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Abstract. We show that the base complex manifold of an effectively parametrized family
of compact polarized Ricci-flat Kähler orbifolds, and in particular manifolds, admits a smooth aug-
mented Weil-Petersson metric whose holomorphic sectional curvature is bounded above by a negative
constant. As a consequence, we conclude that such base manifold is Kobayashi hyperbolic.
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1. Introduction. An important and extensively investigated object in the study
of the moduli spaceMg (and the Teichmüller space Tg) of compact Riemann surfaces
of genus g ≥ 1 is the Weil-Petersson metric. In particular, when g ≥ 2, Ahlfors ([Ah1],
[Ah2]) showed that the Weil-Petersson metric on Tg is a Kähler metric whose Ricci
and holomorphic sectional curvatures are negative. Royden [R] later proved that the
holomorphic sectional curvature of the Weil-Petersson metric is bounded away from
zero. Subsequently Wolpert [Wo] showed that the Weil-Petersson metric is of holo-
morphic sectional curvature bounded above by − 1

2π(g−1) . An immediate consequence

of Royden’s or Wolpert’s result is that Tg is Kobayashi hyperbolic. Similar results
also hold in the case when g = 1, since T1 (endowed with the Weil-Petersson metric)
is known to be biholomorphically isometric to the upper half plane H in the complex
plane C (endowed with the Poincaré metric of constant negative sectional curvature).
It is interesting and natural to ask whether analogous results hold for the moduli
spaces of higher dimensional manifolds (or more generally, those of orbifolds), and
in particular, whether (and how) one can achieve negative curvature for such moduli
spaces within the context of Weil-Petersson geometry.

In this direction, Siu [Siu] made the first breakthrough and gave a computation
of the curvature of the Weil-Petersson metric on (the smooth points of) the moduli
space of compact Kähler-Einstein manifolds of negative Ricci curvature (or equiv-
alently, canonically polarized manifolds). Based on Siu’s approach, Nannicini [Na]
computed the curvature of the Weil-Petersson metric on the moduli space of compact
polarized Ricci-flat Kähler manifolds (or equivalently, polarized Kähler manifolds of
zero first Chern class). In [Sch2], Schumacher also obtained a simplified formula for
the two cases under the additional assumption that the Kodaira-Spencer map is sur-
jective at a smooth point of the moduli space under consideration. Unlike the case of
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Riemann surfaces, the curvature tensors of the Weil-Petersson metrics in both higher
dimensional cases mentioned above (and as obtained in [Siu], [Na], [Sch2]) contain
terms of different signs, and no conclusion can be made on the sign of the holomor-
phic sectional curvature except in some restricted cases, say when each fiber manifold
M satisfies the condition H2(M,

∧2
TM) = 0. Recently by modifying suitably the

Weil-Petersson metric, To and Yeung [TY] constructed on the base complex manifold
of any effectively parametrized family of compact canonically polarized manifolds a
Finsler metric (which will be called an augmented Weil-Petersson metric in this arti-
cle) whose holomorphic sectional curvature is bounded above by a negative constant.
As an immediate consequence, one can apply Schwarz lemma to conclude that such
base complex manifold is Kobayashi hyperbolic.

The main goal of this article is to study the Kähler Ricci-flat case, which is the
higher dimensional analogue of family of elliptic curves mentioned earlier. We state
our first result as follows:

Theorem 1. Let π : X → S be an effectively parametrized holomorphic family of
compact polarized Kähler manifolds of zero first Chern class over a complex manifold
S. Then S admits a C∞ Aut(π)-invariant augmented Weil-Petersson metric whose
holomorphic sectional curvature is bounded above by a negative constant.

We refer the reader to Section 2 for the precise definitions of the various terms in
Theorem 1. Our approach is rather robust, and allows us to consider the more general
situation of a family of compact polarized Ricci-flat Kähler orbifolds. We state our
main result which generalizes Theorem 1 to such situation:

Theorem 1’. Let π : X → S be an effectively parametrized holomorphic family of
compact polarized Ricci-flat Kähler orbifolds over a complex manifold S. Then S ad-
mits a C∞ augmented Weil-Petersson metric whose holomorphic sectional curvature
is bounded above by a negative constant.

The definitions needed for the more general setting of Theorem 1’ will be given in
Section 5. We remark that while Theorem 1’ covers the case of Theorem 1, we state
them separetely to facilitate our subsequent discussion as well as for motivational
purpose. As in [TY], Theorem 1 and Theorem 1’ lead immediately to the following:

Corollary 1. Let π : X → S be as in Theorem 1 or Theorem 1’. Then S is
Kobayashi hyperbolic.

The proof of Theorem 1’ follows from suitable modifications from that of Theorem
1, and both are parallel to the Ricci-negative case treated in [TY]. For simplicity, we
describe here briefly our approach for the proof of Theorem 1. Roughly speaking,
we start with the curvature expression of the usual Weil-Petersson metric h1 in [Na]
(see also Section 2), which consists of a good term which is negative and a bad term
which is non-negative. The bad term can be expressed as a ratio h2/h1, where h2 is
(the restriction of) some generalized Weil-Petersson pseudo-metric on the symmetric
product S2(TS). This process is repeated. For each 1 ≤ � ≤ n, one constructs some
generalized Weil-Petersson pseudo-metric h� on S�(TS) (associated to an induced
Kodaira-Spencer map ρ� : S�(TtS) → Hn(Mt,∧�TMt), t ∈ S) and obtain curvature
estimate of h� consisting of a good term involving h�/h�−1 and a bad term involving
h�+1/h�. Here n = dimC Mt denotes the dimension of the fiber manifold Mt. Then
the augmented Weil-Petersson metric h in Theorem 1 is constructed as a suitable

finite linear combination of the h
1/�
� ’s. The required curvature estimate for h is then

derived from those of the h�’s by a telescopic argument.
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In both the results of [TY] for families of canonically polarized manifolds and
Theorem 1 (or more generally Theorem 1’) in this paper, we achieved the goal of
proving hyperbolicity using generalized or augmented Weil-Petersson metrics. A nat-
ural question is whether the use of the augmented metric is essential or just a technical
convenience; in other words, one may ask whether one can achieve the same goal using
merely the Weil-Petersson metric itself in the sense that the bad term in the curva-
ture formula of the Weil-Petersson metric might perhaps somehow be controlled by
the good terms. It turns out that a modification of the Weil-Petersson metric could
not be avoided. In fact, the holomorphic sectional curvature of the Weil-Petersson
metric itself on the moduli space of compact polarized Ricci-flat Kähler manifolds
may actually be positive at some points and negative at other points of the moduli
space. Candelas et al [CDGP] showed that such property is possessed by the one-
dimensional moduli space of Calabi-Yau threefolds which are mirror manifolds of the
quintic hypersurfaces in CP4 (see [CDGP, p. 51, Fig. 10]). Hence the example shows
that, at least in the Ricci-flat case, one must modify the Weil-Petersson metric in
order to obtain negative curvature from the perspective of Weil-Petersson geometry.

At this point, we would like to remark on an alternative approach to the problem.
Let π : X → S be as in Theorem 1. In the special case of families of polarized Calabi-
Yau manifolds (or slightly more generally, when the canonical line bundle of each
fiber manifold is holomorphically trivial), S actually admits a Kähler metric (called
the Hodge metric) with holomorphic sectional curvature bounded above by a negative
constant. The Hodge metric is due to [Lu1], and its construction is based on Hodge
theory and depends on Griffiths’ results [Gri1] on the curvature properties of the
invariant metrics of the classifying spaces for polarized Hodge structures (see also
[Gri2]). As such, at least in this special case, one can give an alternative Hodge-
theoretic proof of Corollary 1 using the Hodge metric in place of the augmented
Weil-Petersson metric. Nonetheless, this alternative approach does not generalize to
cover the general orbifold case in Theorem 1’, and there appear to be some subtleties
for this alternative approach to apply to the case treated in Theorem 1 (cf. Corollary
2, Remark 4 and Remark 5 in Section 6).

We remark that in general, the augmented Weil-Petersson metric in Theorem 1
(or Theorem 1’) is not unique, and its construction actually gives rise to a continuous
family of new Finsler metrics of negative holomorphic sectional curvature bounded
away from zero. In fact, for the moduli space of Calabi-Yau threefolds considered by
Candelas et al [CDGP] mentioned earlier, it is easy to check that at least some of
the augmented Weil-Petersson metrics are not constant multiples of the Hodge metric
(see Remark 2 in Section 4 and Remark 3 in Section 6).

We also mention here that for the case of moduli space of polarized Calabi-Yau
manifolds of dimension n, Lu and Sun [LS] considered “partial Hodge metrics” of the
form gWP + c ·Ric(gWP ) for appropriate positive constant c, where gWP is the Weil-
Petersson metric and Ric(gWP ) denotes its Ricci tensor. In general, it is not known
whether the partial Hodge metric has negative holomorphic sectional curvature or
not, except in the cases when n = 3 and when n = 4. In those two cases, the partial
Hodge metric (with some appropriate choice of the constant c) coincides with the
Hodge metric (see [Lu2] and [LS]).

