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PERIODIC SUBVARIETIES OF A PROJECTIVE VARIETY UNDER

THE ACTION OF A MAXIMAL RANK ABELIAN GROUP OF

POSITIVE ENTROPY∗
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Abstract. We determine positive-dimensional G-periodic proper subvarieties of an n-
dimensional normal projective variety X under the action of an abelian group G of maximal rank
n − 1 and of positive entropy. The motivation of the paper is to understand the obstruction for X

to be G-equivariant birational to the quotient variety of an abelian variety modulo the action of a
finite group.
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1. Introduction. We work over the field C of complex numbers. Let X be a
normal projective variety of dimension n ≥ 2. Denote by NS(X) := Pic(X)/Pic0(X)
the Néron–Severi group, i.e., the (finitely generated) abelian group of Cartier divisors
modulo algebraic equivalence. The rank of its torsion-free part is called the Picard
number of X . For a field F = Q, R or C, NSF(X) stands for NS(X)⊗Z F. The first
dynamical degree of an automorphism g ∈ Aut(X) is defined as the spectral radius of
its natural pullback action g∗ on NSC(X):

d1(g) := ρ
(
g∗|NSC(X)

)
:= max

{
|λ| : λ is an eigenvalue of g∗|NSC(X)

}
.

Note that by Lemmas 2.1 and 2.2, our definition of the first dynamical degree for
possibly singular varieties coincides with the usual one defined in Dinh–Sibony [13,
§2.1] for compact Kähler manifolds. Also, by the fundamental work of Gromov [16]
and Yomdin [33], the (topological) entropy of an automorphism g ∈ Aut(X) can be
defined as the logarithm of the spectral radius of the pullback action g∗ on the total
cohomology ring ⊕Hi(X,C). Then by [13, Corollary 2.2], an automorphism g is of
positive entropy (resp. null entropy), if and only if d1(g) > 1 (resp. d1(g) = 1). See
also [36, Lemma 2.2] and references therein.

For a subgroup G ≤ Aut(X), we define the null-entropy subset of G as

N(G) :=
{
g ∈ G : g is of null entropy, i.e., d1(g) = 1

}
.

We then call such G ≤ Aut(X) is of positive entropy (resp. null entropy), if N(G) =
{id} (resp. N(G) = G). Assuming that X is a compact Kähler manifold and G is
commutative, Dinh–Sibony [13] showed that G contains a free abelian subgroup G1 of
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positive entropy such that rankG1 ≤ n− 1. If rankG1 = n− 1, then the null-entropy
subset N(G) is finite.

In general, we have a Tits alternative1 type result for any subgroup G ≤ Aut(X).
That is, either G contains a subgroup isomorphic to the non-abelian free group Z ∗Z,
or G is virtually solvable (i.e., a finite-index subgroup of G is solvable). In the latter
case or when G|NSC(X) is virtually solvable, there is a finite-index subgroup G1 of G
such that N(G1) is a normal subgroup of G1 and G1/N(G1) is a free abelian group
of rank r ≤ n− 1. We call this r the dynamical rank of G and denote it as r = r(G),
which is independent of the choice of the finite-index subgroup G1 of G. See [6, 10, 35]
and references therein for details.

When the dynamical rank of G is maximal (i.e., r = n − 1), inspired by Dinh–
Sibony [13], we expect in general that N(G) is finite except the case when X is an
abelian variety. This has been confirmed recently in [11]. Note that there indeed exist
examples of abelian varieties and their quasi-étale quotients admitting the action of
commutative groups with maximal dynamical rank (cf. [13, Example 4.5]; see also our
Example 1.5). On the other hand, we are particularly interested in the geometry of
those projective varieties with the action of maximal rank abelian groups of positive
entropy. Along this direction, the third-named author obtained the following partial
result already.

Theorem 1.1 ([39]). Let X be a normal projective variety of dimension n ≥ 3
with at worst Q-factorial klt singularities, and G ≤ Aut(X) such that the group G∗ :=
G|NSC(X) induced by the pullback action of G on NSC(X) is isomorphic to Z⊕n−1, and
every element of G∗ \ {id} is of positive entropy. Assume further that any one of the
following conditions holds.
(i) X is not rationally connected2.
(ii) X has no G-periodic3 proper subvariety of positive dimension.

Then after replacing G by a finite-index subgroup, X is G-equivariant birational to a
quasi-étale torus quotient.

By a quasi-étale torus quotient, we mean a quotient of an abelian variety T by a
finite group F , which acts freely on T outside a codimension-2 subset of T . Note that
such T → T/F is étale in codimension-1. The purpose of this paper is to understand
the obstruction for a normal projective variety X with the action of a maximal rank
abelian group G of positive entropy, to be G-equivariant birational to a quasi-étale
torus quotient. By virtue of [39] and [11], the remaining case we need to consider
is the case when X is rationally connected or contains some non-trivial G-periodic
proper subvariety of positive dimension.

It should be noted that there are rationally connected varieties which also have
quasi-étale covers by abelian varieties (see Example 1.5 for details). The seemingly
non-compatible rational connectivity and being quasi-étale torus quotient are allowed
to co-exist, due to the existence of non-canonical klt singularities. More precisely,
a quasi-étale torus quotient which has at worst canonical singularities must be non-
uniruled (even have vanishing Kodaira dimension by Kollár–Larsen [24, Theorem 10])

1Tits alternative is named after Jacques Tits, who first proved in [31] the deep and remarkable
fact that general linear groups satisfy this property.

2An algebraic variety X is rationally connected (resp. rationally chain connected) in the sense of
Campana and Kollár–Miyaoka–Mori, if any two closed points on X are contained in an irreducible
rational curve (resp. a chain of rational curves).

3A Zariski closed subset Z of X is G-periodic if a finite-index subgroup of G set-theoretically
stabilizes Z.
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and hence is not rationally connected.

Our main results are Theorems 1.2, 1.3, 1.7 and Proposition 1.8 below.

Theorem 1.2. Let X be a normal projective variety of dimension n ≥ 2, and
G ≤ Aut(X) such that the following conditions are satisfied.

(i) X has at worst Q-factorial klt singularities.
(ii) G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1.

Then after replacing G by a finite-index subgroup, the following assertions hold.

(1) The union Per+(X,G) of all positive-dimensional G-periodic proper subvarieties
of X is a Zariski closed proper subset of X.

(2) Let Per+(X,G) = Z1∪Z2∪· · ·∪Zm be the irreducible decomposition. Then either
Zk is uniruled4, or a finite-index subgroup of G fixes Zk pointwise.

(3) The Picard number ρ(X) ≥ n. If ρ(X) = n ≥ 3, then X is G-equivariant
birational to a quasi-étale torus quotient.5

(4) Either X is an abelian variety and hence has no positive-dimensional G-periodic
proper subvariety, or X has at most ρ(X)− n distinct G-periodic prime divisors.

The assertion (1) of Theorem 1.2 follows from [39, Proposition 3.11] or Proposition
2.7, with the help of [11, Theorem 4.1] or Proposition 2.3 to deal with the solvable
group case. We include them here for the convenience of the reader. Note that
the condition (i) of Theorem 1.2 (or Question 1.6) is not restrictive, since we can
always take a G-equivariant resolution due to Hironaka [20] and even assume that X
is smooth. (See also Kollár’s book [22, 3.4.1, Proposition 3.9.1 and Theorem 3.36]
for a modern description.) Meanwhile, the condition (ii) is birational in nature (see
Proposition 2.3 and [39, Lemma 3.1]).

If we assume further that X contains a G-periodic non-uniruled prime divisor
D, we obtain a more clear geometric characterization of the pair (X,D) by theorem
below. The main ingredient is to run a G-equivariant Minimal Model Program (G-
MMP for short) developed in [39].

Theorem 1.3. Let X be a normal projective variety of dimension n ≥ 2, and
G ≤ Aut(X) such that the following conditions are satisfied.

(i) G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1.
(ii) X contains a G-periodic non-uniruled prime divisor D.

Then after replacing G by a finite-index subgroup, the following assertions hold.

(1) X is rationally connected.
(2) Let Z1∪Z2∪· · ·∪Zm be the irreducible decomposition of the union of all positive-

dimensional G-periodic proper subvarieties of X, with Z1 = D. Then for k ≥ 2,
Zk is uniruled. In particular, every G-periodic prime divisor, other than D, is
uniruled.

(3) A finite-index subgroup of G fixes D pointwise.

Furthermore, there exists a surjective in codimension-1 G-equivariant birational map
X ��� Y with DY the push-forward of D, such that we have:

(4) Every positive-dimensional G-periodic proper subvariety of Y is contained in DY .
In particular, the positive-dimensional part of Sing Y is contained in DY .

4A variety V of dimension d is uniruled, if there exists a dominant rational map P1 ×W ��� V

for some variety W of dimension d− 1. Note that being uniruled is a birational property.
5We remark that if the Picard number ρ(X) > n2, then X is not equal to a quasi-étale torus

quotient. Indeed, X is then not dominated by any abelian variety T via a generically finite surjective
morphism. This is because the Picard number ρ(T ) ≤ (dimT )2 = n2.
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(5) KY +DY ∼Q 0 (Q-linear equivalence); both KY and DY are Q-Cartier; the pair
(Y,DY ) and hence Y both have at worst canonical singularities.

(6) DY has at worst canonical singularities and KDY
∼Q 0.

(7) −mDY |DY
is an ample Cartier divisor on DY for some integer m > 0.

Remark 1.4. In dimension 2, Theorem 1.3 means that ifX is a normal projective
surface with an automorphism g of positive entropy and D is an irrational g-periodic
curve, then X is a rational surface, D is an elliptic curve pointwise fixed by a power
of g, and all other g-periodic curves are rational. See Lemma 3.7 and Remark 3.8 for
an elementary treatment. Also, there indeed exists an explicit example satisfying the
conditions (i) and (ii) in Theorem 1.3. See [9, Theorem 2 or Example 3.3]. Indeed, in
that example, X is a smooth rational surface and D is a smooth elliptic curve.

