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HIGHER ORDER GENERALIZATION OF FUKAYA’S MORSE
HOMOTOPY INVARIANT OF 3-MANIFOLDS I. INVARIANTS OF
HOMOLOGY 3-SPHERES*

TADAYUKI WATANABET

Abstract. We give a generalization of Fukaya’s Morse homotopy theoretic approach for 2-loop
Chern—Simons perturbation theory to 3-valent graphs with arbitrary number of loops at least 2. We
construct a sequence of invariants of integral homology 3-spheres with values in a space of 3-valent
graphs (Jacobi diagrams or Feynman diagrams) by counting graphs in an integral homology 3-sphere
satisfying certain condition that is described by a set of ordinary differential equations.
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1. Introduction. Axelrod-Singer [AS| and Kontsevich [Ko] independently de-
veloped a method to produce topological invariants for 3-manifolds, based on per-
turbative expansion of Witten’s path integral invariant of 3-manifolds ([Wi2, BN1,
GMM]). Tt is called Chern—Simons perturbation theory and is defined by integrations
over spaces of configurations of points on a 3-manifold. Kuperberg and Thurston
[KT] studied Chern—Simons perturbation theory for homology 3-spheres and ob-
tained a description of a diagram-valued version of topological invariants, which
are proved to be universal among Ohtsuki’s finite type invariants for homology 3-
spheres ([Oh]), in [KT]. Here a homology 3-sphere denotes a closed 3-manifold M
with H,(M;Z) = H.(S3;Z). For homology 3-spheres, combinatorial definitions of a
universal finite type invariant are known ([LMO, BGRT]), which is diagram-valued,
too.

This series of articles is concerned with Fukaya’s graph counting invariant of 3-
manifolds, developed in [Fuk2] via Morse homotopy theory ([BC, Fukl]) and conjec-
tured to coincide with 2-loop Chern—Simons perturbation theory. Fukaya considered
triads f = (f1, f2, f3) of Morse functions on a 3-manifold M and for pairs (M, (;),
i =1,2, of M and for acyclic flat Lie algebra bundles {; on M, he defined some number
Zs ( f, ¢i)- Roughly, it counts with weights the ways that the ©-graph can be immersed
such that edges follow gradient lines. The weights are determined by the holonomies
taken along the edges. Fukaya showed that the difference Zo( f: C1)—Za( f: (2) depends
only on (M, (1, (2).

Fukaya discusses in [Fuk2] some heuristic argument involving the Witten defor-
mation of de Rham complex ([Wil, Bo]) which suggests that his invariant coincides
with the 2-loop part of Chern—Simons perturbation theory. Fukaya also discusses con-
jectural relation with open string theory on the cotangent bundle of a manifold. His
work is important for a mathematical approach to Witten’s result that Chern—Simons
gauge theory on a 3-manifold M is equivalent to the open string field theory of its
cotangent bundle T*M ([Wi3]).

The aim of part I of this series is to construct graph-valued invariants of Z-
homology 3-spheres via Morse homotopy theory, as a higher order generalization of
[Fuk2]. We generalize the idea of Fukaya to graphs with the first Betti numbers > 2 for
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homology 3-sphere M with the trivial connection and generalize Fukaya’s conjecture
which asks if his invariant coincides with Chern—Simons perturbation theory. After we
announced the result of this paper, T. Shimizu gave a proof of the generalized version
of Fukaya’s conjecture by generalizing our invariant for vector fields on Q-homology
spheres [Sh].

In part II, we will generalize the construction given in part I to 3-manifolds with
the first Betti number 1 ([Wa2]) by considering flow-graphs with holonomies. We
will obtain graph-valued invariants for 3-manifolds with the first Betti number 1.
Moreover, we intended to generalize the construction in part I to 3-manifolds with
positive first Betti numbers by using circle-valued Morse theory ([No, Pa]). Relevant
works can be found in [Wa3, Wa4, Wab].

As in [Fuk2], the proof that our invariant 22;67% is well-defined is done by a topo-
logical field theoretic argument for a 1-parameter family of smooth functions on M
without higher singularities. Namely, the difference of Zyy, 35, for two auxiliary choices
is given by the contribution of the 0-dimensional moduli spaces at the endpoints of
a l-parameter family. The moduli spaces of flow graphs generalized suitably to 1-
parameter family gives a possibly non-compact cobordism between the 0-dimensional
moduli spaces on the endpoints. The cobordism may have inner ends. By counting
the contributions of the inner ends in the cobordism, we may obtain the difference of
Zok,3k. To make the difference trivial, or the contributions of the inner ends cancel
with each other, we use some linear equations (the THX relation [BN2]) among coeffi-
cients for the counts of the 0-dimensional moduli spaces. The point is that the proof
is reduced to checking that the sum of weighted counts of flow graphs is 0. In this
paper, we consider graphs for all orders, so we attempt to give a general description of
the structure of a smooth manifold of a moduli space of flow graphs and of arguments
of orientations etc. in a similar fashion as [BH, We].

The moduli space of flow graphs will be described as the intersections of several
submanifolds of a configuration space of M or of the direct product of a configuration
space of M with [0, 1]. We confirm the invariance of Zaj 3, one at a time by using a
Cerf theoretic method as in [Ce, Hu].

Also, unlike in [Fuk2], we consider only the trivial connection contribution and
we do not take the difference of terms for two flat connections as in [Fuk2]. To do so,
we introduce an ‘anomaly correction’ term appropriately, as suggested in [Fuk2]. We
define an anomaly term Zgggrzaly by taking some linear combination of the numbers
of infinitesimal flow graphs in a vector bundle over a compact 4-manifold W with
OW = M. The key point for the correction term to be well-defined is the spin

. . . 1 . . . .
cobordism invariance of the anomaly term Z3,%*Y. The spin cobordism invariance

allows us to define an analogue of the signature defect, which includes ZSE%‘ZMY instead

of the relative L-class, and it gives the desired correction term.

1.1. Organization. The organization of the present paper is as follows. In §2,
we give definitions of Fukaya’s moduli spaces .#r of flow graphs and that of our
invariant.

From §3 to §5, we give some basics for the trajectory spaces. In §3, we study the
moduli space of gradient trajectories between two points and construct its compacti-
fication .#>(f). In §4, we define a compactification .4 of .#r using .#(f). In §5,
we study (co)orientations of the moduli spaces.

From §6 to §7, we show that our invariant depends only on a sequence of Morse
functions and metrics on M. In §6, we show that the principal term Zs 31 is in-
dependent of combinatorial propagator. In §7, we show that the correction term
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Z;E%‘Zaly(ﬁ'w) — ug sign W is independent of the choice of 4-cobordism (W, Yy ).

In the final §10, we shall show that our invariant is also independent of the choice
of Morse functions and metrics on M and complete the proof of the main theorem.
68 and §9 are preliminaries for §10, which give basics for the trajectory spaces in
1-parameter family, which are mainly analogues of the results in §3 to §5. In §8,
we consider the compactification for the moduli space of flow graphs in 1-parameter
family of smooth functions to construct cobordisms. In §9, we study (co)orientations
of the moduli spaces in 1-parameter family. In §10, in accordance with the results in
previous sections, we check the invariance of our invariant by a cobordism argument.
For each of the four types of bifurcations that may occur in a generic 1-parameter
family, we confirm the invariance one at a time.

The reader who is familiar with trajectory spaces may skip the technical sections
83, 65, §8 and most of §9.

In Appendix, we describe some facts on smooth manifolds with corners, conven-
tion for orientation, the chain complex of endomorphisms of an acyclic chain complex
and the definition of blow-up.

1.2. Conventions. We denote by C"(M) the space of C" functions f : M —
R on a manifold M for sufficiently large r and we equip C" (M) the Whitney C"-
topology. By smooth maps or smooth manifolds we mean C” maps or C” manifolds
for sufficiently large r. For a C” function f on a manifold M, we denote by 3(f) the
subset of M of critical points of f. Let L!(f) denote the subset of X(f) consisting
of Morse singularities. For a Morse singularity p € X(f), we denote by i(p) the
Morse index of p. For a Morse function f, a critical point p of f and a Riemannian
metric ¢ on a manifold, we denote by Z,(f) = Z,(f; u) (vesp. “,(f) = “p(f; 1)) the
descending manifold (resp. ascending manifold) of the gradient of (f, u) at p.

We denote by I'(E) the space of sections of a fiber bundle £ — B. When consid-
ering orientations, we will often identify \°* T X with A\°* T, X by a (locally defined)

orthonormal framing that is compatible with the orientation and treat A\° 77X like
N T.X.

For a sequence of submanifolds A;, Az, ..., A, C W of a smooth Riemannian
manifold W, we say that the intersection A1 N Ay N--- N A, is transversal if for each
point x in the intersection, the subspace N A1 + N, As + --- + N, A, C T, W spans
the direct sum N, A1 @ N, AP - P N, A,., where N, A; is the orthogonal complement
of T, A; in T,,W with respect to the Riemannian metric.

The boundary of an oriented manifold is oriented by the outward normal first
convention.

2. Definition of the invariant. In this section, the definition of Fukaya’s mod-
uli space of flow graphs in a manifold is recalled and the definition of our invariant is
given.

2.1. Graphs. By a graph, we mean a finite graph with each edge oriented, i.e.
an ordering of the boundary vertices of an edge is fixed. We identify a graph with
its geometric realization. For an oriented edge e with orientation (vi,vs), we call
vy (resp. w2) the input (resp. output) vertex of e. In diagrams we represent edge
orientations by arrows directed toward the output vertices, as in Fig. 1. For a graph



114 T. WATANABE
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I, let

In(T") = {univalent vertices of I that are inputs},
Out(T") = {univalent vertices of T' that are outputs},

W(T') = {vertices of T of valence < 2 (“white vertices”)},
B(T') = {vertices of T" of valence > 3 (“black vertices”)}.

We define an admissible graph to be a pair (T, p), where

(1) T'is a graph with |In(T")| = |Out(T")|,

(2) p:In(T") = Out(T) is a fixed bijection,

(3) each bivalent vertex has exactly one incoming and one outgoing edges,

(4) T does not have a self-loop, and

(5) no two bivalent vertices are incident to each other by a single edge.

We will omit p when referring to an admissible graph. For an admissible graph I', we
consider the following (sets of) edges: (see Fig. 1)
(1) A compact edge is an edge connecting two black vertices.
(2) A separated edge is a pair of edges {(a, ), (y,b)} with z,y € B(T'), a € In(T"),
b € Out(T") such that b = p(a).
(3) A broken edge is a pair of edges {(z,a), (a,y)} with 2,y € B(I"), a € W(T).
(4) A broken separated edge is either a triple {(a,b), (b,z),(y,c)} or a triple
{(a,x), (y,b), (b, c)}, with z,y € B('), a,b,c € W(I") such that ¢ = p(a).
Let Comp(T'), Se(T), Br(I'), Se’(I") be the set of compact, separated, broken, broken
separated edges respectively. Let E(T') = Comp(I") U Se(I") U Br(I") U Se/(T").

A labeled graph is an admissible graph I' equipped with bijections «
{1,2,...,n} - B(T') and g : {1,2,...,¢} — E(T"), where n = |B(T')| and ¢ = |E(T)|.
Let C’ii) = (C’ii),a(i)), Cii) = ZPS), i =1,2,...,¢, be a sequence of acyclic chain
complexes over Z with finite bases. For a sequence C = (Cil), ey C,Ee))7 we define
a C-colored graph as a labeled graph I' = (', a, 8) such that on each white vertex
of (i) a basis element p € P! is attached for each i. Later we will substitute the
Morse complex of a Morse pair to each C’y). Then P*(i) will correspond to the set of
critical points of a Morse function.

For each edge e = 8(i) € E(T') in a C-colored graph, we define its degree by

1 if e € Comp(T)
i(p) — i(q) if e € Se(T),
deg(e) = op ! if e € Br(T")

i(p) —i(q) — 1 if e € Se'(1),

where i(z) denotes the degree of x and where p € P*(i) is on the input, ¢ €
P*(Z) is on the output of e. We define the degree of a C-colored graph by
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deg(T') = (deg(B(1)),...,deg(8(£))). We will call a C-colored graph with degree
7= (m1,...,m), with n black vertices and with |Comp(I')| + [Se(I")| = m a C-colored
graph of type (n,m,17). We define the closure I' of T" as the graph obtained from I" by
identifying white vertices of each input/output pair (a, p(a)).

2.2. The space 9, , #(C 7). Let %gm AC ) be the set of pairs (T, 0) where

(I) T'isa C-colored graph of type (n,m, ) with connected closure F,

(2) o is an orientation of the real vector space RE(I) g D.ccompm) RH() | where

H(e) = {e4,e_} is the two-element set of ‘half-edges’, namely e_ = ¢~ 1[0, 1]
and e = ¢~ ![3,1] for an orientation preserving homeomorphism ¢ : e —
[0, 1].

Let %, m,7(C 7) be the vector space over Q spanned by %fl) e ™), quotiented by the

relation (I, —0) = —(T',0). The bijection a and the edge orientation of a labeled
graph I' define a canonical graph orientation o(I"), as

o) =a)A-—-Aam) A N (eyAeo), (2.1)
e€Comp(T")

where e is oriented as (e_, e4).

We denote by ¢, (C) the subset of %9 (€ 7} consisting of graphs with-

n,m (1 .....
out bivalent vertices such that £ = m, i.e. ( m o™ ). Let 9, .(C)
be the subspace of ¥4, ., (1, 1)(6_") spanned by (e . Let gﬁon‘illzl(_)w )(6) be the

subset of %?)m_’(l 1)(6) consisting of graphs with only compact edges. Since the

7777 = . 0 =
sequence of complexes C' is unnecessary to represent a graph in g:(’WTI(”l 1)(0), there
are canonical bijections between %sonT]zlo

comp 0
{f (1,.s

)(é) for different sequences C'. Identifying

1)(6_") for all C by the canonical bijections, we simply write
0 comp,0 ~
Gom =9, 121 7777 1 (@)

and we define ¥, ,,, to be the vector space over Q spanned by %?7,”, quotiented by the
relation (T', —o) = —(T', 0).

2.3. Assumption on Morse functions. We make an assumption on Morse
functions, as in [Les3], [Sh, §4.1]'. Let M be a d-dimensional homology sphere with
a distinguished point coy; € M. We consider S? as the one point compactification
R? U {c0}. Let Uy be the open ball around oo:

Uso = {z € R?; ||z| > R} U {o0} C 5¢

for some large R. Fix a small open ball U/ C M including cops and a diffeomorphism

oo+ Ul — Us which sends cops to co. We consider a Morse function on My =
M — {oopr} and a Riemannian metric g on My that are standard near oopr. We
say that a function f : My — R is standard near ooy if f|U;o—{ooM} agrees with the
pullback of a rank one linear map R? — R by ¢,. Similarly, we say that a Riemannian

n an earlier version of the present paper, we did not make such an assumption. But the referee
pointed out that without this assumption, there may be some boundary strata in the trajectory
spaces which may violate the invariance of Zsy 3;. Considering a homology sphere with one point
removed as the connected sum of R? with a homology sphere was utilized in [Ko].
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metric p on My is standard near oo if the restriction of p to T (Ul — {ooar}) agrees
with the pullback of the standard metric on R? by ¢o. Let Cy,.. (My) denote the
subspace of C" (M) consisting of functions that are standard near cop; with respect

to Poo-

ASSUMPTION 2.1. Fix a sufficiently large integer r > 0. Throughout this paper,
a Morse function on M is always a C" Morse function f : My — R that is standard
near oops and a Riemannian metric g on My is always a Riemannian metric on My
that is standard near cop;.

2.4. Fukaya’s moduli space .Zp. Suppose given a sequence f =
(f1, f2,-- -, fm) of Morse functions on My and a Riemannian metric g on My. Suppose
that (f;, ) is Morse-Smale for each i, namely, all the intersections between the de-
scending manifolds and the ascending manifolds of the gradient of f; are transversal.
We choose an orientation o(Z,(f;)) of Z,(f;) arbitrarily for each critical point p of
fi and orient <7,(f;) by o(,(fi)) = *0(Z,(f;)) near p, where * is the Hodge star
operator. Let C() = (C) = ZP(I),B(”) be the Morse complex associated to (f;, 1),
namely, CV) is the free Z-module generated by the (finite) set P*(i) of critical points
of f; and 01 : C,glll — C" is defined by

0p= " #M(fip,0) -0, A'([5:p,9) = (Dp(fi) h y(f:)) Ly,

()
qeP,’

where L), is a level surface of f; that lies just below the level of p and .’ (fi; p, q) is
an oriented 0-manifold whose orientation is derived from those of Z,(f;) and <7 (f;).
More precisely, Z,(f;) h <, (f;) is a disjoint union of flow lines of —grad f;. At

each point b € Z'(f;p,q), the wedge 04, (Zp(fi))o N 03 (Zg(fi))y € /\dilTb*Lp C
/\d_1 Ty M defines a coorientation of the flow line passing through b (see Appendix B
(B.4)). Hence there exists a sign ey, (p, ¢)» = £1 such that

On (Zp(fi))o N 0 (4 (fi))o ~ €5, (P, @)v (—grad fi)o(M)s.

The sign €y, (p, q)» does not depend on the choice of L,,.
Then the incidence coefficient is defined by

# M (fipd)= Y, ena

beA'(fisp.a)

It is known that (C? 9()) above is a chain complex called a Morse complex (e.g.
[Bol, see also Corollary 5.3). Moreover, (C*),9®) is acyclic by Assumption 2.1. We
put ¢ = (CV,Cc®@, ... cm),

Now we give a definition of Fukaya’s moduli space .Zr(f). For T' = (T, o, §) €
%fl)’m(CH), we define the source and the target maps

o:{1,2,....om}—={1,2,....n}, 7:{1,2,...,m} —={1,2,...,n}
as o(k) = o ! (source of B(k)), T(k) = a~*(target of S(k)). For eachi € {1,2,...,n},

we define the subsets Ing(D) = {k{,kj,....kL}, In*(T) = {ki,kb,... KL},
Out{®(T) = {€i,04,... L%} of the set of labels {1,2,...,m} of edges as the subsets
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FIG. 2. Labels for edges incident to the i-th vertez. T(ki) = (k%) =i =o(£}).

consisting of labels of edges such that

kj € In;(T) & 7(k}) =i and B(k!) € Comp(I),

]g; en®T) < T(l};) =4 and B(/_C;) € Se(I),

05 € Out*(T') & o(€%) =i and B({}) € Se(I).

For example, In;(T") is the subset of labels of incoming compact edges at the i-th
vertex and In7°(T") is the subset of labels of incoming separated edges at the i-th
vertex. See Fig. 2.

For a Morse function f on M, let fb; : M — M denote the one parameter group
of diffeomorphisms associated to —grad f.

DEFINITION 2.2. For f = (f1,..., fm) and T’ without bivalent vertices, let
A (f) = Ar(f; 1) be the space of points (1, ...,2,) € M such that
(1) for 1 <i<mn, 1< j <r;such that k; € In;(T), there exists t,: > 0 such that
tyi
(I)fkj. (;Ccr(kj.)) = Ti,
(2) . lim @9%, (i) = pgs for 1 <i <, 1 <j <7 such that k! € Inj*(T'), where
——00 i J

Dri € P is the one attached to the input of the edge labeled 15;-,
J —.
(3) lim fIJ’}»z} (x;) = az for 1 <i <mn,1<j <5 such that ¢ € Out;*(I"), where

t—+oo

q7 € P%) is the one attached to the output of the edge labeled 57;
J

REMARK 2.3. Since @}(p) = p (Vt) for a critical point p of f, we allow for a

point (z1,...,2,) of .#r(f) that some x; coincides with a critical point of some f;.
We will see later that such a point is not a singular point of . (f).

2.5. The count of .Zr.

—

(C) has no
bivalent vertez, i.e. E(I') = Comp(I') U Se(T'). For a generic choice of f, the space
Mo (f) is a C™1 smooth manifold of dimension (n—m)d+ S mi. Moreover, f can
be chosen so that this property is satisfied simultaneously for all graphs T in 4° é)

n,m,ﬁ(

PROPOSITION 2.4 (page 49 of [Fuk2]). Suppose that T' € ¥4°

n,m,n

for a fized triple m,n,> i~ ;.

The proof of Proposition 2.4 will be reviewed in §4.1. The reason for the dimension
is roughly that an edge e of degree i(e) yields a (d—i(e))-dimensional constraint. Since
dim M¢' = nd, the dimension of the moduli space should be nd — 3 c ) (d—i(e)) =
nd—md+)"_ i(e). The reason for the class C" ! is that the solution for the differential
equation #(t) = —(grad f), ;) for a C" Morse function is of class C"~!.
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As in [Fuk?], we will need a compactification of the moduli space . (f) for I
with only trivalent black vertices. If I has only trivalent black vertices and does not
have bivalent vertices, then n = 2k and m = 3k. For simplicity, we take a convenient
metric for each Morse function. Namely, for f: (f1, f2,---, [3r), we take a sequence
i = (p1, p2, - - ., usk) of Riemannian metrics on M such that for each 4 the pair (f;, u;)
is Morse-Smale and that p; is Euclidean near X(f;) with respect to the coordinate of
the Morse lemma.

PROPOSITION 2.5. Suppose d = 3 and that (f, i) is as above and is generic as in
Proposition 2.4. Suppose that T' € 9y, .. ﬁ(é) is such that |E(T")| = 3k and such that

—

M, M3k >0 and 0 <dimAr(f)=(m—1)+(me—1)+--+ (n3sr. — 1) < 1. Then
///p(f) has a natural compactification to a smooth manifold ]F(f) with boundary,
whose boundary consists of flow graphs with a once broken trajectory or with a subgraph
collapsed to a point.

The proof of Proposition 2.5 will be given in §4.3. Proposition 2.4 implies that
for " as in Proposition 2.5 with 71 = --- = 73, = 1, we have dim . (f) = 0. In fact,
Mr(f) = Ar(f) in this case. Then we count points in the finite set . (f) with

signs as follows. Let (z1,...,29;) € 4 (f). For each edge e € E(T), we assign a
vector

ve € N (T Mo @ T, My),

where @ = Zo(;), Y = Tr(5), @ = 87" (e), as follows.

If e € Comp(T), let €1, €2, €3 be an orthonormal basis of T, My such that e; Aea Aes
gives the orientation of My and ey is a positive multiple of —(grad f;),. Thereis ¢y > 0
such that y = <I>;° (x). The flow <I>§P induces a diffeomorphism from a neighborhood of

x to that of y. Let e} = dfl)’}‘z (e;) € TyMy (i = 1,2,3). Let no,n3 € T, My T, M, be a
basis of (e1+e], ea+eh, ez+es, e))* such that (e1+e))A(ea+eb)A(ez+es)AejAnaAng =
e1 Neg Neg Ael Neb Ael. We define

Ve = Ng A\ N3.

If e € Se(T"), let p and g be the critical points of f; that are the input and the
output of the i-th edge in the flow graph. Let e, ez, es3 be an orthonormal basis of
TxMO such that TIJZ{q(fZ) = <61, ceey 6T>, Tz%(fZ)L = <6T+1, ceey 63> and et N A
e and e1 A ez A eg give the orientations of o7, (f;) and My respectively. Similarly,
let e, eh,es be an orthonormal basis of T, My such that T,2,(f;) = (e},...,¢e.),
TyDy(fi)*: = (€yr,....€5) and e} A--- A€l and €] A €} A €} give the orientations of
Py (fi) and My respectively. Then we define

Ve = (€rq1 Ao Neg) A€ A Neby),

which belongs to /\2 T,y (Mo x My) if m; = i(p) —i(q) = 1.
Let V(21,...,220) = Acep(r) ve € /\6]C Tlar ... wan) (ME¥). Since dim MZ* = 6k,

there is a nonzero real number « such that V(zq,...,29;) = @Oz A+ - AOy,, , where
Oq, € /\3 T, My gives the unit volume. For (z1,...,x2x) € 41 (f), we define

1 ifa>0
e(@ k) = 1 dra<o
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Fic. 3. The IHX relation. i and j are labels of vertices, (£) is a label of an edge.

For a generic pair ( f, 77) as in Proposition 2.5, the coefficient « is always nonzero for

—

all points of .#r(f). We define

#'///p(_»)z Z e(xy,...,x9) € Z.

(1,228 €A (f)

2.6. Principal term Zyj3;. The space %y 35 (82.2) is spanned by 3-valent
graphs with only compact edges. Let %oy 3r C %ok 31 be the subspace spanned by the
IHX relation and the label change relation. The ITHX relation is shown in Fig. 3 and
the label change relation is generated by the following elements

(1) (T',o(I")) 4+ (I, 0o(I")) for labeled graphs I and I, where I" is obtained from

I" by a swap of a pair of vertex labels or by an inversion of the orientation of
an edge.

(2) (T,0(T")) — (I, 0(I")) for labeled graphs I' and I, where I' is obtained from

T" by a swap of a pair of labels for compact edges.
We define the space %y, 31 to be the quotient space %oy, 31,/ %ok, 3. This is the same
thing as the degree k part of <7 (0) in [BGRT]. We denote by [I'] the equivalence class
in @y, 31 represented by I' € 5420,613,6.

Let T be a C-labeled graph with p; € P*(i) on the input and ¢; € P*(i) on the
output. For simplicity, we first suppose that Se(T") is labeled by {1,2,...,a}. Let
k; = i(p;) — i(q:). For a sequence h = (h(,... h(™) of endomorphisms h()

Endy, (Cii)), i=1,2,...,m, of homogeneous degree k;, we define the trace of I' by

PPy P,
| R a ‘
Ty || ¢ || = IR
=1
F 1
4,9, g,

where h(1g; = > hézgipi. Then the definition of Tr for general labelings

i(PSfii;(i ))+ki
on Se(I') may be obtained by a straightforward modification.

