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ON THE SECOND CONFORMAL EIGENVALUE
OF THE STANDARD SPHERE*

OLIVIER DRUETT

Abstract. In this paper, we answer a natural question about the maximum of the second
eigenvalue of the Laplacian, see [I1], for metrics conformal to the round one on spheres of dimensions
n > 3.
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We consider (M, g) a smooth compact Riemannian manifold of dimension n > 2.
We let A, be the Laplace-Beltrami operator given by A, = —divg (V.). It is well-
known that its spectrum is given by a discrete sequence of eigenvalues

0:)\0<)\1§)\2§§)\p§

where each eigenvalue is counted with multiplicity one, the sequence converges to +oo,
and A\g = 0 is the trivial eigenvalue with eigenspace associated restricted to constants.
Getting bounds on these eigenvalues under some geometric assumptions has been the
subject of an intensive study.

In this paper, we consider the so-called conformal eigenvalue problem. Given
(M, g) a smooth compact Riemannian manifold of dimension n > 2 and k > 1 some
integer, we set

Ak (M, [g]) = sup A (§) Voly (M) . (0.1)

g€lgl

The quantity in the supremum is scale invariant. In other words, we are interested
in maximizing the k-th eigenvalue of the Laplacian among the metrics conformal to
a given one with fixed volume. Here, [g] denotes the conformal class of the metric g,
that is

9] ={g=e*g,uecC> (M)} .

Korevaar [I8] proved that the supremum is always finite. Note that, if not re-
stricted to a given conformal class, the supremum is always infinite, except in dimen-
sion 2 (see [2 22]). Note also that the infimum of any eigenvalue in a given conformal
class (with fixed volume) is 0. One can arrange the conformal factor in such a way
that any of the k first eigenvalues is as small as we want (see [3]). These remarks make
the problem rather natural to look at. For surfaces, this subject has been recently
intensively studied, see for instance [B] [14] [15] 16} 17, [19]. In higher dimensions, much
less is known and we refer to [3, [7, [§]. Let us also mention recent works on Steklov
eigenvalues, a problem somewhat related to the above one : [0, 10, 12].

Note that one can easily prove that
Ax (M, [g]) = Ax (8", [h])
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1048 O. DRUET

for any compact n-dimensional Riemannian manifold (M, g) where (S™, h) is the stan-
dard sphere (see [3]). It is of course natural to think that the case of equality is
achieved only for the standard sphere. It is thus rather natural to first investigate the
case of the round sphere.

In this context, the first result concerns the first conformal eigenvalue and is an
extension of the celebrated theorem of Hersch [13] : we have that

2

Ay (S", [h]) = nwy (0.2)

and the supremum in is achieved only by the round sphere. Here, w, denotes
the volume of the standard unit n-sphere. This result was proved by Hersch [I3] in
dimension 2 and extended to higher dimensions by El Soufi and Ilias [6]. Remember
that, in dimension 2, there is only one conformal class on the sphere.

A Hersch-type result was proved for the second eigenvalue in 2-d by Nadirashvili
[20] : namely, we have that, for any metric g on the 2-sphere S?,

A2(g9)Voly (S?) < 167 ,

the case of equality, never achieved, being asymptotically approached by the disjoint
union of two spheres of same volume. In particular, on deduces that

A5 (S?,[h]) = 167 . (0.3)

It is then natural to ask, as was done in [I1], if the same holds true in higher
dimensions, namely if

3

Az (8", [h]) = n (2wn)™ (0.4)

the supremum being approached by two disjoint spheres of same volume. A big step
toward this conjecture was done by Girouard-Nadirashvili-Polterovich [II] since they
gave, in odd dimensions, an upper-bound on As (S™,[h]), really close to (see
theorem [1| below). In this paper [I1], the authors also investigate a problem close
to the above one and they prove that the second Neumann eigenvalue of domains
in the plane of fixed volume is always bounded from above by the second Neumann
eigenvalue of two attached disks. Petrides [2I] recently extended their result on the
second conformal eigenvalue of the standard sphere to all dimensions, unifying by the
way the 2-dimensional proof of Nadirashvili [20] and the odd-dimensional proof of
Girouard-Nadirashvili-Polterovich [11] :

THEOREM 1 ([II], 20} 21]). Let (S™, h) be the standard unit n-sphere. For any
metric ¢ = e**h conformal to the round metric h, we have that

2

Aa(g)Voly (SM)7 < Kon (2wp)™

where K, is some universal constant depending only on the dimension. Moreover, we
have that Ko =1, 1 < K,, <1.04 for alln >3 and K,, -+ 1 as n — +oc.

This result is extremely close to (0.4). However, as surprising as it may be, we
prove in this paper that (0.4]) is false :

THEOREM 2. Let (S™, h) be the standard unit n-sphere, n > 3. There exists a
metric g = e?“h conformal to the round metric h such that

2

A2(g)Volg (S™)™ > n(2wy,)

2
n
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In particular, we have that
2

Ao (S™,[h]) > n (2wp)™

for allm > 3.
Note that this theorem immediately leads to the following corollary :

COROLLARY 1. Let (S, h) be the standard unit n-sphere, n > 3. Then, for any
k> 2,

Ay (S, [h]) > n (kwn)™ .

This proves that the k-th eigenvalue of the Laplacian for metrics conformal to the
standard one on the sphere is not maximized by a union of k disconnected spheres as
soon as k > 2. This corollary is a consequence of theorem [2| and of the following fact,
proved in [3] :

Apgr (M, [g])% > Ay (M, [g]) % + nZw,

for all k£ > 1 and all smooth compact Riemannian manifold (M, g).

