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Abstract. We consider three fundamental classes of compact almost homogenous manifolds and
show that the complements of singular complex orbits in such manifolds are endowed with plurisub-
harmonic exhaustions satisfying complex homogeneous Monge-Ampére equations. This extends to a
new family of mixed type examples various classical results on parabolic spaces and complexifications
of symmetric spaces. Rigidity results on complex spaces modeled on such new examples are given.
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1. Introduction. Plurisubharmonic exhaustions satisfying the complex homo-
geneous Monge-Ampere equation on a complex space appear naturally in many con-
texts. Probably the first time they have been extensively considered was in Value Dis-
tribution Theory on affine algebraic varieties or, more generally, on parabolic spaces
([11, 33]). When the exhaustions satisfy the complex homogeneous Monge-Ampeére
equation with the least possible degeneracy — the strictly parabolic case in the ter-
minology of Stoll — a natural foliation is associated to the exhaustion, namely the
collection of complex curves that are tangent to the annihilators of the Levi form.
The very nice behavior of these exhaustions in this case and the analogy with the
case of Riemann surfaces, suggested Stoll that these might be instrumental for the
characterization of special complex manifolds such as C", the unit ball B", bounded
complete circular domains or affine cones. It is well known that this is indeed the
case (see for instance [34, 8, 35, 23, 36, 26]). In all these instances the minimal set of
the exhaustion is always a point or, after blowing up to resolve singularities, a com-
pact projective manifold. The exhaustion has always a logarithmic type of singularity
along such minimal set. In these examples, there is a sharp difference of behaviors, de-
pending on whether or not the plurisubharmonic exhaustions, satisfying the complex
homogeneous Monge-Ampere equation, is bounded from above. If the exhaustion is
unbounded, the associated foliation is necessarily holomorphic, the holomorphic type
of the manifold is fixed and the only allowed deformations are rescalings of the ex-
haustion in the direction of the leaves of the foliation ([8, 26]). On the other hand,
when the exhaustion is bounded above, there is a very rich class of non biholomorphi-
cally inequivalent examples which are suitable deformation of the unit ball B™ C C”
— in fact an infinite dimensional class, see [16, 17, 5, 24] — and, up to rescaling, the
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plurisubharmonic exhaustions that satisfy the complex homogeneous Monge-Ampere
equation are pluricomplex Green functions.

In a rather different development, plurisubharmonic exhaustions satisfying the
complex homogeneous Monge-Ampere equation occur as a natural byproduct of the
construction of intrinsic complexifications of real analytic compact Riemannian man-
ifolds, the so called Grauert Tubes. They are tubular neighborhoods of each such
manifold in its tangent bundle — possibly the entire tangent bundle — equipped with
an adapted complex structure with the property that the differentials of parameter-
izations of geodesics of the manifold are holomorphic embeddings into the Grauert
tube of strip shaped neighborhoods of the real line in C (see e.g. [13, 18, 27]; see
also [10] for generalizations to the Finsler case). Here the real analytic Riemannian
manifold sits in the Grauert tube as a top dimensional totally real submanifold, and
it is the minimal set of the norm function on the tangent bundle determined by the
Riemannian metric. Considering the above described adapted complex structure, the
norm function turns out to be a plurisubharmonic exhaustion satisfying the complex
homogeneous Monge-Ampere equation and exhibiting a “square root” type of singu-
larity along its minimal set, that is the real analytic Riemannian manifold on which
the Grauert tube has been built. Note that, in this case, once the size of the tubular
neighborhood is fixed, whether finite or — when possible — infinite, there is a strongly
rigid behavior: the isometric type of the minimal set of the exhaustion completely
determines the complex structure of the Grauert tube.

In this paper we consider a large class of almost homogeneous complex manifolds
with cohomogeneity one actions, that is complex manifolds M with a real Lie group
G of biholomorphisms acting with real hypersurfaces as principal orbits. Almost
homogeneous complex manifolds have been extensively studied and classified (see [14,
15, 1] and, for the strictly related topic of the classification of compact homogeneous
CR manifolds, [2, 3]). Under the additional assumption that all principal G-orbits are
strongly pseudoconvex hypersurfaces and that the manifold has vanishing first Betti
number, it is possible to fully describe all compact almost G®-homogeneous manifolds
with cohomogeneity one G-actions of strongly pseudoconvex principal orbits ([29]).
It turns out that, up to blow ups, there are three types of such manifolds (see §3.2
below for details):

e Type 1: Almost homogeneous manifolds with two compact complex manifolds
as exceptional orbits; they are all CP! bundles over a flag manifold.

e Type 2: Almost homogeneous manifolds with one compact complex ex-
ceptional orbit and one totally real; they are the compactifications of the
Morimoto-Nagano manifolds, i.e. the compactifications of the standard com-
plexifications of compact symmetric spaces of rank one (CROSS).

e Type 3 A finite list of exceptional almost homogeneous manifolds with one
compact complex exceptional orbit and one compact exceptional orbit of
mixed real/complex type; the latter is a bundle over a flag manifold with
fiber which is either a sphere or a real projective space of specified dimension.

Each such manifold M has always two singular G-orbits and at least one of them
is complex. If S C M is such a complex orbit, then on M, := M \ S there exists
(see Theorem 3.2 for precise statement) a C* exhaustion 7 : M, — [0,00), such
that {7 = 0} is exactly the other singular G-orbit S, of M and whose restriction to
Mo\ {7 =0} = M, \ S, is such that:

1) it is strictly plurisubharmonic (i.e. 2i09T = dd°tT > 0);

2) there exists a smooth function f : (0,00) — R with df # 0 such that the
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composition u := f o 7 is a plurisubharmonic solution to the Monge-Ampere
equation (90u)"™ = 0.
Furthermore if M is of Type 1, then u has a logarithmic singularity along S, (i.e.
u := log 7), while when M is of Type 2 or of Type 3, u has a “square root” singularity
along S, (i.e. u:= /7).

For the almost homogeneous manifolds of Type 1 or Type 2, the existence of
such exhaustion is either well known or not surprising. What is new in this result
are the examples given by the manifolds of Type & and the unified approach for
the construction of the exhaustion, based on properties of group actions and on the
detailed analysis of the complex structure of the Morimoto-Nagano manifolds due to
Stenzel ([32]; see also [20]).

The main motivation for presenting in a unified way such three families of exam-
ples comes from the need of a common approach to the problem of deformation and
of rigidity for complex manifolds with plurisubharmonic exhaustions that are solu-
tions of the complex homogeneous Monge-Ampere equation. There are a number of
elements that play a crucial role into the picture, among which we name:

a) the nature of the minimal set and of the singularity of the exhaustion along
it;

b) the nature of the leaves of the foliation associated to the exhaustion (either

parabolic or hyperbolic Riemann surfaces) which, in turn, depends on its

upper boundedness or unboundedness.
In §4 we start such study of deformations, providing the set up and defining the
main tools for such investigation, in particular the appropriate deformation tensors.
Here, we suitably extend the notions introduced in [24] and based on the work of
Bland and Duchamp [5], for the analysis of deformations of the so-called manifolds of
circular type, an important family of complex manifolds that is included in the class of
examples of Type 1. In Theorem 4.2 we give a first result which provides informations
on the deformability of examples of Type 1, Type 2 and Type 3 according to the nature
of the minimal set of the exhaustion.

1.1. Notation. An n-dimensional complex manifold M is considered as a pair
(M, J), where J is the (1,1) tensor field that gives the complex structure. The
operator d¢ := d9 is defined on k-forms by d° = J odo J, so that dd® = 2i00.

A CR manifold of hypersurfaces type will be indicated as triple (N, D, J), given
by a real manifold N of odd dimension, a codimension one distribution D C TN
and a smooth family J of complex structures J, : D, — D,, x € N, satisfying the
integrability conditions [JX,Y]+ [X,JY] € D and [JX,JY] — [X,Y] - J[JX,Y]| —
J[X,JY] = 0 for any X,Y € D. The holomorphic distribution of (N, D, J) is the
subbundle D € TCN of the +i-eigenspaces of C-linear maps J, : DS — DS. We
recall that a CR manifold (N, D, J) is Levi non-degenerate if and only it the underlying
real distribution D is contact.

