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HIGHER ORDER GENERALIZATION OF FUKAYA’S MORSE
HOMOTOPY INVARIANT OF 3-MANIFOLDS I. INVARIANTS OF

HOMOLOGY 3-SPHERES∗

TADAYUKI WATANABE†

Abstract. We give a generalization of Fukaya’s Morse homotopy theoretic approach for 2-loop
Chern–Simons perturbation theory to 3-valent graphs with arbitrary number of loops at least 2. We
construct a sequence of invariants of integral homology 3-spheres with values in a space of 3-valent
graphs (Jacobi diagrams or Feynman diagrams) by counting graphs in an integral homology 3-sphere
satisfying certain condition that is described by a set of ordinary differential equations.
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1. Introduction. Axelrod–Singer [AS] and Kontsevich [Ko] independently de-
veloped a method to produce topological invariants for 3-manifolds, based on per-
turbative expansion of Witten’s path integral invariant of 3-manifolds ([Wi2, BN1,
GMM]). It is called Chern–Simons perturbation theory and is defined by integrations
over spaces of configurations of points on a 3-manifold. Kuperberg and Thurston
[KT] studied Chern–Simons perturbation theory for homology 3-spheres and ob-
tained a description of a diagram-valued version of topological invariants, which
are proved to be universal among Ohtsuki’s finite type invariants for homology 3-
spheres ([Oh]), in [KT]. Here a homology 3-sphere denotes a closed 3-manifold M
with H∗(M ;Z) ∼= H∗(S3;Z). For homology 3-spheres, combinatorial definitions of a
universal finite type invariant are known ([LMO, BGRT]), which is diagram-valued,
too.

This series of articles is concerned with Fukaya’s graph counting invariant of 3-
manifolds, developed in [Fuk2] via Morse homotopy theory ([BC, Fuk1]) and conjec-
tured to coincide with 2-loop Chern–Simons perturbation theory. Fukaya considered
triads �f = (f1, f2, f3) of Morse functions on a 3-manifold M and for pairs (M, ζi),
i = 1, 2, ofM and for acyclic flat Lie algebra bundles ζi onM , he defined some number
Ẑ2(�f ; ζi). Roughly, it counts with weights the ways that the Θ-graph can be immersed
such that edges follow gradient lines. The weights are determined by the holonomies
taken along the edges. Fukaya showed that the difference Ẑ2(�f ; ζ1)−Ẑ2(�f ; ζ2) depends
only on (M, ζ1, ζ2).

Fukaya discusses in [Fuk2] some heuristic argument involving the Witten defor-
mation of de Rham complex ([Wi1, Bo]) which suggests that his invariant coincides
with the 2-loop part of Chern–Simons perturbation theory. Fukaya also discusses con-
jectural relation with open string theory on the cotangent bundle of a manifold. His
work is important for a mathematical approach to Witten’s result that Chern–Simons
gauge theory on a 3-manifold M is equivalent to the open string field theory of its
cotangent bundle T ∗M ([Wi3]).

The aim of part I of this series is to construct graph-valued invariants of Z-
homology 3-spheres via Morse homotopy theory, as a higher order generalization of
[Fuk2]. We generalize the idea of Fukaya to graphs with the first Betti numbers≥ 2 for
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homology 3-sphere M with the trivial connection and generalize Fukaya’s conjecture
which asks if his invariant coincides with Chern–Simons perturbation theory. After we
announced the result of this paper, T. Shimizu gave a proof of the generalized version
of Fukaya’s conjecture by generalizing our invariant for vector fields on Q-homology
spheres [Sh].

In part II, we will generalize the construction given in part I to 3-manifolds with
the first Betti number 1 ([Wa2]) by considering flow-graphs with holonomies. We
will obtain graph-valued invariants for 3-manifolds with the first Betti number 1.
Moreover, we intended to generalize the construction in part I to 3-manifolds with
positive first Betti numbers by using circle-valued Morse theory ([No, Pa]). Relevant
works can be found in [Wa3, Wa4, Wa5].

As in [Fuk2], the proof that our invariant Ẑ2k,3k is well-defined is done by a topo-
logical field theoretic argument for a 1-parameter family of smooth functions on M
without higher singularities. Namely, the difference of Ẑ2k,3k for two auxiliary choices
is given by the contribution of the 0-dimensional moduli spaces at the endpoints of
a 1-parameter family. The moduli spaces of flow graphs generalized suitably to 1-
parameter family gives a possibly non-compact cobordism between the 0-dimensional
moduli spaces on the endpoints. The cobordism may have inner ends. By counting
the contributions of the inner ends in the cobordism, we may obtain the difference of
Ẑ2k,3k. To make the difference trivial, or the contributions of the inner ends cancel
with each other, we use some linear equations (the IHX relation [BN2]) among coeffi-
cients for the counts of the 0-dimensional moduli spaces. The point is that the proof
is reduced to checking that the sum of weighted counts of flow graphs is 0. In this
paper, we consider graphs for all orders, so we attempt to give a general description of
the structure of a smooth manifold of a moduli space of flow graphs and of arguments
of orientations etc. in a similar fashion as [BH, We].

The moduli space of flow graphs will be described as the intersections of several
submanifolds of a configuration space of M or of the direct product of a configuration
space of M with [0, 1]. We confirm the invariance of Ẑ2k,3k one at a time by using a
Cerf theoretic method as in [Ce, Hu].

Also, unlike in [Fuk2], we consider only the trivial connection contribution and
we do not take the difference of terms for two flat connections as in [Fuk2]. To do so,
we introduce an ‘anomaly correction’ term appropriately, as suggested in [Fuk2]. We

define an anomaly term Zanomaly
2k,3k by taking some linear combination of the numbers

of infinitesimal flow graphs in a vector bundle over a compact 4-manifold W with
∂W = M . The key point for the correction term to be well-defined is the spin
cobordism invariance of the anomaly term Zanomaly

2k,3k . The spin cobordism invariance

allows us to define an analogue of the signature defect, which includes Zanomaly
2k,3k instead

of the relative L-class, and it gives the desired correction term.

1.1. Organization. The organization of the present paper is as follows. In §2,
we give definitions of Fukaya’s moduli spaces MΓ of flow graphs and that of our
invariant.

From §3 to §5, we give some basics for the trajectory spaces. In §3, we study the
moduli space of gradient trajectories between two points and construct its compacti-
fication M 2(f). In §4, we define a compactification M Γ of MΓ using M 2(f). In §5,
we study (co)orientations of the moduli spaces.

From §6 to §7, we show that our invariant depends only on a sequence of Morse
functions and metrics on M . In §6, we show that the principal term Z2k,3k is in-
dependent of combinatorial propagator. In §7, we show that the correction term
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Zanomaly
2k,3k (�γW )− μk signW is independent of the choice of 4-cobordism (W,�γW ).

In the final §10, we shall show that our invariant is also independent of the choice
of Morse functions and metrics on M and complete the proof of the main theorem.
§8 and §9 are preliminaries for §10, which give basics for the trajectory spaces in
1-parameter family, which are mainly analogues of the results in §3 to §5. In §8,
we consider the compactification for the moduli space of flow graphs in 1-parameter
family of smooth functions to construct cobordisms. In §9, we study (co)orientations
of the moduli spaces in 1-parameter family. In §10, in accordance with the results in
previous sections, we check the invariance of our invariant by a cobordism argument.
For each of the four types of bifurcations that may occur in a generic 1-parameter
family, we confirm the invariance one at a time.

The reader who is familiar with trajectory spaces may skip the technical sections
§3, §5, §8 and most of §9.

In Appendix, we describe some facts on smooth manifolds with corners, conven-
tion for orientation, the chain complex of endomorphisms of an acyclic chain complex
and the definition of blow-up.

1.2. Conventions. We denote by Cr(M) the space of Cr functions f : M →
R on a manifold M for sufficiently large r and we equip Cr(M) the Whitney Cr-
topology. By smooth maps or smooth manifolds we mean Cr maps or Cr manifolds
for sufficiently large r. For a Cr function f on a manifold M , we denote by Σ(f) the
subset of M of critical points of f . Let Σ1(f) denote the subset of Σ(f) consisting
of Morse singularities. For a Morse singularity p ∈ Σ(f), we denote by i(p) the
Morse index of p. For a Morse function f , a critical point p of f and a Riemannian
metric μ on a manifold, we denote by Dp(f) = Dp(f ;μ) (resp. Ap(f) = Ap(f ;μ)) the
descending manifold (resp. ascending manifold) of the gradient of (f, μ) at p.

We denote by Γ(E) the space of sections of a fiber bundle E → B. When consid-
ering orientations, we will often identify

∧•
T ∗
xX with

∧•
TxX by a (locally defined)

orthonormal framing that is compatible with the orientation and treat
∧•

T ∗
xX like∧• TxX .

For a sequence of submanifolds A1, A2, . . . , Ar ⊂ W of a smooth Riemannian
manifold W , we say that the intersection A1 ∩A2 ∩ · · · ∩Ar is transversal if for each
point x in the intersection, the subspace NxA1 + NxA2 + · · · + NxAr ⊂ TxW spans
the direct sum NxA1⊕NxA2⊕· · ·⊕NxAr, where NxAi is the orthogonal complement
of TxAi in TxW with respect to the Riemannian metric.

The boundary of an oriented manifold is oriented by the outward normal first
convention.

2. Definition of the invariant. In this section, the definition of Fukaya’s mod-
uli space of flow graphs in a manifold is recalled and the definition of our invariant is
given.

2.1. Graphs. By a graph, we mean a finite graph with each edge oriented, i.e.
an ordering of the boundary vertices of an edge is fixed. We identify a graph with
its geometric realization. For an oriented edge e with orientation (v1, v2), we call
v1 (resp. v2) the input (resp. output) vertex of e. In diagrams we represent edge
orientations by arrows directed toward the output vertices, as in Fig. 1. For a graph
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Fig. 1.

Γ, let

In(Γ) = {univalent vertices of Γ that are inputs},
Out(Γ) = {univalent vertices of Γ that are outputs},
W (Γ) = {vertices of Γ of valence ≤ 2 (“white vertices”)},
B(Γ) = {vertices of Γ of valence ≥ 3 (“black vertices”)}.

We define an admissible graph to be a pair (Γ, ρ), where
(1) Γ is a graph with |In(Γ)| = |Out(Γ)|,
(2) ρ : In(Γ)→ Out(Γ) is a fixed bijection,
(3) each bivalent vertex has exactly one incoming and one outgoing edges,
(4) Γ does not have a self-loop, and
(5) no two bivalent vertices are incident to each other by a single edge.

We will omit ρ when referring to an admissible graph. For an admissible graph Γ, we
consider the following (sets of) edges: (see Fig. 1)

(1) A compact edge is an edge connecting two black vertices.
(2) A separated edge is a pair of edges {(a, x), (y, b)} with x, y ∈ B(Γ), a ∈ In(Γ),

b ∈ Out(Γ) such that b = ρ(a).
(3) A broken edge is a pair of edges {(x, a), (a, y)} with x, y ∈ B(Γ), a ∈W (Γ).
(4) A broken separated edge is either a triple {(a, b), (b, x), (y, c)} or a triple

{(a, x), (y, b), (b, c)}, with x, y ∈ B(Γ), a, b, c ∈W (Γ) such that c = ρ(a).
Let Comp(Γ), Se(Γ), Br(Γ), Se′(Γ) be the set of compact, separated, broken, broken
separated edges respectively. Let E(Γ) = Comp(Γ) ∪ Se(Γ) ∪ Br(Γ) ∪ Se′(Γ).

