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ON THE CR ANALOGUE OF REILLY FORMULA AND YAU
EIGENVALUE CONJECTURE*
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Abstract. In this paper, we derive the CR Reilly’s formula and its applications to studying of
the first eigenvalue estimate for CR Dirichlet eigenvalue problem and embedded p-minimal hypersur-
faces. In particular, we obtain the first Dirichlet eigenvalue estimate in a compact pseudohermitian
(2n 4 1)-manifold with boundary and the first eigenvalue estimate of the tangential sublaplacian on
closed oriented embedded p-minimal hypersurfaces in a closed pseudohermitian (2n + 1)-manifold of
vanishing torsion.

Key words. Pseudohermitian minimal surface, CR Dirichlet eigenvalue, CR Reilly formula,
Tangential sublaplacian, CR Yau eigenvalue conjecture.

Mathematics Subject Classification. Primary 32V05, 32V20; Secondary 53C56.

1. Introduction. In the paper of [Re], by integral version of Bochner-type for-
mula, R. Reilly proved so-called Reilly formula which has numerous applications. For
example, Reilly himself applied it to prove a Lichnerowicz type sharp lower bound for
the first eigenvalue of Laplacian on compact Riemannian manifolds with boundary.
In this paper, we will derive the CR version of Reilly’s formula and give some appli-
cations. In particular, we obtain the first Dirichlet eigenvalue estimate in a compact
pseudohermitian (2n + 1)-manifold with boundary and the first eigenvalue estimate
of the tangential sublaplacian on closed oriented embedded p-minimal hypersurfaces
in a closed pseudohermitian (2n + 1)-manifold of vanishing torsion. Finally, we will
indicate the CR analogue of Yau conjecture ([Y]) and Lawson conjecture ([La]).

Let (M, J,0) be a pseudohermitian (2n + 1)-manifold (see next section for basic
notions in pseudohermitian geometry). The CR Reilly’s formula (1.3) involves terms
which have no analogue in the Riemannian case. However, one can relate these extra
terms to a third-order operator P which characterizes CR-pluriharmonic functions
([L1]) and the fourth-order CR Paneitz operator Py ([GL]).

DEFINITION 1.1 ([GL], [P]). Let (M, J, 8) be a pseudohermitian (2n+1)-manifold.
We define

Py = Z:,le(sﬁ;ﬂ + iNAﬁ»y%?’y)eﬁ = 22:1 (nga)@ﬁ,

which is an operator that characterizes CR-pluriharmonic functions. Here
Pﬁ‘%’:zzzl(sﬁqvﬁ—kznflg%ﬂ), ﬂ:l, 1,

and Py = Egzlﬁ[ﬂg, the conjugate of P. The CR Paneitz operator Py is defined
by

Pop = 46,(Pp) + 46,(Pp), (1.1)
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where d, is the divergence operator that takes (1,0)-forms to functions by Sp(0p0°) =
055 , and similarly, &(039?) = ogﬁ .
We observe that ([GL])
Pop = 200 — 8in(AP7p35),,
= 200 + 8in(APTp3) 5 (1.2)
= 2(Af + n*T?)p — 8nRe(iA™gp),,

for Oy = (0,0%p + 0*,0p)p = (—Ap +inT)p = —2(,033.
By using integrating by parts to the CR Bochner formula (3.1), we derive the
following CR version of Reilly’s formula.

THEOREM 1.1. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold
with boundary . Then for any real smooth function ¢, we have

n:l/M[(

22 [ P+ / (2Ric— (n+ DTorl(Vag)e, (Vop)e)dn

bP

—|—1

2
-2, / Pag ~ Pag) dS, + £C, / & B, 50 — 9" Brsp)ds,

3 .
+ ZC"/ ©0Pe, Ay + RC"/ ean, DNppdS, + Cn/ ey AbipdS,, (1.3)
)

2n—1

1
+4Cn /E Hyn?, dS, — C / Z (Ve €n, ;) PenPezndSyp

2n—1

__C /a(penspegndz + - C / Z eJeQnuek>SDe](pekdE
_]k 1

Here PO is the CR Paneitz operator on M, C, := 2"nl; Bz = g5 — 0, hgz,
A} = Z2n "(e5)* = (Ve,e;)t] is the tangential sublaplacian of ¥ and Hy,y, is the
p-mean curvature of ¥ with respect to the Legendrian normal es,, aes, +T € TX
for some function a on ¥\Syx, the singular set Sy, consists of those points where the
contact bundle & = ker @ coincides with the tangent bundle TS of ¥. (Vyp)c = ¢ Zs
is the corresponding complex (1,0)-vector field of Vyp and dS, =0 Aet Ae" LA A
en" L A el Ae™ is the p-area element on 3.

