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MANDELBROT CASCADES ON RANDOM WEIGHTED TREES
AND NONLINEAR SMOOTHING TRANSFORMS∗

JULIEN BARRAL† AND JACQUES PEYRIÈRE‡

Abstract. We consider complex Mandelbrot multiplicative cascades on a random weighted tree.
Under suitable assumptions, this yields a dynamics T on laws invariant by random weighted means
(the so called fixed points of smoothing transformations) and which have a finite moment of order 2.
We can exhibit two main behaviors: If the weights are conservative, i.e., sum up to 1 almost surely,
we find a domain for the initial law µ such that a non-standard (functional) central limit theorem is
valid for the orbit (Tn

µ)n≥0. The limit process possesses a structure combining multiplicative and
additive cascade (this completes in a non trivial way our previous result in the case of nonnegative
Mandelbrot cascades on a regular tree). If the weights are non conservative, we find a domain for the
initial law µ over which (Tn

µ)n≥0 converges in law to a non trivial random variable whose law turns
out to be a fixed point of a quadratic smoothing transformation, which naturally extends the usual
notion of (linear) smoothing transformation; moreover, this limit law can be built as the limit of a
nonnegative martingale. Also, the dynamics can be modified to build fixed points of higher degree
smoothing transformations.

Key words. Multiplicative cascades, Mandelbrot martingales, smoothing transformations, dy-
namical systems, central limit theorem, Gaussian processes, Random fractals, Wasserstein distance,
Galton-Watson tree.
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1. Introduction. We study dynamics on a class of probability distributions on
C, namely the fixed points of so-called smoothing transforms (in the framework of
branching processes). This work is motivated by the special situation studied in [6].

Let N be a nonnegative integer valued random variable and a = (aj)j≥1 a se-
quence of nonnegative random variables such that

E

∑

j≥1

aj = 1.

We assume that a and N are independent.

Let LW stand for the law of the random variable W . Consider the following
map

SN : µ 7−→ L

∑

j≥1

aj
∏

1≤k≤N

Wk(j), (1)

where µ is a probability measure on C, all variables Wk(j) are distributed according
to µ, independent, and independent of a and N .

When N is a constant c, i.e., P(N = c) = 1, denoted N ≡ c, we write Sc instead of
SN . In these conditions, S1 is the well known linear smoothing transform associated
with a [12, 17].
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Under suitable assumptions on a and N , we prove that this mapping SN has a
unique fixed point in a certain domain defined by inequalities on second moments. In
other terms this fixed point is a solution to the equation

µ = L

∑

j≥1

aj
∏

1≤k≤N

Wk(j), (2)

where the unknown is µ (a and the other variables in the right hand side being
independent and LWk(j) = µ).

In the usual case, N ≡ 1, this equation is linear and its solutions are rather well
understood [12, 17, 1, 2, 3, 14]. Otherwise, it is not so, and in case N ≡ 2, it reduces
to a quadratic equation (see equation (26)). If

∑
aj = 1 with probability 1, the so

called conservative case, this fixed point is the Dirac mass at 1, whereas in the non
conservative case it is non trivial.

One way to construct these fixed points when N 6≡ 1 is to iterate Mandelbrot
cascades in a random scenery. Another one is to build them as limit of new kind of
multiplicative process. The conservative case gives rise to a non standard central limit
theorem, with a functional counterpart in the quadratic case. It is worth mentioning
that in [6] only the quadratic case is considered, the aj being equal and conservative,
so that no non trivial solution to (2) appears; moreover, the weights Wk are non
negative. Also, the central limit theorems established in the present paper (which are
non standard in the sense that the limit laws are not necessarily Gaussian) cannot be
guessed after the form they take in the case studied in [6].

Section 2 contains, for the reader’s convenience, some known facts on multiplica-
tive cascades; it also sets notation, defines what we mean by random scenery, and
shows a few computations. Sections 3 to 6 deal with the case when N is the constant
2. Indeed we prefer to present calculations and ideas in this particular case. Section 3
defines the dynamics on Mandelbrot cascades in a random scenery and studies its
fixed points, from the two viewpoints described above. The dynamical system acts on
probability distributions with finite second moment. Section 4 studies the behavior
of the third moment along the iteration. This prepares the proof of the central limit
theorem associated with the attracting fixed point in the conservative case. Section 5
is dedicated to the nonnegative case, and Section 6 to the complex case. We treat
the case of a general distribution for N in Section 7. In Section 8, we obtain a func-
tional central limit theorem in case N ≡ 2. Section 9 contains some comments and
questions.

2. Mandelbrot cascades.

2.1. Alphabets and trees. Let A be a countable set which we call alphabet.
Consider the tree A ∗ =

⋃
n≥0 A n whose root is the only element ǫ of A 0. En-

dowed with concatenation, denoted by juxtaposition except in Section 8 where it will
be occasionally denoted by a dot, A ∗ is also a monoid whose identity is ǫ. Its elements
are written as words: If w = x1x2 · · ·xn, we set |w| = n, wj = xj , and w|k = x1 · · ·xk
(with w|0 = ǫ).

We shall use the alphabet N = {1, 2, · · · }. Then the corresponding tree will be
denoted by T and the set Nn will sometimes be denoted by Tn.

2.2. Standard Mandelbrot cascades. A sequence of random variables V =

(Vj)j∈A such that
∑

j∈A

E |Vj | < ∞ and
∑

j∈A

E Vj = 1 defines a martingale (Yn)n∈N in
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the following way: consider a sequence
(
V (w)

)
w∈A ∗ of independent random variables

all equidistributed with V and set

Yn =
∑

w∈A n

n−1∏

j=0

Vwj+1(w|j). (3)

It is clear that the following recursion relation holds:

Yn+1 =
∑

j∈A

Vj(ǫ)Yn(j), (4)

where all the variables Yn(j) are equidistributed with Yn, independent, and indepen-
dent of (Vj(ǫ))j∈A (indeed Yn(j) is constructed as Yn on the subtree whose root is
the word j).

If moments of order 2 exist, we have

E |Yn+1|2 =



∑

j∈A

E |Vj |2

E |Y 2

n |+ E

∑

j 6=k

VjV k. (5)

Therefore, if
∑

j∈A

E |Vj |2 < 1 this martingale converges to a limit Y .

Recall that, when the components of V are nonnegative variable, there is a nec-
essary and sufficient condition insuring that this martingale converges in Lp. Namely,
for p > 1 we have

EY p <∞ ⇐⇒






E

(∑
j≥1 V (j)

)p
<∞

and

E
∑

j≥1 V (j)p < 1.

(6)

This equivalence due to Liu [18] is the generalization of the condition found in [15]
for the finiteness of moments of order larger than 1 of non-degenerate Mandelbrot
cascades on regular trees (in fact Liu assumes that there exists a random integer J
such that Vj = 0 for j ≥ J + 1 almost surely, but this assumption can be removed).

2.3. Cascades in a random scenery. We are given once for all a sequence a =

(an)n≥1 of nonnegative random variables such that E
∑

j≥1

aj = 1 and E

(∑

j≥1

aj

)2
<∞.

We exclude that aj ∈ {0, 1} for all j ≥ 1 almost surely.
We set

b =
E (
∑
aj)

2

E
∑
a2j

and q =
1

E (
∑
aj)

2 .

Observe that b ≥ 1, 0 < q ≤ 1, and that q = 1 if and only if
∑

j≥1 aj = 1 with
probability 1. As already said, we refer to this last case as the conservative case.

Now, we define what we mean by Mandelbrot cascades on the tree T = N∗

endowed with a random scenery defined by a. More precisely, what we call scenery is
a collection

(
a(w)

)
w∈T

of independent random variables equidistributed with a.
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Also we are given a nonnegative integer valued random variable N whose proba-
bility generating function is

fN(t) =
∑

n∈N

tn P(N = n).

If W is an integrable complex random variable of expectation 1, we define W(N)

to be

W(N) =
∏

1≤j≤N

Wj ,

where the variables Wj are independent and equidistributed with W .
We consider a sequence

(
W(N)(w)

)
w∈T

of independent variables equidistributed

with W(N) and independent of
(
a(w)

)
w∈T

, and define

Yn =
∑

w=j1j2...jn∈Tn

n−1∏

k=0

ajk+1
(w|k)W(N)(w|k+1).

This is a Mandelbrot martingale as defined in the preceding section with V =(
ajW(N)(j)

)
j∈N

, the W(N)(j) being independent and independent of a. Accordingly,

we have

Yn+1 =
∑

j≥1

ajW(N)(j)Yn(j), (7)

where the variables Yn−1(j) are defined as Yn−1 but starting from j as a root, and all
the variables W(N)(j) and Yn(j) in the sum are independent and independent of a.
Notice that Yn(j) has the same distribution as Yn for all j ≥ 1. From this relation we
obtain the following equality.

E |Yn+1|2 = fN (E |W |2)E |Yn|2 E
∑

j≥1

a2j + E

∑

i6=j

aiaj . (8)

This means that this martingale is bounded in L2 if and only if

fN(E |W |2) < bq. (9)

If it is so, which we assume from now on, let Y stand for the limit of this mar-
tingale. It results from (7) that Y fulfills the following equation.

Y =
∑

j≥1

ajW(N)(j)Y (j), (10)

where the variables Y (i) are equidistributed with Y , and all the variables W(N)(j)
and Y (j) in the sum are independent and independent of a. Thus Y is an inte-
grable fixed point of the following smoothing transformation UW(N)

which to a given
probability distribution µ on C associates

UW(N)
(µ) = L

∑

j≥1

ajW(N)(j)Z(j),
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where the Z(j) are independent, distributed according to µ, and independent of a
and the W(N)(j), themselves i.i.d. (LX stands for the probability distribution of X).
The fixed points of such transformations have been studied for a long time, especially
in the context of model for turbulence and branching processes, and much is known
about their structure [19, 15, 7, 12, 13, 8, 17, 18, 9, 1, 2, 3].

We denote by TN the operator which leads from the distribution of W to the one
of Y . From time to time we shall make the following abuse of notation: Y = TNW .

A fixed point of TN is a probability distribution µ on C satisfying the relation

µ = L

∑

j∈N

aj
∏

0≤k≤N

Wk(j),

where the variables Wk(j) are independent, distributed according to µ, and indepen-
dent of a. In other terms, µ is also a fixed point of SN+1. This is why we wish to
iterate TN and study its dynamics.

Also, Equation (8) can be rewritten as

E |Y |2 =
b− 1

bq − f
(
E |W |2

) . (11)

As said in the introduction, we prefer to expose the ideas and calculations in the
case where N ≡ 1. The general case will be treated in Section 7. So except in this
section N ≡ 1.

We adopt simplified notation: T instead of T1. In the above formulae, when N ≡
1, each occurrence of W(N) should be replaced by W . Also the function f is the
identity, so that Equations (8) and (11) can be rewritten as

bqE |Yn+1|2 = E |W |2 E |Yn|2 + b− 1, (12)

and

E |Y |2 =
b− 1

bq − E |W |2 , (13)

and in this case this martingale is bounded in L2 if and only if

E |W |2 < bq. (14)

In this context, Liu’s condition (6) is to be so stated: when W is a nonnegative
variable, for p > 1 we have

EY p <∞ ⇐⇒





E

(∑
j≥1 ajW (j)

)p
<∞

and

E
∑

j≥1 a
p
jW (j)p < 1.