A complex space X is actually a pair (X, Ox), where X' is a Hausdorff topological
space and m : Oy — X is the sheaf of local C-algebras, characterizing the complex
space. Any complex manifold M is identified with the complex space (M, Oys), with
Oy sheaf of germs of local holomorphic functions of M. It is well known ([30, 9, 21])
that if (X, Ox) is a complex space carrying a C*-exhaustion 7 : X — [0, 00), which
is strictly plurisubharmonic outside a compact set, then it always admits a Remmert
reduction, i.e. a pair ((,0y), ), formed by a Stein space (), Oy) and a proper
surjective holomorphic map 7 : X — ) such that: a) 7 : X — ) has connected
fibers, b) m.(Ox) = Oy and c) for any holomorphic map f : X — Z into a Stein
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space (Z,0z), there is a unique holomorphic map f’ : Y — Z such that f = f’ o
m. Geometrically, the projection map m : X — ) collapses all positive-dimensional
compact analytic sets of X

2. Monge-Ampeére spaces. In this paper, our interest is focused on the fol-
lowing class of complex manifolds with plurisubharmonic exhaustions.

DEFINITION 2.1. Let X be a complex manifold. A Monge-Ampére C>° exhaustion
for X is a C*° exhaustion 7 : X — [0,T), possibly with T' = oo, whose restriction to
X\ {7 = 0} verifies:

1) it is strictly plurisubharmonic (i.e. 2i09t = dd°T > 0)
2) there exists a smooth function f : (0,00) — R with df # 0 such that the
composition u := for is a solution to the Monge- Ampere equation (99u)™ = 0
and satisfies the non-negativity condition 2i99u > 0.
A Stein space &X' is a Monge-Ampere space if it is the space of a Remmert reduction
X — & from a complex manifold & with a Monge-Ampere C* exhaustion 7 :
X —10,T). If X is a smooth complex manifold, we call it Monge-Ampére manifold.
If X is a Monge-Ampere space, the continuous function

X —=[0,7T), 7' (z) == 7(y) for some y € 7~ (x)

is called Monge-Ampére C° exhaustion of X. The level set 7/71(0) = w(77(0)) is the
soul of X determined by 7. By construction, the exhaustion 7’ is surely of class C*°
on the complementary set of the soul.

A modeling example for the class of Monge-Ampere spaces is the complex Eu-
clidean space C", equipped with the standard exhaustion

7o :C" = [0,400) ,  7o(2) =|l2]* . (2.1)

Indeed, C" is the Remmert reduction of the blow up 7 : C" — C" of C™ at the
origin and the unique smooth function 7 : C — [0, +00), which extends the function
Tolcm\ g0} = (0,400) at all points of 771(0) ~ CP™!, is a Monge-Ampeére C* exhaus-
tion for C". The function u = fo7, which satisfies (2) in this case, is u(z) = log(||z||?).
The soul is the singleton {0}.

Other important examples of Monge-Ampere manifolds are the domains of cir-
cular type ([22, 23, 24]), a class which naturally includes all circular domains and
all strictly convex domains of C". As for C", each manifold of circular type is the
Remmert reduction of its blow-up at a fixed point z,, called center, and it has a
Monge-Ampere C°-exhaustion, whose corresponding soul consists only of the center
Zo-

Examples of Monge-Ampere manifolds with souls containing more than one point
are given by the so-called Morimoto-Nagano spaces. They are the complex mani-
folds (N, J), in which N = T(G/K) is the tangent bundle of a CROSS G/K and
J is the GC-invariant complex structure, determined by the natural identification of
T(G/K) ~ G°/K®. A Morimoto-Nagano space (N, .J) is equipped with a Monge-
Ampere exhaustion 7 : T(G/K) — [0, +00) for which 771(0) coincides with the zero
section of N = T'(G/K) and is therefore a totally real manifold of maximal dimension.
In these examples, the exhaustion is actually C* at all points and the manifold is the
Remmert reduction of itself.
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3. Monge-Ampeére exhaustions of almost homogeneous manifolds.

3.1. Almost homogeneous manifolds with cohomogeneity one actions.
Let M be an n-dimensional complex manifold and G a real Lie group of biholomor-
phisms of M, which acts on M of cohomogeneity one, that is with principal orbits that
are real hypersurfaces of M. Since any principal orbit G-z is a real hypersurface of a
complex manifold, it is naturally equipped with a G-invariant induced CR structure
(D, J) of hypersurface type. If all principal G-orbits are strongly pseudoconvex, we
say that the cohomogeneity one action is of strongly pseudoconvex type.

A notion that is strictly related with the cohomogeneity one actions is the follow-
ing. Let G be a complex Lie group of biholomorphisms of M. The complex manifold
is called almost homogeneous for to the GC-action (shortly, almost G¢-homogeneous)
if there is a GC-orbit which is open and dense in M.

It is clear that any homogeneous complex manifold M = G®/H is almost homo-
geneous, but there are many examples of almost homogeneous manifolds that are not
homogenous. Many such examples are indeed offered by cohomogeneity one actions.
Assume that G C G€ is a compact real form of a reductive complex Lie group G©
and that there is a cohomogeneity one G-action on a compact complex manifold M.
If x € M is a regular point for the G-action, the GC-orbit G®-z is a complex sub-
manifold of M containing the real hypersurface G-x. It is therefore open in M. As
a consequence of standard facts on the orbit space of cohomogeneity one actions (see
e.g. [7,28, 29]), one can see that such open orbit G-z is dense but, in general, not
equal to M. More precisely, G¢-2 = M if and only if the real Lie group G has no
complex singular orbits in M.

3.2. Three important classes of almost homogeneous manifolds. We now
focus on a special class of compact almost homogeneous G¢-manifolds with a compact
real form G C G© acting of cohomogeneity one.

Let M be a compact complex manifold with a cohomogeneity one holomorphic
G-action of strongly pseudoconvex type. Each principal G-orbit N = G- C M has
the following two important properties:

— it is a compact homogeneous G-manifold, identifiable with a coset space N =

G/H,

— it has an induced G-invariant strongly pseudoconvex CR structure (D, J).
The classification (up to coverings) of compact homogeneous CR manifolds
(G/H, D, J) with these two properties has been determined in [2, 3]. From this clas-
sification and other important properties of almost homogeneous manifolds, proved
in [14, 15, 1], in principle one can get a complete description of all compact almost
G®-homogeneous manifolds M with cohomogeneity one G-actions of strongly pseu-
doconvex type. Such description is given explicitly in [29] under the assumption that
the first Betti number is b;(M) = 0. As it is pointed out in [1], the cases with
b1 (M) = p # 0 are fibered bundle over p-dimensional complex tori, with a fibre M’
which is an almost homogeneous manifold with b (M) = 0.

According to [29], any compact almost homogeneous manifold M with strongly
pseudoconvex, cohomogeneity one G-actions and with by (M) = 0 belongs to one of
the following disjoint three classes. Here, the complex structure J of M is the natural
G-invariant complex structure.

3.2.1. Almost homogeneous manifolds with two ends. Consider the CP!-
bundles of the form

7:M=G"xp,CP' — G°/P, (3.1)
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where:
a) GC/Pis a flag manifold (i.e. a homogeneous quotient of a complex semisimple
Lie group GC by a parabolic subgroup P C G©), equipped with a compact
real form G C G® and a fixed choice of a G-invariant Kihler metric g on
G/ P;
b) p: P — Aut (CP') is a biholomorphic action on CP?! of the isotropy group
P, such that p|gnp : GNP — Aut (CP') coincides with the standard coho-
mogeneity one action of T' = p(G'N P) on CP!.
For each such CP!'-bundle, the compact real form G C G* acts transitively on the flag
manifold F = G®/P and of cohomogeneity one on M. There are exactly two singular
G-orbits, say S, S’, both of them complex and G-equivalent to the flag manifold F =
G®/P = G/GNP. Their intersections with a fibre of 7 : M = G®xp ,CP' — G®/P
are the two singular orbits of the standard action of 7" on CP'. The action of G©
has three disjoint orbits: Meg := M \ (S US’) (which is open and dense), S and 5.