In the rest of the paper, we prove theorem[2] In section[I} we set up some notations
and introduce a family of metrics gg conformal to h. In section @ we give some
preliminary results on the two first eigenvalues of A,,. We prove in particular that

2 2
A2 (g) Volg, (S")™ — n(2w,)™ as B — 1. Section [3|is devoted to a fine asymptotic
study of A2 (gg), proving that the previous limit is achieved from above as § — 1.
At last, we recall and improve in section [4 some known results used throughout the
paper.

1. Notations and preliminaries. We let (S", k) be the unit sphere

S* ={(zo,...,2n) ER" ' st. 2F + 27+ -+ 2} =1}
with the round metric b, which is the metric induced from the Euclidean one in R?*1.
In the following, n > 3.

1.1. Stereographic projections. We define in the following 7 : R™ +— S™ \
{N} and 715 : R" — S"™\ {S} where N = (1,0,...,0) and S = (—1,0,...,0) are the
north and south poles by

lz|2 =1 214 2z,
m) = 7 1.1
™™ (xlﬂ , L ) (|CC2 + 1’1 + |1'|2 1 ¥ |JU|2 ( )
and
1-— |l‘|2 2z 2%y,
= 1.2
s (xly 7'rn) <1+|x|27 1+|1"2’ ) 1+|.’L'|2 ( )

where |z|? = 22 + -+ + 22. It is well-known that these stereographic projections 7y
and mg are conformal maps and that

Thh=nhh=Uw3¢ (1.3)
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where £ is the Euclidean metric and

n—2

2 2
Ulz) = (1+|a?|2> : (1.4)
In the following, given a function u : S® — R, we let uV and u° be defined on R™ by
uN (x) = U(x)uony(z) and v¥(z) = U(z)u o wg(x) . (1.5)
Note that, thanks to , we have that

/udvh:/ (uowN)U%dx:/ (uowS)Un21L2dx.. (1.6)

1.2. The Green function of the conformal Laplacian. The conformal
Laplacian of a Riemannian manifold (M, g) is in dimensions n > 3 the operator

n—2
Ly=A,+——5
g g9 + 4(n _ 1) g9
where Sy is the scalar curvature of (M,g) and A, = —div, (V.) is the Laplace-
Beltrami operator. On the standard sphere (S™, h), we have S;, = n(n — 1) so that
n(n —2
L=+ M2

while, on the Euclidean space (R",§), Le = A¢. The conformal Laplacian is confor-
mally invariant in the following sense : if g = uvz g for some smooth positive function
u, we have that

_n+2
Lzp =u" =2 Ly (up) (1.7)

for all ¢ € C? (M). In particular, for any function u € C? (S"), 7 (1.5) and (1.7)
give that

AguN = U%Lhuom\z and Agus = U%LhUOWS“ (18)

We let G be the Green function of Ly on (S™, h). It is defined on S™ x S™ minus the
diagonal by

n—2

1 1 2 1 .
= =——|z— " 1.9
G (9) (n— 2)wp_1 (2 — 2(z, y>> (n— 2)wn_1 o=l (1.9)
where (-,-) and | - | denote the Euclidean scalar product and norm in R**!. For any

x € S” and any function u € C? (S™), we have that

u(r) = | G () nuy) duny). (1.10)

Noting that
G (mn(2), 7N (y) = G (rs(x), ms(y))

1 1 1 2—n
= — 1.11
e U U e
we get with (1.6), (1.8)) and (L.10]) that
1
ulN(z) = 7/ z—yP AN (y) d 1.12
(z) =2 Rnl yl gu (y)dy (1.12)

and the same holds with respect to the south pole.



SECOND CONFORMAL EIGENVALUE OF STANDARD SPHERE 1051

1.3. The fundamental functions. We let 5 > 1 and we set

_ [B-1
we =551 (1.13)

We shall in the following consider the following functions defined on S™ :

n—2 n—2

Us=(8=1) © (B+m0)' %, Vy=(8=1) "
U9 = (82 —1) "2 U7 (1+ Bao) , V= (82-1)
U= 2,U7 7 and Vi = &,V

/8 - xo)l_i )

Vﬁm (1 — /833‘0) s

~~

[N

fori=1,...,n. We have that

-z T n_q
U5 = Vi = us 2U<#ﬁ> L VR =US =i U (se)

N s 1-n x s N n_q
)" = (V§)" =ns *U° (Hﬂ)  (U5) = (V)" =—ni U (npa) ,
i N i S 1-% .. X 3 S i N -1,
3" = 3)° = 0 () and (©)° = ()" = 0 ()
where
2
n -1
00(z) = U ()72 121 5 (1.14)
and
Ul(z) = U(x)" 2y (1.15)
fori=1,...,n. Note that
_2 n
AU = %Uﬁi (1.16)
and
i_nn+2) a4
AU = TUn—2U (1.17)
for i =0,...,n so that, by (1.8]), for any 5 > 1,
n(n —2) ni2 n(n —2) nt2
LUg = 1 U *, LpVg = Tvﬁ 2 (1.18)
and
;_nn+2) A5 ;oonn+2) -

fort=0,...,n.
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1.4. The metric gg and its volume. In the following, we consider the metric
gs € [h] defined for 8 > 1 by

_4

gs=ujz "h (1.20)
where
ug =Us +Vj . (1.21)
Note that
ug (—xo, 21, ..., &n) = ug (o, x1,...,Tyn) .

The manifold (S", gg) looks geometrically like two spheres attached by a small neck.
Let us compute an expansion of the volume of (S™, gg) :

LEMMA 1.1. We have that
V l Sn =9 2n+2 n—2 n—2
09/%( )= wn+mwnflﬂﬁ +0(Nﬁ )
as p— 1.

