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ON THE CR ANALOGUE OF REILLY FORMULA AND YAU

EIGENVALUE CONJECTURE∗

SHU-CHENG CHANG† , CHIH-WEI CHEN‡ , AND CHIN-TUNG WU§

Abstract. In this paper, we derive the CR Reilly’s formula and its applications to studying of
the first eigenvalue estimate for CR Dirichlet eigenvalue problem and embedded p-minimal hypersur-
faces. In particular, we obtain the first Dirichlet eigenvalue estimate in a compact pseudohermitian
(2n+ 1)-manifold with boundary and the first eigenvalue estimate of the tangential sublaplacian on
closed oriented embedded p-minimal hypersurfaces in a closed pseudohermitian (2n+1)-manifold of
vanishing torsion.
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1. Introduction. In the paper of [Re], by integral version of Bochner-type for-
mula, R. Reilly proved so-called Reilly formula which has numerous applications. For
example, Reilly himself applied it to prove a Lichnerowicz type sharp lower bound for
the first eigenvalue of Laplacian on compact Riemannian manifolds with boundary.
In this paper, we will derive the CR version of Reilly’s formula and give some appli-
cations. In particular, we obtain the first Dirichlet eigenvalue estimate in a compact
pseudohermitian (2n + 1)-manifold with boundary and the first eigenvalue estimate
of the tangential sublaplacian on closed oriented embedded p-minimal hypersurfaces
in a closed pseudohermitian (2n + 1)-manifold of vanishing torsion. Finally, we will
indicate the CR analogue of Yau conjecture ([Y]) and Lawson conjecture ([La]).

Let (M,J, θ) be a pseudohermitian (2n + 1)-manifold (see next section for basic
notions in pseudohermitian geometry). The CR Reilly’s formula (1.3) involves terms
which have no analogue in the Riemannian case. However, one can relate these extra
terms to a third-order operator P which characterizes CR-pluriharmonic functions
([L1]) and the fourth-order CR Paneitz operator P0 ([GL]).

Definition 1.1 ([GL], [P]). Let (M,J, θ) be a pseudohermitian (2n+1)-manifold.
We define

Pϕ =
∑n

γ,β=1
(ϕ γ

γ β + inAβγϕ
γ)θβ =

∑n

β=1
(Pβϕ)θ

β ,

which is an operator that characterizes CR-pluriharmonic functions. Here

Pβϕ =
∑n

γ=1(ϕ
γ

γ β + inAβγϕ
γ), β = 1, · · · , n,

and Pϕ =
∑n

β=1 P βθ
β , the conjugate of P . The CR Paneitz operator P0 is defined

by

P0ϕ = 4δb(Pϕ) + 4δb(Pϕ), (1.1)
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where δb is the divergence operator that takes (1, 0)-forms to functions by δb(σβθ
β) =

σ
β

β , and similarly, δb(σβθ
β) = σ

β

β
.

We observe that ([GL])

P0ϕ = 2�b�bϕ− 8in(Aβγϕβ),γ

= 2�b�bϕ+ 8in(Aβγϕβ),γ

= 2(∆2
b + n2T 2)ϕ− 8nRe(iAβγϕβ),γ

(1.2)

for �bϕ = (∂b∂∗b + ∂∗b∂b)ϕ = (−∆b + inT )ϕ = −2ϕ β

β
.

By using integrating by parts to the CR Bochner formula (3.1), we derive the
following CR version of Reilly’s formula.

Theorem 1.1. Let (M,J, θ) be a compact pseudohermitian (2n + 1)-manifold
with boundary Σ. Then for any real smooth function ϕ, we have

n+ 1

n

∫

M

[(∆bϕ)
2 −

2n

n+ 1

∑

β,γ

|ϕβγ |
2]dµ

=
n+ 2

4n

∫

M

ϕP0ϕdµ+

∫

M

[2Ric− (n+ 1)Tor]((∇bϕ)C, (∇bϕ)C)dµ

−
n+ 2

2n
iCn

∫

Σ

ϕ (Pnϕ− Pnϕ) dΣp +
i

2
Cn

∫

Σ

(ϕβBnβϕ− ϕβBnβϕ)dΣp

+
3

4
Cn

∫

Σ

ϕ0ϕendΣp +
3

4n
Cn

∫

Σ

ϕe2n∆bϕdΣp + Cn

∫

Σ

ϕe2n∆
t
bϕdΣp

+
1

4
Cn

∫

Σ

Hp.hϕ
2
e2n
dΣp −

1

4
Cn

∫

Σ

2n−1∑

j=1

〈
∇ej en, ej

〉
ϕenϕe2ndΣp

−
1

2
Cn

∫

Σ

αϕenϕe2ndΣp +
1

4
Cn

∫

Σ

2n−1∑

j,k=1

〈
∇ej e2n, ek

〉
ϕejϕekdΣp.

(1.3)

Here P0 is the CR Paneitz operator on M, Cn := 2nn!; Bβγϕ := ϕβγ − 1

n
ϕσ

σhβγ ,

∆t
b := 1

2

∑2n−1

j=1
[(ej)

2 − (∇ej ej)
t] is the tangential sublaplacian of Σ and Hp.h is the

p-mean curvature of Σ with respect to the Legendrian normal e2n, αe2n + T ∈ TΣ
for some function α on Σ\SΣ, the singular set SΣ consists of those points where the
contact bundle ξ = ker θ coincides with the tangent bundle TΣ of Σ. (∇bϕ)C = ϕβZβ

is the corresponding complex (1, 0)-vector field of ∇bϕ and dΣp = θ∧ e1 ∧ en+1 ∧ · · · ∧
en−1 ∧ e2n−1 ∧ en is the p-area element on Σ.

If (M,J, θ) is a compact pseudohermitian (2n + 1)-manifold without boundary,
one can check easily that the fourth-order CR Paneitz P0 is self-adjoint. That is

∫

M

gP0fdµ =

∫

M

fP0gdµ (1.4)

for all smooth functions f and g. However, if (M,J, θ) is a compact pseudohermitian
(2n + 1)-manifold with the smooth boundary Σ, it follows from (5.1) and (5.2) that
(1.4) holds for all smooth functions with the Dirichlet condition or the Neumann
condition as in (1.5) and (1.6) on Σ. In particular, it holds in the situation as in
Theorem 1.2 and Theorem 1.3.
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That is, one can have the following Dirichlet eigenvalue problem or Neumann
eigenvalue problem, respectively:





P0ϕ = µ
D
ϕ on M,

ϕ = 0 on Σ,
∆bϕ = 0 on Σ,

(1.5)

and




P0φ = µ
N
φ on M,

∆bφ = 0 on Σ,
(∆bφ)e2n = 0 on Σ.

(1.6)

Hence
∫

M

ϕP0ϕdµ ≥ µ1

D

∫

M

ϕ2dµ (1.7)

for the first Dirichlet eigenvalue µ1
D

and all smooth functions with ϕ = 0 = ∆bϕ on
Σ. Similarly

∫

M

φP0φdµ ≥ µ1

N

∫

M

φ2dµ (1.8)

for the first Neumann eigenvalue µ1
N

and all smooth functions with ∆bφ = 0 =
(∆bφ)e2n on Σ. In general, µ1

D
and µ1

N
are not always nonnegative.

