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DETERMINING ISOTOPY CLASSES OF CROSSING ARCS IN
ALTERNATING LINKS∗

ANASTASIIA TSVIETKOVA†

Abstract. Given a reduced alternating diagram for a link, we obtain conditions that guarantee
that the link complement has a complete hyperbolic structure, crossing arcs are the edges of an
ideal geodesic triangulation, and every crossing arc is isotopic to a simple geodesic. The latter was
conjectured by Sakuma and Weeks in 1995. We provide new infinite families of closed braids for
which our conditions hold.
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1. Overview. A link diagram provides a combinatorial description of a topolog-
ical object, a link complement in S3. A natural question arising from this description
is whether the complement can be endowed with a complete hyperbolic structure.
This question is connected with the question of the existence of an ideal geodesic tri-
angulation of the complement. While both of these questions can often be answered
after tedious computations for a particular link, it is not a priori clear what would
be a successful choice of edges for such a triangulation.

In this note, we show that under certain conditions (that can easily be checked)
the crossing arcs of a reduced alternating diagram are the edges of an ideal geodesic
triangulation. By a crossing arc we mean a cusp-to-cusp arc traveling from the under-
pass to the overpass of a crossing. The triangulations we obtain induce the complete
hyperbolic metric on the link complement (which implies, in particular, that the link
is hyperbolic without a reference to Geometrization). It follows that, under these
conditions, crossing arcs are isotopic to simple geodesics. We provide examples for
which this holds, including an infinite family of links.

This question has a long history. W. Thurston noticed that if we choose a de-
composition of a hyperbolic link complement into two polyhedra, where the edges are
crossing arcs of a link diagram, then we often obtain an ideal geodesic triangulation
from it by subdividing the polyhedra ([15]). The method was generalized by Menasco
for alternating links ([10]), and by Petronio beyond alternating ([12]). While this
suggests that the arcs are often isotopic to geodesics, the procedure fails to provide
an ideal geodesic triangulation with positive-volume tetrahedra in general. On the
other hand, Sakuma and Weeks conjectured that crossing arcs of a reduced alternat-
ing diagram are the arcs of the canonical cell decomposition of the link complement
([14]), which would imply they are isotopic to geodesics. Their conjecture was proved
for hyperbolic 2-bridge links in [3] and independently in [7] (see also Appendix to [6]),
but has not been established for any wider classes of links.

Beyond 2-bridge links, there were few additional results that identify cusp-to-
cusp arcs in link complements with certain topological or combinatorial description
as geodesics. Sakuma and Weeks gave examples of canonical cell decompositions
implying that crossing arcs of some families of symmetric alternating links are isotopic
to geodesics (see Examples I.2.2-I.2.4 in [14]). Work of Adams, Burton, Cooper,
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Futer, Purcell provided information about isotopy classes of certain tunnel arcs under
additional restrictions ([1, 2, 4, 5]).

The sufficient conditions we obtain turn out to have a simple geometric interpre-
tation. Let us return to the polyhedral decomposition suggested by Thurston and
described by Menasco for alternating links. The term “polyhedron” is used only in
topological sense here, since even for a hyperbolic link the faces might not be planar,
i.e. might not lie in one hyperbolic plane. We will call such a polyhedron cross-
sectionally convex, if at every ideal vertex all interior angles of a cross-section are in
(0, π). Note that this is not equivalent to the usual convexity: the faces might still be
non-planar and, when subdivided, might yield a non-convex polyhedron.

Our conditions imply cross-sectional convexity of the two polyhedra suggested by
Thurston. Then we show that every cross-sectionally convex polyhedral decomposi-
tion can be subdivided into an ideal geodesic partially flat triangulation (“partially
flat” means that some, but not all tetrahedra have 0 volume, while the rest have
positive volume). In particular, for links satisfying our conditions the purely combi-
natorial algorithm described by Thurston, Menasco and Petronio provides an ideal
geodesic partially flat triangulation that induces the complete hyperbolic structure
on the link complement. Such triangulations appear to be useful for various other
purposes as well (see, for example, [9] or §6 in [11]).

The following is a short overview of our methods and techniques. In [16, 17],
Morwen Thistlethwaite and the author introduced an alternative way of parameter-
izing hyperbolic structures of links. It uses complex labels assigned to a link diagram
that describe horoball structures in H3. We will refer to these labels as to diagram
labels. The triangulation is not performed, and instead the method uses isometries of
preimages of polygons bounded by the regions of the link diagram. This results in a
set of relations, to which we will refer as to hyperbolicity relations.

In [16], we start with a hyperbolic link, and then describe the relations for the
diagram labels merely as a convenient method for computing the (already existent)
complete hyperbolic structure of the complement. In this paper instead we start
with an arbitrary link diagram and the complex labels that satisfy the hyperbolicity
relations for this diagram, and then establish additional conditions on the labels that
guarantee the existence of the induced complete hyperbolic structure.

The paper is organized as follows. In Section 2, we describe the setting, developing
a model that gives the complete hyperbolic structure based on diagram labels rather
than a triangulation process. In Section 3, we lay out and explain the conditions
on diagram labels sufficient for our purposes, and prove that under these conditions,
the Thurston-Menasco polyhedral decomposition, with faces triangulated, is properly
embedded in H3. In Section 4, we show that, further, the decomposition yields an ideal
partially flat geodesic triangulation, and use this to conclude that a link complement
has a complete hyperbolic structure. In section 5, we prove that crossing arcs are
isotopic to simple geodesics under our conditions. Section 6 gives examples for which
this holds (including infinite families of links), demonstrating that one can check the
conditions from a link diagram. The families of links are different from the links
provided by Sakuma and Weeks in [14].

2. Diagram labels. Consider the complement of a link L in S3, and a diagram
D of L. In what follows, we will describe the correspondence between the points on
the peripheral boundary of S3 − L and the points in the boundary of H3 through
a solution of the hyperbolicity equations, introduced in [16]. In further sections, we
will investigate under which conditions on the labels this correspondence yields the
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complete hyperbolic structure and the developing map for the manifold S3 − L.

Every region R of D that is incident to at least three crossings may be viewed as
a disk bounded by the geodesic arcs traveling from the overpass to the underpass at
every crossing of R, and by the arcs traveling on the boundary torus from one crossing
of R to the next crossing of R (black and gray arcs on Fig. 1, left, respectively, where
a region incident to three crossings is depicted). Every arc can be assigned a complex
number which we call a diagram label. When the complete hyperbolic structure exists
on S3−L, the diagram labels are called crossing and edge labels respectively, and they
parameterize the hyperbolic structure (see [16] for details and geometric definitions
of the labels).