A manifold of this kind is usually called with two ends, since any singular G-orbit
that is complex is referred as an end of the manifold. It is known that any other
almost homogeneous manifold, which satisfies the above conditions and for which
there are two complex singular G-orbits, admits a blow up, which is G-equivalent to
CP!-bundles described above ([29], Thm. 2.4). We shortly call such manifolds almost
homogeneous manifolds with two ends and those as in (3.1) in canonical form.

The simplest example in this class is the blow up CP" of CP" at a point [z,].
Indeed, it is an almost homogeneous manifold with two ends with

G=SU,, G®=SL,(C),
G¢/P:=SL,(C)/P~CP" ',  where P:={A€SL,(C) : Az, = z,}

The singular G-orbits are both biholomorphic to CP™~!, one given by the exceptional
divisor at [z,], the other by the hyperplane 7, = {[z] : € (z,)*}.

3.2.2. Compactifications of Morimoto-Nagano spaces. It is the class of
compact complex manifolds, given by the infinite sequences of manifolds

CcP™, Q"={[z]eCP"" : !22=0}, CP"xCP"™, Gry2,(C),
together with the Cayley projective plane
EIII = Es/SO2-Spiny .

Each of these manifold is a G-invariant compactification of a Morimoto-Nagano space
for an appropriate compact simple Lie group G. More precisely,
a) CP™ is the SO, -invariant complex compactification of TRP™,
b) Q" is the SO, -invariant complex compactification of T'S™,
¢) CP"™ x CP™ is the SO,,-invariant complex compactlﬁcatlon of TCP™,
d) Gra,2,(C) is the Sp,,-invariant compactifications of THP",

e) EIII is the F-invariant complex compactification of TQP2.
In all these cases, G acts of cohomogeneity one of strongly pseudoconvex type. There
are two singular G-orbits, one complex, the other totally real. The former is the
complex manifold which is complementary to the tangent bundle T'S of the CROSS
S = G/K, the latter is the zero section of T'S and is therefore identifiable with
S = G/K. Since only one singular G-orbit is complex, these manifolds are said to be
with one end.
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We remark that, by the results of Morimoto and Nagano ([19]), C™, the unit ball
B" C C™ and the Morimoto-Nagano spaces are the only Stein manifolds on which
there is a biholomorphic cohomogeneity one action of strongly pseudoconvex type for
a compact Lie group G. This is one of the main reasons of interest for this class.

3.2.3. Almost homogeneous manifolds with one end of mixed type. This
class consists of the almost homogeneous manifolds constructed as follows. Let G' be
a compact Lie group and M a homogeneous G-bundle of the form

7 M =G xXago, F — G/Gq, (3.2)

where the basis G/G, the fibre F' and the representation p : Gg — Aut (F) form one
of the triples listed in Table 1. There, the map p is indicated only by the group p(Gg),
which in all cases has to be considered as a group of projective transformations of a
projective space CP*® or CP*+!, depending on whether F = CP® or F = Q° C CP**!,

The almost homogeneous manifolds of this class are those having the form (3.2)
together with all other complex G-manifolds with exactly one complex singular G-
orbit and admitting a manifold M as a blow-up along such G-orbit. By a direct
inspection of the Levi forms of the regular G-orbits (they can be determined from the
explicit descriptions in [4]), one can check that all of them are of strongly pseudoconvex
type. Each manifold of this third class has two singular G-orbits S,S’, the first
complex, the second neither complex nor totally real. However, the intersection of S’
with each fibre F,, = m~!(z) (which is an almost homogeneous space of the second
class) is a totally real submanifold G-equivalent to RP™ or S™. Due to this, the
manifolds of this third class are called with one end and of mized type and those as
in (3.2) in canonical form.

] G/Gq | 7| @ |
Il SUn/ S(UQ X Un_g) (CP2 SOg
I SU,/S(Us x Up_s) Q2 SO
II (SUP/ S(U2 x Up—2)) X (SUq/S(U2 X Uq—2)) cp3 804/22

p+qg>4
111 SU,/S(Uyx Up_y) n>4 CP? | SOg¢/Zs
IV, SO10/S05 x SOs CP7 | SOs/Zs
1V, S010/SO2 x SOg Q7 SOg
Vi Eg /SO2 x Spiny, CP? | SO10/Zs
Vs Eg /SO2 x Spiny Q° | SOy
TABLE 1.

REMARK 3.1. From Table 1, cases I and III are the only ones with no counter-
parts with quadrics as fibers. The reason becomes manifest if one recalls how Table 1
derives from the previous results on almost homogeneous manifolds and homogeneous
CR structures.

By [15], if a compact almost homogeneous G®-manifold M has a cohomogeneity
one G-action and just one end, then it is either a compactification of a Morimoto-
Nagano space or a fiber bundle over a flag manifold G/Gg. In this second case,
the fiber F' is either a compactification of a Morimoto-Nagano space or admits a
cohomogeneity one G-action with a single isolated fixed point. Since each regular
G-orbits in M are homogeneous compact CR manifolds, up to a covering, all of them
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are further constrained to be G-equivariantly equivalent to a Levi non-degenerate
homogeneous CR manifolds of the classification in [2].

This last fact gives a lot of restrictions on the group G and the fiber F'. In fact,
one gets that there are very few possibilities for the triples (G/Gq, F, p(Gg)), in which
F must be either CP* or Q% C CP*™! with s = 2,3,5,7 or 9, the group p(Gq) either
SOs/Z or SO and G/G g must be one of the five possibilities appearing in Table I, one
per each of the five possible cases for the dimension s of F. An additional restriction
comes from the fact that G must admit a representation p : Go — Aut (F) with
p(Gg) = Gg/kerp equal to SO,/Zy or SO,. For all five cases for s, there exists a
closed normal subgroup N C G so that Gg /N = SO,/Zs, but only for three of them
there exists a normal subgroup N so that Ggo/N = SO,. Cases II and I11 are those
where there is no such normal subgroup.

3.3. A new class of Monge-Ampere spaces. From now on, we restrict to
the complex manifolds described in §3.2.1, §3.2.2 and §3.2.3. For each of them we
refer to G as the group of the cohomogeneity one action.

As we already mentioned, on each such manifold at least one of the two singular
G-orbits is complex. Let S C M be such orbit and denote by M, := M \ S its
complementary set. By definition, it is a complex manifold, on which

— G has a cohomogeneity one action of strongly pseudoconvex type;
~ G© acts either transitively on M, (this occurs when the second singular G-
orbit S’ C M is not complex) or with an open and dense orbit.
In addition to this, the following crucial property holds.

THEOREM 3.2. Let M be one of the almost homogeneous GC-manifolds described
in §83.2.1, 3.2.2, 3.2.3 in canonical form and S = G-x C M a complex singular
G-orbits. Then:

1) The complementary set M, = M \ S admits a G-invariant Monge-Ampére
exhaustion T : M, — [0,00);
ii) This exhaustion is the unique (up to a scaling factor) G-invariant Monge-
Ampére exhaustion T satisfying the following three conditions:
a) it satisfies (2) of Definition 2.1 with f(t) = log(t) in case both singular
G-orbits of M = M, U S are complex and f(t) = \/t otherwise;
B) the level set {T = 0} coincides with the second singular G-orbit S’ of M ;
v) if 8" is not complex, then u = for = /T admits a continuous extension
at each point x, € {T = 0}; if S’ is complex, then for each x, € {T = 0},
there is a system of complex coordinates z = (2°) centered at x,, in which
u = for =logT has a logarithmic singularity at z,, i.e.

u(z) =log7(z) =log|z]| + O(1) .
Thus, any Remmert reduction M, of one such manifold M, is a Monge-Ampére space.

