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EXPLOITING LOG-CAPACITY IN CONVEX GEOMETRY∗
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Abstract. This article is devoted to an exploitation of the log-capacity for convex bodies
- especially - its connections to volume-radius, mean-width, Hadamard-type variational formula,
Minkowski-type problem, and Yau-type problem.
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1. Introduction.

1.1. Background. Thanks to its role in two-dimensional potential theory that
is the study of planar harmonic functions in mathematics and mathematical physics,
the logarithmic capacity in the Euclidean plane R2 has been studied systemically; see
[28, 2, 24, 33, 44, 45, 43, 54] for some relatively recent publications on this topic.
However, the higher dimensional extension (i.e., to the Euclidean space R

n, n ≥ 3)
of the planar logarithmic capacity has received relatively little attention due to a
nonlinear nature; see [6, 11, 18, 19, 3, 4, 32] (see also [1, 23, 39] for some function-space-
based capacities) only because of the author’s limited knowledge of other references.

Fortunately, in their paper [11] Colosanti-Cuoghi were able to utilize an equilib-
rium potential to introduce a kind of the logarithmic capacity (in short, log-capacity)
for 2 ≤ n-dimensional convex bodies. To be more precise, let C n be the class of all
non-empty convex compact subsets of Rn, and denote by K n the class of all K ∈ C n

with non-empty interiorK◦. For K ∈ K
n let u = uK be its log-equilibrium potential,

i.e., the unique weak solution to the following boundary value problem:











−div(|∇u|n−2∇u) = 0 in R
n \K;

u = 0 on ∂K;

u(x) ∼ log |x| as |x| → ∞,

(1.1)

where log(·) is the base-e (i.e., natural) logarithm,∼means that there exists a constant
c > 0 such that

c−1 ≤
u(x)

log |x|
≤ c as |x| → ∞.

In accordance with Kichenassamy-Veron’s [31, Theorem 1.1 and Remarks 1.4-1.5],
u(x)− log |x| tends to a constant depending on K as |x| → ∞, and so the following

ncap(K) = exp
(

− lim
|x|→∞

(

u(x)− log |x|
)

)

(1.2)

was employed by Colosanti-Cuoghi in [11] to define the log-capacity of K since the
case n = 2 of (1.2) is just the logarithmic capacity on R2.
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According to [11, Remarks 2.2&2.3], the log-capacity ncap(·) enjoys the following
basic properties:

• ncap
(

Bn
)

= 1 provided Bn = {x ∈ Rn : |x| ≤ 1};
• ncap(x0 + ρK) = ρncap(K) provided x0 + ρK = {x0 + ρx : x ∈ K} and
(x0, ρ,K) ∈ R

n × (0,∞)× K
n;

• ncap(K1) ≤ ncap(K2) provided K1,K2 ∈ K n with K1 ⊆ K2.
Naturally, the log-capacity of an arbitrary K ∈ C n is defined as:

ncap(K) = inf
K⊆L∈K n

ncap(L).

Such a definition induces not only the last two properties for C n but also the following
downward-monotone-convergence

• ncap(∩∞
j=1Kj) = limj→∞ ncap(Kj) provided Kj ∈ C

n with Kj ⊇ Kj+1.

1.2. Overview. In this paper we study five problems which are naturally as-
sociated with the above-defined log-capacity. First of all, we discover the optimal
relationship among the volume-radius, the log-capacity and the mean-width (cf. The-
orem 2.1). Secondly, we find an integral identity and a lower bound estimate for the
non-tangential limit of the gradient of the log-equilibrium potential on the boundary
of a K n-member (cf. Theorems 3.1 & 3.2). Thirdly, we establish Hadamard’s vari-
ational formula for (1.2) (cf. Theorem 4.4). Fourthly, we handle the existence and
uniqueness of Minkowski’s problem for the log-capacity (cf. Theorem 5.1). Last of all,
we settle the log-capacity analogue of Yau’s [56, Problem 59] (the prescribed mean
curvature problem) in a weak sense (cf. Theorem 6.1). Here it is perhaps appropriate
to point out that since our log-capacity generalization is from the linear case n = 2
(where the classical 2 = n-harmonic functions are often taken into account) to the
nonlinear case n ≥ 3 (where only the nonlinear 3 ≤ n-harmonic functions can be
used), in all situations we have to seek an unified way, which turns out to be highly
non-trivial, to deal with these issues.

Acknowledgments. The author is not only grateful to David Jerison for his
helpful comments on an earlier version of this work, but also to the referee for his/her
careful reading of the paper.

2. Volume-radius and mean-width via log-capacity.

2.1. Log-capacity breaking iso-mean-width inequality. Given K ∈ C n.
Following [48, (1.7)], we say that

hK(x) = sup
y∈K

x · y ∀ x ∈ R
n

is the support function of K, and

b(K) =
2

σn−1

∫

Sn−1

hK dθ

is the mean-width of K whose case n = 2 gives π b(K) = S(K), the perimeter of K
(cf. [48, p. 318]) – here and henceforth dθ is the uniform surface area measure on
Sn−1, i.e., the n−1 dimensional spherical Lebesgue measure, where σn−1 = nωn is the
surface area of the unit sphere Sn−1 of Rn. The sharp iso-mean-width (or Uryasohn’s)
inequality

(

V (K)

ωn

)
1

n

≤
b(K)

2
(2.1)
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is well known for any K ∈ C n (cf. [48, (6.25)]), where the left-hand quantity of (2.1)
is called the volume-radius of K and the right-hand quantity of (2.1) is dominated by
a half of the diameter diam(K) of K. Surprisingly, the following result indicates that
(2.1) can be split by ncap(K), just like the well-known planar case (cf. [44, Theorem
5.3.5] and [7, Example 7.4]).

Theorem 2.1. Let K ∈ C n. Then

(

V (K)

ωn

)
1

n

≤ ncap(K) ≤
b(K)

2
. (2.2)

And, (2.2) is optimal in the sense that if K is either a ball or a singleton then two
equalities of (2.2) hold.

Proof. A straightforward computation shows that each equality of (2.2) occurs
whenever K is either a ball or or a singleton.

In order to proceed further, let us recall the definition of the conformal capacity
ncap(O,K) for a given open set O ⊂ Rn containing a compact set K (cf. [23, p.287]):

ncap(O,K) = inf
f∈W(O,K)

∫

O\K

|∇f |n dV,

where dV is the Lebesgue volume element and W(O,K) comprises all f ∈ C∞
0 (O)

(infinitely differentiable functions with compact support in O) enjoying f ≥ 1 on
K - according to [23, p.27], without affecting ncap(O,K) the class W(O,K) can be
replaced by

W0(O,K) = {f ∈ W 1,n
0 (O) ∩ C(O) : f ≥ 1 on K},

where C(O) consists of all continuous functions in O and W 1,n
0 (O) is the closure of

C∞
0 (O) in the Sobolev (1, n)-space W 1,n(O) equipped with the norm

‖f‖W 1,n(O) =

(∫

O

|f |n dV

)
1

n

+

(∫

O

|∇f |n dV

)
1

n

.

For an arbitrary subset E of O, the above definition is extended by

ncap(O,E) = inf
E⊆open U⊆O

sup
compact K⊆U

ncap(O,K).

Below are the known facts (cf. [23, Theorem 2.2] and [17, (2.10)]):

(i) ncap(O,K1) ≤ ncap(O,K2) as K1 ⊆ K2 are compact;

(ii) ncap(O1,K) ≥ ncap(O2,K) as O1 ⊆ O2 are open and K is compact;

(iii) ncap(O,∩∞
j=1Kj) = limj→∞ ncap(O,Kj) as Kj ⊇ Kj+1 are compact;

(iv)
(

ncap(O,K)
σn−1

)
1

1−n

≤ log
(

V (O)
V (K)

)
1

n

.