Fig. 1. A region R of D (left), and two horospheres in H3 (right).

Hyperbolicity relations are two sets of polynomial relations in the diagram labels.
The first set, called the region relations, guarantees that the composition of hyperbolic
isometries rotating a preimage in H3 of the boundary of each disk, corresponding to
a region of the diagram, must be the identity. If the region is 2-sided (i.e. it is a
bigon), the two edge labels inside it are set to 0, and the two crossing labels are set
equal, which corresponds to having no disk, but rather two homotopic geodesic arcs
at crossings. The second set of relations (called the edge relations) for alternating
links consists of relations of the form either u = v ± 1 or u = v, where u, v are two
edge labels assigned to two different sides of the same edge of D. By an edge of D we
mean a segment from a crossing to the next crossing, and hence u and v lie in two
different regions of D separated by this segment. The edge relations guarantee that
whenever two arcs on the boundary torus form a simple closed curve going around a
strand of L, the curve is homotopic to a meridian of length 1. We refer the reader to
[16] for further details and examples.

Assume that there is a complex solution x to the hyperbolicity relations for D
(it is possible that all entries of x have 0 imaginary part, and therefore are real). In
particular, if there are n crossings in D, x consists of n crossing labels w1, w2, ..., wn,
and 2n edge labels u1, u2, ..., u2n.

Locally, every cusp (a neighborhood of a boundary torus for every link component)
can be endowed with a Euclidean structure. At an overpass or an underpass of a
crossing of D, choose a cusp cross-section with a unit meridian. We will now describe
the correspondence between the link complement and a picture that, for a hyperbolic
link complement, will later prove to be its preimage in H3. Let the cusp cross-section
correspond to an infinite union of Euclidean planes in this picture, and let the unit
meridian correspond to the real number 1 on each of them. We will view each of these
planes in the Euclidean three-dimensional space as a sphere minus the South pole,
touching the plane z = 0 from above. We may consider these spheres as horospheres
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in H3, using the upper half-space model of H3 = {(x, y, z) | z > 0}.
In what follows, we will connect the points where the horospheres are tangent to

the plane z = 0 (we call such a point Pi the center of the corresponding horosphere
Hi) by hyperbolic geodesics. We will situate and scale the horospheres so that the
geometric definitions of the diagram labels are satisfied, even though the link L might
not be hyperbolic. For this, we use a correspondence between the points Pi on the
boundary of H3 and the points P̄i on the boundary torus of S3 − L. In particular,
for each overpass or underpass of D we consider one point P̄i on the boundary torus,
and a horosphere centered at a corresponding point Pi on the boundary of H3.

To specify the size and the exact location of the horospheres, consider a region
R0 of D that has at least three crossings (and hence R0 is not a bigon). Consider two
consecutive crossings. The overstrand of the first crossing corresponds to a point P0

on the boundary of H3, and a horosphere H0 centered at P0. A crossing arc runs to an
understrand, corresponding to the point P1 on the boundary of H3, and horosphere
H1. The overstrand of the next crossing corresponds to the same point P1 on H3,
and the same horosphere. A crossing arc runs from that overstrand to an understrand
corresponding to P2 on the boundary of H3, and horosphere H2. In H3, connect points
P0 and P1, centers of H0 and H1, by the hyperbolic geodesic γ1. Connect points P1

and P2 by a geodesic γ2. Denote the preimage of the meridian on the horosphere Hi

by mi throughout.

Let the crossing label that corresponds to the same crossing of D that γ1 does,
be w1 of x̄. If w1 is 0, then the centers of the horospheres H0, H1 coincide, γ1 is
null-homotopic, and we can proceed to the next horosphere. So let us assume that
this crossing label is not 0.

Place one of the horospheres, H0, as an “infinite” horosphere, the plane z = k.
Introduce the coordinates for H3 (i.e. for the Euclidean 3-dimensional upper half-
space {(x, y, z) | z > 0}) so that k = 1, and the preimage of m0 is the unit vector
going from (0, 0, 1) to (1, 0, 1). Place H1 at the point (0, 0, 0) (as on Fig. 1, right,
the horospheres are shaded). We may assume that P0, P1 are distinct, since otherwise
|w1| = 0 (which happens if and only if w1 = 0). Scale H1 in H3 so that |w1| is
the Euclidean diameter of H1. Additionally, rotate H1 so that the angle by rotation
between m0 and m1 is argw1 − π. The horospheres H0, H1 are now situated so that
the geometric definition of the crossing label w1 from [16] is satisfied.

The geodesic γ2 is uniquely defined by one of its endpoints, P1, and the corre-
sponding edge label u2 which tells where γ2 pierces H1. In particular, m1, which
is the preimage of a meridian on H1, determines the unit distance and direction of
the unit translation on H1. The complex number u2 (possibly, with a negative sign,
depending on whether the direction of our travel along the region of D corresponds to
an orientation we choose for the link) is the translation on H1 from the point where
γ1 pierces H1 to the point (say, M1) where γ2 pierces H1. Hence we obtain the posi-
tion of M1 on H1. Two points, P1 and M1, uniquely determine the geodesic γ2 and
therefore determine the position of the other endpoint P2 of γ2.

The diameter of H2 centered at P2 and the direction of m2 is determined by
the next crossing label, w2. Proceeding similarly from a horosphere to horosphere,
region by region, we obtain a uniquely defined and scaled collection of horoballs with
geodesics connecting them, a coordinate system on H3 and Euclidean coordinates on
each horosphere such that the preimage of every meridian corresponds to the real
number 1.

Since the link L is not necessarily a hyperbolic link, the described process might
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lead to certain degeneracy. For example, the picture may consist of a single horo-
sphere, if all the labels are 0. In the next sections we will prove that this set-up
together with a few additional conditions on the labels induce a complete hyperbolic
metric on S3 − L.

3. Decomposition into two properly embedded polyhedra. In this sec-
tion, we consider a decomposition of the alternating link complement S3−L into two
ideal polyhedra, Π1,Π2, one above the reduced alternating diagram D of L, and one
below, as described by Menasco in [10]. Assume additionally that the diagram D is
twist reduced in the sense of [8]. Every alternating link admits such a diagram (see
Section 3 in [8] for the definition and explanation).