A labeled graph is an admissible graph Γ equipped with bijections α :
{1, 2, . . . , n} → B(Γ) and β : {1, 2, . . . , 	} → E(Γ), where n = |B(Γ)| and 	 = |E(Γ)|.
Let C

(i)
∗ = (C

(i)
∗ , ∂(i)), C

(i)
∗ = ZP (i)

∗ , i = 1, 2, . . . , 	, be a sequence of acyclic chain

complexes over Z with finite bases. For a sequence �C = (C
(1)
∗ , . . . , C

(�)
∗ ), we define

a �C-colored graph as a labeled graph Γ = (Γ, α, β) such that on each white vertex

of β(i) a basis element p ∈ P
(i)
∗ is attached for each i. Later we will substitute the

Morse complex of a Morse pair to each C
(i)
∗ . Then P

(i)
∗ will correspond to the set of

critical points of a Morse function.
For each edge e = β(i) ∈ E(Γ) in a �C-colored graph, we define its degree by

deg(e) =

⎧⎪⎪⎨⎪⎪⎩
1 if e ∈ Comp(Γ)
i(p)− i(q) if e ∈ Se(Γ),
0 if e ∈ Br(Γ)
i(p)− i(q)− 1 if e ∈ Se′(Γ),

where i(x) denotes the degree of x and where p ∈ P
(i)
∗ is on the input, q ∈

P
(i)
∗ is on the output of e. We define the degree of a �C-colored graph by
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deg(Γ) = (deg(β(1)), . . . , deg(β(	))). We will call a �C-colored graph with degree

�η = (η1, . . . , η�), with n black vertices and with |Comp(Γ)|+ |Se(Γ)| = m a �C-colored

graph of type (n,m, �η). We define the closure Γ̂ of Γ as the graph obtained from Γ by
identifying white vertices of each input/output pair (a, ρ(a)).

2.2. The space Gn,m,�η(�C). Let G 0
n,m,�η(

�C) be the set of pairs (Γ, o), where

(1) Γ is a �C-colored graph of type (n,m, �η) with connected closure Γ̂,
(2) o is an orientation of the real vector space RB(Γ) ⊕⊕

e∈Comp(Γ)R
H(e), where

H(e) = {e+, e−} is the two-element set of ‘half-edges’, namely e− = ϕ−1[0, 1
2 ]

and e+ = ϕ−1[ 12 , 1] for an orientation preserving homeomorphism ϕ : e →
[0, 1].

Let Gn,m,�η(�C) be the vector space over Q spanned by G 0
n,m,�η(

�C), quotiented by the
relation (Γ,−o) = −(Γ, o). The bijection α and the edge orientation of a labeled
graph Γ define a canonical graph orientation o(Γ), as

o(Γ) = α(1) ∧ · · · ∧ α(n) ∧
∧

e∈Comp(Γ)

(e+ ∧ e−), (2.1)

where e is oriented as (e−, e+).
We denote by G 0

n,m(�C) the subset of G 0
n,m,(1,...,1)(

�C) consisting of graphs with-

out bivalent vertices such that 	 = m, i.e. �C = (C
(1)
∗ , . . . , C

(m)
∗ ). Let Gn,m(�C)

be the subspace of Gn,m,(1,...,1)(�C) spanned by G 0
n,m(�C). Let G

comp,0
n,m,(1,...,1)(

�C) be the

subset of G 0
n,m,(1,...,1)(

�C) consisting of graphs with only compact edges. Since the

sequence of complexes �C is unnecessary to represent a graph in G
comp,0
n,m,(1,...,1)(

�C), there

are canonical bijections between G
comp,0
n,m,(1,...,1)(

�C) for different sequences �C. Identifying

G
comp,0
n,m,(1,...,1)(

�C) for all �C by the canonical bijections, we simply write

G
0
n,m = G

comp,0
n,m,(1,...,1)(

�C)

and we define Gn,m to be the vector space over Q spanned by G 0
n,m, quotiented by the

relation (Γ,−o) = −(Γ, o).
2.3. Assumption on Morse functions. We make an assumption on Morse

functions, as in [Les3], [Sh, §4.1]1. Let M be a d-dimensional homology sphere with
a distinguished point ∞M ∈ M . We consider Sd as the one point compactification
Rd ∪ {∞}. Let U∞ be the open ball around ∞:

U∞ = {x ∈ Rd ; ‖x‖ > R} ∪ {∞} ⊂ Sd

for some large R. Fix a small open ball U ′
∞ ⊂M including∞M and a diffeomorphism

ϕ∞ : U ′
∞ → U∞ which sends ∞M to ∞. We consider a Morse function on M0 =

M − {∞M} and a Riemannian metric μ on M0 that are standard near ∞M . We
say that a function f : M0 → R is standard near ∞M if f |U ′

∞−{∞M} agrees with the

pullback of a rank one linear map Rd → R by ϕ∞. Similarly, we say that a Riemannian

1In an earlier version of the present paper, we did not make such an assumption. But the referee
pointed out that without this assumption, there may be some boundary strata in the trajectory
spaces which may violate the invariance of Ẑ2k,3k . Considering a homology sphere with one point

removed as the connected sum of Rd with a homology sphere was utilized in [Ko].
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metric μ on M0 is standard near∞M if the restriction of μ to T (U ′
∞−{∞M}) agrees

with the pullback of the standard metric on Rd by ϕ∞. Let Cr
ϕ∞

(M0) denote the
subspace of Cr(M0) consisting of functions that are standard near ∞M with respect
to ϕ∞.

Assumption 2.1. Fix a sufficiently large integer r > 0. Throughout this paper,
a Morse function on M0 is always a Cr Morse function f : M0 → R that is standard
near ∞M and a Riemannian metric μ on M0 is always a Riemannian metric on M0

that is standard near ∞M .

2.4. Fukaya’s moduli space MΓ. Suppose given a sequence �f =
(f1, f2, . . . , fm) of Morse functions on M0 and a Riemannian metric μ on M0. Suppose
that (fi, μ) is Morse–Smale for each i, namely, all the intersections between the de-
scending manifolds and the ascending manifolds of the gradient of fi are transversal.
We choose an orientation o(Dp(fi)) of Dp(fi) arbitrarily for each critical point p of
fi and orient Ap(fi) by o(Ap(fi)) = ∗o(Dp(fi)) near p, where ∗ is the Hodge star

operator. Let C(i) = (C(i) = ZP (i)

, ∂(i)) be the Morse complex associated to (fi, μ),

namely, C(i) is the free Z-module generated by the (finite) set P
(i)
∗ of critical points

of fi and ∂(i) : C
(i)
k+1 → C

(i)
k is defined by

∂(i)p =
∑

q∈P
(i)
k

#M
′(fi; p, q) · q, M

′(fi; p, q) = (Dp(fi) � Aq(fi)) � Lp,

where Lp is a level surface of fi that lies just below the level of p and M ′(fi; p, q) is
an oriented 0-manifold whose orientation is derived from those of Dp(fi) and Aq(fi).
More precisely, Dp(fi) � Aq(fi) is a disjoint union of flow lines of −grad fi. At

each point b ∈ M ′(f ; p, q), the wedge o∗M (Dp(fi))b ∧ o∗M (Aq(fi))b ∈
∧d−1

T ∗
b Lp ⊂∧d−1

T ∗
b M defines a coorientation of the flow line passing through b (see Appendix B

(B.4)). Hence there exists a sign εfi(p, q)b = ±1 such that

o∗M (Dp(fi))b ∧ o∗M (Aq(fi))b ∼ εfi(p, q)b ι(−grad fi)o(M)b.

The sign εfi(p, q)b does not depend on the choice of Lp.
Then the incidence coefficient is defined by

#M
′(fi; p, q) =

∑
b∈M ′(fi;p,q)

εfi(p, q)b.

It is known that (C(i), ∂(i)) above is a chain complex called a Morse complex (e.g.
[Bo], see also Corollary 5.3). Moreover, (C(i), ∂(i)) is acyclic by Assumption 2.1. We

put �C = (C(1), C(2), . . . , C(m)).

Now we give a definition of Fukaya’s moduli space MΓ(�f). For Γ = (Γ, α, β) ∈
G 0
n,m(�C), we define the source and the target maps

σ : {1, 2, . . . ,m} → {1, 2, . . . , n}, τ : {1, 2, . . . ,m} → {1, 2, . . . , n}

as σ(k) = α−1(source of β(k)), τ(k) = α−1(target of β(k)). For each i ∈ {1, 2, . . . , n},
we define the subsets Ini(Γ) = {ki1, ki2, . . . , kiri}, In∞i (Γ) = {k̄i1, k̄i2, . . . , k̄ir̄i},
Out∞i (Γ) = {	̄i1, 	̄i2, . . . , 	̄is̄i} of the set of labels {1, 2, . . . ,m} of edges as the subsets
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Fig. 2. Labels for edges incident to the i-th vertex. τ(ki1) = τ(ki2) = i = σ(�i1).

consisting of labels of edges such that

kij ∈ Ini(Γ)⇔ τ(kij) = i and β(kij) ∈ Comp(Γ),

k̄ij ∈ In∞i (Γ)⇔ τ(k̄ij) = i and β(k̄ij) ∈ Se(Γ),

	̄ij ∈ Out∞i (Γ)⇔ σ(	̄ij) = i and β(	̄ij) ∈ Se(Γ).

For example, Ini(Γ) is the subset of labels of incoming compact edges at the i-th
vertex and In∞i (Γ) is the subset of labels of incoming separated edges at the i-th
vertex. See Fig. 2.

For a Morse function f on M , let Φt
f : M →M denote the one parameter group

of diffeomorphisms associated to −gradf .
Definition 2.2. For �f = (f1, . . . , fm) and Γ without bivalent vertices, let

MΓ(�f) = MΓ(�f ;μ) be the space of points (x1, . . . , xn) ∈Mn
0 such that

(1) for 1 ≤ i ≤ n, 1 ≤ j ≤ ri such that kij ∈ Ini(Γ), there exists tki
j
> 0 such that

Φ
t
ki
j

f
ki
j

(xσ(ki
j )
) = xi,

(2) lim
t→−∞Φt

f
k̄i
j

(xi) = pk̄i
j
for 1 ≤ i ≤ n, 1 ≤ j ≤ r̄i such that k̄ij ∈ In∞

i (Γ), where

pk̄i
j
∈ P (k̄i

j) is the one attached to the input of the edge labeled k̄ij ,

(3) lim
t→+∞Φt

f
�̄i
j

(xi) = q�̄ij for 1 ≤ i ≤ n, 1 ≤ j ≤ s̄i such that 	̄ij ∈ Out∞i (Γ), where

q�̄ij ∈ P (�̄ij) is the one attached to the output of the edge labeled 	̄ij .

Remark 2.3. Since Φt
f (p) = p (∀t) for a critical point p of f , we allow for a

point (x1, . . . , xn) of MΓ(�f) that some xi coincides with a critical point of some fj .

We will see later that such a point is not a singular point of MΓ(�f).

2.5. The count of MΓ.

Proposition 2.4 (page 49 of [Fuk2]). Suppose that Γ ∈ G 0
n,m,�η(

�C) has no

bivalent vertex, i.e. E(Γ) = Comp(Γ) ∪ Se(Γ). For a generic choice of �f , the space

MΓ(�f) is a Cr−1 smooth manifold of dimension (n−m)d+
∑m

i=1 ηi. Moreover, �f can

be chosen so that this property is satisfied simultaneously for all graphs Γ in G 0
n,m,�η(

�C)

for a fixed triple m,n,
∑m

i=1 ηi.