Definition 1.2. Let (M,J, θ) be a compact pseudohermitian (2n+ 1)-manifold
with smooth boundary Σ. We say that the CR Paneitz operator P0 with respect to
(J, θ) is nonnegative if

∫

M

ϕP0ϕdµ ≥ 0

for all smooth functions with suitable boundary conditions as in Dirichlet eigenvalue
problem or Neumann eigenvalue problem of P0.

Remark 1.1. Let (M,J, θ) be a compact pseudohermitian (2n + 1)-manifold
of vanishing torsion with smooth boundary Σ. It follows from (1.2) that the Kohn
Laplacian �b and � commute and they are diagonalized simultaneously with

P0ϕ = 2�b�bϕ = 2�b�bϕ.

Then the corresponding CR Paneitz operator P0 is nonnegative ([CCC]). That is

µ1

D
= 0 = µ1

N
.

For the first consequence of CR Reilly formula, we can consider the following
Dirichlet eigenvalue problem:

{
∆bϕ = −λ1ϕ on M,

ϕ = 0 on Σ.
(1.9)

Then we have the following first Dirichlet eigenvalue estimate:
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Theorem 1.2. Let (M,J, θ) be a compact pseudohermitian (2n + 1)-manifold
with smooth boundary Σ. If the pseudohermitian mean curvature Hp.h is nonnegative,
Hp.h + ω̃ n

n (en) is also nonnegative and

[
Ric−

n+ 1

2
Tor

]
(Z,Z) ≥ k 〈Z,Z〉

for all Z ∈ T1,0 and a positive constant k, then
(i) For n ≥ 2,

λ1 ≥
nk

n+ 1
;

(ii) For n = 1,

λ1 ≥
k +

√
k2 + 6µ1

D

4

with µ1
D

≥ −k2

6
. In addition if P0 is nonnegative, in particular if the torsion is

vanishing, then

λ1 ≥
k

2
.

Remark 1.2. It is known that the sharp first eigenvalue estimate is obtained as
in [Gr], [LL], [Ch], [CC2] and [FK] in a closed pseudohermitian (2n+ 1)-manifold.

Next we can state the second consequence of the CR Reilly formula (1.3) which
served as a CR analogue of Yau conjecture ([Y]) on the first eigenvalue estimate of
embedded oriented minimal hypersurfaces. We refer to papers of Choi-Wang [CW]
and Tang-Yan [TY] which are related to Yau conjecture.

As before, {e1, e2, · · · , en, en+1, · · · , e2n−1, αe2n + T } is the base of TΣ for some
function α on Σ\SΣ. It follows from (3.11) that ∆t

b+αen is a self-adjoint operator with
respect to the p-area element dΣp on Σ. Hence it is natural to consider the following
CR analogue of eigenvalue problem on the embedded closed p-minimal (Hp.h = 0)
hypersurface Σ in a closed pseudohermitian (2n+ 1)-manifold (M,J, θ):

Lαu = −λ1u, (1.10)

here

Lα := ∆t
b + αen. (1.11)

In this paper, we consider the particular case that
{e1, e2, · · · , en, en+1, · · · , e2n−1, T } are always tangent to Σ (α = 0) as follows:

L0 := ∆t
b. (1.12)

That is, we have the first eigenvalue estimate of L0 on embedded oriented hypersur-
faces of nonnegative pseudohermitian mean curvature:

Theorem 1.3. Let Σ be a compact embedded oriented p-minimal hypersurface
with α = 0 in a closed pseudohermitian (2n + 1)-manifold (M,J, θ) of vanishing
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torsion. Suppose that the pseudohermitian Ricci curvature of M is bounded from
below by a positive constant k. Then

(i) The first non-zero eigenvalue λ1 of L0 on Σ has a lower bound given by

λ1 ≥
k

2
.

(ii) In case of n = 1 if the equality holds, (M,J, θ) must be a closed spherical
pseudohermitian 3-manifold and Σ be a compact embedded oriented p-minimal surface
of genus ≤ 1. Moreover, (M,J, θ) is the the standard CR 3-sphere (S3, Ĵ , θ̂) if it is
simply connected.

Let (M,J, θ) be a closed spherical pseudohermitian 3-manifold. Recall ([CC1])
that we call a CR structure J spherical if Cartan curvature tensor Q11 vanishes
identically. Here

Q11 =
1

6
W11 +

i

2
WA11 −A11,0 −

2i

3
A

11,11
.

Note that (M,J, θ) is called a spherical pseudohermitian 3-manifold if J is a spherical
structure. We observe that the spherical structure is CR invariant and a closed spher-
ical pseudohermitian 3-manifold (M,J, θ) is locally CR equivalent to the standard

pseudohermitian 3-sphere (S3, Ĵ , θ̂).

Note that for a p-minimal Clifford torus Σ0 = S1(
√
2

2
) × S1(

√
2

2
) ⊂ R2 × R2 in

the standard CR 3-sphere S3 (i.e. k = 2 and A11 = 0), T is always tangent to Σ0

(i.e. α = 0). Furthermore, the coordinate function xi of Σ0 is the eigenfunction of
the tangential sublaplacian ∆t

b with

∆t
bxi = −xi, i = 1, ...4.

Then in view of Theorem 1.3, we have the following CR analogue of Yau conjecture
on the first eigenvalue estimate of embedded oriented p-minimal surfaces.

Conjecture 1.1. The first eigenvalue of Lα on any closed embedded p-minimal
surface of genus ≤ 1 in the standard CR 3-sphere (S3, Ĵ , θ̂) is just 1.

Finally, we propose a CR analogue of Lawson conjecture ([La]):

Conjecture 1.2. Any closed embedded p-minimal torus in the standard CR
3-sphere S3 is the Clifford torus.

If the Yau conjecture is true for the 2-torus, it was proved in [MR] that the Lawson
conjecture holds which is to say that the only minimally embedded torus in S3 is the
Clifford torus. However, Lawson conjecture was solved by S. Brendle [B] recently.