We remark that this theorem gives a whole new class of examples of Monge-
Ampere spaces (X, 7). Indeed, all known examples of Monge-Ampere spaces are
complex n-dimensional manifolds with a soul S, which is either formed by an isolated
point (it is what occurs in a manifold of circular type) or a totally real submanifold
of maximal dimension, i.e. with dimg S = %dimR X (it is the case of the Morimoto-
Nagano spaces). But, by the above theorem, we see that each manifold M, = M \ S
determined by a manifold M in canonical form of the third class has a Remmert
reduction which is a Monge-Ampére space with a soul S that is neither a point nor a
totally real submanifold of maximal dimension.
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The proof of Theorem 3.2 is based on some properties of almost homogeneous
spaces, which we recall in the next subsections. We begin by introducing some addi-
tional notation.

3.3.1. Notational issues. Let GC be the complexification of the semisimple
Lie group G and g = Lie(G), g = g+ ig = Lie(G®). We denote by B the Cartan-
Killing form of g€ and for any subspace v C g©, we indicate by v' its B-orthogonal
complement in g&. The same notation is used for the B-orthogonal complements of
subspaces of g. R

For each X € g© = g +ig C Lie(Aut (M,)), we denote by X € X(M,) the
corresponding infinitesimal transformation of M,, i.e. the unique complete vector
field whose flow ®X, t € R, is the family of diffeomorphisms

OX M, > M,,  ®F(x):=exp(tX)a .
We recall that the map T g¢ — X(M,) between g€ and the space of vector fields
of M, is an injective anti-homomorphism of Lie algebras, i.c. [X,Y] = —[X,Y] for all
X,Y € g“.

Consider now a regular point z, € M, and identify G-z, with the coset space
G-z, = G/L with z, ~ e-L. We recall that the surjective linear map

19— Ty (Gwp) = Ter,G/L | (X)) = X|a,

induces an isomorphism between the vector space [ C g, complementary to [, and the
tangent bundle of G-z, at x,. In the following, we constantly use such isomorphism
to identify these vector spaces. In this way, the subspace D, C T, (G-z,) and the
complex structure Jy_ : Dy, — D, of the CR structure (D, J) are identified with

— an Adg-invariant codimension one real subspace m C [*+;

— an Adp-invariant complex structure J : m — m.
Choosing a unitary vector Z € [- Nm™ (it is Adz- invariant and unique up to a sign),
we get an Ady-invariant decomposition

g=Il+F=1+m+R2Z). (3.3)

Using the fact that D is contact, one can show that [+ RZ = Cy(Z) (see e.g. [4],
§3.1).
3.3.2. Distinguished curves in the above three classes of almost ho-

mogeneous manifolds. Consider now the infinitesimal transformation JZ = iZ
corresponding to iZ € g© and let

n:R— M, , N = exp(itZ)-x, = fI)tJE(xO) .

By Thms. 3.4 and 3.7 in [31], the curve 5 has the following crucial properties.

(1) It intersects each regular G-orbit of M, = M \ S; in fact, there exists a
G-invariant Kéhler metric g on M, with the property that 7; is a reparame-
terization of a geodesic of g orthogonal to all regular G-orbits.

(2) If S € M is the only complex singular G-orbit, then n intersects the non-
complex singular G-orbit S’ C M,; in this case, there is no loss of generality
if we change the starting point of 7 and assume that =, = 79 is in 5.

(3) If both singular G-orbits S, S’ are complex, then 7 intersects neither of them;
however lim;_, 4 1 is either in S or S’; changing Z into —Z, we may always
assume that lim;_, o n; € 5.
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(4) Each element in the isotropy Gy, of a regular point 7, fixes all other points
of the curve; this implies that the space [+ ~ T, G- is the same for all
G-regular points of the curve 7; there is also a canonical isomorphism D,,
between the spaces D,,, of the CR distributions of the G-orbit G-n;, so that
they are all identifiable with a fixed vector subspace m C [+, independent on
t.

(5) If M = M, U S is an almost homogeneous manifold with one end and of
mixed type, then 7, is entirely included in a single fiber of the projection
m: M — G/Gq over the flag manifold G/G¢ described in Table 1.

3.3.3. The distinguished curves of Morimoto-Nagano spaces. Assume
now that M = M, U S is the compactification of a Morimoto-Nagano space, so that
M, =TS’ for a CROSS S’ = G/K. Let t = Lie(K) and g = ¢ + p the corresponding
B-orthogonal decomposition of g. We recall that M, = T'S’ is G-equivariantly identi-
fiable with T'S" ~ G x g, p. with p(K) = Adg |, and that the G-invariant complex
structure of T'S’ is the pull-back J = ¢*(.J,) of the complex structure J, of G¢/K®
by means of the G-equivariant diffeomorphism

0TS =G xppp— GE/KS, ([(g, X)]k) = exp(iX)-gK® . (3.4)

An explicit expression for J has been determined by Stenzel in [32] (see also [20]) and
it can be described as follow. Let

T:GXp—=GXKg,p

be the natural quotient map. Then, for any (g, X) € G xp, the vectors v € T(y x)(G x
p) can be described as pairs v = (Y|4,V), with ¥ € g and V € p. Consequently,
for each w € Ty x), (G Xk p), there is a (non-unique) element (Y|, V) ¢
T(gyp)(G X p) with

T (Y|, V) =y

By [32], the tensor Ji¢, x)), is the unique endomorphism of Tj(, xy,, G Xk, p such
that
T(w) = 1o (T) (V) + Tic(adx (YOI | T (V)

sin adX (35)

-1
with Tx = < ) ocosady ,

adX

where for each E € g = £+ p, we denote by E*, E¥ the B-orthogonal projections into
t and p, respectively, and the notation sinadx, cosadx, etc. stand for the operators
defined by power series. Note that for each X in p or in ¢, the linear operators

sinad x

g—g and cosadx : g — g

adX
are invertible, even and preserve €, p. So, also Ty is invertible, even and preserves ¢
and p.

With the help of this information we may now give an explicit description for the
curve i : R — T'S’, described in §3.3.2. For simplicity, assume that the identification
TS’ ~ G xg,pp is done in such a way that the G-regular point y, = m1 € M, \ S has
the form

Yo = (e, Xo)lx for some 0# X, €p.
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Then, the isotropy subalgebra [ := g, of G at y, is [ = ¢nker(ady,). Moreover, since
S’ = G/K has rank one, we know that ker(adx,) Np = RX, so that the linear map

adx, [pn@x)L 1 PN (RX,): — ¢

has trivial kernel. Consider now the vector subspaces p1, pa, m’ of g = £+ p defined
by

pro=pn(RX,)"Cp, pri=adx,(p1)Ct, m:i=p+ps.

LEMMA 3.3. The subspace W' coincides with the adx, -invariant orthogonal com-
plement m’ = ({+ RX,)*. This also implies that adx, (p2) = p1.