Proof. We write, by symmetry, that

2n

Volg, (S") = 2/ up ™" dup,
sm

where S” = {(x0,...,2,) € S" s.t. xp < 0}. Using the stereographic projection my,
we get thanks to (1.5) and (1.6]) that
2n

Vol,, (") = 2/3 L) @ (1.22)

We have that

in By(1). Noting that

n—2 n—2
2

MERT_?U <x> > (2p5) 7 (L+pz) 7

in By(1), it is straightforward to make an asymptotic expansion of Voly, (S™), using
lemma [£.] of section [d] to get the result stated in the lemma. O
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1.5. Eigenvalues and eigenfunctions of A, . Consider A\g an eigenvalue of
Ag4, with its associated eigenfunction 5. Then we have that

Agsthp = As¥s -
Using (|1.7]), we can write that

_nt2

Agpp = Lgythp — Lo, (L)thg = ug "% (L (uptp) — YpLnug)

so that, setting g = ugg,

s Lpu
Lpps = (MUB ‘4 uf) ©p -

We shall rewrite this as
n(n — 2 4
Lpyppg = (((4) + )\5) ug*2 + Aﬁ) Ly (1.23)

where

_ Lpug nin—2) 4

A uj . (1.24)

up 4

In the following, we shall also assume that 15 is normalized such that
a4
/ ug’_Qcp% dvp, = 2w, . (1.25)
S§n

Note also that a direct consequence of the fact that / Yp dvg, = 0 is that
S’n

n+2
/ uz " ppdv, =0. (1.26)

We shall need in the following some estimates on Ag. For that purpose, let us write

with (T.18) that

-2 n+2 nt2
Lyug = 7"(”4 ) (UB“ + Vﬁ"2>

so that

n+2 n+2
n

nn—-2) (Ug™* +Vﬂm
4 Usg + Vg

Ap = — (Us + Vp)™2

In S”, we have that Us > V3 so that
4 nt2 nt2 V. %
Ap — n—2 n—2 -1 VB B
nln—2) 8 (Uﬁ + V3 )UB ( U5+O<U§
= Y Vi
_ 14— B B

- n+2Vs VﬁQ e
=Uj <7’l—2[]ﬂ+0<(]§ + 0| Vg U
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in S™. By symmetry, we obtain in particular that
n—2 6—n 6—n _4 _4
|Ag| < Cpg? <Ug2 + Vﬁ“) <C (U;z + Vﬁ"’") (1.27)
in S™ for some C > 0 and that
A" Ag (7 () — —nln +2)2% U (1.28)

in CP . (R™) as B — 1 where 7 stands for 7y or 7.

2. First properties of the eigenvalues of A, ,. We first prove an estimate
which holds for any sequence of eigenfunctions of Ay, of bounded associated eigen-
values :

PROPOSITION 2.1. Let (A, ¢g) satisfying (1.25), (1.25]) and (1.26) be such that
Ag = O (1). Then there exists C > 0 such that

lpsl < C(Up + Vp)
on S™.

Proof. We use the Green representation formula (1.10]) to write that

pp(z) = . G (2,y) Lnps(y) don(y) -

Thanks to (|1.23]), this leads to

est0) = (M2 0 ) [ 9@ us) ™5 es(0) dont)

-/ G (z,y) As(y)ep(y) don(y)

where Ag is given by (1.24]). Thanks to the fact that Ag = O(1) and to (1.27)), we
know that there exists C' > 0 such that

pa(@) < C /S Gy) (Usw)™ +Vs)™ ) sl doly) . (21)

Let us consider the following inequality : there exists D, ,, > 0 such that

08(@) < Dy l0sllon is? * Us(@)? + Va(z)?) . (2.2)

It is clear that the above inequality holds for p = 0 with Dy, = 1. Assume that it
holds for some p > 0. We can then use (2.1 to write that

loa(2)| < CDpnps” ¥ llesll,
x| G@) (Us)™= + Vo) ™) (Us(w)? + Vaw)?) deny)
which leads to

~ n—2 _4 _4
98(@)] < Dptty” " sl /S G (2,y) (Us(y) ™+ + V() ™27 dun(y)
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for some ].’V?p’n depending only on p and n. We can then apply lemma of section
to get that

n—4

2.2 ifp>——

‘-’ up n—9

—4

(2.2), = [(22), forall0<g<1 ifp:n 5
7 —

) —4

2.2p+n32 lfp < m

It is then easy to deduce by induction that (2.2)) holds for p =1 in all dimensions. In
other words, there exists C' > 0 such that

n—z
2

—2
lpsl < Cug® sl (Us +Vs) - (2.3)

It remains to prove that ||¢g|lecc = O (u;_%). We let 23 € S™ be such that ¢g (23) =
lglloo. Thanks to (2.3), we have that

1—(xg,N) :O(,u%) or1—(x3,5) :O(u%) .

We can assume, without loss of generality, that the second possibility occurs, which
means that

28] = O (up)
where x5 = mn (23). We set
- —1
@5 = llosll o 5 (usz) -
Thanks to (2.3), we know that
|ps(x)| < 20U (z)
for all x € By (,ugl). Moreover we have that

‘(,55<Z(Z})‘:U(z5)—>2T as B — 1.