Due to the definition of ncap(K) for K ∈ C n, it is enough to verify (2.2) under
the assumption K ∈ K n in what follows.
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On the one hand, we check the left-hand inequality of (2.2). To do so, let r ∈
(0,∞) be large enough such that K ⊆ rBn = {x ∈ Rn : |x| < r} and set ur be the
unique solution to







−div(|∇ur|n−2∇ur) = 0 in rBn \K;

ur = 0 on ∂K & ur(x) = log r as |x| = r,

According to the argument for [11, Theorem 2.2], {ur} has a subsequence, still denoted
by {ur}, convergent to u which is the unique weak solution of (1.1) and makes that

α = lim
|x|→∞

(

u(x)− log |x|
)

is finite. According to [31], we have that if |x| → ∞ then

u(x) = log |x|+ α+ o(1) & |∇u(x)| = |x|−1 + o(|x|−1).

Consequently, by the maximum principle we get

0 ≤ u(x) ≤ max
|y|=r

u(y) ∀ x ∈ rBn = {y ∈ R
n : |y| ≤ r}.

If

vr(x) =
u(x)

max|y|=r u(y)
∀ x ∈ rBn,

then for r → ∞ and 0 < t→ 1 we have

vr(x) = t⇔ log |x|+ α+ o(1) = t
(

log r + α+ o(1)
)

⇔ |x| = rt exp
(

(t− 1)
(

α+ o(1)
)

)

≡ r∗.

Note that










−div(|∇vr|n−2∇vr) = 0 in rBn \K;

vr = 0 on ∂K;

0 ≤ vr(x) ≤ 1 as x ∈ rBn.

So, using (ii), the definition of ncap(·,K), the test function vr,t := 1 − t−1vr which
belongs to the class W0

(

{{vr(x) < t},K
)

via setting vr(x) = 0 as x ∈ K, the
divergence theorem and an integration-by-part, we get

ncap(rBn,K) ≤ ncap
(

{vr(x) < t},K
)

≤

∫

{vr(x)<t}

|∇vr,t|
n dV

≤

∫

{vr(x)=t}

|∇vr,t|
n−1 dS

= t1−n

∫

{vr(x)=t}

(

|∇u|

max|y|=r u(y)

)n−1

dS

= t1−n

∫

|x|=r∗

(

1 + o(1)

r∗(log r + α+ o(1))

)n−1

dS

= t1−nσn−1

(

1 + o(1)

log r + α+ o(1)

)n−1

.
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That is to say,

(

ncap(rBn,K)

t1−nσn−1

)
1

n−1

≤
1 + o(1)

log r + α+ o(1)
.

Now, an application of (iv) derives

log r + α+ o(1)

t−1
(

1 + o(1)
) ≤ log

r
(

V (K)
ωn

)
1

n

= log r − log

(

V (K)

ωn

)
1

n

thereby finding (thanks to: t→ 1; r → ∞; o(1) → 0)

(

V (K)

ωn

)
1

n

≤ e−α = ncap(K).

On the other hand, we demonstrate the right-hand inequality of (2.2). For x ∈ Rn,
we have

|x|b(K)

2
=

1

σn−1

∫

Sn−1

hK(|x|θ) dθ. (2.3)

The right side of (2.3) can be approximated by
∑m

k=1 hK(|x|θk)λk – the support
function of

∑m
k=1 λkTkK, where λk ∈ (0, 1),

∑m
k=1 λk = 1, and TkK is a rotation of

K generated by θk. Meanwhile, according to Colesanti-Cuoghi’s [11, Theorem 3.1],
we have

ncap

(

m
∑

k=1

λkTkK

)

≥
m
∑

k=1

λkncap(TkK) = ncap(K) (2.4)

due to the easily-checked rotation-invariance of ncap(·). Note also that the left side of
(2.3) is the support function of a ball of radius 2−1b(K). So, the above approximation,
the correspondence between a support function and an element of C n, and (2.4) yield
the desired inequality.

2.2. Another look at volume-radius and log-capacity. Here, we can say
more about volume-radius and log-capacity through the solution uK of (1.1).

Remark 2.2. For K ∈ K n, let (∇uK)|∂K be the non-tangential limit of ∇uK at
∂K (cf. [35, Theorem 3] and [34, Theorem 4.3]). If |∇uK | equals a positive constant

c on ∂K, then c−1 =
(

V (K)/ωn

)
1

n is the volume-radius of K and hence |∇uK | exists
as a kind of weak mean curvature on the level surfaces of u = uK . In fact,

−div(|∇u|n−2∇u) = 0 in R
n \K & |∇u|∂K = c

implies that if

X = n(x · ∇u)|∇u|n−2∇u− |∇u|nx,

ν stands for the outer unit normal vector, and r → ∞, then

(n− 1)ncnV (K) = (1− n)

∫

∂K

x · ∇u|∇u|n−1 dS

=

(

n− 1

n

)∫

∂(rBn)

X · ν dS

= (n− 1)σn−1 + o(1),
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Thus, c =
(

ωn/V (K)
)

1

n

, as desired.

Moreover, if U is n-harmonic, i.e., div(|∇U |n−2∇U) = 0, in Rn \K, U is continu-
ous on ∂K, and U(x) has a finite limit U(∞) as x→ ∞, then the divergence theorem
is utilized to produce

U(∞) =
1

σn−1

(

∫

∂K

U |∇uK |n−1 dS +

∫

Rn\K

∇uK · ∇U
(

|∇uK |n−2 − |∇U |n−2
)−1 dV

)

.

In particular, if n = 2 then this formula reduces to [28, (6.3)], and consequently, if
U(x) = uK(x) − log |x| (which is 2 = n-harmonic in Rn \K) then

ncap(K) = exp

(

σ−1
n−1

∫

∂K

(log |x|)|∇uK(x)|n−1 dS(x)

)

for n = 2.

It is our conjecture that this last formula is still valid for n ≥ 3.

3. Boundary estimation of log-equilibrium.

3.1. An identity for the unit sphere area through log-equilibrium. In
the above and below, by a convex body in Rn we mean an element of K n. For
K ∈ K

n, the Gauss map g : ∂K → S
n−1 is defined almost everywhere with respect

to the surface measure dS and determined by g(x) = ν, the outer unit normal at
x ∈ ∂K. In the process of finding a representation of the log-capacity ncap(K) in
terms of the integral of |∇uK |n of the log-equilibrium potential uK on ∂K, we get the
following result whose case n = 2 is essentially known; see also [28].

Theorem 3.1. If K ∈ K n, then

∫

∂K

hK(g)|∇uK |n dS = σn−1. (3.1)

In other words, if g∗(|∇uK |n dS) is defined by

∫

g−1(E)

|∇uK |n dS ∀ Borel set E ⊂ S
n−1,

then
∫

Sn−1

hKg∗(|∇uK |n dS) = σn−1.

Consequently,

∫

Sn−1

ξg∗(|∇uK |n dS)(ξ) = 0. (3.2)

Proof. For K ∈ K n, let u = uK . Suppose that ν is the outer unit normal. Two
cases are in order.

Case 1. K is of class C2,+ - namely - ∂K is of class C2 and its Gauss curvature
G(K,x) is positive at any x ∈ ∂K. Then

|∇u| = −
∂u

∂ν
on ∂K; (3.3)
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see also [46].
Observe that if

X = n(x · ∇u)|∇u|n−2∇u − |∇u|nx

then divX = 0 in Rn \K and hence by an integration-by-part,

∫

∂K

X · ν dS =

∫

∂(rBn)

X · ν dS as r → ∞.

However, the right side of the last formula tends to σn−1 as r → ∞ thanks to the
expansion of u at infinity. So, from (3.3) it follows that

(n− 1)

∫

∂K

(x · ∇u)
(

−
∂u

∂ν

)n−1

dS =

(

1− n

n

)∫

∂K

X · ν dS = (n− 1)σn−1.

Consequently, (3.1) follows from

∫

∂K

hK(g)|∇u|n dS =

∫

∂K

(x · ∇u)

(

−
∂u

∂ν

)n−1

dS = σn−1.