In particular, since each (Cil), a<i>) is acyclic, there exists an endomorphism
g c C’i?_l of homogeneous degree 1 such that g +¢@9(") = id. (See Ap-
pendix C. Following [Fuk2], we call such an endomorphism a combinatorial propaga-
tor). As a special case of the above definition, the trace by combinatorial propagators

g= (g(l), . ,g(3k)) defines a linear map Try : g%)%(é) — o 3k-
DEFINITION 2.6. Suppose d = 3. We define

Zon s (f) = Z w0 (f) Trg(I') € op 3k,

NS (o)
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where the sum is taken over all C-colored graphs in ggk)3k(é), each equipped with
canonical orientation.

2.7. Moduli space of infinitesimal flow graphs. In the rest of this section,
we define the correction term which turns Zsy 35 into a topological invariant. Let X
be an oriented smooth Riemannian manifold and I' be a graph with only compact
edges. Suppose that I' has n vertices and m edges. We shall consider the moduli
space of affine flow graphs in an oriented linear R3-bundle 7 : E — X with metric for
such a graph I'. Let P — X be the orthonormal SO3-frame bundle associated to 7
and

Clocal(R3) — {(yl, ) € (B30 = (),Z lyell® = 1,9: # yj if i # j}.
=2

Let 7 : E° = P x50, (R® = {0}) = X, S(7) : S(E) = P x50, S* = X, Clo<?l(7) :
Clocal(B) = P x50, C1°“*(R?) — X be the bundles associated to 7. Such a bundle
appears in a boundary strata of compactified configuration space (see §4.2). The
normalization v — v/||v]| induces a natural map v : E° — S(F). The Gauss map
¢ij » Clca(R3) — S2) which takes (y1,...,yn) to %’ induces a well-defined

morphism 51-]- : Clecal(B) — S(E).

n

Now suppose that a section v : X — E° of 7° is given. Then 5 = voy: X — S(E)
is a section of S(m). Since ¢;; is transversal to 7(X) on each fiber, the subset

O:(7) = 65" (X)) C C*!(E)

forms a smooth subbundle of C!°¢@!(7) where ¢ is such that i = ¢(¢) and j = 7(¢).

DEFINITION 2.7. For a sequence ¥ = (71,72, .- .,7m) of sections of 7°, we define
m
M) = () Oul) € Clwl(B)
=1
for a sequence ¥ = (71, ...,7m) of sections of 7°. If the intersection is transversal, in

other words, if Ay’ 0C0car () (Or(72)) # 0 at every point of A2 (), this formula
also defines a co-orientation of /(7).

ocal

There is a compactification 62 (R?) of Clecal(R3), which is naturally an SOj-

space. See §4.2. Let df““(w) : df““(E) — X be the aifcal(R3)—bundle associated
—local —local

to m. The interior of C,,  (R®) is identified with Cl°¢a/(R3). Let O,(y) C C,, (E)
be the closure of Oy(y). Let

A5 @) = () Oele). (2.2)

—local
LEMMA 2.8. For a generic choice of 4, the space ///;ca (%) is a submanifold of
UIOC&I(E) of codimension 2m. If X is compact, then so is ]?Cal(?).
Proof. Note that ©y(v) is a submanifold of codimension 2. By using the transver-
sality theorem, the set of sections 4 can be inductively deformed in I'(7)™ slightly so

n
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— local
that the intersection (2.2) is transversal. Thus for a generic choice of ¥, Ay (7) is

a submanifold. The second assertion is immediate. 0

—local
When 7 is generic as in Lemma 2.8 and X is compact and dim ///;Cd (%) =0,
—local , _,

we define #.#1  (¥) to be the number of components counted with signs, which
are determined by the coorientations of the intersections. Here we fix the orientation
—local

o(C,,  (R?®)) to be the one on the unit sphere induced from that of the Euclidean
space (R?)"~1. Then we orient 62)(:&1(E) by

—local —local

o(C, " (E)) = o(X) A o(C,, " (R?)).

2.8. Anomaly term Z;E%‘Ealy. Here, we shall define the term Z;E%rzaly (Fw) for
a sequence vy of sections of a vector bundle T"W over a spin 4-manifold W with
OW = M. To do this we shall first find a trivialization of TW and consider its trivial
subbundle T"W.

2.8.1. Framing on spin cobordism. For a k-manifold X, a framing on X is a
trivialization 7x : TX — X x R¥. More generally, we will also call a trivialization of
a vector bundle a framing. We will identify a framing with a finite set of sections of
a vector bundle that are fiberwise linearly independent. We shall fix framings on M,
and on a spin 4-manifold W with W = M in a sense compatible with each other.
Recall that for £ > 3, a spin structure on a vector bundle E over a CW-complex B is
a homotopy class of framings on the 1-skeleton of E' which can be extended to the 2-
skeleton ([Mil]). A spin structure on a tangent bundle of a manifold X is called a spin
structure on X. Since the group Q;pin of spin cobordism classes of spin 3-manifolds
is trivial (e.g., [Mil]), one can find a compact spin 4-manifold W with OW = M and
with a spin structure that is compatible with the (canonical) spin structure of M.

We choose a framing 7a; on 7'My, which exists for any M. We fix 73, such that
it agrees on U — {oopr} with the pullback of the standard one 7gs on Us, — {00} by
dez!. One may check that such a framing really exists by the obstruction theory for
extending sections. Let Us, be the closure of Us, C S® and let

M= (M —U.)Us ([0,1] x U ) Us — (S — Us),

where d(M — U/,) is identified with {1} X Uss by @oc and 9(S® — Us) = U is
identified with {0} x OU . Then M is diffeomorphic to M. We construct a rank 3
vector bundle T"M on M as follows. Consider [0,1] x U, as a part of@, 1] X Uso.-

Let T([0,1] x Us) be the pullback of TUs by the projection [0,1] X Use — Ucc.
Let T?([0,1] x OU «) be the restriction of T7([0,1] x Us) to [0,1] x OU . We define

T°M =T(M - U )UT"([0,1] x U w) UT(—(S? = Usy)).

The rank 4 vector bundle T([0, 1] x U, ) restricts on {0, 1} x U to the restrictions of
el@TM and ' T (—S?), where e! denotes the trivial line bundle. Thus by extending
T([0,1]xUso)|j.1)x o7, by the restrictions of e' @T (M ~UL,) and e' ©T(— (5% ~Ux)),
we obtain a R*-bundle over M of the form ! @& TVM.

Let n be a framing of ¢!. The 4-framings n @ 7as and n @ s of e! @ T (M —U.)
and ! @ T(—(S% — Us,)) respectively extend over e! & T'M by using the product
structure. We denote by 7, the resulting 4-framing of ! & TVM.

The following lemma follows from Lemma 2.3 of [KM], Lemma 2.40 of [Les1] and
from the proof of [KM, Theorem 2.6].
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LEMMA 2.9.

(1) There exists a compact spin 4-manifold W with corners with OW = M as the
spin boundary such that x(W) = 1.

(2) Let W be as in (1). The 4-framing Ty, extends to a framing of TW if and only
if pLr(TW;th,) = 0, where p1(TW;7h,) € Z denotes the relative Pontrjagin
number. Moreover, there exists a framing Ty of My that is standard near
ooy and that satisfies pr(TW;t),) = 0.

2.8.2. Generalized Morse sections. Let 7 : £ — X be a linear R%bundle
over a compact manifold X possibly with corners with dimX = N > d. We say
that a smooth section v : X — E is generalized Morse (GM) if for each point x €
771(0), there is a local coordinate (yi,...,yn) on an open neighborhood U of z and
a trivialization ¢ : 771 (U) — U x R such that either of the following holds?.

(1) W(yh7yN):g0_1(y177yN7:l:y177:tyd) v(yhayN)EU
2) YWr,--un) =0 Wrs YN YR Y Ty, EYa) Y yn) €U

When v is GM, we call a point € y~1(0) having local form (1) (resp. (2)) a Morse
singularity (resp. birth-death singularity) of v. We write ¥(v) = v71(0) and let X*(y)
(resp. X2(7)) be the subset of 3(7y) consisting of Morse singularities (resp. birth-death
singularities). An obvious example with ¥2(v) = () is the section My — T M given by
the gradient of a Morse function. The following lemma is an immediate consequence
of results of K. Igusa ([Igl, Lemma 2.8] and [Ig2, Appendix 2]).

LEMMA 2.10. Let w : E — X be as above. Suppose that the restriction of a
smooth section v : X — E to 0X is GM. Then there is a homotopy of v relative to
0X whose result is GM. Hence ¥2(v) is a codimension 1 submanifold of X(v).

2.8.3. Definition of Z;E%l};aly. Now let (W, 7},) be a pair satisfying the condi-
tion of Lemma 2.9. One can find a (non-unique) 4-framing of TW as in Lemma 2.9
and let 735, be its sub 3-framing of TW that extends 7p;. The 3-framing 7y}, spans a
rank 3 subbundle T"W of TW. For each i € {1,2,...,3k}, let v; be a GM section of
TYW extending —grad f; € T'(T'(M — UL)) and put Yw = (71, .., V3k)-

DEFINITION 2.11. We define

Z;;,%IEMYWW) = Z #ME (Gw) [T] € a3,

0
F€g2k,3k

where the moduli space .Z}°*(Yyy) is considered inside the trivial Ulgokcal(R?’)-bundle
over ﬂj’il (W — %(v;)) associated to the restriction of the R*-bundle TVW.

PROPOSITION 2.12.

(1) For a generic choice of the GM extension Aw of —gradf =
(—grad f1,..., —grad fs;), the number #.41°° (V) is finite.

(2) Let W and W' be compact, connected, spin J-manifolds with corners with
OW =W’ =M, x(W) = x(W’) =1 and suppose that Yy |m = Yw+|m. Then
for each k > 1 there exists a constant pu, € ooy, 31 such that

Z20ma () — i sign W = ZERomal () — i sign W

2This condition is not a generic one if N > d + 2. Thus this gives a stronger restriction than the
transversality to the zero section. This restriction is placed to determine all the singularities.
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Hence Z;E%I;Qaly(ﬁ'w) — pg sign W does not depend on the choice of (W, Jw)
such that OW =M, x(W) =1, Jw|m-v, = —grad f.

Proof of Proposition 2.12 (1). Put 4 = (y1,...,73k) = Yw. Since for the GM
extension v; the singularity set %(v;) = 7; '(0) is a compact smooth 1-submanifold
of a 4-manifold W, we may assume that X(v;) N X(y;) = 0 if ¢ # j, and moreover
that they are separated by small open tubular neighborhoods. We shall show that
the image of the projection of the 0-dimensional moduli space .Z°°*(5) on W is
disjoint from a neighborhood of %(v;) for each i and hence from a neighborhood of
Hjil 2(v5)-

Let IV be the graph obtained from T' by replacing E(T') with E(T') — {8(7)}.
According to Definition 2.7, .Z}°*(¥) is the intersection of .9 (¥ \ {;}) with
0;(y:). By Lemma 2.8, .9 (7 \ {:}) is a submanifold of (W — Ui 2(75)) x

—local

Cye (R?) of codimension 2(3k — 1) = 6k — 2, i.e., a 2-submanifold if ¥ is generic.
For a generic choice of 7;, the projection of .9 (¥\ {7;}) on W is disjoint from a
neighborhood of ¥(;) for a dimensional reason. Hence for a generic choice of v;, the
projection of .Z°°®(7) on W is disjoint from a neighborhood of ¥(v;). Here we may
assume that the perturbation of «; for the disjunction has support in an arbitrarily
small neighborhood of X(;). Since X(v;) NX(v;) = 0 for i # j, the perturbations can
be done for all i independently and we may assume that .2 (7) is disjoint from a
tubular neighborhood of Hj’il (7).

By Lemma 2.8, the restriction of .#}°°®(¥) to the complement of the tubu-
lar neighborhood of ]_[j’il Y(y;) is compact. Therefore, for a generic choice of ¥,

A0 () is a compact 0-submanifold, i.e., a finite set. O
The proof of Proposition 2.12 (2) will be given in §7.2.
2.9. Main result and conjectures.

THEOREM 2.13. For k> 1,
Zotesi(F) = Zonan(f) — ZSE%‘ZMYWW) + i sign W € by, 3,

where py, is the constant found in Proposition 2.12 (2), is an invariant of diffeomor-
phism type of M.

Proof of the theorem is given in §10. Theorem 2.13 allows us to write 2%)3;C (M) =
Zok,3k (f). As mentioned in [Fuk2], the 2-loop part Z.3(M) is likely to coincide with
the 2-loop part of the configuration space integral of Kontsevich. The generalization

of this conjecture is the following, which can be considered as a higher loop analogue
of a theorem of Cheeger [Ch] and Miiller [Mii].

CONJECTURE 2.14. 22;673;@(M) agrees with Kuperberg—Thurston’s universal ex-
pression ([KT]) of the configuration space integral invariant of Kontsevich ([Kol).

It is known that the configuration space integral invariant of Kontsevich recovers
all Q-valued Ohtsuki finite type invariants ([Oh, KT, Les2]). Shortly after the author
proposed Conjecture 2.14 in an earlier version of this article, Shimizu gave a proof of
Conjecture 2.14 ([Sh]). Shimizu also found an explicit relation of the constant py to
a constant 0y, considered in [KT, Les2] for configuration space integrals.

In [Fuk2], Fukaya obtained the leading term of a propagator by considering the
limit of Witten’s deformed Laplacian and by deforming the propagator that Axelrod—
Singer obtained by harmonic analysis in [AS]. Thus in a sense, Fukaya’s and our
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construction is closer to that of [AS] than the general construction in [KT]. It would
be very interesting to clarify a relationship between our construction and that of [AS],
also in relation to part II. Also, it would be very interesting to see if the correction
term in this paper is related to the correction term in [AS].

REMARK 2.15. (1) C. Lescop independently constructed in collaboration with
G. Kuperberg ([Les3]) an explicit 4-chain in the configuration space of two points
in a rational homology 3-sphere M by a geometric consideration about Heegaard
diagrams, which is reminiscent of Heegaard Floer homology. She defined an invariant
of ‘combings’ on M using the explicit 4-chain and gave a combinatorial formula for
the invariant.

(2) M. Futaki pointed out in [Fut] some bifurcations that are missed in [Fuk2]. In
[Fuk2], the coefficients in the linear combination of graphs are defined by contracting
holonomies considered along flow graphs by g-invariant tensors. However, Futaki
observed with a concrete computation that for some bifurcations, the holonomy matrix
will suddenly jump and thus the invariance fails. Since we construct an invariant
via an intersection theory considering only the trivial connection contribution, the
coefficients in the linear combination in our definition can be given without using
holonomy matrix, so the same problem does not occur. (See also Remark 2.3.)

3. Moduli space of gradient trajectories. We shall construct a compact-
ification .#Z5(f) of the space .#5(f) of gradient trajectories that corresponds to a
compact edge in a graph, in a fashion similar to [BH]. The compactification .45 (f)
will play a fundamental role in defining the compactification ./ ( f) For a Morse
function f and a metric p on My, we define

Mo (f) = Mo (fip) = {(7,y) € (Mg — 2(f)) %y = @}(m) for some t > 0}.

It follows from a property of solutions of ordinary differential equations that .#5(f) is
a submanifold of (Mg — %(f))? of dimension d + 1. We shall construct a natural com-
pactification of .#5(f). Moreover, we obtain compactifications of Z,(f) and <7,(f)
by using the compactification of .#5(f).

3.1. A decomposition of .Z>(f). First we make some assumptions. In the
following we assume that a Morse function f is chosen as in the following lemma.

LEMMA 3.1 (e.g. Lemma 2.8 of [Mi2]). For any C" Morse function [ : My —
R that is standard near cons, there is an arbitrarily C™-small perturbation of f in
the subspace of Cg,_ (Mo) of Morse functions such that all the critical values of the
resulting Morse function are distinct. (Such a Morse function is said to be ordered.)

The Morse lemma gives a local coordinate description of the moduli space. Let
f be a Morse function on M. By the Morse lemma, one can find a local coordinate
(x1,...,24) on a neighborhood M, of a critical point p of f and a metric p on M
such that f agrees on M, with

x? x? :1012 x2
hz)=fp) =5 — =5+ o+t (3.1)

and such that p agrees with the Euclidean metric on M,, with respect to the coordinate
(x1,...,24). We say that such a metric p is Fuclidean near critical points. We call a
pair of M, and the coordinate (x1,...,2q) a Morse model.
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Ly lire Crt1—1M W
Wi W
oPy W

Lk Cp,—n

Wo Wy Wo

Fic. 4. Wy and a schematic illustration for a decomposition of #2(f). This consists of 6
squares each corresponds to M2 (f; Wi, Wj).

Suppose that the singular set 2(f) = {p1, p2, ..., pn } is numbered so that f(px) <
f(pr41) for each k < N — 1. We put ¢ = f(pr). For a small number > 0 and
1<kE<N-1,let

Wi = f~Hew =y e —nl U {oom}, Lk = f~ (e —n) U{oon},
Wy = f'en —n,00) U{oon}, Ly = f""(en —n) U{oom},
S (=00, 1 — ] U {oon}.

See Fig. 4. For a pair of subsets A, B of M, let .#5(f; A, B) = 4>(f) N (A x B).
Then we have

M(f)= | AW, W),

0<j<k<N
For 0 < j <k < N, there is a natural embedding
wkj : .//g(f;Wk,Wj) — Wk X Lk X Lk—l X - X Lj+1 X Wj,

defined by ¢;(z,y) = (@, 2k, k-1, -, Zj+1,Y), where z; € L; is the unique inter-
section point of the flow line between = and y with L;. Then .#5(f) is canonically
diffeomorphic to the union of the images ¥y, (A2 (f; Wi, W;)) (0 < j <k < N) glued
together by the diffeomorphisms

Uij © ity Vi1, (Ao (f; Dirr, Wy)) = g (Ao (f; Lier, Wy)),
Urj © Vgt Yk g1 (Ma(fs Wiy Lj)) — i (Mo (f3 W, Lj)).

See Fig. 4. Note that 1y o 1/’1;1 j and 9y o 1/;;;71 agree with the maps induced from
the projections

7Tkj:Wk+1XLkJrlXLkX'--XLjJrlXWj%WkXLkXkal><~~~><Lj+1><Wj,
(T, 2h415 2k 5 2415 Y) 7 (Zht1s 2y Zh—15 -+ -5 25415, 1),
pkj:WkXLkXLk_lX---XL‘jXWj_1—>Wk><Lk><Lk_1><---><Lj+1><Wj,

(@, 2y Zlm1, o1 25, Y) > (T, 28, Zh—1s - - 21, Z5)-

3.2. The definition of .Z5(f). Let

MoAf; Wi, W) = i (Mo(f; Wi, W) (the closure). (3.2)

Note that this is not the closure of #5(f; Wy, W;) in Wi, x W; when k > j, but the
closure in the codomain of 1)y;.
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LEMMA 3.2. The maps m; and pi; induce diffeomorphisms

V1, (Aa(f5 Ly, Wy)) = Ung (Mo (f5 Liyr, Wy)),
Yk j—1 (A (f; Wi, Lj)) — Uiy (Mo (f; Wi, Lj)).

Proof. We only give a proof for my;. The smoothness of mj; is obvious. Define a
smooth map v : Lyy1 X Ly X -+ - X Ljpq X Wj = Ljy1 X Lggq X Ly X -+ - X Ljg x W;
by v(x, 2k, ..., zj+1,Y) = (¢, T, 2k, . - ., Zj41, y). The restriction of v to
Yi41,j (Mo (f; L1, W) is the smooth inverse to my;. O

DEFINITION 3.3. We define

M) = | AW W), (3.3)

0<j<k<N
where the pieces are glued together by the diffeomorphisms of Lemma 3.2.
It is clear from the definition that .45 (f) is compact. Let

6%2('][)—}M><M

be the continuous map that extends the natural embedding b = Uk j wk_jl
Uj.1 Vrj (A2(fs Wi, Wj)) — M x M onto #>(f). In other words, b gives the pair of
endpoints of a flow line (possibly broken. see below.). For subsets A of W}, and B of
Wj, let

Mo(f; A, B) = by (Ma(f; A,B)) CAX Ly, x --- x Lj11 x B. (3.4)

This is consistent with (3.2). Note that this may depend on the choices of k and
j when A C Ly or B C Lj4q, but it becomes well-defined if it is considered as a
subspace of .#5(f).

For a Morse pair (f, ) and a pair (x,y) of distinct points of My — X(f), a (r
times) broken flow line between x and y is a sequence o, V1, - - -, (r > 1) of integral
curves of —grad f satisfying the following conditions:

(1) The domain of vq is [0,00), the domain of ~, is (—o0,0] and the domain of

Yi, 1 <1 <r—1,is R.
(2) %(0) ==, 3 (0) = y.
(3) There is a sequence qi,qa,...,q. of distinct critical points of f such that
im0 vi(s) = im0 vie1(s) =i (1 <0 < ).
A broken flow line (79,71, .. .,7r) between x and y is determined up to reparametriza-
tions by the boundary points z, y and intersection points of -; with level surfaces that
lie between ¢; and ¢;1. More precisely, a broken flow line between € Wy, and y € W
is uniquely determined by a point of Wy, X Ly X --- x Lj 1 X W; up to reparametriza-
tions and conversely a broken flow line between x € Wy, and y € W; determines a
point of Wy, x Ly X --- x Lj;1 x Wj. So we may identify a broken flow line between
x € Wy, and y € W; with a point of Wy, x Ly x --- x Lj;1 x W, and call the latter a
broken flow sequence.
Now the main proposition of this subsection can be stated as follows?.

3We will not give explicit charts on every strata. The article [We] of K. Wehrheim gives a full
description of the smooth structures on the compactification of .#2(f) and explicit associative gluing
maps in a similar finite dimensional fashion as [BH].
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PROPOSITION 3.4. Let (f, 1) be a Morse-Smale pair on My such that f is ordered
and p is Buclidean near critical points. Let Q= (M x oopr) U (con x M), Ay =
ApUQns. Then A 5(f) in (3.3) is compact and satisfies the following conditions.

~

(1) A>(f) — b (Anr) is a smooth manifold with corners.
(2) b induces a diffeomorphism Int A o(f) — Mo(f).
(3) The codimension r stratum of 4 +(f) — b~ (Anr) consists of r times broken

flow sequences. The codimension v stratum of M 5(f) — b~ (D) for v > 1
is canonically diffeomorphic to

Aoy (f) X Doy (f) — Am (r=1)

[T et (Frq1.0) x - x A (Fr00-1,0) X Do, () (r>2)

q1,-e0s ar€X(f)
15y qr distinct

The proof is divided into §3.3, §3.4 and §3.5.

REMARK 3.5.

(1) The compactification .#5(f) may not be embedded by b into M x M whereas
AM5(f) is a submanifold of M x M. The dimensions of some faces of the
boundary of .#(f) decreases.

(2) In fact, #(f) is smooth on .#5(f) — B_l(ﬁg(f)), where ﬁg(f) ={(p,p) €
M x M;p € B(f)U{oon}}. The boundary of .#5(f) has conic singularities
on b_l (AE(j) ) .

(3) The definition of .#Z5(f) depends on the choice of the level surfaces L. But
its diffeomorphism type (as a manifold with corners) does not depend on the
choice and it is enough for our purpose.

3.3. Smooth structure of the moduli space of short trajectories. Let h
be the standard quadratic form of (3.1). First, we describe the standard model

Mo(h) = {(x,y) € (RH)?; y = & () for some ¢t > 0}.

The following lemma is a key lemma in the construction of the compactification.

LEMMA 3.6. .#s(h) = {(pu,v) x (u, pv); u € R",v € R p e (0,1)}. Hence its
closure M +(h) in R? x R? s

Mo (h) = {(pu,v) x (u, pv); u € R, v € R p e [0,1]}
and M +(h) — {0 x 0} is a smooth manifold with boundary, with

6%2(]7,) = ({0} X Rd_i) X (RZ X {O}) Uoxo Aga = (%(h) X @Q(h)) Uox0 Apd.

Proof. Let 2 = {(pu,v) x (u,pv); u € R, v € R¥~% p € (0,1)}. Suppose that
(pu,v) x (u, pv) € 2. The solution for the differential equation

F(t) = —(grad h)
isy(t) = (v1(0)et, ..., 7i(0)el, 141 (0)e™t, ..., ya(0)e ). Ifv(0) = (pu,v), then v(t) =

(puet,ve~t). The system of equations pue! = u, ve™ = pv has a unique solution
t > 0 provided that (u,v) # (0,0), in which case (pu,v) x (u,pv) € #a(h). If
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(u,v) = (0,0), then (pu,v) x (u,pv) = (0,0) x (0,0) and obviously this belongs
AM(h). Conversely, for (ug,vo) X (uoet,voe™t) € Mo(h) (t > 0), put u = upe’ and
v =1vg. Then (ug,vo) X (uge’,voe™") = (ue™t,v) x (u,ve*) € 2. This completes the
proof of 2" = 5(h).