(15)

In [6], we considered the case where b ≥ 3 is a fixed integer, aj = b−1 if 1 ≤ j ≤ b
and 0 otherwise, and W is nonnegative. We proved that if one starts with W0 such
that 1 ≤ EW 2

0 < b− 1, one can indefinitely iterate T, and TnW0 converges in law to
δ1, the unit Dirac mass at 1. Then, under additional assumptions on W0, we proved
that after centering TnW0 and normalizing it by the resulting standard deviations
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one gets a sequence of probability distributions converging to the standard normal
law; moreover, this result had a functional counterpart in which the limit process was
obtained as the limit of a Gaussian additive cascade.

As we will see, in the present extended framework, the situation exhibits new
features. First, when q = 1, i.e.,

∑
j≥1 aj = 1 with probability 1, there is a more

general non standard central limit theorem: the limit distribution is that of a complex
centered Gaussian variable ξ multiplied by

√
U , where U is independent of ξ and is the

limit of a non degenerate Mandelbrot martingale built on
⋃

n≥1 N
n × {0, 1}n rather

than on
⋃

n≥0 N
n, which is an unexpected fact (Theorems 5.3 and 6.4). This result

has a functional counterpart too (Theorem 8.4), the limit process being the limit of
a mixture between additive and multiplicative cascades. Also, when q < 1, we find
conditions under which there exists a non trivial fixed point of T (in the sense that
it differs from δ1) with a non trivial basin of attraction. As already said, this fixed
point is also a fixed point of the quadratic smoothing transformation S2. We will
identify this fixed point as the probability distribution of the limit of a nonnegative
martingale (Theorems 3.1 and 3.2).

Some useful preliminary facts about the mapping T are introduced in the next
subsection.

2.4. Simultaneous cascades. This time we are given a random vector (W,W ′)
such that EW = EW ′ = 1, E |W |2 < bq, and E |W ′|2 < bq. We consider a family{(
W (w),W ′(w)

)}
w∈T

of independent copies of (W,W ′), which are independent of

all the a(w), and perform the same construction as previously: one gets variables Yn
and Y ′

n and their limits Y and Y ′.

Thus T extends naturally to an operation T(2) mapping the distribution of
(W,W ′) to that of (Y, Y ′).

Let us perform a few computations.

Due to (10)

EY Y ′ =
∑

i,j≥1

E

(
aiajW (i)W ′(j)Y (i)Y ′(j)

)

= E(WW ′)E(Y Y ′)E
∑

j≥1

a2j +
∑

i6=j

aiaj ,

hence

EY Y ′ =
b− 1

bq − EWW ′ . (16)

Again, due to (10)

Y − Y ′ =
∑

i≥1

ai
(
W (i)−W ′(i)

)
Y (i) +

∑

i≥1

ai
(
Y (i)− Y ′(i)

)
W ′(i),

so

bq E |Y − Y ′|2 = E |W −W ′|2 E |Y |2 + E |Y − Y ′|2 E |W ′|2

+2ℜ
(
E
(
(W −W ′)W ′)

E
(
Y (Y − Y ′)

))
,
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and

√
bq ‖Y − Y ′‖2 ≤ ‖W −W ′‖2‖Y ‖2 + ‖Y − Y ′‖2‖W ′‖2. (17)

2.5. Examples. The original Mandelbrot cascades correspond to the following
choice of a:

aj =

{
b−1, if 1 ≤ j ≤ b,

0, if j > b.

One also can associate a with a Galton-Watson process. More precisely, let J be
a nonnegative integer valued random variable, not identically equal to 0, and define
q = P{J > 0} and

aj =

{
(qJ)−1, if 1 ≤ j ≤ J,

0, if j > J.

In this context, it is not difficult to see that

b−1 = E(J−1 | J 6= 0).

We also use the following notation:

bk =
1

E
(
J−k | J 6= 0

) . (18)

Notice that

b1 ≤ bk ≤ bk1 , (19)

due to Hölder inequality. These inequalities are strict unless P(J > 1) = 0.

This natural randomization of the scenery associated with original Mandelbrot
cascades is enough to get, when b > 2, illustrations of the new phenomena exhibited
in this paper, according to whether q = 1 (Theorems 3.2, 5.3, 6.4, 8.4 and 8.5) or not
(Theorems 3.2 and 3.4, and Proposition 4.2).

3. A dynamical system on fixed points of smoothing transforms. Recall
that from this section to Section 6 we assume that N ≡ 1. We wish to iterate T = T1.
So, we have to ensure that E |Y |2 < bq. In view of (13) this leads first to consider the
iterates of the homography

ϕ(x) =
b− 1

bq − x
. (20)

3.1. Study of ϕ. There are two cases.
(1) The mapping ϕ has no fixed point. Then one of the iterates of any starting

point x0 < bq is larger than bq.
(2) The mapping ϕ has two real fixed points α ≤ β. Starting from x0 < α

the sequence of its iterates increases towards α. Starting from x0 ∈ (α, β)
the sequence decreases towards α. Starting from x0 > β leads, after some
iterations, to values larger than bq.
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This means that in case (1) there is no hope to indefinitely iterate T.

As we wish to start from x0 = E |W0|2 ≥ 1, we must have β ≥ 1. As a matter of
fact the case β = 1 has not interest: we should have to start with W0 = 1 and all the
subsequent iterates of W0 would be the constant 1.

In case β > 1, the following argument shows that α ≥ 1. By starting with W =
W0 such that E |W0|2 < β, we get W1 = Y such that E |W1|2 < β. So, by starting
with W1 instead of W0 we get W2 which still fulfills the non-degeneracy condition.
And so on . . . As previously said, limn→∞ E |Wn|2 = α. But, as EWn = 1, one has
α ≥ 1.

This homography, ϕ, has two real fixed points, α ≤ β, the roots of the polynomial

p(x) = x2 − bqx+ b− 1, when q ≥ 2
√
b− 1

b
, what we assume from now on.

The case b = 2 presents no interest since in this case the discriminant of p is
negative unless q = 1, and in this last case α = β = 1.

Since p(0) > 0, p(1) = b(1 − q) ≥ 0, and α + β = bq > 0, either 0 < α ≤ β ≤ 1
or 1 ≤ α ≤ β. In the first case, which as already said is of no interest to us, we
have 2

√
b− 1 ≤ bq = α + β ≤ 2, which means b ≤ 2. In the second case, we have

b ≥ bq = α+ β ≥ 2.

So from now on, we assume that b > 2.

Since p(1) = p(bq − 1) = b(1 − q) ≥ 0 and bq − 1 ≥ 2
√
b − 1 − 1 > 1, we have

1 ≤ α ≤ β ≤ bq − 1. Observe that α = 1 if and only if q = 1 and that β = bq − 1 if
and only if q = 1.

Let us now examine the behavior of ϕ under iteration when there are real fixed
points. Suppose first α < β. By using the conservation of the cross-ratio we get

ϕ(x) − α

ϕ(x) − β
=
(
ϕ(x),∞, α, β

)
=
(
x, bq, α, β

)
=
α

β

x− α

x− β
, (21)

which implies that, if x0 < β and xn+1 = ϕ(xn), one has

xn − α =
(α/β)n

1− (α/β)n
β − α

β − x0
(x0 − α). (22)

Suppose now that α = β, which means b =
2(1 +

√
1− q2)

q2
. Then

α− ϕ(x)

α
=
(
ϕ(x), 0, α,∞

)
=
(
x,∞, α, bq

)
=

α− x

2α− x
,

gives

1

α− ϕ(x)
=

1

α
+

1

α− x
.

It follows that if x0 < α,

α− xn =
α(α− x0)

n(α− x0) + 1
. (23)
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3.2. The dynamical system. Let P be the set of Borel probability measures
on C, and P(2) the set of Borel probability measures on C2.

If µ ∈ P and p > 0, we denote by mp(µ) the moment of order p of µ, i.e.,

mp(µ) =

∫

C

|x|p µ(dx).

Then let P1 be the set of elements of P with finite first moment and expectation 1:

P1 =
{
µ ∈ P : m1(µ) <∞,

∫

C

z µ(dz) = 1
}
.

For γ ≥ 1 we set

Pγ =
{
µ ∈ P1 : 1 ≤ m2(µ) ≤ γ

}
.

We also set

P
(2)
γ =

{
ρ ∈ P(2) : ρ ◦ π−1

1 , ρ ◦ π−1
2 ∈ Pγ

}
.,

where π1 and π2 stand for the canonical projections on the first and second coordi-
nates.

The set Pγ is endowed with the Wasserstein distance (see [21], p. 77 sqq)

dW,2(µ, µ
′)2 = inf

{∫

C2

|x− y|2 dρ : ρ ∈ P(2), ρ ◦ π−1
1 = µ, ρ ◦ π−1

2 = µ′
}
.

The space
(
Pγ , dW,2(µ, µ

′)
)
is complete, and convergence in (P , dW,2(µ, µ

′)) implies
convergence in distribution.

When β > α ≥ 1, for any γ ∈ [α, β], the set Pγ is stable under operation T. This

means that we can indefinitely iterate the process on Pγ . Similarly, P
(2)
γ is stable

under operation T
(2) defined in Section 2.4.

If µ ∈ Pγ , due to (10), we can associate with each n ≥ 0 a ran-
dom variable Wn+1 as well as a copy of (aj)j≥1 and two sequences of ran-
dom variables (Wn(k))k≥1 and (Wn+1(k))k≥1, such that the random variables a,
Wn(1),Wn+1(1),Wn(2),Wn+1(2), . . . are independent,

Wn+1 =
∑

j≥1

ajWn(j)Wn+1(j), (24)

Tnµ is the probability distribution ofWn andWn(k) for every k ≥ 1, and Tn+1µ is the
probability distribution of Wn+1 and Wn+1(k) for every k ≥ 1. One has to be aware
that, if we also write Equation (24) for Wn+2, the variables Wn+1(j) which appear in
both formulae need not be the same.

3.3. Existence of fixed points for T (or S2) as limit of a martingale. It
turns out that, exactly like in the case of the classical linear smoothing transformation,
it is possible to build special fixed points of S2, and hence of T, as limit of a martin-
gale whose successive terms are distributed according to Sn2 (δ1). However, while for
the classical smoothing transform the convergence of the corresponding Mandelbrot
martingale is a well understood problem, for the martingale we consider below we are



892 J. BARRAL AND J. PEYRIÉRE

only able to make it to converge in L2, the study in Lp for p ∈ [1, 2) seeming out of
reach at the moment.