The polyhedra are topological, and do not necessarily agree with the complete
hyperbolic structure (which, possibly, does not even exist). However, the decompo-
sition corresponds to the ideal complexes Π1,Π2 with straightened edges in H3 in
the following way. In Section 2, we described the correspondence between points on
the boundary of H3 and points on the boundary tori at overpasses/underpasses of L
using the diagram labels. This gives the correspondence between the vertices of Π̄i

and the vertices of Πi, i = 1, 2. By “straightened edges” we mean that every arc α of
the decomposition of S3 − L connecting two points on the boundary torus of L (say,
points P̄1 and P̄2) corresponds to a certain geodesic γ. The geodesic γ connects the
corresponding points P1, P2 in the boundary of H3. Denote the set of such geodesic
edges of Πi by Ei.

Remove the vertex of Πi situated at infinity, and all edges of Ei incident to it,
and denote the remaining collection of vertices and edges by Ei − {v}. In the upper
half-space model of H3, let f be the vertical projection of Ei − {v} onto the plane
z = 0. A fragment of such a projection can be seen on Fig. 4, right, with edges of the
polyhedron in gray and their image in black.

Consider a collection of edges and vertices in H3 corresponding to a face F̄ of Π̄1.
Denote this collection by Ḟ and assume that Ḟ does not contain a vertex at infinity.
The ideal vertices of Ḟ (denote all of them by v1, v2, ..., vj) do not necessarily lie in
one hyperbolic plane. We may however introduce a “straightened” face F as follows.

By taking the projection f(Ḟ ), we obtain a polygon in the plane z = 0. It is not
necessarily a simple polygon, i.e. its edges might intersect. There is however at least
one simple polygon whose boundary includes at least one edge of f(Ḟ ). For every such
simple polygon (say, f(W ′i )), there is an ideal polygon W ′i consisting of edges and ideal
vertices of Πi. Let the vertices of W ′i be v1, ..., vb, and let the horospheres centered at
them be H1, ....,Hb respectively. The size of the horospheres for a particular link is
determined by the diagram labels, as described in the previous section. Now denote
by Wi the truncated polygon bounded by two types of arcs. An arc of the first type
is a segment of a hyperbolic geodesic arc between a point on a horosphere Hk (denote
the point by Mk) and a point on a horosphere Hk+1 (denote the point by Nk+1),
k = 1, 2, ..., b − 1. Every such hyperbolic geodesic arc coincides with an edge of the
ideal polygon W ′i . An arc of the second type is an arc traveling on a horosphere Hk

and connecting the points Nk,Mk, k = 1, 2, ..., b. For every such truncated polygon
Wi, fix a finite (i.e. non-ideal) triangulation ti whose vertices are the points Mk, Nk on
Hk, k = 1, 2, ..., b. Let ti be such that for every its edge e′j not in Ei (i = 1, 2), f(e′j) is
entirely within one of the simple Euclidean polygons bounded by the images of edges
of Ḟ from Ei under f . For every Wi, there is more than one such triangulation; we
choose ti so that the restriction of f to every triangle is bijective, if such a triangulation
exists (otherwise choose any triangulation).
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The vertices v1, ..., vj of Ḟ are centers of the horospheres H1, ...,Hj , whose sizes
are defined by the corresponding diagram labels as explained in the previous section.
For a vertex vi of Ḟ and two edges ej , ej+1 of Ḟ incident to vi, let F coincide with
the hyperbolic plane defined by ej , ej+1 in the horoball neighborhood of vi bounded
by Hi. Consider a triangle T from one of triangulations ti. If T is adjacent to a part
of a face F that lies inside a horoball (as defined in the previous paragraph), let T be
a part of F . If T is not adjacent to any such part of any face, let T be a part of any
face to which it is adjacent along its other edges. This process defines F , which we
call a “straightened face” of Π1.

Note that there is a hyperbolic isometry that moves v away from infinity, and
places another vertex of Π1 there. It can be used to choose the triangulation and
therefore straightening of the remaining face of Π1. Face identifications of Π1 and
Π2 together with the choice of straightening of faces of Π1 determine straightened
faces of Π2. The collection of vertices, straightened edges and straightened faces of
a polyhedron Πi will be denoted by ∂Πi, and, when we want to exclude the vertex
at infinity and adjacent edges and faces, by ∂Πi − {v}. Extend f to be the vertical
projection of ∂Πi−{v} onto the plane z = 0. When we write Πi, i = 1, 2, throughout,
we mean either an ideal hyperbolic polyhedron bounded by ∂Πi, or a corresponding
truncated polyhedron with cross-sections lying on the horospheres centered at the
ideal vertices. Since the meaning will be clear from the context, we will use the same
notation in both cases.

Below we formulate the conditions on the diagram labels that guarantee that the
cusped polyhedra are properly embedded in H3. The conditions might seem unwieldy,
but have a simple geometric meaning. Here and further we assume that the diagram
labels satisfy the hyperbolicity equations.

a) Consider labels on two sides of an overpass of a crossing. There are four such
labels, u, v, u + 1, v + 1. Moving in the direction of the link orientation along the
overpass, suppose the labels u, u+ 1 come last, as in Fig. 2. Then Imu > 0 holds iff
u is on the right with respect to our travel (Fig. 2, left), and Imu < 0 holds if and
only if it is on the left (Fig. 2, right). This condition only needs to be satisfied for
one arbitrarily chosen edge label of D that is not purely real (if all labels are real, the
condition is not satisfied automatically).

Fig. 2. A crossing of D with the labels.

b) For every overpass/underpass that has two consecutive edge labels u, v (Fig. 3,
left), and is not incident to a bigon, either Im(−(v+1)/u) > 0 and Im(−(u+1)/v) > 0
hold if Imu > 0, or Im(−v/(u+ 1)) > 0 and Im(−u/(v + 1) > 0 hold if Imu < 0.

c) There exists a crossing of D for which the following holds. Suppose w is the
crossing label assigned to the crossing, and ui, i = 1, 2, are two edge labels on the
adjacent overpass, and vj , j = 1, 2 are two edge labels on the adjacent underpass (Fig.

4, right). Then at least one of the fractions
w

uivj
,

w

ui(vj + 1)
,

w

vj(ui + 1)
is not purely

real for some i, j.
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Fig. 3. A crossing of D with the labels (left, right) and a cross-sectional tile (center).

We will now explain the nature of these conditions.

Lemma 3.1. Conditions (a) and (b) imply the polyhedra Π1 and Π2 are cross-
sectionally convex. Condition (c) guarantees that at least four horospheres are not all
in the same plane, and not all crossing labels are 0.