For a succint presentation of our main ideas, we will first consider only the smooth
case (as given in Theorem 1). Then in the subsequent treatment of the general orbifold
case (as given in Theorem 1’), we will minimize repeating the arguments from the
smooth case by indicating only the necessary modifications, whenever appropriate.
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As such, the organization of this paper is as follows. In Section 2, we give some
background materials and introduce some notations. In Section 3, we introduce the
generalized Weil-Petersson pseudometrics and computed their curvature. In Section
4, we finish the proof of Theorem 1. In Section 5, we treat the orbifold case and give
the proof of Theorem 1’. In Section 6, we give a brief review of Lu’s Hodge metric
for the case of polarized families of Calabi-Yau manifolds and discuss the difficulty in
trying to generalize this alternative approach to the general Ricci-flat manifold case
or the more general orbifold case.

The origin of this work can be traced with the authors’ indebtedness to a con-
versation of late Professor Viehweg with the second author in 2006, during which
Professor Viehweg mentioned that the argument of [VZ] does not appear to general-
ize to the case of polarized Ricci-flat Kähler manifolds, and asked if the result there
also holds in such case. The authors would like to thank Professor Yum-Tong Siu
for his inspirations and suggestions leading to the approach adopted in this paper.
The authors would also like to thank Professor Ngaiming Mok for his comments and
clarifications. The main result of this paper was presented by the second author in
Abel Symposium 2013 and was outlined in Section 4 of [Ye].

2. Background materials and generalized Weil-Petersson pseudo-

metrics. Let M be a compact complex manifold of zero first Chern class, i.e., one
has c1(TM)R = 0 ∈ H2(M,R). Let η ∈ H1,1(M,R) be a Kähler class on M , i.e., η
can be represented by a Kähler form on M . Then (M, η) is said to be a polarized
Kähler manifold of zero first Chern class. By a result of Yau [Yau], there exists a
unique Ricci-flat Kähler metric g (with the associated Kähler form ω) on M , whose
Kähler class is η, i.e., [ω] = η ∈ H1,1(M,R).

Let π : X → S be a holomorphic family of compact complex manifolds of zero
first Chern class over a base complex manifolds S, i.e., π : X → S is a surjective
holomorphic map of maximal rank between two complex manifolds X and S, and
each fiber Mt := π−1(t), t ∈ S, is a compact complex manifold of zero first Chern
class. Let λ ∈ R1π∗ΩX|S, and let λt := λ

∣∣
Mt

for t ∈ S. Then (π : X → S, λ) is said
to be a holomorphic family of polarized Kähler manifolds of zero first Chern class,
if, in addition, (i) each λt is a Kähler class on Mt, and (ii) under the natural map
from R1π∗ΩX|S to R2π∗R arising from variation of Hodge structure, the image of λ
is a horizontal section of the local system R2π∗R (or equivalently, for any to ∈ S, any
open neighborhood U of to in S and any underlying smooth family of diffeomorphisms
it : Mto → Mt, t ∈ U , such that ito is the identity map on Mto , one has i∗tλt = λto

in H2(Mto ,R)). For each t ∈ S, let g(t) and ω(t) denote the unique Ricci-flat Kähler
metric and its Kähler form on Mt. Then by [Sch1, Proposition 2.3], one knows that
such a family admits a d-closed (1, 1)-form ω on X satisfying

ω
∣∣
TMt

= ω(t) for each t ∈ S. (2.1)

We remark that in the special case (which we do not assume here) when the polar-
ization λ is given by the first Chern class of a holomorphic line bundle over X which
restricts to an ample line bundle over each Mt, and in such case, the conditions (i)
and (ii) above are automatically satisfied. Also, when no confusion arises, the un-
derlying polarization class λ will be dropped from our notation for the family (as in
Theorem 1). As usual, the family π : X → S is said to be effectively parametrized if
the Kodaira-Spencer map ρt : TtS → H1(Mt, TMt) is injective for each t ∈ S.

Next we recall some notions in the Finsler geometry of complex manifolds. A
Finsler pseudo-metric h on a complex manifold S is simply a continuous function
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h : TS → R such that h(u) ≥ 0 for all u ∈ TS and h(cu) = |c|h(u) for all u ∈ TS and
c ∈ C. If, in addition, h(u) > 0 for all 0 �= u ∈ TS, then we say that h is a Finsler
metric on S. A Finsler pseudo-metric h is said to be C∞ (resp. C� for a non-negative
integer �) if for any open subset U ⊂ S and any non-vanishing C∞ section ut of TS

∣∣
U
,

h(ut) is a C∞ (resp. C�) function on U . For a C2 Finsler metric h on S, a point t ∈ S
and a non-zero tangent vector u ∈ TtS, the holomorphic sectional curvature K(u) of
h in the direction u is simply given by

K(u) = sup
R

K(R, h
∣∣
R
)(t), (2.2)

where the supremum is taken over all local one-dimensional complex submanifolds R
of S satisfying t ∈ R and TtR = Cu, andK(R, h

∣∣
R
)(t) is the sectional curvature of (the

Riemannian metric) (R, h
∣∣
R
) at t (cf. (4.9)). We say that the holomorphic sectional

curvature of the Finsler metric h on S is bounded above by a negative constant if
there exists a constant C > 0 such that K(u) < −C for all 0 �= u ∈ TS.

For the rest of this section, we let (π : X → S, λ) be an effectively parametrized
holomorphic family of compact n-dimensional polarized Kähler manifolds of zero first
Chern class over an m-dimensional complex manifold S. First we set up some no-
tation. We will use (z, t) = (z1, · · · , zn, t1, · · · , tm) to denote local holomorphic co-
ordinate functions on some coordinate open subset of X , so that π corresponds to
the coordinate projection map (z, t) → t, and t = (t1, · · · , tm) also forms local holo-
morphic coordinate functions on some coordinate open subset of S. We will index
components of tensors on Mt in the holomorphic tangential directions by Greek al-
phabets α, β, etc (with the range 1, 2, · · · , n), while those in the complexified tan-
gential directions are indexed by lower case Latin letters a, b, c, d, etc (with the range
1, 2, · · · , n, 1̄, 2̄, · · · , n̄). On the other hand, the components of tensors along the base
directions will be indexed by the letters i, j (with the range 1, 2, · · · ,m), etc. We
also adopt the Einstein summation notation for indices along the fibers. We denote
∂α := ∂

∂zα and ∂ᾱ := ∂
∂zα for α = 1, · · · , n, and ∂i :=

∂
∂ti for i = 1, · · · ,m, etc. The

Ricci tensor of g(t) is locally given by Rαβ̄(t) = −∂α∂β̄ log(det(gγδ̄(t))), and the Ricci-
flat condition means that Rαβ̄(t) = 0 on each Mt. When no confusion arises, we will
drop the parameter t, and we simply write Rαβ̄ for Rαβ̄(t), etc. In local coordinates,

we also write ω =
√
−1gIJ̄(z, t)dwI ∧dw̄J , where w can be z or t and the indices I, J

can be i or α, etc. In particular, one has gαβ̄ = gαβ̄(t) along each fiber Mt.

Next we recall the ‘horizontal lifting’ of vector fields as defined by Schumacher
in [Sch2], which is a special type of ‘canonical lifting’ in the sense of Siu in [Siu].
For t ∈ S and a local tangent vector field u (of type (1, 0)) on an open subset U of
S, the horizontal lifting vu of u is the unique smooth vector field vu (of type (1, 0))
on π−1(U) such that π∗vu = u and vu(z, t) is orthogonal to T(z,t)Mt (with respect
to ω) for each (z, t) ∈ π−1(U). By [Sch2, p. 342, Proposition 1.1], one knows that
Φ(u(t)) := ∂̄vu

∣∣
Mt
∈ A0,1(Mt) is the unique harmonic Kodaira-Spencer representative

of ρt(u(t)), i.e., ρt(u(t)) =
[
Φ(u(t))

]
in H1(Mt, TMt) for each t ∈ U . When u = ∂/∂ti

is a coordinate vector field, we will simply denote vi := v∂/∂ti and Φi := Φ(∂/∂ti).

Write Φi = (Φi)
α
β̄
∂α ⊗ dz̄β . It is easy to see that vi and the (Φi)

α
β̄
’s are given locally

by

vi = ∂i + vαi ∂α, where vαi := −gβ̄αgiβ̄ , and (2.3)

(Φi)
α
β̄ = ∂β̄v

α
i = −∂β̄(gγ̄αgiγ̄). (2.4)
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(see [Sch2, p. 342, equation (1.2)]). Here gβ̄α denotes the components of the inverse
of gαβ̄. For a given tensor T of covariant degree 1 and of contravariant degree 1, we
recall that the components (along the fiber direction) of its Lie derivative LviT with
respect to vi are given locally by

(LviT )
b
a = ∂i(T

b
a) + T b

c ∂av
c
i − T c

a∂cv
b
i (2.5)

(see e.g. [Siu, p. 268]), and similar formula holds for tensors of higher degree. We

recall that the Weil-Petersson metric h(WP ) =
∑m

i,j=1 h
(WP )

ij̄
dti ⊗ dt̄j on S is defined

by

h
(WP )

ij̄
(t) :=

∫
Mt

〈Φi,Φj〉
ωn

n!
, where 〈Φi,Φj〉 := (Φi)

γ
ᾱ(Φj)δβ̄gγδ̄g

ᾱβ (2.6)

denotes the pointwise Hermitian inner product on tensors with respect to ω. The
injectivity of ρt means that h(WP ) is positive definite on each TtS. It follows from
Koiso’s result [Koi] that h(WP ) is Kähler. We denote by V the volume of Mt with
respect to ω(t), which does not depend on t ∈ S because ω is d-closed on X . For
any smooth tensor Ψ on Mt, we denote by H(Ψ) the harmonic projection of Ψ with
respect to ω(t). Let R(WP ) denote the curvature tensor of h(WP ). By Nannicini’s
result [Na, p. 425], the components of R(WP ) with respect to normal coordinates (of
h(WP )) at a point t ∈ S are given by

R
(WP )

ij̄k�̄
(t) =−

1

V
(h

(WP )

ij
h
(WP )

kl
+ h

(WP )

il
h
(WP )

kj
)−

∫
Mt

〈H(LviΦk),H(LvjΦ�)〉
ωn

n!