Let {a(w,m)} n≥0
(w,m)∈Tn×{0,1}n

be a sequence of independent copies of a. For all

(w,m) we define Ξ1(w,m) =
∑

j≥1 aj(w,m), which is distributed according to S2(δ1).
Then we define recursively, for all n ≥ 2 and (w,m),

Ξn(w,m) =
∑

j≥1

aj(w,m)Ξn−1(wj,m0)Ξn−1(wj,m1), (25)

which, as easily seen by induction, is distributed according to Sn2 (δ1).
Set Ξn = Ξn(ǫ, ǫ). The sequence (Ξn)n≥1 is a nonnegative martingale with respect

to the filtration Gn = σ
(
a(w,m) : (w,m) ∈ ⋃n−1

k=0{0, 1}k × Tk

)
, n ≥ 1. To see this,

define Gn(w,m) = σ
(
a(ww′,mm′) : (w′,m′) ∈

⋃n−1
k=0{0, 1}k × Tk

)
. We have

E(Ξ2(w,m) | G1(w,m))

=
∑

j1≥1

aj1(w,m)E(Ξ1(wj1,m0) | G1(w,m))E(Ξ1(wj1,m1) | G1(w,m))

=
∑

j1≥1

aj1(w,m)E




∑

j2≥1

aj2(wj1,m0)



E




∑

j2≥1

aj2(wj1,m1)





=
∑

j1≥1

aj1(w,m)

= Ξ1(w,m).

Then, suppose that for a given n ≥ 3, for all (w,m) we have

E(Ξn−1(w,m) | Gn−2(w,m)) = Ξn−2(w,m).

Using (25) and the independence between random variables, we get

E
(
Ξn(m,w) | Gn−1(w,m)

)

=
∑

j≥1

aj(w,m)
∏

ε∈{0,1}
E
(
Ξn−1(wj,mε) | Gn−1(w,m)

)

=
∑

j≥1

aj(w,m)
∏

ε∈{0,1}
E
(
Ξn−1(wj,mε)|Gn−2(wj,mε)

)

=
∑

j≥1

aj(w,m)Ξn−2(wj,m0)Ξn−2(wj,m1)

= Ξn−1(w,m).

Equation (25) also yields

EΞ2
n =



E

∑

j≥1

a2j



(EΞ2
n−1

)2
+ E

∑

i6=j

aiaj =
1

bq

(
EΞ2

n−1

)2
+
b− 1

bq

for all n ≥ 1. Notice that the mapping x 7→ 1
bqx

2 + b−1
bq has exactly the same fixed

points as ϕ, namely α and β. Since EΞ2
0 = 1 and Ξn satisfies the recursion (25), we

get the following result.
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Theorem 3.1. Suppose that α ≥ 1. The martingale (Ξn)n≥1 is bounded in L2,
and converges to a nonnegative limit Ξ such that E(Ξ2) = α. Hence the probability
distribution of Ξ, denoted by M, is a fixed point of S2 and T, and m2(M) = α.

3.4. Basin of attraction of M, convergence speed, and explosion of mo-
ments when q < 1.

Theorem 3.2 (Basin of attraction of M and convergence speed). Suppose that
β ≥ α ≥ 1.

(1) The probability M of Theorem 3.1 is the unique fixed point of T in Pα.
(2) If α = β, then, for all µ ∈ Pα, dW,2(T

nµ,M) = O(1/n).
(3) If β > α, then, for all µ ∈

⋃
α≤γ<β Pγ , dW,2(T

nµ,M) = O
(
(α/β)n

)
.

(4) The fixed point M is a solution to the following equation:

W =
∑

j≥1

ajW1(j)W2(j), (26)

where W is distributed according to M, the W1(j), W2(j) are independent
copies of W , also independent of a.

Lemma 3.3.

(1) Suppose β > α ≥ 1, fix γ ∈ [α, β) and ρ ∈ P
(2)
γ . Let (Wn,W

′
n) be a se-

quence of variables distributed according to (T(2))n(ρ). Then E |Wn−W ′
n|2 =

O
(
(α/β)n

)
.

(2) If α = β, fix ρ ∈ P
(2)
α . Let (Wn,W

′
n) be a sequence of variables distributed

according to (T(2))n(ρ). Then E |Wn −W ′
n|2 = O(1/n).

Proof. If α < β, Equation (22) tells that E |Wn|2 = α + O
(
(α/β)n

)
, E |W ′

n|2 =

α+O
(
(α/β)n

)
, and EWnW

′
n = α+O

(
(α/β)n

)
. So,

E |Wn −W ′
n|2 = E |Wn|2 + E |W ′

n|2 − 2ℜEWnW
′
n = O((α/β)n) .

For the second assertion, use Equation (23) instead of (22).

Proof of Theorem 3.2. Fix γ ∈ [α, β) if α < β or γ = α if α = β.

Take µ ∈ Pγ . Let ρ ∈ P
(2)
γ such that π1(ρ) = µ and π2(ρ) = M (where M is

defined in Theorem 3.1). Due to Lemma 3.3 and the fact that TM = M, we get that
the Wasserstein distance between Tnµ and M tends to 0, with the speed claimed in
the statements.

When α < β, one can give an alternate proof of the existence of a fixed point.
Indeed, take µ ∈ Pγ and set µ′ = Tµ. It follows from Lemma 3.3 that E |Wn+1 −
W ′

n+1|2 converges exponentially to 0. Consequently, so does the Wasserstein distance
between Tn+1µ and Tn+1µ′ = Tn+2µ. It follows that (Tnµ)n≥0 is a Cauchy sequence
in Pγ endowed with dW,2, so T

nµ converges in distribution as n→ ∞, to a limit law
M(µ), obviously in Pα. Equation (17) implies that T is continuous, so M(µ) is a fixed
point. Lemma 3.3 yields uniqueness.

When q = 1, we have α = 1. So, in this case, the fixed point is the Dirac mass
at 1.

The next theorem deals with the explosion of moments of M.
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Theorem 3.4 (Explosion of moments for M). Suppose α > 1 (which means
q < 1). Then there exists 2 ≤ p0 <∞ such that, if W is distributed according to M,

EW p <∞ ⇐⇒ p ≤ p0.

Proof. Since the variables Ξn are nonnegative the measure M is supported on
R+. Then, due to (15) and (26), we have

EW p <∞ ⇐⇒






E

(∑
j≥1 ajW (j)

)p
<∞

and

E
∑

j≥1 a
p
jW (j)p < 1.

But

E
(∑

j≥1

aj
)p ≤ E

(∑

j≥1

ajW (j)
)p

and
N∑

j≥1

apjW (j)p = (EW p)E
∑

j≥1

apj ,

where we used conditional expectation with respect to σ(aj : j ≥ 1) and Jensen’s
inequality to get the first inequality. So

EW p <∞ ⇐⇒



E

(∑

j≥1

aj

)p
<∞ and EW p <

(
E

∑

j≥1

apj

)−1



 .

Suppose all the moments of W are finite. We must have

(
EW p

)1/p
<


E

∑

j≥1

apj




−1/p

for all p. This imposes ess supW ≤
(
supj≥1 ess supaj

)−1
. Letm = ess supW . Let ε >

0. By using (26) we see that, for all n, with positive probability, we have W ≥ (m−
ε)2
∑n

j=1 aj . This meansm ≥ (m−ε)2 ess sup
∑

j≥1 aj , hencem ≤ 1/ ess sup
∑

j≥1 aj .
But as

∑
j≥1 aj is not constant and of expectation 1, we would have m < 1, which is

impossible, since EW = 1.

Define p0 = sup{p ≥ 2 : EW p < ∞} and Φ(p) = (EW p)E
∑

j≥1 a
p
j . We neces-

sarily have Φ(p0) < 1, if E(W p0) < ∞ or Φ(p0) = ∞ if E(W p0) = ∞. However, Φ is
lower semi-continuous, so Φ(p0) = ∞ is impossible, for otherwise Φ(p) should tend to
∞ as p tends to p0 from below, while it is bounded by 1.

Proposition 4.2, in the next section, gives examples for which p0 < 3.

4. Moments of order 3. In this section we suppose that β > 1 and that W0 is
a nonnegative random variable. We study the moment of order 3 of the iterates of the
probability distribution µ of W0 under T. The discussion leads to Proposition 4.2,
which gives sufficient conditions for the fixed point of T to have an infinite third
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moment, and it also provides a domain D1 such that Tnµ and its third moment are
defined for all n ≥ 0 if µ ∈ D1.

Define u, v and w as follows

1

u
= E

∑
a3j

1

v
= E

∑

i6=j

a2i aj (27)

1

w
= E

∑

card{i,j,k}=3

aiajak,

and suppose the right hand sides are finite.

Notice that we have
1

u
+

3

v
+

1

w
= E

(∑
aj

)3
, which in the conservative case

implies
1

u
+

3

v
+

1

w
= 1.

Also, the Hölder inequality yields

(
E

∑
a2j

)1/2
≤
(
E

∑
aj

)1/4 (
E

∑
a3j

)1/4
.

We also set, for κ > 0,

uκ =


E

∑

j≥1

aκj




−1

. (28)

So we have u = u3.

In the conservative case

b = u2 and b ≤ u ≤ b2. (29)

It is easy to get the following formula from Equation (10)

EY 3 = EW 3
EY 3/u+ 3EW 2

EY 2/v + 1/w (30)

which can be written as

EY 3 =
u(3wEW 2 E Y 2 + v)

vw(u − EW 3)
. (31)

Set

ψθ(t) =
u(3wθϕ(θ) + v)

vw(u − t)
, (32)

where 1 < θ < β, and

Φ : (θ, t) 7−→
(
ϕ(θ), ψθ(t)

)
. (33)
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This means that, if θ = EW 2 and t = EW 3, we have
(
EY 2,EY 3

)
= Φ(θ, t).

This is why we wish to iterate Φ.

Remarks 4.1. Let us first make some simple observations on homographies.
Consider χ(x) = c/(d− x), where c and d are positive parameters. Then

(1) xχ(x) increases with x for x ∈ (−∞, d),
(2) when d2 > 4c, χ has two real fixed points; when d is fixed, the smaller fixed

point w− is an increasing function of c and the larger one w+ is decreasing.
(3) If x < w− then x < χ(x), and if w− < x < w+ then w− < χ(x) < x.

First, one can check that, when v(uw − 4) + 12w(b − 1) > 0, ψθ has real fixed
points if and only if

θ ≤ vbq(uw − 4)

v(uw − 4) + 12w(b− 1)
.

If it is so, let γ
−
(θ) ≤ γ

+
(θ) stand for the fixed points.

Define

θa =
vbq(uw − 4)

v(uw − 4) + 12w(b− 1)
and ϑ = min{β, θa}. (34)

In the Galton-Watson case (see (18)), v(uw − 4) + 12w(b − 1) has the same sign
as b22q

4 + 8b2 − 12b1 + 4. But, since 2 < b1 < b2 (see (19)) and q ≤ 1, we have

b22 + 8b2 − 12b1 + 4 > b22 − 4b2 + 4 > 0.

So, if q is large enough b22q
4 + 8b2 − 12b1 + 4 is positive.

In this setting we have

θa =
b1b

2
2q

5 + 4(3− b1)b2q − 8b1q

b22q
4 + 8b2 − 12b1 + 4

.