Thanks to (1.8) and (1.23)), we have that
- n(n — 2 4 _a_ -
Ay = ((4) + Ma) wh (uh) ™" @p + upU (ppw) ™= Ap (my (1)) $s -

Standard elliptic theory then clearly gives that (@) is uniformly bounded in C* (K)
for all K compact subset of R™ so that, after the extraction of a subsequence,

¢ — o in Cf,. (R™)

where @g Z 0 since ¢g (20) = 2" where 29 = limg_,4 ,u/;lzﬂ. Then we easily get

with (T.6) that

[ dan= [ )™ @)
Sn Bo(1)
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which gives thanks to (|1.25) and the above convergence that
2 _4
20, 2 sl iy [ UPsgbda o))
Bo(1)

We deduce that ||¢gllec = O (,u;_%) which concludes the proof of the proposition
with (23). O

We are now ready to get estimates on the two first eigenvalues of Ay, that we
denote by A1 (8) and Ag () :

PROPOSITION 2.2. We have that Ay (8) — 0 and that A2 (8) = n as § — 1.

Proof. We start by proving that A; (8) — 0 as 8 — 1 and that limsupg_,; A2 () <
n. In order to prove it, we let u € C* (S™) be defined by u(z) = z¢ and vg € C> (S™)
be defined by

Tl
B+

vg = 82 —1

For symmetry reasons, it is clear that

/n udvg, = /Sn v dvg, = /Sn uvg dvg, = 0. (2.4)

2
Jsn |Vu|gB dvg,

Jon u? dug,

We claim that
—0asf—1 (2.5)

and that

Jon

2
Vv5|gﬁ dvg,

Jsn vg dvg,

—nasf— 1. (2.6)

This will clearly prove that A\; (3) — 0 as 8 — 1 and that limsupg_,; A2 (8) < n by
the variational characterization of the two first eigenvalues :

2
L fM |v“‘g5 dvg,

A = i
1(95) u€H}(M), [y udvg,=0,uz0 [}, u? dvg,

and

Vul? dv
X2 (gp) = inf sup —fM | 2|g’3 %
ECH2(M) ye B\ {0} Joy u? dug,

where the infimum is taken over vector subspaces E of dimension 2 of functions in
H? (M) with mean value, w.r.t. gg, 0.
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Using the expression of u and vz and stereographic projections, it is easily checked
that

lim /- u? dvg, =2 s Us da

limy 8 Vul} | dvg, =0,

/1’1211 . vh dvg, = %/}Rn Uz)ns |z (1+ |:1c|2)72 dx and

él_)ml . \Vvﬂ@; dvg, = /Rn U(g:)% {1 - %|a:|2 (1+ \x|2)_2 dz .

Lemma, of section 4] permits to conclude to (2.5) and (2.6 which, as already said,
proves that

lim A; (8) =0 and limsup A2 (5) <n . (2.7)
B—1 B—1

Consider now an eigenfunction g associated to some eigenvalue Ag normalised by

(1.25) which satisfies

limsupAg <n. (2.8)
B—1

Using proposition and the argument at the end of the proof of it, we get, that, up
to the extraction of a subsequence, A\g = Ag as 8 — 1 with 0 < Ay < n and

21 . n
% cpg — oV inC . (R") as f — 1 (2.9)
and
2708 5 o5 in €0, (R™ 1 2.10
ni g —¢” inCp (R") as B — (2.10)

where % and ¢V are solutions in R™ of
-2
Acp = <”(”4) + )\o> Uny (2.11)

which satisfy
¢ <CU in R™ |

one of which, at least, being nonzero thanks to (|1.25). Thanks to lemma section
this implies that Ay = 0 or \g = n. Moreover, in the case \g = 0, we necessarily
have that

oV = anU and ¢° = agU

for some real numbers ay and ag. Then, using again proposition [2.1] it is easily
checked thanks to ([1.25) that

a4
2w, = / ug_Qcp% dvp, = wy, (aé + a?\,)
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and thanks to ([1.26) that

n+2
0= [ uopdonly) = fas + ay)

We deduce that necessarily, ay = —ag and |ay| = 1.

Let us assume now that Ao (8) 4 n as 8 — 1. This means that, up to a subse-
quence, there exists an eigenfunction ga% associated to A2 (§) such that Ay (8) — 0 as
B — 1 since, as already said, the only possible accumulation values for (A2 (3)) are 0

and n. Let then bg and by be the coefficients associated to gp% in the above limit

while ag and ay will denote those associated to an eigenfunction cpé associated to
A1 (B). Since we can choose gpé and gp% such that

4
/ uz w%gp}; dvp, =0
Sn
and since we can apply proposition to both eigenfunctions, one can check that
asbs +anby =0.

Since ag = —ay, bg = —by and |ay| = |by| = 1, this clearly leads to a contradic-
tion. Thus we have proved that Ay (8) — n as § — 1. This ends the proof of this
proposition. 0

3. Proof of theorem EI' In order to prove the theorem, we let (A\g, pg) satisfying
I , 1l and |j where Ag = Ao (Agﬁ). Then

Ag—~+nasf—1

thanks to proposition The aim is to get an expansion of A\g as f — 1. We shall
write in the following

Ag=n+egwitheg +0asf—1. (3.1)
3.1. Fine pointwise estimates on the second eigenfunction. We set
N i s i
s =5 — > _(XF),Us =D (X5),V} (3.2)
i=0 i=0

where (Xé\f)i and (Xg)i, 1=20,...,n, are chosen such that
D3(N) = P3(S) =0 and VPg(N) = VPg(S) =0. (3.3)

