteristic?

An interesting class of self-similar sets with overlaps is {Eλ}λ, where Eλ is gen-
erated by

S1(x) = x/3, Sλ = x/3 + λ/3 and S3(x) = x/3 + 2/3.

This class has been studied by Kenyon [17], Rao and Wen [31], Świa̧tek and Veerman
[35] and Hochman [15].
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It is proved in [14] that E2/3n and E2/3n′ are bilipschitz equivalent for any n, n′ ≥
1, and that dimHE2/3n = dimHE2/3n′ =

(
log 3+

√
5

2

)
/ log 3.

In fact, E2/3n can generate graph-directed sets with adjacency matrix

Mn =



1 1 0 0 . . . 0 0 0 0
0 0 1 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 1 1 0 0
0 0 0 0 . . . 0 0 1 1
1 2 0 0 . . . 0 0 0 0
0 0 1 2 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 1 2 0 0
0 0 0 0 . . . 0 0 1 2


2n×2n

.

The matrix Mn has Perron-Frobenius eigenvalue (3 +
√

5)/2 and corresponding posi-
tive eigenvector.

Let λ1 =6/7 and λ2 =8/9, then their adjacency matrices of corresponding graph-
directed sets are

B1 =


1 1 0 0 0 0
1 1 1 0 0 0
1 0 1 1 0 0
1 1 1 0 1 0
1 0 1 1 0 1
1 0 1 1 0 2

 and B2 =

1 1 1
1 1 2
0 1 1

 .

Using Mathematica 7.0, we find these two matrices have the same Perron-Frobenius
eigenvalue 2.879 . . ., we ask

whether Eλ1
and Eλ2

are bilipschitz equivalent or not?

Looking at Theorem 3, we find there is an algorithm to test the existence of
complete overlaps, so the following question arises naturally.

Question 2. How to test in polynomial time the total disconnectedness of self-
similar sets in Λ, especially for fractal cubes?

A self-similar set E is called a fractal cube if its IFS {Si}i has the form Si(x) =
(x + bi)/n with bi ∈ {0, 1, . . . , n − 1}l with l ≥ 2. Lau, Luo and Rao [18] gave an
extensive study of the topological structure of fractal squares (the case l = 2). Among
other things, they obtained an algorithm to test the total disconnectedness. However,
their argument depends heavily on the topological property of R2. It seems difficult to
find an algorithm for l ≥ 3. Even for fractal squares, there seems no obvious manner
to see whether they are totally disconnected. Please see the following interesting
example.

Example 7. Consider the initial self-similar pattern in Figure 4. At first sight,
one may guess that the self-similar set is totally disconnected. However, this self-
similar set includes infinitely many lines.

In the unit square, we have γ1 from placement 2 to placement 3, γ2 from placement
1 to placement 2 and γ3 from placement 3 to placement 1. In the small squares with
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Fig. 4. A self-similar set which is not totally disconnected

side length 1/6, we also have small curves which are similar to γ1, γ2, γ3 respectively.
Therefore, this self-similar set includes γ1, γ2, γ3. In fact, the three curves {γ1, γ2, γ3}
are the straight lines of slope 2 connecting the six points (0, 2/5), (3/10, 1), (3/10, 0),
(4/5, 1), (4/5, 0), (1, 2/5), respectively. They are also graph-directed sets (satisfying
the open set condition) with ratio 1/6 and adjacency matrix2 2 1

3 3 3
1 1 2

 .
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