The proof of Proposition 2.4 will be reviewed in §4.1. The reason for the dimension
is roughly that an edge e of degree i(e) yields a (d−i(e))-dimensional constraint. Since
dim Mn

0 = nd, the dimension of the moduli space should be nd−∑
e∈E(Γ)(d− i(e)) =

nd−md+
∑

e i(e). The reason for the class Cr−1 is that the solution for the differential
equation γ̇(t) = −(gradf)γ(t) for a Cr Morse function is of class Cr−1.
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As in [Fuk2], we will need a compactification of the moduli space MΓ(�f) for Γ
with only trivalent black vertices. If Γ has only trivalent black vertices and does not
have bivalent vertices, then n = 2k and m = 3k. For simplicity, we take a convenient
metric for each Morse function. Namely, for �f = (f1, f2, . . . , f3k), we take a sequence
�μ = (μ1, μ2, . . . , μ3k) of Riemannian metrics onM0 such that for each i the pair (fi, μi)
is Morse–Smale and that μi is Euclidean near Σ(fi) with respect to the coordinate of
the Morse lemma.

Proposition 2.5. Suppose d = 3 and that (�f, �μ) is as above and is generic as in

Proposition 2.4. Suppose that Γ ∈ G 0
2k,3k,�η(

�C) is such that |E(Γ)| = 3k and such that

η1, · · · , η3k ≥ 0 and 0 ≤ dimMΓ(�f) = (η1 − 1) + (η2 − 1) + · · ·+ (η3k − 1) ≤ 1. Then

MΓ(�f) has a natural compactification to a smooth manifold M Γ(�f) with boundary,
whose boundary consists of flow graphs with a once broken trajectory or with a subgraph
collapsed to a point.

The proof of Proposition 2.5 will be given in §4.3. Proposition 2.4 implies that
for Γ as in Proposition 2.5 with η1 = · · · = η3k = 1, we have dimMΓ(�f) = 0. In fact,

M Γ(�f) = MΓ(�f) in this case. Then we count points in the finite set MΓ(�f) with

signs as follows. Let (x1, . . . , x2k) ∈ MΓ(�f). For each edge e ∈ E(Γ), we assign a
vector

ve ∈
∧2(TxM0 ⊕ TyM0),

where x = xσ(i), y = xτ(i), i = β−1(e), as follows.
If e ∈ Comp(Γ), let e1, e2, e3 be an orthonormal basis of TxM0 such that e1∧e2∧e3

gives the orientation ofM0 and e1 is a positive multiple of −(grad fi)x. There is t0 > 0
such that y = Φt0

fi
(x). The flow Φt0

fi
induces a diffeomorphism from a neighborhood of

x to that of y. Let e′i = dΦt0
fi
(ei) ∈ TyM0 (i = 1, 2, 3). Let n2, n3 ∈ TxM0⊕TyM0 be a

basis of 〈e1+e′1, e2+e′2, e3+e′3, e
′
1〉⊥ such that (e1+e′1)∧(e2+e′2)∧(e3+e′3)∧e′1∧n2∧n3 =

e1 ∧ e2 ∧ e3 ∧ e′1 ∧ e′2 ∧ e′3. We define

ve = n2 ∧ n3.

If e ∈ Se(Γ), let p and q be the critical points of fi that are the input and the
output of the i-th edge in the flow graph. Let e1, e2, e3 be an orthonormal basis of
TxM0 such that TxAq(fi) = 〈e1, . . . , er〉, TxAq(fi)

⊥ = 〈er+1, . . . , e3〉 and e1 ∧ · · · ∧
er and e1 ∧ e2 ∧ e3 give the orientations of Aq(fi) and M0 respectively. Similarly,
let e′1, e

′
2, e

′
3 be an orthonormal basis of TyM0 such that TyDp(fi) = 〈e′1, . . . , e′s〉,

TyDp(fi)
⊥ = 〈e′s+1, . . . , e

′
3〉 and e′1 ∧ · · · ∧ e′s and e′1 ∧ e′2 ∧ e′3 give the orientations of

Dp(fi) and M0 respectively. Then we define

ve = (er+1 ∧ · · · ∧ e3) ∧ (e′s+1 ∧ · · · ∧ e′3),

which belongs to
∧2

T(x,y)(M0 ×M0) if ηi = i(p)− i(q) = 1.

Let V (x1, . . . , x2k) =
∧

e∈E(Γ) ve ∈
∧6k

T(x1,...,x2k)(M
2k
0 ). Since dimM2k

0 = 6k,

there is a nonzero real number α such that V (x1, . . . , x2k) = αOx1 ∧· · ·∧Ox2k
, where

Oxj ∈
∧3

TxjM0 gives the unit volume. For (x1, . . . , x2k) ∈MΓ(�f), we define

ε(x1, . . . , x2k) =

{
1 if α > 0
−1 if α < 0
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Fig. 3. The IHX relation. i and j are labels of vertices, (�) is a label of an edge.

For a generic pair (�f, �η) as in Proposition 2.5, the coefficient α is always nonzero for

all points of MΓ(�f). We define

#MΓ(�f) =
∑

(x1,...,x2k)∈MΓ(�f)

ε(x1, . . . , x2k) ∈ Z.

2.6. Principal term Z2k,3k. The space G2k,3k (§2.2) is spanned by 3-valent
graphs with only compact edges. Let R2k,3k ⊂ G2k,3k be the subspace spanned by the
IHX relation and the label change relation. The IHX relation is shown in Fig. 3 and
the label change relation is generated by the following elements

(1) (Γ, o(Γ)) + (Γ′, o(Γ′)) for labeled graphs Γ and Γ′, where Γ′ is obtained from
Γ by a swap of a pair of vertex labels or by an inversion of the orientation of
an edge.

(2) (Γ, o(Γ))− (Γ′, o(Γ′)) for labeled graphs Γ and Γ′, where Γ′ is obtained from
Γ by a swap of a pair of labels for compact edges.

We define the space A2k,3k to be the quotient space G2k,3k/R2k,3k. This is the same
thing as the degree k part of A (∅) in [BGRT]. We denote by [Γ] the equivalence class
in A2k,3k represented by Γ ∈ G 0

2k,3k.

Let Γ be a �C-labeled graph with pi ∈ P
(i)
∗ on the input and qi ∈ P

(i)
∗ on the

output. For simplicity, we first suppose that Se(Γ) is labeled by {1, 2, . . . , a}. Let

ki = i(pi) − i(qi). For a sequence �h = (h(1), . . . , h(m)) of endomorphisms h(i) ∈
Endki(C

(i)
∗ ), i = 1, 2, . . . ,m, of homogeneous degree ki, we define the trace of Γ by

Tr�h

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ =

a∏
i=1

(−h(i)
qipi

)× ,

where h(i)qi =
∑

pi∈P
(i)
∗

i(pi)=i(qi)+ki

h
(i)
qipipi. Then the definition of Tr for general labelings

on Se(Γ) may be obtained by a straightforward modification.

In particular, since each (C
(i)
∗ , ∂(i)) is acyclic, there exists an endomorphism

g(i) : C
(i)
∗ → C

(i)
∗+1 of homogeneous degree 1 such that ∂(i)g(i)+g(i)∂(i) = id. (See Ap-

pendix C. Following [Fuk2], we call such an endomorphism a combinatorial propaga-
tor). As a special case of the above definition, the trace by combinatorial propagators

�g = (g(1), . . . , g(3k)) defines a linear map Tr�g : G2k,3k(�C)→ A2k,3k.

Definition 2.6. Suppose d = 3. We define

Z2k,3k(�f) =
∑

Γ∈G 0
2k,3k(

�C)

#MΓ(�f)Tr�g(Γ) ∈ A2k,3k,
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where the sum is taken over all �C-colored graphs in G 0
2k,3k(

�C), each equipped with
canonical orientation.

2.7. Moduli space of infinitesimal flow graphs. In the rest of this section,
we define the correction term which turns Z2k,3k into a topological invariant. Let X
be an oriented smooth Riemannian manifold and Γ be a graph with only compact
edges. Suppose that Γ has n vertices and m edges. We shall consider the moduli
space of affine flow graphs in an oriented linear R3-bundle π : E → X with metric for
such a graph Γ. Let P → X be the orthonormal SO3-frame bundle associated to π
and

C local
n (R3) =

{
(y1, . . . , yn) ∈ (R3)n; y1 = 0,

n∑
�=2

‖y�‖2 = 1, yi �= yj if i �= j
}
.

Let π◦ : E◦ = P ×SO3 (R
3 − {0}) → X , S(π) : S(E) = P ×SO3 S

2 → X , C local
n (π) :

C local
n (E) = P ×SO3 C

local
n (R3) → X be the bundles associated to π. Such a bundle

appears in a boundary strata of compactified configuration space (see §4.2). The
normalization v �→ v/‖v‖ induces a natural map ν : E◦ → S(E). The Gauss map
φij : C local

n (R3) → S2, which takes (y1, . . . , yn) to
yj−yi

‖yj−yi‖ , induces a well-defined

morphism φ̃ij : C
local
n (E)→ S(E).

Now suppose that a section γ : X → E◦ of π◦ is given. Then γ̄ = ν◦γ : X → S(E)

is a section of S(π). Since φ̃ij is transversal to γ̄(X) on each fiber, the subset

Θ�(γ) = φ̃−1
ij (γ̄(X)) ⊂ C local

n (E)

forms a smooth subbundle of C local
n (π) where 	 is such that i = σ(	) and j = τ(	).

Definition 2.7. For a sequence �γ = (γ1, γ2, . . . , γm) of sections of π◦, we define

M
local
Γ (�γ) =

m⋂
�=1

Θ�(γ�) ⊂ C local
n (E)

for a sequence �γ = (γ1, . . . , γm) of sections of π◦. If the intersection is transversal, in
other words, if

∧m
�=1 o

∗
Clocal

n (E)(Θ�(γ�)) �= 0 at every point of M local
Γ (�γ), this formula

also defines a co-orientation of M local
Γ (�γ).

There is a compactification C
local

n (R3) of C local
n (R3), which is naturally an SO3-

space. See §4.2. Let C
local

n (π) : C
local

n (E) → X be the C
local

n (R3)-bundle associated

to π. The interior of C
local

n (R3) is identified with C local
n (R3). Let Θ�(γ) ⊂ C

local

n (E)
be the closure of Θ�(γ). Let

M
local

Γ (�γ) =

m⋂
�=1

Θ�(γ�). (2.2)

Lemma 2.8. For a generic choice of �γ, the space M
local

Γ (�γ) is a submanifold of

C
local

n (E) of codimension 2m. If X is compact, then so is M
local

Γ (�γ).

Proof. Note that Θk(γ) is a submanifold of codimension 2. By using the transver-
sality theorem, the set of sections �γ can be inductively deformed in Γ(π)m slightly so
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that the intersection (2.2) is transversal. Thus for a generic choice of �γ, M
local

Γ (�γ) is
a submanifold. The second assertion is immediate.

When �γ is generic as in Lemma 2.8 and X is compact and dimM
local

Γ (�γ) = 0,

we define #M
local

Γ (�γ) to be the number of components counted with signs, which
are determined by the coorientations of the intersections. Here we fix the orientation

o(C
local

n (R3)) to be the one on the unit sphere induced from that of the Euclidean

space (R3)n−1. Then we orient C
local

n (E) by

o(C
local

n (E)) = o(X) ∧ o(C
local

n (R3)).