It is not difficult to check that such (X é\' ) and (X 53 ) do exist. In fact, they are

given by

]_ _n=2 n—2
(Xév)o_ “n n—2 (IU’B ’ ‘Pﬁ(s)*/{BQ SDB(N)) )
g —Hp
1 _n—2 n—2
X5) =53 (15 ° 08(N)—pug® ¢s(S)) .
( 6)0 U% — ) 2( 8 B )
N 2% ~549 N 295
(X5), = ——— (15 0} (0) — i 05 0))
Hg = Fp
27% 3 n
(X5), = o (ug 20;05(0) — 3 &-soéV(O))
B B
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Thanks to proposition we know that

n—2
pg® @8 (ppz) = @) in Cp, (R") as 8 — 1 (3.4)
and
n—2
pg® @3 (upz) = 5 in C, (R") as f — 1 (3.5)

where ¢}’ and ¢§ are solutions of

n(n+2)
4

with ¢ < CU in R". Thanks to lemma [£.3] section we know that

Agp = U

v = Z XM (3.6)
i=0
and that
05 = ij?Ui (3.7)
i=0
where the U%’s were defined in and ([1.15). It is clear that
lim (X§), =X and lim (X5), = X7 . (3.8)
And we also have that
u?@lg (ugzr) — 0 and /L;%Q @g (ngz) — 0 in CL, (R™) (3.9)

as 8 — 1. Thanks to proposition (13.4), (3.5, (3.6) and , we have that
_4 n
[ w5 =32 ()4 (5)%) [ veevtds o).
S’IL Z:O n

Using lemma [£.1] of section we get that

/ UrzU2dy = "
n n—+1

for all i =0,...,n. Thus, thanks to (1.25)), we obtain that

XN+ X5 = 2(n+ 1) . (3.10)
Using (1.19)), (1.23)) and (3.1)), we can write that
2) _4_ _4_
Lh(bg = 7n(n4+ )ug_z ‘bg + <55u5_2 +A5> ©s
n(n +2) = N = AN
=2 (X5, (“B ~Us ) Us (3.11)
i=0
N
n(n+2) s = =AR T
+— Z(Xﬁ)z(uﬁ P -V, 2>VB.

Il
=)

(2
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We know moreover thanks to proposition that there exists C' > 0 such that

losl < C(Up +Vp) - (3.12)
Let us write thanks to the Green representation formula (1.10]) that
s (x) = I} (2) + I (@) + I (2) + I (&) + IF () (3.13)
where
n(n + 2 4
R R

1) =<5 | 9@y ualy)™205(y) dony)

I (z) = . (=) Ap(y)ps(y) dunly) ,
N

1@ =" Y (), [ 6 (ws0)77 ~ Us)7) Ut duny) and
=0 )

N
B =" S (),
1=0

Using lemma [1.2] of appendix B, section [£.2] we have that

G (v,y) (Uﬂ(y)ﬁ - Vﬁ(y)ﬁ) Vi(y) don(y) -
STL

w3 (Us(a) + V() if n =3
1
st (14 o)
F(@)| < Cllegl, 1 (3.14)
g (Uﬁ(a:)ﬁ—k\/g(az)ﬁ) ifn>4

for some C' > 0 independent of z and 8. Using (3.12)) and lemma of section
we have that

| (@)] < Cep (Us() + Vi) (3.15)

for some C' > 0 independent of z and 8. By (1.27)) and (3.12)), we know that
n—2 _4 4
Agpp < Cug® <U/3"_2 + VB"_?)

for some C' > 0 independent of z and 3. Using once again lemma [1.2] of section [£.2]
we deduce that

ps (Ug(z) + Vs (x)) ifn=23

1 1
B 2U mln<1+ >+ 2Vxln(1+ ) ifn=4
‘[3 (a;)’ <! ppUs(x) ol ) T 5(z) TS

,ug (Ug(m)ﬁ +V@(ac)£> ifn>4
(3.16)
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It is clear that there exists C' > 0 such that

n—2 4

Ul (@)| < Cpy™ us(a) ™

4

ug(a) 77 — Up(x) 72

for all z € S™ so that, with lemma [1:2] of section [£:2] and by symmetry,

np (Us(z) + V() ifn=3
13Us(z) In (1 + MﬁUlﬁ(x))
)ff(:o‘ n ‘15@)( <C ) (3.17)
+u3Vs(z)In (1 + W) ifn=4
,ug (Ug(x)%—i-Vg(x)ﬁ) ifn>4

Combining (3.14)-(3.17) to (3.13)), we get the existence of some C' > 0 such that

12 (Us(a) + V() ifn=3

1 1
P <C len(1+ )+ len(l—i— ) ifn=4
|®s(x)| < Cyp  msUs(x) aUs() ) THe 5() Ve (@)

I (Uﬁ(m)ﬁ—&-V@(m)%) ifn>4
(3.18)
for all z € S™ where

_n=2 n—-2
V8 =¢phg ° +pg® +[Psll, - (3.19)
Up to the extraction of a subsequence, we have that

n—2
2

o
Bl pas o1 (3.20)
V8
where 0 < e¢g <1 and
n—2
I Pl
L s pasB—1 (3.21)
o

where 0 < po < 1. We let x5 € S be such that |®g (x5)| = [|®s] . Without loss of
generality and by symmetry, we can assume that g € S”. Then, using the fact that

Us(zg) =0 (u;*%) and Vj (z5) = o (u;%)

i |75 (z5)]
12963

— +o00 and x5 € S”, we obtain thanks to (3.18)) and (3.19) that

o =po=0= ‘7?1?,1 (z8)| = O (up) - (3.22)

We set now, for x € By (u?),

Op(x) =75 ' @F (upw) -
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Then gives that
U(x) ifn=3
‘ég(x)] <c! U@)m@+z)) iftn=4 (3.23)
Uz)=> if n >4

for all x € By (u?). Thanks to 1) and (3.11}), we have that

Aedp(x)

n(n + 2 " 4
= "D (1) 42U (i) T ()

£ ne 4 n—2

L (U() + up U (u32)) ™2 s 98 (np2)