Proposition 4.2. If
(1) v(uw − 4) + 12w(b− 1) > 0,
(2) 12w(b− 1) > v(uw − 4) > 0,

(3)
(
12w(b− 1) + v(uw − 4)

)2
> 12vw(uw − 4)b2q2,

then the third moment of M is infinite.

Proof. The above conditions mean 2θa < bq and θ2a − bqθa + b − 1 > 0, which
implies that θa < α and ψα has no fixed point. Suppose that M has a finite third
moment t. Then t = m3M = m3TM = ψα(t), which is not possible since ψα has no
fixed point.

To be complete, one should prove that these conditions can be fulfilled. Indeed,
in the case of Galton-Watson (see Section 2.5), with b2 = b21 the three requirements
are

b4q4 + 8b2 − 12b+ 4 > 0

16b2 − 36b+ 20− b4q4 > 0

b8q8 − 12b6(b − 1)q6 + 8b4(b− 1)(2b− 1)q4

+48b2(b− 1)2(b− 2)q2 + 16(b− 1)2(2b− 1)2 > 0.
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The first inequality always holds (do not forget that b > 2). If

q4 < min

{
16b2 − 36b+ 20

b4
,
48b2(b − 1)2(b− 2)

12b6(b − 1)

}
=

4(b− 1)(b− 2)

b4

the remaining inequalities are fulfilled.

The following facts, when v(uw − 4) + 12w(b − 1) > 0, easily result from Re-
marks 4.1:

(1) If α ≤ θ < ϑ and γ
−
(θ) ≤ t ≤ γ+(θ), then

γ
−

(
ϕ(θ)

)
≤ γ

−
(θ) ≤ ψθ(t) ≤ t ≤ γ

+
(θ) ≤ γ

+

(
ϕ(θ)

)
. (35)

(2) If θ ≤ α ≤ θa and t ≤ γ
−
(θ), then

t ≤ ψθ(t) ≤ γ
−
(θ) ≤ γ

−

(
ϕ(θ)

)
. (36)

Let us consider the following subsets of R2:

Ω1 =
{
(θ, t) : α ≤ θ < ϑ, γ

−
(θ) ≤ t ≤ γ

+
(θ)
}
,

Ω2 =
{
(θ, t) : θ ≤ α, t ≤ γ

−
(θ)
}

if α ≤ θa.

The set Ω1 is invariant under Φ, and, if α ≤ θa, so is Ω2 (notice that if α = 1 then
θa > 1 and Ω2 reduces to δ1).

Set, for j = 1, 2,

Dj =
{
µ ∈ P : m1(µ) = 1, (m2(µ),m3(µ)) ∈ Ωj)

}
.

Then it follows from the above analysis that both these sets are invariant under
the transformation T.

So, if µ ∈ D1 ∪ D2, one has

(
m2(T

nµ),m3(T
nµ) = Φn(m2(µ),m3(µ))

)

and

limm2(T
nµ) = α, and limm3(T

nµ) = γ
−
(α).

Of course this is of interest only if D1 ∪ D2 is non-empty. In particular, one has
to take into account the inequalities 1 ≤ m2(µ)

1/2 ≤ m3(µ)
1/3.

Let us show that there are parameters such that D1 is nonempty. Consider the
Galton-Watson case with q = 1. Then one has α = 1 < β = b1 − 1, γ−(α) = 1,

γ+(α) = b2 − 1 > 1, and θa − 1 =
(b2 − 2)2(b1 − 1)

b22 + 8b2 − 12b1 + 4
> 0. It results that for a

Galton-Watson process with (q, b1, b2) in a neighborhood of (1, b, b2), where b in an
integer larger than or equal to 3, the set D1 is nonempty.
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5. Central limit theorem in the non negative case when q = 1. We
assume that q = 1 and we still suppose that β > 1 and W is a nonnegative random
variable. In this case, we know that Tnµ weakly converges towards the Dirac mass
at 1.

For µ ∈
⋃

1<γ<β Pγ and n ≥ 1, we define σn =

(∫
(x− 1)2 Tnµ(dx)

)1/2

.

Then Equations (13) and (21) give

σ2
n+1 =

σ2
n

b− 1− σ2
n

and
σ2
n

b− 2− σ2
n

= (b− 1)−n σ2
0

b− 2− σ2
0

. (37)

Our goal is Theorem 5.3 below which establishes the convergence in law of Wn−1
σn

under suitable conditions. This statement is a non trivial extension of the special case
considered in [6] where b is an integer ≥ 3 and aj = b−1 if 1 ≤ j ≤ b and aj = 0
otherwise. It requires some preparation achieved in the next subsection.

5.1. Recursive decomposition of Wn−1
σn

. We set Zn =
Wn − 1

σn
. Equation (24)

yields

Zn+1 =
∑

j≥1

aj

[
σn Zn(j)Zn+1(j) +

σn
σn+1

Zn(j) + Zn+1(j)

]
. (38)

If we set

Rn =
∑

j≥1

ajZn(j)Zn−1(j)σn−1 +

(
σn−1

σn
−
√
b− 1

)∑

j≥1

ajZn−1(j), (39)

then Equation (38) rewrites as

Zn+1 = Rn+1 +
∑

j≥1

ajZn+1(j) +
√
b− 1

∑

j≥1

ajZn(j). (40)

We are going to use repeatedly Formula (40). Let ǫ stand for empty word on any
alphabet. For this purpose, fix n > 1, define Rn(ǫ, ǫ) = Rn as well as Zn(ǫ, ǫ) = Zn,
and write (40) in the following way

Zn = Zn(ǫ, ǫ) = Rn(ǫ, ǫ) +
∑

j≥1

aj(ε, ε)Zn(j, 0) +
√
b− 1

∑

j≥1

aj(ε, ε)Zn−1(j, 1). (41)

Since we are interested in distributions only, we can take copies of these variables
so that we can write

Zn(j, 0) = Rn(j, 0) +
∑

k≥1

ak(j, 0)Zn(jk, 00) +
√
b− 1

∑

k≥1

ak(j, 0)Zn−1(jk, 01)

Zn−1(j, 1) = Rn−1(j, 1) +
∑

k≥1

ak(j, 1)Zn−1(jk, 10) +
√
b− 1

∑

k≥1

ak(j, 1)Zn−2(jk, 11).

Notice that by definition in Formula (41) the random variables of the form
Zn−1(j, w) and Zn(j, w) are mutually independent and independent of a, and the
same holds for the random variables Rn(j, w) and Rn−1(j, w), as well as for the ran-
dom variables Zn−2(jk, w), Zn−1(jk, w) and Zn(jk, w).
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Then Formula (41) rewrites as

Zn(ǫ, ǫ) = Rn(ǫ, ǫ) +
∑

j≥1

aj(ǫ, ǫ)
(√

b− 1Rn−1(j, 1) +Rn(j, 0)
)

+
∑

j,k≥1

(b − 1)aj(ǫ, ǫ)ak(j, 1)Zn−2(jk, 11)

+
∑

j,k≥1

√
b − 1 aj(ǫ, ǫ)ak(j, 1)Zn−1(jk, 10)

+
∑

j,k≥1

√
b − 1aj(ǫ, ǫ)ak(j, 0)Zn−1(jk, 01)

+
∑

j,k≥1

aj(ǫ, ǫ)ak(j, 0)Zn(jk, 00),

and so on. At last we get Zn = T1,n + T2,n, with

T1,n =
n−1∑

k=0

∑

m∈{0,1}k

w∈Tk

(b − 1)
k−ς(m)

2 Rn−k+ς(m)(w,m)
k−1∏

j=0

awj+1(w|j ,m|j) (42)

T2,n =
∑

m∈{0,1}n

w∈Tn

(b− 1)
n−ς(m)

2 Zς(m)(w,m)
n−1∏

j=0

awj+1(w|j ,m|j), (43)

where ς(m) stands for the number of zeroes in m. Moreover, all variables in Equa-
tion (43) are independent, and in Equation (42), the variables corresponding to the
same k are independent.

We need to make precise the above construction of this decomposition of Zn.
At first, we notice that the meaning of Equation (40) is the following: given inde-
pendent variables Zn(j) and Zn+1(j) (for j ≥ 1) equidistributed with Zn and Zn+1,
and independent of a, if we define Rn by Equation (39), then the left hand side of
Equation (40) is equidistributed with Zn+1.

Let
{
a(w,m)

}
ℓ≥0, w∈Tℓ,m∈{0,1}ℓ be a collection of independent random variables

equidistributed with a.
For each n larger than 2 one starts with a collection

{
Zℓ(w,m)

}
0≤ℓ≤n,w∈Tn,m∈{0,1}n

such that all these variables are independent and independent of the a(w,m), and the
Zℓ(·, ·) have the same distribution as Zℓ.

One defines by descending recursion on the length of m

Rℓ(w,m) =
∑

j≥1

aj(w,m)Zℓ−1(wj,m0)Zℓ(wj,m1)σℓ−1

+

(
σℓ−1

σℓ
−
√
b− 1

)∑

j≥1

aj(w,m)Zℓ−1(wj,m0)

and

Zℓ(w,m) = Rℓ(w,m) +
√
b− 1

∑

j≥1

aj(w,m)Zℓ−1(wj,m0) +
∑

j≥1

aj(w,m)Zℓ(wj,m1),
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for 0 ≤ ℓ ≤ n, (w,m) ∈ Z
j
+ × {0, 1}j with j ≥ n − ℓ, with the convention R0(·, ·) =

0 = Z−1(·, ·).

Due to (40), all these new variables Zℓ(·.·) are equidistributed with Zℓ, and we
get Zn(ǫ, ǫ) = T1,n + T2,n.

It will be convenient to denote by An the σ-field generated by the vari-
ables a(w,m) with |w| = |m| < n, and by A the σ-field generated by all the variables
a(w,m).

Now we study the respective behaviors of T1,n and T2,n.

Proposition 5.1. We have lim
n→∞

ET 2
1,n = 0, so T1,n converges in distribution to

0.

Proof. Set r2n = ER2
n. We have

b r2n = σ2
n−1 +

(
σn−1

σn
−
√
b − 1

)2

,

which together with Formulae (37) implies that there exists C > 0 such that r2n ≤
C2(b− 1)−n for all n ≥ 1. By using the independence properties of random variables
in (42) as well as the triangle inequality, we obtain

(
ET 2

1,n

)1/2 ≤
∑

0≤k<n




∑

|w|=|m|=k

(b − 1)k−ς(m)r2n−k+ς(m) E

k−1∏

j=0

a2wj+1




1/2

=
∑

0≤k<n




k∑

j=0

(
k

j

)
E



∑

x≥1

a2x




k

(b − 1)k−jr2n−k+j




1/2

=
∑

0≤k<n




k∑

j=0

(
k

j

)
b−k(b − 1)k−jr2n−k+j




1/2

.