If (M, J,0) is a compact pseudohermitian (2n + 1)-manifold without boundary,
one can check easily that the fourth-order CR Paneitz Py is self-adjoint. That is

/gPofdu=/ fPogdp (1.4)
M M

for all smooth functions f and g. However, if (M, J, ) is a compact pseudohermitian
(2n + 1)-manifold with the smooth boundary ¥, it follows from (5.1) and (5.2) that
(1.4) holds for all smooth functions with the Dirichlet condition or the Neumann
condition as in (1.5) and (1.6) on X. In particular, it holds in the situation as in
Theorem 1.2 and Theorem 1.3.
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That is, one can have the following Dirichlet eigenvalue problem or Neumann
eigenvalue problem, respectively:

Pop = ppp on M,
=0 on X, (1.5)
Ayp = 0 on X,
and
P0¢ = /J‘N¢ on Mu
Apop =0 on X, (1.6)
(Ab¢)€2n =0 on X.
Hence
/ pPopdp > u,ﬂ/ @ dp (1.7)
M M

for the first Dirichlet eigenvalue ulD and all smooth functions with ¢ = 0 = App on
3. Similarly

/ OPoddy > 1 / Hdp (18)
M M

for the first Neumann eigenvalue /’Lzlv and all smooth functions with Ayp = 0 =
(Apd)e,, on X. In general, ulD and le\, are not always nonnegative.

DEFINITION 1.2. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold
with smooth boundary 3. We say that the CR Paneitz operator Py with respect to
(J,0) is nonnegative if

/ ePypdp > 0
M

for all smooth functions with suitable boundary conditions as in Dirichlet eigenvalue
problem or Neumann eigenvalue problem of Fj.

REMARK 1.1. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold
of vanishing torsion with smooth boundary ¥. It follows from (1.2) that the Kohn
Laplacian 0, and O commute and they are diagonalized simultaneously with

Py = 20,05 = 20,0
Then the corresponding CR Paneitz operator Py is nonnegative ([CCC]). That is
= 0=y

For the first consequence of CR Reilly formula, we can consider the following
Dirichlet eigenvalue problem:

Apgp —A1p on M,
{ p =0 on 3. (1.9)

Then we have the following first Dirichlet eigenvalue estimate:
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THEOREM 1.2. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold
with smooth boundary X. If the pseudohermitian mean curvature Hp j, is nonnegative,
Hpn+ @) (en) is also nonnegative and

1
[Ric - %Tor] (2,2) > k(Z,Z)
for all Z € Ty o and a positive constant k, then

(i) Forn > 2,

nk

AL >
1_n—i—l

(ii) Forn =1,

s k+ \/k? 4 6ul
> VR T

4

with u}lj > —%. In addition if Py is monnegative, in particular if the torsion is
vanishing, then

|

AL >

REMARK 1.2. It is known that the sharp first eigenvalue estimate is obtained as
in [Gr], [LL], [Ch], [CC2] and [FK] in a closed pseudohermitian (2n + 1)-manifold.

Next we can state the second consequence of the CR Reilly formula (1.3) which
served as a CR analogue of Yau conjecture ([Y]) on the first eigenvalue estimate of
embedded oriented minimal hypersurfaces. We refer to papers of Choi-Wang [CW]
and Tang-Yan [TY] which are related to Yau conjecture.

As before, {e1,€e9,++ ,€n,€nt1, "+ ,€2n-1, €2, + T} is the base of T'Y for some
function a on £\ Sy. It follows from (3.11) that A} +ae, is a self-adjoint operator with
respect to the p-area element d¥, on . Hence it is natural to consider the following
CR analogue of eigenvalue problem on the embedded closed p-minimal (Hp = 0)
hypersurface ¥ in a closed pseudohermitian (2n + 1)-manifold (M, J, 9):

Lou = —X\u, (1.10)
here
Lo = A} + aey,. (1.11)
In this paper, we consider the particular case that
{e1,€2, " ,€n,€nt1, " ,€2n-1,T} are always tangent to ¥ (a = 0) as follows:
Lo := AL (1.12)

That is, we have the first eigenvalue estimate of Ly on embedded oriented hypersur-
faces of nonnegative pseudohermitian mean curvature:

THEOREM 1.3. Let X be a compact embedded oriented p-minimal hypersurface
with o« = 0 in a closed pseudohermitian (2n + 1)-manifold (M, J,0) of vanishing
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torsion. Suppose that the pseudohermitian Ricci curvature of M is bounded from
below by a positive constant k. Then
(i) The first non-zero eigenvalue A1 of Ly on X has a lower bound given by

k

Al Z 5

(ii) In case of n = 1 if the equality holds, (M, J,0) must be a closed spherical

pseudohermitian 3-manifold and 3 be a compact embedded oriented p-minimal surface

of genus < 1. Moreover, (M, J,0) is the the standard CR 3-sphere (S3,.J, 9) if it is
simply connected.

Let (M, J,0) be a closed spherical pseudohermitian 3-manifold. Recall ([CC1])
that we call a CR structure J spherical if Cartan curvature tensor (17 vanishes
identically. Here

1 ) 24
Qi1 = 6W11 + §WA11 — Ao — gAth-
Note that (M, J,0) is called a spherical pseudohermitian 3-manifold if .J is a spherical
structure. We observe that the spherical structure is CR invariant and a closed spher-
ical pseudohermitian 3-manifold (M, J, ) is locally CR equivalent to the standard
pseudohermitian 3-sphere (S3, J, 6).
Note that for a p-minimal Clifford torus Xy = Sl(g) X Sl( 2) ¢ R?2 xR? in
the standard CR 3-sphere S* (i.e. k =2 and Ay = 0), T is always tangent to g
(i.e. a = 0). Furthermore, the coordinate function x; of ¥ is the eigenfunction of
the tangential sublaplacian A} with

Azl'l = —Ty, 1= 1, 4.