For the latter assertion, consider the smooth map ¢ : [0, 1] x R? x R4~ — RY x R¢
defined by ¢(p,u,v) = (pu,v) x (u, pv). Its Jacobian matrix is

u pl O
0 O I

Jgo(p,u,'u) = 0 7 O (3.5)
v O pl

whose rank is d + 1 unless (u,v) = (0,0). Namely, ¢ is an immersion outside [0, 1] x
0 x 0. Note that ¢([0,1] x 0 x 0) = {0 x 0}. Moreover, it is easy to check that
M 5(h) — {0 x 0} is a submanifold with boundary. The boundary corresponds to the
image from p=0,1. O

LeEmMA 3.7. Let (f,
(i) Ao (f; Wi, Wi) —

corners, with

be as in Proposition 3.4 and let 1 <k < N — 1. Then

1)
Aw, (Aw, = W2N A ) is a submanifold of Wi, x Wy, with

O (3 Wies W) =[ (4 (£) 0 Wi) X (i (£) O Wi)| U ) A,
U Alo(f3 Wi, L) U Ao (f5 Licy1, We).

(ii) A o(f; Wi, L) — {002} is a submanifold of Wy, x Ly with corners, with
Ot 3(f: Wiy L) = | (7 (1) VW) X (Z, (£) N L)
U A(f; Ly, L) UAL,.
(iii) A o(f; Lyy1, Li) — {o03,} is a submanifold of Lyy1 x Ly with corners, with
OM 3 (f; Lisr, L) =(p () N Lig1) X (D, () N L)
(iv) A o(f; L1, Wi) — {003} is a submanifold of Li11 x Wy, with corners, with

O 3§ L, W) =| (% (F) 01 Lies1) % (Z, (F) VW)
U '//2(][; Ly, Lk) U ALk+1'

Proof. Here we only prove (i). The other cases are the restrictions of this case.
The part Ao(f; Wi, L) U Mo(f; L1, W) is the boundary of 5 (f; Wi, Wy). To
study the other ends, we define U, C M, by the condition

{ —Ej—xf—--é—ﬂgf+xf+1+-2~+xfl<s
(-2 — - —af) (@i, + - +ay) <e

for a sufficiently small number ¢ > 0, where ¢ is the index of pg. The closure of
Mo(f; Uy, Uy) in U, x Uy, is the restriction of .#9(h) in Lemma 3.6. Let U, C Wy be
the open subset defined as the union of all the images of integral curves of —grad f
that intersect Uy. By extention by the flow of —grad f, one may see that the boundary
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of the closure of .#5(f; ﬁk, ﬁk) in ﬁk X U'k consists of degenerate flow-lines coming
from those in 9.4 (h) and flow-lines of d(Uj, x Uy). Then .4 (f; Wi, Wy,) is the union
of M o(f; Uy, Up) and Ms(f; Wy — K, Wi, — H4), where = oy, (f)U Dy, (f). This
completes the proof. O

The following lemma is an analogue of Lemma 3.7.

LEMMA 3.8. Let (f,u) be as in Proposition 3.4. Then
(G) A o(f; Wx, W) — Awy is a submanifold of Wi x W with corners, with

8]2(f§WN7WN) :[(%N (f)NWn) x (-@pzv (fHn WN)} Upn,pw) Awy
U%Q(f;WN,LN) UBil(OOM X WN).

(ii) A o(f; Wi, L) — {002} is a submanifold of W x Ly with corners, with

O o F;Wis L) = (y (£) VW) X (Zy () N1 L)

Ub (oo x Ly)UAL,.
(iii) A o(f; Wo, Wo) — ﬁwo 1s a submanifold of Wy x Wy with corners, with
OM 5(f; Wo, Wo) = b~ (Wo x oonr) Udlo(f; L1, Wo) U A,
(iv) A o(f; L1, Wy) — {002, } is a submanifold of L1 x Wy with corners, with

OM o(f; L1, Wo) = b (L1 x copr) UAL,.

3.4. Smooth structure of the moduli space of long trajectories. Next,
we shall prove the following lemma.

LEMMA 3.9. Let (f, ) be as in Proposition 3.4 and suppose that f has N critical
points whose values are all distinct. Then M o(f; Wi, W;)—b"1(Qur) (0<j <k <N,
definition in (3.2) ) is a submanifold of Wy, X Ly X Ly—1 X - - - X Lj11 x W} with corners.
The codimension 1 stratum of M o( f; Wi, W;) for r > 1 consists of r — s times broken
flow sequences & with s events in the following list happening.

The initial endpoint of & lies in OWy,.

The terminal endpoint of & lies in OWj.

The initial endpoint of & agrees with cops (only if k = N ).
The terminal endpoint of & agrees with ooy (only if 5 =0).

In the following, we follow convention in Appendix A about smooth manifolds
with corners. To prove Lemma 3.9, we shall prove the following lemma by induction
onk—j—1

LEMMA 3.10. Under the assumption of Lemma 3.9, for k—j—1> 0, the moduli
space M o(f; Wi, Ljs1) — b~ Y Q) ds a submanifold of Wy X Ly X Lg—1 X -+ X Lj1
with corners, whose codimension r stratum for r > 1 consists of r — s times broken
flow sequences & with s events in the following list happening.

e The initial endpoint of & lies in OWj,.
e The initial endpoint of & agrees with ooy (if k= N ).
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For £k —j — 1 =0, Lemma 3.10 has been proved in Lemma 3.7. Let us consider
the case k —j — 1 =1, i.e. A o(f; Wi, L—1). The moduli space .#(f; Wy, Ly_1) is
identified with the fiber product .4 (f; Wy, L) X, A#>(f; Ly, Lr—1) that is the limit
(pullback) of the diagram:

Mo (f; Ligy Li—1) 2 Ly, <2 o (f; Wi, L),

where iy AMo(f; Wy, Ly) — Ly and iy @ Mo(f; Ly, Ly—1) — Lji are maps induced
from projections pry : Wi x Ly — Ly and pry @ Ly x Ly_1 — Ly respectively. It
is easy to see that is and 47 are transversal and hence by Proposition A.2 the fiber
product is a smooth manifold with boundary.

LEMMA 3.11. Let (f,u) be as in Proposition 3.4. Then the smooth extensions
i ¢ Mo(f; Wi, L) — Ly and iy : Mo(f; Ly, Li_1) — Lyj of the projections is
and iy respectively are strata transversal on the complement of b='(Qxs). Hence the
complement of copr X Ly X L X Li_1 in the fiber product

Mo(f; Wiy L) X1 M 2(f; L, Ly—1) C Wi x Ly, X L X Li_1

18 a smooth manifold with corners, whose strata are as follows.
(0) The codimension 0 stratum is Ao(f;Int Wy, Li,) X, Ao(f; Ly, Lg—1).
(1) The codimension 1 stratum is the wunion of 014 o(f; Wi, Ly) XL
Mo(f; Ly Li—1) and Ao (f;Int Wy, Ly) X1, O.4 o(f; L, Li.—1), where 0, de-

notes the codimension r stratum of the complement of b=(Qus).

(2) The codimension 2 stratum is Oy (f; Wi, Li) X1, 014 o(f; Li, Lx—1).

Proof. 1f either zy € io(Mo(f; Wi, L)) or zi € iy(Ms(f; Li, Lrk—1)), then zj
is a regular value of one of is and i;. Indeed, if for example z, = io(z,2;) €
io(AMo(f; Wi, Li)), then there is a small open neighborhood O of z; in Ly
such that 7, O and the tangent space of the gradient line at x parametrizes
T(m,zk)%Q(f; Wk, Lk). Ob_ViOuSly,_ dig : T(m,zk)j{Q(f; Wk, Lk) — Tszk = Tsz is sur-
jective. This shows that i and i1 are transversal between a codimension 0 stratum
and any strata.

If 2 € i2(0Mo(f; Wi, L) — AMa(f; Wy, Li,)) and 2y € iy (0.4 2(f; Ly, Li—1)),
then the images of the normal bundles of iy ' (2;) in 0.42(f; Wy, Li) and of i; *(z;) in
OM 5(f; L, Li—1) under the differentials diy and diy agree with T, (%, (f)N L) and
T., (., (f)N L) respectively. Then by the Morse-Smale condition for (f, u), these
images span 77, L. This shows that i5 and 77 are transversal between codimension 1
strata. Now the lemma follows by applying Proposition A.2. O

The following lemma proves Lemma 3.10 for k —j —1 = 1.

LEMMA 3.12. Let (f,p) be as in Proposition 3.4. Then
Mo (f; W, Li—1) = Pr[]2(f;Wk,Lk) XLy ZQ(f;Lkvafl)}a (3.6)

where pr = M o(f; Wi, Li.) X1, ]Q(f;Lk,Ltl) — Wi x Ly X Lg_1 is the embed-

ding (z, 2k, 2k, 26—1) = (2, 2, 21—1). Hence M o(f; Wi, Ly—1) — b~ (Qr) is a smooth
manifold with corners, whose strata are as follows.

(0) The codimension 0 stratum is pr [//lg(f;lnt Wi, Li) X, Ao(f; L, Lk_l)} )
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(1) The codimension 1 stratum is the union of
pr [31%2(f;Wk,Lk) XL, ///2(f§LkaLk—1)} and

pr [/fg(f, Int Wi, Lk) X Ly, 81]2(.]0; Ly, kal):| .

(2) The codimension 2 stratum is pr [81%2(]”; Wi, Li.) X1, OvAMo(f; L, Li—1)| -

Proof. We first need to show that pr takes .#o(f; Wy, L) X1, A o(f; Ly, Li—1)
diffeomorphically onto its image because the map pr is smooth and there is a smooth
section v : Wi X L X L1 — Wy, % ALk X L1 CWp X L X L, X Li_1 of pr.

Since A 5(f; Wi, Lx—1) is the closure of ¢y x—1(Aa(f; Wi, Li—1)) in Wy, x Ly, x
Lj—1 and since « gives a homeomorphism Wy, x Ly X Li_1 ~ W} x ALj X Ly_q, it
suffices to show that the closure of v(¢y k—1 (Ao(f; Wi, Li—1))) = Ao(f; Wik, Li) X 1,
Mo (f; Ly, Li—1) agrees with .4 o(f; Wi, Li) X1, A o(f; Li, Li—1) to see (3.6). This
follows from Proposition A.4 because the codimension 0 stratum of the latter space
agrees with the former one. 0

The following lemma completes the induction and proves Lemma 3.10.

LeEMMA 3.13. Under the assumption of Lemma 3.9, suppose that Lemma 3.10
holds true fork—j—1=p < N—3. Then Lemma 3.10 holds true fork—j—1=p+1.

Proof. By assumption, the moduli space .#(f; Wi, L;j1+1)—b~1(Qa) is a smooth
manifold with corners, whose strata are as described in Lemma 3.10. Then by exactly
the same argument as in Lemmas 3.11 and 3.12, one may see the following.

(1) By Proposition A.2, the complement of b=1(Q) x Lj41 x L; in the fiber
pI‘OdUCt %g(f; Wk, Lj+1) X L1 %g(f; Lj+1, LJ) C (Wk X L X L1 XX Lj_,_l) X
(Lj4+1 x Lj) has the structure of a smooth manifold with corners, whose codi-
mension r stratum is the union of 8T]2(f;Wk,Lj+1) X1, Mo(f; Ljy1,L;) and
Or—1 M o>(f; Wi, Ljy1) X1,y Ovdlo(f5 Ljsa, Lj).

(2) By Proposition A.4,

G+l

Mo(f; Wi, Lj) = pr| Mo(f; Wi, Lj1) X1, ]2(f§Lj+1vLj)}

where pr @ (Wi XLgX L1 XX Ljy1)x (Ljp1XLj) = WixLpxLyp_1X---XLj11XL;
is the projection (z, 2k, 2k—1,-- -, Zj+1, 2j+1,2j) + (T, 2k; 2k—1, -+, Zj+1,2;), Which
embeds %g(f; Wk, Lj+1) ><Lj+1 %g(f; Lj+1, LJ)

These observations complete the proof. O

Proof of Lemma 3.9. By replacing .#5(f; Lj11,L;) in the proof of Lemma 3.13
with .#Z5(f; Lj4+1, W), one may see by Proposition A.4 that .#5(f; Wy, W;) agrees
with the projection of the fiber product .#s(f; Wi, Ljt1) Xr,,. #2(f;Lj1, W)
whose complement of b~ (Q,/) is a smooth manifold with corners as desired. 0

3.5. Moduli space of general trajectories.

Proof of Proposition 3.4. Now we know from Lemma 3.9 that .#5(f) is the union
of moduli spaces .#>(f; Wi, W;) (0 < j < k < N) that are smooth manifolds with
corners, glued together by diffeomorphisms of Lemma 3.2. The result is, outside
b=(Qs), a smooth manifold with corners (see Lemma 3.7 for the reason of exclusion
of the diagonal). This proves the property (1). The property (2) is immediate from
the definition of .Z(f).
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Since the diffeomorphisms of Lemma 3.2 are strata preserving (Appendix A) in
both directions, no new corners will appear under the gluing. The diffeomorphisms
induce gluings between strata of the same codimensions and of the same type. For
example, the component of 7 times broken flow sequences in .#(f, Wy, W;) is glued
together along .5 (f; Lii1, W;) with the component of r times broken flow sequences
in .4 (f; Wi+1,W;). This proves the property (3). O

3.6. Compactifications of descending and ascending manifolds. Let
(f, ) be a Morse pair as in Proposition 3.4. For a critical point p of f, let

Zp(f)=b" o x M), p(f) =b""(M xp).
We obtain the following well-known result (e.g., [BH, Theorem 1]).

PROPOSITION 3.14. Let (f, 1) be as in Proposition 3.4 and let p be a critical point

of f. Then P,(f) (resp. o ,(f)) is a compactification of the descending manifold
Dp(f) (resp. ascending manifold <,(f)) to a smooth manifold with corners whose

codimension r stratum of D,(f) — b~ (p x conr) (resp. o ,(f) — b~ (ocon x p)) for
r > 1 is canonically diffeomorphic to

I  2¢pa)x 2 (f;0,0) - x A (fiar-1,0) X Dy, ()

A1y ar€3(f)

Pyqlse-es qr distinct
(resp. I )<t (frargror) %o Xl (F1q2,01) % A (f100.D))-
a1 ar €2(S)
DPyqls---s qr distinct

Proof. Suppose that the singular set X(f) = {p1,...,pn} is numbered as in §3.1
and suppose that p = pr, € Wi, N X(f) for some k. It follows from the definition of
M o(f) that Z,(f)Nb~ (Wi x Wi) = A o(f; Wi, Wi )N ({p} x Wi). By Lemma 3.7, the
right hand side is equal to {p} x (Z,(f) "W}) since Ao (f; Wi, Wi) N ({p} x Wi) = 0.
Similarly, we have

Do(f) b (Wi x W;) = Mo (f; Wi, W) N ({p} X L X --- x Ljy1 x W;)
= pr|({p} X (Zp(f) N Li)) X1, A 2(f; L, Wy)|.

The descriptions of the strata in the statement follow from these identities and from
Lemma 3.7, 3.8 and 3.9. The result for <7, (f) is analogous. O

4. Moduli space of flow graphs.

4.1. Transversality for .Zr. Let I' € gff,m,ﬁ(é) be a C-colored graph with a
inputs (and a outputs) without bivalent vertices. For simplicity, we assume that the
noncompact edges in Se(I") are labeled (via 5) by {1,...,a}. Let p; (resp. ¢;) be a
basis element attached on the input (resp. output) of the edge labeled i. We define a
CrLemap @ ¢ [T, (i, (f;) X Dy, () X Mg x RI® = MG+ by

(I)]E’(’Lbl,’Ul,...,’Lba,’Ua;.Il,...,In;ta+1,...,tm)
n
:H(I’L’aykia'"7ykiivvle’ia'"7vk}iaul7§7"'7ul7§i)7
=1

where y, = <I>';’Z (o)) and Rso = (0,00) (see §2.4 for the symbols). Let A C
Ti+Ti+38;

MG+ be the subset consisting of all the points of the form [T, (2, %, . ay) for
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(21,...,2,) € My. Then .#(f) is the image of @}1(A) under the projection onto
Mg and the projection induces an embedding. '

Let %; be a C"-small neighborhood of a Morse function in the Banach manifold
C_ (Mp) such that the cardinality of the set of critical points is constant on %;. By
considering ® 7 for all f € H;nzl %; for a fixed Riemannian metric o on My, we get a
smooth map

2 H U i (f3) X Dp; (7)) x Mg x RTg* x H U; —>M"+m+a
J=1 fieu; Jj=a+1

where we consider Uy, e, (g, (f;) X Zp,(f;)) as a subspace of %; x Mg.
The proof of the following lemma is almost the same as [FO, Proposition 12.5].
(See [Wal] for detail with our notations.)

LEMMA 4.1. The smooth map ® is transversal to A.

Proof of Proposition 2.4. It follows from Lemma 4.1 that ®~*(A) is a (infinite
dimensional) submanifold of codimension (n + m 4+ a —n)d = (m + a)d. Let 7 :
o1(A) — H;n:l %; be the restriction of the projection. Since the dimension of the
fiber of the projection

IT U (5 % %, (1) < Mg R % [] @HH@/

J=1f€; j=a+1

is >0, (i(ps) + (d —i(gy))) +nd + (m — a) = nd + ad +m — a + Y75_, 1;, the index
of the projection 7 is

nd—i—ad—l—m—a—i—ZnJ (m+a)d=(n-m d—i—ZnJ

Jj=1

Hence for a regular value f € H;nzl %; of 7, the fiber of 7 is a smooth manifold of
dimension (n—m)d+3_7", 7;. By the Sard-Smale theorem ([Sm)]), the set of regular
values of 7 is residual. The second statement follows from the fact that there are only
finitely many graphs in %mm,ﬁ(é) for a fixed triple m,n, 27:1 n; and that a finite
intersection of residual subsets is residual too. O

4.2. Compactification of C,, (M) of Fulton-MacPherson. This part is al-
most a copy from a part of [Wa]. For a closed d-manifold M, the configuration space
Cy (M) is a submanifold of M™, that is the complement of the closed subset

Y={(z1,...,2xn) € M"; x; = x; for some i # j or x; = oo for some i} C M™.
There is a natural filtration X = X, D --- D Xy D ¥y with
Yi={(z1,...,zn) € M"; #{z1,..., 20,000} < j}.

The difference ;11 — ¥; is a disjoint union of submanifolds of M™ — ¥;. This
property allows one to iterate (real) blow-ups along the filtration from the deep-
est one: First, one can consider the blow-up B{(M™, %) along the 0-submanifold
Y1 = {(conry ..., 00nr)} of M™. Recall that a blow-up replaces a submanifold with
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its normal sphere bundle. Since the closure of Yo — 31 in B(M™, %) is also a dis-
joint union of smooth submanifolds (with boundaries), one can apply another blow-up
along it, and so on. After the blow-ups along all the strata of > of codimension > 1,
one obtains a smooth compact manifold with corners C,,(M).

We will need a precise description of the boundary of C, (M) in the proof of
invariance of ng 3k, S0 we shall briefly recall it here. The space c, (M) has a natu-
ral stratification corresponding to bracketings of the n + 1 letters 1,2,...,n, 00, e.g.,
((137)(25))4600 (see [FM, AS, Ko, BT]). Roughly speaking, a pair of brackets cor-
responds to a face created by one blow-up. For example, the face corresponding to
((137)(25))4600 is obtained by a sequence of blow-ups corresponding to a sequence
123456700 — (12357)4600 — ((137)(25))4600.

The codimension one (boundary) strata of C,(M) correspond to bracketings
of the form (---)---, with only one pair of brackets. For example, the stratum
Oq1,...;3Cn (M) of OC, (M) corresponding to the bracketings (12---j)j + 1---n is
the face created by the blow-up along the closure of the submanifold

Aj={(x1,...,0p) € M"; 2y = --- = x;, otherwise distinct} C M™

in the result of the previous blow-ups. More precisely, 8{17“,)j}€n(M ) can be natu-
rally identified with the blow-ups of the total space of the normal SU~14=1_hundle
of A; C M™ along the intersection with the closures of deeper diagonals that corre-
spond to deeper bracketings. The fiber of the normal SU~14=1_bundle over a point
(2, 2n) € Ay is ({(0,92,...,y5) € (RDI} —{0})/(dilation) = SU=DI=1 where
the coordinate y; corresponds to x; — x1 (where it makes sense) under the geodesic
coordinate from a framing of T, M. The stratum 8{1)...)j}6n(M) is a fiber bundle

over A;. We denote the fiber of 8{1 _____ J}ﬁ (M) over a point of A; by C;OC&I(Rd). As
done in §2.7, we identify CJI"C"‘l (R%) with the subset of C;(R?), as

Cloea(R?) = {(yl,...,yj)ec ;1 =0, Z:HWH2 }

We denote by C’local(Rd) the closure of the image of the inclusion C}OC&I(R‘I) —

gj(Rd), which is compact. The base space Aj; is naturally diffeomorphic to
Ch—j+1(M) and we denote by pr; : A; — M the projection (zj,...,2,) = z;. So
Oq1,....;yCn(M) has the structure of the pullback of the associated C; R%)-bundle

of TM (Clocal(Rd) is an SO4- space) pulled back by pr;. The definition of 94C, (M)
for general subset A C {1,...,n, 00} corresponding to the bracketing (A)A® is similar.

local
(

4.3. Compactification of the moduli space ..

Proof of Proposition 2.5. Let f = (f1, f2,---, far) and @ = (p1,p2, .- ., k) be
sequences of Morse functions and metrics on My respectively such that for each ¢ the
pair (fi, ui) is Morse-Smale and that p; is Euclidean near X(f;) with respect to the
coordinates of the Morse lemma. We assume that the gradients of f; are taken for ;.

We shall construct a compactification .7 (f) of .4 (f).
For p,q € 3(f), let

Npa(f) = (f) X Dp(f), qu(f) = Eq(f) x Dp(f)-
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For j € {1,2,...,3k}, let
o, _ [ 1) i 80)  Comp(r)
J N pq(f5) if B(j) € Se(T") with input p, output g¢.

For ¢ € {1,2,...,2k}, let j1,Jo2,73 € {1,2,...,3k} be the labels of the edges which
are incident to the i-th vertex of I'. We define a smooth map G; : Qj, X Qj, X Qj; —
M x M x M as follows. Let bj; : Q; — M be defined by

b — pryob ifi=o(j)
T8 prgob ifi=7(j4)
Then we define G; = l_)jli X l_)j2i X l_)j3l-. Let @1 : Hfil Q; — M? be the composition

G;oproj: ]_[j’il Qj = Qj, X Qjy X Qjy = M x M x M. Let Ag = {(z,z,x);z € M}.
We define

[ )
E

—

A (f) = TN (As).

1

3

The restriction of ]; (f) to Hj’il Int @); is canonically identified with .4 ( ), which

is a smooth manifold. Let by : %; (f) — M?* be the map that assigns the positions
of 2k trivalent vertices of a flow graph in M.
Now we consider the case where dim.Zp(f) <1

If dim . (f) = 0, then .Z, (f) = 40 (f) C H?il Int ); is a finite set. In this
case A (f) = Ay (f) is as desired.

If dim.#r(f) = 1, then .#Z,(f) may have nonempty intersection with
G(H?il @Q;). By Proposition 3.4 and Corollary A.3, the intersection of ]; (f) with

B(H?il Q) consists of flow graphs of the following forms.

(1) There is one edge that is a once broken flow line.

(2) A set of edges is collapsed to a finite subset of M.

Here, we may assume that the intersection has no flow graphs broken more than once
by perturbing the function f; for the broken edge slightly. On a neighborhood of a
point of ]; (f) of type (1), ]; (f) restricts to a smooth 1-manifold with boundary.
On a neighborhood of a point of %; (f) of type (2), %; (f) may have singularities on
the boundary and may not be a smooth manifold. There may be non-unique collapses
of a subgraph to the same degenerate graph. In fact, it is the cone over finitely many
points whose cone point lies on 8(]_[?; @;), by the strata transversality near the
boundary. ‘

The conic singularity can be resolved by a sequence of blow-ups of ]; ( f ) anal-
ogous to the compactification of Oy (M) in §4.2, as follows. Let Ny, C M?* be a
small tubular neighborhood of the highest codimension stratum >; of . Its preim-
age Ny, = brt(Ny,) C ///F (f) is a subspace of small graphs concentrated near ooy
The restriction of br to Ngl is a topological embedding of a cone. Hence the blow-up
of M?F along ¥; replaces bp(Ngl) with a smooth 1-manifold B¢(bp(Ny, ), %) with
boundary. By identifying Ny, — brt (%) with Int B((br(Ny,), %) through br, we
obtain a space

= — = -

A (N = (AL () = bt (21)) Uy, Be(br(Ns,), S).
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The singularities on by (1) have been resolved. Next, we resolve the singularities on
Bl?l (32). Let Ny, C M?* be a small tubular neighborhood of ¥5—31. We may assume
that there is no edge of broken flow line in the flow graphs of ]; (H] N b1 (Ny,).
Its preimage Ny, = br'(Ns,) C L (f)[1] is a subspace with a small subgraph with
2k — 1 vertices. The restriction of br to Ng2 is a topological embeddmg Hence
the blow-up of B{(M2* %) along the closure of ¥y — ¥y replaces bp(Ny,) with a
smooth manifold B¢(br(Ns, ), $) with corners. By identifying Ny, — bt (S2) with
Int B¢(br(Ny, ), S2) through by, we obtain

— — X, =

M2 = (A7 (D] = br'(D2)) U, BUbr(Ns, ), ).

Repeating in this way for X3, ..., X2k, we obtain spaces ]; (A3, - ( F)[2K].