Example 1.5. Here we give examples of rationally connected varieties which are
quasi-étale torus quotients at the same time.

Let E = Eζm := C/(Z+ Z ζm) be the elliptic curve with period ζm := exp 2πi
m for

some m ∈ {2, 3, 4, 6} and A = En := E × · · · ×E. Let μm := 〈ζm〉, the group of m-th
roots of unity, act on E by multiplication and act on A diagonally. Then the quotient
variety X := A/μm has at worst Q-factorial klt singularities by [25, Proposition 5.20].
Moreover, for any 2 ≤ n < m, X is a rationally connected variety, which is also a
quasi-étale torus quotient.

Indeed, for any id 
= g ∈ μm, the Zariski closed set Eg of g-fixed points in E is a
finite subset of E, so is Ag. Thus the ramification locus of A → X , as the union of
all g-fixed points for all g 
= id, is a finite set. It follows that X is a quasi-étale torus
quotient when n ≥ 2.

On the other hand, under the condition n < m, the age of the automorphism [ζm]
at a fixed point o ∈ A[ζm] is n

m < 1 (see [30, §2] for the definition of age). Then the
Reid–Tai criterion implies that X has non-canonical singularities. Take a resolution
X ′ of X . Note that KX is Q-linearly equivalent to zero and X has non-canonical
klt singularities. Thus KX′ is not pseudo-effective. Hence by [5, Corollary 0.3] X ′

is uniruled, so is X . Also, the natural SLn(Z)-action on A descends to X . As in
[10, Example 1.4], SLn(Z) admits a free abelian subgroup isomorphic to Z⊕n−1 whose
every non-trivial element g has spectral radius > 1. Thus the natural action of g on A
is of positive entropy. In other words, the dynamical rank of Z⊕n−1|A is maximal, so
is Z⊕n−1|X by Lemma 2.1. We then consider the so-called special maximal rationally
connected (MRC) fibration X ��� Y of X in the sense of Nakayama [28, Theorems
4.18 and 4.19], where the general fibres are rationally connected and the Z⊕n−1-action
on X descends to a biregular action of Z⊕n−1 on Y . The maximality of the dynamical
rank implies that this special MRC fibration is trivial (cf. [35, Lemma 2.10]). Thus Y
is a point and hence X is rationally connected. See also Kollár–Larsen [24, Corollary
25] for another proof of the rational connectedness of X .

For instance, [34, Example 4.2] gives an explicit calculation for the case (m,n) =
(3, 2).

From Theorems 1.3 and 1.1, we see that the varieties containing G-periodic non-
uniruled prime divisors provide potential examples which are not G-equivariant bi-
rational to quasi-étale torus quotients in our setting. Moreover, a positive answer
to the question below roughly means that when r(G) = n − 1 is maximal, X is
G-equivariant birational to a quasi-étale torus quotient if and only if X has no non-
uniruled G-periodic prime divisor.
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Question 1.6. Let X be a normal projecitve variety of dimension n ≥ 3, and
G ≤ Aut(X) such that the following conditions are satisfied.

(i) X has at worst Q-factorial klt singularities.
(ii) G|NSC(X) is virtually solvable with maximal dynamical rank r(G) = n− 1.

Is it true that the following assertions hold?

(1) Suppose that X does not have any G-periodic non-uniruled prime divisor. Then
X is G-equivariant birational to a quasi-étale torus quotient.

(2) Suppose that X has a G-periodic non-uniruled prime divisor. Then X is not
G-equivariant birational to a quasi-étale torus quotient.

The theorem below gives an affirmative answer to Question 1.6 (2), see also Propo-
sition 3.2. The implications (2) =⇒ (1) and (3) =⇒ (1) below are proved in [39,
Theorem 2.4]. We include them here for the convenience of the reader.

Theorem 1.7. Let X be a normal projective variety of dimension n ≥ 3, and
G ≤ Aut(X) such that G|NSC(X) is virtually solvable with maximal dynamical rank
r(G) = n− 1. Consider the following conditions:

(1) After replacing G by a finite-index subgroup, X is G-equivariant birational to a
quasi-étale torus quotient X ′.

(2) After replacing G by a finite-index subgroup, X is G-equivariant birational to a
projecitve variety X ′ with only klt singularities, such that X ′ has no positive-
dimensional G-periodic proper subvariety.

(3) After replacing G by a finite-index subgroup, X is G-equivariant birational to a
projecitve variety X ′ with a G-periodic divisor D′, such that (X ′, D′) is Q-factorial
klt and KX′ +D′ is pseudo-effective.

(4) Every connected component of the union of all positive-dimensional G-periodic
proper subvarieties of X is rationally chain connected.

Then the conditions (1), (2) and (3) are equivalent, and imply the condition (4).

The following proposition generalizes a well-known result on surface – there are
only finitely many g-periodic curves if g is an automorphism of positive entropy on
a projective surface. We prove a result of this type up to dimension 3 in the present
paper. Naturally, we would like to know whether it is still true in higher dimensions.

Proposition 1.8. Let X be a normal projecitve variety of dimension n = 2 or
3, and G ≤ Aut(X) such that the following conditions are satisfied.

(i) X has at worst Q-factorial klt singularities.
(ii) G = 〈g1, . . . , gn−1〉 � Z⊕n−1 is of positive entropy.

Then for any non-trivial g ∈ G, the following assertions hold.

(1) If X is an abelian variety, then there is no g-periodic prime divisor.
(2) If X is not an abelian variety, then there are at most ρ(X)−n distinct g-periodic

prime divisors.

2. Preliminary results.

Notation. We refer to Kollár–Mori [25] for the standard definitions, notation,
and terminologies in birational geometry. For instance, see [25, Definitions 2.34 and
2.37] for the definitions of canonical singularity, Kawamata log terminal singularity
(klt), divisorial log terminal singularity (dlt), and log canonical singularity (lc).

Let X be a normal projective variety. X is called Q-factorial, if every integral
Weil divisor M on X is Q-Cartier, i.e., sM is a Cartier divisor for some integer s ≥ 1.



456 F. HU, S.-L. TAN, AND D.-Q. ZHANG

Let M be an R-Cartier divisor (an R-linear combination of integral Cartier divi-
sors) on X . We call M is nef, if the intersection M ·C ≥ 0 for every irreducible curve
C on X . Denote by Nef(X) the closed cone of all nef R-Cartier divisors on X . We
call M is pseudo-effective, if it is contained in the closure of the cone of all effective
R-divisors on X .

For a birational map f : X ��� Y , denote its domain by dom f . Then for an
irreducible subvariety B of X such that f is defined at the generic point of B, define
the birational transform f(B) ⊂ Y as the Zariski-closure of f(B ∩dom f) in Y . Then
the push-forward f∗B of B under the birational map f is defined (linearly) as follows:

f∗B :=

{
f(B), if dim f(B) = dimB;
0, otherwise.

In particular, if f is isomorphic in codimension-1 and D is a prime divisor, then
f∗D = f(D).

For an automorphism g of X , we use g|X to emphasize that g acts on X . For a
g-invariant subspace V of some cohomology space H∗(X,C), we use g∗|V to denote
the natural pullback action g∗ on V . The spectral radius ρ

(
g∗|V

)
is the maximal

absolute value of all eigenvalues of g∗|V as a linear transformation on V .

The result below shows that our notion of the first dynamical degree of an au-
tomorphism as in the introduction is equivalent to the same one on its equivariant
resolution, and hence equivalent to the usual definition in Dinh–Sibony [13, §2.1] by
Lemma 2.2.

Lemma 2.1. Let X and Y be two normal projective varieties of dimension n ≥ 2,
and f : X → Y a g-equivariant generically finite surjective morphism. Then we have
d1(g|X) = d1(g|Y ). In particular, g|X is of positive entropy (resp. null entropy) if
and only if so is g|Y .

Proof. The proof of [36, Lemma 2.6] also applies to our situation. Let W →
X → Y be a g-equivariant resolution due to Hironaka [20]. By using the Lefschetz
hyperplane theorem (on W ), we reduce to the surface case. Then both d1(g|X) and
d1(g|Y ) are equal to d1(g|W ).

Recall that for a compact Kähler manifold X , the first dynamical degree d1(g) of
a surjective endomorphism g of X is defined as the spectral radius of the pullback
action g∗ on H1,1(X,R) (cf. [29, §A.2]). The following lemma asserts that for smooth
projective varieties these two definitions of d1 (another one given in the introduction)
for endomorphisms or automorphisms coincide.

Lemma 2.2.

(1) Let (X,ω) be a compact Kähler manifold of dimension n, and g a surjective
endomorphism of X. Let V be a g-invariant subspace of H1,1(X,R) containing a
Kähler current B.6 Then d1(g) equals the spectral radius ρ

(
g∗|V

)
.

(2) Suppose that X is a smooth projective variety and g is a surjective endomorphism
of X. Then ρ

(
g∗|H1,1(X,R)

)
= ρ

(
g∗|NSR(X)

)
.

Proof. (1) It suffices to show that d1(g) ≤ ρ
(
g∗|V

)
. Let P be the closed cone

in H1,1(X,R) consisting of classes of positive closed (1, 1)-currents, and C := P ∩ V .

6A Kähler current B is a real (1, 1)-current such that B− εω is a positive (1, 1)-current for some
ε > 0.
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Note that P is a strictly convex cone preserved by the pullback action g∗, so is C.
Replacing V by the subspace spanned by C, we may assume that V = C+(−C). Take
an interior point B1 ∈ C. Then B′ := B1 + εB is still contained in the interior of C
(also in the interior of P) for sufficiently small ε > 0. We can define a linear form
χ : H1,1(X,R) → R by χ(ξ) =

∫
X ξ Y ωn−1. Note that for a non-trivial class T in P ,

one has χ(T ) > 0 (cf. [29, Lemmas A.3 and A.4]). So by applying [29, Proposition
A.2] to the triplets

(
H1,1(X,R),P , B′

)
and (V, C, B′), we obtain the following

d1(g) = lim
m→∞

χ
(
(gm)∗B′

) 1
m = ρ

(
g∗|V

)
.