Proof. Since [l, X,] = 0 we have that B([,p2) = B(l, [X,p1]) = =B([l, X],p1) =0,
ie. py C [+, This, together with the fact that p, C € C (RX,)*, implies that
m’ =p; +po C (I+RX,)L. The equality follows by counting dimensions. [

By this lemma, we have [+ = RX, + m’. On the other hand, for each Y; € py,
Yo € po,

0 V)t = XDt Y2)) (e Xo)l i,y =
=T, (% (exp(t(Y1 + Y2)), X,) \t_()) = T (Yi]e + Yae,0) .
Hence, by (3.5)
T+ Y2) (e = (T, (adx, (V2)le 5 T, (V1)) - (3.6)

We now observe that, since Tx, is a series of even powers of adx,, by Lemma 3.3, it
preserves p; and ps. Hence, both Y{ := Tx, (adx(Y2)) and Yy := Tx, (Y1) are in p;.
Moreover, since adx, |p, : P2 — p1 is a linear isomorphism, there exists Y3’ € py C ¢
such that Y = —[Yy’, X,]. It follows that the vector (3.6) can be written as

J(¥1+ YQ)[(G,XO)]K =m(Y'le, —[¥3, Xo]) = m(Yi]e + Y5l , Xo) = (3.7)

=M +Y2) (e x0 )k -
This implies that under the natural isomorphism
1:RX,+m' — Ty (TS,

the complex structure of the CR structure (D, J) of TGy, preserves the subspace m’.
By counting dimensions it follows that m’ coincides with the .J -invariant subspace m
of I and that m = +Z. From this and (3.5), we also get that JZ|. x ), =
Ty (0, %) Since the integral curve 1, of JZ satisfies the conditions ny =

[(e,0)]x and m1 = [(e, X,)] Kk, we get that

Xo=2, JZ|exye =7 (0,2) , ne=[(e;tZ)]y - (3.8)
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3.3.4. Proof of Theorem 3.2. We have now all ingredients for the proof. Con-
sider the function 7 : M, \ S’ — R defined as follows. Let 7 : R — M, be one of the
curves defined in §3.3.2 and, for each x € M, \ S’, let us denote by (g(x),t(z)) some
pair in G X R with

= g(x)Nyz) - (3.9)

By property (1) of n, such a pair surely exists, but is in general not unique. Indeed,
g(x) is determined up to composition with some h € L = G, while ¢(z) is unique in
case S’ is complex and determined up to a sign in all other cases. Then, we set

et if 8 is complex ,
T:M,\S" — (0,+00) , T(x) == (3.10)
(t(x))? if S is not complex .

By construction, 7 is G-invariant. We claim it is also C*°. By G-invariance, the claim
is proven if we show that 7 is smooth at each fixed y, := n:,, 0 < t, < co. For this,
consider the decomposition g = [+ RZ 4+ m, with [ := g, , described in (3.3), and
let ggo C g© be the isotropy subalgebra at y, of the complexified group G®. Further,
denote by n the 2n-dimensional real subspace n := m +RZ 4+ R(iZ) C g, which is
complementary to ggo, and choose a real basis (Fi,. .. Fy,) for n with Fy, :=1iZ. We
define exp, : R?" — M, by

é}zf)yo (yla ce ’an) ::(eylFl e ey2"71F2n,1ey2"F2n).

:(eylFl . ey2”71F2n71)

Yo (3.11)

'7’]to+y2n .

Since n is complementary to ggo, the Jacobian at 0 at %yo is invertible, so that,
by the Implicit Function Theorem, the map e/if)yo gives a diffeomorphism between a
neighborhood V of 0 € R?" and a neighborhood U of 3, € M,. We therefore have
that the inverse

¢ =(5p,,) "t U — V CR™

is a system of real coordinates & = (y*,...,y*") near y,. Since V' Fr eV Fan g
always an element of the real Lie group G, from (3.11) we see that for each element
y € U we may choose as (g(y), t(y)) the pair

g(y) - eylFl o ey2"71F2n71 5 t(y) = y2n + 5 .
Hence, for each y € U,

e~ W W) if §' is complex |

(y) =
(y*"(y) +t,)* if S is not complex ,

from which it follows immediately that 7|y is of class C>°, as desired.

We now want to show that for any given point y € S’, there exists a smooth
extension of 7 on a whole neighborhood of ¥, so that we may consider 7 as a smooth
real function over the whole M,. The proof of this property is divided into two cases.

Case 1: the singular G-orbit S’ is not complexr. Under this assumption, either
M, is a Morimoto-Nagano space or M = M, U S is an almost homogeneous manifold



MONGE-AMPERE EXHAUSTIONS 535

with one end and of the mixed type. Assume that the first holds, i.e. M, = TS’
for a CROSS of the form S’ = G/K. By §3.3.3, M, ~ G Xk p and n; is identifiable
with a curve ) for some unitary Z € p. Then, by G-invariance of the norm
Il == \/—B , for each z = [(¢,Y)]x € TS\ {zero section}, we may choose as

(9(z), t(x)) the - palr
g(x) =g,  Ha)==|Y]*.
This implies that the map 7: M, \ S’ = G xk (p \ {0}) = R has the form
(9. V)lx) = Y] = -B(Y.Y)

which can be directly checked to be C> over the entire T'S’ ~ G xx p ~ G¢/KC.

Assume now that M = M, U S is an almost homogeneous manifold of the third
class. Then M, is a G-homogeneous bundle over a flag manifold G/Gq, with fibers
given by Morimoto-Nagano spaces. By G-invariance of 7 and the fact that curve 7
is entirely contained in a single fiber 771(z,), z, € G/Gg, the smooth extendibility
of 7 at the points of the singular G-orbit S’ is equivalent to the smooth extendibility
of the restriction of 7|,-1(, )\ s to all points of m~*(z,). And this is checked by the
same above argument.

Case 2: the singular G-orbit S’ is complex. In this situation, the manifold M
has two complex singular G-orbits S, S’ and, since it is in canonical form, both of
them have real codimension two. By G-invariance of the function 7, there is no loss of
generality if we assume that the point y € S’ around which we need to show that 7 is
smooth, coincides with the limit point y = lim;, o 7;. Let K = G, be the isotropy
at y, so that the singular G-orbit S’ is identifiable with S’ = G/K. Note that, by
property (4) of  and a dimensional argument, if g = [+m+RZ is the decomposition
(3.3) corresponding to the regular point z, =19 € M, \ S’, then £ = [+ RZ.

Consider a K-invariant Kihler metric g on M and let V = (T,5")% be the 2-
dimensional g-orthogonal complement to 1,5’ in T, M,. Since S’ is complex, V is
J-invariant. Denote by exp, : V' — M the restriction to V' of the exponential map of
(M, g) at y.

By standard facts on proper actions (see e.g. [7, 12, 28]), the isotropy repre-
sentation of K on Ty, M preserves V and acts linearly and isometrically on V' with
codimension one regular orbits. It also preserves the complex structure J, = Jy|v.
Hence, we may identify (V, J,, g,|v) with (C, J,, (-, -)), where (-, ) is the standard Eu-
clidean product, so that the representation of p : K — GL(V') is such that p(K) = S*.

Consider the linear bundle 7 : G xxg C — S’ = G/K. Tt is known that there
exists a K-invariant neighborhood & C V of the origin such that the map

0:GxgU— M, , o([g,v]Kk) := exp,., (v) = g-exp, (v) (3.12)

is a G-equivariant diffeomorphism between G'x kU and a neighborhood V = o(G'X xU)
of S" in M,. By construction, the singular orbit S’ coincides with the image by ¢ of
the zero section G x i {0} and the action of €®% on p(U) corresponds to the action
on G X g U defined by

.09, Ol = [(9.€" )]k

This yields that the infinitesimal transformations Z . J 7 = GZ ) determine on each
fiber {g} xx U ~U C C of G x U the (real) vector fields of C ~ R?
-0

CC (9_67
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The flow of JZ in {9} xxk U ~U C C is then given by
e/ 7 (0) ="l .

From this, we see that n corresponds to the curve on G X x U

T = 90_1(7775) = [(ev e_tCO)]K where (, is such that [(67 CO)]K = 90_1($0) .

So, for each x = ¢([(9,¢)] k), ¢ # 0, in ©(U), we may choose (g(z),t(x)) as the pair

2
s =g )0 =—zlo (L)

Hence, for all points of V' \ §" ~ o(G xk (U \ {0})), the function 7 is such that
1
ez
IS0l

and it is clearly smoothly extendible at all points of V ~ ¢(G x x U), as claimed.

We now want to show that, in all cases, the map 7 : M, — [0, +00) satisfies (1)
and (2) of Definition 2.1. For this, consider the distributions Z, H C T(M, \ S'),
defined by

(o([(g,O]x) = CI¢)?  with C:=

2,:=(Zp,JZ),  H,=D,, xeM,\S5,

where Z is the unitary element of g, appearing in (3.3), which is B-orthogonal to the
isotropy I = [, and to the space m ~ D, corresponding to the CR structure of the
orbit G-z. Note that such Z € g does depend on x and, for the sake of clarity, it will
be later denoted by Z(z).