+

∫
Mt

〈H(Φi � Φk),H(Φj � Φ�)〉
ωn

n!
.

(2.7)

Here Φi � Φk is as in (2.8) below, and by normal coordinates of h(WP ) at the point

t ∈ S, we mean h
(WP )

ij̄
(t) = δij , and ∂kh

(WP )

ij̄
(t) = ∂k̄h

(WP )

ij̄
(t) = 0.

Now we construct some generalized Weil-Petersson pseudo-metrics on S similar
to those in the Ricci-negative case in [TY]. For integers p, q, r, s ≥ 0, t ∈ S, Φ ∈
A0,p(∧rTMt) and Ψ ∈ A0,q(∧sTMt), we denote by Φ � Ψ ∈ A0,p+q(∧r+sTMt) the
(∧r+sTMt)-valued (0, p + q)-form obtained by taking wedge product on the level of
forms as well as that of tangent vectors. When p = r and q = s, one easily sees that
Φ�Ψ = Ψ�Φ. If Φ and Ψ are ∂-closed, then Φ�Ψ is also ∂-closed. If, in addition,
either Φ or Ψ is ∂-exact, then Φ�Ψ is ∂-exact. In particular, the operator � induces
a homomorphism on the associated cohomology groups, which we denote by the same
symbol, i.e., we have

[Φ] � [Ψ] := [Φ � Ψ] ∈ H0,p+q(∧r+sTMt) (2.8)

for any classes [Φ] ∈ H0,p(∧rTMt) and [Ψ] ∈ H0,q(∧sTMt) represented by Φ and Ψ
respectively. (See [TY, Section 3] for the local expression for � and its properties
mentioned above.) For a fixed integer � satisfying 1 � � � n, let Φ,Ψ ∈ A0,�(∧�TMt).
Their pointwise inner product is given by

〈Φ,Ψ〉 := 1

(�!)2
Φα1···α�

β1···β�

Ψ
α′

1···α
′

�

β
′

1···β
′

�

gα1α′

1
· · · gα�α′

�
gβ1β

′

1 · · · gβ�β
′

� , (2.9)

and their L2-inner product on Mt is given by

(Φ,Ψ) =

∫
Mt

〈Φ,Ψ〉ω
n

n!
. (2.10)
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Here the Φα1···α�

β1···β�

’s denote the tensor components of Φ, etc. We denote by ‖Φ‖2 :=√
(Φ,Φ) the fiberwise L2-norm of Φ. Then for each t ∈ S and u1, . . . , u�, u

′
1, . . . , u

′
� ∈

TtS, we generalize (2.6) and define, in terms of (2.10),

(u1 ⊗ · · · ⊗ u�, u
′
1 ⊗ · · · ⊗ u′�)WP

:= (H(Φ(u1) � · · ·� Φ(u�)), H(Φ(u′1) � · · ·� Φ(u′�))).
(2.11)

Here each Φ(ui) is the harmonic Kodaira-Spencer representative of ρt(ui). It is
easy to see that (2.11) extends to a positive semi-definite Hermitian bilinear form
on ⊗�TtS, which varies smoothly in t. We simply call it the �-th generalized Weil-
Petersson pseudo-metric on ⊗�TS. The associated �-th generalized Weil-Petersson
pseudo-metric on TS is given by

‖u‖WP,� := (u⊗ · · · ⊗ u︸ ︷︷ ︸
�−times

, u⊗ · · · ⊗ u︸ ︷︷ ︸
�−times

)
1
2�

WP for u ∈ TtS, t ∈ S. (2.12)

Finally we define an augmented Weil-Petersson metric on S to be any Finsler metric
haWP of the form

haWP (u) =
( n∑

�=1

a�‖u‖2NWP,�

) 1
2N

for u ∈ TtS and t ∈ S (2.13)

for some fixed numbers a1, · · · , an > 0 and fixed positive integer N (independent of
t and u). Since ‖ ‖WP,1 is non-degenerate on S, it follows that each haWP is also
non-degenerate on S.

Remark 1. For any given pair of automorphisms (F, f) ∈ Aut(X ) × Aut(S)
satisfying f◦π = π◦F and preserving the polarization λ (i.e. F ∗λ = λ), one easily sees
from the uniqueness of the Ricci-flat Kähler metric g(t) in the Kähler class λt of each
Mt that (F

∣∣
Mt

)∗g(f(t)) = g(t) for all t ∈ S. Then it follows readily that each Finsler

pseudo-metric ‖ ‖WP,� is Aut(π)-invariant in the sense that f∗‖ ‖WP,� = ‖ ‖WP,� for
all pairs (F, f) as described above. As such, every augmented Weil-Petersson metric
haWP is also Aut(π)-invariant, i.e., f∗haWP = haWP for all pairs (F, f) as above.
Furthermore, similar to [TY, Lemma 16], one also easily checks that each haWP is
C∞.

3. Curvature of generalized Weil-Petersson pseudo-metrics. Let π :
X → S be as in Theorem 1. In this section, we are going to obtain estimates for
the holomorphic sectional curvatures of the restrictions of the Finsler pseudo-metrics
‖ ‖WP,�’s to local one-dimensional complex submanifolds of S (at those points where
the restrictions are non-degenerate), which will lead to estimate for that of the aug-
mented Weil-Petersson metric in Section 4. As most of the curvature computations
are similar to the Ricci-negative case in [TY], we will refer the reader to [TY] (and
follow the notation there as well as that in Section 2) whenever possible, and work
out only the necessary changes in detail.

As in Section 2, we fix a coordinate open subset U ⊂ S with coordinate functions
t = (t1, . . . , tm). For each t ∈ S and each coordinate tangent vector ∂

∂ti , we recall the

horizontal lifting vi and the harmonic representative Φi of ρt(
∂
∂ti ) on Mt as given in

(2.3) and (2.4). Fix an integer � satisfying 1 � � � n, and let J = (j1, . . . , j�) be an
�-tuple of integers satisfying 1 � jd � m for each 1 � d � �. We denote by

ΨJ := H(Φj1 � · · ·� Φj�) ∈ A0,�(∧�TMt) (3.1)
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the harmonic projection of Φj1 � · · · � Φj� . As t varies, we still denote the resulting
family of tensors by ΨJ (suppressing its dependence on t), when no confusion arises.
We are going to compute ∂i∂i log ‖ΨJ‖22 (as a function on U) wherever ΨJ �≡ 0 on
Mt. For this purpose, we will need to consider families of tensors on the fibers (or
in short, relative tensors) arising from restrictions of tensors on X to the fibers. We
adopt the semi-colon notation to denote covariant derivatives of tensors on Mt, so
that (Φi)

β
α;γ := ∇γ(Φi)

β
α (= (∇ ∂

∂zγ
Φi)

β
α), etc. We also denote (Φi)α,β = gγβ(Φi)

γ
α,

etc. We recall the following lemma in [TY, Lemma 1], which also holds in the present
Ricci-flat case:

Lemma 1. (i) [vi, ∂α] = −(Φi)
β
α∂β .

(ii) For a smooth (n, n)-form Υ on X , one has

∂

∂ti

∫
Mt

Υ =

∫
Mt

LviΥ and
∂

∂t
i

∫
Mt

Υ =

∫
Mt

LviΥ.

(iii) [vi, vj ] = gγα∂γ(gvivj )∂α − gβγ∂γ(gvivj )∂β .
(iv) (Φi)α,β = (Φi)β,α for all α, β.

(v) Lvi(gαβdz
α ∧ dzβ) = (Φi)β,γdz

β ∧ dzγ = 0. In particular, one has Lvi(ω
n) = 0

(as relative tensor).
Here [·, ·] denote the Lie bracket of two vector fields.

Let TCMt = TMt ⊗R C denote the complexified tangent bundle of Mt, and
for �, �′ ≥ 0, consider the space A�(∧�′TCMt) with decomposition A�(∧�′TCMt) =
⊕q+p=�,r+s=�′Aq,p(∧rTMt ∧ ∧sTMt) and corresponding Weil operator CW given by
scalar multiplication by (

√
−1)q−p+r−s on each summand Aq,p(∧rTMt ∧ ∧sTMt).

As usual, we denote the (positive definite) L2-inner product and the corresponding
L2-norm on A�(∧�′TCMt) with respect to ω(t) by ( , ) and ‖ ‖2 respectively. Then
it is well-known that there is a pointwise Hermitian bilinear pairing 〈 , 〉 (of mixed
signature) on A�(∧�′TCMt) such that for all Υ,Υ′ ∈ A�(∧�′TCMt), one has

Lvi〈Υ,Υ′〉 = 〈LviΥ,Υ′〉+ 〈Υ,LviΥ
′〉, and (3.2)

(Υ,Υ′) =

∫
Mt

〈CW (Υ),Υ′〉ω
n

n!
; (3.3)

moreover, CW restricts to the identity map on A0,�(∧�TMt), and (3.3) agrees with
(2.10) (cf. e.g. [TY, Section 3]).