Note that in the proof above we have replaced V by a subspace, so we actually prove
that d1(g) ≤ ρ

(
g∗|V

)
. This proves the assertion (1).

(2) In this case, NSR(X) is a g-invariant subspace of H1,1(X,R) containing an
ample divisor, whose first Chern class induces a Kähler class. So the assertion (2)
follows from the first one. This proves Lemma 2.2.

Consider the following hypotheses. We note that the natural map G|NSR(X) →
G|NSC(X) is an isomorphism, for the comparison with the same hypothesis in [39].

Hyp(A). Let X be a normal projective variety of dimension n ≥ 2, and G ≤
Aut(X) such that the group G∗ := G|NSC(X) induced by the pullback action of G on
NSC(X) is isomorphic to Z⊕n−1, and every element of G∗ \{id} is of positive entropy.

Hyp(A’). Let X be a normal projective variety of dimension n ≥ 2, and G ≤
Aut(X) such that G|NSC(X) is virtually solvable with maximal dynamical rank r(G) =
n− 1.

Obviously, Hyp(A) implies Hyp(A’). The converse is also true up to finite-index
by the following proposition.

Proposition 2.3. Suppose that (X,G) satisfies Hyp(A’). Then, replacing G by
a finite-index subgroup, the null-entropy subset N(G) of G is a (necessarily normal)
subgroup of G and virtually contained in the identity connected component Aut0(X)
of Aut(X), i.e., ∣∣N(G) : N(G) ∩ Aut0(X)

∣∣ < ∞.

In particular, the pair (X,G) with G replaced by a finite-index subgroup, satisfies
Hyp(A).

Proof. Let π : X̃ → X be an Aut(X)-equivariant resolution of X (cf. Hironaka
[20]). Replacing G by a finite-index subgroup, we may assume that G|NSC(X̃) is

solvable and has connected Zariski-closure in GL
(
NSC(X̃)

)
. On the other hand,

for any g ∈ G, we have d1(g|X̃) = d1(g|X) by Lemma 2.1. Thus, if we identify G|X̃
with G|X , via the natural map π, then

N(G)|X̃ = N(G)|X = N(G|X) = N(G|X̃),

where the second equality holds by definition. By [11, Theorem 4.1 (1)], we know

that N(G)|X̃ is virtually contained in Aut0(X̃). Hence N(G)|X is virtually contained

in Aut0(X), since the Aut(X)-equivariant birational morphism X̃ → X induces an

isomorphism Aut0(X̃) → Aut0(X). Therefore, N(G)|NSC(X) = N(G)|NSC(X̃) is finite,
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since the continuous part Aut0(X̃) acts trivially on the lattice NS(X̃) (modulo tor-

sion), and hence acts trivially on NSC(X̃). Now as in [39, Lemma 3.1], replacing G
by a finite-index subgroup, we have G|NSC(X̃) � G|X̃

/
N(G|X̃) � Z⊕n−1, and also

G|NSC(X) � Z⊕n−1.

Let X be a normal projective variety of dimension n ≥ 2, and G ≤ Aut(X).
Denote the union of all positive-dimensional G-periodic proper subvarieties of X by
Per+(X,G), i.e.,

Per+(X,G) :=
⋃

Y is G-periodic

Y,

where Y runs over all positive-dimensional G-periodic proper subvarieties of X .
The result below follows from the equivariance assumption.

Lemma 2.4. Let f : X1 → X2 be a G-equivariant generically finite surjective
morphism. Then we have the following relation:

Per+(X1, G) = f−1
(
Per+(X2, G)

)
,

where f−1 denotes the set-theoretical inverse.

In the rest of this section, we prove some preliminary results under Hyp(A). First
note that if X is smooth, a quasi-nef sequence with 1 ≤ k ≤ n

0 
= L1 · · ·Lk ∈ L1 · · ·Lk−1 ·Nef(X) ⊆ Hk,k(X,R)

was constructed in [35, §2.7]. Here as in [39, Lemma 3.4], we give a generalization of
[13, Theorem 4.3] to the singular case. Besides, we introduce a nef and big R-Cartier
divisor A, which plays an important role in running the Log Minimal Model Program
(LMMP for short) with scaling (cf. [3, Corollary 1.4.2] or [2, Theorem 1.9 (i)]).

Lemma 2.5. Suppose that (X,G) satisfies Hyp(A). Then there are nef R-Cartier
divisors Li for 1 ≤ i ≤ n with L1 · · ·Ln 
= 0, such that for any g ∈ G,

g∗Li ≡ expχi(g)Li (numerical equivalence)

for some characters χi : G → (R,+), and the group homomorphism

ϕ : G →
(
R⊕n−1,+

)
, g �→

(
χ1(g), . . . , χn−1(g)

)
has image a spanning (discrete) lattice of

(
R⊕n−1,+

)
and satisfies the following:

Kerϕ = N(G), G∗ � G/N(G)
∼
−→ Imϕ � Z⊕n−1. (†)

In particular,

A :=

n∑
i=1

Li

is a nef and big R-Cartier divisor.

Proof. Let π : X̃ → X be a G-equivariant resolution of X due to Hironaka [20].
We follow the proof of [13, Theorem 4.3], and consider the action of G on the pullback
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π∗ Nef(X) of the nef cone Nef(X) ⊂ NSR(X) (instead of the Kähler cone K(X̃) ⊂

H1,1(X̃,R) there). Then there are nef R-Cartier divisors π∗Li with 1 ≤ i ≤ n on X̃
as common eigenvectors of G acting on π∗ NSR(X), i.e., g∗(π∗Li) ≡ expχi(g)π

∗Li,
such that χ1+ · · ·+χn = 0 and the induced homomorphism ϕ satisfies (†). By taking
a push-forward, these Li satisfy g∗Li ≡ expχi(g)Li. For details, see [39, Lemma 3.4]
or [38, proof of Theorems 1.2 and 2.2, p. 137].

Note that A is nef by its definition. Then it is big because

An = (L1 + · · ·+ Ln)
n ≥ L1 · · ·Ln > 0.

The latter inequality follows from [13, Lemma 4.4]. More precisely, that lemma implies
that L1 · · ·Ln is nonzero and hence positive since these Li are nef.

For a nef R-Cartier divisor L on a projective variety X , define the null locus of L
as

Null(L) :=
⋃

L|Z is not big

Z,

where Z runs over all positive-dimensional proper subvarieties of X . Note that L|Z
is nef, so it is not big if and only if LdimZ · Z = 0.

Lemma 2.6 (cf. [39, Lemma 3.9]). Suppose that (X,G) satisfies Hyp(A). Then

Per+(X,G) = Null(A),

and it is a Zariski closed proper subset of X, where A is constructed in Lemma 2.5.
In particular, A is ample if and only if every G-periodic proper subvariety of X is a
point.

Below is the key proposition in [39] which was used to prove [39, Theorem 2.4].
Note that we do not need the pseudo-effectivity of KX +D or dimX ≥ 3.

Proposition 2.7 (cf. [39, Proposition 3.11]). Suppose that (X,G) satisfies
Hyp(A). Assume that for some effective R-divisor D whose irreducible components are
G-periodic, the pair (X,D) has at worst Q-factorial klt singularities. Let A =

∑
Li

be the nef and big R-Cartier divisor as in Lemma 2.5. Then after replacing G by a
finite-index subgroup and A by a large multiple, the following assertions hold.
(1) There is a sequence τs ◦ · · · ◦ τ0 of G-equivariant birational maps:

X = X0
τ0
��� X1

τ1
��� · · ·

τs−1

��� Xs
τs−→ Xs+1 = Y (†)

such that each τj : Xj ��� Xj+1 for 0 ≤ j < s is either a divisorial contraction of
a (KXj

+Dj)-negative extremal ray or a (KXj
+Dj)-flip; the τs : Xs → Xs+1 = Y

is a birational morphism such that KXs
+Ds = τ∗s (KY +DY ) is R-Cartier; here

Di ⊂ Xi for 0 ≤ i ≤ s+ 1 is the push-forward of D and DY := Ds+1.
(2) For 0 ≤ i ≤ s + 1, the push-forward Ai of A on Xi is a nef and big R-Cartier

divisor.
(3) For 0 ≤ i ≤ s + 1, the pair (Xi, Di + Ai) and hence the pair (Xi, Di) have at

worst klt singularities; Xj is Q-factorial for 0 ≤ j ≤ s.
(4) KY +DY +AY is an ample R-Cartier divisor, where AY := As+1.
(5) For 0 ≤ i ≤ s+ 1, the union of all positive-dimensional G-periodic proper subva-

rieties of each Xi is a Zariski closed proper subset of Xi. Further, Ai|Z ≡ 0 for
every positive-dimensional G-periodic proper subvariety Z of Xi.
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(6) For 0 ≤ i ≤ s+ 1, the induced action of G on each Xi is biregular. Further, each
(Xi, G) also satisfies Hyp(A).

Note that if (X,D) is only a dlt pair, one has the following proposition (but need
KX +D to be pseudo-effective). The main idea is to apply Proposition 2.7 to the klt
pair

(
X, (1− ε)D

)
for some 0 < ε � 1.