Then in view of Theorem 1.3, we have the following CR analogue of Yau conjecture
on the first eigenvalue estimate of embedded oriented p-minimal surfaces.

CONJECTURE 1.1. The first eigenvalue of Lo on any closed embedded p-minimal
surface of genus < 1 in the standard CR 3-sphere (S3, J 9) 1s just 1.

Finally, we propose a CR analogue of Lawson conjecture ([La]):

CONJECTURE 1.2. Any closed embedded p-minimal torus in the standard CR
3-sphere S? is the Clifford torus.

If the Yau conjecture is true for the 2-torus, it was proved in [MR] that the Lawson
conjecture holds which is to say that the only minimally embedded torus in S® is the
Clifford torus. However, Lawson conjecture was solved by S. Brendle [B] recently.

We briefly describe the methods used in our proofs. In section 3, by using in-
tegrating by parts to the CR Bochner formula (3.1), we can derive the CR version
of Reilly’s formula which involving a third order operator P which characterizes CR-
pluriharmonic functions and the CR Paneitz operator Py. By applying the CR Reilly’s
formula, we are able to obtain the first Dirichlet eigenvalue estimate as in section 4 and
derive the first non-zero eigenvalue estimate of (1.10) on compact oriented embedded
p-minimal hypersurfaces in a closed pseudohermitian (2n + 1)-manifold of vanishing
torsion as in section 5.
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2. Basic Notions in Pseudohermitian Geometry. We first introduce some
basic materials in a pseudohermitian (2n 4 1)-manifold. Let (M, J,0) be a (2n + 1)-
dimensional, orientable, contact manifold with contact structure £ = kerd. A CR
structure compatible with ¢ is an endomorphism J : £ — £ such that J? = —1. We
also assume that J satisfies the following integrability condition: If X and Y are in
&, then so is [JX,Y] + [X,JY] and J([JX,Y] + [X,JY]) = [JX,JY] - [X,Y]. A
CR structure J can extend to C®{ and decomposes C®¢ into the direct sum of 71
and Tp ; which are eigenspaces of J with respect to eigenvalues ¢ and —¢, respectively.
A manifold M with a CR structure is called a CR manifold. A pseudohermitian
structure compatible with £ is a CR structure J compatible with £ together with
a choice of contact form 6. Such a choice determines a unique real vector field T
transverse to &, which is called the characteristic vector field of 6, such that 6(T) = 1

and L76 = 0 or dO(T,-) = 0. Let {T, Zg, ZE} be a frame of TM ® C, where Z3 is

any local frame of 71 o, ZB = Zg € Tp,1 and T is the characteristic vector field. Then
{0, 68, 95}, which is the coframe dual to {T, Zg, ZE}’ satisfies

df = ihg0° A 67, 2.1
By

for some positive definite Hermitian matrix of functions (hgs). Actually we can always
choose Zg such that hgs = d3,; hence, throughout this note, we assume hgy = 3.
The Levi form (, ) is the Hermitian form on T} ¢ defined by

(Z,W) = —i(d0, Z NTV).

We can extend (, ) to Tp,1 by defining (Z,W) = (Z,W) for all Z,W € T1. The
Levi form induces naturally a Hermitian form on the dual bundle of T} g, also denoted
by (, ), and hence on all the induced tensor bundles. Integrating the Hermitian form
(when acting on sections) over M with respect to the volume form du = 6 A (df)",
we get an inner product on the space of sections of each tensor bundle.

The pseudohermitian connection of (J,6) is the connection V on TM ® C (and
extended to tensors) given in terms of a local frame Zg € T} ¢ by

VZﬂ = 93” (024 Zry, VZE = 6‘37 X Z;, VT =0,
where 6g7 are the 1-forms uniquely determined by the following equations:
doP =0 NP +ONTP,
0=175A6°, (2.2)
0=105" 465",

We can write (by Cartan lemma) 75 = Ag~607 with Ag, = A,g. The curvature of the
Tanaka-Webster connection, expressed in terms of the coframe {# = 0°,6%, 6%}, is

Hﬁ’y = Hgﬁ = deﬁ’y —_ oﬁg /\ eg’y7
o? = 11° = Io” = 115° = I1,° = 0.
Webster showed that IIg” can be written

Y = Rg" ps0” NO7 + W57 ,0° NO — W7 5;07 N0+ il AT7 —iTs A O
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where the coeflicients satisfy

Rpmps = vBop — Rzp5p = Rpzps, Wemp = Wimp.

We will denote components of covariant derivatives with indices preceded by
comma; thus write A,3,. The indices {O,B,B} indicate derivatives with respect
to {T, Zg, ZB}' For derivatives of a scalar function, we will often omit the comma, for
instance, ug = Zgu, u,z3 = ZgZ,u— HWP(ZB)Zpu, ug = Tu for a smooth function w .