Thus, due to our estimate on (rj)j≥1,

(
ET 2

1,n

)1/2 ≤ C
∑

0≤k<n




k∑

j=0

(
k

j

)
b−k(b− 1)k−j(b− 1)k−j−n




1/2

= C
∑

0≤k<n

b−k/2(b − 1)−n/2
(
(b− 1)2 + 1

)k/2

= C (b − 1)−n/2
∑

0≤k<n

(
(b − 1)2 + 1

b

)k/2

= O

((
1− b− 2

b(b− 1)

)n/2)
,

and b−2
b(b−1) < 1 since b > 2.

Now we study the main term T2,n.



MANDELBROT CASCADES & NONLINEAR SMOOTHING TRANSFORMS 901

Lemma 5.2. Un = E(T 2
2,n | A) is a nonnegative martingale. Denote its almost

sure limit by U .

Proof. We have

Un =
∑

m∈{0,1}n

w∈Tn

(b− 1)n−ς(m)
n−1∏

j=0

a2wj+1
(w|j ,m|j).

It is to be noticed that, although the variables T 2
2,n are not defined on the same

probability space, the variables Un live in the same space.
We have

E(Un+1 | An)

=
∑

m∈{0,1}n

w∈Tn

n−1∏

j=0

a2wj+1
(w|j ,m|j)E

∑

k∈{0,1}
x≥1

(b − 1)(n+1−ς(mk))a2x(w,m)

=
∑

m∈{0,1}n

w∈Tn

n−1∏

j=0

a2wj+1
(w|j ,m|j)

∑

k∈{0,1}
b−1(b− 1)(n+1−ς(mk))

= Un.

In fact, Un is a standard Mandelbrot multiplicative martingale built on the tree⋃
n≥1 Tn × {0, 1}n. Indeed, for each (w,m) ∈

⋃
n≥1 Tn × {0, 1}n define the vector

A(w,m) = (Aj,ε(w,m))(j,ε)∈T1×{0,1}, where Aj,0(w,m) = a2j(w,m) and Aj,1(m,w) =

(b− 1)a2j(w,m).
By construction we have E

∑
(j,ε)∈T1×{0,1}Aj,ε(w,m) = 1, and

Un =
∑

m∈{0,1}n

w∈Tn

n−1∏

j=0

Awj+1,mj+1(w|j ,m|j).

5.2. The result. We can now state and prove the main result of this section.

Theorem 5.3. Suppose that (b − 1)3 < (u − 1)2 and µ ∈ D1 \ {δ1}. The limit
U of (Un)n≥1 is non degenerate and the sequence (σ−1

n (Wn − 1))n≥1 converges in

distribution to
√
Uξ, where ξ is a standard normal law independent of U .

The proof requires several preliminary facts.

Lemma 5.4. Let κ > 0. Suppose that uκ =
(
E
∑

j≥1 a
κ
j

)−1

> 0. Then

Vκ,n =

(
(b− 1)κ/2 + 1

uκ

)−n ∑

m∈{0,1}n

w∈Tn

(b − 1)
κ

(
n−ς(m)

)
2

n−1∏

j=0

aκwj+1
(w|j ,m|j),

is a martingale.

Proof. This results from a computation similar to that used in the proof of
Lemma 5.2, or the observation that Vκ,n is the Mandelbrot martingale associated
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with the random vectors

Aκ(m,w) =

(
(b− 1)κ/2 + 1

uκ

)−1

(A
κ/2
j,ε (w,m))(j,ε)∈T1×{0,1}.

Corollary 5.5.
(1) For κ > 0, if uκ > 0,

sup
m∈{0,1}n

w∈Tn

(b− 1)(n−ς(m))
n−1∏

j=0

a2wj+1
(w|j ,m|j) ≤

(
(b − 1)κ/2 + 1

uκ

)2n/κ

V 2/κ
κ,n .

(2) If (b − 1)κ/2 + 1 < uκ for some κ > 0, with probability 1

lim
n→∞

sup
m∈{0,1}n

w∈Tn

(b− 1)(n−ς(m))
n−1∏

j=0

a2wj+1
(w|j ,m|j) = 0.

(3) If κ > 2, (b − 1)κ/2 + 1 < uκ and E(
∑

j≥1 a
2
j)

κ/2 < ∞, then P(U > 0) > 0,
and P(U > 0) = 1 if and only if P(#{j ≥ 1 : aj > 0} ≥ 1) = 1.

Proof. Let Vκ be the a.s. limit of the nonnegative martingale Vκ,n of Lemma 5.4.
Since Vκ is integrable, it is a.s. finite. So

sup
m∈{0,1}n

w∈Tn

(b− 1)κ(n−ς(m))/2
n−1∏

j=0

aκwj+1
(w|j ,m|j) ≤

(
(b − 1)κ/2 + 1

uκ

)n

Vκ,n.

This accounts for the first and second assertions.
For the third assertion, we notice that our assumptions are exactly those required

for the Mandelbrot martingale Un to be bounded in Lκ/2, hence have a non degenerate
limit:
E
∑

(j,ε)∈T1×{0,1}A
κ/2
j,ε (w,m) < 1 and E(

∑
(j,ε)∈T1×{0,1}Aj,ε(w,m))κ/2 < ∞. The

assertion on the possibility that Un vanishes is then standard.

Now we state conditions under which if µ 6= δ1 and µ belongs to the domain D1

pointed out in the Section 4, then
(
Zn

)
n≥0

is bounded in L3:

Lemma 5.6. There exists C such that for all nonnegative W whose distribution
is in D1 \ {δ1} one has

(u− EW 3) EZ3
Y ≤ (b− 1)3/2 EZ3

W + C
(
(EZ3

W )2/3 + (EZ3
W )1/3 + 1

)
,

where Y = TW , ZW = |W − 1|/σW , and ZY = |Y − 1|/σY .
The proof, as well as that of the following corollary, follows the same lines as in

the special case studied in [6].

Corollary 5.7. If (b − 1)3 < (u − 1)2 and µ ∈ D1 \ {δ1}, then

sup
n

∫
σ−3
n |x− 1|3Tnµ(dx) <∞.

Proof of Theorem 5.3. At first we notice that the assumptions of Corollary 5.5
are satisfied with κ = 3. Indeed (b − 1)3 < (u − 1)2 is just (b − 1)3/2 + 1 < u3, and
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E(
∑

j≥1 a
2
j)

3/2 ≤ E(
∑

j≥1 aj)
3 <∞ due to our assumption on u, v, and w. Then, due

to Proposition 5.1 if suffices to prove the same convergence for the sequence (T2,n)n≥0.
We adapt a proof given by Breiman [11] for Lindeberg’s theorem. First we remark

that, if X is a centered random variable with standard deviation σ and t ∈ R, one

has |E eitX − 1| ≤ t2σ2

2 , and, if E |X |3 is finite, |E eitX − 1 + σ2t2

2 | ≤ |t3|E |X|3
6 . Also,

if |z| ≤ 1/2, | log(1 + z)− z| ≤ |z|2.
For n ≥ 1, let An = {V3,n ≤ n}. Since V3,n has a finite limit with probability 1,

the variable 1An converges towards 1 with probability 1.
For w ∈ Tn and m ∈ {0, 1}n, set

fn,w,m(t) = E

(
eit(b−1)(n−ς(m))/2Zς(m)(w,m)

∏n−1
j=0 awj+1

(w|j,m|j)
∣∣∣An

)
.

According to Corollary 5.5 applied with κ = 3, for all t, on An we have

sup
m∈{0,1}n

w∈Tn

|fn,w,m(t)− 1| ≤ t2
(
(b− 1)3/2 + 1

u

)2n/3

V
2/3
3,n

≤ n2/3t2
(
(b− 1)3/2 + 1

u

)2n/3

.

So, since (b− 1)3 < (u− 1)2, t being fixed, for n large enough we have

sup
m∈{0,1}n

w∈Tn

|fn,w,m(t)− 1| ≤ 1

2

and therefore

|log fn,w,m(t)− (fn,w,m(t)− 1)| ≤ |fn,w,m(t)− 1|2.

But
∣∣∣∣∣∣
fn,w,m(t)− 1 +

t2

2
(b− 1)(n−ς(m))

n−1∏

j=0

a2wj+1
(w|j ,m|j)

∣∣∣∣∣∣

≤ |t|3
6

(b − 1)3(n−ς(m))/2
n−1∏

j=0

a3wj+1
(w|j ,m|j) sup

j≥0
E |Zj |3.

So, if we set gn(t) =
∑

m∈{0,1}n

w∈Tn

log fn,w,m(t) and C = supj≥0 E |Zj |3, for fixed t, for n

large enough, on An,

∣∣∣∣gn(t) +
t2Un

2

∣∣∣∣ ≤
∑

m∈{0,1}n

w∈Tn

|fn,w,m(t)− 1|2 + C

(
(b− 1)3/2 + 1

u

)n

|t|3V3,n.

By writing
∑ |fn,w,m − 1|2 ≤

(
sup |fn,w,m − 1|

)∑ |fn,w,m − 1| one gets on An

∣∣∣∣gn(t) +
t2Un

2

∣∣∣∣ ≤ t4
(
(b− 1)3/2 + 1

u

)2n/3

V
2/3
3,n Un + C

(
(b − 1)3/2 + 1

u

)n

|t|3V3,n.
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We have obtained

E
(
eitT2,n

)
= E

(
e−

t2Un
2 +rn(t)1{V3,n≤n}

)
+ E

(
eitT2,n1{V3,n>n}

)
,

with |rn(t)| ≤ t4
(

(b−1)3/2+1
u

)2n/3
n2/3Un + C

(
(b−1)3/2+1

u

)n
|t|3n on An.

Since both Un and Vn converge almost surely and (b−1)3/2+1
u < 1, we obtain

lim
n→∞

E

(
e−

t2Un
2 +rn(t)1{V3,n≤n}

)
= E

(
e−

t2U
2

)

and
lim
n→∞

E
(
eitT2,n1{V3,n>n}

)
= 0

by the dominated convergence theorem.

6. Central limit theorem in the complex case when q = 1. In this section,
we suppose q = 1 and β > 1, and study the convergence in law of (b− 1)n/2

(
Wn− 1

)
)

when W0 is a complex valued random variable.

Recall that the fact q = 1 implies the relation
1

u
+

3

v
+

1

w
= 1.

We start with useful observations on the asymptotic behavior of the variances of
ℜWn and ℑWn, as well as that of their covariance.

6.1. Variances and covariances. According to (13) and (16), if E |W 2
0 | < b−1,

we have

E |W 2
n+1| =

b− 1

b− E |W 2
n |

and EW 2
n+1 =

b− 1

b− EW 2
n

,

so, both E |W 2
n+1| and EW 2

n+1 converge to the fixed point 1 of ϕ. Due to (22),
(b − 1)n

(
EW 2

n − 1
)
and (b − 1)n

(
E |W 2

n | − 1
)
have explicit limits when n goes to ∞.