We briefly describe the methods used in our proofs. In section 3, by using in-
tegrating by parts to the CR Bochner formula (3.1), we can derive the CR version
of Reilly’s formula which involving a third order operator P which characterizes CR-
pluriharmonic functions and the CR Paneitz operator P0. By applying the CR Reilly’s
formula, we are able to obtain the first Dirichlet eigenvalue estimate as in section 4 and
derive the first non-zero eigenvalue estimate of (1.10) on compact oriented embedded
p-minimal hypersurfaces in a closed pseudohermitian (2n + 1)-manifold of vanishing
torsion as in section 5.
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2. Basic Notions in Pseudohermitian Geometry. We first introduce some
basic materials in a pseudohermitian (2n+ 1)-manifold. Let (M,J, θ) be a (2n+ 1)-
dimensional, orientable, contact manifold with contact structure ξ = ker θ. A CR
structure compatible with ξ is an endomorphism J : ξ → ξ such that J2 = −1. We
also assume that J satisfies the following integrability condition: If X and Y are in
ξ, then so is [JX, Y ] + [X, JY ] and J([JX, Y ] + [X, JY ]) = [JX, JY ] − [X,Y ]. A
CR structure J can extend to C⊗ξ and decomposes C⊗ξ into the direct sum of T1,0
and T0,1 which are eigenspaces of J with respect to eigenvalues i and −i, respectively.
A manifold M with a CR structure is called a CR manifold. A pseudohermitian
structure compatible with ξ is a CR structure J compatible with ξ together with
a choice of contact form θ. Such a choice determines a unique real vector field T

transverse to ξ, which is called the characteristic vector field of θ, such that θ(T ) = 1

and LT θ = 0 or dθ(T, ·) = 0. Let
{
T, Zβ, Zβ

}
be a frame of TM ⊗ C, where Zβ is

any local frame of T1,0, Zβ = Zβ ∈ T0,1 and T is the characteristic vector field. Then{
θ, θβ , θβ

}
, which is the coframe dual to

{
T, Zβ, Zβ

}
, satisfies

dθ = ihβγθ
β ∧ θγ , (2.1)

for some positive definite Hermitian matrix of functions (hβγ). Actually we can always
choose Zβ such that hβγ = δβγ ; hence, throughout this note, we assume hβγ = δβγ .

The Levi form 〈 , 〉 is the Hermitian form on T1,0 defined by

〈Z,W 〉 = −i
〈
dθ, Z ∧W

〉
.

We can extend 〈 , 〉 to T0,1 by defining
〈
Z,W

〉
= 〈Z,W 〉 for all Z,W ∈ T1,0. The

Levi form induces naturally a Hermitian form on the dual bundle of T1,0, also denoted
by 〈 , 〉, and hence on all the induced tensor bundles. Integrating the Hermitian form
(when acting on sections) over M with respect to the volume form dµ = θ ∧ (dθ)n,
we get an inner product on the space of sections of each tensor bundle.

The pseudohermitian connection of (J, θ) is the connection ∇ on TM ⊗ C (and
extended to tensors) given in terms of a local frame Zβ ∈ T1,0 by

∇Zβ = θβ
γ ⊗ Zγ , ∇Zβ = θβ

γ ⊗ Zγ , ∇T = 0,

where θβ
γ are the 1-forms uniquely determined by the following equations:

dθβ = θγ ∧ θγ
β + θ ∧ τβ ,

0 = τβ ∧ θβ ,

0 = θβ
γ + θγ

β,

(2.2)

We can write (by Cartan lemma) τβ = Aβγθ
γ with Aβγ = Aγβ . The curvature of the

Tanaka-Webster connection, expressed in terms of the coframe {θ = θ0, θβ , θβ}, is

Πβ
γ = Πβ̄

γ = dθβ
γ − θβ

σ ∧ θσ
γ ,

Π0
β = Πβ

0 = Π0
β̄ = Πβ̄

0 = Π0
0 = 0.

Webster showed that Πβ
γ can be written

Πβ
γ = Rβ

γ
ρσ̄θ

ρ ∧ θσ̄ +Wβ
γ
ρθ

ρ ∧ θ −W γ
βρ̄θ

ρ̄ ∧ θ + iθβ ∧ τγ − iτβ ∧ θγ
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where the coefficients satisfy

Rβγρσ̄ = Rγβ̄σρ̄ = Rγβσ̄ρ = Rργβσ̄, Wβγρ =Wργβ .

We will denote components of covariant derivatives with indices preceded by
comma; thus write Aρβ,γ . The indices {0, β, β} indicate derivatives with respect
to {T, Zβ, Zβ}. For derivatives of a scalar function, we will often omit the comma, for
instance, uβ = Zβu, uγβ̄ = Zβ̄Zγu− θγ

ρ(Zβ̄)Zρu, u0 = Tu for a smooth function u .

For a real function u, the subgradient ∇b is defined by ∇bu ∈ ξ and 〈Z,∇bu〉 =

du(Z) for all vector fields Z tangent to the contact plane. Locally∇bu = uβZβ+u
βZβ .

We can use the connection to define the subhessian as the complex linear map

(∇H)2u : T1,0 ⊕ T0,1 → T1,0 ⊕ T0,1 by (∇H)2u(Z) = ∇Z∇bu.

In particular,

|∇bu|
2 = 2

∑

β

uβu
β , |∇2

bu|
2 = 2

∑

β,γ

(uβγu
βγ + uβγu

βγ).

Also the sublaplacian is defined by

∆bu = Tr
(
(∇H)2u

)
=

∑

β

(uβ
β + uβ

β).

The pseudohermitian Ricci tensor and the torsion tensor on T1,0 are defined by

Ric(X,Y ) = Rγβ̄X
γY β̄

Tor(X,Y ) = i
∑

γ,β

(Aγβ̄X
γY β̄ −AγβX

γY β),

where X = XγZγ , Y = Y βZβ.

3. The CR Reilly’s Formula. LetM be a compact pseudohermitian (2n+1)-
manifold with boundary Σ. We write θ β

γ = ω β
γ + iω̃ β

γ with ω β
γ = Re(θ β

γ ), ω̃ β
γ =

Im(θ β
γ ) and Zβ = 1

2
(eβ − ien+β) for real vectors eβ , en+β, β = 1, · · · , n. It follows

that en+β = Jeβ . Let e
β = Re(θβ), en+β = Im(θβ), β = 1, · · · , n. Then {θ, eβ, en+β}

is dual to {T, eβ, en+β}. Now in view of (2.1) and (2.2), we have the following real
version of structure equations:





dθ = 2
∑

β

eβ ∧ en+β ,

∇eγ = ω β
γ ⊗ eβ + ω̃ β

γ ⊗ en+β, ∇en+γ = ω β
γ ⊗ en+β − ω̃ β

γ ⊗ eβ,

deγ = eβ ∧ ω γ
β − en+β ∧ ω̃ γ

β mod θ; den+γ = eβ ∧ ω̃ γ
β + en+β ∧ ω γ

β mod θ.

Let Σ be a surface contained in M . The singular set SΣ consists of those points
where ξ coincides with the tangent bundle TΣ of Σ. It is easy to see that SΣ is a
closed set. On ξ, we can associate a natural metric 〈 , 〉 = 1

2
dθ(·, J ·) call the Levi

metric. For a vector v ∈ ξ, we define the length of v by |v|2 = 〈v, v〉. With respect
to the Levi metric, we can take unit vector fields e1, · · · , e2n−1 ∈ ξ ∩ TΣ on Σ\SΣ,
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called the characteristic fields and e2n = Jen, called the Legendrian normal. The
p(pseudohermitian)-mean curvature Hp.h on Σ\SΣ is defined by

Hp.h =

2n−1∑

j=1

〈
∇eje2n, ej

〉
= −

2n−1∑

j=1

〈
∇ej ej , e2n

〉
.