For a real function u, the subgradient V, is defined by Vyu € € and (Z, Vyu) =

du(Z) for all vector fields Z tangent to the contact plane. Locally Vyu = u”Zg —l—uﬁZE.
We can use the connection to define the subhessian as the complex linear map

(VEV2u T o®Ton — Tio@To1 by (V)2u(Z) = VzVu.

In particular,

Voul> =2 ugu’,  |[Viul® =2 (usyu + ugsu®).
B By

Also the sublaplacian is defined by

Ayu=Tr ((V*)?u) = Z(Ugﬂ + uEE).
B

The pseudohermitian Ricci tensor and the torsion tensor on 717 ¢ are defined by

Ric(X,Y) =R ;X"Y"

Tor(X,Y) =i (A X7Y" — Ap X Y"7),
7.8
where X = X2, Y =YPZjs.

3. The CR Reilly’s Formula. Let M be a compact pseudohermitian (2n+1)-
manifold with boundary . We write Hvﬁ = wvﬁ + id}vﬁ with wvﬁ = Re(@vﬁ), (1175 =
Im(0,,%) and Zz = 3(eg — ieny ) for real vectors eg, eni5, f = 1,--,n. It follows
that e, 5 = Jeg. Let e® = Re(6?), e"™# =1m(67), B =1,--- ,n. Then {0, e’ "7}
is dual to {T,egs, ents}. Now in view of (2.1) and (2.2), we have the following real
version of structure equations:

d9:2265/\e”+ﬁ,
B
Ve, =w.Qes+0.’®e Ve =w®e —o®e
Y 0 B 0% n+8, n+y 0 n+p 0 B

de” = ¢ /\o.)ﬁV —enth /\<I)ﬁV mod 6; de™t = ef Nog” + e th Awg” mod 6.

Let X be a surface contained in M. The singular set Sy; consists of those points
where £ coincides with the tangent bundle T of X. It is easy to see that Sy is a
closed set. On &, we can associate a natural metric (, ) = 1df(-,J-) call the Levi
metric. For a vector v € &, we define the length of v by |v]* = (v,v). With respect
to the Levi metric, we can take unit vector fields ey, - ,ea,—1 € ENTY on X\ Sy,
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called the characteristic fields and ez, = Je,, called the Legendrian normal. The
p(pseudohermitian)-mean curvature H, j, on ¥\ Sy is defined by

2n—1 2n—
Hp.h = § <V6]62n; e] § vej €5, 6271 .
j=1 j=1
For e, - ,ea,_1 being characteristic fields, we have the p-area element

dzp:9/\61/\6n+1/\.../\enfl/\eznfl/\en

on Y and all surface integrals over X are with respect to this 2n-form d%,. Note that
dX, continuously extends over the singular set Sy, and vanishes on Sx.

We also write ¢., = e;jp and Vyp = %(g@eﬁeg + cpen+ﬁen+3). Moreover,
Pejer, = erejp — Veejp and App = %Eﬁ(cpeﬂeﬁ + Qe ipenis) Next we de-
fine the subdivergence operator divy(-) by div,(W) = Wh 4 —|—WE,§ for all vector
fields W = WPZs + WPZz and its real version is divy(W) = @p.c, + Unipenss
for W = cp,@e,g + Ynipentp. We define the tangential subgradient Vi of a func-
tion ¢ by Vie = Ve — (Vpp, ean)e2, and the tangent sublaplacian At of ¢ by
Alp =3 ZQ" (e)%¢ — (Ve,e;)t¢], where (Ve e;)! is the tangential part of Ve, e;.

We ﬁrst recall the following CR Bochner formula.

LEMMA 3.1. Let (M, J,0) be a pseudohermitian (2n + 1)-manifold. For a real
function ¢, we have

—Ab|Vb<P|2 = [Viel® + (Vop, Volop)
+ [2Ric — (n — 2)Tor]((Vee)c, (Vow)c) + 2(JVip, Vipo),

(3.1)

where (Vyp)c = ¢?Zg is the corresponding complex (1,0)-vector field of V.

The proof of the above formula follows from the Bochner formula (Lemma 3 in
[Gr]) derived by A. Greenleaf and the commutation relation (see Lemma 2.2 in [CC1])

i (ppp50 — e5080) =1 Y (98055 — P5¢08) — Tor((Vsp)e, (Vse)e)-
B B
From [CC1], we can relate (JVpp, Vo) with (Vye, Vi App) by

1 2 _
(JVip, Vo) = - (Vop, VeApp) —2Tor((Vop)c, (Vep)c) — - (Po+ Py, dyp). (3.2)

For the proof of Reilly’s formula, we first need a series of formulae. In particular,
one derives the following CR version of divergence theorem and Green’s identity for
a compact pseudohermitian (2n + 1)-manifold M with boundary ¥. Note that d3,
vanishes on Ss..

LEMMA 3.2 (Divergence Theorem). Let (M, J,0) be a compact pseudohermitian
(2n + 1)-manifold with boundary .. For a real function ¢, we have

. 1
/ Abcpduz/ divy(Vep)dp = §Cn/ cpeanEpon/<Vbcp,egn>d2p, (3.3)
M M b b3

/ sasaoodu+/ wﬁdu:—on/ appodEy. (3.4)
M M b))
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Here d$, = O Nel Ae" P A Ae L Ae?t Ae™ is the p-area element of ¥ and
C, =2"n!.