—

We set .#r(f) = Ay (f)[2k]. By definition this is a compactlﬁcatlon of Ar(f) as
desired in Proposition 2.5. O

REMARK 4.2. By abuse of notation, we denote by by : .Z1(f) — Cak(M) the
natural map that assigns the positions of 2k trivalent vertices of a flow v graph in M.
In general, br may not be an embedding but only an immersion if dim .Z(f) = 1.

5. (Co)orientations of the moduli spaces. Let f : My — R be a Morse
function and p be a metric on My that is Morse-Smale and that is Euclidean near
critical points with respect to the local coordinate of the Morse lemma. We shall fix
(co)orientations of the trajectory spaces and describe the induced coorientations at
the boundaries. The results in this section also hold for usual Morse functions and
metrics on M.

5.1. Convention for (co)orientations of trajectory spaces. In the following

we follow the orientation convention of Appendix B. Let o(M) € T(A* T* M) denote a
d-form representing the orientation of M. The trajectory space .#5(f) is the image of
the embedding ¢ : (Mo —%(f)) x (0,00) = (Mo—X(f))? given by p(x,t) = (x, D% (x)).
If v € My —3(f) and if y = fl)?(x), we define

o(AM2(f))(2y) = dps(0(M)z A dT'),

where dip, is the map corresponding to dy : T((My — 2(f)) x (0,00)) = T(M x M).
We orient M x M by o(M x M), = o(M)y, A o(M),. Then the coorientation
Orisns (Ao (f)) of As(f) in M x M is determined by

O?\/[xM('//é(f))(z,y) = *O('/é(f))(x,y)'
We orient A,q(f) = @4(f) x Z,(f) C M x M by giving the coorientation

Onrsent (Mo () @2y = Oaa (Fa(f))z A Orr (Do (f)ar

where 0},(%(f))s and 0},(Z,(f))» are the ones determined by o(Z,(f)) and
o(“,(f)) respectively fixed in §2.4.

5.2. (Co)orientations induced on the boundaries of descending and as-
cending manifolds. For a Morse—Smale pair (f, ) and its critical points p,q, we
shall describe the induced (co)orientations of the faces %, %,(f) (resp. F,.o/,(f)) of
01 Dy(f) (resp. 0147 ,(f)) of flow lines broken at a critical point r, which are induced
from the (co)orientation of 7, (f) (vesp. <, (f)).
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We consider coorientations of the faces %, %,(f) and %,/ ,(f) as follows. Let
b : @1)( f) = M be the map that assigns to each (possibly broken) flow sequence
the terminal endpoint. If i(p) —i(r) = 1 and if a is a point of M that is the image
of b from a once broken flow sequence @ in 0%, (f) broken at a critical point r €
3(f), then by Proposition 3.14 there is an open neighborhood N, of a in M such
that b=1(V,) is a disjoint union of finitely many half-disks whose set of components
naturally corresponds to the finite set .#Z'(f;p,r). Let ]Vd be the component of
b='(N,) on which a lies. The restriction of b to N, is an embedding and hence the
coorientation of & Z,(f) at a in M makes sense by identifying N, with b(N3). The
same is also true for 0;.%7,(f) at a once broken flow sequence broken at r € X(f) such
that i(r) —i(q) = 1.

Note that Int b(N,) is an open subset of Pp(f) and its closure in N, is b(N2).

Hence the (co)orientation of Z,(f) induces a (co)orientation of the boundary db(N,)
at a. We define 0%,(01%,(f))a to be the one induced in this way. We also define
04, (01 4(f))a similarly.

LEMMA 5.1. Under the assumption above, let p,r be critical points of f such that
f(p) > f(r) andi(p)—i(r) = 1. Let N, and a € b(N,) be as above. Let b be a point of
A (f;p,r) such that the component ]Vd corresponds to b. Then the following identity
in \° T M holds.

0 (01 Zp(f)a = (=1)" e (0,70 034 (20 (f))a-

Proof. Put ¢ = i(r). By assumptions f(p) > f(r) and i(p) — i(r) = 1, the
index of r is in 0 < i(r) < d — 1. Tt suffices to check the assertion for one broken

flow line. By Morse Lemma there is a local coordinate (z1,...,z4) around r on
2 2 g2 2

which f agrees with f(r) — % — = % + Z2+1 4o+ 24y this coordinate,

P.(f) agrees with {(x1,...,74) € R4 2501 = --- = 24 = 0} and <,.(f) agrees with

{(z1,...,24) €ERG 2y = -+ =2, = 0}. We may put

o(Zr(f)) = Bdzy---dz; (B = =£1).

We may assume without loss of generality that Z,(f) agrees with {(z1,...,24) €
R¢; Zit1 =+ =xq-1 =0, x4 > 0} in a neighborhood of r and we may put

o(Zp(f)) = adxy - -daydrg (o= £1).

Moreover we may assume that a = (a1,0, ... ,0) for some a; > 0. Then b(N;) agrees
with {(z1,...,24) € R%: 2501 =--- =241 =0, 24 > 0} N N, on N, and

o(ag(ﬁa))a = <_8%> adzy - -deideg = (-1) M ade - dei = (1) aBo(2r(f))a.
d

On the other hand, by assumption we have

0 (Zp())o = (1) adrigy - - dwao,
o (A (f))o = #Bdwitr - daq = (—1)“"IBdxy - - da;

for b=(0,...,0,bq), bg > 0. Hence
0sr (Do () A 0y (A (F)) = (=14 0B day g - dag_rday - - - da;

P
— (~1) B dr - drgs = —aﬂL(—a—xd)dxl o drg
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and €7(p,r), = —af. This together with the equality above, we obtain the desired
identity 0(9b(Na))a = (—1)’e(p,7)p 0(Zr(f))a. O

LEMMA 5.2. Under the assumption above, let q,r be critical points of f such that
flq) < f(r) and i(r) — ( ) =1. Let N, and a € b(N;) be as above. Let b be a point

of A'(f;r,q) such that N, corresponds to b. Then the following identity in N T M
holds.

0u (01 o(f))a = €4 (r, @)y 034 (i (f)) -

The proof of Lemma 5.2 is similar to that of Lemma 5.1. See [Wal] for the proof.
The following corollary shows that the boundary operator 0 of the Morse complex

satisfies 0 (p) = 3, o ' (f3p.1) - ol (f57,0) = 0.
COROLLARY 5.3. Let p,r,q be critical points of f such that flg) < f(r) < f(p)
and i(p) —i(r) = i(r) —i(q) = 1. Let N, and a € b(N;) be as above for a € nDy(f).

Let b be a point of A'(f;p,r) such that N, corresponds to b. Then the following
identity in \°* T, M holds.

0y (0Zp(f) h y(f))a = —(p,7)b 25 (7, )a L(—grad f) o(M ).
Proof. By Lemma 5.1 and (B.5), 03,;(0%,(f) h <Z,(f))a is given as follows.

(= 1)t n el De (1) e (p, 1)y 03, (20 () A 03 (Fg(f))a
= (~1)" ey (p,r) €4 (r, q)a t(—grad ) o(M)a
= —7(p; )b e (r, @)a t(—grad f) o(M)q.
0

If a lies between the levels f(r) and f(p), then one may obtain consistent formula
for 0%,(2,(f) M 0.7 4(f))a by using Lemma 5.2.

5.3. (Co)orientation induced on the boundary of .Z5(f). Let f: My — R
be a Morse function and p be a metric on M, that is Morse-Smale and that is
Fuclidean near critical points. For a critical point r of f, we shall describe the induced
orientations of the face .Z,.#(f) of 014 >(f) of flow lines broken at a critical point
7, that are induced from the orientation of .#Z5(f). In the following we again follow
the orientation convention of Appendix B.

Let b: .#(f) — M x M be the map that assigns to each (possibly broken) flow
sequence the pair of initial and terminal endpoints. If a € «.(f) and o' € Z,(f),
then there are open neighborhoods N, and N, of a and a’ in My respectwely such
that b : b= (N, X Nu) = N, x N is an embedding. Put N(a)a) = b7 (N, x Nyo).

Then the coorientation 0%, v, (814 2(f))(a,ar) makes sense by identifying ]\A](a)a/) with
b(Nia.ar))- B
Note that Int b(NN(4,q/)) is an open subset of .#5(f) and its closure in N, x N is

( (a,a’))- Hence the coorientation of .#5(f) induces a coorientation of the boundary

b(]v o)) at (a,a’). We define 0}, /(014 2(f))(a,ar) to be the one induced in this
way.

LEMMA 5.4. Under the assumption above, let a € <7,.(f) and o’ € D,(f). Then
Ot Or3(F)) a0ty = ()03 (A (F))a A 031 (Pr (1)) -
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Proof. Let i = i(r). By Morse lemma, it suffices to check the assertion for the
2

x; @i Ta
standard form h(z1,...,z4) = -5 T ) + 5 + -+ 5 o place of f and

for r = (0,---,0). By convention,
054(2r(h))e = Bdxir - daa,  0fa((h))e = (—1)4=)Bdzy - - - da;

for some 5 = £1.

First, assume i > 1. We assume without loss of generality that a = (0, ...,0, aq),
a’ = (ay,0,...,0) for some ag > 0 and @} > 0. Recall that .#5(h) is the set of
points (pu,v) x (u,pv) for u € R, v € R p € [0,1] (Lemma 3.6). Since the
Jacobian matrix of ¢(p,u,v) = (pu,v) x (u,pv) at u = o’ € R, v = a € R

is (3.5), T;(p,u,v)%Q(h) is spanned by a|dzy + aqdyq, pdxy + dyr, ..., pdz; + dy;,
dxiy1 + pdyita, - .., drg + pdyg if daq, ... dzg (vesp. dyi,...,dyq) is the standard
basis of TR? (vesp. T;R?).In fact, if p > 0 and small,
i d
o(AM>(R)) p(puw) ~ —(aidzy + agdya) A /\ (pdzi + dyg) N /\ (dzk + pdyk). (5.1)
k=1 k=i+1
Indeed, by convention in §5.1,
i d
o(M2(R)) (u,w) x (et u,e—tv) = /\ (dxy + e'dyy) A /\ (dxy 4 e tdyr) A di
k=1 k=i+1

for u # 0, v # 0, t > 0. Then
O(%Q(h))(u,v)x(etu,e*tv) A dy2 T dyd =dzy---dwg A dyl t dyd

On the other hand,

i d
— (aidz1 + aqdyq) A /\ (pdzxy, + dyk) A /\ (dzy + pdyx) A dys - - - dya
k=1 k=i+1

= (a} — paq)p' ' dyrdzidzs - - - dradys - - dya

= —(a} — pag)p " tdxy ---dxg A dy; - - - dyg.
The coefficient —(a} — pag)p'~" is negative if p is small.
_ The expression (5.1) is convenient because it extends smoothly to an orientation
of 4 5(h) except the point from (u,v) = (0,0). At the boundary point

(a,a’) = (0, (a},0,...,0),(0,...,0,aq)) € O1.4(h), a} >0, aq>0,
the dual of the outward normal vector at (a,a’) is given by —(a}dz1 + aqdyq). Hence

O(aljg(h))(a,a/) = dy1 s dyid:tiﬂ s -d:Ed,
O]EdXRd (6172(11))(&&,) = (—1)d_id$1 e d$idyi+1 e dyd
= (=) Yoz (A, (h))a A 0ga(Zr(h))ar.

[
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5.4. Orientations of some faces of_aan(M). Now assume that d = 3. We
shall describe the orientation of the face 0;;C, (M) := 9¢; ;3C, (M) induced from the
standard orientation o(M )y, A o(M)gzy A -+ Ao(M),, of C,(M). Let

Aij = {(xlv'rQa- . axn) € Mn,Il = Ij}.

The interior of the face 9;;C, (M) is naturally identified with an open subset of
OBla,;(M™). By definition of blow-up, the boundary of Bla,;(M™) is the normal
sphere bundle of the submanifold A;;. More precisely, let Na,, be the total space
of the normal bundle of A;;. By identifying a small tubular neighborhood of Ayj
with that of the zero section of Na,,, we may identify a small collar neighborhood of
OBl (M™) with that of 0Bly(Na,;).

A framing 7 : TM — R3 x M induces a trivialization ¢ij * Na,; — R3 x Ajj.
Namely, if {elz), ey ,631)} is the basis of T;,, M induced by 7, then (Tz Au) is spanned

by {ef) — P e — el 9 — el and ¢;; is defined by

pij(ar(ef!) — i) + as(ef) — ef) + as(ef’” —ef), ) = (a1, a2,03) x 7. (T € Ayy)
This is smoothly extended to a trivialization ¢;; : Blo(Na,;) — Blo(R?) x Aj;. Let
wp—1 denote the closed (p — 1)-form on Bly(RP) that is the pullback of the SO,-

invariant volume form Y7, (=1)"ta;dzy A+ A da; A -+ Adx, (da; is deleted) on
SP~1 by the natural map Bly(RP) — SP~1 (see Appendix D). If i < j, let

—

0(Aij)z = (=1)0(M)ay A+ No(Anr) @iz A AO(M), A+ Ao(M)s, .

Now we orient dBla,,(M™) = OBly(Na,;) as follows.
0(0BLo(Na,,)) = 6ij(wz A o(Aiy)).

This is the one induced from the standard orientation o(M ), Ao(M )y A+ ANo(M),
of Cp(M). See [Wal] for detail.

n

5.5. Standard co-orientation of At from graph orientation. We shall first
give another definition of .#(f) using #5(f) and A,4(f). For a graph I'" without

bivalent vertices, the space .t ( 7 ) can be defined as the intersection of submanifolds
of C, (M), as follows. Suppose for simplicity that the separated edges of T" are labeled
1,2,...,a. Let m; : Cp,(M) — C2(M) be the projection (x1,...,z,) — (2, ;) and
let ©¢ and Hy be the submanifolds of C,, (M) defined by

O = 7T ('//206@)) Hy = Wigl(%zln (fe))

where i = o(¢),j = 7(¢). Their codimensions are codim®, = 2, codim H; = 3 —
i(pe) +1i(qe) = 3 — ne. Then we have

m

A =110 (] O

Jj=a+1

where we assume that the intersection is transversal.
Let of, (5 (©¢) € Qir(B) and of, () (He) € Q33" (B) be differential forms on a

neighborhood B of a point on the crossing .t (f) in C,, (M), defined by

OZ‘H(M) () = 7Tfj"*cg(z\z{) (Ao(fr)), Oz‘n(M) (He) = 7T;‘J‘C’Z‘Q(z\z{) (Npege (f2))-
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We represent co-orientation of #p( f) by a wedge product of of, (, (H;)’s and
O*CH(M)(6 )’s. Let gr?m S(L,1,..., 1)(0) = gr?,m,(ll ..... (C) uy? (C) Uu---u

n,m,(1,2,1,...,1)
gr?,m,(l,l ..... 2)(0) and gnm S-1(1,1,..., 1)(0) = gg,m,(oi ..... 1)(0) U g (1,0,1,. )(C) U

- U gr?,m,(l,l _____ 0)(0). We now define the coorientations for the graphs that are
relevant.

5.5.1. Graphs in %gk)3k(é), gZOkBk,E(l,l,...,l)(é)’ %2(273,@)2,1(1)17.“)1)(é). Now

we assume that I' € 5420,673,6(6_"), so that codim©; = codim H; = 2. We shall define
a standard co-orientation of .Zp( f) in a product of M from the labels and the edge
orientations of I', as follows. The labels of trivalent vertices determine the corre-

spondence between V(T') and the coordinate (x1,22,...,x2;). The edge orientation
determine which of 7;; and 7;; is used to define ©, or Hy. Then we define the standard

co-orientation of .#p(f) by the formula

OC2k M) '//F /\ Oczk(M /\ OC2k M) E Q ( )

Jj=a+1
Since codim ©; and codim H; are even, the order of wedge product does not matter.
This depends only on the orientation o(I") of I". This gives #///p(f) in §2.5.
The same rule equally works for graphs in %QOk Bks(11,

1O,
g20k,3k,2*1(1,1,...,1)(0) etc. without bivalent vertices, since in that case only one

H; is odd codimensional, so again the coorientation of .Zrp( f) is canonically
determined from the graph orientation by the same formula.

5.5.2. Graphs in %Ok,gk,ﬁ(é)a N5, = 2, nj, = 0. For a graph in %Ok_ygkyﬁ(cﬂ)
without bivalent vertices such that there is exactly one j with 7; = 2, exactly one
j with 7; = 0 and otherwise 7; = 1, let j» and jo be such that n;, = 2, n;, = 0.
The codimensions of H;, and Hj, are odd. Then we define a standard co-orientation

OE%(M) (///F(JF)) of ///F(J?) b

3k
0y vy (Hjo) N ogy, (ary (Hjz) A /\ 0y, () (Hj) A /\ 0Cy, () (©5)-
1<j<a j=a+1

J#30,32
5.5.3. Graphs in %Ok)%’zu’l)wl)(é’) with one bivalent vertex. We also con-

sider co-orientations of (not yet defined) . (f) for graphs ' € gy BkS(11,..
with only one bivalent vertex. For three possibilities for the position of the bivalent
vertex in I', we define .#¢(f) and its standard co-orientation as follows.

nr= Ti%/ , i(pi) = i(r;) + 1 =i(q;) + 2. Let I be the graph obtained
A\

from T' by removing the segment 9 (p;, ;). In this case, we define

M) = M (i pisri) x Ao ().
If a point b € #'(f;;pi,r:) is specified, we may consider a coorientation of {b} x
A (f) in Cop(M) by identifying it with .#1 (f). Under these assumptions, we
define

— —

0C, () (AT ()b (21, an) = €5 Pis 73)b 00, (ary (AT () (1. ) -
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b;
= Siéjx( , i(qi) = i(s;) — 1 = i(p;) — 2. Let I be the graph obtained

from T' by removing the segment 9 (s;, ¢;). In this case, we define
M (f) = A (fis51,5) % M ().

If a point b € .#'(fi;s:,q) is specified, we may consider a coorientation of {b} x
A (f) in Cop(M) by identifying it with .#p/(f). Under these assumptions, we
define

= =

Oggk(M)(%F( ))bX 11, ,Izk) - Ef (S’Laql)b Oc2k M)(%F/( ))(Ih...,iﬂzk)'

3)I'= r,: In this case, og,, () (1 (f)) is determined by the intersection of

H) = T e, (fo) X Dr,(fo)) (codimension i(rg)4(3—i(r;)) =

3) with the intersection
of ©,’s and Hj’s of codimension 2. We define o, ,n (-0 (f)) by

0Cs, (v (H. /\ 00 vy (Hj) N 0gy, ary (HE) A /\ 0y, () (©5)-
1<j<a at1<j<3k
J#52 JAL

5.6. Induced coorientation on 9.#p. Now we define boundary operators,
which formally describe the boundary of moduli space of flow graphs. We define a

linear map d : %, 7(C') — @ﬁ:l D 1m—1,(n1,eces e, W)(Cil), 09 o) by
d(T,0) = Z (T'/e,induced ori),
e€Comp(T")

where for e; = (u,v) (u, v: vertices) the induced orientation of I'/e; is formally given

J
by —t(v*)(v1 A=+ Avy) A (ef Aep)A -7+ Alel Aer,), where v* is the dual of v with
respect to the standard inner product of RE() and ¢ is the interior product. Also, let
d'T = ZeGComp(F)USC(F) dler’ where

BEP> (—1)““}0 (BG) = o),
TiEP»Ei)

Vi it _ i<Si>piC\/
e\ > e %/\ G (I

(i) (i)
T; EPy . s; EPy q
i(ri)=i(pg)—1 4 i(s)=i(a;)+1 !

(B(i) = e), where the orientation of d_T" is the naturally induced one.

Let by : AZr(f) — Cox(M) be the map which gives the positions of the 2k
trivalent vertices in a flow-graph (Remark 4.2). We call a face of .71 (f) corresponding
to a degeneration of one of the terms in (d + d")I" a principal face. We call a face of
Mr( f ) that is not principal a hidden face. When I' consists only of compact edges, we
define the anomalous face of //l r(f ) as the hidden face corresponding to the collapse

of all the 2k points. Let ///F (f) denote the union of all the hidden faces of .Zp(f).
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PROPOSITION 5.5. Suppose d = 3 and (f: i) is generic as in Proposition 2.5.
ForT € 9y, o, S, 1)(0) without bivalent vertices, there is a natural diffeomorphism

— J— — —

O (f) = T (aranr (P LT A1 (F)

i, =

of oriented 0-manifolds (for some orientation of%];l( )), where M, +...xr, = Mr,+
o+ Mr,.

Proof. We shall compare the co-orientation of a face of 0.4 f ) induced from
00, () (41 (f)) and the standard one of the same face of M (f) fixed in §5.5.
Suppose that ' € %Ok,gk,ﬁ(é) has no bivalent vertex and that there is only one

number jp with 7;, =2 and 1, =1 for £ # js. As in §5.5, we consider ///p(f) as the
intersection of the chains H,’s and ©;’s in Cax(M).
For a number ¢ such that 1 < ¢ < 3k, let

5, — {ﬂ1<]<aH ﬁmJ a+1 Coifl1<ti<a
ﬂj lH ﬂﬂa+1<J<%@ fa+1<?<3k
Then by Proposition 2.4, codim £; = codim .#p(f) — codim Hy = (2kd — (2k — 3k)d —
3k —1) — (d+m) =6k —4 —n =n (mod 2).
First, we consider the faces corresponding to the collapse of a compact edge. We
check that the contribution of such faces is . 4r( f) We consider the principal face
corresponding to the collapse of the ¢-th edge of I'. By convention,

(M 2(f0))(2.5) = O(Ar) (w,0) A (—dlfe)y + Od(2,)),

where d(z,y) is the geodesic distance. Let § = —grad f;. The orientation induced on
the face Ay of 0.4 2(f0) is

U ® (=y))o(AM ) (20) N (—dfe)y = —0(AM)(z2) (f 2 =1y).

This implies that the coorientation of the boundary of .#(f;) on OBla,, (M?) is s given
by we, showing that the contribution of a collapse of a compact edge is ./ 4r(f )
Let X be one of the graphs that appear in the sum d/ (k)l". We shall describe

the co-orientation of the face .#x of 0.4 ( f) corresponding to X induced from the
standard co-orientation of .#p(f) in Caoy(M).

- rg%/ , where py, qo,7¢ € 2(f¢). By Lemma 5.1, (B.3) and (B.5),

the co-orientation of .#x induced from the standard one

—

00 (ary (A (f)) = Ora (A, (f0)) N 0rr (D, (£2)) N 0C, (a1 (B0) (5.2)

is given by

(=) (=) (=1) ) (= 1) e f (p, 7)o 03y (Hay (f2)) O3 (Dr, (f2)) 0y, 0y (Z0)

—

= (=192 1 (pe, 7)o 08 (ary (A0 (])) = (=1)" 9 0, gy (Ax ().
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) X = 5/;\ , where pg, qe, s¢ € X(fe). By Lemma 5.2, (B.3) and (B.5),

the co-orientation of .y induced from the standard one (5.2) is given by

— (D)D) (=) (1) e (50, o) Oha (e (1)) 03a (D () 08y, () (52)

= (1)1 (52, 00)0 0 ) (A0 () = (=1)" 0L, (an) (Ax ().
(3) X = } ry where r; € X(f;). The induced co-orientation on the boundary is

as in Lemma 5.4, which differs from the standard coorientation by (—1)ird+i+ne —
(—1)1re).

Now we have seen that the signs in the formula of the definition of d' are consistent
with the induced co-orientations on the boundary of .Z(f). O

6. Independence of combinatorial propagator. In the definition of
Zok3k(f), a sequence § = (g1, ..., 9gsx) of combinatorial propagators for C' is chosen.

Recall that Z2k13k(f_l») = Trg*(f’:ylgkygk) for f"?gkygk ZFeg% (D) #//F(f) I'e %kﬁgk(é).
In this section, we shall prove the following lemma.

LEMMA 6.1. Z2]€73]g(]?) = Try(Yaw,3) does not depend on the choice of §.

6.1. Boundary strata of .Zr.

PROPOSITION 6.2. Suppose d = 3. Let I be a graph in 4y, k31, )(é) without

bivalent vertices. For a permutation o € &3y, and for a subset T C E(T'), let I' denote
the labeled graph obtained from T' by permuting the labels of edges by o and reversing
the orientations of all the edges in 7. For f generic, we have

SN (O (D= Y (0)gade (=0, (6.1)

[ ASICET TCE(F) ceS3k TCE(F)

.....

The sum in the LHS of (6.1) can be considered as a part of the sum
>r #Z(d+d/)r(f>r because the sign (—1)I7! will be canceled out with the change
of the graph orienation: I', = (—1)I"IT. For the proof of Proposition 6.2, we need
two lemmas, which are analogues of Kontsevich’s lemma [Ko, Lemma 2.2]. In the

following H is a subgraph of I' € ¥ 36501, )(6) with only compact edges.

.....

LEMMA 6.3. Suppose that H has a bivalent black vertex a and that the edges of
H including the vertex a are (b,a) and (a,c) where b and ¢ are both black vertices (it
may happen that b = ¢). Let H' be the labeled graph obtained from H by exchanging
labels for edges (b,a) and (a,c). Let a(H) and o(H') be the chains of M given by the

local

local
projections M g (7) = M and A 5, () = M, respectively. Then we have

a(H)+a(H') =0.

Proof. Let n = |V (H)| and let (z1,...,z,) € CIOC‘“(RS) be a point on %Ecal( 5.