To reach (3.2), note that σn−1 is a dimensional constant and the support function
of L = K + x0 is

hL(ξ) = hK(ξ) + x0 · ξ for ξ ∈ S
n−1,

where x0 ∈ Rn is arbitrarily given. So, an application of (3.1) to L yields

∫

∂K

x0 · g(x)|∇uK(x)|n dS(x) = 0

and consequently, the following vector equation
∫

∂K

g(x)|∇uK(x)|n dS(x) = 0

holds. This gives (3.2).
Case 2. K just belongs to K n. To prove (3.1) under this general situation, recall

first that the Hausdorff metric dH on C n is determined by

dH(K1,K2) = sup
x∈K1

d(x,K1) + sup
x∈K2

d(x,K2) ∀ K1,K2 ∈ C
n,

where d(x,E) stands for the distance from the point x to the set E.
Of course, the interior of the above K is a Lipschitz domain. According to Lewis-

Nyström’s [35, Theorem 3] (cf. [15] and [29] for harmonic functions), we see that
∇uK has non-tangential limit, still denoted by ∇uK , almost everywhere on ∂K with
respect to dS. Moreover, |∇uK | is n-integrable on ∂K under dS, i.e.,

∫

∂K

|∇uK |n dS <∞. (3.4)

For 0 < t < 1 let

Lt = {x ∈ R
n \K : uK(x) > t} & Kt = R

n \ Lt.
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Then Kt ∈ K n is of class C2,+ (cf. [11, Theorem 2.2]). Note that uK − t is equal to
the log-equilibrium potential uKt

of Kt, and note that continuity of uK on ∂K yields
limt→0 dH(Kt,K) = 0. So,

σn−1 =

∫

∂Kt

(x · ∇uK(x))|∇uK(x)|n−1 dS(x).

This, plus (3.4) and the dominated convergence theorem, derives

σn−1 = lim
t→0

∫

∂Kt

(x · ∇uK(x))|∇uK(x)|n−1 dS(x)

=

∫

∂K

(x · ∇uK(x))|∇uK(x)|n−1 dS(x),

whence yielding (3.1) and its consequence (3.2).

3.2. A lower bound for the gradient of log-equilibrium. Being motivated
by [13, Lemma 2.18] we find the following lower bound estimate for the gradient of
the equilibrium potential of (1.1) on the boundary of a convex body.

Theorem 3.2. For K ∈ K
n let uK be its equilibrium potential. If K ⊂ rBn,

then there exists a constant c > 0 depending only on r and n such that |∇uK | ≥ c
almost everywhere on ∂K with respect to dS.

Proof. Suppose that u = uK and t0 ∈ (0, 1) obey

Kt = {x ∈ R
n \K : u(x) ≤ t} ⊂ rBn ∀ t ∈ (0, t0).

Note that Kt is of class C
2,+ and the existence of t0 is ensured by the continuity of u

in Rn \K (cf. [11, Theorem 2.2]). Now, for t ∈ (0, t0) let

ǔt(x) = u(x)− t ∀ x ∈ R
n \Kt.

Then ǔt is the solution of (1.1) for Kt, and in C2(Rn \Kt). For τ ∈ [0, 1) let

Ǩτ = {x ∈ R
n \Kt : ǔt(x) ≤ τ}

and h(·, τ) be its support function hǨτ
. Since Ǩ0 = Kt ⊂ rBn, ǔt is controlled, via

the maximum principle, by the log-equilibrium potential of rBn. Consequently, there
is a constant c0 > 0 depending on n and r such that

diam(Ǩ2−1) = diam({x ∈ R
n : 2−1 < u(x) ≤ 1}) ≤ c0.

Moreover, we have

0 ≤ inf
x∈Sn−1

h(x, 2−1) ≤ sup
x∈Sn−1

h(x, 2−1) ≤ c0,

whence deriving

h(x, 0) = h(x, 2−1)−

∫ 2−1

0

∂h

∂τ
(x, τ) dτ ∀ x ∈ S

n−1.

From [11, Theorem A.2] it follows that s 7→ ∂h
∂τ

(x, τ) is a non-decreasing function on
[0, 1). This monotonicity and the mean-value theorem for derivatives yield

∂h

∂τ
(x, τ)

∣

∣

∣

τ=0
≤ 2
(

h(x, 2−1)− h(x, 0)
)

≤ 2h(x, 2−1) ≤ 2c0 ∀ x ∈ S
n−1.
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Meanwhile, an application of [11, Theorem A.1] gives

∂h

∂τ
(x, τ)|τ=0 = |∇ǔt(x)|

−1,

where x ∈ ∂Kt satisfies

x = (∇ǔt(x))|∇ǔt(x)|
−1 & ǔt(x) = 0.

As a result, we get

inf
x∈∂Kt

|∇u(x)| = inf
x∈∂Kt

|∇ǔt(x)| ≥ (2c0)
−1.

The desired assertion follows by letting t → 0 and using the existence of the non-
tangential maximal function of |∇u| on ∂K.

4. Hadamard’s variation for log-capacity.

4.1. Hadamard’s variation: smooth case. For K1,K2 ∈ K n and 0 ≤ t1, t2
define

t1K1 + t2K2 = {x = t1x1 + t2x2 : xj ∈ Kj}.

In accordance with Colesant-Cuoghi’s [11, Theorem 3.1] (cf. Borell [7] for n = 2), we
have the following Brunn-Minkowski inequality for t ∈ [0, 1] and K1,K2 ∈ K n:

ncap(tK1 + (1− t)K2) ≥ tncap(K1) + (1− t)ncap(K2) (4.1)

with equality if and only if K1 is a translate and a dilate of K2.
Notice that (4.1) implies that

d2

dt2
ncap(tK1 + (1− t)K2)

∣

∣

t=0
≤ 0.

So, we get the following assertion extending the smooth two-dimensional Hadamard’s
variation formula (cf. [47]).

Theorem 4.1. If K0,K1 ∈ K n are of class C2,+, then

d

dt
log ncap(K0 + tK1)

∣

∣

t=0
= σn−1

−1

∫

∂K0

hK1
(g)|∇uK0

|n dS, (4.2)

equivalently,

d

dt
log ncap((1 − t)K0 + tK1)

∣

∣

t=0
= σn−1

−1

∫

∂K0

|∇uK0
|n

(

hK1
(g)− hK0

(g)
)−1 dS. (4.3)

Consequently,

σn−1

ncap(K0)
≤

∫

∂K0

|∇uK0
|n dS (4.4)

with equality if K0 is a ball.
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Proof. To derive (4.2), note again that

u(x) = uK(x) = log |x| − log ncap(K) + o(1) ∀ x ∈ R
n \K.

Proving (4.2) is equivalent to establishing the first variation of u. To do so, for an
arbitrary small number ǫ > 0 let Kǫ be such a convex body that its boundary ∂Kǫ

is obtained by shifting ∂K an infinitesimal distance δν = ǫρ(s) along its outer unit
normal ν, where ρ is a smooth function on ∂K:

∂Kǫ = {x+ ǫρ(x)ν(x) : x ∈ ∂K},

and denote by uǫ = uKǫ
.

For convenience, set

Kc = R
n \K & Kc

ǫ = R
n \Kǫ,

and define

u(x) = 0 ∀ x ∈ K & uǫ(x) = 0 ∀ x ∈ Kǫ.

Consider the following difference

Dif(ǫ) =

∫

Kc

|∇u|n−2∇u · ∇uǫ dV −

∫

Kc
ǫ

|∇uǫ|
n−2∇uǫ · ∇u dV. (4.5)

On the one hand,

Dif(ǫ) =

∫

Kc\Kc
ǫ

|∇u|n−2∇u · ∇uǫ dV +

∫

Kc
ǫ

(|∇u|n−2 − |∇uǫ|
n−2)∇uǫ · ∇u dV

= ǫ

∫

∂Kc

|∇u|n−1
(∂uǫ
∂ν

)

ρ dS +

∫

Kc
ǫ

(|∇u|n−2 − |∇uǫ|
n−2)∇uǫ · ∇u dV.