2.8. Anomaly term Zanomaly
2k,3k . Here, we shall define the term Zanomaly

2k,3k (�γW ) for
a sequence �γW of sections of a vector bundle T vW over a spin 4-manifold W with
∂W ∼= M . To do this we shall first find a trivialization of TW and consider its trivial
subbundle T vW .

2.8.1. Framing on spin cobordism. For a k-manifold X , a framing on X is a
trivialization τX : TX → X × Rk. More generally, we will also call a trivialization of
a vector bundle a framing. We will identify a framing with a finite set of sections of
a vector bundle that are fiberwise linearly independent. We shall fix framings on M0

and on a spin 4-manifold W with ∂W = M in a sense compatible with each other.
Recall that for k ≥ 3, a spin structure on a vector bundle E over a CW-complex B is
a homotopy class of framings on the 1-skeleton of E which can be extended to the 2-
skeleton ([Mi1]). A spin structure on a tangent bundle of a manifold X is called a spin

structure on X . Since the group Ωspin
3 of spin cobordism classes of spin 3-manifolds

is trivial (e.g., [Mi1]), one can find a compact spin 4-manifold W with ∂W = M and
with a spin structure that is compatible with the (canonical) spin structure of M .

We choose a framing τM on TM0, which exists for any M . We fix τM such that
it agrees on U ′∞−{∞M} with the pullback of the standard one τR3 on U∞−{∞} by
dϕ−1

∞ . One may check that such a framing really exists by the obstruction theory for
extending sections. Let U∞ be the closure of U∞ ⊂ S3 and let

M = (M − U ′
∞) ∪∂ ([0, 1]× ∂U∞) ∪∂ −(S3 − U∞),

where ∂(M − U ′∞) is identified with {1} × U∞ by ϕ∞ and ∂(S3 − U∞) = ∂U∞ is
identified with {0} × ∂U∞. Then M is diffeomorphic to M . We construct a rank 3
vector bundle T v

M on M as follows. Consider [0, 1]× ∂U∞ as a part of [0, 1]× U∞.
Let T v([0, 1] × U∞) be the pullback of TU∞ by the projection [0, 1] × U∞ → U∞.
Let T v([0, 1]× ∂U∞) be the restriction of T v([0, 1]×U∞) to [0, 1]× ∂U∞. We define

T v
M = T (M − U ′

∞) ∪ T v([0, 1]× ∂U∞) ∪ T (−(S3 − U∞)).

The rank 4 vector bundle T ([0, 1]×U∞) restricts on {0, 1}×∂U∞ to the restrictions of
ε1⊕TM and ε1⊕T (−S3), where ε1 denotes the trivial line bundle. Thus by extending
T ([0, 1]×U∞)|[0,1]×∂U∞

by the restrictions of ε1⊕T (M−U ′
∞) and ε1⊕T (−(S3−U∞)),

we obtain a R4-bundle over M of the form ε1 ⊕ T v
M.

Let n be a framing of ε1. The 4-framings n⊕ τM and n⊕ τR3 of ε1⊕T (M −U ′
∞)

and ε1 ⊕ T (−(S3 − U∞)) respectively extend over ε1 ⊕ T v
M by using the product

structure. We denote by τ ′M the resulting 4-framing of ε1 ⊕ T v
M.

The following lemma follows from Lemma 2.3 of [KM], Lemma 2.40 of [Les1] and
from the proof of [KM, Theorem 2.6].
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Lemma 2.9.

(1) There exists a compact spin 4-manifold W with corners with ∂W = M as the
spin boundary such that χ(W ) = 1.

(2) Let W be as in (1). The 4-framing τ ′M extends to a framing of TW if and only
if p1(TW ; τ ′M ) = 0, where p1(TW ; τ ′M ) ∈ Z denotes the relative Pontrjagin
number. Moreover, there exists a framing τM of M0 that is standard near
∞M and that satisfies p1(TW ; τ ′M ) = 0.

2.8.2. Generalized Morse sections. Let π : E → X be a linear Rd-bundle
over a compact manifold X possibly with corners with dimX = N ≥ d. We say
that a smooth section γ : X → E is generalized Morse (GM) if for each point x ∈
γ−1(0), there is a local coordinate (y1, . . . , yN ) on an open neighborhood U of x and
a trivialization ϕ : π−1(U)→ U × Rd such that either of the following holds2.

(1) γ(y1, . . . , yN ) = ϕ−1(y1, . . . , yN ,±y1, . . . ,±yd) ∀(y1, . . . , yN) ∈ U

(2) γ(y1, . . . , yN ) = ϕ−1(y1, . . . , yN , y21 − yd+1,±y2, . . . ,±yd) ∀(y1, . . . , yN) ∈ U

When γ is GM, we call a point x ∈ γ−1(0) having local form (1) (resp. (2)) a Morse
singularity (resp. birth-death singularity) of γ. We write Σ(γ) = γ−1(0) and let Σ1(γ)
(resp. Σ2(γ)) be the subset of Σ(γ) consisting of Morse singularities (resp. birth-death
singularities). An obvious example with Σ2(γ) = ∅ is the section M0 → TM0 given by
the gradient of a Morse function. The following lemma is an immediate consequence
of results of K. Igusa ([Ig1, Lemma 2.8] and [Ig2, Appendix 2]).

Lemma 2.10. Let π : E → X be as above. Suppose that the restriction of a
smooth section γ : X → E to ∂X is GM. Then there is a homotopy of γ relative to
∂X whose result is GM. Hence Σ2(γ) is a codimension 1 submanifold of Σ(γ).

2.8.3. Definition of Zanomaly
2k,3k . Now let (W, τ ′M ) be a pair satisfying the condi-

tion of Lemma 2.9. One can find a (non-unique) 4-framing of TW as in Lemma 2.9
and let τvW be its sub 3-framing of TW that extends τM . The 3-framing τvW spans a
rank 3 subbundle T vW of TW . For each i ∈ {1, 2, . . . , 3k}, let γi be a GM section of
T vW extending −gradfi ∈ Γ(T (M − U ′

∞)) and put �γW = (γ1, . . . , γ3k).

Definition 2.11. We define

Zanomaly
2k,3k (�γW ) =

∑
Γ∈G 0

2k,3k

#M
local
Γ (�γW ) [Γ] ∈ A2k,3k,

where the moduli space M local
Γ (�γW ) is considered inside the trivial C

local

2k (R3)-bundle

over
⋂3k

j=1(W − Σ(γj)) associated to the restriction of the R3-bundle T vW .

Proposition 2.12.

(1) For a generic choice of the GM extension �γW of −grad �f =
(−grad f1, . . . ,−gradf3k), the number #M local

Γ (�γW ) is finite.
(2) Let W and W ′ be compact, connected, spin 4-manifolds with corners with

∂W = ∂W ′ = M, χ(W ) = χ(W ′) = 1 and suppose that �γW |M = �γW ′ |M. Then
for each k ≥ 1 there exists a constant μk ∈ A2k,3k such that

Zanomaly
2k,3k (�γW )− μk signW = Zanomaly

2k,3k (�γW ′)− μk signW
′.

2This condition is not a generic one if N ≥ d+2. Thus this gives a stronger restriction than the
transversality to the zero section. This restriction is placed to determine all the singularities.
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Hence Zanomaly
2k,3k (�γW ) − μk signW does not depend on the choice of (W,�γW )

such that ∂W = M, χ(W ) = 1, �γW |M−U ′
∞

= −grad �f .

Proof of Proposition 2.12 (1). Put �γ = (γ1, . . . , γ3k) = �γW . Since for the GM
extension γi the singularity set Σ(γi) = γ−1

i (0) is a compact smooth 1-submanifold
of a 4-manifold W , we may assume that Σ(γi) ∩ Σ(γj) = ∅ if i �= j, and moreover
that they are separated by small open tubular neighborhoods. We shall show that
the image of the projection of the 0-dimensional moduli space M local

Γ (�γ) on W is
disjoint from a neighborhood of Σ(γi) for each i and hence from a neighborhood of∐3k

j=1 Σ(γj).
Let Γ′ be the graph obtained from Γ by replacing E(Γ) with E(Γ) − {β(i)}.

According to Definition 2.7, M local
Γ (�γ) is the intersection of M local

Γ′ (�γ \ {γi}) with
Θi(γi). By Lemma 2.8, M local

Γ′ (�γ \ {γi}) is a submanifold of (W − ⋃
j �=i Σ(γj)) ×

C
local

2k (R3) of codimension 2(3k − 1) = 6k − 2, i.e., a 2-submanifold if �γ is generic.
For a generic choice of γi, the projection of M local

Γ′ (�γ \ {γi}) on W is disjoint from a
neighborhood of Σ(γi) for a dimensional reason. Hence for a generic choice of γi, the
projection of M local

Γ (�γ) on W is disjoint from a neighborhood of Σ(γi). Here we may
assume that the perturbation of γi for the disjunction has support in an arbitrarily
small neighborhood of Σ(γi). Since Σ(γi)∩Σ(γj) = ∅ for i �= j, the perturbations can
be done for all i independently and we may assume that M local

Γ (�γ) is disjoint from a

tubular neighborhood of
∐3k

j=1 Σ(γj).

By Lemma 2.8, the restriction of M local
Γ (�γ) to the complement of the tubu-

lar neighborhood of
∐3k

j=1 Σ(γj) is compact. Therefore, for a generic choice of �γ,

M local
Γ (�γ) is a compact 0-submanifold, i.e., a finite set.

The proof of Proposition 2.12 (2) will be given in §7.2.
2.9. Main result and conjectures.

Theorem 2.13. For k ≥ 1,

Ẑ2k,3k(�f) = Z2k,3k(�f)− Zanomaly
2k,3k (�γW ) + μk signW ∈ A2k,3k,

where μk is the constant found in Proposition 2.12 (2), is an invariant of diffeomor-
phism type of M .

Proof of the theorem is given in §10. Theorem 2.13 allows us to write Ẑ2k,3k(M) =

Ẑ2k,3k(�f). As mentioned in [Fuk2], the 2-loop part Z2,3(M) is likely to coincide with
the 2-loop part of the configuration space integral of Kontsevich. The generalization
of this conjecture is the following, which can be considered as a higher loop analogue
of a theorem of Cheeger [Ch] and Müller [Mü].

Conjecture 2.14. Ẑ2k,3k(M) agrees with Kuperberg–Thurston’s universal ex-
pression ([KT]) of the configuration space integral invariant of Kontsevich ([Ko]).

It is known that the configuration space integral invariant of Kontsevich recovers
all Q-valued Ohtsuki finite type invariants ([Oh, KT, Les2]). Shortly after the author
proposed Conjecture 2.14 in an earlier version of this article, Shimizu gave a proof of
Conjecture 2.14 ([Sh]). Shimizu also found an explicit relation of the constant μk to
a constant δk considered in [KT, Les2] for configuration space integrals.

In [Fuk2], Fukaya obtained the leading term of a propagator by considering the
limit of Witten’s deformed Laplacian and by deforming the propagator that Axelrod–
Singer obtained by harmonic analysis in [AS]. Thus in a sense, Fukaya’s and our
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construction is closer to that of [AS] than the general construction in [KT]. It would
be very interesting to clarify a relationship between our construction and that of [AS],
also in relation to part II. Also, it would be very interesting to see if the correction
term in this paper is related to the correction term in [AS].