For e1, · · · , e2n−1 being characteristic fields, we have the p-area element

dΣp = θ ∧ e1 ∧ en+1 ∧ · · · ∧ en−1 ∧ e2n−1 ∧ en

on Σ and all surface integrals over Σ are with respect to this 2n-form dΣp. Note that
dΣp continuously extends over the singular set SΣ and vanishes on SΣ.

We also write ϕej = ejϕ and ∇bϕ = 1

2
(ϕeβeβ + ϕen+β

en+β). Moreover,
ϕejek = ekejϕ − ∇ekejϕ and ∆bϕ = 1

2

∑
β(ϕeβeβ + ϕen+βen+β

). Next we de-

fine the subdivergence operator divb(·) by divb(W ) = W β,β +W
β,β for all vector

fields W = W βZβ + W βZβ and its real version is divb(W ) = ϕβ,eβ + ψn+β,en+β

for W = ϕβeβ + ψn+βen+β . We define the tangential subgradient ∇t
b of a func-

tion ϕ by ∇t
bϕ = ∇bϕ − 〈∇bϕ, e2n〉e2n and the tangent sublaplacian ∆t

b of ϕ by

∆t
bϕ = 1

2

∑2n−1

j=1
[(ej)

2ϕ− (∇ej ej)
tϕ], where (∇ej ej)

t is the tangential part of ∇ej ej .
We first recall the following CR Bochner formula.

Lemma 3.1. Let (M,J, θ) be a pseudohermitian (2n + 1)-manifold. For a real
function ϕ, we have

1

2
∆b|∇bϕ|

2 = |∇2
bϕ|

2 + 〈∇bϕ,∇b∆bϕ〉

+ [2Ric− (n− 2)Tor]((∇bϕ)C, (∇bϕ)C) + 2〈J∇bϕ,∇bϕ0〉,
(3.1)

where (∇bϕ)C = ϕβZβ is the corresponding complex (1, 0)-vector field of ∇bϕ.

The proof of the above formula follows from the Bochner formula (Lemma 3 in
[Gr]) derived by A. Greenleaf and the commutation relation (see Lemma 2.2 in [CC1])

i
∑

β

(ϕβϕβ0 − ϕβϕβ0) = i
∑

β

(ϕβϕ0β − ϕβϕ0β)− Tor((∇bϕ)C, (∇bϕ)C).

From [CC1], we can relate 〈J∇bϕ,∇bϕ0〉 with 〈∇bϕ,∇b∆bϕ〉 by

〈J∇bϕ,∇bϕ0〉 =
1

n
〈∇bϕ,∇b∆bϕ〉−2Tor((∇bϕ)C, (∇bϕ)C)−

2

n
〈Pϕ+Pϕ, dbϕ〉. (3.2)

For the proof of Reilly’s formula, we first need a series of formulae. In particular,
one derives the following CR version of divergence theorem and Green’s identity for
a compact pseudohermitian (2n + 1)-manifold M with boundary Σ. Note that dΣp

vanishes on SΣ.

Lemma 3.2 (Divergence Theorem). Let (M,J, θ) be a compact pseudohermitian
(2n+ 1)-manifold with boundary Σ. For a real function ϕ, we have

∫

M

∆bϕdµ =

∫

M

divb(∇bϕ)dµ =
1

2
Cn

∫

Σ

ϕe2ndΣp = Cn

∫

Σ

〈∇bϕ, e2n〉dΣp, (3.3)

∫

M

ϕϕ00dµ+

∫

M

ϕ2
0dµ = −Cn

∫

Σ

αϕϕ0dΣp. (3.4)
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Here dΣp = θ ∧ e1 ∧ en+1 ∧ · · · ∧ en−1 ∧ e2n−1 ∧ en is the p-area element of Σ and
Cn = 2nn!.

Proof. By Stoke’s theorem, we have
∫

M

∆bϕdµ =
1

2

∫

M

∑

β

(ϕeβeβ + ϕen+βen+β
)2nn!θ ∧ e1 ∧ en+1 ∧ · · · ∧ en ∧ e2n

= 2n−1n!

∫

M

∑

β

d[−ϕeβθ ∧ e
1 ∧ en+1 ∧ · · · ∧ êβ ∧ en+β ∧ · · · ∧ en ∧ e2n

+ ϕen+β
θ ∧ e1 ∧ en+1 ∧ · · · ∧ eβ ∧ ên+β ∧ · · · ∧ en ∧ e2n]

= 2n−1n!

∫

Σ

ϕe2nθ ∧ e
1 ∧ en+1 ∧ · · · ∧ en−1 ∧ e2n−1 ∧ en

= Cn

∫

Σ

〈∇bϕ, e2n〉dΣp.

Here we used dµ = θ ∧ (dθ)n = Cnθ ∧ e
1 ∧ en+1 ∧ · · · ∧ en ∧ e2n and the fact that the

2n-forms θ ∧ e1 ∧ en+1 ∧ · · · ∧ êβ ∧ en+β ∧ · · · ∧ en ∧ e2n vanish on Σ for β = 1, · · · , n

and so are θ ∧ e1 ∧ en+1 ∧ · · · ∧ eβ ∧ ên+β ∧ · · · ∧ en ∧ e2n for β = 1, · · · , n− 1, since
ej are tangent to Σ for j = 1, · · · , 2n− 1.

The second equation follows easily from Stoke’s theorem as above
∫

M

ϕϕ00dµ+

∫

M

ϕ2
0dµ = Cn

∫

M

d(ϕϕ0e
1 ∧ en+1 ∧ · · · ∧ en ∧ e2n)

= Cn

∫

Σ

ϕϕ0e
1 ∧ en+1 ∧ · · · ∧ en ∧ e2n

and the help of the identity e2n ∧ en = αθ ∧ en on Σ\SΣ.

Corollary 3.1 (Green’s identity). Let (M,J, θ) be a compact pseudohermitian
(2n+ 1)-manifold with boundary Σ. For real functions ϕ and ψ,

∫

M

ψ∆bϕdµ+

∫

M

〈∇bϕ,∇bψ〉dµ =
1

2
Cn

∫

Σ

ψϕe2ndΣp. (3.5)

Proof. It is easy to check that divb(ψ∇bϕ) = ψ∆bϕ + 〈∇bϕ,∇bψ〉 and then the
result follows from the CR version of divergence theorem.