This yields

lim
ǫ→0

Dif(ǫ)

ǫ
= −

∫

∂K

|∇u|n−1
(∂u

∂ν

)

ρ dS.

On the other hand, note that

{

−div(|∇uǫ|n−2∇uǫ = 0 in Kc
ǫ ;

−div(|∇uǫ|n−2∇uǫ = 0 in Kc,

and

{

div(u|∇uǫ|n−2∇uǫ) = udiv
(

|∇uǫ|n−2∇uǫ
)

+ |∇uǫ|n−2∇uǫ · ∇u;

div(uǫ|∇u|n−2∇u) = uǫdiv
(

|∇u|n−2∇u
)

+ |∇u|n−2∇u · ∇uǫ.
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So, an application of the divergence theorem gives
∫

Kc

|∇u|n−2∇u · ∇uǫ dV

=

∫

Kc

div(uǫ|∇u|
n−2∇u) dV

= lim
r→∞

∫

Kc\(rBn)c
div(uǫ|∇u|

n−2∇u) dV

=

∫

∂Kc

uǫ|∇u|
n−2∇u · ν dS − lim

r→∞

∫

∂(rBn)c
uǫ|∇u|

n−2∇u · ν dS

= − lim
r→∞

∫

∂(rBn)c
uǫ|∇u|

n−2∇u · ν dS.

Similarly, we have
∫

Kc
ǫ

|∇uǫ|
n−2∇uǫ · ∇u dV = − lim

r→∞

∫

∂(rBn)c
u|∇uǫ|

n−2∇uǫ · ν dS.

Consequently,

Dif(ǫ)

= − lim
r→∞

(

∫

∂(rBn)c
uǫ|∇u|

n−2∇u · ν dS −

∫

∂(rBn)c
u|∇uǫ|

n−2∇uǫ · ν dS

)

= lim
r→∞

∫

∂(rBn)c
ν ·

(

∇uǫ
|∇uǫ|2−n

−
∇u

|∇u|2−n

)

u dS − lim
r→∞

∫

∂(rBn)c

(uǫ − u)∇u

|∇u|2−n
· ν dS.

This derives via (3.1)

lim
ǫ→0

Dif(ǫ)

ǫ
= lim

ǫ→0

(

log ncap(Kǫ)− log ncap(K)

ǫ

)

lim
r→∞

∫

∂(rBn)c

∇u · ν

|∇u|2−n
dS

= −σn−1 lim
ǫ→0

log ncap(Kǫ)− log ncap(K)

ǫ
.

The above two formulas for limǫ→0 ǫ
−1Dif(ǫ) derive

lim
ǫ→0

log ncap(Kǫ)− log ncap(K)

ǫ
=

∫

∂K

|∇u|nρ
dS

σn−1
,

and thereby verifying (4.2) through letting K = K0 and ρ = hK1
◦ g.

Through the chain rule and the homogeneous property of the support function,
(4.2) immediately derives (4.3) and vice visa. Now, because t 7→ ncap

(

(1−t)K0+tK1

)

is concave on [0, 1]; see also [11], if K1 = rBn and r = ncap(K0) then an application
of (4.3) gives

0 ≤
d

dt
log ncap

(

(1− t)K0 + tK1

)∣

∣

t=0

=

(

1

ncap(K0)

)

d

dt
ncap

(

(1− t)K0 + tK1

)∣

∣

t=0

=

∫

∂K0

(

hK1
(g)− hK0

(g)
)

|∇uK0
|n

dS

σn−1

=

∫

∂K0

(

r − hK0
(g)
)

|∇uK0
|n

dS

σn−1
,
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whence reaching (4.4) via (3.1).

4.2. Hadamard’s variation: non-smooth case. To generalize Theorem 4.1,
without loss of generality we may assume that the origin is an interior point ofK,Kj ∈
K n, write ̺K : Sn−1 → ∂K and ̺Kj

: Sn−1 → ∂Kj for the radial projections

S
n−1 ∋ θ 7→ ̺K(θ) = rK(θ)θ ∈ ∂K

and

S
n−1 ∋ θ 7→ ̺Kj

(θ) = rKj
(θ)θ ∈ ∂Kj

respectively, where rK(θ) and rKj
are the unique positive numbers ensuring rK(θ)θ ∈

∂K and rKj
(θ)θ ∈ ∂Kj respectively, and set

D(θ) = |∇uK(̺K(θ))|rK (θ)(hK
(

g(̺K(θ))
)

)−
1

n

and

Dj(θ) = |∇uKj
(̺Kj

(θ))|rKj
(θ)(hKj

(

g(̺Kj
(θ))

)

)−
1

n

respectively.
In the sequel, we will use the fact that dS(x) = |x|n(x · g(x))−1dθ holds for

θ = x/|x|.

Theorem 4.2. For {K,K1,K2, ...} ⊆ K n, ǫ > 0 and α > 0, there exist s0 > 0,
η > 0 and a family of balls B on S

n−1 such that:
(i) every member in B has radius s0;
(ii) there is a constant N > 0 depending only on the inner and outer radii of K,

such that any point of Sn−1 belongs to at most N balls of B;
(iii) S(Sn−1 \ F ) < ǫ where F = ∪B∈BB;
(iv) if dH(Kj ,K) < η, then for any B ∈ B we have

s1−n
0

(∫

B

∣

∣

∣

(Dj(θ)

D(θ)

)n−1

− 1
∣

∣

∣

α

dθ +

∫

B

∣

∣

∣

( D(θ)

Dj(θ)

)n−1

− 1
∣

∣

∣

α

dθ

)

< ǫ ;

(v)

lim
j→∞

∫

Sn−1

∣

∣Dn
i (θ)−Dn(θ)

∣

∣ dθ = 0 .

Proof. The following argument comes from an appropriate modification of the
argument for Lemmas 4.4-4.5-4.6 in [13]. According to Jerison’s [27, Lemma 3.3], we
have that for any ǫ > 0 there exists η > 0 and a finite disjoint collection of open balls
Brk(zk) (centered at zk with radius rk) such that zk ∈ ∂K and for any convex body
L ∈ K n for which dH(L,K) < η:

(a) S
(

∂L \ ∪kBrk(zk)
)

< ǫ;
(b) after a suitable rotation and translation depending on k, we have that ∂K

and ∂L are given on Brk(zk) by the graphs of functions φ and ψ respectively,
enjoying

sup
{

|∇φ(x)| + |∇ψ(x)| : |x| < ǫ−1rk, φ & ψ differentiable at x
}

≤ ǫ .
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Now, given ǫ > 0. Following the beginning part of the proof of Jerison’s [27, Lemma
3.7] we choose a sufficiently small number s0 < min{rk} such that the Jacobians of the
change of variables ̺Kk

and ̺K vary by at most ǫ as θ varies by the distance s > 0
and ̺K(θ) is contained in ∪kBrk(zk). As a consequence, we can select B obeying
(i)-(ii)-(iii) described as above.

Meanwhile, from Lewis-Nyström’s [36, Theorem 2] it follows that for each s ∈
(0, s0) and each ball B of radius s in the concentric ǫ−1 multiple of any element in B,
there is a constant cB such that

s1−n

∫

B

| logD(θ) − cB| dθ < ǫ. (4.6)

Furthermore, using the previously-stated (a)-(b) we can take δ > 0 small enough to
obtain

s1−n

∫

B

| logDj(θ)− cB| dθ < ǫ ∀ s ∈ (0, δ). (4.7)

A combination of (4.6) and (4.7) gives

s1−n

∫

B

∣

∣

∣ log
Dj(θ)

D(θ)

∣

∣

∣ dθ < 2ǫ.