Proposition 2.8 (cf. [39, Proposition 2.6]). Suppose that (X,G) satisfies
Hyp(A). Suppose further that for some effective Q-divisor D whose irreducible com-
ponents are G-periodic, the pair (X,D) has at worst Q-factorial dlt singularities, and
KX +D is a pseudo-effective divisor. Then, after replacing G by a finite-index sub-
group, the following assertions hold.
(1) There is a G-equivariant birational map X ��� Y which is surjective in

codimension-1. Moreover, the induced action of G on Y is biregular.
(2) The pair (Y,DY ) has only log canonical singularities and KY +DY ∼Q 0, where

DY is the push-forward of D.
(3) Every G-periodic positive-dimensional proper subvariety of Y is contained in the

support of DY .

Under Hyp(A), the rank of the Néron–Severi group has the following lower bound
(see also [13, Theorem 4.3]).

Lemma 2.9. Suppose that (X,G) satisfies Hyp(A). Then we have:
(1) The Picard number ρ(X) ≥ n.
(2) Assume there exists a numerically non-zero R-Cartier divisor M such that g∗M ≡

M for any g ∈ G. Then ρ(X) ≥ n+ 1.
(3) If ρ(X) = n and KX is Q-Cartier, then KX ≡ 0.

Proof. (1) We use the notations as in Lemma 2.5. Namely, we have n distinct
characters χi whose corresponding common eigenvectors are nef R-Cartier divisors
Li, respectively. It then follows that these Li’s are linearly independent in NSR(X),
so ρ(X) ≥ n.

(2) The assumption is equivalent to say that the R-Cartier divisor M is a non-
zero common eigenvector of G corresponding to the trivial character (i.e., G �→ 0).
Then the same reason as in the assertion (1) implies that M and all Li’s are linearly
independent in NSR(X).

(3) It follows from the assertion (2) by taking M = KX .

Proposition 2.10. Suppose that (X,G) satisfies Hyp(A) and X has at worst
Q-factorial klt singularities. Let B1, . . . , Bs be distinct G-periodic prime divisors on
X. Then we have:
(1) If the irregularity q(X) = 0, then B1, . . . , Bs are linearly independent in NSQ(X).

In particular, they are linearly independent in NSR(X).
(2) If there is a projective birational morphism X → X ′ such that B1, . . . , Bs are

exceptional divisors, then they are linearly independent in NSR(X).7

(3) If B1, . . . , Bs are linearly independent in NSR(X), then s ≤ ρ(X)− n.

Proof. (1) Replacing G by a finite-index subgroup, we may assume that all of
Bi have been stabilized by G. Suppose to the contrary that these Bi are linearly
dependent in NSQ(X). Then we have

∑s
i=1 aiBi ≡ 0 in NSQ(X) for some ai ∈ Q, not

all zero. After rearranging the order of Bi, we may assume that E1 :=
∑s1

i=1 aiBi ≡

7The linear independence of exceptional divisors is a purely birational geometric property. Ac-
tually, we do not need Bi to be G-periodic in the proof of the assertion (2).
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∑s2
j=s1+1 bjBj =: E2, where ai, bj = −aj are positive rational numbers. Since q(X) =

0 by assumption, we have E1 ∼ E2 (linear equivalence) after replacing Ei by some
multiples. Hence the Iitaka D-dimension κ := κ(X,E1) ≥ 1.

Replacing E1 by some mE1, we may assume that the map Φ|E1| : X ���

PH0
(
X,OX(E1)

)
gives rise to the Iitaka fibration associated to E1, so that its image

has dimension equal to κ. Take a G-equivariant resolution π : X̃ → X (cf. Hironaka
[20]), such that the linear system |π∗E1| equals |M |+F , where M is base point free, F
is the fixed component of |π∗E1|, and both of their divisor classes are G-stable. Now
the rational map Φ|E1| : X ��� PH0

(
X,OX(E1)

)
is birational to the G-equivariant

morphism Φ|M| : X̃ → Y ⊂ PH0
(
X̃,OX̃(M)

)
with dimY = κ.

If κ = n, then M is a nef and big divisor. So by [36, Lemma 2.23], G is virtually

contained in Aut0(X̃) and hence is of null entropy on X̃ , and also on X (cf. Lemma
2.1). This contradicts that the dynamical rank r(G) = n − 1 ≥ 1. Thus we have
1 ≤ κ ≤ n − 1. In other words, Φ|M| is a non-trivial G-equivariant fibration with
general fibres of dimension n − κ ∈ {1, . . . , n − 1}. Then by [35, Lemma 2.10], the
dynamical rank r(G) ≤ n − 2, which contradicts Hyp(A). So we have proved the
linear independence of these Bi in NSQ(X).

The second part of the assertion (1) follows from a linear algebra argument.
(2) Suppose that these Bi are linearly dependent in NSR(X). Then we have∑s

i=1 aiBi ≡ 0 in NSR(X) for some ai ∈ R, not all zero. As in the proof of the
first assertion, we may assume that E1 :=

∑s1
i=1 aiBi ≡

∑s2
j=s1+1 bjBj =: E2, where

ai, bj are positive real numbers. By the negativity of contraction (cf. [3, Lemma 3.6.2
(1)]), there exists a Bi0 for some 1 ≤ i0 ≤ s1 which is covered by curves Σ such that
E1 · Σ < 0. However, for a general curve Σ in the covering family of Bi0 , we have
Bj · Σ ≥ 0 for any s1 + 1 ≤ j ≤ s2 and hence E2 · Σ ≥ 0. This is a contradiction.

(3) We continue using the notations as in Lemmas 2.5 and 2.9. By the argument
similar to the proof of Lemma 2.9 (2), we can show that L1, . . . , Ln, B1, . . . , Bs are
linearly independent in NSR(X). Thus we have n+ s ≤ ρ(X). This ends the proof of
Proposition 2.10.

The following lemma generalizes a fact, which asserts that every effective divisor
on an abelian variety is nef.

Lemma 2.11. Suppose that π : T → X is a finite surjective morphism between
normal projective varieties. Suppose further that T satisfies one of the following con-
ditions.
(i) T has at worst klt singularities and contains no rational curve; KT ∼Q 0.
(ii) T is an abelian variety.

Then we have:
(1) Every pseudo-effective R-Cartier divisor on X is nef.
(2) Every big R-Cartier divisor on X is ample.

Proof. Since π is finite and by the projection formula, an R-Cartier divisor D
on X is pseudo-effective, big, nef or ample if and only if so is π∗D. Thus we only
need to prove this lemma for X = T . Further, we may assume that T satisfies the
condition (i) since the condition (ii) implies the condition (i). By the Kodaira lemma,
which states that every big R-divisor is the sum of an ample Q-divisor and an effective
R-divisor (cf. [27, Lemma 3.16]), it suffices to prove the assertion (1). Since the cone
of all pseudo-effective R-Cartier divisors on T is the closure of the cone of all effective
R-Cartier divisors on T in NSR(T ) and the nef cone Nef(T ) is closed, we only need
to show that every effective R-Cartier divisor on T is nef. For this, it suffices to show
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that every effective Cartier divisor on T is nef. Suppose to the contrary that some
effective Cartier divisor D on T is not nef. By [25, Corollary 2.35], (T, εD) is klt for all
sufficiently small rational number ε > 0. Now KT + εD ∼Q εD is not nef. Therefore,
applying the cone theorem in MMP to (T, εD) (cf. [25, Theorem 3.7]), we obtain an
extremal rational curve on T , which contradicts the condition (i). This proves Lemma
2.11.

The following result proves the implication (1) =⇒ (2) in Theorem 1.7.

Lemma 2.12. Let X be a quasi-étale torus quotient T/F for some abelian variety
T and a finite group F acting freely outside a codimension-2 subset of T , and G ≤
Aut(X) such that (X,G) satisfies Hyp(A). Then X has no positive-dimensional G-
periodic proper subvariety.

Proof. Let T̃ → X be the Galois covering (or minimal split covering in the sense of
Beauville; see [1, §3]) corresponding to the unique maximal lattice L in π1

(
X\SingX

)
such that T̃ is an abelian variety. Then there exists a group G̃ (which is the lifting

of G) acting faithfully on T̃ , such that G = G̃/F . See also [38, §2.15]. Note that

the action of G on X can be identified with a not necessarily faithful action of G̃
on X (with finite kernel). Replacing G̃ by a finite-index subgroup, we may assume

that the new G̃ acts faithfully on both T̃ and X (cf. [38, Lemma 2.4]), and both

(T̃ , G̃) and (X, G̃) satisfy Hyp(A) (cf. [39, Lemma 3.1]). By Lemma 2.11, the nef and

big R-Cartier divisor Ã on T̃ as constructed in Lemma 2.5, is ample. Hence every
G̃-periodic proper subvariety of T̃ is a point (see Lemma 2.6). The same holds for X
by Lemma 2.4.

3. Some general results from birational geometry. In this section, we es-
tablish some general results which will be used in the last two sections to prove our
main theorems and propositions. They should be of interest in their own right.

We first quote the following result, which will be frequently used in the sequel of
the paper.

Lemma 3.1 (cf. [18, Corollary 1.5]). Let (X,Δ) be a dlt pair for some effective
Q-divisor Δ and φ : W → X a birational projective morphism. Denote by Ex(φ) the
exceptional locus of φ, i.e., the set of points on W at which φ is not an isomorphism.
Then we have:
(1) Every fibre of φ is rationally chain connected.
(2) Every irreducible component of Ex(φ) is uniruled. In particular, if D is a non-

uniruled prime divisor on W , then so is the push-forward of D on X.

The proposition below gives an affirmative answer to Question 1.6 (2).

Proposition 3.2. Suppose that (X,G) satisfies Hyp(A). Suppose further that
X is G-equivariant birational to a quasi-étale torus quotient. Then we have:
(1) Every connected component Zk of Per+(X,G) (i.e., the union of all positive-

dimensional G-periodic proper subvarieties of X) is rationally chain connected.
(2) Every irreducible component of Per+(X,G) is uniruled. In particular, Question

1.6 (2) has a positive answer.