Remark 2.15. (1) C. Lescop independently constructed in collaboration with
G. Kuperberg ([Les3]) an explicit 4-chain in the configuration space of two points
in a rational homology 3-sphere M by a geometric consideration about Heegaard
diagrams, which is reminiscent of Heegaard Floer homology. She defined an invariant
of ‘combings’ on M using the explicit 4-chain and gave a combinatorial formula for
the invariant.

(2) M. Futaki pointed out in [Fut] some bifurcations that are missed in [Fuk2]. In
[Fuk2], the coefficients in the linear combination of graphs are defined by contracting
holonomies considered along flow graphs by g-invariant tensors. However, Futaki
observed with a concrete computation that for some bifurcations, the holonomy matrix
will suddenly jump and thus the invariance fails. Since we construct an invariant
via an intersection theory considering only the trivial connection contribution, the
coefficients in the linear combination in our definition can be given without using
holonomy matrix, so the same problem does not occur. (See also Remark 2.3.)

3. Moduli space of gradient trajectories. We shall construct a compact-
ification M 2(f) of the space M2(f) of gradient trajectories that corresponds to a
compact edge in a graph, in a fashion similar to [BH]. The compactification M 2(f)

will play a fundamental role in defining the compactification M Γ(�f). For a Morse
function f and a metric μ on M0, we define

M2(f) = M2(f ;μ) = {(x, y) ∈ (M0 − Σ(f))2; y = Φt
f (x) for some t > 0}.

It follows from a property of solutions of ordinary differential equations that M2(f) is
a submanifold of (M0−Σ(f))2 of dimension d+1. We shall construct a natural com-
pactification of M2(f). Moreover, we obtain compactifications of Dp(f) and Ap(f)
by using the compactification of M2(f).

3.1. A decomposition of M2(f). First we make some assumptions. In the
following we assume that a Morse function f is chosen as in the following lemma.

Lemma 3.1 (e.g. Lemma 2.8 of [Mi2]). For any Cr Morse function f : M0 →
R that is standard near ∞M , there is an arbitrarily Cr-small perturbation of f in
the subspace of Cr

ϕ∞
(M0) of Morse functions such that all the critical values of the

resulting Morse function are distinct. (Such a Morse function is said to be ordered.)

The Morse lemma gives a local coordinate description of the moduli space. Let
f be a Morse function on M0. By the Morse lemma, one can find a local coordinate
(x1, . . . , xd) on a neighborhood Mp of a critical point p of f and a metric μ on M0

such that f agrees on Mp with

h(x) = f(p)− x2
1

2
− · · · − x2

i

2
+

x2
i+1

2
+ · · ·+ x2

d

2
(3.1)

and such that μ agrees with the Euclidean metric onMp with respect to the coordinate
(x1, . . . , xd). We say that such a metric μ is Euclidean near critical points. We call a
pair of Mp and the coordinate (x1, . . . , xd) a Morse model.



A GENERALIZATION OF FUKAYA’S INVARIANT OF 3-MANIFOLDS I 125

Fig. 4. Wk and a schematic illustration for a decomposition of M2(f). This consists of 6

squares each corresponds to M2(f ;Wk,Wj).

Suppose that the singular set Σ(f) = {p1, p2, . . . , pN} is numbered so that f(pk) <
f(pk+1) for each k ≤ N − 1. We put ck = f(pk). For a small number η > 0 and
1 ≤ k ≤ N − 1, let

Wk = f−1[ck − η, ck+1 − η] ∪ {∞M}, Lk = f−1(ck − η) ∪ {∞M},
WN = f−1[cN − η,∞) ∪ {∞M}, LN = f−1(cN − η) ∪ {∞M},
W0 = f−1(−∞, c1 − η] ∪ {∞M}.

See Fig. 4. For a pair of subsets A,B of M , let M2(f ;A,B) = M2(f) ∩ (A × B).
Then we have

M2(f) =
⋃

0≤j≤k≤N

M2(f ;Wk,Wj).

For 0 ≤ j ≤ k ≤ N , there is a natural embedding

ψkj : M2(f ;Wk,Wj)→Wk × Lk × Lk−1 × · · · × Lj+1 ×Wj ,

defined by ψkj(x, y) = (x, zk, zk−1, . . . , zj+1, y), where zi ∈ Li is the unique inter-
section point of the flow line between x and y with Li. Then M2(f) is canonically
diffeomorphic to the union of the images ψkj(M2(f ;Wk,Wj)) (0 ≤ j ≤ k ≤ N) glued
together by the diffeomorphisms

ψkj ◦ ψ−1
k+1,j : ψk+1,j(M2(f ;Lk+1,Wj))→ ψkj(M2(f ;Lk+1,Wj)),

ψkj ◦ ψ−1
k,j−1 : ψk,j−1(M2(f ;Wk, Lj))→ ψkj(M2(f ;Wk, Lj)).

See Fig. 4. Note that ψkj ◦ψ−1
k+1,j and ψkj ◦ψ−1

k,j−1 agree with the maps induced from
the projections

πkj : Wk+1 × Lk+1 × Lk × · · · × Lj+1 ×Wj →Wk × Lk × Lk−1 × · · · × Lj+1 ×Wj ,

(x, zk+1, zk, . . . , zj+1, y) �→ (zk+1, zk, zk−1, . . . , zj+1, y),

ρkj : Wk × Lk × Lk−1 × · · · × Lj ×Wj−1 →Wk × Lk × Lk−1 × · · · × Lj+1 ×Wj ,

(x, zk, zk−1, . . . , zj, y) �→ (x, zk, zk−1, . . . , zj+1, zj).

3.2. The definition of M 2(f). Let

M 2(f ;Wk,Wj) = ψkj(M2(f ;Wk,Wj)) (the closure). (3.2)

Note that this is not the closure of M2(f ;Wk,Wj) in Wk ×Wj when k > j, but the
closure in the codomain of ψkj .
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Lemma 3.2. The maps πkj and ρkj induce diffeomorphisms

ψk+1,j(M2(f ;Lk+1,Wj))→ ψkj(M2(f ;Lk+1,Wj)),

ψk,j−1(M2(f ;Wk, Lj))→ ψkj(M2(f ;Wk, Lj)).

Proof. We only give a proof for πkj . The smoothness of πkj is obvious. Define a
smooth map γ : Lk+1×Lk × · · · ×Lj+1×Wj → Lk+1×Lk+1×Lk × · · · ×Lj+1×Wj

by γ(x, zk, . . . , zj+1, y) = (x, x, zk, . . . , zj+1, y). The restriction of γ to

ψk+1,j(M2(f ;Lk+1,Wj)) is the smooth inverse to πkj .

Definition 3.3. We define

M 2(f) =
⋃

0≤j≤k≤N

M 2(f ;Wk,Wj), (3.3)

where the pieces are glued together by the diffeomorphisms of Lemma 3.2.

It is clear from the definition that M 2(f) is compact. Let

b̄ : M 2(f)→M ×M

be the continuous map that extends the natural embedding b =
⋃

k,j ψ
−1
kj :⋃

j,k ψkj(M2(f ;Wk,Wj))→M ×M onto M2(f). In other words, b̄ gives the pair of
endpoints of a flow line (possibly broken. see below.). For subsets A of Wk and B of
Wj , let

M 2(f ;A,B) = ψkj(M2(f ;A,B)) ⊂ A× Lk × · · · × Lj+1 ×B. (3.4)

This is consistent with (3.2). Note that this may depend on the choices of k and
j when A ⊂ Lk or B ⊂ Lj+1, but it becomes well-defined if it is considered as a
subspace of M 2(f).

For a Morse pair (f, μ) and a pair (x, y) of distinct points of M0 − Σ(f), a (r
times) broken flow line between x and y is a sequence γ0, γ1, . . . , γr (r ≥ 1) of integral
curves of −gradf satisfying the following conditions:

(1) The domain of γ0 is [0,∞), the domain of γr is (−∞, 0] and the domain of
γi, 1 ≤ i ≤ r − 1, is R.

(2) γ0(0) = x, γr(0) = y.
(3) There is a sequence q1, q2, . . . , qr of distinct critical points of f such that

lims→−∞ γi(s) = lims→∞ γi−1(s) = qi (1 ≤ i ≤ r).
A broken flow line (γ0, γ1, . . . , γr) between x and y is determined up to reparametriza-
tions by the boundary points x, y and intersection points of γi with level surfaces that
lie between qi and qi+1. More precisely, a broken flow line between x ∈Wk and y ∈ Wj

is uniquely determined by a point of Wk ×Lk× · · ·×Lj+1×Wj up to reparametriza-
tions and conversely a broken flow line between x ∈ Wk and y ∈ Wj determines a
point of Wk × Lk × · · · × Lj+1 ×Wj . So we may identify a broken flow line between
x ∈Wk and y ∈Wj with a point of Wk × Lk × · · · × Lj+1 ×Wj and call the latter a
broken flow sequence.

Now the main proposition of this subsection can be stated as follows3.

3We will not give explicit charts on every strata. The article [We] of K. Wehrheim gives a full
description of the smooth structures on the compactification of M2(f) and explicit associative gluing
maps in a similar finite dimensional fashion as [BH].
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Proposition 3.4. Let (f, μ) be a Morse–Smale pair on M0 such that f is ordered

and μ is Euclidean near critical points. Let ΩM = (M ×∞M ) ∪ (∞M ×M), Δ̂M =
ΔM ∪ ΩM . Then M 2(f) in (3.3) is compact and satisfies the following conditions.

(1) M 2(f)− b̄−1(Δ̂M ) is a smooth manifold with corners.
(2) b̄ induces a diffeomorphism IntM 2(f)→M2(f).

(3) The codimension r stratum of M 2(f) − b̄−1(Δ̂M ) consists of r times broken

flow sequences. The codimension r stratum of M 2(f) − b̄−1(Δ̂M ) for r ≥ 1
is canonically diffeomorphic to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Aq1(f)×Dq1(f)−ΔM (r = 1)

∐
q1,...,qr∈Σ(f)

q1,...,qr distinct

Aq1(f)×M
′(f ; q1, q2)× · · · ×M

′(f ; qr−1, qr)×Dqr (f) (r ≥ 2)

The proof is divided into §3.3, §3.4 and §3.5.
Remark 3.5.

(1) The compactification M 2(f) may not be embedded by b̄ into M×M whereas
M2(f) is a submanifold of M × M . The dimensions of some faces of the
boundary of M 2(f) decreases.

(2) In fact, M 2(f) is smooth on M 2(f) − b̄−1(Δ̂Σ(f)), where Δ̂Σ(f) = {(p, p) ∈
M ×M ; p ∈ Σ(f) ∪ {∞M}}. The boundary of M 2(f) has conic singularities

on b̄−1(Δ̂Σ(f)).

(3) The definition of M 2(f) depends on the choice of the level surfaces Lk. But
its diffeomorphism type (as a manifold with corners) does not depend on the
choice and it is enough for our purpose.

3.3. Smooth structure of the moduli space of short trajectories. Let h
be the standard quadratic form of (3.1). First, we describe the standard model

M2(h) = {(x, y) ∈ (Rd)2 ; y = Φt
h(x) for some t > 0}.

The following lemma is a key lemma in the construction of the compactification.

Lemma 3.6. M2(h) = {(ρu, v)× (u, ρv); u ∈ Ri, v ∈ Rd−i, ρ ∈ (0, 1)}. Hence its
closure M 2(h) in Rd × Rd is

M 2(h) = {(ρu, v)× (u, ρv); u ∈ Ri, v ∈ Rd−i, ρ ∈ [0, 1]}

and M 2(h)− {0× 0} is a smooth manifold with boundary, with

∂M 2(h) = ({0} × Rd−i)× (Ri × {0}) ∪0×0 ΔRd = (A0(h)×D0(h)) ∪0×0 ΔRd .