Applying John-Nirenberg’s exponential inequality (cf. [30]) for a BMO-function to
(4.6), we obtain that given α > 0 and for arbitrarily small ǫ′ > 0 one can take η′ > 0
and s0 so small that for each B ∈ B there is a constant c′B ensuring

s1−n
0

∫

B

∣

∣

∣c′B

(Dj(θ)

D(θ)

)n−1

− 1
∣

∣

∣

α

dθ < ǫ′. (4.8)

Note that η′ and s0 can be chosen small enough to ensure that for each B ∈ B we
have

∫

B
Dn−1

j (θ) dθ
∫

B
Dn−1(θ) dθ

=
(

1 +O(ǫ′)
)

∫

̺Ωj
(B)

|∇uKj
|n−1 dS

∫

̺Ω(B) |∇uK |n−1 dS
, (4.9)

where O(ǫ′) is a positive big-oh function of ǫ′.
Next, we are about to show that c′B in (4.8) is equal to 1. To this end, let us fix

s0 and allow η to rely on s0. Note that the quotient on the right side of (4.9) is the
ratio of the n-harmonic measures (cf. [38]) of the sets ̺j(B) and ̺(B). So, employing
the maximum principle to compare n-harmonic functions in Rn \Kj to n-harmonic
functions in Rn \ ρK (where ρK means a ρ-dilation of K) , we can take η > 0 smaller
still, relying on s0 such that

∣

∣

∣

∣

∣

∫

B
Dn−1

j (θ) dθ
∫

B
Dn−1(θ) dθ

− 1

∣

∣

∣

∣

∣

. ǫ′ (4.10)

holds for any B ∈ B. In the above and below, U . V stands for U ≤ cnV for a
dimensional constant cn > 0.

Using the q > n-harmonic setting of Lewis-Nyström’s [35, Theorem 3] and the
Hölder inequality we find that

(

1

S(̺Ω(B))

∫

̺Ω(B)

|∇uK |n dS

)
n−1

n

.
1

S(̺K(B))

∫

̺K(B)

|∇uK |n−1 dS (4.11)
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is valid for any ball centered at ∂K. Clearly, a similar estimate is valid for each ∂Kj.
Thus,

(

s1−n
0

∫

B

Dn(θ) dθ

)
n−1

n

. s1−n
0

∫

B

Dn−1(θ) dθ (4.12)

and similarly for Dj . Now, using Hölder’s inequality plus (4.12), (4.8) and (4.11), we
get that for each B ∈ B,

∫

B
c′BD

n−1
j (θ) dθ

∫

B
Dn−1(θ) dθ

− 1 =

∫

B
c′B

(

(Dj(θ)
D(θ)

)n−1
− 1
)

Dn−1(θ) dθ
∫

B
Dn−1(θ) dθ

.

(∫

B

(

c′B
(Dj(θ)

D(θ)

)n−1
− 1
)n

dθ

)
1

n









(

∫

B
Dn(θ) dθ

)
n−1

n

∫

B
Dn−1(θ) dθ









.

(

s1−n
0

∫

B

(

c′B
(Dj(θ)

D(θ)

)n−1
− 1
)n

dθ

)
1

n

. ǫ′.

In a similar manner, we replace c′BDj/D by (D/c′B)Dj in the above estimates to
obtain

∫

B
Dn−1(θ) dθ

∫

B
c′BD

n−1
j (θ) dθ

− 1 . ǫ′.

Since (4.10) yields

∣

∣

∣

∣

∣

∫

B
Dn−1

j (θ) dθ
∫

B
Dn−1(θ) dθ

− 1

∣

∣

∣

∣

∣

. ǫ′,

we must have |c′B − 1| . ǫ′, whence getting c′B = 1. As a consequence of this and
(4.8), we find

s1−n
0

∫

B

∣

∣

∣

(Dj(θ)

D(θ)

)n−1

− 1
∣

∣

∣

α

dθ . ǫ′ & s1−n
0

∫

B

∣

∣

∣

( D(θ)

Dj(θ)

)n−1

− 1
∣

∣

∣

α

dθ . ǫ′,

whence completing the proof of (iv).

Although the idea of verifying (v) is motivated by the argument for [27, Proposi-
tion 4.3], we still need more effort to adapt it to our nontrivial situation. Because of
q > n in [35, Theorem 3], it is possible to find β ∈ (1,∞) such that nβ/(β − 1) = q.
Given ǫ > 0, take η > 0 and F in accordance with (i)-(iv). Using the inequality

|an − bn| ≤
(a+ b)|an−1 − bn−1|

n−1(n− 1)
∀ a, b ≥ 0 ,

the Hölder inequality and (3.1), we achieve
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∫

F

|Dn
j (θ)−Dn(θ)| dθ

≤
( n

n− 1

)

∫

F

∣

∣Dn−1
j (θ)−Dn−1(θ)

∣

∣

(

Dj(θ) +D(θ)
)

dθ

.

(∫

F

∣

∣Dn−1
j (θ)−Dn−1(θ)

∣

∣

n
n−1 dθ

)
n−1

n
(∫

F

(

Dj(θ) +D(θ)
)n
dθ

)
1

n

.
(

2σn−1

)
1

n

(∫

F

∣

∣

∣

(Dj(θ)

D(θ)

)n−1

− 1
∣

∣

∣

n
n−1

Dn(θ) dS(θ)

)
n−1

n

.

(∫

F

∣

∣

∣

(Dj(θ)

D(θ)

)n−1

− 1
∣

∣

∣

nβ
n−1

dS(θ)

)

n−1

nβ
(∫

F

Dq(θ) dθ

)
n−1

q

,

thereby deducing

∫

F

∣

∣Dn
j (θ)−Dn(θ)

∣

∣ dθ . ǫ as j → ∞, (4.13)

via (iv) with α = q as well as [35, Theorem 3] insuring
∫

Sn−1 D
q(θ) dθ <∞.

On the other hand, by the Hölder inequality with q > n we derive

∫

Sn−1\F

|Dn
j (θ) −Dn(θ)| dθ ≤

∫

Sn−1\F

(

Dn
j (θ) +Dn(θ)

)

dθ

.
(

S(Sn−1 \ F )
)

q
q−n

(

∫

Sn−1\F

(

Dq
j (θ) +Dq(θ)

)

dθ

)
n
q

,

whence getting (v) through (iii), (4.13) and [35, Theorem 3] which especially guaran-
tees

sup
j

∫

Sn−1\F

(

Dq
j (θ) +Dq(θ)

)

dθ <∞.

With the help of Theorem 4.2, we can establish the following weak convergence
result for the measure induced by Theorem 3.1.

Theorem 4.3. Let K,Kj ∈ K n and limj→∞ dH(Kj ,K) = 0. If u, uj are the
log-equilibrium potentials of K,Kj respectively, then dµj = (gj)∗(|∇uj |

n dS) converges
weakly to dµ = g∗(|∇u|n dS), i.e.,

lim
j→∞

∫

Sn−1

f dµj =

∫

Sn−1

f dµ ∀ f ∈ C(Sn−1).

Proof. The following argument is analogous to [9, Section 5] (cf. [27, the proof
of Theorem 3.1] and [13, the proof of Lemma 4.3]). Recall that the push-forward
measures dµ & dµj on Sn−1 are determined respectively by

µ(E) =

∫

g−1(E)

|∇u|n dS & µj(E) =

∫

g−1

j
(E)

|∇uj |
n dS ∀ Borel set E ⊂ S

n−1,
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where g and gj are the Gauss maps attached to K and Kj respectively. It remains to
verify that µ is the weak limit of µj as j → ∞.

An application of Theorem 4.2(v) yields

lim
j→∞

(

µ(Sn−1)− µj(S
n−1)

)

= lim
j→∞

∫

Sn−1

(

Dn(θ)−Dn
j (θ)

)

dθ = 0. (4.14)

Note that g−1(E) ⊆ ∂K and g−1
j (E) ⊆ ∂Kj are closed (cf. [9] and [26, 27]) for any

Borel set E ⊆ S
n−1, and that if ξj ∈ gj(xj) approaches ξ and if xj → x then ξ ∈ g(x)

and x ∈ ∂K. So, for any open neighborhood U in ∂K of the closed set g−1(E) we
have that ̺−1

Kj

(

g−1
j (E)

)

⊆ ̺−1
K (U) as j → ∞, whence finding

lim sup
j→∞

µj(E) ≤ lim
j→∞

∫

̺
−1

K
(U)

Dn
j (θ) dθ ≤

∫

̺
−1

K
(U)

Dn(θ) dθ.