Suppose that the vertices a, b and ¢ of H correspond to ., 3 and x, respectively.
R%) — C, which sends z, to

local
xg + x4 — xo and fixes other points. Then s exchanges ///H ( ¥) and A 5, (7).

—local —local
( (R )

Then consider the automorphism s : C,



A GENERALIZATION OF FUKAYA’S INVARIANT OF 3-MANIFOLDS I 145

Put yo = 25 + 2 — 2o and 0(£)(5,y) = Ops s (Or(Ve))(2,y) (see Definition 2.7). Let
Vo € N’ T, R? and V. € A\’ T,.R? be nontrivial elements that give the orientation
of R3. Then the evaluation with V,, (resp. with V) gives a map A" (T, R? + T, R? +
T, R?) — N7 (1,, R34+ T, R3) (resp. \*(T, . R3+T,,R3+T, R?) — \" (T, ,R3+
T, R?)) and we have

00 (@p.00) NOE ) (@aer)s Va) = (8" (00) (yo o) N O ) (25.90))s Var)
= <9(£)(ya,ww) A 9(6/)(;65,11@); dS*Va> = _<9(€/)(1g,ya) A 9(£)(ya,mw)v o/¢>

This implies that the 1projections (a:a, xg,T) = (28, 24) and (Yo, 28, Ty) — (T3, T5),
whose fiber in .# HCd( ¥) and Ay H, (") is at most O-dimensional, induce opposite

chains. O
The following lemma can be proved in the same way as Lemma 6.3.

LEMMA 6.4. Suppose that H has a bivalent black vertex a and that the edges of
H including the vertex a are (a,b) and (a,c) where b and ¢ are both black vertices (it
may happen that b = ¢). Let H' be the labeled graph obtained from H by exchanging
labels for edges (a,b) and (a,c) and reversing the orientations of both edges. Let

cal

a(H) and a(H') be the chains of M given by the projections //l;} (#) = M and

—local

My () = M, respectively. Then we have

a(H)+a(H') = 0.

LEMMA 6.5. Suppose that H has a univalent black vertex a and |V(H)| > 3.
Then A2 (7) admits a smooth free R-action.

Proof. Suppose that the edge of H including the vertex a is (a,b) where b is a
black vertex. There is a dilation of the linear trajectory corresponding to (a,b) in
A7), which fixes points in V(H) — {a}. Since |V (H)| > 3, this R-action is free

n C’local (R?) and gives a desired R-action. O

—

Proof of Proposition 6.2. The assumption I' € ¥ ., (1,0 1)(0) implies that

%p(f) is 1-dimensional by Proposition 2.4. Obviously, #8%% (f) = 0. Hence
by Proposition 5.5, it suffices to prove that the contributions of the hidden faces
cancel each other out in the sum. For a subset A of V(I'), let I'4 denote the
subgraph of T such that V(I'4) = A and E(I'4) consists of all edges of E(T') be-
tween points in A. Suppose I' and A are such that F(T'4) = Comp(T'4). Let
fa C f be the subsequence corresponding to the subset E(I'y) C E(I) and let
—grad fa = (—grad fi,,...,—grad f; , ), where i1, ... i 4| are the labels of the edges
in T'4. According to the description of C, (M) in §4.2, the face of .Zr(f) coming
from the face 94C,, (M) is diffeomorphic to the pullback of the diagram

—local

‘%F/FA(f\fA)_)M%%F ( grade)v

Co . . .. —local >
which is at most an oriented 0-manifold. Here, we consider .# 1:) “(—grad f4) as a
—local

subspace of the C| 4, (R?)-bundle over BU(M, ;¢ 4 2(f)). If |A] > 3, then since T is
a graph in ) 5, S, 1)(0), the subgraph I' 4 must have bivalent or univalent black
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vertices or none of them. If |[A| = 2 and T'4 is a ‘double-edge’, namely, consists of two
black vertices and two compact edges connecting them, then I'4 has a bivalent black
vertex.

If T 4 has a bivalent black vertex, then we have a(I'4) 4+ «(I"”4) = 0 by Lemma 6.3
or 6.4. Hence by taking the sum over ¢ and 7, the contributions of I'4 with bivalent
vertex cancel with each other. If I 4 has a univalent black vertex, then the dimension

of the image of the projection %;’:al(—grad fA) — M decreases by 1 by Lemma 6.5
and the total dimension of the corresponding face is —1, in which case the face is
generically empty.

If E(T4) = 0, then T'/T 4 has a vertex of valence > 6. In this case, one can see
by Proposition 2.4 that .41, (F\ fa) = Mrr, (f) =0 if f is generic.

Finally, we must check that there are no contribution of 5AU{00}621€(M ) for

generic f. This has been checked in [Sh]. We outline the proof with our notations.
We may identify the interior of day ooy Car(M) with Cop—j (M) x CF° (R3), where

C*(R?) = {(yl, ) €GB lyel® = 1},
/=1

Let [ :R® - R (j =1,2,...,3k) be the linear map such that % f° agrees with f;
near ooyy. Let f> = (f£2, ..., fsr) and let B =V(I')\ A. Suppose that E(I'/T'g) =
Comp(I'/I'p). Let A5y, (f>°\ f3) be the space of affine graphs (I, I'z) — (R3, {0})
modulo the dilation of R? whose edge not in E(I'g) labeled ¢ follows the negative gra-
dient of f§°. Then (the interior of) the face of 0.4 (f) coming from D au{o0} Cai (M)
is diffeomorphic to ., (f5) x f’;’FB(f“ \ fgo) The configuration space C5°(R?)
is (37 — 1)-dimensional. If the number of edges in E(T") that intersect both V/(I"4)
and V(I'p) is m, then the codimension of .27, (f>°\ f5°) is 2 x S — 35 + m.
Since m is non-negative, the codimension exceeds dim C3° (R?) = 35 — 1 and the mod-
uli space Frs ( foo \ fgo) must be empty. Hence there are no face of 9.4 f) in
Dau{oc} Cak(M).
These together with Proposition 5.5 imply the proposition. O

6.2. Independence of combinatorial propagator. Let () (x,y) denote the
graph :EZ) where z,y € P*(Z). Let T be a C-colored graph having a separated edge
Y

B(i) € Se(T") such that basis elements x and y € P! attached on the input and
output white vertex, respectively. To specify that I' has such an edge, we will write
I' = T'(z,y);- This notation allows us to express the graph obtained from T' by
replacing z and y with 2’ and 3’ respectively, as T'(2/, y’);. We will write I'(0, §); the
graph obtained from T' by replacing the separated edge ((i) with a compact edge.
We denote by 0 (p;, r;) (1, q;)i or T'(pi, ;) * 0@ (r;, ¢;) the composition (one point
union) of two graphs at the univalent vertices on which r; is attached, and let 8151)7« S/
be the coefficient in dWp; = 3 . rs.

Proof of Lemma 6.1. We prove the assertion for § = (g,¢9®,...,¢"™) and § =
(¢',g?,...,g""™), where g and ¢’ are two combinatorial propagators for (Cil), o).
As mentioned in §C, there exists an endomorphism h € EndQ(C’il)) such that 9(Mh —
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ho) = g — ¢’. Then the difference Try . (Foksk) — Trg .. (F2r,3) equals

’I‘I‘g_g/7,,, [ Z #%F(plqih)l( _’) F(p17q1)1}

T(p1,91)1
i(p1)=i(q1)+1

:Tra(l)hfha(l),...[ Z #'%F(;Dlﬂl)l(_’)r(pl?ql)l}

I'(p1,91)1

= Trh,..[ Z Z 8m1p1 HFHAMr(py ,q1). ( H) I(z1,q1)1

I'(p1,q1)1  2,ep

i(zy)=i(p1)+1 (62)
Z Z aéim #'//F(:Dhmh( _») F(playl)l}

P(pr,q1)1 yyep®
i(y1)=i(q1)—1

—

= Trh,... [ Z Z #'//8(1)(901 p1)*T(p1, ql)l( ) (xlv QI)l

I'(p1,q1)1 *1

Z Z #'//F(:Dl q1)1%0™M) (q1,y1) ( _») F(plu yl)l}-

T(p1,q1)1 Y1

We show that (6.2) vanishes. We write C[j] = (Cil), L, CD Cim)) and
qlj] = (m, ..., 0j,...,nm) for simplicity. If we define d* : @Tzl G—1.m—1i1(Cli]) =
Gr.m,7(C) by the coefficient of 1@1I" in 1, 0 (&) IV ®@dl”, then ITm d* is the span
of the THX-relation. o

Let p). ¢} € P be such that i(p]) = ¢ and i(q}) = {—2. Then we consider graphs
of the form I'(p', q;)1. We denote by p; = p;(I'(p},¢1)1) and ¢; = ¢;(I'(p, q1)1) the
critical points attached on the input and the output white vertex of the i-th edge of
T'(p},q1)1, respectively. By Proposition 6.2, the following expression vanishes:

Trh,.“[ Z H#AM a1 ) a5 )F(p,17q/1)1}

L(ph.aj)1e
G m2,..1)(©)
A gxply ! / A / /
=Trh,.4.[ S HMri, ) (DAT WL+ Y #Ellar ), ( )F(puql)l]
I (p},aj)1€ I(pf.af)1€
T 90 1 o121, 1y (CLD G 21,1 O

=T 3 ( > O Mo ooty ()

D(p},a7)1 TIEPZ(J1
. 3
(=) T 00 (o () TP )1

i(pi)—1 i
+ Z Z ( Z (_1) v #‘///3(“(Pi»Ti)*F(P,lvqi)l(T'i,Qi)i( )

r'(ph.ai)1 i#1 rEP

i¢ Comp(T'(p] ,a])1) %(Pl) 1
(pi A / /
+ Z l . )#%F(pva£)l(pi77‘i)i*a(i)(7‘ivqi)( )) F(pl’ Q1)1
(i)
TIEP’L(pZ)
+ Z Z H#Marr ), ,q;): )F(p/u(ﬁ)l].

I'(p,97)1 e€Comp(I'(p].a})1)
e#l

In this expression, the first line agrees with (—1)¢ times the part of (6.2) of i(z;) =
i(y1) = ¢ — 1. The vanishing of the last two lines can be shown as follows: for each
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i, ¢) € P with i(pl) = i(¢}) + 2 and for i # 1, we have

3
g [Z Z ( Z T My (0 0 )1 (0 (F)

+ Z #%F (p,a))1(pisra)i*0® (ri,q:) f}) pluqll)l(pia%)z}

(4)
T‘1€Pj

3
= th,.., ,0(1) g(i) 4g(H) 9(0) | . [Z Z #///F(p;,ql 1(P,45)i () (p’l,qi)l(pé,q{-)z}
7=0

()
Pia;EP;

3
= Trh,.,,.,id,,,[ Z Z A (001 1, (F) TP a1)a (g, 7 }
=0 rep®

This cancels with the corresponding term in

Try,,... { Z H#My () g, ( f)T(p), ql1)1]

e€Comp(I'(p},a])1)
etl

This completes the proof. O
7. Independence of 4-cobordism and sections on it.

7.1. Spin cobordism invariance of Z;E%Izlaly. In this section we assume that
M is a Z-homology 3-sphere. We say that two compact spin 4-manifolds W and
W' with OW = OW’' = M are relatively spin cobordant if there is a compact spin 5-
manifold V' with corners with 0V = (=W) Uy ([0, 1] x M) Uy W’ whose spin structure
is an extension of those of —W and W'.

PROPOSITION 7.1. Let W and W' be two compact spin 4-manifolds with OW =
OW’' =M and x(W) = x(W’') =1 as in Lemma 2.9 (1). If W and W' are relatively
spin cobordant, then the following assertions hold.

(1) There exists a framing Tas of T My such that the associated 4-framing Ty, of
Lemma 2.9 can be extended to 4-framings of both TW and TW'. Hence one
can find sequences of GM sections Yy € T(T*W)3* and Yy € T(T*W')3k
with Yw |y -v, = Ywr|m—v, = —grad f.

(2) For any such extensions Yy and Y-, which are generic in the sense of Propo-
sition 2.12 (1), we have

Z50Y (Fw) = Zoon™ (Fw). (7.1)

Proof. (1) Put X = (W)U, ([0,1] x M)Uy W', where the gluing maps g : —OW =
—M = {0} x M and ¢’ : OW’' = M — {1} x M are the natural ones. By assumption,
we have [X] = 0 € Q™. There is a 5-dimensional compact spin manifold V with
corners with 9V = X whose smooth structure near [0, 1] x M is isomorphic to that of
[0,1] x W. Then TV restricts on the boundary to a vector bundle that is isomorphic
toel dTX.
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By the isomorphism sign : Q"™ 5 16Z and by Hirzebruch’s signature theorem
sign X = £(p1(TX),[X]) for X closed, it follows that

pL(TW':7h,) — pr (TW; 7)) = (p1(e* @ TX),[X]) = 3sign X =0

for any choice of 75;. By choosing 7ps suitably, we may assume that p(TW;7),) =
p1(TW’; 7)) = 0 by Lemma 2.9 (2). By Lemma 2.9 (2), such a 4-framing 7}, extends
to 4-framings on both W and W'.

(2) Since the 4-framings 7w and 7y obtained in (1) above are extensions of 7},
they can be trivially extended to a sub 4-framing 7x of ¢! @ T'X by the product
structure of [0, 1] x M. The sub 3-framing of 7x whose restriction to {0} x (M —U_)
agrees with 757 spans a rank 3 subbundle 7" X of e ® TX. Then there is a piecewise
smooth GM sections Yx of TV X, which is a gluing of 7y, Y and pr_17W|M_Uéo €
L(T°([0,1] x (M — U.)))?* together at the boundary. By definition of Z;E%l};aly,

Zaesi™ (ix) = Zagai™ Giwe) = Zopa™ Giw)- (7.2)
Then Lemma 7.2 below completes the proof. O

LEMMA 7.2. Let X and 7x be as in the proof of Proposition 7.1 (2). Then we
have Z;E%I;aly(ix) =0.

We use the following lemma in the proof of Lemma 7.2.

LEMMA 7.3. Let X be as in the proof of Proposition 7.1 (2) and Tx be as above.
Then X ][ X bounds a compact connected parallelizable 5-manifold V' on which the
stabilization of the 4-framing Tx [[ 7x extends as a 5-framing.

Proof. Since X is spin null-cobordant, there exists a compact connected spin 5-
manifold V' with corners with 0V = X. We first consider the obstruction to extending
the stable framing n @ 7x of e! ®TX to a 5-framing on TV, where n is the unit vector
field normal to the span of 7x with respect to a metric of V.

Since V' is spin and since m2(SO05) = 0 and 73(S05) = Z, the first obstruction
01(V;n @ 7x) to the extension lies in the group H*(V,0V;n3(S0s)) = Hy1(V;Z).
We shall see that we may assume that this group is trivial after changing V' by
surgery. It is easy to see that any class in Hy(V;Z) can be realized by an embedding
f:S" — IntV. Since V is oriented, the normal bundle N of the image of f is trivial.
By a surgery along a framed embedding (f,7y), i.e., attaching of a 6-dimensional 2-
handle along a tubular neighborhood of Im f through the trivialization, the homology
class [f] can be eliminated. Moreover, by replacing the 4-framing 7, suitably, we may
assume that the resulting 5-manifold of the surgery is spin since 71(S04) — 71 (SO5)
and 7m1(S04) — m1(SOg) are isomorphisms. Namely, choose a 5-framing 72 on an
open neighborhood U of the 2-skeleton of a CW structure on V. We may assume
after an isotopy that the image of f is included in U. Since m1(S0O5, S04) = 0, 72 can
be deformed to a 5-framing 75 whose restriction to Im f consists of tangent vectors of
f and a normal 4-framing of Im f. The obstruction to extending a stabilization of 7
to a 6-framing on the 2-handle D? x D* lies in H?(D? 0D?;m(SOg)) = Zs, which
can be removed by a 1 (SO4)-twist of the attaching map. Since m2(S0g, SO5) = 0,
the 6-framing on the 2-handle can be modified so that its restriction to the 2-skeleton
of the boundary of the 6-dimensional 2-handle is a stabilization of a 5-framing. Now
the 2-skeleton of the result of the surgery is framed. Hence the result of the surgery
is spin again.
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Now we assume H;(V;Z) = 0 by doing surgeries as above if necessary.
Then the next obstruction o02(V;n @& 7x) for the extension lies in the group
H3(V,0V;74(SO0;5)) = Zsy since m4(SO5) = Zs. To eliminate 02(Vin & 7x), we
consider the connected sum V' = V#V taken between the interiors. Then one can
check that the obstruction 0o(V/;n @ 7x [[n @ 7x) € H>(V',0V’; 74(SO5)) vanishes
in any case. This completes the proof. O

Proof of Lemma 7.2. We prove Z;;‘gzaly (7x) = 0 by constructing cobordisms of
moduli spaces. Let V' be a compact parallehzable 5-manifold with 0V = X[ X as
in Lemma 7.3. Roughly, we will construct 1-dimensional moduli spaces ///IL"C"‘I(V) in
a fiber bundle over V for each 3-valent graph I' and we will see that

anoma. —local
275 (x) = Y. #0710 = 0.

INSTOPIT

Since the replacement of X with X [[X and V with V#V changes Z;E%r;;aly(ﬂyx)
just by a multiple of 2, it is enough for our purpose to assume that the obstruction
02(V;n @ 7x) vanishes in advance. Because of this we assume for simplicity that we
have a framed 5-manifold (V,7y) that extends (X,n & 7x).

We shall now define the moduli space ./ extended over V. Let I' be a
labeled graph in &), 4. Since we assume that the 5-framing 7y extends n @ 7x,
we have a sub 3-framing of 7 that is an extension of the 3-framing of T%X and
it spans a rank 3 subbundle T"V of TV. Moreover by Lemma 2.10 there is a GM
extension ¥ = (y1,...,73k) € D(T*V)3* of x. Since for each j, ¥(v;) is a compact
2-submanifold of V, we may arrange that X(v;)’s are disjoint from each other by a
general position argument. Then we consider the blow-up ¢ : V — V, where

V = BUV,IT3E S().

We identify Int | V with V =11, Z(ve) by q. Consider the pullback bundle ¢*T'V" over v
and we set T"V = ¢*T"V. Note that 7"V is not a subbundle of T'V. We identify the

—local —local

total space of the Cy,  (R?®)-bundle associated to T°V with V x O, (R?) via the
trivialization 7. The nowhere zero sections 71, ...,ys, of T%(V — ], (7)) extends
smoothly to nowhere zero sections of T7VV. We denote by ©,(,) the closure of O, (v,)

—local
in V x C2Okca (R?), which is a compact oriented submanifold with boundary. Then we

may define the compact moduli space
local — local
A7) =) Oelre) CV x Ty (R?). (7.3)

We shall see that this gives a desired 1-cobordism. We need two lemmas.

CrAM 1. After a C°-small perturbation of 7 in T(TVV)3* without affecting the

—local
general (disjoint) positions for ¥(v;)’s, we may arrange that //llf)ca (%) is a com-

pact smooth 1-submanifold of V x Cl;kcal( R3) and that the 1-manifold ///?Cdl( y) is

—local

transversal to OV x Csy, (R3).

Proof. The restriction for the singularities of GM sections ~y; given in §2.8.2 is
used here. Let I be the graph obtained from I" by replacing E(I") with E( ) {B()},

local

let Vi =V =11,z 2() and Vj = BEV, [1,; Z(7e)). Let @' 1V x Cop (R?) =V



A GENERALIZATION OF FUKAYA’S INVARIANT OF 3-MANIFOLDS I 151

— local ——Ilocal

Mrpr (YN A 15 U:) M+ (73Us)

j 77j;UI)

Fi1G. 5. The intersection in 7r;-71(BZ(Um, Uz N3(74)))

—local

and w1V x Cyy (R*) = V; be the projections. Then as mentioned in the proof of

—local

Proposmon 2.12 (1), A (F\{;}) is a submanifold of V; x s, (R?) of codimension
local

6k — 2, i.e., 3-dimensional, and we may define its compactification .Z,  (7\{v;}) as

the closure of .Z}9c?! (7 \ {'Yj}) in V X alzokcal( R3).

local

We denote by #r (7\ {7;}; V) the closure of ///10‘331(7 \ {yH a1\ (V -

?’k L Z(v)) in V x C;Okcal( R3). This can be obtained from //llf),ca (¥\{v;}) by blowing-

—local

up 7r' 13(v;) in Vj x Oy, (R?). Then we have

—local —local —local )

My (V) =0;() N M (T\{71V) CV x Cy, (R

—local 1

A (¥) may have boundary points on 7'~ !¢~ (2(v;)). Such boundary points can-

local

not always be avoided since the 3-manifold .# ., (7 \ {7;}) may intersect the codi-

—local

mension 3 submanifold 7rj Y(2(y)) of Vj x Cqy (R3). After a small perturbation of

«; in a small neighborhood of E(”yj) we may arrange that the intersection of the two
—local

submanifolds is transversal and that 7 (.#Z . (7 \ {7;})) and ¥(v;) are transversal.

local

We shall give a local description of .71, (7\ {7;}; V) near the transversal inter-

—local

section. Take a point « € 4. (¥\ {v;}) h w}fl(E(vj)) and a small open neighbor-

local . : . .
hood U of z in V; x Cyy (R?) so that U’ contains exactly one intersection point.

Let U, = 7j(U;). After a suitable C°-small perturbation of 7\ {v;} in a small
neighborhood of ¥(v;), we may arrange that
(i) 7)(x) is a Morse singularity of v; and U, N %?(v;) = 0,

—local

(it) 7 (A (7\{7;})) is tangent to TV ; at 7 (x). (This is possible since X(~;)

is transversal to both 7"V ; and (///I?,Cdl A\ {vhH))
We consider the blow-up B¢(U, U, N 2(77)) and let

—local

My G\ A} Us) = A (F\ {v;}) N (Ux — S(75))  (the closure)

—local local

in BOU,,U, N S(v;)) x Cqy (R¥).  Since 4 (7 \ {v;}) is transversal to
w;_l(E(fyj)) nU., ///if/cal(’y \ {7;};Us) is a submanifold of B{(U,,U, N X(v;)) X

—local —local

Cy, (R?) with boundary that meets OBL(Uy, U, N (7)) x Cyy, (R?) transversally.
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Ty it

FiG. 6.

On the other hand, ©;(v,;) C (V — ]_[Z’il () x Cl;kwl(R?’) has the closure

—local

0,(v;;Uy) in BUU,, U, N E(75)) x Cyy (R?) that is a submanifold with boundary
that meets OBL(Uy, Uy N 3(7;)) X Clzokcal(R?’) transversally since U, N ¥(v;) consists
only of Morse singularities. By the assumption (ii), the intersection of ©;(~;; U,) and

M ?Cdl (¥ \ {~,};Us) is transversal even on the boundary and forms a 1-submanifold

—local

of BU(U,, U, NX(v5)) x Cyy, (R?) with boundary. Let

—local — —local

My (T Uz) = 0 (753 Uz) ol v (YN A5} Us)-

—local —local

See Fig. b for a schematic illustration. .#Z  (¥;U,) is a local model of .Z (7).

—local

Clearly ///F ( ¥;U,) is transversal to BL(Uy,, U, N X(7;)) x Cyy (R?). By simi-

lar arguments for other intersection points x and for other j, we may arrange that
—local
A () is transversal to the boundary. O

CLAM 2. If ¥ is as in Claim 1, then the boundary contribution of %;’wl(_’) at

local

the ‘“inner’ boundary (OV —0V) x Cy,, (R®) is canceled with that of some other graph
I'* by symmetry, namely,

—local —local

#O0M v (V;Uy) U] + #0M p- (7;Uy) ] = 0.

Proof. By the assumption (i) in the proof of Claim 1, the boundary of
o (72 (3,U,)) lies in the fiber S? of the unit sphere bundle S(T°V) at ) (z).
Let I'* denote the graph obtained from I' by reversing the orientation of the edge

labeled j. Notice that there are individual terms for I' and I'* in the formula of
local —local

Z;;%Izaly(fyx) in Definition 2.11. Since .#  (V;U,)[[ # - (V;U,) is transversal

—local

to OBU(U,, U, NE(7;)) x Cyy, (R?) by Claim 1 and since on a neighborhood of X(v;)
——local

— local
there is a symmetry between the moduli spaces 7 (7;Us) and A (7;U,) by

the assumption (i) and by the symmetry of the standard model around a Morse point,
——local ——local

the intersection of 7 (A (V; Uz) [1 A (7;Us)) with 0BL(U,, U, N X(7;)) con-
sists of two points in 5’2 that are in an antipodal position. Hence one may see that
—local —local %
#OMr  (F;Uz) U] + #0.M - (V;Us) [I7]
local local
— (#0055 U) — #OA (3:0) )T

—local

— (#0035 U) - 40" (35 U) ) 1] = 0.

Here, the second equality follows by the facts that the symmetry reverses the orienta-
—local —local

tion of ©;, and that the inward normal vectors at .4  (7;U,) and 0.4 . (V;Uy)
are opposite. See Fig. 5 and 6. O
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We continue the proof of Lemma 7.2. Now by Claims 1 and 2,

= > w0 DN =2 Gx) - Y #la (DT

Fegzk 3k Fegzk 3k

The second term in the RHS vanishes by the IHX relation of %y, 3. O

REMARK 7.4. Proposition 7.1 shows that Z;EO;?IVWW) does not depend on the

GM extension Jy of —grad f However, we fixed a diffeomorphism ¢o, : UL, — Uso
and extension 7}, of n @ Tar, so we must check that Z;;%?aly( w) does not depend

on these choices. It will be checked in Lemma 10.1.