Proof. In the polyhedron Πi, i = 1, 2, there are at most four edges of Ei incident
to an ideal vertex. The cross-section determined by these edges is often a Euclidean
quadrilateral. The exception is a cross-section at an ideal vertex that has at least one
incident polyhedral edge resulting from a bigon of D. Such a cross-section might be
a triangle, or even a bigon that degenerates eventually into just one edge.

Consider a quadrilateral cross-section. One may see one such cross-sectional tile
of the torus boundary on Fig. 3, middle, where a crossing of the thickened link is
depicted (two of the vertices of the tile are glued together underneath the overpass).

If we look at the Fig. 3, left, we can write the expressions for the angles of
the cross-section in terms of the diagram labels. Two opposite angles of the cross-

section are arg
u

u+ 1
and arg

−v
−(v + 1)

(the corresponding quadrilateral is depicted

in Fig. 4, left). The condition (a) allows to choose the solution to the hyperbolicity
equations that is consistent with the orientation conventions used in the definitions
of the diagram labels (when choosing out of two Galois conjugates). The consistency
for the other labels follows automatically from the equations after the correct choice

of the solution is made. Note that if u = a + bi and Imu = b > 0, then Im
u

u+ 1
=

b

(a+ 1)2 + b2
> 0. Therefore, the condition (a) also guarantees that Im

u

u+ 1
and

Im
v

v + 1
are positive, and therefore arg

u

u+ 1
and arg

v

v + 1
(corresponding to two

opposite angles of the quadrilateral cross-section) are between 0 and π. In the case

Imu = b < 0, Im
u+ 1

u
= Im

−b
(a+ 1)2 + b2

> 0, and the same angles are between 0

and π again. The condition (b) similarly guarantees that two other opposite angles
of the cross-section are between 0 and π as well.

Consider a triangular cross-section (Fig. 4, middle), resulted from collapsing a
bigon region of the link diagram. If Imu = b > 0, then the interior angles correspond

to arg
u

u+ 1
, arg(u + 1), arg− 1

u
. The arguments of

u

u+ 1
, u + 1,− 1

u
are between 0

and π (since Im

(
− 1

u

)
= −b > 0). If Imu = b < 0, then the interior angles corre-

spond to arg
u+ 1

u
, arg(−u), arg

1

u+ 1
, and are between 0 and π again. Therefore, the

conditions (a) and (b) together imply cross-sectional convexity of the two polyhedra.

The condition (c) guarantees that we have at least four horospheres that are not
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Fig. 4. A cross-section with the labels (left, center) and a projection of a polyhedron in H3 (right).

all located in the same plane, since the quotient
w

uivj
is the cross-ratio of the centers

of the corresponding horospheres (possibly, with a negative sign). For the details
and proof, see Sections 2-4 in [16]. It also ensures that not all crossing labels are 0,
which would force the system of hyperbolicity equations to be degenerate, of the form
0 = 0.

We can now proceed to the main result of this section.

Proposition 3.2. Suppose that for an alternating link L there exists a solution
to the hyperbolicity relations such that the conditions (a)–(c) are satisfied. Then each
of ideal polyhedra Π1,Π2 is properly embedded in H3, i.e. any two straightened faces
either are identified, or are disjoint, or intersect in a connected sequence of edges
(including the vertices that are the edges’ endpoints), or in an ideal vertex only.

The rest of this section is devoted to the proof of the proposition. The proof
consists of a number of observations about the geometric nature of the polyhedra.

Note that it is enough to prove the statement solely for the faces of Π1, since the
construction of Π2 is similar to that of Π1. Once the Proposition 3.2 holds for any
two faces of Π1 and any two faces of Π2, it holds for any pair of faces where one face
is from Π1 and the other face is from Π2 by the construction as well.

By Lemma 3.1, Π1 is cross-sectionally convex. This implies, in particular, that
for any horosphere H centered at an ideal vertex v of Π1, the interior angles (not
exterior) of the cross-section of Π1 on H correspond to the dihedral angles of Π1 in
the horoball neighborhood of v bounded by H. It also implies that for any edge e of
Q, the intersection of H and the interior of Π1 is on one side of e (not on both), and
is inside Q. Note also that the boundary of Π1 is simply connected, and ∂Π1−{v} is
connected.

Lemma 3.3. Under the hypothesis of Proposition 3.2, there is no point p in
f(∂Π1 − {v}) such that f−1(p) consists of at least two distinct points.

Proof of Lemma 3.3. Suppose the contrary.
Assume p is in the horoball neighborhood H of an ideal vertex of ∂Π1 − {v}.

Our definition of straightened faces implies that f is not bijective in such a horoball
neighborhood in two cases. Firstly, if a face of Π1 inside H lies in a vertical plane.
But then this face of ∂Π1 − {v} has ∞ among its vertices, a contradiction. Secondly,
if there are two faces of Π1 − {v} inside H, one directly above another. Since ∂Π1 −
{v} is connected, this leads to two layers of faces, one above another, outside the
horospherical neighborhood of the ideal vertex.

Now assume p is outside the horoball neighborhoods of ideal vertices of ∂Π1 −
{v}. Either two distinct points of f−1(p) belong to one triangle that is a part of a
straightened face of Π1, or to two distinct triangles.
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First, suppose distinct points from f−1(p) belong to the same triangle T of a face
F . Since f is a vertical projection, T is vertical as well (i.e. T is perpendicular to
the plane z = 0). Recall that for the collection of vertices and straightened edges Ḟ
corresponding to the vertices and edges of a face of Π̄1, the triangulation is chosen so
that every triangle projects bijectively under f , if such a triangulation exists. Such a
triangulation does not exist only if there are two distinct consecutive edges of Ḟ that
lie in one vertical plane. Denote them by e1, e2.

The edges e1, e2 are incident to an ideal vertex, say v, and there is a horosphere
centered at v, say H. Denote the cusp cross-section of Π1 on H by Q. Two vertices
of Q that are on e1, e2 lie in the vertical plane. The other two vertices of Q must be
outside the plane and on the same side from it to satisfy cross-sectional convexity.
This implies that there are two levels of ∂Π1 − {v}, one above another, on one side
of T .

If two distinct points of f−1(p) do not belong to the same triangle, they belong
to two different triangles, and there are two levels of ∂Π1 − {v}, one above another,
as well.

The assumption that there are two levels of faces of ∂Π1 − {v} leads to the
following cases.