Proof. Let X = {(ρu, v) × (u, ρv); u ∈ Ri, v ∈ Rd−i, ρ ∈ (0, 1)}. Suppose that
(ρu, v)× (u, ρv) ∈X . The solution for the differential equation

γ̇(t) = −(gradh)γ(t)
is γ(t) = (γ1(0)e

t, . . . , γi(0)e
t, γi+1(0)e

−t, . . . , γd(0)e
−t). If γ(0) = (ρu, v), then γ(t) =

(ρuet, ve−t). The system of equations ρuet = u, ve−t = ρv has a unique solution
t ≥ 0 provided that (u, v) �= (0, 0), in which case (ρu, v) × (u, ρv) ∈ M2(h). If
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(u, v) = (0, 0), then (ρu, v) × (u, ρv) = (0, 0) × (0, 0) and obviously this belongs
M2(h). Conversely, for (u0, v0) × (u0e

t, v0e
−t) ∈ M2(h) (t ≥ 0), put u = u0e

t and
v = v0. Then (u0, v0)× (u0e

t, v0e
−t) = (ue−t, v)× (u, ve−t) ∈X . This completes the

proof of X = M2(h).
For the latter assertion, consider the smooth map ϕ : [0, 1]×Ri×Rd−i → Rd×Rd

defined by ϕ(ρ, u, v) = (ρu, v)× (u, ρv). Its Jacobian matrix is

Jϕ(ρ,u,v) =

⎛⎜⎜⎝
u ρI O
0 O I
0 I O
v O ρI

⎞⎟⎟⎠ (3.5)

whose rank is d+ 1 unless (u, v) = (0, 0). Namely, ϕ is an immersion outside [0, 1]×
0 × 0. Note that ϕ([0, 1] × 0 × 0) = {0 × 0}. Moreover, it is easy to check that
M 2(h)− {0× 0} is a submanifold with boundary. The boundary corresponds to the
image from ρ = 0, 1.

Lemma 3.7. Let (f, μ) be as in Proposition 3.4 and let 1 ≤ k ≤ N − 1. Then

(i) M 2(f ;Wk,Wk)− Δ̂Wk
(Δ̂Wk

= W 2
k ∩ Δ̂M ) is a submanifold of Wk ×Wk with

corners, with

∂M 2(f ;Wk,Wk) =
[
(Apk

(f) ∩Wk)× (Dpk
(f) ∩Wk)

]
∪(pk,pk) ΔWk

∪M2(f ;Wk, Lk) ∪M2(f ;Lk+1,Wk).

(ii) M 2(f ;Wk, Lk)− {∞2
M} is a submanifold of Wk × Lk with corners, with

∂M 2(f ;Wk, Lk) =
[
(Apk

(f) ∩Wk)× (Dpk
(f) ∩ Lk)

]
∪M2(f ;Lk+1, Lk) ∪ΔLk

.

(iii) M 2(f ;Lk+1, Lk)− {∞2
M} is a submanifold of Lk+1 × Lk with corners, with

∂M 2(f ;Lk+1, Lk) =(Apk
(f) ∩ Lk+1)× (Dpk

(f) ∩ Lk)

(iv) M 2(f ;Lk+1,Wk)−{∞2
M} is a submanifold of Lk+1×Wk with corners, with

∂M 2(f ;Lk+1,Wk) =
[
(Apk

(f) ∩ Lk+1)× (Dpk
(f) ∩Wk)

]
∪M2(f ;Lk+1, Lk) ∪ΔLk+1

.

Proof. Here we only prove (i). The other cases are the restrictions of this case.
The part M2(f ;Wk, Lk) ∪M2(f ;Lk+1,Wk) is the boundary of M2(f ;Wk,Wk). To
study the other ends, we define Uk ⊂Mpk

by the condition{ −ε < −x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

d < ε
(−x2

1 − · · · − x2
i )(x

2
i+1 + · · ·+ x2

d) < ε

for a sufficiently small number ε > 0, where i is the index of pk. The closure of
M2(f ;Uk, Uk) in Uk ×Uk is the restriction of M 2(h) in Lemma 3.6. Let Ũk ⊂Wk be
the open subset defined as the union of all the images of integral curves of −gradf
that intersect Uk. By extention by the flow of −gradf , one may see that the boundary



A GENERALIZATION OF FUKAYA’S INVARIANT OF 3-MANIFOLDS I 129

of the closure of M2(f ; Ũk, Ũk) in Ũk × Ũk consists of degenerate flow-lines coming

from those in ∂M 2(h) and flow-lines of ∂(Ũk×Ũk). Then M 2(f ;Wk,Wk) is the union

of M 2(f ; Ũk, Ũk) and M2(f ;Wk−Kk,Wk−Kk), where Kk = Apk
(f)∪Dpk

(f). This
completes the proof.

The following lemma is an analogue of Lemma 3.7.

Lemma 3.8. Let (f, μ) be as in Proposition 3.4. Then

(i) M 2(f ;WN ,WN )− Δ̂WN is a submanifold of WN ×WN with corners, with

∂M 2(f ;WN ,WN ) =
[
(ApN (f) ∩WN )× (DpN (f) ∩WN )

]
∪(pN ,pN ) ΔWN

∪M2(f ;WN , LN) ∪ b̄−1(∞M ×WN ).

(ii) M 2(f ;WN , LN)− {∞2
M} is a submanifold of WN × LN with corners, with

∂M 2(f ;WN , LN ) =
[
(ApN (f) ∩WN )× (DpN (f) ∩ LN)

]
∪ b̄−1(∞M × LN ) ∪ΔLN .

(iii) M 2(f ;W0,W0)− Δ̂W0 is a submanifold of W0 ×W0 with corners, with

∂M 2(f ;W0,W0) = b̄−1(W0 ×∞M ) ∪M2(f ;L1,W0) ∪ΔW0 .

(iv) M 2(f ;L1,W0)− {∞2
M} is a submanifold of L1 ×W0 with corners, with

∂M 2(f ;L1,W0) = b̄−1(L1 ×∞M ) ∪ΔL1 .

3.4. Smooth structure of the moduli space of long trajectories. Next,
we shall prove the following lemma.

Lemma 3.9. Let (f, μ) be as in Proposition 3.4 and suppose that f has N critical
points whose values are all distinct. Then M 2(f ;Wk,Wj)− b̄−1(ΩM ) (0 ≤ j < k ≤ N ,
definition in (3.2)) is a submanifold of Wk×Lk×Lk−1×· · ·×Lj+1×Wj with corners.
The codimension r stratum of M 2(f ;Wk,Wj) for r ≥ 1 consists of r−s times broken
flow sequences ξ with s events in the following list happening.

• The initial endpoint of ξ lies in ∂Wk.
• The terminal endpoint of ξ lies in ∂Wj.
• The initial endpoint of ξ agrees with ∞M (only if k = N).
• The terminal endpoint of ξ agrees with ∞M (only if j = 0).

In the following, we follow convention in Appendix A about smooth manifolds
with corners. To prove Lemma 3.9, we shall prove the following lemma by induction
on k − j − 1.

Lemma 3.10. Under the assumption of Lemma 3.9, for k− j− 1 ≥ 0, the moduli
space M 2(f ;Wk, Lj+1)− b̄−1(ΩM ) is a submanifold of Wk × Lk × Lk−1 × · · · ×Lj+1

with corners, whose codimension r stratum for r ≥ 1 consists of r − s times broken
flow sequences ξ with s events in the following list happening.

• The initial endpoint of ξ lies in ∂Wk.
• The initial endpoint of ξ agrees with ∞M (if k = N).
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For k − j − 1 = 0, Lemma 3.10 has been proved in Lemma 3.7. Let us consider
the case k − j − 1 = 1, i.e. M 2(f ;Wk, Lk−1). The moduli space M2(f ;Wk, Lk−1) is
identified with the fiber product M2(f ;Wk, Lk)×Lk

M2(f ;Lk, Lk−1) that is the limit
(pullback) of the diagram:

M2(f ;Lk, Lk−1)
i1−→ Lk

i2←−M2(f ;Wk, Lk),

where i2 : M2(f ;Wk, Lk) → Lk and i1 : M2(f ;Lk, Lk−1) → Lk are maps induced
from projections pr2 : Wk × Lk → Lk and pr1 : Lk × Lk−1 → Lk respectively. It
is easy to see that i2 and i1 are transversal and hence by Proposition A.2 the fiber
product is a smooth manifold with boundary.

Lemma 3.11. Let (f, μ) be as in Proposition 3.4. Then the smooth extensions
ī2 : M 2(f ;Wk, Lk) → Lk and ī1 : M 2(f ;Lk, Lk−1) → Lk of the projections i2
and i1 respectively are strata transversal on the complement of b̄−1(ΩM ). Hence the
complement of ∞M × Lk × Lk × Lk−1 in the fiber product

M 2(f ;Wk, Lk)×Lk
M 2(f ;Lk, Lk−1) ⊂Wk × Lk × Lk × Lk−1

is a smooth manifold with corners, whose strata are as follows.

(0) The codimension 0 stratum is M2(f ; IntWk, Lk)×Lk
M2(f ;Lk, Lk−1).

(1) The codimension 1 stratum is the union of ∂1M 2(f ;Wk, Lk) ×Lk

M2(f ;Lk, Lk−1) and M2(f ; IntWk, Lk)×Lk
∂1M 2(f ;Lk, Lk−1), where ∂r de-

notes the codimension r stratum of the complement of b̄−1(ΩM ).
(2) The codimension 2 stratum is ∂1M 2(f ;Wk, Lk)×Lk

∂1M 2(f ;Lk, Lk−1).

Proof. If either zk ∈ i2(M2(f ;Wk, Lk)) or zk ∈ i1(M2(f ;Lk, Lk−1)), then zk
is a regular value of one of i2 and i1. Indeed, if for example zk = i2(x, zk) ∈
i2(M2(f ;Wk, Lk)), then there is a small open neighborhood O of zk in Lk

such that TzkO and the tangent space of the gradient line at x parametrizes
T(x,zk)M2(f ;Wk, Lk). Obviously, di2 : T(x,zk)M2(f ;Wk, Lk)→ TzkLk = TzkO is sur-
jective. This shows that ī2 and ī1 are transversal between a codimension 0 stratum
and any strata.

If zk ∈ ī2(∂M 2(f ;Wk, Lk) − M2(f ;Wk, Lk)) and zk ∈ ī1(∂M 2(f ;Lk, Lk−1)),
then the images of the normal bundles of ī−1

2 (zk) in ∂M 2(f ;Wk, Lk) and of ī−1
1 (zk) in

∂M 2(f ;Lk, Lk−1) under the differentials dī2 and dī1 agree with Tzk(Dpk
(f)∩Lk) and

Tzk(Apk−1
(f)∩Lk) respectively. Then by the Morse–Smale condition for (f, μ), these

images span TzkLk. This shows that ī2 and ī1 are transversal between codimension 1
strata. Now the lemma follows by applying Proposition A.2.

The following lemma proves Lemma 3.10 for k − j − 1 = 1.