7.2. Well-definedness of the correction term. To prove Proposition 2.12
(2), we consider general pairs of spin 4-manifolds W and W’ with OW = oW’ = M,
X(W) = x(W’) = 1 which may not be relatively spin cobordant. We choose 3-framings
oy and 7 on T' My so that

p1(TW;thy) = p1(TW';0%,) = 0,

which are canonical up to homotopy. Then by Lemma 2.9, 7}, extends to a 4-framing
of W and o, extends to a 4-framing of W’. But 7a; may not be homotopic to oas, so
we may not have a stable framing of ' T X, X = (—=W)U, ([0, 1] x M)Uy W', namely,
X may be just almost parallelizable. Although we do not have a stable framing of
el © TX, we have a rank 3 (possibly nontrivial) subbundle 79X of ¢! @& TX that
agrees with priT M on [0, 1] X My, which extends those spanned by o and 7ps. By
Lemma 2.10, there exists a GM sections 7x € I'(T"X)3* extending —gradfand one

can define Z;E%‘zdly(”yx) € g 3k-

More generally, one can also define Z;;%?aly( x) for any almost parallelizable,

closed, connected, spin 4-manifold* with x(X) = 2. Namely, by a straightforward
analogue of [KM, Theorem 2.2], the restriction of a framing on X — Int ([0, 1] x D?)
to 9([0, 1] x D?) can be deformed to a framing of the form pr; '7ps @ prng[O)l] if and
only if x(X) = 2.

Let Qipin(2) denote the set of spin cobordism classes of closed, connected, spin 4-
manifolds X with x(X) = 2. By the same argument as in the proof of Lemma 7.2, one
may see that the assignment X — Z;E%r;;aly(ﬂyx) for generic Yx defines a well-defined
map

anomal spin
Zok,3k Y QPP(2) = Sk 3k

The set Qipin@) has a group structure given by connected sum. More precisely, if
X is a closed, connected, spin 4-manifold with x(X) = 2, then there is a framing on

—[0,1] x D3. If X’ is another closed, connected, spin 4-manifold with x(X’) =
2, then by forming the boundary connected sum X —[0,1] x D3 X’ —[0,1] x D3
and capping by [0,1] x D? along the boundary in a natural way, we will obtain an
almost parallelizable, closed, connected, spin 4-manifold X" with y(X”) = 2 that is
diffeomorphic to X#X’. This defines an abelian group structure on Q25" (2) on which
the inverse of X is given by —X.

4Note that any compact connected spin 4-manifold is almost parallelizable. Thus the assumption
of almost parallelizability is unnecessary.
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LEMMA 7.5. The map Z;;%Izlaly L QS (2) — ooy 3y, is a group homomorphism.

Proof. If [X] =0 € Qipin(2), then we have 0 = sign X = %(pl (el ®TX),[X]) and
X(X) = 2, thus by Lemma 2.9, the stabilization of the 4-framing on X — [0,1] x D3
induced from that of X —[0, 1] x D3 extends over X. Namely, X is stably parallelizable.

Then by the same argument as in the proof of Lemma 7.2, we have Z;E%r;;aly('?x) =0

for any generic GM sections 7x € (I'(T?X))**. The additivity of Zr%*" follows
from the fact that Z;E%rzaly is invariant under spin cobordism as shown in Propo-

sition 7.1, and that X [T X’ and X#X' are spin cobordant. Hence Z;;_(’;Ealy is a
homomorphism. O

Proof of Propos.ition 2.12 (2). By Lemma 7.5, Z;;g};aly is a restriction of a group
homomorphism Q"™ — %y 35. So there exists a constant py € @y 35 such that

. aly /- .
Zopar (Ix) = pxsign X,

for X = (=W) U, ([0,1] x M)Uy W'. By (7.2) and by the additivity of the signature,

ZoG Gw) — Zapon™ (Gw) = pu sign X = puy, sign W’ — g sign W.

This completes the proof. O

8. Moduli space of gradient flow graphs in 1l-parameter family. The
next two sections contain preliminaries for the proof of the main Theorem 2.13, which
are 1-parameter analogues of the results in §3 to §5. We consider generic 1-parameter
families of smooth functions fs; : My — R and metrics pus on My parametrized by
s € [0,1], and see what happens to the moduli spaces of flow graphs during the
homotopy {(fs, tts)}sef0,1]- We shall extend the definition of the moduli spaces .#>(f)

—

and Zr(f) to those for 1-parameter families (§8.2) and give their compactifications
to smooth manifolds with corners. Proofs of some lemmas that are analogous to the
lemmas appeared previously will be a bit brief to make the paper not too long.

8.1. Bifurcations in 1-parameter family of smooth functions and met-
rics. Let f,f’ : My — R be two Morse functions. Then there exists a smooth
1-parameter family {fs : Mo — R} ¢[o,1) of functions on My such that fo = f and
fi = [/ and fs is standard near ocops with respect to a chart poos @ Ul y — Us
(com € UlL), where we say that a 1-parameter family {fs}se(o,1 is smooth if the
map F : [0,1] x My — R, F(s,x) = fs(x) is smooth. It is known that F can be chosen

so that for all s € [0,1], fs does not have higher singularities.

LEMMA 8.1 ([Ce]). Two Morse functions on a manifold can be connected by a
smooth 1-parameter family of smooth functions with only Morse or birth-death (As)
singularities.

The proof of the lemma can be found in [Lau, §4.3].

In the following, we will often identify a smooth 1-parameter family {fs}seja,p) of
functions on My with the smooth map F': [0,1] x My — R, F(s,z) = fs(z). Under
this identification, we consider fs as both a map My — R and a map {s} x My — R.
We will consider Z,(fs) etc as subsets of My or My x {s}, depending on the context.

Let {(fs,ts)}scjo,1) be a smooth 1-parameter family of smooth functions and
metrics such that (fo, o) and (f1, 1) are Morse-Smale. Here we say that the family
{1} sej0,1) of metrics is smooth if it is the restriction of a smooth metric on [0, 1] x My
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that is standard near [0, 1] X cops. We will sometimes call s € [0, 1] a time and we say
that a time sg € [0,1] is a bifurcation if (fs,, ts,) is not Morse—Smale or not ordered.

LEMMA 8.2 ([HW](p. 42), Lemma 2.11 of [Hu]). After a perturbation of
{(fs, 1ts) }sef0,1] fiving endpoints, we may arrange that there are finitely many bifurca-
tion times in [0, 1] each of which is one of the following.

(1) Level exchange, i.e., a time where the order of the critical values changes.

(2) Birth-death bifurcation, i.e., a time s where X(fs) consists of Morse singu-

larities and one birth-death singularity.

(3) i/i-intersection ([HW)), i.e., a time where a family of descending manifolds

and a family of ascending manifolds of the same index i intersect transversally
in [0,1] x M.
(4) A time where the intersection of a descending manifold and an ascending
manifold is not transversal.
We may assume that no two different bifurcations overlap on a single time. (We will
call such a I-parameter family a generic 1-parameter family.)

At a bifurcation, the topologies of the moduli spaces .Z”(fs; s, 4s), Ps, ¢s € X([s),
may change.

Lemma 8.2 can be proved as follows. By Lemma 8.1 and by definition of bifurca-
tions, it is enough to prove (3) and (4) of the lemma in the case where fs is ordered
Morse for all s € [0,1] (see Lemma 3.1 for the definition of ordered Morse function).
Put J = [0,1]. Tt suffices to prove that for a pair of critical loci p = {ps}ses and
q = {¢s}sc s, the submanifolds <7,(f;) = USeJ <, (fs) and Z4(f5) = USeJ Dy, (fs) of
J x My can be made transversal. They are indeed submanifolds of J x M for a similar
reason as the descending and ascending manifolds are submanifolds of M. Namely,
by the parametrized Morse lemma ([Ig2, Appendix]) one may see that they are sub-
manifolds on a neighborhood of the critical locus and then extended by the gradient
flow without changing its diffeomorphism type. By modifying the 1-parameter family
{ps}ses of metrics on My suitably, one can show, by a similar argument as the proof
of the genericity of the Morse-Smale condition (see e.g. [Pe]), that ,QZ(fJ)’s and
P,(fs)’s intersect mutually transversal in the trivial My-bundle over J after a fiber-
wise small perturbation of the metrics. Note that even if so, it may not be true that
oty (fs) and P, (fs) are transversal for every s. If the transversality of <7, (fs) and
Dy, (fs) for i(ps) = i(gs) fails, then s is of type (3). For other indices, the intersection
<ty (fr) N éq(f,]) is a submanifold of J x M. Let L be a level surface locus for f;
such that for each s € J, LN ({s} x M) is a level surface of f, that lies between fs(ps)
and fs(gs). We may assume that the map pr: («/,(fs) N éq(f])) N L — J induced
from the projection J x My — J is Morse for every pair (p, ¢) of distinct critical loci®.
There are finitely many® critical values of pr, which are bifurcations of type (4).

We say that a 1-parameter family (f, n.r) = {(fs, its) }ses of Morse pairs satisfies
the parametrized Morse—Smale condition if for every pair (p,q) of critical loci of f;
the intersection of %(fJ) and é;(f]) is transversal.

51f yz, (fs)and ?Eq (fs) are transversal, then that 7, (fs) and 2, (fs) are transversal is equivalent
to that s is a regular value of pr : szz,(fj) ﬂ?}q(fj) — J. This can be checked by applying the formula
dim V+ W =dim V 4+ dim W — dim V N W for vector spaces twice.

6The finiteness is proved by using compactifications of 427;(]”]) and ?Eq (fs) given later. Although
we use Lemma 8.2 in the construction of the compactification, there is no problem in this because
we do not use the finiteness of the bifurcations for the compactifications.
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Fic. 7. Cerf’s graphic equipped with the information of i/i-intersections

It is convenient to represent bifurcations in a 1-parameter family by the graph of
critical values, equipped with the information of i/i-intersections. See Fig. 7 for an
example. Such a diagram is called Cerf’s graphic ([Ce]). In a graphic, a level exchange
corresponds to a crossing of two curves, an ¢/i-intersection between a pair of critical
points is represented by a dotted arrow, and a birth-death bifurcation corresponds to
beaks.

8.2. Moduli space .Zr in l-parameter family and transversality. Let
{(fs, 1ts)}sefo,1] be a generic 1-parameter family. Let J = [so,s1] be a closed interval
in [0,1] on which {(fs, ts)}ses does not have birth-death bifurcation. We consider
a l-parameter family f; = (fsy f2y-+, fm), s € J, and extend the definition of the
moduli space ///p(f) to the family f; = {f;}seJ.

The moduli space .1 ( f;) for a generic parameter s € J is defined similarly as
Mt (f) by replacing f; in the definition of ///p(f) (§2.4) with f,, u1 with pus and critical
points with critical loci. For graphs I' with dim M < 0 with respect to the formula
of Proposition 2.4, the moduli space .Zr(fs) is empty at a generic parameter s, but
we will see that .#p( f.;) may be non-empty at finitely many non-generic parameters

in J if the formula of Proposition 2.4 gives dim ,///p(f;) =—1.

PROPOSITION 8.3. Let {(fs, ps)}ses be a generic 1-parameter family with no
birth-death bifurcation as above and let C be the sequence (O(SO), c@ c® C(m))
of acyclic complexes, where C*0) is the Morse complex for (fsy, fts,). Suppose that
I' e %?ym’ﬁ(é) has no bivalent vertex. For a generic choice of {(fs,ps)}ses, the

space M (fy) = Uses AM(F), f1={(fss for s fm)Ysess is a smooth submanifold
of J x Cp(M) of dimension (n —m)d+ Y i~ n;i + 1.

For simplicity, we only check the transversality on the moduli space .1 ( f j) for
the special graph

(8.1)

since other cases are similar. Suppose that fa, = (fsg, f2,- .-+ f6) € (Cr . (Mp))® is
generic in the sense of Proposition 2.4. We decompose I' into two parts:
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The moduli space %F//(f_;l) C 6'4(]\4)7 f_;/ = (f2,, '-7f6)7 is given by %F”(f_;/) =
prl(q)}l}(A”)), where ® g, : Cy(M) x RS — M{ is defined by

(I)f_/’/(xla P 78 2 TR 7t6)
= (w1, 29, ®F (1), 23, O (1), PP (w2), 4, B (2), D (23)),

and A" = {(z1,x2, T2, T3, T3, T3, T4, Ty, Tq); T1,T2,T3,T4 € Mp}+. By the genericity
of fi,, we may assume that .2 (f”) is a submanifold of Cy(M) of dimension (4d +
5)+4d—9d = 5—d. On the other hand, the moduli space .Z1(fs) = e ; A1 (fs) is
given by the (d+mn;+1)-dimensional manifold A3, (fr) = U,cs Apqg(fs) C T x Co(M).
Then we have #p(f7) = Tt (e (1)) O (J X Mo (f7)), where Ty J x Cy(M) —
J x Co(M) is the projection (s,z1,22,x3,24) — (s,21,24). By the transversality
theorem, we may assume after a small perturbation like Lemma 4.1 of the family
{(fs, ts) Yses that the intersection is transversal, and hence . (f;) = Use s A (f2)
is a submanifold of dimension (d+mn;+1+2d)+(5—d+1)—(4d+1) = —2d+ (91 +5)+1.
If the first edge of ' were a compact edge, then .#1 (f;) would be replaced with
Ma(fr) = UseJ Mo ().

8.3. Compactification of the moduli space .#, of trajectories in 1-
parameter family of Morse pairs. Let J C [0,1] be a compact interval and
let {(fs,1n7)}ses be a generic 1-parameter family without birth-death bifurcation,
namely, f is a 1-parameter family of Morse functions. We construct compactifica-
tions of the spaces

Mo(fr) = | Ao, Ma(fs) = Malfs) T x Mg

seJ seJ
The goal of this subsection is to prove the following proposition.

PROPOSITION 8.4. Let (fr,1uy) = {([fs, pts)}scs be a generic 1-parameter family
of Morse pairs that satisfies the parametrized Morse—Smale condition. There is a
natural compactification M 2(f) of M2(f1) =U,es Mo(fs) such that
(1) The complement of b=Y(Ayr) in Mo(fs), where b : Mo(fs) — M x M is
the smooth extension of the evaluation map Mo(fy) — Mo x My, is a smooth
manifold with corners. N
(2) The codimension k stratum of .#a(f;) — b~ (Anr) for k > 1 consists of
families of k times broken trajectories and On_1.4#+(fss), the codimension
k —1 stratum of M »(fos) — b (An) in 8J x M.

Let by : M 2(fs) — (J x M) x (J x M) be the evaluation map with time, which
is defined for a possibly broken trajectory v in {s} x M with b(y) = (z,y) to be
by(y) = (s,z) X (s,y). For a critical locus p = {ps}ses of fs, we write

Cty(f1) =31 ((J x M) x p), €Tp(fs) =b7"(p x (J x M)).

Let by : ‘@”Jzz;(fJ) — J x M (resp. bg : %ép(fJ) — J x M) be the map that assigns
the initial endpoint (resp. terminal endpoint) of a possibly broken flow line. Let
Ay x M? be the subset of (J x M)? consisting of points of the form (s, ) x (s, y) and
let

W pa(£1) = (bey x ba) LAy x M?) C Cly(f1) X € TDp(f1).
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Let bb : %%(f]) X €9 »(f7) — M x M be the composition of b,y x by and the

projection (J x M)% — M x M. For subsets A, B C J x M,let Ax;B=(AxB)n
(Ay x M?) and let

Mo(f1; A, B) = Mo(f1) N (A %y B).

The following corollaries are immediate consequences (analogue of Proposition 3.14)
of Proposition 8.4.

COROLLARY 8.5. Let (fy,py) = {(fs, ps)}ses be a generic 1-parameter fam-
ily of Morse pairs as in Proposition 8.4 and let p be a critical locus of fy. Then
€9, w(fr) (resp. €, (fJ)) is a compactification of@ (fs) (resp. <, (f])) such that

the complement of b= (Ay) in €9, w(fr) (resp. €4, (fJ)) is a smooth manifold with
corners whose codimension k stratum for k > 1 consists of families of k times broken
trajectories and Or—12,(far) (resp. Ox—1.9p(for)).

COROLLARY 8.6. Let (f,1y) = {([fs, tts) }ses be a generic 1-parameter family of
Morse pairs as in Proposition 8.4 and let p, q be critical loci of f7. Then A py(f7)
is a compactification of Npq(fr) such that the complement ofﬁfl(ﬁM) in N pg(f1)
s a smooth manifold with corners whose codimension k stratum for k > 1 consists of
families of k times broken trajectories and Og—1.N py(for).-

8.3.1. The moduli space .Z5(f;) around a level exchange bifurcation.
We first construct the compactification of .Z5(f;) around level exchange bifurcations
(Lemma 8.2 (1)) and then extend to whole of J. In the construction of .#Z5(f) (in
§3.3), we assumed that the critical values of f are all distinct (Lemma 3.1). However,
this is not the case for a 1-parameter family, due to level exchange bifurcations. We
consider the space of ‘semi-short’ trajectories that are close to an exchanging pair of
critical loci to construct a compact space of trajectories around the level exchange
bifurcation. Let u € J be a level exchange bifurcation and choose a small compact
interval J, = [u — ¢, u + €] so that there are no other bifurcations over .J,. We shall
prove the following lemma.

LEMMA 8.7. Let J,, be as above and suppose that py, is such that s is Euclidean
near X(fs) for each s € Jy. If € is sufficiently small, then there is a natural compact-
ification M 5(f1,) of Ms(fy,) such that Ms(fs,) — b (Ay) is a smooth manifold
with corners whose codimension k stratum for k > 1 consists of families of k times
broken trajectories and 8k_1]2(fuia).

Let p = {ps}tset.q = {qs}ses, be the pair of critical loci of f;, = {fs}ses, that
are in a level exchange position. Then there exist smooth functions 4,7 : Ju, — R
such that

(1) vals) < p(s) for all s € J,,,
(2) fs(ps); fs(gs) € (va(5), (s)) for all s € Ju,

(3) for each s € J,, there are no critical points of fs in f; [ya(s),(s)] except
Ps and gs.

We put Ea = UsEJu F (va(s)), Zb = UseJu FHw(s)), Wig(s) = f a(8), ()],
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Fic. 8.

qu = Uses, Wpq(s), all considered as subsets of J,, x Mo. We define

(fJu7Lb7 ) ClOSUre(%g(fJu, Lbu )) C Zb XJU Zaa

([ 1,5 Ly, Wyy) = Closure(a(f1,: Ly, Wpq)) € Ly % 1, Wog,

Mo(f, qu,L ) = Closure(#2(f, ,qu,L )) C qu . La,

Mo, quv qu) Closure(#>(f1,; quv qu)) C qu X Ju qu-

LEMMA 8.8. Suppose that Do(f1.) 0 ,J(fJu) = (. Then the following hold.

(i) Ao(f1,; Ly, La) — Ay x {003, } is a submanifold of Ly x 5, Lo with boundary
whose boundary consists of once broken flow sequences and the moduli spaces
at endpoints of J.

(1) A o(fr,; Ly, Wpq) — Ay x {002, } is a submanifold of Ly, x ;, qu with corners
whose boundary consists of once broken flow sequence and of points in Ly X I
8qu and the moduli spaces at endpoints of J,.

(iil) #o(f7, ,qu,L ) — Ay x {c0%,} is a submanifold of qu x 7, Lo with cor-
ners whose_boundary consists of once broken flow sequences and of points in
Bqu X, L L, and the moduli spaces at endpoints of Jy.-

(iv) A o(f1.: qu,qu) AWM is a submanifold of qu X T qu with corners

whose boundary consists of once broken flow sequences and of points in
3(qu X 7y Wpq) U A~ and the moduli spaces at endpoints of J,,.
raq

Proof. First, we prove (i). We assume for simplicity that both p and ¢ are neither
maximal nor minimal for all s € J,. Let K, = = Uses, (Zp. (fs) U A, (fs)) N Wpy(s)
and K, Usej (2,, (fs) U o, (fs)) N qu( ). See Fig. 8. Take small compact
neighborhoods B and B of K N L, and K N Ly respectively in Ly. Let A C L
be the union of K N L, and the subset of L, consisting of points (s,¢) such that
¢ = ® (x) for a point x € B, N ({s} x Mp) and for some ¢ > 0. In other words, A,
be the union of K N L, and the nnage of the negatlve gradient flow from B N L.
A C Lg is defined similarly for K N L,. Let C be the subset of qu consisting of
points (s, ) such that either (s, x) € K or such that the integral curve v, of grad,,_fs
in {s} x My with 7,(0) = (s, ) intersects B,. C, C W g is defined similarly for K,
and Bq.

Since IN(,, N l~(q = (), we may assume that any trajectory starting from Bp (resp.

Bq) are disjoint from trajectories starting from the complement of Bp (resp. Bq).
Thus we have

AMo(f1.5 By, La) = Mo(fr.; Bpy Ap)y,  Mo(f1,; Bgy La) = Mo(f1,; By, Ag),  (8:2)
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and in partlcular the two moduli spaces are disjoint in .Za(f,; Lb, a) SIDCG each
of C and C has only one critical locus, the compactifications .#(f;,; B ,Ap),
Mo(f1,; By, q) can be defined in a similar way as Lemma 3.7 (using parametrized
Morse lemma [Ig2, Appendix|, assuming pus is Euclidean with respect to the lo-
cal coordinate). They are smooth manifolds with boundary and are closures of
Mo(fr,; By, Ap) and Ms(fy,: By, Ag) in Ly %y, Lo. In accordance with (8.2), we
define

%2(fJu?§paEa) = %2(fJu?§p=gp)v %2(fJu;§ana) = %2(fJu;§q=gq)'

We construct an extension of .#5(f.,; By, La) [1-#2(f1,: By, La) to A 2(f1,; Ly, La)
as follows. Let X C L; be the closure of the complement of B, U B,. Since there is
no critical loci except p and ¢ in qu, the negatwe gradient flow carries X diffeomor-

phically onto a compact subset Y of L., where Y is the closure of the complement
of A, U A Hence ///g(fJ X, L ) Ma(fr,: X ) X, which is compact. The

union //lg(quL,Bp,L YUMoy (fr,; X, L )U///g(fJu, 4> La) is a smooth manifold with
boundary and is the closure of .#>(f;, ,Lb,La) in Lb X 7., Ea, namely, agrees with
%Q(nyJva a)- o P

For the compactifications A o(f1,: Loy Wpq), M 2(f1.;Wpe» La )
Mo(f7, ,qu,qu) etc. we consider ]g(fJu;zb,ép), Mo(fr,; Cp,L ),
Mo(f Ju,Cp,C ) etc. by a similar way as the unparametrized case and extend
them as previous paragraph. O

Proof of Lemma 8.7. We may assume that all the critical loci except p and ¢ are
ordered over the interval J,, and according to Lemma 8.2, we may assume that (f, is)
is Morse-Smale for all s € J; if ¢ is sufficiently small. Thus fiber-product construction
similar to Lemma 3.13 can be applied with the moduli spaces in Lemma 8.8 and we will
finally get a compactification .#5(f;,) of .#2(f,). Then straightforward analogues
of Lemmas 3.11, 3.12 and 3.13 show that .#Z5(f;,) — b~ (Ay) is a smooth manifold
with corners satisfying the conditions of the lemma. O

By the same construction at all the level exchange points uy,ug,...,u, € Jy, we
will obtain a compactification .#» on ]_[;:1 J.

REMARK 8.9. We assumed in Lemma 8.7 that us is Euclidean near critical loci
with respect to the local coordinate of parametrized Morse lemma. However, this
assumption is not essential because if u, is not Euclidean near critical loci, then the
flow lines near a critical locus are the images of flow lines in .J,, x R? for the standard
quadratic form with respect to the Euclidean metric of R? under a fiber-preserving
diffeomorphism defined on a neighborhood of .J,, x {0}. This remark will be taken

into account to make sure that the compactification .#2(f;) in Proposition 8.4 is
consistent with that at a birth-death bifurcation.

8.3.2. The moduli space .#5(f;) on ordered 1-parameter family of

Morse pairs. Next, we extend the compactifications of moduli spaces on ]_[ Juy s
given in §8.3.1, over the whole of J. We assume u; < us < -+ < u,. Let I C J,
j=0,1,2,...,r be a sequence of mutually disjoint compact intervals such that

W) Ug L UUy Ju, =,
(2) Int I; NInt J,,, # 0 if j >0, and Int [; NInt J,,, , # 0 if j <,

)
(3) (5= L0 {ur,. o} =0,
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(4) Ij C (Uj,Uj+1) ifl1<j<r.

See Fig. 9. We shall construct a compactification .#(fr,) of .#5(f1,), which connects
%2(f]uj) and %2(f]uj+l).

LEMMA 8.10. Let I; be as above. Then there is a natural compactification
Mo(f1,) of Ma(f1,) such that A o(f1,) — b=Y(Ay) is a smooth manifold with cor-
ners whose codimension k stratum for k > 1 consists of families of k times broken
trajectories and Op—1.# 2(for,).

Proof. For each j, the critical values are consistently ordered over I;, so we can
separate critical loci by families of level surfaces of fs;. The compactification of the
moduli space of trajectories that lie in a piece between level surfaces can be done as
before, by means of the parametrized Morse lemma (e.g., [Ig2, Appendix]) and by the
same argument as §3.3.