Case 1. A face of Π1 incident to ∞ meats a face of the lower level, say K3, and
a face of the upper level, say K4 simultaneously at a certain vertex. We will denote
the horosphere centered at this vertex by H34. This is depicted on Fig. 5, left, with
the faces of the upper level in black, and the faces of the lower level in grey (the
triangulations of the faces are not pictured).

Fig. 5. Illustrating case 1.

Two edges of Ei − vi incident both to the center of H34 and to K3 determine a
plane that intersects H34 in an edge e. The vertices of the cross-section on H34 that
are not the endpoints of e are on the opposite sides of the Euclidean line defined by
e on H34 (Fig. 5, right). This contradicts cross-sectional convexity.

Note that the same argument leads to a contradiction if at a vertex of ∂Πi−{v},
faces of three or more levels meet. The same argument also gives a contradiction if
two layers of faces meet at a edge ep of Ei, and the faces are adjacent to a single layer
of faces at ep.

Case 2. Faces meeting ∞ are incident at their vertices only to faces on the lower
level. Denote a face with a vertex at ∞ by K4. Then we arrive at one of the two
scenarios. Either K4 has interior of the polyhedron on both sides near the plane z = 0
(as on Fig. 7, left). Then on one of the horospheres adjacent to K4 and not located at
∞, the cross-section looks like Fig. 5, right, again. A contradiction. Or, in the second
scenario, none of the faces that are incident to ∞ and to lower level faces simultane-
ously have interior of the polyhedron on both sides (as on Fig. 7, right). Then the
exterior angles of the cross-section correspond to the dihedral angles of the polyhedron
in the corresponding horoball neighborhood of the vertex. A contradiction.
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Case 3. Faces meeting ∞ meet only faces in the upper level at vertices. However
there is a lower level of faces elsewhere. We then arrive at one of two scenarios. The
first scenario is that the faces of upper and lower level meet at some edges of ∂Πi−{v}
and are adjacent to a single layer of faces through those edges (and this single layer
is then adjacent a face with a vertex at ∞). We then use the argument from case 1.
The second scenario is to have a face with a vertex at ∞ adjacent to the upper level
of faces which then becomes the lower level. Then there is an ideal vertex q that is
a vertex of the face K5 at least a part of which is in the upper level, and of the face
K6 at least a part of which is in the lower level. Denote the horosphere centered at
q by H56. K5 intersects H56 in an edge e. Then the interior of the polyhedron is on
both sides of e, since it is above the faces of the upper level adjacent to ∞, and right
above K6 as well. A contradiction.

Case 4. Faces meeting ∞ meet a single layer of faces. Recall that the boundary
of the polyhedron is connected, and we have two layers of faces elsewhere. Hence
the faces of upper and lower levels either meet at some edges of ∂Πi − {v} and are
adjacent to a single layer of faces at those edges, or intersect and switch levels. In
the former situation, the argument from case 1 leads to a contradiction. In the latter
situation, the argument from the second scenario of case 3 leads to a contradiction.

Corollary 3.4. The image of the edges of Ei, i = 1, 2 that bound a face of Πi

under f is a simple polygon. Moreover, a restriction of f to every straightened face
of Πi is a bijection.

Proof of Proposition 3.2. If there are two distinct faces of ∂Π1 − {v} with inter-
secting interiors, then there is a point p in the image of one of the faces under f such
that its preimage consists of at least two distinct point. A contradiction to the claim.

Fig. 6. Faces of Π1 (left) and the corresponding link diagram (right).

Suppose there are two distinct faces K1,K2 of Π1, whose boundary intersects in
more than just a vertex or a sequence of connected edges (as on Fig. 6, left). K1,K2

result from a reduced and twist-reduced alternating diagram. Then Menasco’s reduced
alternating link diagram construction of the polyhedra implies that then there are
two faces of D sharing more than a connected sequence of edges or a crossing. In a
reduced and twisted-reduced alternating diagram, this is possible only if two adjacent
non-bigon regions have a number of bigons between them, as in Fig. 6, right, and share
several crossings. But bigons are collapsed in Menasco’s construction, and result in
a row of consecutive edges in the corresponding polyhedra, that the faces share. A
contradiction.

4. Ideal partially flat geodesic triangulations. Thurston provided sufficient
conditions for an ideal triangulation of a finite volume 3-manifold to be geodesic, which
can be expressed in gluing and completeness equations ([15]) together with a certain
restriction on a solution. In particular, all the tetrahedra should have positive volume.
Petronio and Weeks showed that this can also be achieved if an ideal triangulation is
partially flat and satisfies the completeness and consistency conditions ([13]).



ON ISOTOPY CLASSES OF CROSSING ARCS IN ALTERNATING LINKS 1015

Fig. 7. Illustrating case 2.

In this section, we will show that any cross-sectionally convex polyhedra in H3

can be subdivided into a partially flat geodesic triangulation. This implies that the
conditions (a)–(c) guarantee the existence of the complete hyperbolic structure of
S3 − L, and the correspondence described in Section 2 induces a developing map.

Let us recall the nature of the conditions that make a triangulation an ideal
geodesic partially flat triangulation. Consider a Euclidean cross-section of an ideal
tetrahedron. Suppose that the (complex) translations corresponding to the sides of

the cross-section are u, v,−(u + v) (Fig. 8). Any of − v
u

,
u

u+ v
,

u+ v

v
can be

taken as the shape z of the tetrahedron (sometimes also called tetrahedral parameter
or modulus), and their arguments correspond to the interior Euclidean angles of the
cross-section, as well as to the interior dihedral angles of the tetrahedron.

Definition 4.1. The completeness and consistency conditions for an ideal tri-
angulation τ are as follows.

Fig. 8. A cross-section with the labels.

1) In every tetrahedron, three pairs of opposite edges correspond to z, 1 − 1

z
,

1

1− z
in the way indicated above.

2) At every edge e of τ , after all the faces are identified in pairs, the shapes of
the tetrahedra glued at e satisfy z1z2...zk = 1.

3) For every tetrahedron, its shape z satisfies Im z ≥ 0, and not all zi, i = 1, 2..., n,
are 0.

4) The metric is complete, i.e. cross-sectional triangles glued together at each
ideal vertex must fit together to give a closed Euclidean surface

Note that the condition arg z1 + arg z2 + ...+ arg zk = 2π is often included (as a
part of consistency conditions), but one can prove that if both (2) and (4) are satisfied,
it is redundant.