Yag

n—2

pg® ns2oy 4-n A
e (npw) g "Ag (rn (npx)) U (ppz) =2 (3.24)

_4 .
+n(n4+ Y, { )+ pi 72U (hia)) " —U(x)ﬁ] U (x)
V8 u i=0

n—2

“I”“‘;Z (32, (06 + 45770 (30) ™7 0 )7 | 0 i)

Thanks to (3.4) and (3.20)), we get that

4
£ n— 2 =2 4
= (V@) + 720 (132)) 7 ™ 0 () > eUT3 e (326)
YBhg®

in CP . (R") as B — 1. We also have thanks to (1.28), (3.4) and (3.21) that

n—2

1 2 n-2 _ 4
37%2 of (npr) iy " Ag (mn (upz)) U (ppw) ™=
— —pon(n +2)25 3U w3 N (3.26)

in CP . (R") as B — 1. At last, using (3.6), (3.8) and (3.21), we can write that

s i (X5, [(U(x) 0 () U(x)fz] Ui()

Yhg® =0
L2 s LY (3.27)
n—2
and that
L—2 N 4
n—|—2 .
Z X5), {( @) + i QU(NB@) = usU (o)™ }U (u5)
=0
— (n+2)2%*3u0X0 Un (3.28)
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in CY.(R™) as B — 1.

We deduce from (3.24))-(3.28)) that (Agég) is uniformly bounded in any compact

subset of R™. Thus, standard elliptic theory gives that, up to the extraction of a
subsequence,

s — ®oin OL, (R") as B — 1. (3.29)

Passing to the limit in the estimate (3.23)) and in the equation (3.24]) thanks to (3.6)),
(3-8), (3-20), (3-21) and (3.25)-(3.28)), we get that

U(x) ifn=3
[@g(2)] <Cq Ul@)In2+[z]) ifn=4 (3.30)
U(x) s ifn>4

for all z € R™ and that

Aedg = WUﬁ% —n(n+2)28 BugXSUT2 4 eqUn Y
_nln+2)(n=6) 222(; BLI P = (3.31)
Moreover, tells us that
eo=po=0= Py £0. (3.32)
At last, gives that
Dy(0) = 0 and V&,(0) =0 . (3.33)

Since there are no nonzero solution of
n(n+2)
4

in R™ satisfying (3.30) and (3.33]), see section we deduce from (3.31)) and (3.32)
that

Ae®y = Uiz d,

gop#0or ug#0. (3.34)
We use (3.6)) to remark that
2 _
’Ag@o - %Uﬁz% <O+ z)™ .

Thus we can use lemma [£.4] of section [L.3] to write that

n—=~6

1o (XOS U2 U dz + U3 U dx)
R™ n — R™
237% 4 Norri
- w2z N Ui g .
n(n—l—?)sO/RnU 2y Utdx (3.35)



1064 O. DRUET

for i =0,...,n. Simple computations using lemma of section and (3.6]) show

that
4 25+ (n —2)
Urn2U% = ———— 2w,
/n n(n + 2) Wn-1o
25+ (n?2 —2n +8
/ d.’l?: ’ (n n )anlXév7
Rr n(n +2)(n +4)
Uz N U0 dy = 7 x N
/Rn o * n+1"°0"

/ Un=Ui =0,
95 +4

6—n
Uzl Ulde = ———————w, 1 XY and
/]Rn 70 . (n+2)(n—|—4)w" 14 el

w.
e tdpy = — XN
/nU 2 NU dx = PR

fori=1,...,n. Coming back to (3.35)) with these results, we obtain that

coXd = %2”*2 (n+1) <(n oy xs 4 Z:)_(;) (; ing ®) x ) uo  (3.36)
and that
vl = mt Dwnt e )
X (50 D) o ) 0 (3.37)

fori=1,...,N. Of course, the same holds, by symmetry, exchanging N and S.

3.2. Conclusion of the proof. The aim is to prove that
AsVolg, (S™)* > n (2wn)™ (3.38)

for 3 close enough to 1.
Case 1 - There exists i € {1,...,n} such that X # 0 or X7 # 0. Then we can
use (3.37)) for N or S to write that
o= (n—6)(n+1) wp—1 2+ g
(n+4)(n—2) w,

which gives that
&8 _ (n—6)(n+1) W1 g1
B=1pp=? (n+4)(n—2) wy

thanks to (3.20) and (3.21). This implies with lemma and (3.1) that
2

ny= 2n+2 n—2 "
AsVolg, (") = (n+ep) (2% +—wnap o (“B ))

2 g on+2 no1, (n 2)
= 2 n n 1 _ _—
n (2un) ( +n+n(n72) W, “to o +o(es)

Wn—1

_ -1
2 1 2n+1 n (n 2)
n (2w,)™ ( + o n(n+4)'u5 4o 1

n (2wy)

3o
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for B close enough to 1. This proves (3.38]) in this first case.
Case 2 - We assume that X¥ = X7 =0 for all i = 1,...,n. We claim first that
x5 =xp. (3.39)
Thanks to (3.10) and to (3.36) for N and S, we already know that | X2 | = | X5 | =
v/2(n + 1). It remains to prove that they have same sign. But 1) 1} 1' and
(3.7) together with the assumptions of this case give that
—sign (X{')  for |nn(2)| < Sus
sign (Xév) for 2up < |mn(z)] < 4pp

sign (pp) =
sign (X@g) for 2up < |ms(x)| < 4pup

—sign (XOS) for |rg(x)| < %,ug

for 3 close to 1. If X} and X5 have opposite signs, this implies that g has at least
four nodal domains, which is impossible by Courant’s celebrated theorem (see [4])
since g is the second eigenfunction of A,, and can thus possess at most three nodal

domains. Thus (3.39) is proved.
Now (|3.36|) gives that

L (n+1)(n—4) (n?+4)
Wn, (n—2)(n+4)