Let ΨJ be as in (3.1). First one easily checks that

∂i∂i log ‖ΨJ‖22 =
∂i∂i‖ΨJ‖22
‖ΨJ‖22

− (∂i‖ΨJ‖22)(∂i‖ΨJ‖22)
‖ΨJ‖42

. (3.4)

We note that [TY, Lemma 3] also holds in the present Ricci-flat case, so that the
component of LviΨJ in A0,�(∧�TMt) is ∂-exact onMt. Together with the harmonicity
of ΨJ , it follows that

(LviΨJ , ΨJ) = 0 (3.5)

as a function on the base manifold. Together with a direct computation using Lemma
1, (3.2) and (3.3), one has, as in [TY, equations (4.7)-(4.9)],

∂i‖ΨJ‖22 = (LviΨJ ,ΨJ). (3.6)
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By taking ∂i of (3.5), taking ∂i of (3.6), and using the identity LviLvi = LviLvi +
L[vi,vi], one gets, as in [TY, equations (4.9)-(4.12)],

∂i∂i‖ΨJ‖22 = I + II + III, where (3.7)

I : = −(LviΨJ ,LviΨJ), (3.8)

II : = (L[vi,vi]ΨJ ,ΨJ), and

III : = (LviΨJ ,LviΨJ).

We are going to compute the terms I, II and III in the next three propositions.
First we consider I. As in [TY, equations (5.6) and (5.10)], we let Let Φi · ΨJ ∈
A0,�−1(∧�−1TMt), Φi ↘ ΨJ ∈ A1,�−1(∧�TMt) and Φi ↗ ΨJ ∈ A0,�(∧�−1TMt∧TMt)
be the relative tensors with components given by

(Φi ·ΨJ)
α1···α�−1

β1···β�−1

:= (Φi)σγ · (ΨJ)
γα1···α�−1

σβ1···β�−1

, (3.9)

(Φi ↘ ΨJ)
α1···α�

δβ1···β�−1
:= (Φi)σδ (ΨJ)

α1···α�

σβ1···β�−1
and (3.10)

(Φi ↗ ΨJ)
α1···α�−1γ

β1···β�
:= (Φi)

γ
σ(ΨJ)

α1···α�−1σ

β1···β�
.

For a relative tensor Υ ∈ ⊕p,q,r,sAq,p(∧rTMt ∧ ∧sTMt), we denote by Υ
(q,p)
(r,s) the

component of Υ in Aq,p(∧rTMt ∧ ∧sTMt). Moreover, for Υ ∈ A0,p(∧rTMt), we

denote D2
∗
Υ ∈ A0,p(∧r−1TMt), given by

(D2
∗
Υ)

α1···αr−1

β1···βp
= −∇σΥ

σα1···αr−1

β1···βp
.

(cf. [Siu, p.288] and [TY, Section 5]). As usual, we denote by � := ∂̄∂̄∗ + ∂̄∗∂̄ the
∂̄-Laplacian on Mt with respect to ω(t), and denote its associated Green’s operator
by G.

Lemma 2. Let Φi and ΨJ be as in (3.1).

(i) There exists K ∈ A0,�−1(∧�TMt) such that ∂K = (LviΨJ)
(0,�)
(�,0).

(ii) For any Υ ∈ A0,�−1(∧�−1TMt), we have 〈Φi ·ΨJ ,Υ〉 = 〈ΨJ ,Φi � Υ〉.
(iii) We have ∂

∗
(Φi ·ΨJ) = 0.

(iv) The tensor D2
∗
((Lvi

ΨJ)
(0,�)
(�,0)) is ∂-exact. Explicitly, we have

∇σ(Lvi
ΨJ)

σα1···α�−1

β1···β�

= (∂(Φi ·ΨJ))
α1···α�−1

β1···β�

. (3.11)

(v) Let K be as in (i) above. Suppose that ∂
∗
K = 0. Then

D2
∗
K = −�G(Φi ·ΨJ),

Proof. The proofs of (i)-(iv) are the same as those in Lemma 3, Lemma 4, Lemma
5 and Lemma 6 of [TY] respectively. The proof of (v) follows mutatis mutandis from
that of [TY, Lemma 7], and we just remark that the arguments leading to [TY,

equation (5.20)] in the proof of [TY, Lemma 7] show that in our present case, D2
∗
K

is ∂
∗
-exact, and there exists a harmonic tensor Q satisfying Q = Φi · ΨJ + D2

∗
K,

which readily imply (v). We also remark that as in [TY], the proof of (v) depends on
(iii) and (iv), while that of (iv) depends on (ii) and (iii).



714 W.-K. TO AND S.-K. YEUNG

Parallel to [TY, Proposition 1], we compute I in (3.8) as follows:

Proposition 1. We have

(LviΨJ ,LviΨJ) = (�G(Φi ·ΨJ),Φi ·ΨJ)

− (Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).

Proof. As in [TY, equation (5.11)], one easily checks that

(LviΨJ ,LviΨJ) = ((LviΨJ)
(0,�)
(�,0), (LviΨJ)

(0,�)
(�,0))

− (Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ). (3.12)

Then following the proof of [TY, Proposition 1] with [TY, Lemma 7] replaced by
Lemma 2(v), one has

((LviΨJ)
(0,�)
(�,0), (LviΨJ)

(0,�)
(�,0)) = (�G(Φi ·ΨJ),Φi ·ΨJ),

which together with (3.12), lead to the proposition.

Parallel to [TY, Proposition 2], we also compute II in (3.8) as follows:

Proposition 2.

(L[vi,vi]ΨJ ,ΨJ) = −(�G〈Φi,Φi〉, 〈ΨJ ,ΨJ〉).

Proof. In the present Ricci-flat case, the proof of [TY, Proposition 2] still gives

(L[vi,vi]ΨJ ,ΨJ) = −(�〈vi, vi〉, 〈ΨJ ,ΨJ〉). (3.13)

On the other hand, using identity �2(〈vi, vj〉) = �〈Φi,Φj〉 given in [Sch2, equation
(2.9)], we have

(�〈vi, vi〉, 〈ΨJ ,ΨJ〉) = ((H +G�)�〈vi, vi〉, 〈ΨJ ,ΨJ〉)
= (�2〈vi, vi〉, G〈ΨJ ,ΨJ〉) (since H� = 0) (3.14)

= (�〈Φi,Φj〉, G〈ΨJ ,ΨJ〉)
= (�G〈Φi,Φj〉, 〈ΨJ ,ΨJ〉),

which gives the proposition.

Next we proceed to compute III. Similar to [Siu, p. 288] and as in [TY, Section

7], for 1 � � � n, we denote by X(�) the space of (relative) tensors Ξ ∈ A(⊗�T ∗Mt ⊗
⊗�T ∗Mt) with components Ξα1···α�,β1···β�

satisfying the following three properties:

(P-i) Ξα1···α�,β1···β�
is skew-symmetric in any pair of indices αi, αj for i < j;

(P-ii) Ξα1···α�,β1···β�
is symmetric in the two �-tuples of indices (α1, · · · , α�) and

(β1, · · · , β�), and

(P-iii) for given indices α1, · · · , α�−1, and β1, · · · , β�+1, one has

�+1∑
ν=1

(−1)νΞ
α1···α�−1βν ,β1···

̂
βν ···β�+1

= 0,



AUGMENTED WEIL-PETERSSON METRICS ON MODULI SPACES 715

where β̂ν means that the index βν is omitted.

As in [Siu, p. 289] and [TY, Section 7], for s = 1, 2, we let Ds denote the operator
X(�) given by taking ∂ to the s-th �-tuple of skew-symmetric indices, and we let
Ds

∗
denote the adjoint operator of Ds. Also, we denote �s = Ds

∗
Ds +DsDs

∗
, and

we denote by Hs the harmonic projection operator on X(�) with respect to �s. The
Green’s operator on X(�) with respect to �s is denoted by Gs.

Lemma 3. For any Ξ ∈ X(�), we have

(a) D1D2Ξ = D2D1Ξ,

(b) D1
∗
D2Ξ = D2D1

∗
Ξ,

(c) D1
∗
D2

∗
Ξ = D2

∗
D1

∗
Ξ,

(d) D1D2
∗
Ξ = D2

∗
D1Ξ,

(e) �1Ξ ∈ X(�) and H1(Ξ) ∈ X(�),
(f) �1Ξ = �2Ξ, H1(Ξ) = H2(Ξ), G1Ξ = G2Ξ, and

(g) if D1Ξ = 0, then G1D2
∗
Ξ = D2

∗
G2Ξ.

Proof. The proofs of the above properties (a) to (f) of X(�) (resp. (g)) follow
mutatis mutandis from those in [Siu, p. 289-292] (resp. [Na, p.422-424]), which
treated the case when � = 2. We will leave the details to the reader.

Let Φi,ΨJ (with |J | = �) be as in (3.1). By lowering indices of these objects, we
obtain corresponding covariant tensors, which will be denoted by the same symbols
(when no confusion arises). For example, ΨJ also denotes the covariant tensor with
components given by

(ΨJ)α1···α�,β1···β�
= gγ1β1

· · · gγ�β�
(ΨJ)

γ1···γ�

α1···α�
.