Theorem 4.2. Suppose that for an alternating link L with a reduced alternating
diagram D edge and crossing labels satisfy the conditions (a)–(c). Then there exists
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a partially flat geodesic triangulation τ that induces the complete hyperbolic structure
on S3 − L.

Most of this section is devoted to the proof of Theorem 4.2.
Under the hypothesis of the theorem, two straightened polyhedra Π1,Π2 that

correspond to Menasco’s decomposition of S3 − L are properly embedded in H3 by
Prop 3.1. First, we construct a triangulation of Π1 ∪ Π2 that is properly embedded
in H3. Recall that f is the vertical projection described in the previous section. To
begin, take the collection of ideal vertices and straightened edges Ḟ corresponding
to a face F of Πi − {v}. Subdivide Ḟ into (ideal) triangles using the existing ideal
vertices of Ḟ only. Additionally, do it so that for any new edge e subdividing Ḟ of
Πi−{v}, i = 1, 2, f(e) lies entirely in f(F ) (this can always be done as a consequence
of Cor.3.3). Do this for every face of Πi − {v}, i = 1, 2. Additionally, for every face
F of Πi − {v}, i = 1, 2, incident to ∞, subdivide Ḟ by edges incident to ∞ (i.e. by
vertical geodesics from other vertices of Ḟ ). Denote the resulting polyhedra with
triangular faces by Π′1,Π

′
2.

Recall that a collection of edges and vertices in H3 corresponding to a face F̄ of
Π̄1 was denoted by Ḟ . As mentioned before, the ideal vertices of Ḟ do not necessarily
lie in one hyperbolic plane. Therefore, after we subdivided every such collection Ḟ in
a new way, we have to check that the resulting polyhedra Π′i, i = 1, 2, are properly
embedded in H3 as well (i.e. the new triangular faces do not “cut” through each
other). That is the content of the next lemma.

Fix i and consider a cross-section Q′ of an ideal vertex of the polyhedron Π′i
resulting from the subdivision. Suppose Q′ is situated on the horosphere H. Q′

corresponds to a 4-sided cross-section Q of Πi with the vertices A,B,C,D in the
following way: Q′ has four vertices A,B,C,D of Q, and several more vertices resulting
from the subdivision of faces of Πi. We will refer to these vertices as to the “new”
vertices of Q′.

Lemma 4.3. Suppose E is a new vertex of the cross-section Q′. Suppose further
E resulted from the subdivision of the face of Πi that is incident to the edge CD of
Q. Then E lies either in the interior of Q, or on CD, or in the part of H bounded by
the lines CD,AD,BC and on the other side of the line CD from AB (the area where
E may lie is shown in grey on Fig. 9).

Proof of Lemma 4.3. Suppose first Ḟ does not meet v. Since f is a homeomor-
phism on faces of Πi − {v} (by Proposition 3.2), any new edge of Π′i resulting from
the subdivision of Ḟ does not intersect the interior of any face of Πi besides F .

Now suppose Ḟ has v among its vertices. Then the new edges resulting from
the subdivision of Ḟ are all vertical geodesics. Since there are no two levels of faces
anywhere (see the proof of Lemma 3.3), these new edges do not pierce the interior of
any face (besides F ) as well.

Denote the geodesics that pierce H at the points A,B,C,D,E by α, β, γ, δ, η
respectively. If E lies outside the specified area, η pierces a face adjacent to either
AD or AB or BC, a contradiction.

All the faces of Π′1,Π
′
2 are triangular faces, and the previous lemma implies that

Π′1,Π
′
2 are properly embedded in H3. We will now construct an ideal partially flat

triangulation of Π′1,Π
′
2, properly embedded in H3.

Triangulate Π′1,Π
′
2 using the existing ideal vertices only, and so that the interiors

of the triangular cross-sections of tetrahedra do not intersect. Denote such a trian-
gulation by τ . Note that such τ always exists and is not unique; an example is the
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Fig. 9. A horosphere with a cross-section in H3 illustrating Lemma 4.3.

triangulation suggested by Thurston ([15]) and Menasco ([10]).

Lemma 4.4. Any tetrahedron in τ is either flat, or lies entirely inside the poly-
hedron Π′1, i = 1, 2, or lies entirely outside.

Proof of Lemma 4.4. The subdivision of cross-sections of Π′i corresponds to the
subdivision of the polyhedron Π′i in the following way. Suppose we subdivided the
cross-section Q′ with the consecutive vertices A,B,C,D,E on the horosphere H by
a new edge EC. Suppose P is the center of H. Suppose also that the vertices
A,B,C,D,E result from geodesics α, β, γ, δ, η respectively (as before) piercing H, and
that these geodesics are edges of Π′i. Then the plane PEC defined by the geodesics γ, η
intersects Q′ in EC. Suppose also that P1, P2 are the ideal vertices that are adjacent
to γ, η respectively on the sides opposite of P . We subdivide the cross-section Q′ of
Π′i by an edge EC if we also subdivide Π′i by a new triangular face that lies in the
plane PEC and has vertices P, P1, P2 (possibly with a new edge between P1 and P2).

After the triangulation process, all cross-sections of Π′i are subdivided into tri-
angles. If there is a tetrahedron T of τ that lies partially outside and partially in
the polyhedron Π′i in H3, then at least one of the faces (say, a face F ) of T is par-
tially outside and partially in Π′i. Then in the corresponding cross-section we have a
subdividing edge that is partially inside and partially outside the cross-section, i.e.
the subdividing edge intersects edges of the cross-section more than just in their end-
points. This is not possible, since by Lemma 4.3 Q′ is a simple polygon, and since
by our construction the triangulation of Π′i corresponds to triangulating this simple
polygon. Similar argument shows that the interior of any truncated tetrahedron is
not intersected by another truncated tetrahedron.

Proof of Theorem 4.2. Lemma 4.4 implies that τ is an ideal partially flat triangu-
lation. Additionally, the condition (c) implies that not all tetrahedra have 0 volume
(as explained in Lemma 3.1). Hence, the condition (3) from Definition 4.1 is satisfied.
Now let us check the conditions (1), (2) and (4).

Let us look at the condition (2) of Definition 4.1. Choose an edge e of τ , and
let T1, ...., Tk be tetrahedra glued at e. Their shapes are the ratios of the edge labels
z1 = u1/u2, z2 = u2/u3, ..., zk−1 = uk−1/uk, zk = uk/u1, where each ui connects the
point where e pierces H1 with the points where other edges of T1, T2, ..., Tk pierce H1

(Fig. 10, left). None of ui is 0 due to the conditions (a)-(c), and the product of such
shapes then satisfies z1....zk = 1.