Proof. Since the assertion (2) follows readily from the first one, we prove only
the assertion (1). Suppose that X is G-equivariant birational to a quasi-étale torus
quotient Y := T/F for some abelian variety T and a finite group F (note that Y
is klt). Since the image of a rationally chain connected Zariski closed set is still
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rationally chain connected, we may replace X ��� Y by a G-equivariant resolution of
indeterminacy (cf. Hironaka [20]), and assume that X → Y is already a G-equivariant
birational morphism (see Lemma 2.4 and [39, Lemma 3.1]). Note that the image of Zk

on Y is G-periodic and hence a point P by Lemma 2.12. By Zariski’s main theorem,
the inverse image on X of the point P on the normal variety Y is connected. This
inverse of P is also G-periodic and contains Zk, so it equals Zk, since Zk is a connected
component of Per+(X,G). Then by Lemma 3.1, Zk is rationally chain connected.

Below is an easy fact whose proof is left to the reader.

Lemma 3.3 (cf. [19, Exercise 2.1]). Let X be a normal projective variety and D
a Weil Q-divisor. If D is R-Cartier, then it is Q-Cartier.

It is well-known that the birational automorphism group of a projective variety
of general type is finite (cf. [32, Theorem 14.10]). Below is a similar result.

Lemma 3.4. Let X be a non-uniruled normal projective variety, and G ≤ Aut(X)
such that the linear equivalence class of an ample divisor H is G-periodic. Then G is
finite.

Proof. Replacing H by a large multiple, we may assume that H is very ample
and hence the complete linear system |H | defines a closed embedding from X into
some projective space PH0

(
X,OX(H)

)
� PN . Identify X with its image. Replacing

G by a finite-index subgroup, we may assume that G itself stabilizes the linear equiv-
alence class of H . Thus the above embedding is G-equivariant. So G is contained
in Aut(PN , X), the Zariski closed subgroup of Aut(PN ) stabilizing X . If G were in-
finite, then the linear algebraic group Aut(PN , X) contains the 1-dimensional linear
algebraic group Ga or Gm, whose orbit of a general point is a rational curve. But
our X is non-uniruled. This is a contradiction. Hence G is finite.

We give a criterion for the log canonical divisor KX +D to be pseudo-effective.
See [26, Theorem 1.4 or 3.7] for a more general form.

Lemma 3.5. Let X be a rationally connected normal projective variety, and D a
non-uniruled prime divisor such that KX +D is Q-Cartier. Then KX +D is pseudo-
effective.

Proof. Take a log resolution X̃ → X for the pair (X,D), and denote by D̃ the
proper transform of D. Note that the push-forward of a pseudo-effective divisor is
still pseudo-effective. Hence we may replace the pair (X,D) by (X̃, D̃), and assume
that it is Q-factorial dlt now.

Suppose to the contrary that KX +D is not pseudo-effective. We shall follow the
proof of [26, Theorem 3.7]. After running a (KX +D)-MMP with an ample scaling,
we reach a Fano fibration h : W → Y as follows (cf. [3, Corollary 1.3.3])

X = X0
f0

����� X1
f1

����� · · ·
fm−2

����� Xm−1

fm−1
����� Xm =: W

h

��

Y.

Note that each fi above is either a divisorial contraction of a (KXi
+ Di)-negative

extremal ray or a (KXi
+ Di)-flip, where Di ⊂ Xi is the push-forward of D. So

(Xi, Di) is still Q-factorial and dlt (cf. [25, Corollary 3.44]). Thus DW := Dm, as the
push-forward ofD onW , is still a non-uniruled prime divisor since so isD (see Lemma
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3.1). Then the argument in [26, 4.7. Proof of Theorem 3.7, the second paragraph]
asserts that h : W → Y is a P1-fibration with DW a cross-section. Hence DW is
birational to Y via the restriction map h|DW

. Since X is rationally connected, so
are each Xi and the h-image Y of W . Thus DW is rationally connected and hence
uniruled. This is a contradiction. So the lemma is proved.

The following lemma provides sufficient conditions to have canonical singularities.
Note that under the condition (ii) it is a log-version of [21, Lemma 2.4].

Lemma 3.6. Let X be a normal projective variety of dimension n, and D an
effective Weil Q-divisor such that KX +D is Q-Cartier and KX +D ≡ 0 (numerical
equivalence). Suppose that one of the following two conditions hold.
(i) X is rationally connected and D is a non-uniruled prime divisor.
(ii) X is non-uniruled.

Then (X,D) has at worst canonical (and hence dlt) singularities. Moreover, under
the condition (i), the prime divisor D itself as a variety is normal; under the condition
(ii), we further have D = 0 and hence X has at worst canonical singularities.

Proof. Take a log resolution π : X̃ → X for the pair (X,D) and denote the proper

transform of D by D̃. Under the condition (i), X̃ is still rationally connected and

D̃ is non-uniruled. So it follows from Lemma 3.5 that KX̃ + D̃ is pseudo-effective.

Under the condition (ii), X̃ is also non-uniruled and hence KX̃ is pseudo-effective by

[5, Theorem 2.6]. Without loss of generality, we may assume that KX̃ + D̃ admits a

Zariski σ-decomposition KX̃ + D̃ = P + N , where the R-divisors P and N are the

movable part and the negative part of KX̃ + D̃, respectively (cf. [27, Ch. III, §1.b]).
On the other hand, we have

KX̃ + D̃ = π∗(KX +D) + E1 − E2 ≡ E1 − E2,

where E1 and E2 are effective π-exceptional divisors and have no common component.
Now the same argument as in [21, Lemma 2.4] eventually shows that E2 = 0, and
hence (X,D) has only canonical singularities by definition. Note however that to con-
clude D = 0 under the condition (ii) we need to consider the Zariski σ-decomposition
of the pseudo-effective divisor KX̃ . The rest of the proof is similar to [21, Lemma 2.4]
and left to the reader.

When X is a surface, we have a more specific description of X and its periodic
curves.

Lemma 3.7. Let X be a normal projective surface with an automorphism g of
positive entropy, and C a g-periodic curve. Then either X is a rational surface, or C
is a rational curve.

Proof. Replacing X by a g-equivariant resolution of singularities due to Hironaka
[20], we may assume that X is smooth. Since X admits an automorphism of posi-
tive entropy, by [7, Proposition 1], either X is a rational surface, or it has Kodaira
dimension κ(X) = 0.

Thus we have only to consider (and rule out) the case where κ(X) = 0 and C is
irrational. Let X → Xm be the smooth blowdown to the (unique smooth) minimal
model of X . Note that the image Cm of C is still a curve by Lemma 3.1, and g
descends to an automorphism on Xm. So we may replace (X,C) by (Xm, Cm), and
assume that X is minimal. Hence KX ∼Q 0. More precisely, X is either a K3 surface,
or an Enriques surface, or an abelian surface (cf. [7, Proposition 1]).
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Replacing g by some power, we may assume that g stabilizes the curve C. The
generalized Perron–Frobenius theorem due to Birkhoff asserts that (g±1)∗Lg±1 ≡
d1(g

±1)Lg±1 for some nonzero nef divisors Lg±1 . Then A := Lg +Lg−1 is nef and also
big since A2 ≥ Lg · Lg−1 > 0. It is perpendicular to C because d1(g

±1) > 1. Indeed,

Lg±1 · C = (g±1)∗(Lg±1 · C) = (g±1)∗Lg±1 · (g±1)∗C = d1(g
±1)Lg±1 · C. (1)

It follows that Lg±1 · C = 0, and hence A · C = 0. Thus C2 < 0 by the Hodge index
theorem, since A2 > 0.

On the other hand, by the arithmetic genus formula, we have

0 > C2 = (KX + C) · C = 2pa(C) − 2 ≥ 0,

since C is irrational. This is a contradiction. Lemma 3.7 is proved.

Remark 3.8. Suppose X is a smooth projective rational surface with an auto-
morphism g of positive entropy. Then K2

X < 0. Indeed, since g∗KX ∼ KX , we have
A ·KX = 0 as calculated in the equation (1) of the lemma above with C replaced by
KX . Hence either KX ≡ 0, or K2

X < 0. Since X is a smooth rational surface, KX is
not numerically trivial, so K2

X < 0.
If C is a g-periodic curve on X , then the arithmetic genus pa(C) ≤ 1. Otherwise,

the Riemann–Roch theorem and the Serre duality imply that

h0
(
X,OX(KX + C)

)
≥ χ(OX) +

1

2
C · (KX + C) = pa(C) ≥ 2.

So the nef part of the Zariski-decomposition of KX + C is nonzero and g-invariant,
contradicting d1(g) > 1.

We end this section with the following rigidity result for the proof of Proposition
1.8 (2). It follows from [25, Lemma 1.6] and [8, Proposition 1.14 or Lemma 1.15].

Lemma 3.9 (Rigidity Lemma). Let f : X → Y be a projective surjective mor-
phism of normal varieties. Suppose that all fibres of f are connected and of the same
dimension. Let f ′ : X → Y ′ be another projective morphism of varieties such that
f ′(f−1(y0)) is a point for some y0 ∈ Y . Then there is a unique morphism π : Y → Y ′

such that f ′ = π ◦ f .

4. Proofs of Theorems 1.2 and 1.3. Our proof of Theorem 1.2 will rely on
the following two lemmas.

Lemma 4.1. Suppose that we have the sequence (†) of G-equivariant bira-
tional maps as in Proposition 2.7. Then we have the following relations among the
Per+(Xi, G).
(1) For a divisorial contraction τi with 0 ≤ i < s and for the birational morphism τi

with i = s, we have

Per+(Xi, G) = τ−1
i

(
Per+(Xi+1, G)

)
.