A direct check shows that Z and H are dd°r-orthogonal and that, for each =z,
the restricted 2-form dd°7, |y, x#, is (up to a multiple) the Levi form of the G-orbits
G-z, hence strictly positive. So, for (1) of Definition 2.1, we just need to show that
dd°T|z,xz, is positive at each © € M, \ S’. For this, we first observe that the
distribution Z is integrable and its integral leaves are the orbits in M, \ S’ of the
complex Lie groups exp(CZ(x)). Hence

ddcT|ZI><Zz = ddc(ﬂexp(CZ(m))m)Lﬂ . (313)

By previous discussion,

T|exp(CZ(;E))»w = Cv|<|2 or T|exp(CZ(;E))»w = O(Im <)2 ) (314)

the first occurring when M = M, U S has two complex singular G-orbits, the second
in all other cases. From (3.13) and (3.14), we get dd°7T,|z,xz, > 0 in all cases, as
desired.

In order to check (2) of Definition 2.1, we first observe that for any smooth
function f : (0,+00) — R with nowhere vanishing differential df, we have dd¢(f o
T)|#. x1, > 0 at each point z. Therefore, by (3.13), property (2) holds if and only if
there is such an f with harmonic restrictions f o T|Cxp(cz(x)). By (3.14), we see that
f(t) =log(t) and f(t) = /t satisfy the request in the two cases. This concludes the
proof of (i).

It remains to prove (ii). Let 7/ : M, — [0, +00) be a G-invariant Monge-Ampere
exhaustion of M, satisfying («), () and (). Since dd°7’ and dd°(logo7’) are both



MONGE-AMPERE EXHAUSTIONS 537

positive on the CR distributions of the regular G-orbits (which are level sets of 7/ and
f o7’ and are strongly pseudoconvex), due to (a) the restrictions log o7’|exp(cz(2))-»
or V7' |Cxp(¢; Z(z))-x are necessarily harmonic. They are also constant along the sets
exp(RZ(z))-x, which are the intersections of (exp(CZ(z))-x) with the G-orbits.

Let us first prove that all this implies (ii) when M = M, U S has two ends. By the
proof of (i), we know that each orbit exp(CZ(z))-x is identifiable with C\ {0}, so that
the group {exp(¢Z(z)),( € C} corresponds to the group {D¢(z) := €'z, ¢ € C}.
Under such identification, the restriction log o1’ |Cxp(cz(z))_x is an harmonic function
of C\ {0} depending only on the distance from the origin. It has therefore the form

log o7’ (exp(CZ(z))-x) = ay + 2b, log(|¢]) for some constant a,, b, € C , so that
7' (exp(CZ(2))-x) = e (|C|?)% with ¢, == e .

Condition () and G-invariance imply that b, = 1 and that the constant ¢, does not
depend on z. From (3.14), (ii) follows in this case.

We now prove that (ii) holds when M has only one end. In this case, each orbit
exp(CZ(z))-x is identifiable with a quotient C/T" with I' group of real translations
I' = {Ty(z) := 2+ 27k( , k € Z}. Under this identification, the group {exp(¢Z(z))
acts on such orbit as the group of complex translations {T'(z) := z+ ( , ¢ € C} and
the restriction v/7/ lexp(CZ(x))- 18 identified with an harmonic function of C/I', which
is constant on the lines {Im(z) = ¢}, ¢ € R. Hence

/71 (exp(CZ(x))-x) = ay + 2b, Im(C) for some constant a,, b, € C .

Condition () and G-invariance imply that a, = 0 and that the constant b, does not
depend on z. From (3.14), claim (ii) follows also in this case.

4. Deformability versus Rigidity. As we already mentioned, Theorem 3.2 is
a source of several new examples of Monge-Ampere spaces. On the other hand, the
previously known examples include two important families of Monge-Ampere spaces,
the manifolds of circular type and the Grauert tubes, having the following contrasting
properties: the first can be all considered as deformations of C™ or B™ ([24, 26]), while
the second are characterized by strong rigidity results ([18]). Motivated by this, in this
final section we investigate whether also the new examples enjoy manifest deforma-
bility (or rigidity) properties. Let us begin by fixing the meaning of “deformability”
for a Monge-Ampere space.

4.1. Riemann mappings and deformations of modeling spaces. Let X
be a Monge-Ampere space, which is a Remmert reduction 7 : X — & of a complex
manifold X with Monge-Ampere exhaustion 7 : X — [0,7T). Let alsou = for: S = R
be a function satisfying the conditions 2i90u > 0 and (99u)™ = 0, and S = 7(771(0))
the soul of X. We recall that X'\ S is a complex manifold, naturally identifiable with
X\ 771(0), so that both exhaustions 7 and u are well defined and smooth on X\ S.

We now observe that all local properties of exhaustions 7 and u on the manifold
X\ S, which have been proven in the literature for some specific cases (as, for instance,
when X is a manifold of circular type or a Morimoto-Nagano spaces — see e.g. [34,
23, 25, 27]) are valid for any Monge-Ampere space X. In particular, one can directly
check that there is always a well defined vector field Z on X' \ S that satisfies the
condition

dd‘T(JZ,JX) = X (1) for any vector field X e T(X\S) . (4.1)
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For the spaces of Theorem 3.2, this vector field verifies Z, = :I:Z(?)m at each = €
M,\S’. By J-invariance of the 2-form dd°r and integrability of the complex structure
J, the vector field Z is tangent to each level set 7=%(c), ¢ € (0,T), and Z and JZ
generate a J-invariant, integrable 2-dimensional distribution Z C T'(X \ S), called
Monge-Ampeére distribution. A direct computation shows that it coincides with the
distribution defined by Z, = ker dd“u|, at each z € X'\ S.

The foliation F, given by the integral leaves of Z, is called the Monge-Ampére
foliation of (X, 7). The closures in X of these leaves sometimes form a regular folia-
tion, sometimes not. However, in all known examples, the closures of their lifts on the
manifold X" always form a regular foliation of X'. For brevity, when this property oc-
curs we say that the Monge-Ampere foliation is X -regular. For the spaces in Theorem
3.2, the Monge-Ampere foliation F consists of orbits in M, \ S’ of the 1-dimensional
complex groups exp(CZ(x)) and, in all such cases, F is M,-regular.

It is clear that if ¢ : X — X’ is a biholomorphism between two Monge-Ampere
spaces (X, 7), (X', 7') with 7 = 7/ 0 ¢, then ¢ maps biholomorphically each leaf of
the Monge-Ampere foliation of X into a corresponding leaf of the Monge-Ampere
foliation of X’ . In certain cases this property admits an inverse, in the sense that if
¢ : X = X' is an homeomorphism with 7 = 7’0o and mapping biholomorphically each
Monge-Ampere leaf of X' into a corresponding leaf of X’, then ¢ is a biholomorphism
provided that certain additional hypothesis are satisfied. Stoll’s characterization of
C™ and Lempert and Szoke rigidity theorems for Grauert tubes can be considered as
examples of such kind of property. All this motivates the next notion.

Consider a fixed Monge-Ampere space (X,, 7,), which we call model from now on.
Let also 7 : 2?0 — X, be the Remmert reduction that determines the Monge-Ampere
space X, and denote by S, and F, the soul and the Monge-Ampere foliation of X,
respectively. We assume that F, is X,-regular, as it occurs in all considered examples.

DEFINITION 4.1. Let (X, 7) be a Monge-Ampere space, Remmert reduction of a
complex manifold X with soul S and X- regular Monge-Ampere foliation F. We say
that (X, 7) is modeled on (X,, 7o) if there is a homeomorphism ¢ : X, — X such that
To = T 0 @ and:

i) olans, @+ X\ Sy = & \'S is a diffeomorphism mapping biholomorphically
each leaf of F, into a leaf of F; B
ii) the restriction ¢|x,\s, lifts to a diffeomorphism ¢ : X, \7~* ( o) — X\w L)
which smoothly extends to a diffeomorphism between the X and X.
Any such homeomorphism ¢ : X, — X is called Riemann mapping of X. The spaces
that are modeled on (X,,7,), but are not biholomorphic to X, are called non-trivial
deformations of the model.