Turn our attention to the condition (1) of Definition 4.1. Consider a tetrahedron
T in the triangulation τ , with one of its ideal vertices being the center of a horosphere
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H1. Suppose the (complex) translations corresponding to the sides of a cross-section
lying at the horosphere H1 are u1, v1,−(u1 + v1). Let the geodesic edges of T be
denoted by γi, i = 1, 2, ..., 5 as on Fig. 10, right. Then the shapes associated with the

geodesics γ1, γ2 and γ3 are − v1
u1

,
u1

u1 + v1
,
u+ v

v
. Denote the first shape by z, and

then the other two shapes are 1− 1

z
,

1

1− z
. The corresponding Euclidean angles of

the cross-section are arguments of the shapes, and so are three corresponding dihedral
angles.

We need to check whether opposite dihedral angles in T agree. For this, it is
enough to check that the shapes agree. Suppose, another cross-section of T lying on
the horosphere H2 has sides u2, v2,−(u2 + v2).

Diagram labels satisfy the region relations, and the relations are obtained by
composing the isometries rotating (truncated) hyperbolic polygons. Each polygon is
a preimage of the boundary of a region of D. We may use faces of a triangulation
instead of the regions (the labels are defined so that they satisfy the relations coming
from rotating these faces as well). All these faces are three-sided, which makes the
relations particularly simple.

Fig. 10. Horospheres and geodesics in H3 illustrating (2), left, and (1), right, of Definition 4.1.

Let us show that the shape of T associated with γ3 is equal to the shape of T

associated with γ4. The former is
u1 + v1
v1

, while the latter is
−v2
u2

.

From the 3-sided polygon that is a face of T determined by geodesics γ1, γ2, γ4:
w2

u1v1
= 1, and therefore v2 =

w2

u1
. From the 3-sided polygon that is a face of T

determined by γ3, γ2, γ5:
w2

(u1 + v1)(u2 + v2)
= 1, and therefore u2 + v2 =

w2

u1 + v1
.

Then, from the cross-section of T on the horosphere H2, u2 = (u2 + v2) − v2 =
w2

u1 + v1
− w2

u1
.

Substitute the shape of T associated with γ4 into the above expressions for v2

and u2. After routine simplifications, we obtain
−v2
u2

= −u1 + v1
v1

, which is exactly

the shape of T associated with γ3. Similarly one can show that other pairs of shapes
of T agree.

Lastly, let us check the condition (4) of Definition 4.1, namely that Euclidean
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cross-sections of all tetrahedra incident to a particular ideal vertex v1 of Πi, i = 1, 2,
form a closed Euclidean surface. The tetrahedra are glued at an ideal edge incident
to v1, say e. Denote the other ideal vertex of e by v2. Denote the horopshere centered
at v1 by H1.

Recall that every ideal vertex of τ in H3 corresponds to an overpass or an un-
derpass of the diagram D. Every edge connecting the vertices of τ lies on a geodesic
that connects the centers of the corresponding horospheres in H3. Hence, there is
a quadrilateral cross-section of Πi on H1 resulting from connecting H1 with four
neighboring horospheres by four distinct arcs (Fig. 11, left). Let u1, u2, u3, u4 be the
corresponding edge labels as in the figure. Since u1, u2, u3, u4 satisfy the definition
of edge labels, they are determined by the Euclidean translations between the points
where the corresponding arcs pierce H1.

Suppose first e is an edge of Πi, i = 1, 2. Then there is a vertex Q of the quadri-
lateral cross-section on H1 such that Q lies on e. Three such cross-sections meet at
Q as in the Fig. 3, center. The edges of these cross-sections are u1, u2, u3, u4 by the
definition of edge labels and our construction of the polyhedra Πi, i = 1, 2. Therefore,
the cross-sections meet to form a closed Euclidean surface.

We triangulated Π1 ∪Π2 by adding more arcs (edges) between the existing ideal
vertices. For an ideal vertex v1, all the arcs of the triangulation start at H1 and
end at one of the neighboring horospheres, which correspond to other overpasses and
underpasses. Suppose now e is not an edge of Πi, i = 1, 2, and was added in the
triangulation process. Define u′3 and u′′3 to be complex numbers corresponding to the
translations between the point where e pierces H1, and the points where the arcs
immediately to the right and immediately to the left to e pierce H1. The numbers
u′3 and u′′3 are uniquely determined by the previous labels and the choice of the ideal
vertices (and hence location on the plane z = 0) for the incident tetrahedra. In
particular, u′3 + u′′3 = u3 as in Fig. 11, right. Hence, triangular cross-sections of all
tetrahedra fit together to form a closed Euclidean surface.

Fig. 11. The proof that condition (4) of Definition 4.1 holds.

Since the conditions (1)-(4) are satisfied by τ , we may use Theorem 1.1 from [13]
to state that the complete hyperbolic structure on S3 − L exists.

The diagram labels that satisfy the hyperbolicity equations and conditions (a)-(c)
above were used to prove the existence of the complete hyperbolic structure on L. If,
rather, we assume that the structure exists, we automatically obtain the following
statement from our construction of a triangulation.

Corollary 4.5. Once a hyperbolic 3-manifold M has a decomposition into
two ideal cross-sectionally convex polyhedra in H3, there exists an ideal partially flat
geodesic triangulation of M .
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5. Isotopy classes of crossing arcs. The following statement provides a
method for determining whether a crossing arcs is isotopic to a simple geodesic. Note
that to check the conditions (a)-(c), one does not have to perform a decomposition of
the link complement into polyhedra (or tetrahedra).

Theorem 5.1. Under the conditions (a)-(c) on the diagram labels of a reduced
alternating diagram D of a link L, its crossing arcs are isotopic to simple geodesics.

Proof. The proof of Theorem 1.1 from [13] implies that the topological space
obtained by gluing the tetrahedra (some of which are possibly flat) is homeomorphic
to S3−L, and that the hyperbolic structure of S3−L locally induces its own metric on
each tetrahedron. Therefore, the edges of τ are geodesics in H3, and the tetrahedra
of τ are isometric to the corresponding tetrahedra in S3 − L, making the edges of
the corresponding triangulation of S3 − L geodesics as well. By construction, every
crossing arc of D is an edge of τ .