Lemma 3.3. Let (M,J, θ) be a compact pseudohermitian (2n+ 1)-manifold with
boundary Σ. For any real smooth function ϕ,

∫

M

〈J∇bϕ,∇bϕ0〉dµ+ n

∫

M

ϕ2
0dµ =

1

2
Cn

∫

Σ

ϕ0ϕendΣp. (3.6)

Proof. By using divb((J∇bϕ)ϕ0) = 〈J∇bϕ,∇bϕ0〉 + nϕ2
0 and the divergence

theorem (3.3), we have

∫

M

〈J∇bϕ,∇bϕ0〉dµ+ n

∫

M

ϕ2
0dµ

=

∫

M

divb((J∇bϕ)ϕ0)dµ = Cn

∫

Σ

〈(J∇bϕ)ϕ0, e2n〉dΣp =
1

2
Cn

∫

Σ

ϕ0ϕendΣp.
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Lemma 3.4. Let (M,J, θ) be a compact pseudohermitian (2n+ 1)-manifold with
boundary Σ. For any real smooth function ϕ,

∫

M

〈Pϕ+ Pϕ, dbϕ〉dµ+
1

4

∫

M

(P0ϕ)ϕdµ =
1

2
iCn

∫

Σ

ϕ (Pnϕ− Pnϕ) dΣp. (3.7)

Proof. It can be easily checked that

divb

(
(ϕP βϕ)Zβ + (ϕP βϕ)Zβ

)
= 〈Pϕ+ Pϕ, dbϕ〉+

1

4
ϕP0ϕ.

We then have by the divergence theorem (3.3)

∫

M

〈Pϕ+ Pϕ, dbϕ〉dµ+
1

4

∫

M

(P0ϕ)ϕdµ

= Cn

∫

Σ

〈(ϕP βϕ)Zβ + (ϕP βϕ)Zβ , e2n〉dΣp =
1

2
iCn

∫

Σ

ϕ (Pnϕ− Pnϕ) dΣp.

Lemma 3.5. Let (M,J, θ) be a compact pseudohermitian (2n+ 1)-manifold with
boundary Σ. For real-valued functions ϕ on Σ,

∫

Σ

(ϕen + 2αϕ) dΣp = 0; (3.8)

∫

Σ


ϕβ +


∑

γ 6=n

θ
γ

β
(Zγ) +

1

2
θ n

β
(en)


ϕ


 dΣp = 0 for any β 6= n; (3.9)

∫

Σ

[ϕ0 + αϕe2n − (αω̃ n
n (en)− ReAnn)ϕ]dΣp = 0. (3.10)

Proof. By Stoke’s theorem, we have

1

2
Cn

∫

Σ

ϕendΣp =

∫

Σ

ϕenθ ∧ (dθ)
n−1

∧ en

= −

∫

Σ

dϕ ∧ θ ∧ (dθ)
n−1

+

∫

Σ

ϕe2ne
2n ∧ θ ∧ (dθ)

n−1

= −

∫

Σ

d(ϕθ ∧ (dθ)
n−1

) +

∫

Σ

ϕdθ ∧ (dθ)
n−1

=

∫

Σ

2ϕen ∧ e2n ∧ (dθ)
n−1

= −

∫

Σ

2αϕθ ∧ en ∧ (dθ)
n−1

= −Cn

∫

Σ

αϕdΣp,

where we used the identities θ ∧ (dθ)n−1 ∧ e2n = 0 on Σ since en is tangent to Σ,
dθ = 2

∑n

β=1
eβ ∧ en+β and e2n ∧ en = αθ ∧ en on Σ\SΣ.
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For the second equation, we compute

∫

Σ

ϕβθ ∧ (dθ)n−1 ∧ en =

∫

Σ

ϕβθ ∧ θ
β ∧ θβ ∧




n−1∑

j=1

∧
j 6=β

θj ∧ θj


 ∧ en

=

∫

Σ

dϕ ∧ θ ∧ θβ ∧




n−1∑

j=1

∧
j 6=β

θj ∧ θj


 ∧ en = −

∫

Σ

ϕd
[
θ ∧ θβ ∧ ((dθ)n−2) ∧ en

]

=

∫

Σ

ϕ
[
θ ∧ dθβ ∧ ((dθ)n−2) ∧ en

]
−

∫

Σ

ϕ
[
θ ∧ θβ ∧ ((dθ)n−2) ∧ den

]

=

∫

Σ

ϕ


θ ∧ (θγ ∧ θγ

β + θ ∧ τβ) ∧




n−1∑

j=1

∧
j 6=γ

θj ∧ θj


 ∧ en




−

∫

Σ

1

2
ϕ


θ ∧ θβ ∧




n−1∑

j=1

∧
j 6=β

θj ∧ θj


 ∧


∑

γ 6=n

θγ
n(en)θ

γ


 ∧ en




=

∫

Σ


∑

γ 6=n

θγ
β(Zγ)−

1

2
θβ

n(en)


ϕθ ∧ θβ ∧ θβ ∧




n−1∑

j=1

∧
j 6=β

θj ∧ θj


 ∧ en

= −

∫

Σ


∑

γ 6=n

θβ
γ(Zγ) +

1

2
θβ

n(en)


ϕθ ∧ (dθ)

n−1
∧ en,

where we used den = 1

2
(θγ ∧ θγ

n + θγ ∧ θγ
n) = 1

2

∑
γ 6=n θγ

n(en)θ
γ ∧ en mod θ, e2n on

Σ.
The same computation for the third equation yields

∫

Σ

ϕ0θ ∧ (dθ)
n−1

∧ en

=

∫

Σ

dϕ ∧ (dθ)n−1 ∧ en −

∫

Σ

ϕe2ne
2n ∧ en ∧ (dθ)n−1

=

∫

Σ

d(ϕ (dθ)n−1 ∧ en)−

∫

Σ

ϕ (dθ)n−1 ∧ den −

∫

Σ

αϕe2nθ ∧ (dθ)n−1 ∧ en

=

∫

Σ

ϕ (dθ)
n−1

∧
[
ω̃ n
n (en)e

2n ∧ en − ReAnnθ ∧ e
n
]
−

∫

Σ

αϕe2nθ ∧ (dθ)
n−1

∧ en

=

∫

Σ

[(αω̃ n
n (en)− ReAnn)ϕ− αϕe2n ] θ ∧ (dθ)

n−1
∧ en.

Lemma 3.6. Let (M,J, θ) be a compact pseudohermitian (2n+ 1)-manifold with
boundary Σ. For real-valued functions ϕ and ψ on Σ, we have

∫

Σ

ψ(∆t
b + αen)ϕdΣp =

∫

Σ

ϕ(∆t
b + αen)ψdΣp. (3.11)

This lemma implies that ∆t
b + αen is a self-adjoint operator with respect to the

p-area element dΣp on Σ.
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Proof of Theorem 1.1. By integrating the CR version of Bochner formula (3.1),
we have

1

2

∫

M

∆b|∇bϕ|
2dµ =

∫

M

|∇2
bϕ|

2dµ+

∫

M

〈∇bϕ,∇b∆bϕ〉dµ

+

∫

M

[2Ric− (n− 2)Tor]((∇bϕ)C, (∇bϕ)C)dµ

+2

∫

M

〈J∇bϕ,∇bϕ0〉dµ.

Note that

∑

β,γ

|ϕβγ |
2 =

∑

β,γ

|ϕβγ −
1

n
ϕσ

σhβγ |
2 +

1

4n
(∆bϕ)

2
+
n

4
ϕ2
0.