Mo

so that

lim €8 _ Wn-1 on—1 (n+1)(n—4) (n2 + 4)
e (n—2)(n+4)

thanks to (3.20) and (3.21). This implies with lemma[l.1]and (3.1) that

2
AgVolg, (S*)"

2
2n+2 n—2 n—2 g
=(n+eg) 2w"+mw”—1“6 Jro(,uﬁ )

2 €g 22 G g (n—2)
—n@u)r (1+22 4+ 2
m@on)? (142 4 S E S (177) o)
2 Wn—1 2n—1 4 3 n—2 ( —2)
=n2w,)™ (1 — —4 1
n (2wy,) ( + on n =2 1) (n* —3n n+16) =2 + O (pj
>n(2wn)%

for 3 close enough to 1 since n* — 3n3 — 4n + 16 > 0 for n > 3. This proves (3.38) in
this second case.

The study of these two cases ends the proof of the theorem. O

4. Appendices. We prove in this section some results used during the proof of
the theorem.
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4.1. Computations of some integrals. We compute in this section some in-
tegrals that were used in the paper :
LEMMA 4.1. We have that

242 ZHTH P 43
I, :/”U -2 dr = - Wh—1 (Hn+2i> and

i=1

p .
2(n+p) n—2+ 21
J: U7L72d = n —_—

i=1

for p € N where

n—2

2 2
Ulx)=|—F—=
@) (1 - le2>
Proof. For p =0, we have by (1.6) that

J():/ U"21L2d:17:/ 1dvy, = w,

while, using equation ([1.16|), we easily get that

n+2
2

Iy =

Wp—1 -

For p > 1, noting that

o_ (=22 o 2 \'_ (n-2?% o o
VUP = Sl (1 p) = (2U 1),

we get by integrations by parts and equation (1.16]) that

4p

—1I,_
n+2p? !

p:

and that
J 2p+n—2
P — ptn—1 p—1 -
The lemma clearly follows. O
_4_
4.2. Estimates on solutions of Lp = Uél’ﬁp on S"”. We prove in this
section the following estimates :

LEMMA 4.2. Let p > 0 be some non-negative real number. There exists C, ,, such
that
52

1—p) . n
ng? " Us(x) ifp>-—

/ G (2,9) Us(y) 72" dvn(y) < Cpn { psUs(x) In (1 + 12) ifp="— =
" peUsg(z) =2

psUs ()t 22 ifp<
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where G is the Green function of Ly, see , Ugs is as in section and (g 1s as
in . Of course, the same holds true, replacing Ug by Vg everywhere.

Proof. During this proof, C will denote a constant independent of S which may
change from line to line. Let 23 € S™. We set

222 (1-p) : n—4
2 f -
Hg Us (1’5) op> n_>2
1 —4
Cs =9 msUs(xp)In <1 + z) ifp =" 5 (4.1)
U (x5) "2 =
—4
U PJrﬁ if n
1aUs (z) ity <——

We remark thanks to (1.10]) that

1= [ Gy Lrdn) = "2
Sn sn

so that, since

n—2

Us(y) < (2pp) 2

in §%, we can write that

[ G(@sy) Us(y) 727 duy (1)
< | GG@a) Up(y) =2 P dun(y) + Cuy " 7 (4.2)

Let us write now thanks to (|1.5)), (1.6) and (1.11) that

Gy Us() ™7 dun(y)

1 71/ 1— 2—n 1N 44 .
—U(z Uly) Plzg —y Us (y)»2"Pdy ifxg#N
CET) (28) o) (y) P lzs — v 5 () 8
—_— L / Uy) UL ()27 dy if g =N
272 (n—2)wn—1 7/ Bo(1)

where xg = m, (23) if xg3 # N.
Case 1 - We assume that zg = N. We write that

_ _4 n—2—pn=2 _9o_pn=2
/ Uly)' ~"U5" (y) ™" dy < Cpug " L) T Ay
Fol® Bo(u;")
77,727;7"T_2 i n—4
>

Hg p n_9
n 1 —4
n-2 — 4
u?p 2 if p< Z—Q
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Thus we get thanks to (4.2 that

n—2-p2z2 if >1’L—4
2% up n_2
21 n—4
—Ao+p < 2 n — if p—
[ G tat = ran) < ¢ wimaitp= g
2+p"772 i n—4
<
Hg p n—2

_o_p,n=2 n—4
M;sz ifp >
n

n 1 —4
Cp = ugln<1+2> ifpzn

I n—2
n-2 n—4
,uf;rp? ifp<n_2

Thus we get in this case that

. G (25,y) Us(y) 72" duy(y) = O (Cp) .

From now on, we assume that x5 # N. We write then that

G (25,y) Us(y) = duy(y)

s™
24pn=2 1 29— _9_pn=2
<UD [ el ) T dy
Bo(1)
In the following, we let
g 15 + |25
SR TEPHE

so that

n—2

Ug (xp) = g’ 9,(23_n .