Let us now check that the crossing arcs are simple geodesics, i.e. have no self-
intersections. The only edges of τ that intersect in one point in H3 are two distinct
edges of a flat tetrahedron (and, respectively, the edges that are identified with these
two edges under the gluing). We need to check that these edges do not correspond to
the same crossing arc in S3 − L. By the Thurston-Menasco construction, a crossing
arc c in S3 − L corresponds to one edge e1 of Π1, and one edge e2 of Π2. Under the
gluing, e1 and e2 are identified, and therefore they cannot be two distinct edges of
one geometric tetrahedron intersecting in just one point.

6. Examples and conclusions. The following examples illustrate that the con-
ditions (a)-(c) are not too restrictive, and also show how to check them in practice.
The first example is an infinite family of alternating braids, and the second one is an
alternating link randomly chosen from the tables. Empirical data suggests that many
other hyperbolic alternating links satisfy the conditions (a)-(c).

Example 6.1. Consider an infinite family of alternating closed braids
(σ1σ3σ

−1
2 )n, n > 2. Fig. 12, left, shows a fragment of such a link with the dia-

gram labels. The link can always be oriented as on the figure. Then the symmetry
together with the relations for a 3-sided region imply that there are only two edge
labels, u1 and u2, and two crossing labels, w1 and w2.

Fig. 12. A fragment of (σ1σ3σ
−1
2 )n braid (left), and a diagram of 828 link (right).
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The shape (in the sense of [16]) of the regular n-sided region was established in

[16] and is
w1

u21
= L =

1

4
sec2

π

n
. Additionally, the labels satisfy the equations −w1 =

(u1+1)(u2+1),
w1

u22
−w2

u22
= 1, w2 = −(u2+1)2. Then u1 satisfies Lu31−Lu21−1 = 0,

and u2 =
Lu21 + 1

−2
.

A quick computation (one can use a computer algebra system) shows that Imu1 <
0. In particular, as n approaches ∞, Imu1 monotonically decreases towards the

limit of
24/3 − (31 + 3

√
105)2/3

22/3
√

3(31 + 3
√

105)1/3
, which is approximately −1.20563, starting with a

negative number for n = 2. One can also check that Imu2 < 0. In fact, Imu2
monotonically increases towards the limit of

44
√

3 + 12
√

35− (13
√

3 + 3
√

35)(62 + 6
√

105)1/3

24(62 + 6
√

105)2/3
,

which is approximately −0.0895648, as n → ∞. And Im
−u1
u2 + 1

> 0, Im
−u2
u1 + 1

> 0.

Similarly, these are monotonic functions of n, and one can write down the positive

numbers they converge to as n → ∞. Lastly,
−w1

(u1 + 1)(u2 + 1)
is not purely real for

all n = 4, 5, .... Therefore, the conditions (a)-(c) are satisfied.

A similar argument can be applied to any alternating closed braid of the type

(σ1σ3...σ2k+1(σ2σ4...σ2k)−1)n, n > 2,

showing that the crossing arcs of the reduced alternating diagram of such a link are
isotopic to geodesics. Note that these are braids that have an even index. One
may also consider closed alternating braids with no bigons of odd index, generalizing
Example 6.2 from [16].

Example 6.2. Consider the 2-component link 828 in the Rolfsen table, and its
reduced alternating diagram (Fig. 12, right). Assign diagram labels and orientation
to it as on the figure. Recall that every region yields three region relations. Below
we give the relations, and the decimal values of the labels necessary to check the
conditions (a)-(c). This simple calculation shows that all the crossing arcs are isotopic
to geodesics.

From the regions I, II, III respectively:

w1 + u6 = 0, w6 − u6u4 = 0, w1 + u4 = 0, w1 + (u4 + 1)(u5 + 1) = 0,

w5− (u5 + 1)(u3 + 1) = 0, w6 + (u4 + 1)(u3 + 1) = 0, w5− (u12 + 1)(u2 + 1) = 0,

w4 − (u2 + 1)(u11 + 1) = 0, w3 − (u11 + 1)(u12 + 1) = 0.

From the other three 3-sided regions:

w6−u3u1 = 0, w4+u2u1 = 0, w5+u2u3 = 0, w2−u10u9 = 0, w3+u11u9 = 0,
w4 + u10u11 = 0, w2 + u8 + 1 = 0, w3 − (u8 + 1)(u9 + 1) = 0, w2 + u9 + 1 = 0.

Lastly, of the two 5-sided regions (one of which is the outer region of the diagram),
each yields equations of the form ξ1ξ3 − (ξ1 + ξ2 + ξ3) + 1 = 0, ξ2ξ4 − (ξ2 +
ξ3 + ξ4) + 1 = 0, ξ3ξ5 − (ξ3 + ξ4 + ξ5) + 1 = 0, where for the inner region

ξ1 =
−w1

(u6 + 1)(u7 + 1)
, ξ2 =

−w2

u7 + 1
, ξ3 =

−w2

u10 + 1
, ξ4 =

w4

(u1 + 1)(u10 + 1)
,
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ξ5 =
−w6

(u1 + 1)(u6 + 1)
, and for the outer ξ1 =

−w1

u7
, ξ2 =

w2

u7u8
, ξ3 =

−w3

u12u8
,

ξ4 =
−w5

u12u5
, ξ5 =

w1

−u5
.

One can then use a computer algebra system to obtain the solutions. The solution
that satisfies the condition (a)-(c) has the following approximate decimal values of the
labels: w1 = 0.37− 0.52i, w2 = −0.37− 0.52i, w3 = −0.13 + 0.39i, w4 = 0.19 + 0.34i,
w5 = −0.19 + 0.34i, w6 = −0.13 − 0.39i, u1 = −0.08 + 0.63i, u2 = −0.5 + 0.36i,
u3 = −0.58 + 0.27i, u4 = u6 = −0.37 + 0.52i, u5 = −0.85 + 0.78i, u7 = −0.5 + 1.9i,
u8 = u9 = −0.63+0.52i, u10 = −0.05+0.78i, u11 = −0.42+0.27i, u12 = −0.92+0.63i.
Therefore, the crossing arcs of the diagram on Fig. 12, right, are isotopic to geodesics.

It is also of note that experimental data suggests the following conjecture.

Conjecture 6.3. The Thurston-Menasco ideal polyhedra in a hyperbolic alter-
nating link complement in S3 are cross-sectionally convex hyperbolic polyhedra, and
the Thurston-Menasco ideal triangulation is a partially flat geodesic triangulation.
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