It results that, if we set

xn = E(ℜWn)
2, yn = E

(
ℑWn

)2
,

and
zn = E(ℜWn)(ℑWn) = E(ℜWn − 1)(ℑWn)

there exist x, y, and z (depending on W0) such that

lim (b− 1)n(xn − 1) = x, lim (b − 1)nyn = y, and lim (b − 1)nzn = z. (44)

Set

u = E(ℜW0)
2 = E(ℜW0 − 1)2 + 1, v = E(ℑW0)

2,

and
w = E(ℜW0)(ℑW0) = E(ℜW0 − 1)(ℑW0).

Notice that by Cauchy-Schwarz inequality we must have w2 ≤ v(u − 1). Using a
formal computing software (e.g. Maple) shows that one has

(b− 2)−3 det

(
x z
z y

)
=
v(bu− u2 + v2 − b+ 1)− (b− 2u− 2v)w2

(b − 1− u− v)2
(
4w2 + (b − u+ v − 1)2

) .
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It is easily seen that the denominator of this last expression is positive. Its
numerator, call it R(u, v, w), assumes its minimum for w = 0 if u + v ≥ 2b, and for
w2 = v(u− 1) otherwise. We have

R(u, v, 0) =
1

4
v(b− 2)3

(
(2v − 2u− b)(2v + 2u+ b) + (b− 2)2

)

and

R(u, v,±
√
v(u − 1)) = v(u + v − 1)2(b− 2)3.

It results that this determinant is positive, except if v = 0. We thus have proven
the following proposition.

Proposition 6.1. The matrix

(
x z
z y

)
is definite positive if and only if and only

if W0 is not almost surely real.

6.2. Complex version of Theorem 5.3. We need to adapt our previous dis-
cussion on the moments of order 3 to the complex case. In this context, if Y = TW ,
we have

EY 3 = EW 3
EY 3/u+ 3EW 2

EY 2/v + 1/w

and

E |Y |3 ≤ E |W |3 E |Y |3/u+ 3E |W |2 E |Y |2 E |W |E |Y |/v +
(
E |W |E |Y |

)3
/w

≤ 1

u
E |W |3 E |Y |3 + u− 1

u

(
E |W |2 E |Y |2

)3/2
.

Finally

E |Y |3 ≤ (u − 1)
(
E |W |2 E |Y |2

)3/2

u− E |W 3| . (45)

This time for 1 ≤ θ ≤ β we use the function

ψθ(t) =
(u− 1)

(
θϕ(θ)

)3/2

u− t
. (46)

It has fixed points if θϕ(θ) ≤
(

u2

4(u−1)

)2/3
, i.e., if θ ≤ θa for some critical real number

θa. As ψ1 has two fixed points 1 and u − 1, one has θa > 1. If θ ≤ θa, let γ±(θ) be
the fixed points. Consider the sets

Ω =
{
(θ, t) : θ < min(β, θa), t ≤ γ+(θ)

}
,

and

D = {µ ∈ P : m1(µ) = 1, (m2(µ),m3(µ) ∈ Ω)} .

Arguments similar to previous ones show that ifW0 is distributed according to µ ∈ D ,
then, E |Wn|3 <∞ for all n, and lim supE |Wn|3 ≤ 1. Since E |Wn|3 ≥ 1, we have

limE |Wn|3 = lim supE |Wn|3 = 1.
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Lemma 5.6 and its corollary have the following counterparts.

Lemma 6.2. There exists C such that for all W whose distribution is in D \ {δ1}
one has

(u− E |W |3) EZ3
Y ≤ (b− 1)3/2 EZ3

W + C
(
(EZ3

W )2/3 + (EZ3
W )1/3 + 1

)
,

where Y = TW , ZW = |W − 1|/σW , and ZY = |Y − 1|/σY .

Corollary 6.3. If (b − 1)3 < (u − 1)2 and µ ∈ D \ {δ1}, then

sup
n

∫
(b − 1)3n/2|x− 1|3Tnµ(dx) <∞.

Estimates similar to those used in the nonnegative case now yield:

Theorem 6.4. Suppose that (b − 1)3 < (u − 1)2 and the distribution of W0 lies
in D \ {δ1}. Then (b − 1)n/2

(
Wn − 1

)
converges in law to

√
Uξ, where ξ is a cen-

tered normal vector independent of U whose covariance matrix is the matrix

(
x z
z y

)

determined in Section 6.1.

7. Higher order smoothing transformations. Now, we consider the general
case: N is a given nonnegative integer valued random variable such that the radius of
convergence of its probability generating function fN(t) = f(t) =

∑
n≥0 P(N = n) tn

is larger than 1, and fN is not constant, i.e., P(N = 0) < 1.
If W is a square integrable random variable of expectation 1, we already de-

fined W(N) to be the product of N independent random variables equidistributed
with W and independent of N :

W(N) =
∏

1≤k≤N

Wk. (47)

It is convenient to adopt the simpler notation:

W̃ =W(N).

Then we consider the martingale

Yn =
∑

w=j1j2...jn∈Tn

n−1∏

k=0

ajk+1
(w|k)W̃ (w|k+1).

According to Section 2, this martingale is bounded in L2 if and only if f(EW 2) < bq
and, if it is so, its limit Y satisfies

EY 2 =
b− 1

bq − f(EW 2)
and E |Y |2 =

b− 1

bq − f(E |W |2) .

Recall that TN stands for the map which sends the distribution of W to the one
of Y . Indeed, TN depends only on the distribution of N .

To iterate this operation, this time we have to deal with the function

ϕ(x) =
b − 1

bq − f(x)
.
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In the interval [0, f−1(bq)] this mapping has at most two positive fixed points,
the roots of the strictly convex function p(x) = xf(x) − bqx + b − 1. Observe that
p(0) = p

(
f−1(bq)

)
= b − 1 > 0. Then, ϕ has two fixed points α and β such that

0 ≤ α ≤ β < f−1(bq) if and only if the minimum of p on this interval is nonpositive.
This happens if and only if x20f

′(x0) ≥ b − 1, where x0 is the solution to equation
x0f

′(x0) + f(x0) = bq. But, as previously, we wish that α ≥ 1. This means x0 ≥ 1,
i.e., f ′(1) + f(1) ≤ bq. As 0 < q ≤ 1, this gives b ≥ 1 + EN . When this condition is
fulfilled, then q is subject to the restriction

1 + EN

b
≤ q ≤ 1.

From now on we suppose that

b > 1 + EN and
1 + EN

b
≤ q ≤ 1 (48)

(as previously we discard the trivial case b = 1 + EN which yields q = α = β = 1).

7.1. Fixed points. In the introduction we also defined, see (1) the smoothing
transformation SN+1 which associates with a probability measure µ on C the measure

SN+1(µ) = L



∑

j≥1

aj
∏

0≤k≤N

Wk(j)


 , (49)

where the random variables {Wk(j)}j≥1,k≥0 are distributed according to µ, indepen-
dent and independent of a. As for TN there is a slight abuse of notation: obviously
SN+1 depends only on the distribution of N and not on its realization.

Then, as previously, a fixed point of TN is also a fixed point of SN+1. In the same
way as when N = 1 almost surely, a fixed point of SN+1 is constructed as the law of
the limit of a martingale:

Consider the Galton-Watson tree T defined by the variableN+1. Let Tn stand for
the nodes of generation n. Consider {a(w,m)} k≥1

(w,m)∈Tk×Tk

a sequence of independent

copies of a and {N(w,m)} k≥1
(w,m)∈Tk×Tk

a sequence of independent copies of N also in-

dependent of a and of {a(w,m)}. For all (w,m) we define Ξ1(w,m) =
∑

j≥1 aj(w,m).
It has SN+1(δ1) as distribution. Then we define recursively, for all k ≥ 2 and (w,m),

Ξk(w,m) =
∑

j≥1

aj(w,m)

N(w,m)∏

ℓ=0

Ξk−1(wj,mℓ),

which by induction is clearly distributed according to SkN+1(δ1).
Set Ξk = Ξk(ǫ, ǫ). As previously, the sequence (Ξk)k≥1 is a nonnegative martin-

gale. The law M of its limit is a fixed point of SN+1 as well as TN and the same
analysis as in Section 3 can be performed: if (48) holds, M is the unique fixed point
of TN belonging to Pα ∩ P(R+), and for all µ ∈ P(R+) ∩

⋃
α≤γ<β Pγ if β > α and

all µ ∈ P(R+) ∩ Pα if β = α, the sequence T
j
Nµ converges to M. Moreover, if the

Wk(j) are independent and independent of a and N , and all distributed according
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to M, then

W =
∑

j≥1

aj

N∏

k=0

Wk(j)

is distributed according to M.

If we wish to deal with measures not supported on R+, we have to make the
extra assumption that EW 0W

′
0 lies in the basin of attraction of the fixed point α

to get the analog of Lemma 3.3. This assumption is automatically fulfilled when N
is the constant 1. With P(N = 2) > 0, the result holds without this assumption if
we restrict ourselves to probability supported in R. But in general we do not know
whether it may happen that the mapping ϕ has other attractive fixed points.

7.2. Central limit theorem. In this section we suppose that q = 1 and still
assume (48) holds. We just outline modifications to be brought to Sections 6.1 and 6.2.
When starting from µ ∈

⋃
1<γ<β Pγ , one has limE |Wn|2 = 1 and, since EWn = 1,

limEW 2
n = 1. Since EN/(b− 1) = ϕ′(1), the following limits exist

lim
k→∞

(
(EN)−1(b− 1)

)k (
EW 2

k − 1
)
and lim

k→∞

(
(EN)−1(b− 1)

)k (
E |Wk|2 − 1

)
,

since 1 is an attracting fixed point of ϕ and our assumptions on f imply that ϕ′(1) 6= 0.
It results that, if we set

xn = E(ℜWn)
2, yn = E

(
ℑWn

)2
, and zn = E(ℜWn)(ℑWn)

there exist x, y, and z (depending on W0) such that

lim
xn − 1(

(EN)−1(b− 1)
)n = x, lim

yn(
(EN)−1(b− 1)

)n = y,

and

lim
zn − 1(

(EN)−1(b − 1)
)n = z.

If Y = TNW , Formulae (31), (45), and (46) become

EY 3 =
u
(
3wf(EW 2)EY 2 + v

)

vw
(
u− f(EW 3)

) ,

E |Y |3 ≤ (u− 1)
(
f(E |W 2|)E |Y |2

)3/2

u− f(E |W |3) ,

ψθ(t) =
(u− 1)

(
f(θ)ϕ(θ)

)3/2

u− f(t)
.

The function ψθ has two fixed points between 0 and u if and only if θ ≤ θa,N for
some critical real number θa,N . But as ψ1 has two fixed points 1 and u − 1, one has
θa,N > 1. If 1 ≤ θ ≤ θa,N , let γ±(θ) be the fixed points. Consider the sets

Ω =
{
(θ, t) : θ < min(β, θa,N ), t ≤ γ

+
(θ)
}
,
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and

D = {µ ∈ P : m1(µ) = 1, (m2(µ),m3(µ) ∈ Ω)} .

Arguments similar to previous ones show that if W0 is distributed according to
µ ∈ D , then, E |Wn|3 < ∞ for all n, and lim supE |Wn|3 ≤ 1. Since E |Wn|3 ≥ 1, we
have

limE |Wn|3 = lim supE |Wn|3 = 1.