Proof. By Stoke’s theorem, we have
1
/ Appdp = 3 / Z(weﬂeg + Ve penss)2 N0 A ePAe"TIA - AEr AP
M MG
= 2”*1n!/ D dl—pe, 0 et NN NP AT A A
M

+ e 0N NI NP Nt B A A e A e

= 2”71n!/ e O N Ne™ TN e AT A"
by

:C'n/<Vb<p,62n>d2p.
)

Here we used du = 0 A (d9)" = Crf Aet Ae™ LA Ae™ Ae? and the fact that the
2n-forms O A et Ae" A AeB AP A A€ Ae? vanishon X for B=1,---,n

and so arc O A e Ae" A AP AertB A A" Ae* for B=1,---,n — 1, since
e; are tangent to ¥ for j =1,---,2n— 1.

The second equation follows easily from Stoke’s theorem as above
/ woodp + / oidp = Cn/ d(ppoet Ae™ A A e A )
M M M
:Cn/ opoet Ae" TN e A e
b

and the help of the identity e*” A e™ = af A e™ on ¥\Sx. O

COROLLARY 3.1 (Green’s identity). Let (M, J,0) be a compact pseudohermitian
(2n + 1)-manifold with boundary .. For real functions ¢ and 1,

/ Do + / (Vip, Vs = / ey, A5, (3.5)

Proof. It is easy to check that divy(¢¥Vip) = VAyp + (Vyp, Vy1b) and then the
result follows from the CR version of divergence theorem. O

LEMMA 3.3. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with
boundary 3. For any real smooth function ,

1
[ Vo Vuendusn [ ghdn =500 [ pope,ds, (3.6)
M M 3

Proof. By using divy,((JVpe) p0) = (JVpp, Vo) + ngé and the divergence
theorem (3.3), we have

/ (JVe, Vb¢0>dﬂ+”/ Podp
M M

. 1
— [ (V) o) = G [ ((I900) 00 can)dS, = 3G [ upe, Sy O
M P z
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LEMMA 3.4. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with
boundary ¥. For any real smooth function ¢,

— 1 1,
/ (Po+ Py, dyp)dp + —/ (Pow)pdp = —zCn/ @ (Pup — Pap)dy,.  (3.7)
M 4 M 2 >

Proof. It can be easily checked that
: 3 = 1
divy ((¢P¢)Z5 + (¢P70)Zg) = (Po + P, dug) + 76 Pog.
We then have by the divergence theorem (3.3)
— 1
(P + P, dyp)du+ 7 | (Pog)pdp
M M
_ 1.
=y [ (0P"0)25 + (¢P70) Z5,00)d%, = 5iCu [ o (Pup = Prp) a5,

O

LEMMA 3.5. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with
boundary . For real-valued functions ¢ on 3,

/ (Pe,, + 2ap) dX, = 0; (3.8)
b))

- 1, -
/E g+ g HEV(ZV) + 593 (en) | ©| dEp =0 for any B # n; (3.9)
y#N

/[<po + a@e,, — (e, (en) — ReAmm)p]dE, = 0. (3.10)
N

Proof. By Stoke’s theorem, we have

1Cn/ Pe, A5, = / ©e, O A (dO)" ™ Ae”
2 b)) 3
- _/ do AOA(dO)" ™ + / Doy, € N O A (dO)"
3 3

= —/ d(go@/\(d@)n_l)—i—/ odf A (d9)" !
2

P

= / 20e™ A €2 A (df)" T = —/ 20000 A €™ A (dO)™
) 3

= —Cn/ apddy,,
b

where we used the identities § A (d0)" "' A €2 = 0 on ¥ since e, is tangent to X,
do = 22;21 e AemtP and e Ae = af Ae™ on ¥\ Sx.
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For the second equation, we compute

n—1
=60 A do"—lAe”:/ —0 A 05 A 6P A AGIANGT | Aen
/E% () NG ;#[3

n—1

dp N NG5 A Z /\603/\9J Aen /m{mo%((do)"‘?me"}
b

m\m\

[9 A G5 A ((dO)"2) A de"}

—

© |0 AdO° A ((d6)"?) /\e"] - / ®

b

n—1
:/<p ONOANOP +ONTPYA AGIANGT| Aen
» — IFY
1 n—1
— B T ~y n
/22@ O N0 A Z /\93/\93 A D057 (en)d | Ae
Y#EN
_ n—1 ) _
/ > 0,°(Z5) — 057 (en) | 9O AT AOTA (DN AT A | Aem
A jzlﬁfﬁ
/ 29 5" (en) O A (dO)" " A en,
y#n

where we used de™ = (67 A0, + 67T NO5") = 537, 057 (en)07 Ae™ mod 6, €*" on
3.
The same computation for the third equation yields

/ o) A (dO)" ™ A em
2
- / do A (dO)" " Ae — / Den, €2 A A (dO)" !
2 2
- / d(p (d)" P Aem) — / @ (dO)" " A de™ — / ey, O N (dO)" " N e™
2 2 2
- / @ (dO)" " A @ (en)e®™ Ae™ — ReApnf A €] — / ey, O A (dO)" ™1 A "
2 )
_ / (a6, (en) — ReAnn)p — ape, |0 A (d8)" 1 A e™.
2