We will skip the proof of the following simple lemma, which is the same as that
in [TY, Lemma 10].

Lemma 4. For each 1 � � � n, we have ΨJ ∈ X(�) and Φi � ΨJ ∈ X(�+1).

We will also skip the following lemma, whose statement and proof are the same
as in [TY, Lamma 11] (and similar to that given in [Siu, pp. 286-288]).

Lemma 5. We have
(i) D2

∗
(Φi � ΨJ) = D1(LviΨJ),

(ii) ∂(Φi � ΨJ) = 0, and

(iii) ∂
∗
(LviΨJ) = 0.

Parallel to [TY, Proposition 3], we give the computation of III in (3.8) as follows:

Proposition 3. We have

(LviΨJ ,LviΨJ) =(H(LviΨJ),LviΨJ) + (�G(Φi � ΨJ),Φi � ΨJ).

Proof. The proof is similar to that of [TY, Proposition 3], involving generalizing
the arguments in [Siu, p. 292-293]. First we have

(LviΨJ ,LviΨJ) = (H(LviΨJ),LviΨJ) + (G�(LviΨJ),LviΨJ). (3.15)
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Now we consider the last term of (3.15). Upon lowering indices, it is given by

(G1�1(LviΨJ),LviΨJ)

= ((G1D1
∗
D1(LviΨJ),LviΨJ)

(since D1
∗
(LviΨJ) = 0 by Lemma 5(iii))

= (D1
∗
G1D2

∗
(Φi � ΨJ),LviΨJ) (by Lemma 5(i))

= (G1D2
∗
(Φi � ΨJ), D1(LviΨJ))

= (D2
∗
G2(Φi � ΨJ), D2

∗
(Φi � ΨJ))

(by Lemma 4, Lemma 5(i), (ii) and Lemma 3(g))

= (D2D2
∗
G2(Φi � ΨJ),Φi � ΨJ)

= (�2G2(Φi � ΨJ),Φi � ΨJ) (since G2D2 = D2G2

and D2(Φi � ΨJ) = 0 (by Lemma 5(ii))).

Upon raising indices and using (3.15), one obtains Proposition 3 readily.

Next we recall from [TY] the following pointwise identity:

Lemma 6 ([TY, Lemma 12]). One has

(Φi � ΨJ ,Φi � ΨJ) = (Φi ·ΨJ ,Φi ·ΨJ) + (〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)
−(Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).

Similar to ([TY, Proposition 4]), we have

Proposition 4. We have

∂i∂i log ‖ΨJ‖22 =
1

‖ΨJ‖22
(
H(Φi ·ΨJ),Φi ·ΨJ) + (H(〈Φi,Φi〉), 〈ΨJ ,ΨJ〉)

+((H(LviΨJ),LviΨJ)−
∣∣(LviΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣2

−(H(Φi � ΨJ), H(Φi � ΨJ))
)
.

Proof. Similar to ([TY, Proposition 4]), the proposition follows immediately by
combining (3.4), (3.6), (3.7), (3.8), Proposition 1, Proposition 2, Proposition 3 and
Lemma 6.

Proposition 5. We have

∂i∂i log ‖ΨJ‖22 �
1

‖ΨJ‖22
(
(H(Φi ·ΨJ),Φi ·ΨJ) + ((H(〈Φi,Φi〉), 〈ΨJ ,ΨJ〉)

−(H(Φi � ΨJ), H(Φi � ΨJ))
)
.

Proof. Similar to [TY, Proposition 5], by considering the spectral decomposition
of LviΨJ with respect to � and using the fact that ΨJ is harmonic, one clearly has

((H(LviΨJ),LviΨJ) = ‖H(LviΨJ)‖22 �
∣∣(LviΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣2. (3.16)

By combining (3.16) and Proposition 4, one obtains Proposition 5 easily.
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Now we state the main result in this section which is to be used to construct the
augmented Weil-Petersson metric in the next section. For a positive integer �, we
define the relative tensor

H(�) := H(Φi � · · ·� Φi︸ ︷︷ ︸
�−times

), (3.17)

so that H(�) = ΨJ with J given by the �-tuple (i, i, · · · , i). Note that H(�) actually
depends on i, but for simplicity, this is suppressed in the notation. We also adopt the
convention that H(0) is the constant function 1. Parallel to [TY, Proposition 6], we
have

Proposition 6. Let i, �,H(�) be as in (3.17). Suppose ‖H(�)‖2 > 0 (so that
‖H(�−1)‖2 > 0 (cf. (3.20)). Then we have

∂i∂i log ‖H(�)‖22 ≥
‖H(�)‖22
‖H(�−1)‖22

− ‖H
(�+1)‖22

‖H(�)‖22
. (3.18)

Proof. To deduce (3.18) from Proposition 5 (with ΨJ there given by H(�)), one
first observes that H(〈Φi,Φi〉) is a positive constant function (say, with constant value
c > 0). Then the second last term of Proposition 5 satisfies

((H(〈Φi,Φi〉), 〈H(�), H(�)〉) = c · ‖H(�)‖22 > 0. (3.19)

Next for � ≥ 0, we recall from [TY, Lemma 13] the following two equalities, whose
proofs also hold in the present case:

H(Φi � H(�−1)) = H(�), and (3.20)

(Φi ·H(�), H(�−1)) = ‖H(�)‖22. (3.21)

Then by considering the spectral decomposition of Φi · H(�) with respect to �, one
has, from (3.21),

(H(Φi ·H(�)),Φi ·H(�)) ≥
∣∣(Φi ·H(�),

H(�−1)

‖H(�−1)‖2
)∣∣2 =

‖H(�)‖42
‖H(�−1)‖22

. (3.22)

By combining Proposition 5, (3.19), (3.20) and (3.22), one obtains Proposition 6
readiy.

4. Curvature of the augmented Weil-Petersson metric. Let π : X → S
be an effectively parametrized family of polarized Ricci-flat Kähler manifolds as in
Theorem 1. As before, we let Mt = π−1(Mt) for t ∈ S, and denote n = dimC Mt

and m = dimC S. Without loss of generality, we assume that n ≥ 2. Following the
arguments in [TY, Section 9], we are going to construct an augmented Weil-Petersson
metric on S, whose holomorphic sectional curvature is bounded above by a negative
constant.

First we let N = n!, and let V be the volume of (Xt, ωt) (which is independent of
t) as in (2.7). We consider the following two sequences of positive numbers {C�}1≤�≤n

and {a�}1≤�≤n given by

C1 : = min
{
1,

1

V

}
, C� =

C�−1

3
=

C1

3�−1
, 2 ≤ � ≤ n, (4.1)

a1 : = 1, a� =
(3a�−1

C1

)N
=

( 3

C1

)N(N�−1
−1)

N−1 , 2 ≤ � ≤ n. (4.2)
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First we recall from [TY, Lemma 14] (with the constant A there replaced by V )
the following inequality:

Lemma 7 ([TY, Lemma 14]). Let N ≥ n ≥ 2, V and {C�}1≤�≤n and {a�}1≤�≤n

be as above, and let κ be an integer satisfying 1 ≤ κ ≤ n. Then for all real numbers
x1, · · · , xκ > 0, we have

a1x
N+1
1

V
+

κ∑
�=2

(a�
�
· x

N+�
�

x�−1
�−1

− a�−1

�− 1
· xN−�+1

�−1 x�
�

)
≥ Cκ ·

κ∑
�=1

xN+1
� . (4.3)

(When κ = 1, the first summation in (4.3) is understood to be zero.)

With the above choice of the a�’s, we define an augmented Weil-Petersson metric
haWP on S to be the Finsler metric given by

haWP (u) =
( n∑

�=1

a�‖u‖2NWP,�

) 1
2N

for u ∈ TtS and t ∈ S. (4.4)

Here ‖ ‖WP,� is as defined in (2.12). Next we recall the following well-known simple
lemma:

Lemma 8 ([Sch2, Lemma 8] or [TY, Lemma 15]). Let U be a complex manifold,
and φ�, 1 ≤ � ≤ r, be positive C2 functions on U . Then

√
−1∂∂ log(

r∑
�=1

φ�) ≥
∑r

�=1 φ�

√
−1∂∂ logφ�∑r

j=1 φj
. (4.5)

Let u ∈ TS and � be an integer satisfying 1 ≤ � ≤ n. Similar to (3.17), we denote

H(�)(u) := H(Φ(u) � · · ·� Φ(u)︸ ︷︷ ︸
�−times

), (4.6)

where Φ(u) is the harmonic representative of ρt(u) as in Section 2. This gives rise to
a function r : PTS → Z given by

r([u]) := max{�
∣∣H(�)(u) �= 0} for 0 �= u ∈ TS, (4.7)

where [u] denotes the class of u in PTS. Since ρt is injective for each t ∈ S, it follows
that 1 ≤ r([u]) ≤ n for each [u] ∈ PTS. Now we let R be a local one-dimensional
complex submanifold of S. Then it is easy to see that r induces a function rR : R→ Z
given by

rR(t) := r([ut]) for t ∈ R, (4.8)

where ut is any non-zero vector in TtR. Let κ be an integer satisfying 1 ≤ κ ≤ n.
Following [TY, Section 9], we say that a point to ∈ R is a κ-stable point of R if there
exists an open neighborhood Uto of to in R such that rR(t) = κ for all t ∈ Uto . We
also recall that for a C∞ Finsler metric h on S, the sectional curvature K(R, h

∣∣
R
)(to)

of h
∣∣
R
at a point to ∈ R is given by

K(R, h
∣∣
R
)(to) = −

∂t∂t̄ log((h(
∂
∂t ))

2)

(h( ∂
∂t ))

2

∣∣∣
t=to

, (4.9)
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where t denotes a local holomorphic coordinate function on some open subset of R
containing to.