Lemma 5.6 and its corollary have the following counterparts.

Lemma 7.1. There exists C such that for all W0 whose distribution is in D \{δ1}
one has

(
u− f(E |Wn|3)

)
EZ3

Wn+1
≤ Cn(E(N))−1/2(b− 1)3/2 E

(
N3(E |W |3)N−1

)
EZ3

Wn

+C
(
(EZ3

Wn
)2/3 + (EZ3

Wn
)1/3 + 1

)
,

where Wn = Tn
NW0, ZWn = |Wn − 1|/σWn , and Cn = 1 + o(1).

Corollary 7.2. Suppose that (b − 1)3/2(E(N))−1/2 < u − 1 and µ ∈ D \ {δ1}.
Then

sup
n

∫
σ−3
n |x− 1|3Tn

Nµ(dx) <∞,

where σn is the standard deviation of variables distributed according to Tn
N (µ).

We now have to mention the analog of the discussion following Equation (38).
By iteration, we get a sequence {Wn} of variables. We set σ2

n = VarWn, σ̃
2
n =

Var W̃n, Zn = σ−1
n (Wn − 1), and Z̃n = σ̃−1

n (W̃n − 1).
The following facts are easily proven:

• σn+1

σn
∼

√
EN√
b − 1

,

• σ̃2
n = f(σ2

n + 1)− 1 ∼ σ2
n EN ,

Equation (38) becomes

Zn+1 =
∑

j≥1

aj

[
σ̃n Z̃n(j)Zn+1(j) +

σ̃n
σn+1

Z̃n(j) + Zn+1(j)

]
. (50)

But as W̃ − 1 = (W1 − 1)W2 · · ·WN + (W2 − 1)W3 · · ·WN + · · · + (WN − 1) (with
W1, W2, · · · i.i.d.) we have W̃ − 1 =

∑
1≤j≤N Wj − 1 with a L2-error of the same

order of magnitude as VarW . So Equation (50) can be rewritten as

Zn+1 = Rn+1 +
∑

j≥1

ajZn+1(j) +

√
b− 1√
EN

∑

j≥1

aj
∑

1≤k≤N

Zn(j, k), (51)

where Rn+1 is a sum of ’error terms’.
As previously, we iterate this formula, but using a Galton-Watson tree associated

with the variable N+1 instead of using a binary tree. Finally, we get Zn = T1,n+T2,n,
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with

T1,n=
n−1∑

k=0

∑

m∈Tk
w∈Tk

(
b− 1

EN

) k−ς(m)
2

Rn−k+ς(m)(w,m)
k−1∏

j=0

awj+1(w|j ,m|j) (52)

T2,n=
∑

m∈Tn
w∈Tn

(
b− 1

EN

)n−ς(m)
2

Zς(m)(w,m)

n−1∏

j=0

awj+1(w|j ,m|j), (53)

where Tn stands for the n-th generation nodes of the Galton-Watson tree and ς(m)
stands for the number of zeroes in m. Moreover, all variables in Equation (53) are
independent, and in Equation (52), the variables corresponding to the same k are
independent.

Then, arguing as previously yields the convergence in distribution of ((EN)−1(b−
1))n/2

(
Wn − 1

)
as in Section 6, with U the limit of the Mandelbrot multiplicative

martingale built on the tree
⋃

n≥1 Tn × Tn with the random vectors A(w,m) =
(Aj,ε(w,m))(j,ε)∈T1×{0,1,··· ,N(w,m)}, where

Aj,0(w,m) = a2j(w,m), and Aj,ε(w,m) = (EN)−1(b− 1)a2j(w,m)

for 1 ≤ ε ≤ N(w,m), and the

(
(aj(w,m))j≥1 , N(w,m)

)
, for (w,m) ∈

∞⋃

n=0

Tn × Tn

are independent copies of ((aj)j≥1, N).

8. A functional central limit theorem in the quadratic case. We suppose
that N ≡ 1 and that q = 1. We are going to use words on two alphabets. The ones,
denoted by w, v, v′ . . . are finite sequences of positive integers. The others, denoted
by m, m′ are finite sequences of 0 and 1. It will be convenient to denote 0j the
word composed of j zeroes. Also, the concatenation will be either denoted simply by
juxtaposition or by a dot. The expression v · w|j should be understood as v · (w|j).

8.1. Another writing for the martingale (Un)n≥1 and its limit. We assume
that q = 1 and that the Mandelbrot martingale (Un)n≥1 of the Section 5 converges
almost surely and in L1 to its limit, i.e., is non degenerate. This is the case for instance
under the assumptions of Theorems 5.3 or 6.4. We have

Un =
∑

|w|=|m|=n

(b− 1)n−ς(m)
∏

0≤j<n

a2wj+1
(w|j ,m|j). (54)

We also consider the following copies of Un: for w and m with the same length,
we set

Un(w,m) =
∑

|w′|=|m′|=n

(b− 1)n−ς(m′)
∏

0≤j<n

a2w′
j+1

(w · w′|j ,m ·m′|j).

In Formula (54), we split the summation according to the length of the prefix of
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maximal length of the form 0k of m. We obtain

Un =
∑

|v|=n

∏

0≤j<n

a
2
vj+1(v|i,0

j)

+
∑

0≤k<n
|v|=n

|m′|=n−k−1

(b− 1)n−k−ς(m′)
∏

0≤j≤k

a
2
vj+1

(v|j , 0
j)

∏

0≤j<n−k−1

a
2
vk+j+2

(v|j+k+1, 0
k1 ·m′|j).

If we write v = w ·w′ with |w| = k + 1, the second term of the right hand side of
the last formula rewrites as

∑

0≤k<n

∑

|w|=k+1

(b− 1)
∏

0≤j≤k

a2wj+1
(w|j , 0j)

×
∑

|w′|=|m′|=n−k−1

(b− 1)n−k−1−ς(m′)
∏

0≤j<n−k−1

a2w′
j+1

(w · w′|j , 0k1 ·m′|j).

Finally, we get

Un =
∑

|w|=n

∏

0≤j<n

a2wj+1(w|j ,0j)

+
∑

0≤k<n

∑

|w|=k+1

(b− 1)
( ∏

0≤j≤k

a2wj+1
(w|j , 0j)

)
Un−k−1(w, 0

k1).

It is worth noticing that the variables Un−k−1(w, 0
k1), are independent.

We wish to prove the following formula:

U =
∑

k≥0

∑

|w|=k+1

(b− 1)
( ∏

0≤j≤k

a2wj+1
(w|j , 0j)

)
U(w, 0k1),

where U(w, 0k1) is the almost sure limit of Un(w, 0
k1). To do so, denote by U ′ the

right hand side in the above equality. We have

‖U ′ − Un‖1 ≤ (b − 1)

n∑

k=1

(
E

∑

i≥1

a2i

)k
‖U − Un−k‖1

+(b− 1)
∑

k≥n

(
E

∑

i≥1

a2i

)k
+
(
E

∑

i≥1

a2i

)n
.

But Uk converges to U almost surely and in L1, and E
∑

i≥1 a
2
i < 1, it follows that

‖U ′ − Un‖1 tends to 0 as n→ ∞, so that U = U ′ almost surely.

Notice that all the copies of U involved in U ′ are independent, so the above
relation rewrites

U = (b− 1)

∞∑

k=1

∑

v∈Tk




k−1∏

j=0

a2vj+1
(v|j)


 U(v),

where (U(v))v∈⋃
n≥1 Nn) is a family of independent copies of U , which is independent

of the family of independent copies of a, (a(w))w∈
⋃

n≥0 Nn
+
.
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Remark 8.1. In the general case (i.e., N is not identically 1) we have

Un =

n−1∑

k=0

∑

v∈Tk

1≤m≤N(v,0(k))
i≥1




k−1∏

j=0

a2vj+1
(v|j , 0(j))




(
b− 1

EN

)
a2i (v, 0

(k))Un−k−1(vi, 0
(k) ·m)

+
∑

v∈Tn

n−1∏

j=0

a2vj+1
(v|j , 0(j)),

where the random variables Un−k−1(vi, 0
(k) ·m) are independent copies of Un−k−1.

8.2. A CLT for random finitely additive measures.

8.2.1. Some random finitely additive measures. We start by defining a
class of finitely additive random measures. We will see that the limit object of the
central limit theorem obtained in the next subsection belongs to this class.

Suppose again that the Mandelbrot martingale (Un)n≥1 converges almost surely
and in L1.

Let ξ stand for a centered normal vector with covariance matrix A and indepen-
dent of U . Then consider a family (U(w), ξ(w))w∈⋃

n≥1 Nn of independent copies of

(U, ξ). Also, consider (a(w))w∈
⋃

n≥0 Nn a family of independent copies of a, which is

independent of (U(w), ξ(w))w∈⋃
n≥1 Nn . By the calculation of the above paragraph,

for all w ∈
⋃

n≥1 N
n, the sequence of random variables

Xn(w) =

n∑

k=1

∑

|v|=k




k−1∏

j=0

avj+1(w · v|j)


√U(w · v) ξ(w · v) (n ≥ 1),

which, conditionally on σ({a(w), U(w)}), is a martingale bounded in L2 converg-
ing almost surely to a random variable X(w), which is a centered normal vector
whose covariance matrix equals (b − 1)−1 · A times a copy of U . In other words

X(w) = (b− 1)−1/2

√
Ũ(w)ξ̃(w), where Ũ(w) ∼ U , ξ̃(w) ∼ ξ, and Ũ(w) and ξ̃(w) are

independent. Moreover, the random vectors (Ũ (w), ξ̃(w))w∈Nn are independent, and
also independent of σ({a(wk−1), U(w), ξ(w) : w ∈ ⋃n

k=1 N
k
+)}).

Also, we have the relation

X(w) =
∑

|i|=1

ai(w)
(
X(wi) +

√
U(w · i) ξ(w · i)

)
. (55)

Consequently,

M(w) =




|w|−1∏

j=0

awj+1(w|j)



(√

Ũ(w)ξ̃(w) +
√
b− 1

|w|∑

j=1

√
U(w|j)ξ(w|j)

)

defines a R2-valued random finitely additive measure on T . We notice that this
measure is obtained as the limit of a mixture of additive and multiplicative cascades.
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8.2.2. CLT for random measures. Now suppose that γ ∈ (1, β) and µ ∈ Pγ .

Fix a sequence
(
a(w)

)
w∈T

of independent copies of a. For each n ≥ 0, a complex

or equivalently R2-valued random measure on T is naturally associated with Tn(µ):
consider a sequence

(
Wn(w)

)
w∈T

of independent variables equidistributed withWn ∼
Tn(µ), and independent of

(
a(w)

)
w∈T

. Then define

Wn+1(w) = lim
p→∞

∑

|v|=p

p−1∏

k=0

avk+1
(w · v|k)Wn(w · v|k+1)

and

νn(w) =Wn+1(w)

|w|−1∏

k=0

awk+1
(w|k)Wn(w|k+1).