Lemma 3.12. Let (f, μ) be as in Proposition 3.4. Then

M 2(f ;Wk, Lk−1) = pr
[
M 2(f ;Wk, Lk)×Lk

M 2(f ;Lk, Lk−1)
]
, (3.6)

where pr : M 2(f ;Wk, Lk) ×Lk
M 2(f ;Lk, Lk−1) → Wk × Lk × Lk−1 is the embed-

ding (x, zk, zk, zk−1) �→ (x, zk, zk−1). Hence M 2(f ;Wk, Lk−1)− b̄−1(ΩM ) is a smooth
manifold with corners, whose strata are as follows.

(0) The codimension 0 stratum is pr
[
M2(f ; IntWk, Lk)×Lk

M2(f ;Lk, Lk−1)
]
.
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(1) The codimension 1 stratum is the union of

pr
[
∂1M 2(f ;Wk, Lk)×Lk

M2(f ;Lk, Lk−1)
]
and

pr
[
M2(f ; IntWk, Lk)×Lk

∂1M 2(f ;Lk, Lk−1)
]
.

(2) The codimension 2 stratum is pr
[
∂1M 2(f ;Wk, Lk)×Lk

∂1M 2(f ;Lk, Lk−1)
]
.

Proof. We first need to show that pr takes M 2(f ;Wk, Lk) ×Lk
M 2(f ;Lk, Lk−1)

diffeomorphically onto its image because the map pr is smooth and there is a smooth
section γ : Wk × Lk × Lk−1 →Wk ×ΔLk

× Lk−1 ⊂Wk × Lk × Lk × Lk−1 of pr.
Since M 2(f ;Wk, Lk−1) is the closure of ψk,k−1(M2(f ;Wk, Lk−1)) in Wk × Lk ×

Lk−1 and since γ gives a homeomorphism Wk × Lk × Lk−1 ≈ Wk × ΔLj × Lk−1, it
suffices to show that the closure of γ(ψk,k−1(M2(f ;Wk, Lk−1))) = M2(f ;Wk, Lk)×Lk

M2(f ;Lk, Lk−1) agrees with M 2(f ;Wk, Lk) ×Lk
M 2(f ;Lk, Lk−1) to see (3.6). This

follows from Proposition A.4 because the codimension 0 stratum of the latter space
agrees with the former one.

The following lemma completes the induction and proves Lemma 3.10.

Lemma 3.13. Under the assumption of Lemma 3.9, suppose that Lemma 3.10
holds true for k−j−1 = p ≤ N−3. Then Lemma 3.10 holds true for k−j−1 = p+1.

Proof. By assumption, the moduli space M 2(f ;Wk, Lj+1)− b̄−1(ΩM ) is a smooth
manifold with corners, whose strata are as described in Lemma 3.10. Then by exactly
the same argument as in Lemmas 3.11 and 3.12, one may see the following.

(1) By Proposition A.2, the complement of b̄−1(ΩM ) × Lj+1 × Lj in the fiber
product M 2(f ;Wk, Lj+1)×Lj+1 M 2(f ;Lj+1, Lj) ⊂ (Wk ×Lk ×Lk−1× · · · ×Lj+1)×
(Lj+1 × Lj) has the structure of a smooth manifold with corners, whose codi-
mension r stratum is the union of ∂rM 2(f ;Wk, Lj+1) ×Lj+1 M2(f ;Lj+1, Lj) and

∂r−1M 2(f ;Wk, Lj+1)×Lj+1 ∂1M 2(f ;Lj+1, Lj).
(2) By Proposition A.4,

M 2(f ;Wk, Lj) = pr
[
M 2(f ;Wk, Lj+1)×Lj+1 M 2(f ;Lj+1, Lj)

]
where pr : (Wk×Lk×Lk−1×· · ·×Lj+1)×(Lj+1×Lj)→ Wk×Lk×Lk−1×· · ·×Lj+1×Lj

is the projection (x, zk, zk−1, . . . , zj+1, zj+1, zj) �→ (x, zk, zk−1, . . . , zj+1, zj), which
embeds M 2(f ;Wk, Lj+1)×Lj+1 M 2(f ;Lj+1, Lj).

These observations complete the proof.

Proof of Lemma 3.9. By replacing M 2(f ;Lj+1, Lj) in the proof of Lemma 3.13
with M 2(f ;Lj+1,Wj), one may see by Proposition A.4 that M 2(f ;Wk,Wj) agrees
with the projection of the fiber product M 2(f ;Wk, Lj+1) ×Lj+1 M 2(f ;Lj+1,Wj)
whose complement of b̄−1(ΩM ) is a smooth manifold with corners as desired.

3.5. Moduli space of general trajectories.

Proof of Proposition 3.4. Now we know from Lemma 3.9 that M 2(f) is the union
of moduli spaces M 2(f ;Wk,Wj) (0 ≤ j ≤ k ≤ N) that are smooth manifolds with
corners, glued together by diffeomorphisms of Lemma 3.2. The result is, outside
b̄−1(Ω̂M ), a smooth manifold with corners (see Lemma 3.7 for the reason of exclusion
of the diagonal). This proves the property (1). The property (2) is immediate from
the definition of M 2(f).
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Since the diffeomorphisms of Lemma 3.2 are strata preserving (Appendix A) in
both directions, no new corners will appear under the gluing. The diffeomorphisms
induce gluings between strata of the same codimensions and of the same type. For
example, the component of r times broken flow sequences in M 2(f,Wk,Wj) is glued
together along M 2(f ;Lk+1,Wj) with the component of r times broken flow sequences
in M 2(f ;Wk+1,Wj). This proves the property (3).

3.6. Compactifications of descending and ascending manifolds. Let
(f, μ) be a Morse pair as in Proposition 3.4. For a critical point p of f , let

Dp(f) = b̄−1(p×M), A p(f) = b̄−1(M × p).

We obtain the following well-known result (e.g., [BH, Theorem 1]).

Proposition 3.14. Let (f, μ) be as in Proposition 3.4 and let p be a critical point
of f . Then Dp(f) (resp. A p(f)) is a compactification of the descending manifold
Dp(f) (resp. ascending manifold Ap(f)) to a smooth manifold with corners whose
codimension r stratum of Dp(f) − b̄−1(p ×∞M ) (resp. A p(f) − b̄−1(∞M × p)) for
r ≥ 1 is canonically diffeomorphic to∐

q1,...,qr∈Σ(f)
p,q1,...,qr distinct

M
′(f ; p, q1)×M

′(f ; q1, q2)× · · · ×M
′(f ; qr−1, qr)×Dqr (f)

(resp.
∐

q1,...,qr∈Σ(f)
p,q1,...,qr distinct

Aqr (f)×M
′(f ; qr, qr−1)× · · · ×M

′(f ; q2, q1)×M
′(f ; q1, p)).

Proof. Suppose that the singular set Σ(f) = {p1, . . . , pN} is numbered as in §3.1
and suppose that p = pk ∈ Wk ∩ Σ(f) for some k. It follows from the definition of
M 2(f) that Dp(f)∩b̄−1(Wk×Wk) = M 2(f ;Wk,Wk)∩({p}×Wk). By Lemma 3.7, the
right hand side is equal to {p}× (Dp(f)∩Wk) since M2(f ;Wk,Wk)∩ ({p}×Wk) = ∅.
Similarly, we have

Dp(f) ∩ b̄−1(Wk ×Wj) = M 2(f ;Wk,Wj) ∩ ({p} × Lk × · · · × Lj+1 ×Wj)

= pr
[
({p} × (Dp(f) ∩ Lk))×Lk

M 2(f ;Lk,Wj)
]
.

The descriptions of the strata in the statement follow from these identities and from
Lemma 3.7, 3.8 and 3.9. The result for A p(f) is analogous.

4. Moduli space of flow graphs.

4.1. Transversality for MΓ. Let Γ ∈ G 0
n,m,�η(

�C) be a �C-colored graph with a
inputs (and a outputs) without bivalent vertices. For simplicity, we assume that the
noncompact edges in Se(Γ) are labeled (via β) by {1, . . . , a}. Let pi (resp. qi) be a
basis element attached on the input (resp. output) of the edge labeled i. We define a
Cr−1-map Φ�f :

∏a
j=1(Aqj (fj)×Dpj (fj))×Mn

0 × Rm−a
>0 →Mn+m+a

0 by

Φ�f (u1, v1, . . . , ua, va;x1, . . . , xn; ta+1, . . . , tm)

=

n∏
i=1

(xi, yki
1
, . . . , yki

ri
, vk̄i

1
, . . . , vk̄i

r̄i
, u�̄i1

, . . . , u�̄is̄i
),

where yk = Φtk
fk
(xσ(k)) and R>0 = (0,∞) (see §2.4 for the symbols). Let Δ ⊂

Mn+m+a
0 be the subset consisting of all the points of the form

∏n
i=1(xi,

ri+r̄i+s̄i︷ ︸︸ ︷
xi, . . . , xi) for
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(x1, . . . , xn) ∈ Mn
0 . Then MΓ(�f) is the image of Φ−1

�f
(Δ) under the projection onto

Mn
0 and the projection induces an embedding.
Let Uj be a Cr-small neighborhood of a Morse function in the Banach manifold

Cr
ϕ∞

(M0) such that the cardinality of the set of critical points is constant on Uj . By

considering Φ�f for all �f ∈∏m
j=1 Uj for a fixed Riemannian metric μ on M0, we get a

smooth map

Φ :

a∏
j=1

⋃
fj∈Uj

(Aqj (fj)×Dpj (fj))×Mn
0 × Rm−a

>0 ×
m∏

j=a+1

Uj →Mn+m+a
0 ,

where we consider
⋃

fj∈Uj
(Aqj (fj)×Dpj (fj)) as a subspace of Uj ×M2

0 .

The proof of the following lemma is almost the same as [FO, Proposition 12.5].
(See [Wa1] for detail with our notations.)

Lemma 4.1. The smooth map Φ is transversal to Δ.

Proof of Proposition 2.4. It follows from Lemma 4.1 that Φ−1(Δ) is a (infinite
dimensional) submanifold of codimension (n + m + a − n)d = (m + a)d. Let π :
Φ−1(Δ) → ∏m

j=1 Uj be the restriction of the projection. Since the dimension of the
fiber of the projection

a∏
j=1

⋃
fj∈Uj

(Aqj (fj)×Dpj (fj))×Mn
0 × Rm−a

>0 ×
m∏

j=a+1

Uj →
m∏
j=1

Uj

is
∑a

j=1(i(pj) + (d− i(qj))) + nd+ (m− a) = nd+ ad+m− a+
∑a

j=1 ηj , the index
of the projection π is

nd+ ad+m− a+

a∑
j=1

ηj − (m+ a)d = (n−m)d+

m∑
j=1

ηj .

Hence for a regular value �f ∈ ∏m
j=1 Uj of π, the fiber of π is a smooth manifold of

dimension (n−m)d+
∑m

j=1 ηj . By the Sard–Smale theorem ([Sm]), the set of regular
values of π is residual. The second statement follows from the fact that there are only
finitely many graphs in Gm,n,�η(�C) for a fixed triple m,n,

∑m
j=1 ηj and that a finite

intersection of residual subsets is residual too.

4.2. Compactification of Cn(M) of Fulton–MacPherson. This part is al-
most a copy from a part of [Wa]. For a closed d-manifold M , the configuration space
Cn(M) is a submanifold of Mn, that is the complement of the closed subset

Σ = {(x1, . . . , xn) ∈Mn ; xi = xj for some i �= j or xi =∞M for some i} ⊂Mn.