Recall that in Lemma 3.11, the Morse-Smale condition is required. However, the
Morse-Smale condition may not be satisfied for all s € I;. For example, it fails at an
1/i-intersection bifurcation, as we have seen at Lemma 8.2. Instead, we require the
parametrized Morse-Smale condition and this suffices for the moduli space to be a
smooth submanifold of a fiber bundle over I; (with fiber C(M)), though the moduli
space may not be a subbundle. Using the parametrized Morse—Smale condition in the
fiber-product constructions by straightforward analogues of Lemmas 3.11, 3.12 and
3.13, we may get a compactification ]g(flj) as desired. O

Proof of Proposition 8.4. It remains to check that the compactifications obtained
on J,; and [I; in Lemmas 8.7 and 8.10 respectively can be glued smoothly on the

overlapping intervals I; N J,, and I; N Jy,, . Let Ly,..., ZN_Q be the loci of level
surfaces for fy, ~that are used to define M(fu,) and let LY, ..., Ly_; be the loci
of level surfaces for f;, that are used to define ]2( flj). We may assume without
1o_s§1 of generality that L; and E; are disjoint for any ¢,j (see Remark 3.5(3)). Let
AM 5 (f1.,n1,) be the compactification of .#5(f,, n1,) defined by using the loci of level
surfaces El, . ,EN_Q,ZN'/l, .. .,E’N_l. Note that there may be intervals of heights
between level surfaces that do not have critical loci. The fiber product construction

as Lemma 3.11 with .# for such an interval does not yield new corners. The forgetful
maps give natural embeddings

My (f1.,01) = Mofs,), My (fr,01) — Ma(]1,)
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which gives a strata preserving gluing map between .#o(f Juj) and A o( f1;). We
consider ];(fJuj n1;) as a subspace of both ]Q(fjuj) and .45 (f1,). Let

M 3(fri;01) = A2([1.,) Y gy, oy A21):

For other overlapping intervals, we also glue compactifications similarly. By Lem-
mas 8.7 and 8.10, the result is as desired. O

8.4. Gluing of a separated trajectory at birth-death bifurcation. Let
I =10,1] and let sg € I be a birth-death bifurcation in a generic 1-parameter family
(fr,0) = {(fs, pts) }ser- Let py and p_ be the critical loci of f; that are involved in
the birth or death bifurcation sg, such that i(p_) = i(p4)+1. The space A;,_,. (fr) C
[0,1] x C3(M) can be considered as the moduli space of ‘separated’ trajectories. In
this subsection we shall see that .4,_, (fr) and .#>(fr) are smoothly glued together
at the time s = sg. Here, we shall only study a death point since a birth point is
symmetric.

Let so € [0,1] be a death parameter in a generic l-parameter family and let
Jso C [0,1] be a small open interval including sg. Let v € My be the death point at
S0. By the normal form lemma for an unfolding of a birth-death singularity (e.g., [Ig2,
Appendix], [Ce]), there is a local coordinate on a neighborhood M, of v in Jg, x M
on which fs agrees with

3 2 2 2 2
hu(x):c(u)—k%—kuxl—%—w —%—!— 12+1—|—~-~—|—%, u € R,

where u is a reparametrization of s such that s = s¢ corresponds to u = 0, and c(u)
is a smooth function of u, and one can choose a metric on Js, x My whose restriction
on M, agrees with the restriction of the standard metric on R x R%. The negative
gradient of h, with respect to the standard metric is

2
—grad hy = (=27 — U, T, ..., Ty, —Tit1, .-, —Td)-

On u > 0, there are no critical points of h,. At u = 0, there is only one critical
point of h,, at the origin, and on u < 0, there are exactly two critical points py =
(£4/]ul],0,...,0) of hy. From now on we shall describe how a pair of trajectories going
from/to critical points of h, on u < 0 are glued together into a single trajectory on
u > 0. It gives a gluing of a moduli space of a separated edge and that of a compact
edge.

8.4.1. Gradient trajectories of h, in v > 0. Here, we may assume for sim-
plicity that ¢(u) = 0 for u € R, without changing the gradients. The integral curve
v :R = R (1) = (7(t),...,7a(t)) of —gradh, is determined by the system of
differential equations:

Y1(t) = =) —u, Fa(t) =72(t), ..., %i(t) = 7(t), (8.3)
Yir1(t) = =vit1(t), -+, Yalt) = —va(t), '

for each given initial point (y1(0),...,74(0)). In u > 0, the solution of (8.3) is given
explicitly by

_ Van(0) —utan yat o
’Yl(t) - \/a'i"}/l( )tan\/_t l 72( ) 72(0)6 I 71(t) _71(0) s (84)
Yir1(t) = i1 (0)e™", ., qat) = ya(0)e "
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For a small number € > 0, let L. and L_, be the subsets of R? given by

LE:{(EaIQV"v'rd) ERda I27"'7$d€R}a
L_.={(—e,x3,...,2q) €RY: z,...,24 € R}.

These are approximations of level surfaces at the levels +¢ in a neighborhood of the
origin. Since (—gradhu)(,z,,....00) = (—U,T2,..., T, =Tiy1,...,—Tq), ONe May see
that any trajectory of h, in w > 0 and in M, intersects both L. and L_.. Conversely,
for any point a of L. N M, (resp. L_. N M,), there exists a unique (shift equivalence
class of) gradient trajectory of h, which intersects L. (resp. L_.) at a. So there is
a one-to-one correspondence between a point on L. or L_. and a gradient trajectory
of h,, that is close to the origin. We identify a gradient trajectory with the pair of its
intersection points with L_. ] L..

Now suppose that an integral curve v(¢) of —grad h,, starts at a point of L.. We
shall describe the point Iny N L_.. If v(¢t_.) € L_. at t_. > 0, then by (8.3),

. /_€ dx 2T 4 €
—e=— ——— =—=Tan " —
c . 2+u  Ju Vu

for 0 < u < e We put 7.(u) = %Tan_lﬁ. The point y(t_.) can be expressed by
using 7 (u) as follows.

V(t—s) = (_57 ’72(0)675(“)7 s 7’7i(0)675(u)7 ’7i+1(0)67‘r€(u)7 s 7’7d(0)eiTE(U))'

If we put 2 = v2(0)e™ ™, ... g5 = %(0)e™ ™ g;11 = 741(0),...,eq4 = 7a(0), then
the integral curve starting at the point

(5, gae T eiem W g ,sd) e L. (8.5)
intersects L_. at the point
(—E, €2,...,E4, 6i+16_7—5(u), R ,E‘de—TE(u)) elL_.. (86)

This observation motivates the gluing formula below.

8.4.2. Gradient trajectories of h, going from/to critical points in u < 0.
In u < 0, the ascending and descending manifolds of h,, are described as follows.

Ay, (hy) ={(x1,...,2q) ERY; 3y =+ =2, = 0,21 > —Vul},
Dy (hy) = {(w1,...,74q) ERY; iy = =x4=0,21 = \/m}7
Ay (hy) ={(x1,...,2q) €ERY; 2pg = - =2, = 0,21 = —/|ul},
Dy (hu) = {(21,.. ., 24) €RY; iy =+ =24 = 0,21 < /ul}.

See Fig. 10. Hence

Lsﬂxz{m(hu):{(5,0,...,0,51-4_1,...,5(1)eRd;siH,...,sdeR},

J (8.7)
L_.NPp (hy) ={(—¢,e2,...,€,0,...,0) € R®; g9,...,¢; € R}.

One may check that this also holds for «w = 0, in which case py = p_ = v.
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8.4.3. Gluing formula at u = 0. We define an injective map

@:(—e2,e?) xR 5 (=2, e?) x R x R by

u X (526_75(“), .. ,sie_TE(“), Eidly .-+ sd)
o(usea, ... eq) = X (52, . ,Ei,siﬂe_“(“), .. ,ade_Tf(“)), ifu>0
u X (0,...,0,€7j+1,...,€d) X (52,...,@,0,...,0), ifu<O0

For any u we may identify the space of gradient trajectories of h,, or pairs of gradient
trajectories of h,, intersecting both L. and L_., with a subspace of L. x L__ through ¢.
By (8.7), the non-positive part ¢((—e?, 0] x R¥~1) is the space of pairs (v,, (£),7,_ (1))
of integral curves of —grad h,, satisfying the conditions

lim 5, (8) = prs 1, (0) € Le,  lim 7, (8) =p—s 7 (0) € L. (8.8)

t—o0

On the other hand, by (8.5) and (8.6), the positive part ¢((0,£%) x R9~1) is the space
of negative gradient trajectories of h,, u > 0, near the origin. In other words,

90((_527 0] X Rd_l) = %714 ({hu}u€(7€2,0]) N (_527 O] X (LS X L—E)v
0((0,e?) x R = o({hu}ue(o,.e2)) N (0,6%) x (Le x L_.).

The following proposition gives a gluing of moduli spaces of short trajectories.

PROPOSITION 8.11. The map ¢ is smooth and is an embedding. Hence Im ¢ is a
smooth submanifold of (—&2,e%) x (Le x L_.) without boundary.

Proof. Let 0. : (—e%,e%) — R be the function defined by

—Tg(u) .
as(u)_{e ifu>0

0 ifu<o0
The map ¢ can be rewritten as

o(u;ea, ..., eq) = u X (g20:(u), ..., €i0:(U),Eix1,...,Eq)
X (g2, .., €i,6i410:(1), ..., eq0:(u)).
One may see that o, is C° differentiable (see [Wal] for the proof). Hence ¢ is C>°

differentiable. That the Jacobian matrix has full rank is obvious from the definition
of p on u < 0. Hence ¢ is an embedding. 0
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8.5. Compactification of . (f:;) in generic 1-parameter family.

8.5.1. Compactification of the moduli space ///p(fl) in 1-parameter fam-
ily of Morse pairs. By using the compactification .#5(f;) and A ,q(fs) given in
§8.3, one can also define the compactification .#Zr(f;) of .#r(f;) in a similar way as
§4.3. We have the following proposition.

PROPOSITION 8.12. Suppose d = 3, I € 43, 3k(6) and that I' does not have a
bivalent vertex. After a small perturbation of the family (fJ,u]) = {(fs, tts) }ses of
Morse pairs fizing the endpoints, we may arrange that ///r(fJ) is a compact smooth
1-manifold with boundary. The boundary consists of flow graphs with a once broken
trajectory or with a subgraph collapsed to a point.

The proof of Proposition 8.12 is analogous to Proposition 2.5 (proof in §4.3).
Namely, we construct a singular compactification ]; (f7) of Mr(fy) in Hfil C,jj,
where @j is cither .75 (f;) or N py( £7). Then a sequence of blowing-ups along the
diagonals yields .41 ( f;)

8.5.2. Gluing of .Zr(f;) at birth-death point. Let s, € [0,1] be a death
parameter in a generic 1-parameter family {(fs,uts)}sejo,1). For sufficiently small
number & > 0, let (p1,¢1) be the pair of critical points of f,,_./, such that i(p;) =
i(q1) + 1 and such that they are eliminated on s > sq after passing through the death
point v. Then we have the following proposition.

PROPOSITION 8.13. Suppose d = 3 and that sg is as above. Let T'(p1,q1)1 €
Gope.31(C0=)) be a graph with no bivalent vertices and let T(0,0)1 be the graph
obtained from T'(p1,q1)1 by replacing the separated edge B(1) with a compact edge. If
e’ is sufficiently small, then the embedding ¢ of Proposition 8.11 induces a smooth
compact 1-dimensional cobordism between

M r0.0), (Fsogrer) and i, g0, (Foomer) L1000y, (Fro—er)-

Proof. 1f d = 3, then by Proposmon 2.4, dim .#r(f.) = 0 for I € 49 3k(C ())
and for generic parameter s. If ' is sufficiently small, there exists £ > 0 such ‘that the
pair of half trajectories that converge to p; and ¢ at s = sg — &’ intersects M, N L_.
and M, N L. respectively, since the broken trajectory at s = sg satisfies this property.
Thus we may use Im ¢ of Proposition 8.11 to construct the desired cobordism by a
fiber-product construction similar to Lemma 3.11, 3.12 and 3.13. O

9. (Co)orientation of the moduli spaces in 1-parameter family.

9.1. Convention for (co)orientations in 1l-parameter family. Let J =
[s0,s1] and let (fs,ps) be a l-parameter family of Morse pairs. In this section,
we assume without loss of generality that fs = f, for all s € [sg, so+¢) (¢ > 0 small)
and f, = f,, for all s € (51 —¢,51]. We orient J x M and J x Cor(M) by

o(J X M) 52y =ds No(M),, o] x M%)(Sj) =ds A o(M?**)z.

We define the coorientations Oj}XM(ép(fJ)) and 0%, /(4 N(fj)) so that their restric-
tions to {so} x M are equivalent to ofSO}XM(_@p(fSO)) and O{SO}XM( <7y (fsy)) respec-
tively. Similarly, we define the coorientations o%. ;.. (#2(fr)) and 0%, 2 (Ape(fr))
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so that their restrictions to {so} x M? are equivalent to 0750y a2 (A2(fs,)) and
0750y x a2 (Apa([fsy)) respectively. Thus

Oik]xM2(‘/%q(fJ)):0T]><M( (f]))/\OJxM( ;D(fJ))

For T € 93, 4,.(C 7), we define the coorientation oijg,c (1 (f)) so that its restriction
to {so} x M?F is equivalent to 07 oy x M2K (M (far))-
If p and 7 are critical loci of f; such that i(p) = i(r), then the moduli space

M (f5:9.7) = (Dp(f1) h o(f5)) L

where L is the level surface locus that lies just below p, is a compact O-manifold in
Int J x M for a generic farnlly fr. At each pomt be . #'(fr;p,r), the wedge product

oJxM( o (f7)oNOY 0y (s 7 (1) € A T*L c A\? T (J x M) defines a coorientation of
the flow line passing through b (see Append1x B (B.4)). We define the sign ey, (p,r), =
+1 so that the following equivalence holds.

05 at (Do (F))6 N Oyt (Fe ()6 ~ 1, (D, 7)o e(—grad fs,) o(J x M)y,

9.2. (Co)orientations induced on the boundaries of 7, o at i/i-
intersection. Suppose that an i/i-intersection occurs at s = u. For a small number
e>0,let J =[u—e,u+¢e]. For a parametrized Morse-Smale pair (fs, ;) and its

critical loci p, ¢, we shall describe the induced (co)orientations of the faces %#,.€ Z,(fr)
(resp. ﬁ}‘fﬁz;(f,])) of 81<g§p(fJ) (resp. 31%};@])) of flow lines broken at a critical
locus 7, which are induced from the (co)orientation of €9, w(f7) (resp C o, (f]))

We consider coorientations of the faces Jﬁf.@ (fr) and %, € <, ( f1) as follows.
Let b : %Qp(fJ) — J x M be the map that assigns to each (possibly broken) flow
sequence the terminal endpoint. If i(p) —i(r) = 0 and if @ is a point of J x M that is
the image of b from a once broken flow sequence a in Bl(fép( f7) broken at a critical
locus 7, then by Corollary 8.5 there is an open neighborhood N, of a in J x M such
that b=1(N,) is a disjoint union of finitely many half-disks whose set of components
naturally corresponds to the finite set .Z'(f;p, ) Let N; be the component of
b=1(N,) on which a lies. The restriction of b to N, is an embedding and hence the
coorientation oj}xM((?l‘K@p(fJ))a makes sense by identifying N; with b(Nz). The
same is also true for 81‘5@2; (f7) at a once broken flow sequence broken at r such that
i(r) —i(q) = 0. A

Note that Intb(N;) is an open subset of 2, »(fr) and its closure in N, is b(N, )
Hence the (co)orientation of Z, »(f.r) induces a (co)orientation of the boundary Ob(Ny)
at a. We define 0%, (01 €9, »(f7))a to be the one induced in this way. We also define

0% 1 (01 %%(fJ))a similarly.

LEMMA 9.1. Under the assumption above, let p,r be critical loci of f; such that
f1(p) > fs(r) and i(p) —i(r) = 0. Let N, and a € b(Nz) be as above. Let b be a
point of M'(fs;p,r) such that N, corresponds to b. Then the following identity in
A° T (J x M) holds.

0rt (1E Dy (f1))a = (1) Ceg, (0, 7)o ds A 0% 01 (1 (f1))a-
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Proof. Let i = i(r). By assumptions f;(p) > fs(r) and i(p) —i(r) = 0, the index
of risin 1 <i(r) < d— 1. It suffices to check the assertion for one broken flow line.

By parametrized Morse Lemma there is a local coordinate (x1,...,x4) around r on
2

2 g2
which fs agrees with fs(r) — % — = % + 12“

D.(f7) agrees with {(s,z1,...,2q) € J xR 241 = -+ = 24 = 0} and ,QZ/(f]) agrees
with {(s,21,...,24) € J xR% 2 =--. = 2; = 0}. By convention of §9.1, we may put

2
+ e+ %. In this coordinate,

o(Zy(fr)) = Bdsday - drs,  o(De(fs)) = Bday - du; (B ==£1)

By the transversality theorem, we may assume that the intersection of _@p( fs) with
the plane {(s,z1,...,24) € J x R%; x4 = 1} agrees with the set

{(s, (s —u)A,a2,...,a;,0,...,0,1);s € J,ag,...,a; € R}
for some A # 0. Hence @p( f7) agrees locally with the set of points
(s, (s —u)Xe',age, ... a;e’,0,...,0,e7"), teR.

By putting a} = (s — u)Xet, ah = asel, ... al = a;et, s’ = (s — u)/a}, one may see
that the closure of this agrees with the set of points

! ! I ! ! ! ! ! I ! ! !
(s'al +u,ay,a9,...,a;,0,...,0,8'\), aj,ah,....a; R, s" € [—¢/al,e/al],

y Wi

whose first order approximation is (u,a},ab,...,a;,0,...,0,s'X). Hence for a =
(u,0,...,0) € J x R%, we may put

0(b(Nz))e = aXdardas - - - dzidrg (o = £1).

Then we have

0(85(1/\\7@))& =1 <—£) aldxy - -dridrg = (—1)i+1a)\ dxy---dr; = (—1)”104,8)\ o(Zr(fu))a-
d

On the other hand, by assumption we have

05t (Zp(f1))s = (1) X ds dwiy - - dwg_1,

05t (Dr(f ) = (=)D B day - - - da;

for b= (0,...,0,1). Hence

050t (Do (f3))b A Oy nr (e (F))o = (1) BN ds day - - dwg_y

_ (—1)i+1aﬂ)\L(—aixd)o(J % M)

and ey, (p,7)p = (—1)" aBA. This together with the equality above, we obtain
AT Dy(f1))a = o(Ob(Na))a = 5, (P 1) (Zr(f)a;

ijM(al(gép(fJ))a =E&fy (p7 T)b ijM(@T(fu))a =E&f; (pv r)b (_1)iﬁ dsdziyr---dzg
= (=1)'es, (p, 7)o ds A 05 ar(Zr(£1))a-

[
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LEMMA 9.2. Under the assumption above, let q,r be critical points of f such
that fi(q) < fs(r) and i(r) —i(q ) = 0. Let N, and a € b(N,) be as above. Let b be

a point of M’ (f;r,q) such that Na corresponds to b. Then the following identity in
A T (J x M) holds.

05snt (D1 Ey(f1))a = (=1 ey (r,q)y ds A 05 ps (1 (f1))a-

The proof of Lemma 9.2 is similar to that of Lemma 9.1. See [Wal] for the proof.

9.3. Change of combinatorial propagator at i/i-intersection. Suppose
that an i/i-intersection between critical points (loci) p and ¢ occurs at s = u € I in
a generic 1-parameter family (fr, p7). For a small number £ > 0, we may identify the

underlying Z-modules of C,Eufs) and C£u+s) and moreover we identify critical points
and critical loci as bases of Z-modules. We put J = [u — &, u + €], ct =cle) =
0 and PY) = plim) — plte) et b oY) o ) be the homomorphism of
homogeneous degree 0, defined for each critical point (locus) z € PZ-(J) by

Z #%/(fJaIay) Y, #%/(f]axay) = Z EfJ('rvy)b'

yEPi(J) be ' (fr;w,y)

Since the moduli space .#'(f;x,y) corresponds to an i/i-intersection, h is non-zero
only if # = p. Then for b € .Z'(fs;p,q), we have h(p) = €¢,(p,q)» - ¢¢ We denote

the boundary operators of C£U_€) and C£u+8) by O and @’ respectively. The following
lemma describes the bifurcation of Morse complex at the i/i-intersection and is stated
in several papers (e.g. [Lau, Hu] and [Fuk2, Lemma 5.1]).

LEMMA 9.3. Under the assumption above, we have
0—0 =0h—hd =0dh—ho,
or equivalently, (1 —h)od =0do(1—h) and (14+h)od=0"o(1+h), or1+h:
c=9 5 0+ s 4 chain map.
Proof. Let p,q be critical loci of f; such that i(p) —i(q) = 0. We check the
identities
d—0+0h—hd =0, 0 —-0+dh—ho=0.

We consider the boundary of the moduli spaces .#’(f;;p,r) and 4’ (f;;r",q) com-

pactified using the compactifications €% and €.o/. The contribution of 8.J is & — 9.
The other contributions come from the broken flow lines of the i/i-intersection at
s = u. For a critical locus r with i(r) = i(p) — 1, the broken flow line from p to

r broken at ¢ contributes as —ey,(p,q)p €, (q,7)a- Indeed, the coorientation of the
boundary of Z'(f;p,r) is

(=1)" 0% A (D Dp(£1))a A O5srt (Fr(f1))a

= (~1)'r < 1)/ Dey, (p, q)p ds A 0%, 11 (Za(£1))a A 0% rs (A (£1))a

= (~1)" "+ Dep (p,q)yds Ay, (q,7)a t(—grad fu) o(M),
1)

= (=1 ey (p,g)vey, (,7)a o(—grad fu) o(J x M)q
= 1P, Qv (7)o t(—grad fu) o(J X M)q.
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Here we have used (B.5) and Lemma 9.1. This gives rise to +9h (= +9'h). For a
critical locus 7/ with (') = i(q) + 1, the broken flow line from ' to ¢ broken at
p contributes as e, (r',p)acy, (P, ¢)p. Indeed, the coorientation of the boundary of

%/(f(]; T/a q) is

0511 (Do (£1))a N 0501 (0C Fy(f1))a

= (=1 ey (p,q)y 05 ng (Do (£2))a N s N 0Tt (Fp(£))a
= (—1)' @)D (p,q)y ds A 05 pr (Do (F1))a A 05 nt (Dp(£5))a
= (=1)CF@ e (7 p)ads Aeg, (p )y o(—grad fu) o(M)q

= (- 1>1 >+l<p>afu< " D)acss (0 ) ( grad f,) o(J x M)

Here we have used (B.5) and Lemma 9.2. This gives rise to —hd" (= —hd). O
The following corollary follows immediately from Lemma 9.3.
COROLLARY 9.4 (Lemma 5.7 of [Fuk2]). Let g be a combinatorial propagator for
(Ci“‘g),a). Then the endomorphism
=(1+h)ogo(l—h) e End (C")
is a combinatorial propagator for (Ci““),a'). Moreover, by hgh = hg'h =0,

g —g=hg—gh=nhg —gh.

9.4. Orientations of some faces of J x 9Ca;(M). The orientations of the faces
J x 8{i7j}€2k(M) and J x 8{1727___72;6}62;@(M) induced from the standard orientation
dsANo(M)y, A+ No(M).,,, of Jx M?* are given as follows. Let A, = {(z1,...,T21) €
M2, 2y = = 9, }. We have

o(J x OBla,;(M?*)) = —was Ads A o(Ay),

ok (9.1)
o(J x OBlA,(M*%)) = —wer—a Ads N o(A,),

where 0(Ay)z = /\Z’Zl(duy) + duél) ++ dug?) and (ul(-l) u'? u(-g)) is a local coor-

dinate around ;. This can be checked as follows. For & = (21,22, ..., Tok) € A4, we
have
ds N o(Ag)z N /\ dug1 )A (dugm — du?)) A (dug?’) — du?))

= (2k)3ds A o(M%)f.

The part /\?QQ(dul(-l) - dugl)) A (dul(?) - dugz)) A (dugg) - dugg)) gives an orientation of
the fiber of the normal bundle Na, — A, and the part dsAo(A,)z is a 4-form. Hence
the orientation of the unit sphere bundle of Na, induced from the left hand side of
the above expression is —ds A 0(A,) Awgg—4. The orientation of J x dBla,, (M?*) is
similar to that of dBla,, (M?*) given in §5.4.

Now the integer #//l local(_orad f, ]) is defined by the sum of signs determined

by exterior products of coorientations of submanifolds of the C;Okcal( R3)-bundle over

J X My as in Definition 2.7 and by (9.1).
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9.5. Standard co-orientations of .Z1 in l-parameter family. Let I' be a
trivalent graph with 2k vertices and without bivalent vertices such that 0 < 3(2k —
3k) + Z?il 1; +1 < 1, according to Proposition 8.3. In a generic 1-parameter family
(f7,117), the moduli space .#r(f;) is a smooth manifold of dimension 3(2k — 3k) +
Zfﬁl n; + 1 and is the transversal intersection of the preimages of .#(f;)’s and
Npg(fi)'sin J x Cop(M). We may define 0% % Ca (M) (-(f)) by the exterior product
of coorientations of the preimages of .#5(f;)’s and Ap,(f;)’s in J x Cox (M) as in §5.5.