It follows from the CR Green’s identity (3.5) with ψ = ∆bϕ and (3.6), that

1

2

∫

M

∆b|∇bϕ|
2dµ

= 2

∫

M

∑

β,γ

|ϕβγ |
2dµ+ 2

∫

M

∑

γ,β

|ϕβγ −
1

n
ϕσ

σhβγ |
2dµ

−
3n

2

∫

M

ϕ2
0dµ+ Cn

∫

Σ

ϕ0ϕendΣp +
1

2
Cn

∫

Σ

(∆bϕ)ϕe2ndΣp

−
2n− 1

2n

∫

M

(∆bϕ)
2dµ+

∫

M

[2Ric− (n− 2)Tor]((∇bϕ)C, (∇bϕ)C).

(3.12)

By combining (3.6), (3.2), (3.5) and (3.7), we have

n

∫

M

ϕ2
0dµ =

1

n

∫

M

(∆bϕ)
2dµ−

1

2n
Cn

∫

Σ

(∆bϕ)ϕe2ndΣp

−
1

2n

∫

M

ϕP0ϕdµ+
1

n
iCn

∫

Σ

ϕ (Pnϕ− Pnϕ) dΣp

+
1

2
Cn

∫

Σ

ϕ0ϕendΣp + 2

∫

M

Tor ((∇bϕ)C, (∇bϕ)C) dµ.

(3.13)

Also applying the divergence theorem to the equation

(Bβγϕ)(Bβγϕ) = (ϕβBβγϕ),
γ −

n− 1

n
(ϕPβϕ),

β +
n− 1

8n
ϕP0ϕ

with Bβγϕ = ϕβγ − 1

n
ϕσ

σhβγ , we obtain

∫

M

∑

β,γ

|ϕβγ −
1

n
ϕσ

σhβγ |
2dµ

=
n− 1

8n

∫

M

ϕP0ϕdµ−
n− 1

4n
iCn

∫

Σ

ϕ (Pnϕ− Pnϕ) dΣp

+
1

4
iCn

∫

Σ

(ϕβBnβϕ− ϕβBnβϕ)dΣp.

(3.14)
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Here

i(ϕβBnβϕ− ϕβBnβϕ)

=
1

4

∑

β 6=n

[
ϕen+β

(ϕeβen + ϕen+βe2n) + ϕeβ (ϕeβe2n − ϕen+βen)
]

+
1

4
ϕe2n

[
(ϕenen + ϕe2ne2n)−

2

n
∆bϕ

]
.

Substituting these into the right hand side of (3.12), we get

1

2

∫

M

∆b|∇bϕ|
2dµ

= 2

∫

M

∑

β,γ

|ϕβγ |
2dµ−

n+ 1

n

∫

M

(∆bϕ)
2dµ

+
n+ 2

4n

∫

M

ϕP0ϕdµ−
n+ 2

2n
iCn

∫

Σ

ϕ (Pnϕ− Pnϕ) dΣp

+

∫

M

[2Ric− (n+ 1)Tor]((∇bϕ)C, (∇bϕ)C)dµ+
1

4
Cn

∫

Σ

ϕ0ϕendΣp

+
1

2
iCn

∫

Σ

(ϕβBnβϕ− ϕβBnβϕ)dΣp +
2n+ 3

4n
Cn

∫

Σ

(∆bϕ)ϕe2ndΣp.

(3.15)

On the other hand, the divergence theorem (3.3) implies that

∫

M

∆b|∇bϕ|
2dµ =

1

2
Cn

∫

Σ

(
|∇bϕ|

2
)
e2n

dΣp

=
1

2
Cn

∫

Σ

∑

β 6=n

(
ϕeβϕeβe2n + ϕen+β

ϕen+βe2n

)
dΣp

+
1

2
Cn

∫

Σ

(ϕenϕene2n + ϕe2nϕe2ne2n) dΣp.

Substituting the commutation relations

ϕeβen+γ
= ϕen+γeβ , ϕen+βen+γ

= ϕen+γen+β
for all β 6= γ,

ϕene2n = ϕe2nen + 2ϕ0,

and

∑

β 6=n

2(ϕββ + ϕββ) + ϕenen

=

2n−1∑

j=1

ϕejej = 2∆t
bϕ+Hp.hϕe2nϕe2ne2n = 2∆bϕ−

2n−1∑

j=1

ϕejej

(3.16)
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into the above equation, also integrating by parts from (3.8) and (3.9) yields
∫

M

∆b|∇bϕ|
2dµ

=
1

2
Cn

∫

Σ

∑

β 6=n

(
ϕeβϕe2neβ + ϕen+β

ϕ
e2nen+β

)
dΣp

+
1

2
Cn

∫

Σ

ϕen (ϕe2nen + 2ϕ0) dΣp +
1

2
Cn

∫

Σ

ϕe2nϕe2ne2ndΣp

=
1

2
Cn

∫

Σ


∑

β 6=n

2
(
ϕβϕe2nZβ

+ ϕβϕe2nZ
β

)
+ ϕenϕe2nen


 dΣp

+ Cn

∫

Σ

ϕenϕ0dΣp +
1

2
Cn

∫

Σ

ϕe2nϕe2ne2ndΣp

=−
1

2
Cn

∫

Σ

ϕe2n


∑

β 6=n

2
(
ϕββ + ϕββ

)
+ ϕenen


 dΣp

−
1

2
Cn

∫

Σ

[ϕen(∇ene2n)ϕ+ ϕe2n(∇enen)ϕ] dΣp

+ Cn

∫

Σ

ϕen [ϕ0 − αϕe2n ]dΣp +
1

2
Cn

∫

Σ

ϕe2nϕe2ne2ndΣp

+ Cn

∫

Σ

∑

β 6=n

[
θn

β(Zβ)ϕn −
1

2
θβ

n(en)ϕβ

]
ϕe2ndΣp

+ Cn

∫

Σ

∑

β 6=n

[
θn

β(Zβ)ϕn −
1

2
θβ

n(en)ϕβ

]
ϕe2ndΣp

− Cn

∫

Σ

∑

β 6=n

[
ϕβ(∇Z

β
e2n)ϕ+ ϕβ(∇Zβ

e2n)ϕ
]
dΣp

=Cn

∫

Σ

ϕe2n

(
∆bϕ− 2∆t

bϕ
)
dΣp −

1

2
Cn

∫

Σ

Hp.hϕ
2
e2n
dΣp

− Cn

∫

Σ

ϕ0ϕendΣp +
1

2
Cn

∫

Σ

2n−1∑

j=1

〈
∇ej en, ej

〉
ϕenϕe2ndΣp

+ Cn

∫

Σ

αϕenϕe2ndΣp −
1

2
Cn

∫

Σ

2n−1∑

j,k=1

〈
∇ej e2n, ek

〉
ϕejϕekdΣp.