4.2. Soul rigidity, soul semi-rigidity and free deformability. Looking at
the known examples, there are models with a lot of non-trivial deformations and
others with no deformation with sufficiently regular Riemann mappings. For instance,
the results in [5, 16, 24] show that any smoothly bounded strictly convex domain in
C™, not biholomorphic to B", is a non-trivial deformation of the standard unit ball
(B™, J,,||-||?). On the other hand, Stoll’s characterization of C* ([34, 8, 26]) shows
that there exists no non-trivial deformations of (C", J,,||||?) in the class of Monge-
Ampere manifolds with Riemann mappings of class C2. Known rigidity results for
Grauert tubes give uniqueness for the Riemann mappings from Morimoto-Nagano
spaces ([13, 18, 27]). For clarifying similarities and differences between all such results,
we now introduce the following notions.
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_ Let ¢: X, — & be a Riemann mapping from a model X, and denote by ¢ : /'FO —
A& the corresponding lifted diffeomorphism between the manifolds, which project onto
the two spaces by Remmert reductions 7, : &, — X, and 7 : X — X. Denoting
by J,, J the complex structures of X,, &, respectively, the diffeomorphism ¢ is a
biholomorphism if and only if for any tangent vector v € T, X,, x € &,

Px(Jo(v)) = Jopu(v) - (4.2)

It is now convenient to consider the following weaker conditions. We say that ¢ is:

1) a biholomorphism at the blow ups of the souls if it satisfies (4.2) for any vector
v € Tym, 1(S,) in a tangent space of the preimage 7 1(S,) of the soul S,;

2) a biholomorphism between the souls if it satisfies (4.2) for any vector v €
T,7,*(S,) in a tangent space of 7~1(S,) which projects onto a non trivial
tangent vector of S,.

The second condition is manifestly weaker than the first since it does not requires
that (4.2) holds for vectors that are in kerm,|,, y € 771(S,). Moreover, note that:

a) When X, is the Remmert reduction of some M, = M \ S, with M almost
homogeneous with two ends, condition (2) is trivial, since in this case the soul
is an isolated point and there are no non-trivial tangent vector for such soul.

b) When &,, X are Grauert tubes over two Riemannian manifolds (M,, g,),
(M, g), respectively, condition (2) coincides with condition (1) and it is equiv-
alent to require that the Riemann mapping ¢ induces an isometry between
(Mo, go) and (M, g).

¢) When &, and X are manifolds of circular type, as e.g. two strictly convex
domains in C", (2) is a trivial condition because of (a), while (1) is equiva-
lent to require that the Riemann mapping induces an isometry between the
Kobayashi indicatrices at the centers.

We now say that a model &, is

e soul rigid if any Riemann mapping ¢ : X, — X which is a biholomorphism be-
tween the souls is a biholomorphism between the two Monge-Ampere spaces;

o soul semi-rigid if it is not soul rigid, but nonetheless for any Riemann mapping
¢ : X, — X which is a biholomorphism at the blow ups of the souls is a
biholomorphism between the two Monge-Ampere spaces;

e fully deformable if it is not of the previous two types.

The quoted rigidity results for Morimoto-Nagano spaces and Grauert tubes can
be stated saying that those manifolds are soul rigid. On the other hand, the results of
[8, 23] show that (C™, ||-||?) is soul semi-rigid, while the examples in [5, 24, 26] show
that the standard unit ball (B",.J,, ||-||?) is a fully deformable model with a lot of
non-trivial deformations.

4.3. New examples of semi-rigid and fully deformable models. The fol-
lowing theorem gives a common framework for the so far known rigidity results on
Monge-Ampere spaces. It also indicates a new interesting class of semi-rigid examples
and, by the examples in §4.3.2 below, suggests the existence of a large new family of
fully deformable Monge-Ampere spaces.

THEOREM 4.2. Let M be one of the almost homogeneous manifolds in canonical
form, described in §§ 3.2.1, 3.2.2, 8.2.8, and 7, : M, = M \ S — [0,+00) the Monge-
Ampére exhaustion of Theorem 3.2. Let also M, be the corresponding Remmert
reduction of M,, equipped with the exhaustion induced by M,, which, for simplicity of
notation, we also denote by 7,. For any ¢ € (0,400, let M,(c) := {z : 1o(z) < ¢} be
the Monge-Ampere subspace with exhaustion To|aq,(c)- Then:
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i) if M has two ends, the space (My(00),7,) = (Mo, To) is soul semi-rigid; on
the other hand, there is an M with two ends for which all Monge-Ampére
spaces (My(c), 7o) with ¢ < oo are fully deformable;

i) if M is a compactification of a Morimoto-Nagano space, each Monge-Ampére
space (My(¢), 7o), 0 < ¢ < 00, is soul rigid;

iii) if M has one end and is of mized type, then each Monge-Ampére space
(Mo(e), 1), 0 < ¢ < 400, is soul semi-rigid.

The proof is crucially based on some properties of “deformation tensors” of certain
complex structures and on some known counterexamples to soul rigidity or semi-
rigidity. Before proving this theorem, we need to review such results in some detail.

4.3.1. Deformation tensors of deformed Monge-Ampeére spaces. As
usual, let X be a Monge-Ampere space, which is Remmert reduction of a complex
manifold X with Monge-Ampere exhaustion 7 — [0,T). Denoting by S the
soul of X', we observe that on X \ S (which always identifiable with the complemen-
tary set X \ 71(S)) one can consider the J-invariant distribution #, called normal
distribution, defined by

Mo ={ X eT,M : dd°7(Z,X), = dd°r(JZ,X), =0} . (4.3)

By non-degeneracy of dd°T on X'\ S, we have that T, M = Z, ®H, at each z € X'\ S.
Moreover, for each level set 771(c), ¢ € (0,T), the restriction H|;~1(c) coincides with
the J-invariant distribution of the induced CR structure (D = H|;-1(),J) of such
level set.

Consider now a Monge-Ampere space (X, 7) modeled on a manifolds (X,,7,),
and denote by J,, J the complex structures of the complex manifolds /'E,, )? of
which X, and & are Remmert reductions, respectively. Fix also a Riemann mapping
v X, — X, with associated lifted diffeomorphism ¢ : X, — X. As direct consequence
of definitions, @ sends the Monge-Ampere and normal distributions of X, \ S, into
the corresponding distributions of X'\ S.

We denote by J := @, *(J) the pull-back on X, of the complex structure .J. Clearly
@ is a biholomorphism if and only if J, = J.

We recall that, being a Riemann mapping, the map ¢ is a biholomorphism along
each leaf of the Monge-Ampere foliation. This mean that J,|z = J|z and that dif-
ferences between J, and J might occur only when they are restricted on the nor-
mal distribution H. On the other hand, at each point =, both complex structures
Joln,, J|m, + He — H, are determined by their (—i)-eigenspaces in the complex-
ification HS. Let us denote these eigenspaces by HO! and H'0!, respectively, and
indicate by H°', H'' ¢ H® the involutive complex distributions, determined by such
(—i)-eigenspaces. Their conjugate distributions (which are generated by the (+i)-
eigenspaces) are denoted by 0 = HOl and H/!0 = #/01,

We now observe that, for a fixed z, if the standard projection p : HE = H10 +
HI — HO' satisfies the condition p(H'%') = HO', then the space H'O' has the form

HU ={v=w+¢,(w), weH!} (4.4)

for some appropriate tensor ¢, € (H%')* @ H1°. The set & C X(c) of points x, for
which the condition p(H'%') = HI' holds, is open and we call it the regularity set of
J. The tensors ¢, combine to a smooth tensor field ¢ on U, called the deformation
tensor of J ([5, 24, 26]).
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The biholomorphicity condition can be now expressed in terms of the deformation
tensor ¢ saying that ¢ is a biholomorphism if and only if the regularity set U of J
coincides with X, and ¢ = 0.