When µ is supported on R+ this measure coincides with the restriction to cylinders of
so-called Mandelbrot measure supported on the boundary of T and associated with
the family of vectors (ai(w),Wn(w · i))i≥1, w ∈ T .

Also, let ν be the conservative Mandelbrot measure built from the family of
vectors (ai(w))i≥1, w ∈ T , i.e., ν = ν0 when µ = δ1.

It is then almost direct to get the following result from Theorems 5.3 and 6.4 :

Theorem 8.2. Suppose that either the assumptions of Theorem 6.4 are ful-
filled or those of Theorem 5.3 are fulfilled if W0 is non negative. For each p ≥ 0,(
(b− 1)(n+1)/2(νn(w)− ν(w))

)

w∈⋃p
k=0 Tk

converges in law to (M(w))w∈
⋃p

k=0 Tk
as

n→ ∞, with A =

(
x z
z y

)
.

Proof. Given p ≥ 0, for n ≥ p, and w ∈ Tp, we can write

νn(w) − ν(w) =

(
p−1∏

k=0

ajk+1

)(
Wn+1(w)

p∏

k=1

Wn(w|k)− 1

)
.

Moreover,

Wn+1(w)

p∏

k=1

Wn(w|k)− 1 = θn+1(Wn+1(w) − 1) +

p∑

k=1

θn,k(Wn(w|k)− 1),

where the random variables θn+1 and θn,k are products of p independent random
variables all converging to 1 in law as n → ∞ and uniformly bounded in L2. Also,
due to Theorem 5.3, for each 0 ≤ k ≤ p, (b − 1)n/2(Wn(w|k) − 1) converges in law

to a copy
√
U(w|k)ξ(w|k) of

√
Uξ, as well as (b − 1)(n+1)/2(Wn+1(w) − 1) to such a√

Ũ(w)ξ̃(w). Due to the independence properties of the random variables defining νn
and the relation (55) associated with M , the conclusion follows by induction on p.

Remark 8.3. It seems not clear at the moment to associate a functional CLT
with a general distribution for N .
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8.3. A functional CLT for random continuous functions on [0, 1]. We still
assume that we are in the quadratic case. Moreover, we assume that T is a c-adic
tree, with c ≥ 2 (this means that aj = 0 for j > c); it is easily seen that one must
have c ≥ b. If w ∈ T , the closed c-adic interval naturally encoded by w is denoted
by Iw, and given a complex or R2-valued function f defined over [0, 1], the increment
of f over Iw is denoted ∆(f, Iw).

Suppose that q = 1 and the martingale (Un)n≥1 converges in L1+ε. Then, with
the notations of the previous section, it is direct that for all p ≥ 1,

E

∑

w∈Tp

|M(w)|2 = O
(
p2
( c∑

i=1

a2i

)p)
= O(c−pγ)

for some γ > 0. It follows that supw∈Tp
|M(w)| tends to 0 exponentially fast. Con-

sequently, the process F defined on the c-adic numbers of [0, 1] by F (0) = 0 and
∆(F, Iw) = M(w) (this definition is consistent since M is a measure) extends to a
unique complex-valued Hölder continuous function over [0, 1], still denoted by F .

Now suppose b > 2, γ ∈ (1, β) and µ ∈ Pγ . At first, the complex-valued process
defined for each n ≥ 1, by Gn(0) = 0 and ∆(Gn, Iw) = νn(w) for each w ∈ T can
be shown to extend to a unique Hölder continuous function (see [5, Theorem 2.1]),
hence if µ 6= δ1, the relations Fn(0) = 0 and ∆(Fn, Iw) = (b−1)(n+1)/2(νn(w)−ν(w))
define a unique Hölder-continuous function.

Theorem 8.4. Suppose that either the assumptions of Theorem 6.4 are fulfilled
or those of Theorem 5.3 are fulfilled if W0 is non negative. Suppose also that T is a
c-adic tree. The sequence (Fn)n≥1 converges in law to F as n→ ∞.

In [6] we obtained this result when aj = c−1 for all j, in which case U = 1 almost
surely, and with µ supported on R+, which implies that y = z = 0 and so F is real
valued.

Proof. Due to Theorem 8.2 we only have to prove the tightness of the sequence
of laws of the functions Fn, n ≥ 1. This is quite similar to the proof of Proposition 9
in [6], but for reader’s convenience we include some details. The same arguments as
those used to prove Theorem 8.2 imply that for all n ≥ 1, for all p ≥ 1

E

( ∑

w∈Tp

|∆(Fn, Iw)|2
)
= O

(
p2
( c∑

i=1

a2i

)p)
= O(p2c−pγ),

where O is uniform with respect to n. For any t > 0 this yields

P(∃w ∈ Tp, |∆(Fn, Iw)| ≥ t c−pγ/4) ≤ O(t−2p2c−pγ/2).

Let ω(Fn, ·) stand for the modulus of continuity of Fn. Fix ε > 0. It is standard that
if δ ∈ (0, 1) and pδ = − logc(δ),

{
ω(Fn, δ) ≥ 2(c− 1) ε

}
⊂




∑

p≥pδ

sup
w∈Tp

∆(Fn, Iw) > ε





⊂
⋃

p≥pδ

{
sup
w∈Tp

∆(Fn, Iw) > (1− c−γ/4) cpδγ/4 ε c−pγ/4

}
,
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so

P(ω(Fn, δ) ≥ 2(c− 1) ε) = O



 c−pδγ/2

(1 − c−γ/4)2ε2

∑

p≥pδ

p2c−pγ/2





uniformly in n ≥ 1. Consequently,

lim
δ→0

sup
n≥1

P
(
ω(Fn, δ) > 2(c− 1) ε

)
= 0,

which yields the desired tightness (see [10]).

8.4. Multifractal analysis of the increments of the limit process F . We
work under the assumptions of the previous section defining F as a non trivial Hölder
continuous function. At first we notice that

∆(F, Iw) = ν(w)
(√

Ũ(w)ξ̃(w) +
√
b− 1

n∑

j=1

√
U(w|j)ξ(w|j)

)
.

To simplify the purpose, we assume that the ai, i ≥ 1 do not vanish almost surely. If
x ∈ (0, 1), denote by wn(x) the c-adic word w of generation n encoding the unique
semi-open to the right c-dic interval which contains x.

The sequence

(
log(ν(wn(x)))

n
,

∆(F, Iwn(x)))√
b − 1n ν(wn(x))

)
, n ≥ 1, provides a fine de-

scription of the asymptotic behavior of ∆(F, Iwn(x)). It is essentially the R3-valued
branching random walk with independent components associated with the vectors
(log(ai(w)),

√
U(wi)ξ(wi))1≤i≤c, w ∈ T .

For all subsets K of R2 set

E(K) =



x ∈ (0, 1) :

⋂

N≥1

{( log(ν(wn(x)))

n
,

∆(F, Iwn(x)))√
b− 1n ν(wn(x))

)
: n ≥ N

}
= K



 .

For (q1, q2) ∈ R× R
2, set

P (q1, q2) = log
(
E

c∑

i=1

aq1i

)
+ logE e〈q2|

√
Uξ〉,

and for (γ1, γ2) ∈ R× R2, let

P ∗(γ1, γ2) = inf{P (q1, q2)− γ1q1 − 〈γ2|q2〉 : (q1, q2) ∈ R× R
2}

be the concave Legendre transform of P at (γ1, γ2).

As a consequence of the general study of the multifractal behavior of vector valued
branching random walks achieved in [4], we have:

Theorem 8.5. With probability 1, for all compact connected subsets K of R3,
we have

dimE(K) =
1

log(c)
inf{P ∗(γ) : γ ∈ K},
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where dim stands for the Hausdorff dimension and a negative dimension means that
E(K) is empty.

This is a non trivial extension of the result obtained in [6] in the case where
aj = c−1 = b−1 for all j (hence ν is the Lebesgue measure and U = 1) and µ is
supported on R+, which implies that the multifractal analysis reduces back to that
of a centered Gaussian branching random walk in R.

Remark 8.6. It is worth specifying that E
(
e〈q2|

√
Uξ〉|U

)
= eUQ(q2), where Q is

a nonnegative non-degenerate quadratic form which is positive definite if and only if
A is invertible. Moreover, we saw in Section 6.1 that A is invertible if and only if
P(W ∈ C \R) > 0. In addition, by [16, Theorem 2.1] one has three situations for the
behavior of the moment generating function of U :

(1) there exists p > 1 such that EUp = ∞, i.e. ((b − 1)p + 1)E
∑

i≥1 a
2p
j ≥ 1.

Then, for r ≥ 0 one has E erU < ∞ only if r = 0. In particular, if Q is positive
definite, then the domain of P reduces to R× {(0, 0)}.

(2) If EUp < ∞ for all p ≥ 1 and ess sup((b − 1)p0 + 1)
∑c

i=1 a
2p0

j < 1 for some

p0 > 1, then E erU <∞ for all r ≥ 0, and the domain of P is R3.
(3) If EUp < ∞ and ess sup((b − 1)p + 1)

∑
i≥1 a

2p
j ≥ 1 for all p ≥ 1, then

E erU < ∞ for some r > 0, hence the domain of P contains R × V , where V is a
neighborhood of (0, 0).

9. Some questions about fixed points of nonlinear smoothing transfor-
mations. Let us finish by addressing a remark and a few questions.

(1) One can wonder whether S2 may have fixed points in the space P+ of probabil-
ity measures on R+ with infinite first moment, like S1 does (see [12, 17, 9, 1]). It turns
out that this is not the case under mild conditions. Suppose that #{i ≥ 1 : ai > 0} is
bounded and that µ ∈ P+ is a fixed point of S2 with m1(µ) = ∞. Write the equality

µ = S2(µ) in the form Y =
∑

i≥1(aiYi)Ỹi, so that µ is a fixed point of the mapping
Uã defined with (ãi = aiYi)i≥1. We can use the theory of the fixed point of U [12, 2]
to claim that there must exist a unique α ∈ (0, 1] such that E

∑
i≥1 a

α
i Y

α
i = 1 and

E
∑

i≥1 a
α
i Y

α
i log(aαi Y

α
i ) ≤ 0. In particular, EY α < ∞, so α < 1. Moreover, there

exists a random variable Z, namely a fixed point of the mapping Ua(α) defined with

a
(α)
i = aαi Y

α
i , such that Y = L (Z1/αX), where X is a positive stable law of index α.

In particular, E Y α = (EZ)EXα = ∞, which is a contradiction.
(2) Under what necessary and sufficient condition on (ai)i≥1 does the martingale

(Ξn)n≥1 of Section 3.3 converge to a non degenerate random variable Ξ∞?
At least we know that EΞ∞ = (EΞ∞)2, hence in case of non degeneracy the

convergence holds in L1.
(3) When Ξ∞ is non degenerate as in Section 3.3 and q < 1, is it possible to tell

something about its moments of negative order (recall that Theorem 3.4 concludes to
the explosion of the moments of positive order)?

(4) How to develop an Lp theory (1 ≤ p ≤ 2) rather than the L2 considered in
this paper for the iteration of Mandelbrot cascades?
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