Moreover, every irreducible component of the exceptional locus Ex(τi) is uniruled.
(2) If τi is a (KXi

+Di)-flip for some 0 ≤ i < s:

Xi
τi

���������

f
��
��

��
��

��
Xi+1 = X+

i

f+

����
��
��
��
��

Vi

,
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then there is a Zariski closed subset Δi ⊂ Vi such that the flipping locus Ex(f) =
f−1(Δi) and the flipped locus Ex(f+) = (f+)−1(Δi). Further, Per+(Xi, G) =
f−1

(
Per+(Vi, G)

)
and Per+(Xi+1, G) = (f+)−1

(
Per+(Vi, G)

)
. Every irreducible

component of the flipping locus Ex(f) or the flipped locus Ex(f+) is uniruled.

Proof. (1) The first part follows directly from Lemma 2.4. For the second one,
we know that every (Xi, Di) is klt (so is dlt) by Proposition 2.7 (3). Then it follows
from Lemma 3.1 that every irreducible component of Ex(τi) is uniruled.

(2) The first part follows from the uniqueness of flips (cf. [25, Lemma 6.2 and
Corollary 6.4]). Now the second part follows, using also the G-equivariance of the
morphisms f and f+ and Lemma 2.4.

Hence we still have to prove the last part. We assume that f is a contraction of
a (KXi

+Di)-negative extremal ray R≥0[�]. Choose a suitable ample divisor H such
that

(KXi
+Di + εH) · � = 0 and (Xi, Di + εH) is still klt

for some 0 < ε � 1. By the cone theorem in MMP (cf. [25] or [15, Theorem 1.1]),
there is an R-Cartier divisor Θi on Vi such that KXi

+ Di + εH = f∗Θi. By the
projection formula, Θi = KVi

+ f∗Di + εf∗H . Then (Vi, f∗Di + εf∗H) is a klt pair.
So Lemma 3.1 implies the last part. We have proved Lemma 4.1.

The following lemma exposes the relationship among the irreducible components
of these Per+(Xi, G). We will also use this lemma to prove Theorem 1.3 (2) later.

Lemma 4.2. Under the assumption of Lemma 4.1, for any 0 ≤ i ≤ s, every non-
uniruled irreducible component of Per+(Xi, G) is G-equivariant birational to some
irreducible component of Per+(Xi+1, G) by τi, which is then isomorphic at the generic
point of that irreducible component.

Proof. We use the same notation as in Lemma 4.1. Let Zi be any non-uniruled
irreducible component of Per+(Xi, G).

If τi is a divisorial contraction for some 0 ≤ i < s or τs, by Lemma 4.1 (1) above,
Zi is not contained in the exceptional locus of τi. Hence Z

i is G-equivariant birational
to its birational transform in Xi+1, and the latter is also an irreducible component of
Per+(Xi+1, G).

If τi is a flip for some 0 ≤ i < s, by Lemma 4.1 (2), Zi is not contained in the
exceptional locus of f : Xi → Vi. Hence Z

i is G-equivariant birational to its birational
transform in Vi, and the latter one is G-equivariant birational to its proper transform
in Xi+1 via the map f+ : Xi+1 → Vi. This last one in Xi+1 is also the birational
transform of Zi via the birational map τi : Xi ��� Xi+1, and hence an irreducible
component of Per+(Xi+1, G). In the above argument, we use the fact that both
exceptional loci of f : Xi → Vi and f+ : Xi+1 → Vi lie over the same Zariski closed
subset Δi ⊂ Vi.

For a projective variety V , we take a resolution Ṽ → V and define the Albanese
map

albV : V ����� Alb(V ) := Alb(Ṽ )

as the natural composition V ����� Ṽ
alb

Ṽ
�� Alb(Ṽ ). It is known that albV is a well-

defined morphism when V has at worst rational singularities.
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Proof of Theorem 1.2. By Proposition 2.3, replacing G by a finite-index subgroup,
we may assume that (X,G) satisfies Hyp(A). So we can apply Proposition 2.7 by
choosing D = 0. Then our assertion (1) is just Proposition 2.7 (5).

Proof of Assertion (2). We are going to prove this assertion by the backward
induction on the index i ofXi. We will use the sequence (†) of G-equivariant birational
maps as in Proposition 2.7 with D = 0. Recall that for 0 ≤ i ≤ s + 1, Ai (an R-
Cartier divisor) denotes the push-forward of A on Xi, where A =

∑
Li is a nef

and big R-Cartier divisor as constructed in Lemma 2.5. By Proposition 2.7 (5), we
know that Ai|Z ≡ 0 for every positive-dimensional G-periodic proper subvariety Z of
Xi. Replacing G by a finite-index subgroup, we may assume that G stabilizes every
irreducible component of Per+(Xi, G).

Let Z be an irreducible component of Per+(Y,G). By Proposition 2.7 (4) (with
D = 0 always in the current theorem), we know that KY +AY is an ample R-Cartier
divisor on Y . Then KY |Z is also an ample R-Cartier divisor on Z since AY |Z ≡ 0.
Assume further that Z is non-uniruled. Then by Lemma 3.4 applied to H := KY |Z ,
we know that G|Z is finite. Hence a finite-index subgroup of G fixes Z pointwise. So
the assertion (2) holds true on Y = Xs+1.

By induction we assume that for any irreducible component Zi+1 of
Per+(Xi+1, G), either Zi+1 is uniruled, or a finite-index subgroup of G fixes Zi+1

pointwise. Now we choose any irreducible component Zi of Per+(Xi, G). Assume
further that this Zi is non-uniruled. Then by Lemma 4.2, Zi is G-equivariant bira-
tional to its birational transform in Xi+1 by τi, and the latter is also an irreducible
component of Per+(Xi+1, G). By the inductive hypothesis, a finite-index subgroup
of G fixes that latter birational transform of Zi, and then it also fixes Zi pointwise.
This proves the assertion (2).

Proof of Assertion (3). The first part of the assertion (3) has been proved by
Lemma 2.9. If ρ(X) = n, the same lemma also tells us that KX is numerically trivial.
Then KX is pseudo-effective. Thus the second part follows from [39, Theorem 2.4]
(under the condition (ii) there).

Proof of Assertion (4). By Lemma 2.12, we only need to consider the case that X
is not an abelian variety. We first assume that the irregularity q(X) > 0. By Hironaka

[20], we can take an Aut(X)-equivariant resolution π : X̃ → X . Then q(X̃) = q(X) >
0 because X has only klt and hence rational singularities (cf. [25, Theorem 5.22]).

By [35, Lemma 2.13], albX̃ is a (necessarily Aut(X̃)-equivariant) surjective birational
morphism. Hence the same holds for albX because X has only rational singularities.
Note that for any G-periodic prime divisor D on X , the image albX(D) of D is a G-
periodic subvariety of the abelian variety Alb(X). It follows from Lemma 2.12 again
that such D is albX -exceptional. Then we get the upper bound of distinct G-periodic
prime divisors by Proposition 2.10. Next we assume that q(X) = 0. Suppose that X
has s distinct G-periodic prime divisors B1, . . . , Bs. Then the upper bound of s has
also been given by Proposition 2.10. This proves the assertion (4).

We have completed the proof of Theorem 1.2.

Proof of Theorem 1.3. Take a G-equivariant log resolution π : X̃ → X for the pair
(X,D), and denote by D̃ the proper transform of D. Note that D̃ is still a G-periodic
non-uniruled prime divisor. Replacing G by a finite-index subgroup, we may assume
that D̃ is stabilized by G and (X̃,G) satisfies Hyp(A) (see Proposition 2.3 and [39,

Lemma 3.1]). Replacing (X,D) by (X̃, D̃), it suffices to show Theorem 1.3 for the
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dlt case. (We show the assertion (2) for instance. Suppose that X has a G-periodic

irreducible subvariety Z2 different from D. Then the π-proper transform Z̃2 of Z2 is
an irreducible component of Per+(X̃,G) different from D̃, so it is uniruled. Hence Z2

is uniruled.)

Proof of Assertion (1). The surface case has been dealt with by Lemma 3.7, so we
only consider the case n ≥ 3. If X were not rationally connected, then replacing G by
a finite-index subgroup, X is G-equivariant birational to a quasi-étale torus quotient
(cf. [39, Theorem 2.4]). On the other hand, by the affirmative answer to Question
1.6 (2) (i.e., Proposition 3.2), X is not G-equivariant birational to a quasi-étale torus
quotient. This is a contradiction.

Proof of Assertion (3). The dlt assumption implies that X is also klt, so we may
apply Theorem 1.2 to the pair (X,G). Then the assertion (3) is a direct consequence
of Theorem 1.2 (2), since D is a G-periodic non-uniruled prime divisor.

Proof of Assertion (4). By the assertion (1) above, we can apply Lemma 3.5 and
say that KX+D is pseudo-effective. This in turn allows us to apply Proposition 2.8 to
the dlt pair (X,D). Note that the G-equivariant birational map X ��� Y is originally
constructed in Proposition 2.7 for the klt pair (X, (1 − ε)D) with ε > 0 sufficiently
small. Then the assertion (4) comes readily from Proposition 2.8 (3).

Proof of Assertion (5). We first prepare the following for the proof of this as-
sertion. Note that (X,D) is dlt, then (X,Dε) is klt, where Dε := (1 − ε)D for some
0 < ε � 1 (cf. [25, Proposition 2.41]). So we can apply Proposition 2.7 to the klt pair
(X,Dε). Then there is a sequence τs ◦ · · · ◦ τ0 of G-equivariant birational maps:

X = X0
τ0
��� X1

τ1
��� · · ·

τs−1

��� Xs
τs−→ Xs+1 = Y (��)

such that each τj : Xj ��� Xj+1 for 0 ≤ j < s is either a divisorial contraction of a
(KXj

+Dε,j)-negative extremal ray or a (KXj
+Dε,j)-flip; the τs : Xs → Xs+1 = Y

is a birational morphism such that KXs
+Dε,s = τ∗s (KY +Dε,Y ); here Dε,i ⊂ Xi for

0 ≤ i ≤ s+1 denotes the push-forward of Dε. It follows from [25, Corollaries 3.42 and
3.43] that each (Xi, Dε,i) for 0 ≤ i ≤ s is klt. So (Y,Dε,Y ) is also klt. In particular,
by Lemma 3.1, each Dε,i for 0 ≤ i ≤ s+1 is indeed a divisor since D is non-uniruled.