We conclude this section recalling a crucial property of the distributions Z and H.
We remark that the normal distribution A is invariant under the flows of the vector
fields Z and JZ(= JZ), defined in (4.1). Due to this and the fact that Z°! + #/0! is
involutive (due to the integrability of J), for each vector field in Y € H|,

[ZOMY + (V)] = [2°" Y]+ 6([2°,Y]),  where 2" :=Z+iJZ .  (4.5)

So, if we denote by L an integral complex leaf of Z and by (e, ez := €3) is a frame
field for H® = H°+H! on a neighborhood of L, invariant under the complex flows of
Z, and if ¢ is a complex coordinate on L with 8% = (Z—iJZ) = ZOL, then (4.5) yields

that the components ¢>§| r of ¢[p in the frame (e,,eg) are holomorphic functions of

¢, ie.

B
% =0 ateachz € L .
¢ 1y

4.3.2. Counterexamples to soul rigidity and soul semi-rigidity. Assume
that M is an almost homogeneous manifold as in (i) or (iii) of Theorem 4.2. Then M
is a fiber bundle p : M — G /K over a flag manifold (G/K, Jg, k), with fiber F' equal
either to CP*! or to a compactification of a Morimoto-Nagano space. In all these cases,
the projection p is holomorphic with respect to the G-invariant complex structures J
of M and Jg/k of G/K. Now, given an open set Y C G /K, for which there exists
a holomorphic trivialization p~*(U) ~ U x F, we may consider a non-trivial non-
biholomophic diffeomorphism h : G/K—G/K mapping U into itself and satisfying
the triviality condition h|g/x\y = Id|q/x\y on the complement of /. Since p~H(U)
is holomorphically trivializable, we may construct a fiber preserving diffeomorphism
@ : M — M such that:

A) it projects onto h and is such that @[y ,-10) = Idap-1w);

B) it is holomorphic on each fibre of p : M — G/K and maps the level sets

77Yc) N F, of each fiber F, = p~!(z), z € U, into the corresponding level
sets 771 (c) N Fy(y) of the fiber Fj,,) =~ (h(x)).
Since all fibers F,, x € U, are identifiable one to the other by means of a holomor-
phic trivialization 7=}(U4) ~ U x F, a map that satisfies (A) and (B) can be easily
determined.

By construction, such diffeomorphism ¢ : M — M leaves invariant all submani-
folds M,(c) := =1 (M,(c)), ¢ € (0, +0cc], and its restrictions to them are all Riemann
mappings. But no such restriction is a biholomorphism. On the other hand, by con-
struction, it is a biholomorphism between the souls, since it satisfies (4.2) for any
vector v € wal(m)(w_l(so)) which projects onto some non trivial tangent vectors of
the soul S,, this being diffeomorphic to each of the zero level sets 7=1(0) N F}, of all
fibers of the fibration p : M — G/K.

Assume now that M is the blow up p : CP" — CP" of CP™ at some point x,. As
we already mentioned, this is an almost homogeneous manifold with two ends, acted
on by G = SU,, and such that the manifold M, = M \ S is naturally identifiable with
the blow up p : Cn — C" of C™ at the origin. In this case, the Monge-Ampere spaces
(My(c),7), 0 < ¢ < +o0, are identifiable with the balls B? C C™ of radius ¢ and
center at 0, equipped with the standard exhaustion |-||?. By [26], Cor. 6.2 and Thm.
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5.2, we know that there are Monge-Ampere spaces, biholomorphic to strictly convex
domains, which are non-trivial deformations of (B”, ||-||?) with Riemann mappings
that induce the identity map on the pre-images of the souls. This means that all such
Monge-Ampere spaces are fully deformable models. We expect that this property
holds for all models (M,(c),7), 0 < ¢ < 400, that are determined by the almost
homogeneous manifolds with two ends in canonical form.

4.3.3. Proof of Theorem 4.2. Let ¢ : M,(c) = X be a Riemann mapping
between one of the models (M,(c), 7,) considered in (i) - (iii) and a Monge-Ampere
space (X, 7). As usual, we denote by & : My(c) — X the associated lifted diffeomor-
phism and by J = ¢, !(J) the pull-back on M,(c) of the complex structure J of X.
We first want to prove that, for all models in (ii) and (iii), if ¢ satisfies (4.2) at all
tangent spaces of 771(S,), then the regular set U of J coincides with the whole M,(c)
and the corresponding deformation tensor ¢ vanishes identically, meaning that ¢ is a
biholomorphism.

We recall that the distributions Z and H are both J, and J-invariant and that
the complex structures J, and J agree on the vector fields in Z. Note also that
for each M,(c), the J,-invariant distributions Z and H, taken as distributions on
M,(e)\ 7 1(8) = M,(c)\ 9, extend smoothly at all points of M,(c). These property
imply that ¢ satisfies (4.2) at all tangent spaces of 771(S,) if and only if J, |3, = |,
at all points x € 771(S,) = S’. If this is the case, then the regular set U of the complex
structure J clearly includes the submanifold 7=1(S,) = S’, the deformation tensor ¢ of
J is well defined on a tubular neighborhood W of 7= *(S,) and the restriction ¢|,-1(s,)
is identically equal to 0.

Assume now that M = M,US is either a compactification of a Morimoto-Nagano
manifold or an almost homogeneous manifold with one end and of mixed type. In these
two cases, the leaves of the Monge-Ampere foliation of M,(c) C M, are (contained
in) orbits of the 1-dimensional Lie groups exp(CZ(x)) described in §4.1, and intersect
the pre-image 7= 1(S,) = S’ of the soul along sets, which have Hausdorff dimension
1. This fact, together with the holomorphicity of the components of ¢ in the complex
coordinate ¢ of each leaf L = {exp(¢Z(x))-z,( € C}, implies that if the Riemann
mapping ¢ is a biholomorphism at the blow ups of the souls, then the restriction ¢|r,
is identically equal to 0 along each such leaf L. This means that the regular set U of
J contains all leaves of the Monge-Ampere foliation, hence the whole U = M,(c), and
that ¢ vanishes identically on M,(c) as claimed.

We claim that the same conclusion holds also if M is as in (i) and the considered
model is (M,(c), 7) with ¢ = co. In this case the closure in M,(c0) = M, of a leaf L
intersects the pre-image 7~1(S,) in a single point. So, the previous argument cannot
be used to infer that the deformation tensor vanishes identically. On the other hand,
the same argument in Prop. 4.2 (iv) in [24] implies that the deformation tensor ¢ is
bounded in the dd°T-norm along each leaf L. By holomorphicity of the component
of ¢| and Liouville Theorem, this implies that the components of ¢|;, are constant
along each leaf, hence identically vanishing if ¢ satisfies (4.2) at the tangent spaces of
7 1(S,).

We have now all ingredients to prove the three claims of the theorem. Let us start
with (ii). In this case, for each model (M,(c), 7) the Remmert reduction 7 : M,(c) —
M, (c) is the identity map and the assumption that ¢ satisfies (4.2) at the tangent
spaces of m71(S,) coincides with the condition that ¢ is a biholomorphism between
the souls. By the above discussion, this occurs if and only if ¢ is a biholomorphism,
proving that (M,(c),7) is soul rigid.
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For the models considered in (i) and (iii), by the counterexamples in §4.3.2 we
know that none of them is soul rigid. Nonetheless, the above discussion shows that
when M is of mixed type or it has two ends and ¢ = +00, if ¢ is a biholomorphism
at the blow ups of the souls, then it is a biholomorphism. This shows that in those
cases, the model M,(c) is soul semi-rigid, proving (iii) and the first claim of (i). The
second claim in (i) is a consequence of the discussion at the end of §4.3.2. O
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