Proposition 7. Let haWP be as in (4.4). Let R be a local one-dimensional
complex submanifold of S, and let to ∈ R be a κ-stable point of R for some integer
1 ≤ κ ≤ n. Then we have

K(R, haWP

∣∣
R
)(to) ≤ −

Cκ

κ
1
N a

1+ 1
N

κ

,

where aκ and Cκ are as in (4.2) and (4.1).

Proof. The proof follows from a calculation exactly as that in [TY, Proposition
7]. For convenience of the reader, we will sketch the calculation here and refer the
reader to [TY, Proposition 7] for details. First since to is a κ-stable point of R, there
exists an open coordinate neighborhood U of to in R (with coordinate tangent vector
∂/∂t) such that the terms on the right hand side of (4.4) corresponding to � = κ+ 1
to � = n are all identically zero on U , so that one may write (4.4) as

haWP (
∂

∂t
) =

( κ∑
�=1

a�‖H(�)‖
2N
�

2

) 1
2N

on U , where H(�) := H(�)(
∂

∂t
) (4.10)

(cf. (4.6)). Together with Lemma 8 and Proposition 6, one gets

∂t∂t̄ log((h(
∂

∂t
))2) ≥

∑κ
�=1

a�

� · ‖H(�)‖
2N
�

2 ·
( ‖H(�)‖22
‖H(�−1)‖22

− ‖H(�+1)‖22
‖H(�)‖22

)
∑κ

�=1 a�‖H(�)‖
2N
�

2

=:
B

C
. (4.11)

By rearranging the terms of B telescopically (so that the first expression of the �-th
term is grouped with the second expression of the (� − 1)-th term) and using that
fact that ‖H(κ+1)‖2 = 0, one deduces readily from Lemma 7 (with x� given here by

‖H(�)‖
2
�

2 ) that

B ≥ Cκ ·
κ∑

�=1

‖H(�)‖
2(N+1)

�

2 , (4.12)

From (4.10), (4.11) and using the fact that a� ≥ a�−1, one has

C · (h( ∂
∂t

))2 ≤
( κ∑

�=1

aκ‖H(�)‖
2N
�

2

)N+1
N ≤

(
κaN+1

κ

) 1
N ·

κ∑
�=1

‖H(�)‖
2(N+1)

�

2 , (4.13)

where the last inequality follows from Hölder inequality. By combining (4.9), (4.11),
(4.12) and (4.13), one obtains the proposition readily.

We are ready to give the proof of Theorem 1 as follows:

Proof of Theorem 1. Let π : X → S be as in Theorem 1, and let n := dimMt.
Let haWP be as in (4.4). As mentioned in Remark 1, haWP is Aut(π)-invariant and
C∞. Take a point t ∈ S, and let R be a local one-dimensional complex submanifold
of S passing through t (i.e. t ∈ R). As in [TY, Lemma 17], the set

QR := {t ∈ R
∣∣ t is a κ-stable point of R for some 1 ≤ κ ≤ n} (4.14)
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is easily seen to be a dense subset of R (with respect to the usual topology). Thus
there exists a sequence of points {tj}∞j=1 in QR such that limj→∞ tj = t in R. In
particular, each tj is a κj-stable point of R for some integer κj satisfying 1 ≤ κj ≤ n.
By Proposition 7, we have, for each j,

K(R, haWP

∣∣
R
)(tj) ≤ −

Cκj

κ
1
N

j a
1+ 1

N
κj

≤ − Cn

n
1
N a

1+ 1
N

n

, (4.15)

where the last inequality follows from the facts that Cκ decreases with κ while aκ
increases with κ. Together with the fact that haWP

∣∣
R

is C∞, one concludes readily
that (4.15) also holds at t (i.e., with tj there replaced by t). Together with (2.2), it
follows that the holomorphic sectional curvature of haWP on S is bounded above by
a negative constant.

Remark 2. We remark that in general, the augmented Weil-Petersson metric
in Theorem 1 is not unique, and its construction actually gives rise to a continuous
family of Finsler metrics of negative holomorphic sectional curvature bounded away
from zero. One way to see this is as follows: for any ε satisfying 0 ≤ ε < 1, if one
replaces the constant a1 = 1 by 1− ε in (4.4) while keeping the other a�’s unchanged,
one gets a family of augmented Weil-Petersson metrics parametrized by ε given by

haWP,ε(u) =
(
(1− ε)‖u‖2NWP,1 +

n∑
�=2

a�‖u‖2NWP,�

) 1
2N

for u ∈ TtS and t ∈ S. (4.16)

It is easy to see that there exists εo > 0 such that for each ε satisfying 0 ≤ ε < εo, the
holomorphic sectional curvature of haWP,ε is bounded above by some negative constant.
Next we consider the one-dimensional moduli space M of Calabi-Yau threefolds which
are mirror manifolds of the quintic hypersurfaces in CP4. As mentioned in Section 1,
Candelas et al [CDGP] showed that the holomorphic sectional curvature of the Weil-
Petersson metric (i.e. ‖ ‖WP,1) on M is positive at some points of M and negative
at other points of M. Using this fact and the negativity of the holomorphic sectional
curvature of the haWP,ε’s, one easily sees that haWP,ε is not a constant multiple of
haWP,ε′ onM (and we simply say that they are inequivalent) whenever 0 ≤ ε < ε′ < εo
(in fact, for 0 ≤ ε < ε′, the equation haWP,ε = c · haWP,ε′ for some constant c > 0
implies readily that both haWP,ε and haWP,ε′ are constant multiples of ‖ ‖WP,1). It
follows that M admits a continuous family of pairwise inequivalent augmented Weil-
Petersson metrics.

5. The general case of families of polarized Ricci-flat Kähler orbifolds.

In this section, we are going to consider the general case of a family of polarized
Ricci-flat Kähler orbifolds and give the proof of Theorem 1’. When the arguments or
calculations given in the previous sections also work in the present orbifold case, we
will often avoid repeating them here and only indicate the necessary modifications.
First we recall some definitions.

An n-dimensional complex orbifold is a complex analytic space M of complex
dimension n together with a basis of open subsets {Ûα}α∈A covering M such that for

each open set Ûα ∈ A, there exist an associated open set Uα ⊂ Cn, a finite subgroup
Γα ⊂ Aut (Uα) (here Aut (Uα) denotes the group of self-biholomorphisms on Uα) and

a holomorphic map pα : Uα → Ûα which is Γα-invariant (i.e., pα ◦ γ = pα for all

γ ∈ Γα) and induces a biholomorphism between Ûα and Uα/Γα (so that we may write
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Ûα = Uα/Γα); furthermore, if Ûα ⊂ Ûβ (with α, β ∈ A), then there exist a group
homomorphism ταβ : Γα → Γβ and an injective holomorphic map φαβ : Uα → Uβ

such that

pβ ◦ φαβ = pα, and ταβ(γ) ◦ φαβ = φαβ ◦ γ for all γ ∈ Γα. (5.1)

(A complex orbifold is also called a complex V -manifold à la Satake and Baily (cf.
[Ba1], [Ba2], [Sa]).) Each local holomorphic covering projection map pα : Uα →
Ûα = Uα/Γα is known as an orbifold chart of M , and the collection orbifold charts
is called an orbifold atlas of M . The orbifold singular set M s of M is the subset
{x ∈M

∣∣ γ(y) = y for some y ∈ p−1
α (x), e �= γ ∈ Γα with α ∈ A} (here e denotes the

identity element of Γα). Note that M s is a complex analytic subvariety of M and
M \M s lies in the smooth part M◦ of (the underlying complex space) M , but it may
happen that M \M s � M◦.

A differential form η on a complex orbifold M (with an orbifold atlas {pα : Uα →
Ûα = Uα/Γα}α∈A) is a collection of differential forms {ηα}α∈A, where each ηα is
a differential form on Uα invariant under Γα (i.e., γ∗ηα = ηα for all γ ∈ Γα), and

φ∗αβηβ = ηα whenever Ûα ⊂ Ûβ. The differential η on M is said to possess a certain
property (such as being an (r, s)-form, or being d-closed) if each ηα possesses such
property on Uα. (Alternatively, a differential form (with a certain property) on the
complex orbifold M can also be defined as a differential form η on M \M s such that
p∗αη extends to a differential form (with the same property) on Uα for each α ∈ A.)
In particular, a differential fom ω on M is said to be a Kähler form if ωα is a Kähler
form on Uα for each α ∈ A. A (Ricci-flat) Kähler orbifold is a complex orbifold M
equipped with a (Ricci-flat) Kähler form ω. We remark that when M is smooth and
M s is a smooth divisor of M , then ω gives an example of a conical Ricci-flat Kähler
form on the pair (M,M s) (see [Br] for the definition and existence results of conical
Ricci-flat Kähler forms).