Now the first part of the assertion (5), i.e., KY +DY ∼Q 0, follows from Propo-
sition 2.8 (2).

By the first part we have proved and Proposition 2.7 (4), we know that

−εDY +AY ∼Q KY + (1− ε)DY +AY

is an ample R-Cartier divisor. Note also that AY is R-Cartier by Proposition 2.7 (2),
and then so is DY . Hence by Lemma 3.3, DY is Q-Cartier, and then so is KY .

Note that Y is rationally connected (since so is X) and DY is a non-uniruled
divisor. Hence by Lemma 3.6 (i), KY + DY ∼Q 0 implies that (Y,DY ) has only
canonical singularities (and DY is a normal variety), so does Y (cf. [25, Corollary
2.35]). This proves the assertion (5).

Proof of Assertion (6). By the adjunction theorem for dlt pairs (cf. [14, Propo-
sition 3.9.2] or [23, §16 and §17]), there exists an effective divisor DiffDY

(0) on DY

such that

KDY
+DiffDY

(0) = (KY +DY )|DY
∼Q 0.
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Note that DY itself (as a variety) is non-uniruled and normal. Then by applying
Lemma 3.6 (ii) to the pair

(
DY ,DiffDY

(0)
)
, we have DiffDY

(0) = 0 and DY has at
worst canonical singularities. Thus KDY

∼Q 0. This proves the assertion (6).

Proof of Assertion (7). By the assertion (4) we have proved, every positive-
dimensional G-periodic subvariety of Y is contained in DY , so Per+(Y,G) = DY . In
particular, by Proposition 2.7 (5), we have AY |DY

≡ 0. We already see in the proof
of the assertion (5) that −εDY + AY is an ample R-Cartier divisor, and then so is
(−εDY +AY )|DY

≡ −εDY |DY
. Note that by the assertion (5), DY is Q-Cartier. The

assertion (7) follows.

Proof of Assertion (2). Suppose to the contrary that some Zk with k ≥ 2 is non-
uniruled. Note that in our proof of the assertion (5), we applied Proposition 2.7 to
the klt pair (X,Dε) and produced the sequence (��) of G-equivariant birational maps.
So by Lemma 4.2, such Zk is G-equivariant birational to some irreducible component
of Per+(Y,G) by τs ◦ · · · ◦ τ0, which is isomorphic at the generic point of Zk. On
the other hand, the assertion (4) says that Per+(Y,G) = DY has only one irreducible
component. So such Zk is birational to DY . By the irreducibility of Zk we know
that Zk coincides with D = Z1, which is a contradiction. This ends the proof of the
assertion (2).

We have completed the proof of Theorem 1.3.

Remark 4.3. With the assumption and notation in Theorem 1.3, we have:
(1) It follows from Proposition 2.10 with B1 := D that the Picard number ρ(X) ≥

n+ 1.
(2) Note that the positive-dimensional part of the singular locus Sing Y of Y is con-

tained in DY by Theorem 1.3 (4). So we have dim(Sing Y ) ≤ max{0, dimY − 3}.
Indeed, by Theorem 1.3 (5), (Y,DY ) has at worst canonical singularities. After
(dimY −2)-times hyperplane cutting as in [25, Corollary 5.18], we reach a canon-
ical surface pair (S,DS) (cf. [25, Lemma 5.17 (1)]). So by [25, Theorem 4.5],
DS ∩ Sing S = ∅, and hence Y is smooth at its codimension-2 points lying inside
DY . This shows that dim(DY ∩ Sing Y ) ≤ max{0, dimY − 3}.

(3) Suppose dim Y = 2. Then Y is smooth in a neighborhood of DY , and DY is a
(smooth) elliptic curve, since DY is normal and KDY

∼Q 0.
(4) Suppose dimY = 3. Then Y has at worst isolated singularities. Further, KDY

∼Q

0 implies that DY is either a smooth abelian surface or hyperelliptic surface, or
a normal K3 surface or Enriques surface with at worst Du Val singularities.

5. Proofs of Theorem 1.7 and Proposition 1.8.

Proof of Theorem 1.7. (1) =⇒ (2) is proved by Lemma 2.12.
(2) =⇒ (1) comes from [39, Theorem 2.4 or Lemma 3.10].
(1) =⇒ (3) is true by choosing D′ = 0, and note that quotient singularities are

Q-factorial klt and KX′ ∼Q 0.
(3) =⇒ (1) follows from [39, Theorem 2.4] (under the condition (ii) there).
(1) =⇒ (4) is just our Proposition 3.2 (1).

Finally, we shall prove Proposition 1.8. But prior to that, we give two lemmas
to deal with the abelian variety case. It should be noted that even for the abelian
variety case, unfortunately, we have not been able to generalize Proposition 1.8 (1) to
higher dimensions.
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Lemma 5.1. Let X be an abelian variety of dimension n ≥ 2 and D a prime
divisor. Then D as an algebraic variety is of general type if and only if D is a big
divisor.

Proof. Suppose that D as an algebraic variety is of general type. Note that D
is a Cartier divisor on smooth X so that the canonical divisor KD is a well-defined
Cartier divisor. Let ν : Dν → D be the normalization of D and C the conductor of ν
which is an effective divisor on Dν . Then

KDν + C = ν∗KD.

Also, by the (generalized) adjunction formula in [25, Proposition 5.73] and KX = 0,
we have

KD = (KX +D)|D = D|D.

Take a log resolution μ : D′ → Dν for the pair (Dν , C). We then have

KD′ + μ−1
∗ C + E1 = μ∗(KDν + C) + E2,

where E1 and E2 are effective μ-exceptional divisors, and KD′ is big since D is of
general type. Hence by the above three equalities we can show that

c ·mn−1 < h0(D′,mKD′) ≤ h0
(
D′,m(KD′ + μ−1

∗ C + E1)
)

= h0
(
D′,mμ∗(KDν + C) +mE2

)
= h0

(
Dν ,m(KDν + C)

)
= h0

(
Dν ,mν∗KD

)
= h0

(
Dν ,mν∗(D|D)

)
,

for some c > 0 andm � 1. The first inequality comes from the definition of big Cartier
divisor, and the second equality holds by the projection formula for the morphism
μ : D′ → Dν . It follows that the Cartier divisor ν∗(D|D) is big, then so is D|D since ν
is birational (or just by the definition of big Cartier divisors on non-normal varieties).
Hence D|D is nef and big, so 0 < (D|D)n−1 = Dn (cf. [25, Proposition 2.61]). Note
that D on A is nef. So D is big.

Conversely, suppose that D is a big divisor (and contains the origin point). We
have seen that D is ample by Lemma 2.11. Then it is well-known that K(OX(D)) :=
KerφOX (D) is finite (see e.g. [4, Proposition 4.5.2]), where φOX(D), the canonical map

from X to its dual abelian variety X̂ := Pic0(X), is defined as following

φOX(D) : X → X̂, x �→ T ∗
xOX(D) ⊗OX(D)−1 = OX(T ∗

xD −D).

On the other hand, by [32, Theorem 10.9] or [4, §15.7], we also know that if denote
by

Z := {x ∈ X : x+D ⊂ D}0

the identity connected component of the stabilizer of D in X , then Z is an abelian
subvariety of X contained in D such that the quotient variety D/Z is of general type.
Note that in our situation, Z is contained in the finite group scheme K(OX(D)) and
hence equals 0. It follows that D is of general type which finishes the other direction
of Lemma 5.1.

Lemma 5.2. Let X be an abelian variety of dimension n = 2 or 3, and G ≤
Autvariety(X) such that G � Z⊕n−1 is of positive entropy. Then for any non-trivial
f ∈ G, there is no f -periodic prime divisor.
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Proof. If X is an abelian surface admitting an automorphism f of positive entropy
and C is an irreducible f -periodic curve, then by [32, Lemma 10.1], κ(C) ≥ 0 and
hence C is irrational, which contradicts Lemma 3.7. Thus we only need to consider
the case X is an abelian 3-fold.

Suppose to the contrary that there exists at least one f -periodic prime divisor D.
Replacing f by some power, we may assume that f(D) = D. Write f = Ta ◦ g with
Ta a translation and g a group automorphism (fixing the origin point). Also, after
replacing f by T−d ◦ f ◦ Td, G by T−d ◦G ◦ Td, and D by T−d(D) = D − d for some
d ∈ D, we may assume that D contains the origin point. According to the Kodaira
dimension of D, we have the following three cases.

Case 1): κ(D) = dimD = 2, i.e., D as an algebraic variety is of general type.
Then D is big by Lemma 5.1. It follows that f is of null entropy by Lemma 2.2 (see
also [36, Lemma 2.23]), contradicting our assumption on f .

Case 2): κ(D) = 1. By [32, Theorem 10.9] or [4, §15.7], the identity connected
component Z of the stabilizer of D in X , i.e., Z := {x ∈ X : x + D ⊆ D}0, is an
abelian subvariety of X containing in D, such that dimZ = dimD − κ(D) = 1 and
D/Z is of general type. As in [37, Lemma 2.11], we can prove that g(Z) = Z and
hence π : X → X/Z is an f -equivariant (and also g-equivariant) fibration with a fibre
Z. Indeed, for any z ∈ Z, we have

g(z)+D = g(z)+ f(D) = g(z)+ (a+ g(D)) = a+ g(z+D) ⊆ a+ g(D) = f(D) = D.