9.6. (Co)orientations induced on 0.#r. Let (f7,117) = {(fs, pts)}ses be a
generic 1-parameter family of Morse pairs. Let f; be a sequence of l-parameter
families of Morse pairs that is obtained from the tuple f of generic Morse—-Smale pairs
(in the sense of Proposition 2.4) by replacing fi with f;. For a graph " € ggk_,gk(cﬂ),

we consider the co-orientation of 0. p(f) induced from oY wpan (A (f7)) defined
above. Let d"I' =3 q. ) d.T', where

D;
RN 2 \ pli)=e
qf> meP(l) / 55 EP(” j ( ( ) )

i(ri)=i(p;) 1(8 )=i(a;)

and or(d”T) is the induced one. As before, we call a face of .Zp(f) corresponding to
a degeneration of one of the terms in dI', d'T', d"T" a principal face. We call a face of
M ( fJ) that is not principal a hidden face. When I consists only of compact edges, we
define the anomalous face of M r( fJ) as the hidden face corresponding to the collapse
of all the 2k points. The following proposition is an analogue of Proposition 6.2.

PROPOSITION 9.5. Suppose that d = 3 and that (ﬁ, i) is generic as in Propo-
sition 8.12. Let I" be a graph in ?@0,673,@(6_"). We have

oS (Gt (f) — #tter (f))

0€G3, TCE(T)

S V)N #EAM - anyrs (Fr) + #4605 (—grad f;)) if E(T') = Comp(T)

o, T

S Dl gy (f7) if E(T') # Comp(T)

o, T

Proof. By Proposition 8.12, we know the types of the graphs that may occur at
the boundary of .Z1(f;). We check that 0 = #0.#Z1(f;) is the sum of #. M (for) —
#.Mrr (fao) + H#M_araranrs (f7) and the contribution of the hidden faces.

First, we consider the contribution of J x dCa(M). The vanishing of the con-
tributions of the hidden faces that are not anomalous follows from Lemmas 6.3, 6.4
and 6.5. The contributions of the collapse of a compact edge or of the anomalous
face are —#.Mar( f:;) and —#. 40 (—grad f:;) respectively. This is immediate from
the sign convention and from (9.1). The contribution of the faces dau{co}Car(M)
are as follows. Recall that the interior of the face 3Au{oo}€2k( ) is diffeomorphic
to the space Cor_;(M) x C5°(R?) (Proof of Proposition 6.2). Let f° : R® — R
(j = 2,...,3k) be the linear map such that p5. [7° agrees with f; near ooy and let
[ :R?® = R (s € J) be the linear map such that ¢’_, f>° agrees with fs near ocoyys.
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Let f> = ( S, I, f {JF"O} and let B = V(T') \ A. Suppose that
E(/T'p) = Comp(I'/Tp). Let F/FB(fJ \ (f]"o)B) be the space of affine graphs in
J x R3 modulo the dilation of R* whose edge labeled ¢ # 1 (resp. ¢ = 1) follows the
negative gradient of f3° (resp. f°). Let my : JxCop—j(M)x C5°(R?) — JxCop— (M)
and 7y = J x Oy j (M) x C5°(R*) — J x C$°(R?) be the projections. Then the face
of 01 (f) coming from Dau{oo} Cak(M) is diffeomorphic to

my Lty ((F7) ) Ny Lt S5, (F5°\ (F5°) ).

If the number of edges in F(T") that intersect both V(I'4) and V(I'g) is m, then the
codimension of I?7FB (f?o \ (f?O)B) is 3j + m. Since dim J x C5°(R?) = 3j, m must
be zero if F/FB(ff}o \ (f°)B) # 0. That m = 0 implies that A = {1,2,...,2k}. But
in such a case I'p is empty and the translation in R?® acts on s (f?o \ (]?J"O)B)
freely. By a dimensional reason, this shows that .Zg7y. | (f7°\ (f3°)B) must be empty.

Next, we consider the contributions of the inner boundaries. Suppose for simplic-

ity that separated edges of I' are labeled 1,2,...,a. For a number ¢ in 1 < ¢ < 3k,
put

5, _ mKMH NNE,.10, ifl<i<a
ﬂ;l 1 ﬁma+1<]<3k@ ifa+1<?0<3k

Then codim £y = codim .#1(f7) — codim Hy = 6k —4 = 0 (mod 2). Let X be a graph
obtained from I" by replacing an edge labeled ¢ with a broken edge such that .#/x ( f_})
is 0-dimensional. We shall describe the co-orientation of the face .#x of 9.4 ( f:])
corresponding to X induced from the standard co-orientation of .Zp( f:]) using (B.3)
and (B.5). In the following, we let £ = 1.

) X = 7’5%/ . For .#x(f;) to be 0-dimensional, i(r¢) = i(ps) — 1 or

i(re¢) =i(pe). When i(r¢) = i(ps), the co-orientation of ﬂ\w]p(f}) induced from the
standard one

0% ngzn (A (F1)) = 0% 01 (D (F0)) A Oy nt (g (f2)) N 0y g (Ee) (9.2)

is given by

(—1) DT ()R (o (£1))
A (_1)i(TE)5f.7 (pz, Tl) ds A 0§XM(‘@T2 (f])) A ijM?’C (22)
= (_1)i(q[)+i(rl)+d€fJ (pfv W) ds A OjXM(%Z (fJ)) A ijM(@N (fJ)) A O;xM?’C (if)

£5, Doy 1) ds A O np(Hgy (F1)) A 05t (Dry (£1)) A 0y prze (Se).-

Here we used Lemma 9.1 and (B.3). This agrees with the standard co-orientation
ijM% (%X(f]))
When i(r¢) = i(p¢) — 1, the co-orientation of ﬁ}e]p(f}) induced from the stan-
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dard one is given by

(D) (=D PNy py, 1) 0 py (e (£1)

N =1 T00%5 01 (D (£2)) N O pgon (Be)
= (1) (peyre) O ( Fo(£1)) N O5sent(Dry (£2)) N 0y g (B)
= (=1)" g, (pe,70) 05wt (Fay (£1)) A 05cnt (D (£2)) N O pgon (S).

Here we used Lemma 5.1 and (B.3). The sign (—1)"(4) agrees with the coefficient of
X in d'T.
PeN\ A - . . . .
(2) X = 4 . For #x(fs) to be 0-dimensional, i(s;) = i(q/) + 1 or
sz
i(s¢) = i(ge). When i(s) = i(qe), the co-orientation of .Z,,.#(f7) induced from the
standard one (9.2) is given by

(—1)(HD =L (1) @R () d=ilo (_q)ilsotdtle, (s qp) ds A 0% gy (e, (£1))

N0 nt (Do (£2)) N 0 g (B)
= (—1)/ POt e (s qo)ds A 0T (T, (£1)) N 0Tsat (D (£1)) N 0T pgon (B)
= —c1,(56,0) d5 A 07y (Fay (£1)) A 05 nt (D (£)) N 05 ppon (S

Here we used Lemma 9.2 and (B.3). This is opposite to the standard co-orientation.
When i(s;) = i(qe) + 1, the co-orientation of .Z,,.#Z(f;) induced from the stan-
dard one is given by

— (~1)F () @RHD Y () dmieOe (54, qg) 05 0 (Hay (f1))
A ijM(épe (1)) N 0Ty pron (ié)
= (=1)"ey (s0,0) 05 nr (Ao, (£7)) N Ot (D, (7)) A O g ().

Here, we used Lemma 5.2 and (B.3). The sign (—1)%(*¢) agrees with the coefficient of
X indT.
(3) X = } ry: The induced co-orientation on the boundary is as in Lemma 5.4,

which differs from the standard co-orientation by (—1)24=1(—1)@kd+1=1(_1)ilr)+1 =
(_1)1'(Tz)'

Now we have seen that the signs in the formula of the definitions of d' and d” are
consistent with the induced co-orientations on the boundary of .#Zr(fy). O

10. Proof of main theorem. We shall prove that 2%)3;6(]?) is invariant un-
der bifurcations of types (1), (2), (3), (4) in Lemma 8.2 and complete the proof of
Theorem 2.13.

10.1. Invariance on ordered l-parameter family without i/i-

intersections. We check the invariance of 22;673;C ( f) with respect to bifurcations of
type (4) for different Morse indices in Lemma 8.2.

LEMMA 10.1. Suppose that a generic 1-parameter family {(fs,is)}ses, J =
[s0,51], of Morse pairs is ordered and has no i/i-intersections over J. Then

Zoksk(foo) = Zag.ar(for)-
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Proof. Note that the moduli space ///dnp(f:]) is empty since f; has no i/i-
intersections. By Proposition 9.5, the difference Zaoy 3k (fs,) — Zok,3k(fs,) equals

Teg[ Y #Maaw(F)T] + Z5 (—grad ).
regy, 5,.(C)
As in the proof of Lemma 6.1, the sum Trg {Zre@’ % #%dr(f])l—‘} vanishes by
: Yok, 3k
the IHX relation. Moreover, Try [ZFG%OIC 1 (C) #///d/p(ﬁ)F} equals

3k
Trg[ Y Y (O 0, (F) 4T (i)
i=1 T/(5;,d;)i
() =1(d;)
where the second sum is taken over graphs of degree (m1,...,m3x), n; = 1 (§ # i),
n; = 0, such that 3(i) € Se(T"), and d"*I"(p;, ;); denotes

Z 5ii)—ir/($i7 @i)i + Z 55241.11/(]51', Yi)i + 05,3, (0,0);.
ziep(V) yieplV
i(w;)=i(P;)+1 i(yi)=i(q;)—1

For each fixed pair p;, §; € P with i(pi) = i(q;), we have
Trg[ > O D@+ Y O Beyi)i + G (0,0):]
a;ep{) vepl?
i(og)=i(ps)+1 i(y)=i(3)—1
=Tr 56 g 490G .. [F/(fh‘, sz)z:| + Trg |:515i¢iirl(®7 0)1}
=T ia.. [ (B, @) | + Trg | 95,07 (0. 0):] = 8., Trg [ -1 (8,0); + T'(0,0), | = 0.
Hence we have

Zok 3k (for) = Zonsk(Feo) = Zopon™ (—grad f7).

For the correction terms of 2216_,3;C (fs,) and ngygk(f;l), we may choose the same
spin 4-manifold W. Then we choose generic GM sections Jy and 7y, of T(T*W)3* as

in §2.8.1 that are extensions of —grad fSO and —grad fsl respectively. Then it follows
from Lemma 7.2 that

P aly / — P aly / — p al —
Zyan (VW) = Zaear (w) — Zopay, - (—grad f7) = 0.
This completes the proof. O

_10.2. Invariance at level exchange bifurcation. We check the invariance of
Zar 31 (f) with respect to bifurcations of type (1) in Lemma 8.2.

LEMMA 10.2. Suppose that sg € J is a level exchange bifurcation for the generic
I-parameter family {(fs, 1ts)}ses of Morse pairs. If € is sufficiently small,

Zok sk (feo—z) = Zogsi(fopse)-

The proof is the same as Lemma 10.1.
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__10.3. Invariance at birth-death bifurcation. We check the invariance of
Zok a1 (f) with respect to bifurcations of type (2) in Lemma 8.2.

We say that a birth-death point v in a 1-parameter family {(fs, fts)}sejo,1], say
at s = s, is independent if on a neighborhood of sy in [0,1] the descending and
the ascending manifold of v are disjoint from all the other descending and ascending
manifolds of critical points. The following lemma is an immediate consequence of
[HW, page 62].

LEMMA 10.3. A 1-parameter family {(fs, pis) }sejo,1) of pairs of generalized Morse
functions and metrics on My can be deformed so that every birth-death points are
independent.

LEMMA 10.4. Suppose that sg € J is a parameter on which an independent
birth-death point v occurs in a generic 1-parameter family. If € is sufficiently small,

22k,3k(ﬁ0—a) = 22k,3k (Faote)-

Proof. We prove the lemma only for death point since the case of birth point
is symmetric. If (p,q) is the critical point pair at s = sy — ¢ that disappears on

s > sg, then the Morse complex at s = sg — ¢ is the direct sum C£S°+€) @ O™ where
cleote) = (Ois‘)“), d(50+€)) is the Morse complex at s = so + ¢ and

com = {0 - Co =zt 5 oflem = 749 - 0}

Choose a combinatorial propagator g of Cisﬁs). The acyclic complex C'*™ has

a unique combinatorial propagator ¢g®'*™ defined by ¢g¢'*™(q) = p. We consider g
and g°*™ as homogeneous degree 1 maps of C'*"%) @ Celem by setting g(Ceem) =
and QCIcm(C£S°+E)) = 0. Then one can check that ¢’ = g + ¢g'*™ is a combinatorial
propagator for C{*) g Celem

Since v is independent, we need only to check the identity of the lemma in the
case where a gluing of trajectories happens at v. Suppose that the separated edge
labeled by 1 in a flow graph of T'(p,q):1 € gQOkﬁgk(Cﬂ(S“’s)) converges to a broken edge
as s — so and that p and ¢ converges to v. Then by Proposition 8.13 we have

Trg’,---(r(p=Q)) #'//qu (fSo 8)+Tr<7 (F( )) #'///F@@ (fSO 6)
= oo (C0,00) (~#-Z w0 (o) + #0000, (o)) (10.1)
:Trg-,---( ( )) #///FQ)@ (fSOJrs)

Here, we must check that the signs of the boundaries of the 1-cobordism are correct.
It suffices to check the coorientations for the standard model h, in §8.4 for a 1-
parameter family around a death bifurcation. For uw < 0 with |u| small and for

r=(21,...,%4) € Dy, (hu),y = (W1,--.,Yd) € Zp_(hy), put
o (Fp, (hu))z = adry -+ dvi, 03 (Zp_ (hu))y = Bdyit1---dya (o, B € {-1,1}).

By convention, 03, 1/ (AHp_py (hu))(zy) = 00 (Dpy (hu))z A 03 (Zp_(hu))y. On the
other hand,

0 (Do (hu))a N Oy (p, (hu))e = @B dziqy - - - dxgday - - - du;

=(-1)"taBdry---drg = (—1)"" lozﬁL(ail )O(Rd)z.
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Hence Ehe (p—,p+) = (=) 'aB. For u > 0 small, consider points 2’ =
(@), .., 7)),y = (W),...,vy;) € R? such that 2’ is close to z, ¥ is close to y and
Yy = fI)t ( ’). By using the explicit solution (8.4) and by convention, o(.#2(hu)) (2’ 4
is given by
i d
(day + 6(2)dyy) A N\ (day, + e'dyp) A N\ (dal + e dyp) A (—dha)y,
k=2 k=i+1

where §(z}) = 0v1(t)/0z}. Then
( ) e ) eyt = w)dal - dag dy; - dy.

Assuming that 2’,y’ converge to z,y respectively as uw — 0, the coorientation
limy, 0+ oMxM(//lg( u))(a',y) 18 equivalent to

uli%li —Ehy (P—s P+) 00 (. (hu))w N 0 (Dp_ (D)) y-

This shows that the signs in (10.1) are correct. The proof of the invariance of the
other terms in Zay 3k (fs,—e) is the same as Lemma 10.1 since v is independent. O

—

10.4. Invariance at i/i-intersection. We check the invariance of Z\%)%( )
with respect to bifurcations of type (3) in Lemma 8.2.

LEMMA 10.5. Suppose that so € J is a point on which an i/i-intersection between
critical points (loci) p and q occurs in a generic 1-parameter family {(fs, ps)}ses. If
e > 0 is sufficiently small, then

Zote(foo—e) = Zoran(Foore)-
Proof. By Proposition 9.5, we may assume without loss of generality that
S (#elrsauve) = #ry (Fago) + #llars () =0

0€G3, TCE(T)
if € is sufficiently small. Let g, ¢’ be the combinatorial propagators considered in §9.3
and put ¢ = (9,92,---,93%), § = (¢',92,---,93), C = (Ciso*s), C,EQ), ce Cigk)) and
' = (¢t ¢ . P, Using Corollary 9.4 we have

Y Ty (r) HMr(fare) = Y Trg(D) H#Mr(fag-e)

S (e) redy, 5.(C1)

—ZTr (#///r<f50 ) = # M (F2)) - ZTrq A (o)
—ZTrg g (D) - # Al v (fay—c) ZTY #///dﬂr(fJ)
:ZTrhgug/h,. L) - M r( (fao—e) ZTI“ #///dﬂr(fJ)

T

:Trg/,__.[ Z Z (P1, 1)1 #%(h*r‘—l“*h)(pl,ql)l(f])}

itpp)2ian) 41 P11

— Trg [ Z Z L(p1, g #%d”r(m-ﬂl)l(f/)} =0

'L(Pl) %(Q1)+1 L)1
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This completes the proof. O

Proof of Theorem 2.13. Lemmas 10.1, 10.2, 10.4, 10.5 show that 2%)3;@(1‘2) is
invariant under all possible bifurcations listed in §8.1. This completes the proof. O

Appendix A. Some facts on smooth manifolds with corners.

We follow the convention in [BT, Appendix] for manifolds with corners, smooth
maps between them and their transversality. We write down some necessary terms
from [BT, Appendix], some of which are specialized than those in [BT, Appendix].

DEFINITION A.1.

(1) A map between manifolds with corners is smooth if it has a local extension, at
any point of the domain, to a smooth map from a manifold without boundary,
as usual.

(2) Let Y, Z be smooth manifolds with corners, and let f:Y — Z be a bijective
smooth map. This map is a diffeomorphism if both f and f~! are smooth.

(3) Let Y, Z be smooth manifolds with corners, and let f : Y — Z be a smooth
map. This map is strata preserving if the inverse image by f of a connected
component S of a stratum of Z is a union of connected components of strata
of Y.

(4) Let X,Y be smooth manifolds with corners and Z be a smooth manifold
without boundary. Let f: X — Z and g : Y — Z be smooth maps. Say that
f and g are (strata) transversal when the following is true: Let U and V be
connected components in stratums of X and Y respectively. Then f: U — S
and g : V — S are transversal.

We use the following proposition, which is a corollary of [BT, Proposition A.5].

PROPOSITION A.2. Let X, Y be smooth manifolds with corners and Z be a smooth
manifold without boundary. Let f: X — Z and g :' Y — Z be smooth maps that are
transversal. Then the fiber product

XxzY ={(z,y); fx) =g(y)} C X x Y

18 a smooth manifold with corners, whose strata have the form U X z V where U C X
and V CY are strata.

If f, g are inclusions then X xzY = (X xY)NAz = Axny, which is canonically
diffeomorphic to X N'Y. Thus we obtain the following corollary.

COROLLARY A.3. Let X,Y be smooth manifolds with corners that are submani-
folds of a smooth manifold Z without boundary. Suppose that the inclusions X — Z
and Y — Z are transversal. Then the intersection X NY is a smooth manifold with
corners, whose strata have the form U NV where U C X and V CY are strata.

The following elementary proposition is useful.

PROPOSITION A.4. Let Z be a smooth manifold without boundary and let X be
a compact smooth submanifold of Z with corners. Suppose that dim X > 0. Then the
closure of the codimension 0 stratum Int X of X in Z agrees with X.

Proof. Let n =dim X and N = dim Z. Let

R™(m) = {(z1,...,2n);21 > 0,...,2y >0} CR" (m <n).
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Choose an open covering {Oy}, of X by small open N-disks Oy in Z, say by open
e-balls with respect to the geodesic distance for a Riemannian metric on Z for small ¢,
so that for each X there is a chart ) : Oy — ¢ (O)) C RY such that the restriction
Oxloynx 1 OaNX — RY factors as 1 o ¢y where ¢y : Oy N X — R"(m,) is a chart
and ¢ : R® — R¥ is the inclusion (z1,...,7,) — (21,...,2,,0,...,0).

The codimension 0 stratum Int X of X is the union of preimages of ¢(Int R™ (m))
under charts py: Int X = [J, Ox Ny 'e(Int R" (my)). The relation Tnt X C X follows
immediately from definition of the closure and the compactness of X. We prove the
converse. Since X is compact in Z, there is a finite subcovering {Oy,,...,Ox.} of X.
Then we have

Int X = U;:l O)\z' n (p;ilb(lnt R» <m)\1>) = U::l (p;ilgpki (OM) n L(Int R™ <m>\1>)
) U;‘:l 90):-1 (‘P)\i (0)\1) n L(Rn <m>\1>)) = Uzzl Ox N <P;11L(Rn<m)\i>) = X.

Here at the first equality we have used the identity A; U---UA, = A; U---UA, for
arbitrary subsets Aj,..., A, (r < co) of a topological space, and between the first
and the second line we have used the relation O N A D ON A for O open, A arbitrary,
and the assumption n > 1. O

Appendix B. Orientations on manifolds and their intersections. For
a d-dimensional orientable manifold M, we will represent an orientation on M by a
nowhere vanishing d-form of Q4 (M) and denote by o(M). If M is a submanifold of an
oriented Riemannian e-dimensional manifold E and if (vy,...,v.) is an orthonormal
frame on a neighborhood of x € M such that vq, ..., vg spans T'M, then we may define
o(M), = £viA---Avj), where v}, ..., v} is the dual basis. We may alternatively define
o(M) from an orientation o} (M) of the normal bundle of M by the rule

o(M) N o (M) ~ o(E). (B.1)

Note that o%;(M) is defined canonically by the Hodge star operator: of; (M) = xo(M).
o5 (M) is called a coorientation of M in E. We assume that (B.1) is always satisfied
so that coorientation is just an alternative way to represent orientation.

Let N be an oriented smooth manifold and let 7 : N — E be a smooth map that
is transversal to M. Then the preimage 7~'M is naturally an oriented submanifold
of N. We may define the coorientation of 7'M by m*0%(M). We denote simply
by 0% (M) the coorientation 7*o7,(M). For example, if N = D x E for an oriented
manifold D and if 7 : D x E — E is the projection, then D x M = 7'M is naturally
cooriented by of;(M).

If M has boundary 0M, we provide an induced orientation on M from o(M) as
follows: let n be an outward normal vector field on OM, then we define

0(OM), = t(ng)o(M),. (B.2)

In other words, if n¥ is the dual of n, with respect to the metric and if o(M), = nfAa,
for a, € Qi (OM), then o(OM), = a,. This gives

0 (OM), = (=1)* o (M), Ank. (B.3)

Suppose M and M’ are two cooriented submanifolds of E of dimension ¢ and j
that intersect transversally. The transversality implies that at an intersection point
x, the form 0% (M), A o5 (M’), is a non-trivial (2e — i — j)-form. We define

(M th M"Y, = 05(M)g A 0% (M) (B.4)
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This depends on the order of the product. Note that if M and M’ may have bound-
aries, then by (B.3), the induced coorientations on 9(M th M') is

0 (OM th M), = (=1)deeeM e o (IN), A ol (M), (B5)
0 (M h OM' )y = 0%y (M) A 0l (OM'),.

Appendix C. The complex of endomorphisms of an acyclic complex. For
a finitely generated, based free acyclic chain complex (Cy,d), C; = Z", we consider
the Z-module Endy (C,) of endomorphisms C, — C. . of homogeneous degree k. The
boundary operator 0" : End(C,) — Endy_1(C.) is defined by

Of=0o0f+(-1)F'foo.

Then the pair (End,(C.),?’) forms a chain complex. By the canonical isomorphism
Endi(C.) = @,y Citr ® Hom(Cj, Z) of chain complexes and the Kiinneth theorem,
one can show that the complex (End.(C.),d") is acyclic. For example, f € Endy(C. )
is a cycle iff 9'f = 0f — fO0 = 0. In particular, id € Endo(C) is a cycle and hence is
a boundary. So there exists g € End; (C,) such that

0'g=0g+ g0 =

If two such endomorphisms g, ¢’ are given, then the difference g — ¢’ is a d’-cycle,
since &'(g — ¢') = id — id = 0. So there exists h € Ends(C.) such that

Oh=0h—ho=g—¢g.

Appendix D. Blow-up.

D.1. Blow-up of the origin in R’. Let 7!(R?) denote the total space of
the tautological oriented half-line (]0,00)) bundle over the oriented Grassmannian
G1(RY) = §'~1. Namely, ' (R?) = {(z, y) € ST xR, 3t € [0,00),y = tr}. Then the
tautological bundle is trivial and that 1 (R?) is dlﬁeomorphlc to S=1 x [0,00). Let

BUR', {0}) =7 (R")

and call B{(R?,{0}) the blow-up of 0 in R’. Let 7 : 71(R?) — R? be the map defined
by m = pry o ¢ in the following commutative diagram:

"V'I(Ri) . gi-1 « Ri bry gi—1

N

Rl

where ¢ : 71(R?) — S~! x R? is the embedding which maps a pair (z,y) € S*! x R?
with y = tx to (x,y). If y # 0, then ¢(x,y) = (IZ—I, y). We call 7 the projection of the
blow-up. Here, 7=(0) = 97(R?) is the image of the zero section of the tautological
bundle pr; o ¢ : 1 (R?) — S*~1 and is diffeomorphic to S*~1.

LeEmMA D.1.

(1) The restriction of m to the complement of m=(0) = 9y (R?) is a diffeomor-
phism onto R? — {0}.

(2) The restriction of ¢ to the complement of 7=1(0) has the image in S*=! x R?
whose closure agrees with the full image of ¢ from F*(R?).
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D.2. Blow-up of R? C R%. When d > i > 0, we put B/(RY, R?) = 31 (RI~%) x R’
(the blow-up of R? in R?) and define the projection @ : B/(R?, R?) — R? by 7 x idg:.
This can be straightforwardly extended to the blow-up B{(Y, X) of a submanifold X
in a manifold Y, by replacing the normal bundle with the associated 7'(R%)-bundle
over X.
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