O

LEMMA 3.6. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with
boundary 3. For real-valued functions ¢ and 1 on ¥, we have

/w(AZ-l-Ocen)cpdEp:/@(Ai+aen)wd2p. (3.11)
b b))

This lemma implies that Al + e, is a self-adjoint operator with respect to the
p-area element dX, on X.
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Proof of Theorem 1.1. By integrating the CR version of Bochner formula (3.1),
we have

1
5 | ulVuldn = [ ViePdut [ (Tup Viduoldn
M M M
+/ [2Ric — (n — 2)Tor]((Vee)c, (Vep)c)du
M
—|—2/ (JVp, Vipo)dp.
M
Note that
n

1 1 2
E lopy|* = E lpsy — =po"hez|* + — (Dsp)” + — 5.
By By " in 4

It follows from the CR Green’s identity (3.5) with ¢y = Ayp and (3.6), that
1 2
5 [ BolVeplidp
M
1 g
= 2/ Z|S"Bv|2dﬂ+2/ > sy — =0 hsx | dp
M g,y My "
3n 9 1
=5 [ wodp+Cn | pope,dp+ 500 | (Bop)pe,, dXp
2 Ju b 2 b

2n2; 1 /M(Abso)Qdu + /M[QRic —(n—=2)Tor|((Vop)c, (Vop)c)-

(3.12)

By combining (3.6), (3.2), (3.5) and (3.7), we have

1 1
n/ gagd,u :—/ (Ab<ﬂ)2d,u - Tcn/(Ab@)@ezndzp
M M n =

n

1 1
- —/ pPopdp + —iOn/ @ (Pnyp — Prp) d%,, (3.13)
2n M n »
1
+§On/ wowend2p+2/ Tor ((Vep)c, (Vop)c) dp.
b)) M

Also applying the divergence theorem to the equation

n —

1 1
Psp),} P,
(¢Ps),” + 5, PP

n

(B7¢)(Beve) = (9" Base),”
with Bgyp = @gy — %wg“h[ﬁ, we obtain

1 o
/ > sy — o h|dps
Mgy

n—1

8n

1. _
+ iCn /E(wﬁan — ¢’ Brgp)dZ,.

-1
/ pPopdp — ——iC, / @ (Pop — Prp) dS, (3.14)
M 4n b3
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Here

B, 5% — ¢’ Brgy)

Z @enﬂs </785€n + @enﬂsezn) + 9065 (<p8562n ¢8n+58n)]
B#n

i(¢?
1
4
1 2
+Zs0€2n |:((penen + Soegnezn) - gAbgO .

Substituting these into the right hand side of (3.12), we get

1
5/ Ay V| 2dp
M

n+1
= 2/ > lepylPdu— / (App)?dp
MgD n M

2
+ + / wPopdy — zC / — Pry) dX, (3.15)
4n M
. 1
+ /M[2ch — (n+ 1D)Torl((Vee)c, (Vep)c)du + ch /E PoPe, dX)
1. 2n+3
+ 310 [(PB,50 = o Brag)ds, + 220, [ (uodes, d,
2 » 4n »
On the other hand, the divergence theorem (3.3) implies that
2 1 2
Ap|Vop|?dp = 5Cy, (IVbsOI )., 4%
M 2 €2n
1
= 50 Z PesPegean + Pentp @enﬂsezn) dE;D
b
B#n
1
+§Cn (PenPenesn T PernPesnean) Ap-
b
Substituting the commutation relations
Pegeniy = Pentyess Pentpeniy — Pentyenip for all 8 7£ Y
Pepesn = Pesnen T 2¢0,
and
Z 2(‘%’55 + @Eﬁ) t Penen
B#n
2n—1 -1 (3.16)
= Z Peje; = 2A§;90 + Hp»hweznwezn@n = 2Ab</7 - Z Peje;
j=1

Jj=1
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into the above equation, also integrating by parts from (3.8) and (3.9) yields

/ M|V 2
M

1
:icn / Z (9065 Peanes T Penys spc2nen+5> d¥,
2 g£n

1 1
+ §Cn/ Pe, (Spegnen + 2900) dE;D + icn/ Pezn (p52n€2nd2p
b)) b
1
=5Cn Z 2 (@E‘PBMZB tT 9P, z—) + Ye, Pesnen, | AXp
2 i ’

1
+ Cn/ Pe, PodXp + _Cn/ Pean Peanesn Aip
b 2 >

1
= §Cn/ Pezn Z 2 (‘Pﬁﬁ + 8055) + enen | dXp
z B
1
- ECn/E [Pen (Ve,€20)P + Pey, (Ve, €n)p] d2p

1 (3.17)
+Cn /E Pe, [P0 — 0“%’82n]d2p + 5071 /E Pean Pezneandip

. .