An orbifold vector bundle E over a complex orbifold M (with an orbifold atlas

{pα : Uα → Ûα = Uα/Γα}α∈A) is a collection of vector bundles {Eα}α∈A, where
Eα is a vector bundle over Uα (with the projection map denoted by qα : Eα → Uα)
for each α ∈ A, and for each α ∈ A, there is an associated group homomorphism
να : Γα → Aut(Eα) (here Aut(Eα) denotes the group of vector bundle automorphisms

of Eα) such that qα ◦ να(γ) = γ ◦ qα for all γ ∈ Γα; furthermore, if Ûα ⊂ Ûβ for some
α, β ∈ A, then there exists a bundle map ραβ : Eα → Eβ such that (νβ◦ταβ)(γ)◦ραβ =
ραβ ◦ να(γ) for all γ ∈ Γα (here ταβ is as in (5.1)), and one has ραβ ◦ ρβδ = ραδ if

Ûα ⊂ Ûβ ⊂ Ûδ. Note that E descends to a vector bundle on M \M s (in the usual
sense). A typical example of an orbifold vector bundle is the orbifold tangent bundle
TM given by the collection of tangent bundles {TUα}α∈A with the action of γ ∈ Γα

given by the jacobian of γ, i.e., να(γ) = γ∗. Hermitian metrics on orbifold vector
bundles over complex orbifolds are defined in the obvious way.

Let ϕ = {ϕα}α∈A be an (n, n)-form on an n-dimensional complex orbifold M

with an orbifold atlas {pα : Uα → Ûα = Uα/Γα}α∈A. For each α ∈ A, the integral of

ϕ over Ûα is given by

∫
Ûα

ϕ :=
1

|Γα|

∫
Uα

ϕα, where |Γα| denotes the order of the group

Γα. Then the integral

∫
M

ϕ is defined by using a partition of unity in the obvious

manner. We remark that by well-known results of Baily (cf. [Ba1], [Ba2]), many
natural differential operators on manifolds (such as the de Rham operator d (and its
decomposition d = ∂ + ∂) and associated objects (such as de Rham and Dolbeault
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cohomology classes) generalize to orbifolds in the obvious manner, and many stan-
dard results on these operators (such as Stokes’ Theorem) also hold for orbifolds. In
particular, Hodge decomposition theorem also holds for orbifold vector bundles over
compact Kähler orbifolds; and under such setting, the harmonic projection operator
and Green’s operator make sense in the obvious manner (see [Ba1, Section 2 and
Section 7]).

Let π : X → S be a holomorphic map from an (n + m)-dimensional complex

orbifold X (with an orbifold atlas {pα : Uα → Ûα = Uα/Γα}α∈A) to an m-dimensional
complex manifold S. Then π : X → S is said to form a holomorphic family of complex
orbifolds over S if (i) π is surjective and of maximal rank (here π is of maximal rank
means that for each α ∈ A, π ◦ pα is of maximal rank at all points of Uα; and (ii)
for each α ∈ A, Uα is of the form Uα ×Wα, where Uα is an open subset of Cn and
Wα ⊂ Cm is an open coordinate subset of S, so that π ◦ pα is given by the coordinate
projection map onto the second factor Wα; furthermore, each γ ∈ Γα(⊂ Aut(Uα)) is
of the form

(
γ′ 0
0 em

)
for some γ′ ∈ Aut(Uα), where em denotes the identity map on

Wα. (Note that under the identification γ ←→ γ′, we may regard Γα as a subgroup
of Aut(Uα), and we may write

Ûα = Uα/Γα = (Uα ×Wα)/Γα = (Uα/Γα)×Wα = Ûα ×Wα. (5.2)

Note that with the above identification, we may write pα : Uα → Ûα as (p′α, em) :

Uα ×Wα → Ûα ×Wα, where p′α : Uα → Ûα is the projection map under the induced
action of Γα on Uα. It is easy to see that under these two conditions, for each
t ∈ S, the fiber Mt := π−1(t) is a complex orbifold with an orbifold atlas given by

{p′α : Uα → Ûα = Uα/Γα}α∈A). Note that the fibers Mt’s are all homeomorphic
to each other. Finally a holomorphic family of complex orbifolds π : X → S over
a complex manifold S is said to form a holomorphic family of compact polarized
Ricci-flat Kähler orbifolds if the fiber Mt is compact for each t ∈ S, and the complex
orbifold X is endowed with a d-closed (1, 1)-form ω such that its restriction ωt := ω

∣∣
Mt

to each fiber Mt, t ∈ S, is a Ricci-flat Kähler form on the complex orbifold Mt.
We proceed to consider the deformation theory of compact complex orbifolds.

Let π : X → S be a holomorphic family of compact complex orbifolds over a complex
manifold S (satisfying conditions (i) and (ii) in the above paragraph). We fix a point
to ∈ S, and let W be an open coordinate neighborhood of to in S. Then shrinking W
and replacing A by a subset if necessary, we may assume that the restricted family
π
∣∣
π−1(W )

: π−1(W ) → W admits an orbifold atlas {pα : Uα → Ûα = Uα/Γα}α∈A
and the fiber Mto = π−1(to) admits a corresponding orbifold atlas {p′α : Uα → Ûα =
Uα/Γα}α∈A, where for each α ∈ A, we may write, as in (5.2),

Ûα = Uα/Γα = (Uα ×W )/Γα = (Uα/Γα)×W = Ûα ×W, (5.3)

and one has an associated decomposition of pα given by pα = (p′α, eW ). Here eW
denotes the identity map on W . Now we take a homeomorphism Ξ : Mto ×W →
π−1(W ) such that Ξ

∣∣
Mto×{to}

is the identity map on Mto , π ◦Ξ(x, t) = t for all t ∈W

and x ∈ Mto , and for α, β ∈ A such that Ξ(Ûα × W ) ⊂ Ûβ, one has a lifting of
Ξ
∣∣
Ûα×W

to a diffeomorphism Ξαβ : Uα ×W → Uβ from Uα ×W into Uβ such that

ταβ(γ)(Ξαβ(z, t)) = Ξαβ(γ(z), t) for all (z, t) ∈ Uα × W and γ ∈ Γα (here ταβ is
as in (5.1)). Such a Ξ corresponds to a lifting of a vector field u on W to a vector
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field vu on (X \ X s) ∩ π−1(W ) (so that π∗vu = u) such that for each orbifold chart

pα : Uα → Ûα = Uα/Γα with π(Ûα) ⊂W , vu lifts (and then extends) to a Γα-invariant
vector field vu,α on Uα (so that (pα)∗vu,α = vu on (X \X s)∩π−1(W ) and γ∗vu,α = vu,α
for all γ ∈ Γα).

As in the smooth case and with the identification given in (5.3), by taking ∂ of
vu,α along the fiber directions on Uα × {to} (which is identified with Uα), one gets a
Γα-invariant ∂-closed TUα-valued (0, 1) form on Uα. As such, we get a ∂-closed TMto-
valued (0, 1)-form on Mto , which is simply denoted by ∂vu

∣∣
Mto

. As in the smooth

case, it is easy to see that if ∂v′u
∣∣
Mto

is another ∂-closed TMto-valued (0, 1)-form on

Mto corresponding to another lifting of u, then ∂vu
∣∣
Mto

− ∂v′u
∣∣
Mto

is ∂-exact on Mto .

Thus, we have a well-defined Kodaira-Spencer map ρ : TtoS → H0,1(Mto , TMto) given
by ρto(v) = [∂vu

∣∣
Mto

], where [∂vu
∣∣
Mto

] denotes the Dolbeault cohomology class of

∂vu
∣∣
Mto

. As in the smooth case, a holomorphic family π : X → S of complex orbifolds

is said to be effectively parametrized if the Kodaira spencer map ρt is injective for
each t ∈ S.

For the remainder of the section and as in Theorem 1’, we let π : X → S be
an effectively parametrized holomorphic family of n-dimensional compact polarized
Ricci-flat Kähler orbifolds over an m-dimensional complex manifold S. Let ω be the
associated d-closed (1, 1)-form on X such that its restriction ωt := ω

∣∣
Mt

is a Ricci-flat
Kähler form on the complex orbifold Mt for each t ∈ S, and let g be the associated
metric tensor of type (1, 1) on X . Let {pα : Uα → Ûα = Uα/Γα}α∈A be an orbifold at-

las of X which gives rise to an associated orbifold atlas {p′α : Uα → Ûα = Uα/Γα}α∈A
onMt for each t ∈ S as given in (5.2). For a local tangent vector field u of type (1, 0) on
an open subset W of S, one obtains the horizontal lifting vu of u on (X \X s)∩π−1(W )
with respect to ω as described in Section 2 for the smooth case. Alternatively, for
each orbifold chart pα : Uα → Ûα = Uα/Γα such that Ûα ⊂ π−1(W ), recall that ω
lifts to a Γα-invariant form ωα on Uα. Then one can consider the horizontal lifting
vu,α of u to Uα with respect to ωα (and the projection map π ◦ pα). It is easy to

see that each vu,α is Γα-invariant, and (pα)∗vu,α = vu on Ûα ∩ (X \ X s). As in the
smooth case in Section 2, one easily sees that Φ(u) := ∂vu

∣∣
Mt

is the unique harmonic

Kodaira-Spencer representative of ρt(u) for t ∈ W ⊂ S. When W is a coordinate
open subset of S with coordinates given by t = (t1, · · · tm) and u = ∂/∂ti is a co-
ordinate vector field, it is easy to see that its horizontal lifting vi of ∂/∂ti and the
correspnding harmonic Kodaira-Spencer representative Φi := ∂vi

∣∣
Mt

are such that

their Γα-invariant liftings on the orbifold charts Uα’s (and thus also vi and Φi on

Ûα ∩ (X \X s)) are given locally by the same expressions as in (2.3) and (2.4) respec-
tively. Then the Weil-Petersson metric h(WP ) on S is given by the same expression
as in (2.6). For integers p, q, r, s ≥ 0, t ∈ S, Φ ∈ A0,p(∧rTMt) and Ψ ∈ A0,q(∧sTMt),
one defines Φ� Ψ ∈ A0,p+q(∧r+sTMt) in the obvious manner, namely by first lifting
Φ, Ψ to corresponding bundle-valued forms Φα, Ψα on each Uα (for each orbifold

chart p′α : Uα → Ûα = Uα/Γα) and considering the Γα-invariant bundle-valued form
Φα � Ψα on Uα (as described in Section 2). Then for each 1 ≤ � ≤ n, one can define
the �-th generalized Weil-Petersson pseudo-metric on S as given in (2.11) and (2.12).
Finally one can define augmented Weil-Petersson metrics on S as given in (2.13).