(3.17)

Here we use

2
∑

β 6=n

[
θn

β(Zβ)ϕn −
1

2
θβ

n(en)ϕβ + θn
β(Zβ)ϕn −

1

2
θβ

n(en)ϕβ

]

=
2n−1∑

j=1

〈
∇ej en, ej

〉
ϕen + (∇enen)ϕ+Hp.hϕe2n

and

∑

β 6=n

2
[
ϕβ(∇Zβ

e2n)ϕ+ ϕβ(∇Zβ
e2n)ϕ

]
+ ϕen(∇ene2n)ϕ =

2n−1∑

j,k=1

〈
∇ej e2n, ek

〉
ϕejϕek ,
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the fact that (3.16) holds only on Σ\SΣ. However, dΣp can be continuously extends
over the singular set SΣ and vanishes on SΣ. Finally, by combining the equations (3.15)
and (3.17), we can then obtain (1.3). This completes the proof of the theorem.

4. The CR First Non-Zero Dirichlet Eigenvalue Estimate. In this section,
we derive the first Dirichlet eigenvalue estimate in a compact pseudohermitian (2n+1)-
manifold (M,J, θ) with boundary Σ.

Lemma 4.1. Let (M,J, θ) be a compact pseudohermitian (2n+ 1)-manifold with
the smooth boundary Σ of pseudohermitian mean curvature Hp.h for n ≥ 2. For the
first eigenfunction ϕ of Dirichlet eigenvalue problem (1.9), we have

n− 1

8n

∫
M

ϕP0ϕdµ =

∫
M

∑
β,γ

|ϕβγ −
1

n
ϕσ

σ
hβγ |

2
dµ+

1

16
Cn

∫
Σ

(Hp.h + ω̃
n
n (en))ϕ

2
e2n

dΣp

which implies
∫

M

ϕP0ϕdµ ≥ 0 (4.1)

if Hp.h + ω̃ n
n (en) is nonnegative.

Proof. Since ϕ = 0 on Σ and ej is tangent along Σ for 1 ≤ j ≤ 2n − 1, then

ϕej = 0 for 1 ≤ j ≤ 2n − 1 and ∆t
bϕ = 1

2

∑2n−1

j=1
[(ej)

2
ϕ − (∇ej ej)

tϕ] = 0 on Σ.
Furthermore, since ∆bϕ = λ1ϕ on M and ϕ = 0 on Σ, then ∆bϕ = 0 on Σ. It follows
from (3.16) that

4iCn

∫

Σ

(ϕβBnβϕ− ϕβBnβϕ)dΣp

= Cn

∫

Σ

∑

β 6=n

[
ϕen+β

(ϕeβen + ϕen+βe2n) + ϕeβ (ϕeβe2n − ϕen+βen)
]
dΣp

+Cn

∫

Σ

ϕe2n

[
(ϕenen + ϕe2ne2n)−

2

n
∆bϕ

]
dΣp

= Cn

∫

Σ

ϕe2n

{[
(en)

2
− (∇en

en)
]
ϕ+ (2∆bϕ− 2∆t

bϕ−Hp.hϕe2n)
}
dΣp

= −Cn

∫

Σ

(Hp.h + ω̃ n
n (en))ϕ

2
e2n
dΣp.

Substituting the above equation into (3.14), we get

n− 1

8n

∫

M

ϕP0ϕdµ

=

∫

M

∑

β,γ

|ϕβγ −
1

n
ϕσ

σhβγ |
2dµ+

n− 1

4n
iCn

∫

Σ

ϕ (Pnϕ− Pnϕ) dΣp

−
1

4
iCn

∫

Σ

(
ϕβBnβϕ− ϕβBnβϕ

)
dΣp

=

∫

M

∑

β,γ

|ϕβγ −
1

n
ϕσ

σhβγ |
2dµ+

1

16
Cn

∫

Σ

(Hp.h + ω̃ n
n (en))ϕ

2
e2n
dΣp.

Now we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2. It follows the CR Reilly formula (1.3) that

n+ 1

n

∫

M

(∆bϕ)
2dµ

≥
n+ 2

4n

∫

M

ϕP0ϕdµ+

∫

M

[2Ric− (n+ 1)Tor]((∇bϕ)C, (∇bϕ)C)dµ.

(4.2)

Since

ϕ = 0 and ∆bϕ = 0 on Σ,

(1.7) and (4.2) imply

n+ 1

n

∫

M

(∆bϕ)
2dµ ≥

n+ 2

4n
µ1

D

∫

M

ϕ2dµ+

∫

M

[2Ric−(n+1)Tor]((∇bϕ)C, (∇bϕ)C)dµ.

Moreover, by using

[2Ric− (n+ 1)Tor]((∇bϕ)C, (∇bϕ)C) ≥ k|∇bϕ|
2

and
∫

M

|∇bϕ|
2dµ = λ1

∫

M

ϕ2dµ,

we obtain

n+ 1

n
λ21

∫

M

ϕ2dµ ≥

(
kλ1 +

n+ 2

4n
µ1

D

)∫

M

ϕ2dµ.

Hence

n+ 1

n
λ21 − kλ1 −

n+ 2

4n
µ1

D
≥ 0

and thus

λ1 ≥
nk +

√
n2k2 + (n+ 1)(n+ 2)µ1

D

2(n+ 1)
.

(i) In case of n = 1, we have

λ1 ≥
k +

√
k2 + 6µ1

D

4
,

for µ1
D
≥ −k2

6
. In addition if P0 is nonnegative, we have

λ1 ≥
k

2
.

(ii) In case of n ≥ 2, it follows from (4.1) and (4.2) that

n+ 1

n
λ21 − kλ1 ≥ 0

and then

λ1 ≥
nk

n+ 1
.
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5. The First Eigenvalue Estimate of Embedded P -minimal hypersur-

faces. In this section, we study a CR analogue of Yau conjecture [Y] on the first
eigenvalue estimate of embedded p-minimal hypersurfaces.

Proof of Theorem 1.3. Since M has vanishing torsion and positive pseudohermi-
tian Ricci curvature, it follows from [CC1] that M has positive Ricci curvature with
respect to the Webster metric. Hence its first homology group H1(M,R) is trivial.
By an exact sequence argument, we conclude that Σ divides M into two connected
components M1 and M2 with ∂M1 = Σ = ∂M2. Let us denote D to be one of
two components to be chosen later. If u is the first nonconstant eigenfunction on Σ,
satisfying

Lαu = −λ1u.

We first let ϕ be the solution of

∆bϕ = 0 on D

with the boundary condition

ϕ = u on Σ.

If D is a compact pseudohermitian (2n+ 1)-manifold with the smooth boundary
Σ, then P0 is self-adjoint on the space of all smooth functions with ∆bϕ = 0 and
(∆bϕ)e2n = 0 on Σ. In fact, it suffices to check that

∫

D

g∆2
bfdµ =−

∫

D

〈∇bg,∇b∆bf〉dµ+ Cn

∫

Σ

g(∆bf)e2ndΣp

=

∫

D

∆bf∆bgdµ− Cn

∫

Σ

ge2n∆bfdΣp + Cn

∫

Σ

g(∆bf)e2ndΣp

=

∫

D

∆bf∆bgdµ =

∫

D

f∆2
bgdµ

(5.1)

and for α = 0

∫

D

gf00dµ =−

∫

D

g0f0dµ+ 2Cn

∫

Σ

αgf0dΣp

=

∫

D

fg00dµ− 2Cn

∫

Σ

αfg0dΣp + 2Cn

∫

Σ

αgf0dΣp

=

∫

D

fg00dµ.