When the infimum is over all U ⊇ g−1(E), we get lim supj→∞ µj(E) ≤ µ(E). This
last inequality and (4.14) imply that for any open subset O of Sn−1,

lim inf
j→∞

µj(O) = lim inf
j→∞

(

µj(O) − µj(S
n−1 \O)

)

≥ lim inf
j→∞

µj(S
n−1)− µ(Sn−1 \O)

= µ(Sn−1)− µ(Sn−1 \O) = µ(O).

If µ̃ is any weak limit of a subsequence of µj , then the above inequalities on lim supj→∞

and lim infj→∞ deduce that µ̃(C) ≤ µ(C) and µ(O) ≤ µ̃(O) hold for any closed
C ⊆ Sn−1 and any open O ⊆ Sn−1. Consequently, for any closed C ⊆ Sn−1 we have

µ(C) ≥ µ̃(C) = inf{µ̃(O) : open O ⊇ C} ≥ inf{µ(O) : open O ⊇ C} = µ(C),

and hence µ̃ = µ.

The following is the general variational result.

Theorem 4.4. (4.2)-(4.3)-(4.4) are valid for K0,K1 ∈ K n.

Proof. Given K0,K1 ∈ K n. There are two C2,+-sequences {K0,j}, {K1,j} in K n

such that

lim
j→∞

dH(K0,j ,K0) = 0 = lim
j→∞

dH(K1,j ,K1).

Now, for t ∈ (0, 1) and j = 1, 2, ... set










Kt = (1− t)K0 + tK1, Kt,j = (1 − t)K0,j + tK1,j;

Φ(t) = ncap(K0 + tK1), Φj(t) = ncap(K0,j + tK1,j);

Ψ(t) = ncap(Kt), Ψj(t) = ncap(Kt,j).

Note that

t 7→ Ψj(t) = (1 − t)Φj

( t

1− t

)

is a concave function on (0, 1). So,

Ψ′
j(t) ≤

Ψj(t)−Ψj(0)

t
≤ Ψ′

j(0) ∀ t ∈ (0, 1). (4.15)
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A simple computation gives

Ψ′
j(t) = −Φj

( t

1− t

)

+ (1− t)−1Φ′
j

( t

1− t

)

and

Ψ′
j(0) = −Φj(0) + Φ′

j(0)

=
ncap(K0,j)

σn−1

(

−σn−1 +

∫

∂K0,j

hK1,j
(g)|∇uK0,j |

n dS

)

=
ncap(K0,j)

σn−1

∫

∂K0,j

(

hK1,j
(g)− hK0,j

(g)
)

|∇uK0,j |
n dS,

owing to (3.1) and (4.3). Upon letting j → ∞ and t → 0 in (4.15), we use Theorem
4.3 to obtain

Ψ′(0) =
ncap(K0)

σn−1

∫

∂K0

(

hK1
(g)− hK0

(g)
)

|∇uK0
|n dS,

whence establishing (4.3), equivalently, (4.2), and thus (4.4).

5. Minkowski’s problem for log-capacity.

5.1. Prescribing volume variation. Given K ∈ K n. From the Gauss map
g : ∂K → Sn−1 one can introduce the area set function Hn−1

∂K of ∂K via setting

Hn−1
∂K (E) = S

(

{x ∈ ∂K : g(x) ∩ E 6= ∅}) ∀ Borel subset E ⊂ S
n−1.

This measure dHn−1
∂K is treated as the push-forward measure g∗(dS) on Sn−1 of the

n − 1 dimensional surface measure dS on ∂K through the inverse map g−1 of g.
Obviously, Hn−1

∂K (Sn−1) = S(K), i.e., the surface area of K. Two more special facts
on this measure are worth recalling. The first is that if ∂K is polyhedron then
dHn−1

∂K =
∑

k ckδνk , where δνk is the unit point mass at νk and ck is the (n − 1)
dimensional measure of the face of ∂K with outward unit normal being νk. The
second is that if K ∈ K

n is of class C2,+ then dHn−1
∂K is absolutely continuous with

respect to dθ and so decided by the reciprocal of the Gauss curvature G(K, ·) of ∂K.
The classical Minkowski problem is to ask under what conditions on a given

nonnegative Borel measure on Sn−1 one can get a convex body K ∈ K n such that
dHn−1

∂K = dµ. As is well-known in convex geometry, this problem is solvable if and
only if the support of µ is not contained in any equator (the intersection of Sn−1

with any hype-plane through the origin) and µ has centroid at the origin. Moreover,
the above K is unique up to translation – this follows from the equality case of the
well-known Brunn-Minkowski inequality for V (·):

V (K0 + tK1)
1

n ≥ V (K0)
1

n + tV (K1)
1

n ∀ K0,K1 ∈ K
n & t ∈ [0, 1].

The foregoing inequality and the following Hadamard’s variation formula:

d

dt
V (K0 + tK1)

∣

∣

t=0
=

∫

∂K0

hK1
(g) dS =

∫

Sn−1

hK1
dHn−1

∂K0
∀ K0,K1 ∈ K

n

give
∫

Sn−1

hK1
dHn−1

∂K0
≥ nV (K0)

1− 1

nV (K1)
1

n ,
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whence ensuring that if K0 is fixed and K1 varies with V (K1) ≥ 1 then
∫

Sn−1 hK1
dHn−1

∂K0
reaches its minimum whenever K1 = V (K0)

− 1

nK0. So, the just-
described Minkowski problem is equivalent to the problem prescribing the first vari-
ation of volume, i.e., the following minimum problem

inf

{∫

Sn−1

hK dµ : K ∈ K
n & V (K) ≥ 1

}

for a given nonnegative Borel measure µ on Sn−1; see e.g.[10, 12, 42, 41].

5.2. Prescribing log-capacity variation. As V (·) is replaced by ncap(·), we
empoy Theorem 4.1 and (4.1) to obtain that

∫

∂K0

hK1
(g)|∇uK0

|n dS =

(

σn−1

ncap(K0)

)

d

dt
ncap(K0 + tK1)

∣

∣

∣

t=0
≥
σn−1ncap(K1)

ncap(K0)

holds for all K0,K1 ∈ K n. Clearly, if K0 ∈ K n is fixed and K1 ∈ K n changes under
ncap(K1) ≥ 1, then

∫

Sn−1

hK1
g∗(|∇uK0

|n dS) =

∫

∂K0

hK1
(g)|∇uK0

|n dS ≥
σn−1

ncap(K0)

with equality (i.e., the most right quantity exists as the infimum of the most left
integral) if K1 = K0/ncap(K0). This implication plus the review about the problem
of prescribing the first variation of volume as well as [28, Corollaries 2.7 & 6.6] leads
to a consideration of the Minkowski-type problem for the first variation of the log-
capacity. Below is our result.

Theorem 5.1. Let µ be a nonnegative Borel measure on Sn−1.
(i) If

inf
ζ∈Sn−1

∫

Sn−1

|ζ · η| dµ(η) > 0 =

∫

Sn−1

θ · η dµ(η) ∀ θ ∈ S
n−1, (5.1)

then

Mncap = inf

{
∫

Sn−1

hKdµ : K ∈ C
n & ncap(K) ≥ 1

}

> 0,

and hence there is a K ∈ C
n with ncap(K) ≥ 1 such that

Mncap =

∫

Sn−1

hK dµ.

(ii) Conversely, if K ∈ K n with ncap(K) = 1 is a minimizer for Mncap, then
it satisfies

g∗(|∇uK |n dS) = σn−1 dµ, (5.2)

and hence (5.1) holds.
(iii) The minimizer in (ii) is unique up to translation.