Proof of Theorem 1’. Let π : X → S be an effectively parametrized holomorphic
family of n-dimensional compact polarized Ricci-flat Kähler orbifolds over a complex
manifold S. Using the finite set of positive numbers {a�}1≤�≤n as given in (4.1) and
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(4.2), we define the associated augmented Weil-Petersson metric haWP on S as given
in (4.4) (and as discussed above). Then by following mutatis mutandis the arguments
and computations in Section 3 and Section 4, one sees that haWP is a C∞ Finsler
metric whose holomorphic sectional curvature is bounded above by a negative con-
stant. We only indicate the new ingredients and the modifications needed for the
proof in the orbifold case. First the Lie derivative LviT of a relative tensor T with
respect to the horizontal lifting vi of some coordinate tangent vector field ∂/∂ti on
some coordinate open subset of S makes sense as a relative tensor in the obvious man-
ner, namely by first lifting vi and T to corresponding Γα-invariant objects on each Uα
(for each orbifold chart pα : Uα → Ûα = Uα/Γα) and considering the corresponding
Lie derivative there, which is easily seen to be Γα-invariant. Similar remark holds for
the operations on tensors (and the tensors themselvers) that appear in Section 3 and
Section 4, so that they also make sense (and have the same properties) for the case
of orbifolds. Also, at various places in Section 3 and Section 4 where integration by
part arguments are involved, the usual Stokes’ theorem for manifolds will be replaced
here by Stokes’ theorem for orbifolds (see e.g. [Ba1, p. 866]). As mentioned earlier,
one knows from [Ba1, Section 2 and Section 7] that the Hodge decomposition theo-
rem also holds for orbifold vector bundles over compact Kähler orbifolds; and under
such setting, the harmonic projection operator and Green’s operator make sense in
the obvious manner. These will replace the Hodge decomposition theorem and the
harmonic projection operator and Green’s operator (for manifolds) used in various
parts of Section 3 and Section 4. The rest of the arguments in Section 3 and Section
4 prevail verbatim in the present orbifold case.

Proof of Corollary 1. Let π : X → S be as in Theorem 1 or Theorem 1’. By
Theorem 1 and Theorem 1’, S admits an augmented Weil-Petersson metric haWP

whose holomorphic sectional curvature is bounded above by a negative constant. To-
gether with standard arguments involving the usual Ahlfors lemma, the existence of
the Finsler metric haWP on S with the above curvature property implies readily that
S is Kobayashi hyperbolic (cf. e.g. [Kob, p. 112, Theorem 3.7.1]).

6. Alternative approach from period mappings in the smooth case. In
this section, we discuss in the smooth case an alternative approach of constructing
a Kähler metric (called the Hodge metric) on the base manifold S with holomorphic
sectional curvature bounded above by a negative constant. This alternative approach
is more classical and could be found in [Lu1] (see also [Gri1], [Gri2], [Ti]), and it is
based on Hodge-theoretic considerations. The alternative approach will work for at
least the case of families of Calabi-Yau manifolds (or slightly more generally, when
the canonical line bundle of each fiber manifold is holomorphically trivial), although
it does not appear to generalize readily to the general Ricci-flat manifold (or orbifold)
case. For convenience of the reader, we recall briefly Lu’s approach as follows:

Let π : X → S be an effectively parametrized holomorphic family of compact
n-dimensional polarized Kähler manifolds of zero first Chern class over a complex
manifold S, and such that KMto

= OMto
for some to ∈ S. From the deformation

invariance of the Hodge number hn,0 and the fact that a holomorphic n-form on
an n-dimensional compact Ricci-flat Kähler manifold is automatically parallel with
respect to the Levi-Civita connection, it follows readily that KMt

= OMt
for all

t ∈ S. For each t ∈ S, let Pn(Mt,C) := {η ∈ Hn(M,C)
∣∣ η ∧ ωt = 0} denotes the

primitive cohomology classes in Hn(Mt,C). By considering the Hodge decomposition
of Hn(Mt,C), one obtains a well-defined holomorphic period mapping p : S → D
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from S to the classifying space D of certain polarized Hodge structures given by

t→ {Hp,q(Mt) ∩ Pn(Mt,C)}p+q=n. (6.1)

By a result of Griffiths ([Gri1, Proposition 3.6]), when each KMt
is trivial, the period

mapping p is an immersion (this follows from the fact that if one takes a nonzero
Kodaira-Spencer class η ∈ H1(Ms, TMt) and a nonzero n-form Ωt ∈ Hn,0(Mt), then
the interior product η�Ωt is a nonzero element in Hn−1,1(Mt)). The classifying space
D is a homogeneous complex manifold admitting a certain invariant two form ωD. In
[Lu1], Lu showed that p∗ωD is a Kähler form whose holomorphic sectional curvature
is bounded above by a negative constant. This Kähler metric was called the Hodge
metric in [Lu1]. We remark that in his proof, Lu needed to use the fact that p(S)
lies in certain ‘horizontal slice’ of D due to Griffiths transversality, and he also made
essential use of Griffiths’ results [Gri1] on the curvature properties of ωD (see also
[Gri2]). In summary, Lu obtained the following result:

Theorem 2 ([Lu1]). Let π : X → S be an effectively parametrized holomorphic
family of compact polarized Kähler manifolds of zero first Chern class over a complex
manifold S. Suppose that KMto

= OMto
for some to ∈ S (and hence KMt

= OMt
for

all t ∈ S). Then S admits a well-defined Hodge metric whose holomorphic sectional
curvature is bounded above by a negative constant.

Remark 3. LetM and the haWP,ε’s onM be as in Remark 2. Since the haWP,ε’s
are pairwise inequivalent, it follows that apart from one possible exception, each of the
haWP,ε’s is not a constant multiple of the Hodge metric on M.

An immediate consequence of Theorem 2 is the following

Corollary 2. Let π : X → S be as in Theorem 1. Suppose the family π : X → S
is diffeomorphically trivial, in the sense that there exists a diffeomorphism f : X →
Mto×S such that π = pr2◦f , where pr2 : Mto×S → S denotes the projection onto the
second factor, and Mto = π−1(to) for some to ∈ S. Then S admits a Kähler metric
whose holomorphic sectional curvature is bounded above by a negative constant.

Proof. First we note that the diffeomorphism f : X → Mto × S induces the
following isomorphism of fundamental groups:

π1(X ) ∼= π1(Mto)× π1(S). (6.2)

It follows from a result of Beauville [Bea] that there exists a finite cover M ′
to of the

fiber Mto corresponding to some subgroup G ⊂ π1(Mto) of finite index such that
KM ′

to
is holomorphically trivial. Then via the isomophism in (6.2), one may regard

G× π1(S) as a subgroup of π1(X ) of finite index. Then one gets an associated finite
cover X ′ of X . Denote the associated covering projection map by q : X ′ → X , and
let π′ = π ◦ q : X ′ → S. Then it is easy to see that π′ : X ′ → S forms an effectively
parametrized holomorphic family of compact polarized Kähler manifolds of zero first
Chern class over S (with the polarization provided by q∗λ, where λ denotes the
polarization of the family π : X → S), and one has (π′)−1(to) = M ′

to . Hence one may
apply Theorem 2 to the family π′ : X ′ → S to yield the desired conclusion on S.

Remark 4. Let π : X → S be as in Theorem 1. For any to ∈ S, one easily
sees that there exists some open neighborhood U of to in S such that the restricted
family π

∣∣
π−1(U)

: π−1(U) → U over U is diffeomorphically trivial, shrinking U if
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necessary. As such, one may apply Corollary 2 to get a Kähler metric hU on U with
holomorphic sectional curvature bounded above by some negative constant. However,
the ‘local Hodge metrics’ hU ’s are not uniquely defined, as they depend on the choices
of the local finite coverings, and it is not clear that the hU ’s will patch together to
form a well-defined Kähler metric on S.

Remark 5. The Hodge theoretic approach described in this section does not apply
to the general orbifold case treated in Theorem 1’, since in that case (and in addition
to Remark 4), each fiber Mt is only an orbifold, and the orbifold charts of Mt may not
lead to a finite (ramified or unramified) cover M ′

t of Mt such that M ′
t is a compact

Kähler manifold with trivial canonical line bundle.
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