So g(Z) = Z because g is a group automorphism. Using the main result of Dinh–
Nguyên [12], we have d1(f |X) = d1(g|X) = max{d1(g|X/Z), d1(g|π)}, where d1(g|π)
denotes the relative dynamical degree in their sense. Note that the g-action on X/Z
has a fixed point, the origin point. So by [12, Remark 3.4], d1(g|π) = d1(g|Z) and hence
equals 1 since dimZ = 1. On the other hand, f |X/Z stabilizes the nef and big divisor
D/Z (bigness comes from Lemma 5.1 again). Hence d1(g|X/Z ) = d1(f |X/Z ) = 1.
Overall, we have shown that d1(f |X) = 1, which is a contradiction.

Case 3): κ(D) ≤ 0. Then κ(D) = 0 and D = δ + Z is a translation of some
abelian subvariety Z of X (cf. [32, Theorem 10.3]). Now we have δ + Z = D =
f(D) = a + g(D) = a + g(δ) + g(Z). Since g is a group automorphism and Z
contains the origin point, a + g(δ) − δ ∈ Z and hence g(Z) = Z. Then consider the
quotient map π : X → X/Z which is a g-equivariant (and also f -equivariant) fibration.
As in Case 2), we also have the following equalities concerning the first dynamical
degrees d1(f |X) = d1(g|X) = max{d1(g|X/Z), d1(g|π)} = d1(g|Z), here d1(g|X/Z ) = 1
because Z is an abelian surface and hence dimX/Z = 1. Thus we have deduced that
d1(g|Z) > 1 since f is of positive entropy.

Write G = 〈f1, f2〉 and fi = Tai
◦ gi for group automorphisms gi. Consider the

induced composite morphisms πi : gi(Z) ↪→ X → X/Z. Suppose that for each i,
dim Imπi = 0, i.e., Imπi is the origin point of the elliptic curve X/Z. So gi(Z) = Z
and then it follows that π : X → X/Z is G-equivariant, contradicting with [35, Lemma
2.10]. Therefore, we may assume that π1 dominates X/Z and hence it is flat by [17,
Proposition 9.7]. Moreover, every irreducible component of the geometric fibre of π1

over 0 (i.e., g1(Z)∩Z) has dimension 1. Let F be any such irreducible component. It
is easy to see that this F is a g-periodic curve in Z (since fi commutes with f implies
gi commutes with g). However, as we have seen, an abelian surface can not contain
any g-periodic curve for any automorphism g of positive entropy. So we also derive a
contradiction in this case and hence finish the proof of Lemma 5.2.

Remark 5.3. Under the same conditions in Lemma 5.2, we can show that there
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is no (irreducible) f -periodic curve either. Actually, let C be an irreducible f -periodic
curve on an abelian 3-fold X . If κ(C) = 1, i.e., C is of general type and hence Aut(C)
is finite. So fm|C = idC for some m > 0. Write f = Ta ◦ g as usual. It follows from
[4, Lemma 13.1.1] that the identity component Z of the pointwise fixed point set
Xgm

is a positive-dimensional abelian subvariety. Then X → X/Z is a G-equivariant
fibration (see also [37, Lemma 2.11]), which contradicts with [35, Lemma 2.10]. If
κ(C) = 0, then C = δ + E for some abelian subvariety E of dimension 1. Consider
the quotient map π : X → X/E which is a g-equivariant fibration. As in the proof of
Lemma 5.2, we may assume that the dimension of π(g1(E)) is 1, i.e., π(g1(E)) is a
g-periodic curve in the abelian surface X/E. Note also that d1(g|X/E) = d1(g|X) > 1
by Dinh–Nguyên [12]. This contradicts the surface case of Lemma 5.2.

Proof of Proposition 1.8. The assertion (1) has been proved by Lemma 5.2. To
prove the assertion (2), we first consider the case that the irregularity q(X) > 0.
Then the Albanese map albX : X → Alb(X) is a G-equivariant birational surjective
morphism by the maximality of the dynamical rank of G (cf. [35, Lemma 2.13]). So
for any g-periodic prime divisor D on X , one has albX(D) is a g-periodic subvariety of
Alb(X). However, according to Lemma 5.2, albX(D) can not be a g-periodic divisor,
i.e., D is an albX -exceptional divisor. Hence for any 1 ≤ i ≤ n− 1, it follows from the
commutativity ofG that each gi(D) is also a g-periodic albX -exceptional divisor. Note
that for a birational morphism, there are only finitely many (irreducible) exceptional
divisors. Thus D is gi-periodic for any i and hence G-periodic. Then by Proposition
2.10, there are at most ρ(X)− n distinct g-periodic prime divisors.

Next, we may assume that the irregularity q(X) = 0. This also holds for any res-
olution of X because X has only klt and hence rational singularities (cf. [25, Theorem
5.22]). We only need to prove the claim that there are only finitely many g-periodic
prime divisors Dj with 1 ≤ j ≤ k for some k > 0. Indeed, assuming this claim
for the time being, as in the case q(X) > 0, we can show that Dj is G-periodic for
any j. Then by Proposition 2.10, we would have the upper bound ρ(X) − n. For
this claim, the surface case is well known. Actually, it follows from the Hodge index
theorem and the fact that every g-periodic curve is perpendicular to the nef and big
divisor A := Lg +Lg−1 as in the proof of Lemma 3.7, where Lg±1 are the nef divisors
corresponding to the first dynamical degree d1(g

±1) of g±1. Therefore, we still have
to prove this claim for the case n = 3.

Suppose to the contrary that the above claim does not hold. Namely, there are
infinitely many distinct g-periodic prime divisors Dj with j ≥ 1. Let

κ := κ
(
X,

r∑
j=1

Dj

)
= max

{
κ
(
X,

t∑
j=1

Dj

)
: Dj is g-periodic, t ≥ 1

}

for some r ≥ 1 and denote E0 :=
∑r

j=1 Dj . Replacing g by its power, we may assume
that g(Dj) = Dj for all j ≤ r. As reasoned in Proposition 2.10, we have κ ≥ 1.

For any 1 ≤ i ≤ n− 1, let Ei := g∗iE0. It is easy to see that Ei is also g-periodic
since g commutes with each gi, and hence κ(X,Ei) = κ(X,E0 + Ei) = κ by the
maximality of κ. Replacing E0 by some mE0, we may assume that the dominant
rational map

Φ|Ei| : X ��� Φ|Ei|(X) ⊆ PH0
(
X,OX(Ei)

)
is an Iitaka fibration associated to Ei and its image has dimension equal to κ for any
0 ≤ i ≤ n − 1. Take a g-equivariant resolution π : X ′ → X of SingX and Bs(|Ei|)
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due to Hironaka [20], such that the linear system |π∗Ei| = |Mi|+ Fi, where each Mi

is base point free, Fi is the fixed component of |π∗Ei|, and their divisor classes are
g-stable. Now the morphism Φ|Mi| is birational to Φ|Ei|. Let Yi → Φ|Mi|(X

′) be the
normalization, and φi : X

′ → Yi the induced morphism, which is an algebraic fibre
space with connected fibres. Denote by Ai the ample divisor on Yi such that Mi =
φ∗
iAi. We have κ(X ′,M0+Mi) = κ(X,E0+Ei) = κ by the maximality of κ. Thus the

free divisor M0 +Mi is the pullback of some ample divisor on a variety of dimension
κ, which implies that (M0 +Mi)

κ+1 = 0. In particular, Mκ
0 ·Mi = 0 = M0 ·M

κ
i .

We assert that κ ≤ n − 2 = 1. Indeed, by blowing up Yi and X ′ further, we
may assume that Yi is also smooth. Replacing φi by the new morphism, the new Ai

on the new Yi is only nef and big. Nevertheless, we obtain a g-equivariant fibration
φi : X

′ → Yi of smooth varieties such that g preserves the nef and big divisor Ai on
Yi. It follows from [37, Lemma 2.5] that κ ≤ n − 2 = 1, thus κ = 1 in the present
case. (Remark: in what follows, the blowing up of Yi is unnecessary, since Yi is a
normal and hence a smooth curve. In particular, the divisor Ai is still ample, and
φi is flat and hence equidimensional; see [17, Proposition 9.7]. Indeed, the argument
below works as long as φi is equidimensional.)

For 1 ≤ i ≤ n − 1, let C be any curve in a general fibre Fi of φi. Take general
ample divisorsHj on X ′ containing C with 1 ≤ j < n−κ. Let S := H1∩· · ·∩Hn−κ−1.
Then

0 ≤ C ·M0 = C ·M0|S ≤ Mκ
i |S ·M0|S = Mκ

i ·M0 ·H1 · · ·Hn−κ−1 = 0.

Thus A0 · (φ0)∗C = 0 by the projection formula. So φ0 contracts C (and hence the
whole Fi) by the ampleness of A0. Then by the Rigidity Lemma 3.9, φ0 = ti ◦ φi for
some morphism ti : Yi → Y0. Interchanging the role of M0 with Mi, we get another
morphism si : Y0 → Yi such that φi = si ◦φ0. Hence φi = si ◦ ti ◦φi. The surjectivity
of φi then implies that si ◦ ti = id. Similarly, ti ◦ si = id. Thus si and ti are
isomorphisms and inverse to each other by the normality of Yi. Therefore, we can
write Mi = φ∗

iAi = φ∗
0Bi with Bi := s∗iAi an ample divisor on Y0.

Now the automorphism gi on X descends to an isomorphism between the bases
of the Iitaka fibrations Φ|E0| and Φ|Ei|, while the latter two are birational to Φ|M0|

and Φ|Mi|, respectively. So gi induces an isomorphism from (the normalization of)
Φ|A0|(Y0) to (the normalization of) Φ|Bi|(Y0), which is an automorphism of Y0 now.
Thus G acts on Y0 bi-regularly. Replacing X ��� Y0 by a G-equivariant resolution X ′′

of the graph, we have a non-trivial G-equivariant fibration between two smooth pro-
jective varieties. Contradicts the maximal dynamical rank assumption on G (cf. [35,
Lemma 2.10]). This ends the proof of Proposition 1.8.
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