+C, / > 102 (Z5)en — 3% (en)wﬁ} Pes,, dXp
> p#n b

] L

—|—Cn/ Z 9nﬁ(Z3)(pﬁ— 596 (en)@3:| Pes, AL
 Bn b

- C, g Z (pﬁ(VZEeQn)(P + <P§(nge2n)<P} dZP
B#n

1
=C, /E Pen (Db — 285p) T, — 5Cn /E Hyn¢?,, d%p

2n—1

1
_On/ P0Pe,, A, + 5071/ Z (Ve,en,€5) e, Peay dp
P z j=1
1 2n—1
+ Cn/za(penspegndzp - 56'71‘/E Z <vej62naek> Spej(pekdzp'
j,k=1

Here we use

B 1 n 1 n
2% [955(25)% = 505" (en)ps + 0" (Zg)pm — 505" (en) 05
B#n
2n—1
= Z <V€j €n, ej> P + (Ve,en)o + Hy nes,

=1
and
2n—1

Z 2 {‘Pﬁ(nge%)‘P + ‘PE(vZae%)‘P} + ¢e, (Ve, €2n)p = Z <V€j €2n; €k> Pe;Pey
B#n 7,k=1
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the fact that (3.16) holds only on X\Sy. However, dX, can be continuously extends
over the singular set Sy, and vanishes on Sy. Finally, by combining the equations (3.15)
and (3.17), we can then obtain (1.3). This completes the proof of the theorem. O

4. The CR First Non-Zero Dirichlet Eigenvalue Estimate. In this section,
we derive the first Dirichlet eigenvalue estimate in a compact pseudohermitian (2n+1)-
manifold (M, J,6) with boundary X.

LEMMA 4.1. Let (M, J,0) be a compact pseudohermitian (2n + 1)-manifold with
the smooth boundary ¥ of pseudohermitian mean curvature H,p for n > 2. For the
first eigenfunction ¢ of Dirichlet eigenvalue problem (1.9), we have

n—1
o /@Potpdu /lew ~ o hesl dn + 7 C/ Hyop + @ (€n))$2,, A5y

which implies

/ wPopdu >0 (4.1)
M

if Hp.p + @, (en) is nonnegative.

Proof. Since ¢ = 0 on ¥ and e; is tangent along ¥ for 1 < j < 2n — 1, then

=0forl1 <j<2n-—1and Ajp = 22271 "I(e ) © — (Ve,€5)t¢] = 0 on X.
Furthermore, since App = A1 on M and ¢ = 0 on X, then App = 0 on X. It follows
from (3.16) that

4, [ (77850~ ¢ Brso)dz,

- O Z </78n+5 wegen + 90671+582n) + %5 (90658271 <P8n+58n )} dzp
2
B#n

2
+Cn/ Pean [(‘Penen + Pesnern) = _Ab‘P] d¥y
b3 n
= Co [ pene {[(6) = (V)] 0+ (205 = 2840~ Hpnp)
=-C, /( p.h + @, (en))g)g%dilp.
b

Substituting the above equation into (3.14), we get

n—1

3 / pPopdp
n

/Zlm — %0 T 2dp + ZC/E (P — Prp) dX,

——iCn / (wﬁ Bz —¢° Bﬁw) d%p

/ZW’B_——@U h57|2du+ O /( p.h T Wy (6”))%3%612”'

Now we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Tt follows the CR Reilly formula (1.3) that

n-+1
/ (App)dp
n M

n—+2 .
> 222 [ oPpau+ [ [2Ric— (n+ DTorl(Viole, (Taple)di
noJm M

(4.2)

Since
w=0and App =0o0n X,
(1.7) and (4.2) imply

n+1
n

n+2 .
[ @uefdn= "2 [ Paus [ 2Ric—(nr )Tor) (T, (Tug)e)dn
M n M M
Moreover, by using

[2Ric — (n+ 1)Tor](Veg)c, (Voe)e) > k| Vie|®

and
[ Vel = [
M M
we obtain
n+1 n+2
3 [ Gnz (2220 [ o
n M 4n M
Hence
1 2
n n
and thus
N> nk +/n?k? + (n+1)(n + 2)pl '
2(n+1)
(i) In case of n =1, we have
N k+ /k? 4 6pul
1 ey —7
4
for pl > —%. In addition if P, is nonnegative, we have
k
AL >

5.
(ii) In case of n > 2, it follows from (4.1) and (4.2) that

1
PN kA >0
n
and then
nk
A > .
L= n+1
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5. The First Eigenvalue Estimate of Embedded P-minimal hypersur-
faces. In this section, we study a CR analogue of Yau conjecture [Y] on the first
eigenvalue estimate of embedded p-minimal hypersurfaces.

Proof of Theorem 1.3. Since M has vanishing torsion and positive pseudohermi-
tian Ricci curvature, it follows from [CC1] that M has positive Ricci curvature with
respect to the Webster metric. Hence its first homology group H'(M,R) is trivial.
By an exact sequence argument, we conclude that ¥ divides M into two connected
components M; and My with OM; = ¥ = 0M,. Let us denote D to be one of
two components to be chosen later. If w is the first nonconstant eigenfunction on X,
satisfying

Lou = —M\u.
We first let ¢ be the solution of
App=0on D
with the boundary condition
( =u on 2.