Note that 0 < 0g < 1.
Using the change of variables y = 0gz, we write that

[ G(@sy) Uay) ™2 dun(y)

2+p 2t 2-n /2 —2-p3*
LU -1 ZB _ Hs + |y)? d
< Cezﬂ,(n_g) (25) p——F y 2 Ty Y-
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We can also rewrite (4.1]) as

n727"772p 2-n . n—4
0 fp>
Hp p PP
n 62 n—4
Cs = 202 "1+ 2| ifp= 4.7
8 F5 9% n<+M%> itp=-"— (4.7)
2+"T*2p9—2—p(n—2) it n—4
<7
Hp s -

Case 2 - We assume that g — 6y as B — 1 with 6, > 0. Then, up to a
= Bo. Note that |zg] = +oo if g = 1. Tt

[EN)

subsequence, zg — 2o as J — 1 with

1+]z0[?
is then easily checked that
5 2—n ,u2 7271)”772
U™ [ e (gl y
Bo(05") 105 5
n—4—p(n—2) it > n—4
Hg p n_2
1 —4
<C{ In— ifp="
- I n—2
n—4
1 if p <
np n—2

Thanks to (4.2), (4.6) and (4.7)), we then conclude that

| 9@ y)Us(y) ™2 dunly) = O (Cy)

in this second case.

Case 3 - We assume that 83 — 0 as 3 — 1. Then we have that z3 — 0 and that

15 + 2]

02 —lasf—1.
B

This implies that the two potential singularities of the integral below can not be both
2B _

at 0 so that one can check that
2—n 2 72710”;2
Hp 2
— d
6, Y ( o2 + [yl ) Yy

/Bo(%l)
4—n+p(n—2)
(1 + tgﬂ) if p> Z—:g

e
<C 0
= ln<2+ﬁ) if p= =4
15
1 if p< 2=5
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Using again (4.2)), (4.6) and (4.7), we then conclude that
a4
G @0 Us(y) =2 dup(y) = O (Cp)
in this third case, remembering that pug < 63.
The study of these three cases ends the proof of the lemma. O

4.3. Study of the equation Asp = WUﬁcerf in R™. In this subsection,
we let p € C? (R™) be a solution of

n(n + 2)

. Untzp+ f (4.8)

AEQD =

in R” where f € C! (R") and

n

In the case f = 0, this equation was studied by Bianchi-Egnell [I] and we have that :

LEMMA 4.3. Any solution ¢ € C? (R™) of @ with f = 0 such that p(z) — 0
as |x| = +oo is of the form

= En: U
=0

where the U'’s are given by and and the \;’s are real numbers. In
particular, if (0) =0 and V(0) =0, then ¢ = 0.

Proof. This result was proved by Bianchi-Egnell [I] under the assumption that

Uﬁwz dr < +o0 . (4.9)
]Rn

We shall prove that this holds under the assumptions of the lemma. We let ¢ €
C? (R™) be a solution of (4.8) such that p(z) — 0 as |z| — +oo. We write with the
Green representation formula that

1

SD(I.) = wn_an_l

n+2
/ wd0+ / Hy r(y (y) 7 p(y) dy
9B, (R) n

wnl

for any z € R™ and any R > 0 where

|z —y> " —R>" forye B, (R)
Hyr(y) =
0 for y € R\ B, (R)

Since ¢(z) — 0 as |z| — 400, we have that

1

ﬁ/ pdo —0as R— +oo
wn—lR 0B (R)
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while the dominated convergence theorem ensures that

_4_ —n 4
/ H, r(y)U (y)"—2 ¢(y) dy — /R ly — > U (y) ™2 ¢(y) dy as R — +o0 .

Thus we have obtained that

_ n(n+2) _2-n 2\ 2
o) = g [ =P () et dy
Assume now that
lp(@)| < C(1+ [=)~

for some C' > 0 and some « > 0. This is already the case for & = 0 by assumption.
Then we write that

n(n + 2)
e [y ) ) d

(14 |z) > ifa<n—4

—n -2
/R ly— 22 (14 1) 2 o)) dy

<D{ A+ z)* "In@+|z)) fa=n-—4

)2777,

(14 |z| ifa>n—4

By induction, we thus get the existence of some C' > 0 such that
2—n
lp(x)] < C(1+ |x])

which clearly proves that (4.9) holds. As already said, this ends the proof of the
lemma. O

We now study the case where f # 0 but decays at infinity. We then have the
following result :

LEMMA 4.4. Let f € C' (R™) be such that
fla) <O +]a))™"

for some C > 0 and some o > 2. If there exists a solution ¢ € C* (R™) of @ such
that () — 0 as |z| — 400, then

fU%dz =0 fori=0,...,n
]Rn

where the U'’s are given by and .

Proof. We multiply equation (4.8)) by
U’ -1 (R)

where
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and integrate over By (R). Since U° — n(R) = 0 on 0B (R) and AU’ =
%Uﬁ U°, we obtain that

2 s
/ fUde=n(R)/ fd$+mn(3)/ Ur—pdx
Bo(R) Bo(R) 4 Bo(R)

—I—/ 00, U do .
0Bo(R)

Since |f] < C (1 + |z])”“ for some a > 2, we get that

/ fU%dx — fU%dx as R — +o00
Bo(R) R

and that
n(R)/ fdr—0as R— +oo.
Bo(R)
Since ¢(z) = 0 as || — 400, we also have that
n(R)/ Uﬁapdz%OasR%Jroo
Bo(R)
and that

/ 00, U%doc — 0 as R — 400 .
0Bo(R)

Thus

/ fudz=0.

We multiply now equation (4.8) by
Ul —¢(R)x’

and integrate over By (R). Since U’ — e(R)z' = 0 on 0By (R) and AU' =
WUﬁ U?, we obtain that

where

) ) 2 4
/ fU’d:CzE(R)/ xlfdx—i—%s(]%)/ Urn—2'pdx
Bo(R) Bo(R) Bo(R)

‘%j[ @0, (U'—e(R)2") do .
0Bo(R)

Since |f| < C (1 + |z|)”* for some a > 2 and ¢(z) — 0 as |z| — 400, we can pass to
the limit as above to obtain that

fU'dz=0.
R?L
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