Proof. (i) For convenience, let

S
n−1 ∋ ξ 7→ Pµ(ξ) =

∫

Sn−1

max{0, ξ · η} dµ(η)
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be the projection body function. Then (5.1) amounts to

0 < min
Sn−1

Pµ ≤ max
Sn−1

Pµ <∞ & Pµ(ξ) = Pµ(−ξ) ∀ ξ ∈ S
n−1.

In order to prove Mncap > 0, observe that the equation in (5.1) ensures that
∫

Sn−1 hK dµ is translation invariant. So, we may assume that the origin is at the
midpoint of a diameter of K ∈ C n with ncap(K) ≥ 1. Let 2R = diam(K). According
to Theorem 2.1, we have:

ncap(K) ≥ 1 ⇒ 2R ≥ b(K) ≥ 2ncap(K) ≥ 2.

If e is a unit vector with ±Re ∈ ∂K, then hK(ξ) ≥ R|e · ξ| holds for all ξ ∈ Sn−1,
and hence

0 < 2 min
Sn−1

Pµ ≤ 2RPµ(e) ≤

∫

Sn−1

R|e · ξ| dµ(ξ) ≤

∫

Sn−1

hK dµ.

This, along with the definition of Mncap, yields Mncap > 0. Furthermore, when
K ∈ C n satisfies

ncap(K) ≥ 1 &

∫

Sn−1

hK dµ ≤ 2Mncap,

we have

0 < diam(K) min
Sn−1

Pµ = 2Rmin
Sn−1

Pµ ≤ 2Mncap.

Now, suppose that {Kj}
∞
j=1 is a sequence in C

n which satisfies

Mncap = lim
j→∞

∫

Sn

hKj
dµ & ncap(Kj) ≥ 1.

Then

2 ≤ 2ncap(Kj) ≤ diam(Kj) ≤
2Mncap

minSn−1 Pµ

as j → ∞.

In accordance with the Blaschke selection principle (see e.g. [48, Theorem 1.8.6]),
{Kj}

∞
j=1 has a subsequence, still denoted by {Kj}

∞
j=1, that converges to a K ∈ C

n

with respect to the Hausdorff distance dH(·, ·). Consequently, hKj
→ hK . Now, if

ncap(K) < 1, then from the definition of ncap(K) it follows that there is an L ∈ K n

enjoying

K ⊂ L & ncap(L) < 1.

But, as j is sufficiently large we have Kj ⊂ L, and consequently by the monotonicity
of ncap(·),

1 ≤ ncap(Kj) ≤ ncap(L) < 1,

a contradiction. Therefore, one must have ncap(K) ≥ 1.
(ii) Suppose that K ∈ Kn with ncap(K) = 1 is a minimizer for Mncap. For

(t, L) ∈ (0, 1)× Kn one has K + tL ∈ Kn and hK+tL = hK + thL. Consequently, K
is a critical point of the functional

D(K + tL) =

∫

Sn−1

hK+tL dµ− ncap(K + tL).
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This, along with (4.2) in Theorem 4.4 and ncap(K) = 1, gives

0 =
d

dt
D(K + tL)

∣

∣

∣

t=0

=

∫

Sn−1

hL dµ− σ−1
n−1

∫

∂K

hL(g)|∇uK |n dS

=

∫

Sn−1

hL dµ− σ−1
n−1

∫

Sn−1

hLg∗
(

|∇uK |n dS).

An application of [48, Lemmas 1.7.9 & 1.8.10] implies

σn−1

∫

Sn−1

φdµ =

∫

Sn−1

φ g∗
(

|∇uK |n dS) ∀ φ ∈ C(Sn−1)

thereby producing (5.2). Accordingly, a combination of both (3.2) and (5.2) derives

0 =

∫

Sn−1

θ · ξ g∗(|∇uK |n dS)(ξ) = σn−1

∫

Sn−1

θ · ξ dµ(ξ) ∀ θ ∈ S
n−1.

Therefore, the equality in (5.1) holds. Meanwhile, an application of (5.2) (forK ∈ K n

with ncap(K) = 1) and Theorem 3.2 (with a positive constant c) deduces

inf
θ∈Sn−1

∫

Sn−1

|θ · η| dµ(η) = σ−1
n−1 inf

θ∈Sn−1

∫

Sn−1

|θ · η| g∗(|∇uK |n dS)(η)

= σ−1
n−1 inf

θ∈Sn−1

∫

∂K

|θ · g(x)||∇uK(x)|n dS(x)

≥ cnσ−1
n−1 inf

θ∈Sn−1

∫

∂K

|θ · g(x)| dS(x)

= cnσ−1
n−1 inf

θ∈Sn−1

∫

Sn−1

|θ · η| dHn−1
∂K (η)

> 0.

Thus, the inequality in (5.1) is true.

(iii) Our argument for the uniqueness is inspirited by [8, Section 5]. Now, assume
that K0,K1 ∈ K n are two minimizers of Mncap in (ii). Then

{

g∗(|∇uK0
|n dS) = g∗(|∇uK1

|n dS);

ncap(K0) = 1 = ncap(K1).

If

ψ(t) = ncap
(

(1 − t)K0 + tK1

)

,
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then Theorems 4.4 & 3.1 yield

ψ′(0) =
ncap(K0)

σn−1

∫

∂K0

(

hK1
(g)− hK0

(g)
)

|∇uK0
|n dS

= σ−1
n−1

(

∫

∂K0

hK1
(g)|∇uK0

|n dS − σn−1

)

= σn−1
−1
(

∫

Sn−1

hK1
g∗(|∇uK0

|n dS)− σn−1

)

= σn−1
−1
(

∫

Sn−1

hK1
g∗(|∇uK1

|n dS)− σn−1

)

= σn−1
−1
(

σn−1 − σn−1

)

= 0.

Note that t 7→ ψ(t) is concave on [0, 1]. So this function is constant, in particular, we
have

ncap(K1) = ψ(1) = ψ(t) = ψ(0) = ncap(K0). (5.3)

Since the equality of (4.1) holds, K1 is a translate and a dilate of K0. But (5.3) is
valid, soK1 is only a translate ofK0 thanks to the uniqueness of the Brunn-Minkowski
inequality for ncap(·) over K n proved in [11].

6. Yau’s problem for log-capacity.

6.1. Prescribing mean curvature. On [56, p. 683], Yau posed the following
problem:

“Let h be a real-valued function on R
3. Find (reasonable) conditions on h to

insure that one can find a closed surface with prescribed genus in R3 whose mean
curvature (or curvature) is given by h. F. Almgren made the following comments:
For “suitable” h one can obtain a compact smooth submanifold ∂A in R3 having mean
curvature h by maximizing over bounded open sets A ⊂ R3 the quantity

F (A) =

∫

A

h dL3 −Area(∂A).

A function h would be suitable, for example, in case it were continuous, bounded, and
L3 summable, and supF > 0. However, the relation between h and the genus of the
resulting extreme ∂A is not clear.”

Although not yet completely solved, this problem for mean curvature or Gaussian
curvature has a solution at least for the closed surface of genus zero, see [50, 5, 25] or
[51, 52]. The following, essentially contained in [55, Corollary 1.2], may be regarded
as a resolution of Yau’s problem in a special form - if I ∈ L1(Rn) is positive and
continuous, k is nonnegative integer, α ∈ (0, 1), and

I(K) = S(K)−

∫

K

I dV,

then:
• There is K0 ∈ C n such that I(K0) = infK∈Cn I(K) ≤ 0 if and only if there
is L0 ∈ C n such that I(L0) ≤ 0.
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• Suppose that K ∈ K n is a minimizer for I(·). Then there exists a measure
µK on Sn−1 such that the weak mean curvature equation dµK = g∗(I|∂K dS).
Moreover, if K is of class C2,+ then the mean curvature H(K,x) (i.e., the
arithmetic mean of n−1 principal curvatures at x ∈ ∂K) equals (n−1)−1I(x).

• If I is of Ck,α(Rn) and K ∈ K
n, being of class C2,+, is a minimizer for I(·),

then K is of Ck+2,α.