If D is a compact pseudohermitian (2n 4 1)-manifold with the smooth boundary
3, then P is self-adjoint on the space of all smooth functions with Ayp = 0 and
(App)e,, =0 on . In fact, it suffices to check that

/ g fdp = — / (Vog. Vol f) dji + C / 9(B0f)ern 5,
D D )
- / AvfAugdyi — C, / Gen, A fdS, + O / 9B f)endSy  (5.1)
D ) >
:/ AbfAbgdu:/ fATgdp
D D

and for a =0

/gfood#:—/ gofodﬂ+20n/049f0d2p
D D )

:/ fgood,u—ZCn/ afg0d2p+20n/ ag fod¥, (5.2)
D b b

= / fgoodpt.
D

It follows that if the pseudohermitian torsion is vanishing

/ ePypdp = 0. (5.3)
D
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By applying the CR Reilly formula (1.1), we have

n -+
2n

3 2
0> k/ [Voe|*dp + ZO"/ Pope, dXp — iCn/ ¢ (P — Pryp) dX,,
D b)) >

' 3 3
+2Ch / (¢”B,z¢ — ¢” Brgp)dS, + —Ch, / Pean DbpdEy
2 » 4.n »

. 1 2n—1 (54)
+Cn/ESDeznAb‘PdEp - ch/g Z <v€jenvej>906n9062nd2p
=1

2n—1

1 1
- §Cn/ Qpe,, Pes, dXp + ch/ E : <v€je2"7ek> Pe; Pey ddip-
b)) >
J,k=1

Now we are going to estimate all terms in RHS of (5.4):
(i) By the CR divergence theorem and Ayp? = 20A,p + 2|Vyp|? = 2|Vye|?, we
have

Cn/ Pean Azwdzp
b
=— C’n/ OPe, Pey, A2y — /\16'"/ P Pe,, AXp
b N
1
=—C, / e, ez dTp = 5 M Ch / (©?) e, A2 (5.5)
b o
= C’n/ e, Pes, A2p — /\1/ Ab(gp2)d,u
b D
=_ Cn/ OPe, Pegn G2p — 2)\1/ |Vyo|?dp.
b D
(ii) By the CR Green’s theorem
C’n/ ey, Appd%, = / (App)2dp +/ (VpApp, Vi) du = 0. (5.6)
b D D

(ili) The computation for o = 0, the p-area element dX, is the area form d¥ on

2iCh, /E (¢ B,5¢ — ¢’ Brg)ds,

1 2
= §Cn/ Pean | (Penen T Peanesn) — =Lpp — Z Peje; d¥,
= n .
Jj#n,2n
(5.7)

1
+ ECH/ Z(@egenﬂa - ¢8n+585>¢8nd2p
> p#n

n—1
:Cn/cpe% —— Do — D ese, d2p+(n—1)cn/ ©0Pe, dXp.
) n Jj#n,2n x

(iv) By straightforward computation, since Ag, =0,

, 3 1
i (Prp — Prp) =i (sogﬁn - ‘Pﬂﬁﬁ) = 5 [nwoe, + (Avp)es, |-
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From (3.9), (5.7) and [5, 0(Ap@)e,, dE), = 0 that

—2iC,, / ©(Pny — Prp)dE, = —C,, / P[npoe, + (App)es, |dEp
> >

(5.8)
:nCn/ cpocpendEp+2nCn/ opopdL,.
) p)
By combining (5.4), (5.5), (5.6), (5.7) and (5.8) for a = 0,
1 2n—1
0 Z (k — 2A1)/ |Vb(/7|2d,u — ch/ Z <veje2n,ej> Sﬁen<ﬁe2nd2
D T i3
+oC / as - tc / 3 dx
5 ~n Z‘PO‘Pen s . Peje; Pean (59)
j#n,2n
1 2n—1
+—Cn/ Z (Ve,€2ns €k) e, Pe, dS.
4 k=1

Next we observe that T is always tangent to ¥ due to @ = 0. Then fz PoPe, d2 is
independent of the extended function . If we choose a different component of M\ to
perform this computation, ue, %0, Y, 2, Uese; Yean s ng;l (Ve €n,€j) e, Ue,, and
237,1_:11 <Vej €on, ek> Ue; Ue,, Will differ by a sign, hence we may choose a component,
say M, so that

2n—1

2”/ 900<Pend2_/ Z <veje2naej><ﬂen<ﬂe2nd2
2 >

_— (5.10)
_/ Z ‘Pejej@ezndE‘F/ Z <v8j62n’ek> Pe;Pe, dX > 0.
2 j#n,2n 2 k=1

By combining (5.9) and (5.10) that we have

0= (k= 2%) [ Vil
D
with D = M;. This implies
0>Fk—2)\

and thus

AL >

N

because ¢ has boundary value v which is nonconstant.
Now if the equality holds for n = 1, then

W =k.
Since Ay; =0,

Qi1 =0
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and then (M, J,0) is a closed spherical pseudohermitian 3-manifold. On the other
hand, it follows from ([CHMY]) that any embedded p-minimal surface in a closed
spherical pseudohermitian 3-manifold must have genus less than two. In addition, if
M is simply connected, then (M, J, 6) is the standard pseudohermitian 3-sphere. This
completes the proof. O

(elele)

[CcC1]

[CcC2)
(Ch]

[CHMY]
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