(5.2)

It follows that if the pseudohermitian torsion is vanishing

∫

D

ϕP0ϕdµ ≥ 0. (5.3)
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By applying the CR Reilly formula (1.1), we have

0 ≥ k

∫

D

|∇bϕ|
2dµ+

3

4
Cn

∫

Σ

ϕ0ϕendΣp −
n+ 2

2n
iCn

∫

Σ

ϕ (Pnϕ− Pnϕ) dΣp

+
i

2
Cn

∫

Σ

(ϕβBnβϕ− ϕβBnβϕ)dΣp +
3

4n
Cn

∫

Σ

ϕe2n∆bϕdΣp

+ Cn

∫

Σ

ϕe2n∆
t
bϕdΣp −

1

4
Cn

∫

Σ

2n−1∑

j=1

〈
∇ej en, ej

〉
ϕenϕe2ndΣp

−
1

2
Cn

∫

Σ

αϕenϕe2ndΣp +
1

4
Cn

∫

Σ

2n−1∑

j,k=1

〈
∇eje2n, ek

〉
ϕejϕekdΣp.

(5.4)

Now we are going to estimate all terms in RHS of (5.4):
(i) By the CR divergence theorem and ∆bϕ

2 = 2ϕ∆bϕ + 2|∇bϕ|
2 = 2|∇bϕ|

2, we
have

Cn

∫

Σ

ϕe2n∆
t
bϕdΣp

=− Cn

∫

Σ

αϕenϕe2ndΣp − λ1Cn

∫

Σ

ϕϕe2ndΣp

=− Cn

∫

Σ

αϕenϕe2ndΣp −
1

2
λ1Cn

∫

Σ

(ϕ2)e2ndΣp

=− Cn

∫

Σ

αϕenϕe2ndΣp − λ1

∫

D

∆b(ϕ
2)dµ

=− Cn

∫

Σ

αϕenϕe2ndΣp − 2λ1

∫

D

|∇bϕ|
2dµ.

(5.5)

(ii) By the CR Green’s theorem

Cn

∫

Σ

ϕe2n∆bϕdΣp =

∫

D

(∆bϕ)
2dµ+

∫

D

〈∇b∆bϕ,∇bϕ〉 dµ = 0. (5.6)

(iii) The computation for α = 0, the p-area element dΣp is the area form dΣ on
Σ,

2iCn

∫

Σ

(ϕβBnβϕ− ϕβBnβϕ)dΣp

=
1

2
Cn

∫

Σ

ϕe2n


(ϕenen + ϕe2ne2n)−

2

n
∆bϕ−

∑

j 6=n,2n

ϕejej


 dΣp

+
1

2
Cn

∫

Σ

∑

β 6=n

(ϕeβen+β
− ϕen+βeβ )ϕendΣp

= Cn

∫

Σ

ϕe2n


n− 1

n
∆bϕ−

∑

j 6=n,2n

ϕejej


 dΣp + (n− 1)Cn

∫

Σ

ϕ0ϕendΣp.

(5.7)

(iv) By straightforward computation, since Aβγ = 0,

i (Pnϕ− Pnϕ) = i
(
ϕβ

β
n − ϕβ

β
n

)
=

1

2
[nϕ0en + (∆bϕ)e2n ].
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From (3.9), (5.7) and
∫
Σ
ϕ(∆bϕ)e2ndΣp = 0 that

−2iCn

∫

Σ

ϕ(Pnϕ− Pnϕ)dΣp = −Cn

∫

Σ

ϕ[nϕ0en + (∆bϕ)e2n ]dΣp

= nCn

∫

Σ

ϕ0ϕendΣp + 2nCn

∫

Σ

αϕ0ϕdΣp.

(5.8)

By combining (5.4), (5.5), (5.6), (5.7) and (5.8) for α = 0,

0 ≥ (k − 2λ1)

∫

D

|∇bϕ|
2dµ−

1

4
Cn

∫

Σ

2n−1∑

j=1

〈
∇ej e2n, ej

〉
ϕenϕe2ndΣ

+
n

2
Cn

∫

Σ

ϕ0ϕendΣ−
1

4
Cn

∫

Σ

∑

j 6=n,2n

ϕejejϕe2ndΣ

+
1

4
Cn

∫

Σ

2n−1∑

j,k=1

〈
∇ej e2n, ek

〉
ϕejϕekdΣ.

(5.9)

Next we observe that T is always tangent to Σ due to α = 0. Then
∫
Σ
ϕ0ϕendΣ is

independent of the extended function ϕ. If we choose a different component ofM\Σ to

perform this computation, uenu0,
∑

j 6=n,2n uejejue2n ,
∑2n−1

j=1

〈
∇ej en, ej

〉
uenue2n and∑2n−1

j,k=1

〈
∇eje2n, ek

〉
uejuek will differ by a sign, hence we may choose a component,

say M1, so that

2n

∫

Σ

ϕ0ϕendΣ−

∫

Σ

2n−1∑

j=1

〈
∇ej e2n, ej

〉
ϕenϕe2ndΣ

−

∫

Σ

∑

j 6=n,2n

ϕejejϕe2ndΣ +

∫

Σ

2n−1∑

j,k=1

〈
∇ej e2n, ek

〉
ϕejϕekdΣ ≥ 0.

(5.10)

By combining (5.9) and (5.10) that we have

0 ≥ (k − 2λ1)

∫

D

|∇bϕ|
2dµ

with D =M1. This implies

0 ≥ k − 2λ1

and thus

λ1 ≥
k

2

because ϕ has boundary value u which is nonconstant.
Now if the equality holds for n = 1, then

W = k.

Since A11 = 0,

Q11 = 0
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and then (M,J, θ) is a closed spherical pseudohermitian 3-manifold. On the other
hand, it follows from ([CHMY]) that any embedded p-minimal surface in a closed
spherical pseudohermitian 3-manifold must have genus less than two. In addition, if
M is simply connected, then (M,J, θ) is the standard pseudohermitian 3-sphere. This
completes the proof.
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156 (1985), pp. 153–201.

[P] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-

Riemannian manifolds, preprint, 1983.
[Re] R. Reilly, Applications of the hessian operator in a Riemannian manifold, Indiana U.

Math. J., 26 (1977), pp. 459–472.
[T] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinoku-

niya Book Store Co., Ltd, Kyoto, 1975.



CR REILLY FORMULA & YAU EIGENVALUE CONJECTURE 939

[TY] Z.-Z.Tang and W.-J. Yan, Isoparametric foliation and Yau conjecture on the first eigen-

value, J. Diff. Geom., 94 (2013), pp. 521–540.
[We] S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Diff. Geom., 13

(1978), pp. 25–41.
[Y] S.-T. Yau, Seminar on differential geometry, edited, Annals of Math. Studies 102, Prince-

ton, New Jersey, 1982.



940 S.-C. CHANG, C.-W. CHEN, AND C.-T. WU