6.2. Prescribing log-capacitary curvature. Thanks to the relationship be-
tween the mean-width and the log-capacity explored in Section 2, as well as the
discussion on the Minkowski-type problem above, it seems interesting to consider the
log-capacity analogue of Yau’s problem. More precisely, using the log-capacity in
place of the surface area we study the functional

J (K) = ncap(K)−

∫

K

J dV,

thereby obtaining the following result.

Theorem 6.1. Let J be positive and continuous function on Rn with

‖J‖L1(Rn) =

∫

Rn

J dV <∞,

(k+1, α, β) ∈ N×(0, 1)×(0,∞), and K n
β comprise all K ∈ K n whose inradii rin(K)

are not less than β.
(i) There exists K0 ∈ K n

β such that J (K0) = infK∈K n
β
J (K). Moreover,

infK∈K n
β
J (K) ≤ 0 if and only if there exists L0 ∈ K n

β such that J (L0) ≤ 0.

(ii) Suppose that K ∈ K n
β is a minimizer for J (·). Then such a K satisfies the

weak log-capacitary curvature equation

ncap(K)σ−1
n−1g∗

(

|∇uK |n dS) = g∗(J |∂K dS). (6.1)

Moreover, if K is of class C2,+, then we have the log-capacitary curvature
equation

ncap(K)σ−1
n−1|∇uK(x)|n = J(x) ∀ x ∈ ∂K. (6.2)

(iii) If J is of Ck,α(Rn) and K ∈ K
n
β , being of class C2,+, is a minimizer for

J (·), then K is of Ck+1,α.

Proof. (i) Since

J (K) ≥ ncap(K)− ‖J‖L1(Rn) ≥ −‖J‖L1(Rn) ∀ K ∈ K
n
β ,

it follows that infK∈K n
β
J (K) is finite. Consequently, there is a sequence {Kj} from

K n
β such that

lim
j→∞

J (Kj) = inf
K∈K n

β

J (K).

Using the linear structure of ncap(·), Theorem 2.1 and rKj
≥ β > 0, we get

0 < 2β ≤ 2rKj
= 2ncap(rKj

B
n) ≤ 2ncap(Kj) ≤ b(Kj) ≤ diam(Kj). (6.3)
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An application of (2.2) implies

J (Kj) ≥ ncap(Kj)− ‖J‖L1(Rn) ≥

(

V (Kj)

ωn

)
1

n

− ‖J‖L1(Rn).

So, if {diam(Kj)} is unbounded, then (6.3) is used to ensure that {V (Kj)} is un-
bounded, and hence {J (Kj)} has a subsequence {J (Kjk)} which tends to ∞ as
k → ∞. But, limk→∞ J (Kjk) exists as a finite value. Therefore, {diam(Kj)} has a
uniform upper bound. Now, taking into account of the above-mentioned Blaschke se-
lection principle, we can get a subsequence of {Kj} which is convergent to an element
K0 ∈ K n

β due to Kj ∈ K n
β . Note that J (·) is continuous. Thus, K0 is a minimizer

of J (·) over K n
β , i.e., J (K0) = infK∈K n

β
J (K), as desired.

Furthermore, if infK∈K n
β
J (K) ≤ 0, then the previously-found minimizer K0 ∈

K n
β satisfies J (K0) ≤ 0. Conversely, if there is L0 ∈ K n

β such that J (L0) ≤ 0, then
infK∈K n

β
J (K) ≤ J (L0) ≤ 0.

(ii) For K ∈ K
n, t > 0 and φ ∈ C(Sn−1) let

Kt =
{

x ∈ R
n : x · θ ≤ hK(θ) + tφ(θ) ∀ θ ∈ S

n−1
}

.

Then Kt ∈ K n and hKt
= hK + tφ. Using Theorem 4.4 (plus the ideas presented in

[28, Sections 3-4]) as well as Tso’s variation formula [52, (4)], we produce

d

dt
J (Kt)

∣

∣

∣

t=0
=

(

ncap(K)

σn−1

)∫

∂K

φ(g)|∇uK |n dS −

∫

∂K

φ(g)J dS. (6.4)

Obviously, if K is a minimizer of J (·), then it is a critical point of J (Kt) and hence
d
dt
J (Kt)

∣

∣

∣

t=0
= 0. This last equation, along with (6.4), gives

(

ncap(K)

σn−1

)∫

Sn−1

φg∗(|∇uK |n dS) =

(

ncap(K)

σn−1

)∫

∂K

φ(g)|∇uK |n dS

=

∫

∂K

φ(g)J dS

=

∫

Sn−1

φg∗(J dS).

Owing to the fact that φ ∈ C(Sn−1) is arbitrary, we arrive at (6.1). Furthermore, if
K is of class C2,+, then g : ∂K → Sn−1 is a diffeomorphism (cf. [14, 22]), and hence

(

ncap(K)

σn−1

)

|∇uK(x)|n = J(x) ∀ x ∈ ∂K

validates (6.2).
(iii) Suppose J ∈ Ck,α(Rn) with k being a nonnegative integer. Since K is of class

C2,+, an application of [37, Theorem 1] and [40, Theorem 4.1] (cf. [20, 16, 49, 53, 21])
yields that uK ∈ C1,α̂(∂K) holds for some α̂ ∈ (0, 1), and more importantly, the
Gauss map from ∂K to Sn−1 is a diffeomorphism. Therefore, (6.2) is true. Using
(6.2) and J ∈ Ck,α(Rn) with α ∈ (0, 1), we obtain that |∇uK | belongs to Ck,α(∂K).
Note again that K is of class C2,+. So, it follows that K is of Ck+1,α from the fact
that |∇uK |

∣

∣

∂K
is bounded above and below by two positive constants (cf. (6.2) and

Theorem 3.2).
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[23] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate

Elliptic Equations, Dover Publications, Inc., Mineola, New York, 2006.
[24] E. Hille, Analytic Function Theory, Volume II, Ginn and Company, 1962.
[25] Y.-J. Hsu, S.-J. Shiau, and T.-H. Wang, Graphs with prescribed mean curvature in the sphere,

Bull. Inst. Math. Academia Sin., 28:4 (2000), pp. 215–223.
[26] D. Jerison, Prescribing harmonic measure on convex domains, Invent. Math, 105 (1991),

pp. 375–400.
[27] D. Jerison, A Minkowski problem for electrostatic capacity, Acta Math., 176 (1996), pp. 1–47.
[28] D. Jerison, The direct method in the calculus of variations for convex bodies, Adv. Math., 122

(1996), pp. 262–279.
[29] D. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially

accessible domains, Adv. Math., 46 (1982), pp. 80–147.
[30] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl.

Math., 14 (1961), pp. 415–426.
[31] S. Kichenassamy and L. Veron, Singular solutions of the p-Laplace equation, Math. Ann.,



EXPLOITING LOG-CAPACITY IN CONVEX GEOMETRY 979

275 (1986), pp. 599–615.
[32] S. Kolodziej, The logarithmic capacity in Cn, Ann. Polon. Math., 48 (1988), pp. 253–267.
[33] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, 1972.
[34] J. Lewis, Applications of Boundary Harnack Inequalities for p Harmonic Functions and Re-

lated Topics, C.I.M.E. Summer Course: Regularity Estimates for Nonlinear Elliptic and
Parabolic Problems, Cetraro (Cesenza) Italy, June 21–27, 2009.

[35] J. Lewis and K. Nyström, Boundary behaviour for p harmonic functions in Lipschitz and

starlike Lipschitz ring domains, Ann. Sci. École Norm. Sup., 40 (2007), pp. 765–813.
[36] J. Lewis and K. Nyström, Regularity and free boundary regularity for the p-Laplacian in in

Lipschitz and C1-domains, Ann. Acad. Sci. Fenn. Math., 33 (2008), pp. 523–548.
[37] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear

Anal., 12 (1988), pp. 1203–1219.
[38] P. Lindqvist, On the growth of the solutions of the differential equation div(|∇u|p−2∇u) = 0

in n-dimensional space, J. Diff. Equ., 58 (1985), pp. 307–317.
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