There is a natural filtration Σ = Σn ⊃ · · · ⊃ Σ2 ⊃ Σ1 with

Σj = {(x1, . . . , xn) ∈Mn ; #{x1, . . . , xn,∞M} ≤ j}.

The difference Σi+1 − Σi is a disjoint union of submanifolds of Mn − Σi. This
property allows one to iterate (real) blow-ups along the filtration from the deep-
est one: First, one can consider the blow-up B	(Mn,Σ1) along the 0-submanifold
Σ1 = {(∞M , . . . ,∞M )} of Mn. Recall that a blow-up replaces a submanifold with
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its normal sphere bundle. Since the closure of Σ2 − Σ1 in B	(Mn,Σ1) is also a dis-
joint union of smooth submanifolds (with boundaries), one can apply another blow-up
along it, and so on. After the blow-ups along all the strata of Σ of codimension ≥ 1,
one obtains a smooth compact manifold with corners Cn(M).

We will need a precise description of the boundary of Cn(M) in the proof of

invariance of Ẑ2k,3k, so we shall briefly recall it here. The space Cn(M) has a natu-
ral stratification corresponding to bracketings of the n+ 1 letters 1, 2, . . . , n,∞, e.g.,
((137)(25))46∞ (see [FM, AS, Ko, BT]). Roughly speaking, a pair of brackets cor-
responds to a face created by one blow-up. For example, the face corresponding to
((137)(25))46∞ is obtained by a sequence of blow-ups corresponding to a sequence
1234567∞→ (12357)46∞→ ((137)(25))46∞.

The codimension one (boundary) strata of Cn(M) correspond to bracketings
of the form (· · · ) · · · , with only one pair of brackets. For example, the stratum
∂{1,...,j}Cn(M) of ∂Cn(M) corresponding to the bracketings (12 · · · j)j + 1 · · ·n is
the face created by the blow-up along the closure of the submanifold

Δj = {(x1, . . . , xn) ∈Mn ; x1 = · · · = xj , otherwise distinct} ⊂Mn

in the result of the previous blow-ups. More precisely, ∂{1,...,j}Cn(M) can be natu-

rally identified with the blow-ups of the total space of the normal S(j−1)d−1-bundle
of Δj ⊂ Mn along the intersection with the closures of deeper diagonals that corre-
spond to deeper bracketings. The fiber of the normal S(j−1)d−1-bundle over a point
(xj , . . . , xn) ∈ Δj is ({(0, y2, . . . , yj) ∈ (Rd)j} − {0})/(dilation) ∼= S(j−1)d−1, where
the coordinate yi corresponds to xi − x1 (where it makes sense) under the geodesic
coordinate from a framing of TxjM . The stratum ∂{1,...,j}Cn(M) is a fiber bundle

over Δj . We denote the fiber of ∂{1,...,j}Cn(M) over a point of Δj by C local
j (Rd). As

done in §2.7, we identify C local
j (Rd) with the subset of Cj(Rd), as

C local
j (Rd) =

{
(y1, . . . , yj) ∈ Cj(R

d) ; y1 = 0,

j∑
�=2

‖y�‖2 = 1
}
.

We denote by C
local

j (Rd) the closure of the image of the inclusion C local
j (Rd) ↪→

Cj(Rd), which is compact. The base space Δj is naturally diffeomorphic to
Cn−j+1(M) and we denote by prj : Δj → M the projection (xj , . . . , xn) �→ xj . So

∂{1,...,j}Cn(M) has the structure of the pullback of the associated C
local

j (Rd)-bundle

of TM (C
local

j (Rd) is an SOd-space) pulled back by prj . The definition of ∂ACn(M)
for general subset A ⊂ {1, . . . , n,∞} corresponding to the bracketing (A)Ac is similar.

4.3. Compactification of the moduli space MΓ.

Proof of Proposition 2.5. Let �f = (f1, f2, . . . , f3k) and �μ = (μ1, μ2, . . . , μ3k) be
sequences of Morse functions and metrics on M0 respectively such that for each i the
pair (fi, μi) is Morse–Smale and that μi is Euclidean near Σ(fi) with respect to the
coordinates of the Morse lemma. We assume that the gradients of fi are taken for μi.
We shall construct a compactification M Γ(�f) of MΓ(�f).

For p, q ∈ Σ(f), let

Npq(f) = Aq(f)×Dp(f), N pq(f) = A q(f)×Dp(f).
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For j ∈ {1, 2, . . . , 3k}, let

Qj =

{
M 2(fj) if β(j) ∈ Comp(Γ)

N pq(fj) if β(j) ∈ Se(Γ) with input p, output q.

For i ∈ {1, 2, . . . , 2k}, let j1, j2, j3 ∈ {1, 2, . . . , 3k} be the labels of the edges which
are incident to the i-th vertex of Γ. We define a smooth map Gi : Qj1 ×Qj2 ×Qj3 →
M ×M ×M as follows. Let b̄ji : Qj →M be defined by

b̄ji =

{
pr1 ◦ b̄ if i = σ(j)
pr2 ◦ b̄ if i = τ(j)

Then we define Gi = b̄j1i × b̄j2i × b̄j3i. Let Ĝi :
∏3k

j=1 Qj → M3 be the composition

Gi ◦ proj :
∏3k

j=1 Qj → Qj1 ×Qj2 ×Qj3 →M ×M ×M . Let Δ3 = {(x, x, x);x ∈M}.
We define

M
×
Γ (

�f) =

2k⋂
i=1

Ĝ−1
i (Δ3).

The restriction of M
×
Γ (

�f) to
∏3k

j=1 IntQj is canonically identified with MΓ(�f), which

is a smooth manifold. Let b̄Γ : M
×
Γ (

�f)→M2k be the map that assigns the positions
of 2k trivalent vertices of a flow graph in M .

Now we consider the case where dimMΓ(�f) ≤ 1.

If dimMΓ(�f) = 0, then M
×
Γ (

�f) = MΓ(�f) ⊂
∏3k

j=1 IntQj is a finite set. In this

case M Γ(�f) = M
×
Γ (

�f) is as desired.

If dimMΓ(�f) = 1, then M
×
Γ (

�f) may have nonempty intersection with

∂(
∏3k

j=1 Qj). By Proposition 3.4 and Corollary A.3, the intersection of M
×
Γ (

�f) with

∂(
∏3k

j=1 Qj) consists of flow graphs of the following forms.
(1) There is one edge that is a once broken flow line.
(2) A set of edges is collapsed to a finite subset of M .

Here, we may assume that the intersection has no flow graphs broken more than once
by perturbing the function fj for the broken edge slightly. On a neighborhood of a

point of M
×
Γ (

�f) of type (1), M
×
Γ (

�f) restricts to a smooth 1-manifold with boundary.

On a neighborhood of a point of M
×
Γ (

�f) of type (2), M
×
Γ (

�f) may have singularities on
the boundary and may not be a smooth manifold. There may be non-unique collapses
of a subgraph to the same degenerate graph. In fact, it is the cone over finitely many
points whose cone point lies on ∂(

∏3k
j=1 Qj), by the strata transversality near the

boundary.

The conic singularity can be resolved by a sequence of blow-ups of M
×
Γ (

�f) anal-
ogous to the compactification of C2k(M) in §4.2, as follows. Let NΣ1 ⊂ M2k be a
small tubular neighborhood of the highest codimension stratum Σ1 of Σ. Its preim-

age N̂Σ1 = b̄−1
Γ (NΣ1) ⊂ M

×
Γ (

�f) is a subspace of small graphs concentrated near∞M .

The restriction of b̄Γ to N̂Σ1 is a topological embedding of a cone. Hence the blow-up

of M2k along Σ1 replaces b̄Γ(N̂Σ1) with a smooth 1-manifold B	(b̄Γ(N̂Σ1),Σ1) with

boundary. By identifying N̂Σ1 − b̄−1
Γ (Σ1) with IntB	(b̄Γ(N̂Σ1),Σ1) through b̄Γ, we

obtain a space

M
×
Γ (

�f)[1] = (M
×
Γ (

�f)− b̄−1
Γ (Σ1)) ∪b̄Γ B	(b̄Γ(N̂Σ1),Σ1).
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The singularities on b̄−1
Γ (Σ1) have been resolved. Next, we resolve the singularities on

b̄−1
Γ (Σ2). LetNΣ2 ⊂M2k be a small tubular neighborhood of Σ2−Σ1. We may assume

that there is no edge of broken flow line in the flow graphs of M
×
Γ (

�f)[1] ∩ b̄−1(NΣ2).

Its preimage N̂Σ2 = b̄−1
Γ (NΣ2) ⊂M

×
Γ (

�f)[1] is a subspace with a small subgraph with

2k − 1 vertices. The restriction of b̄Γ to N̂Σ2 is a topological embedding. Hence

the blow-up of B	(M2k,Σ1) along the closure of Σ2 − Σ1 replaces b̄Γ(N̂Σ2) with a

smooth manifold B	(b̄Γ(N̂Σ2),Σ2) with corners. By identifying N̂Σ2 − b̄−1
Γ (Σ2) with

IntB	(b̄Γ(N̂Σ2),Σ2) through b̄Γ, we obtain

M
×
Γ (

�f)[2] = (M
×
Γ (

�f)[1]− b̄−1
Γ (Σ2)) ∪b̄Γ B	(b̄Γ(N̂Σ2),Σ2).

Repeating in this way for Σ3, . . . ,Σ2k, we obtain spaces M
×
Γ (

�f)[3], . . ., M
×
Γ (

�f)[2k].

We set M Γ(�f) = M
×
Γ (

�f)[2k]. By definition this is a compactification of MΓ(�f) as
desired in Proposition 2.5.

Remark 4.2. By abuse of notation, we denote by b̄Γ : M Γ(�f) → C2k(M) the
natural map that assigns the positions of 2k trivalent vertices of a flow graph in M .
In general, b̄Γ may not be an embedding but only an immersion if dimM Γ(�f) = 1.

5. (Co)orientations of the moduli spaces. Let f : M0 → R be a Morse
function and μ be a metric on M0 that is Morse–Smale and that is Euclidean near
critical points with respect to the local coordinate of the Morse lemma. We shall fix
(co)orientations of the trajectory spaces and describe the induced coorientations at
the boundaries. The results in this section also hold for usual Morse functions and
metrics on M .

5.1. Convention for (co)orientations of trajectory spaces. In the following

we follow the orientation convention of Appendix B. Let o(M) ∈ Γ(
∧d

T ∗M) denote a
d-form representing the orientation of M . The trajectory space M2(f) is the image of
the embedding ϕ : (M0−Σ(f))×(0,∞)→ (M0−Σ(f))2 given by ϕ(x, t) = (x,Φt

f (x)).

If x ∈M0 − Σ(f) and if y = ΦT
f (x), we define

o(M2(f))(x,y) = dϕ∗(o(M)x ∧ dT ),

where dϕ∗ is the map corresponding to dϕ : T ((M0 −Σ(f))× (0,∞))→ T (M ×M).
We orient M ×M by o(M ×M)(x,y) = o(M)y ∧ o(M)x. Then the coorientation

o∗M×M (M2(f)) of M2(f) in M ×M is determined by

o∗M×M (M2(f))(x,y) = ∗o(M2(f))(x,y).

We orient Npq(f) = Aq(f)×Dp(f) ⊂M ×M by giving the coorientation

o∗M×M (Npq(f))(x,x′) = o∗M (Aq(f))x ∧ o∗M (Dp(f))x′ ,

where o∗M (Aq(f))x and o∗M (Dp(f))x′ are the ones determined by o(Dp(f)) and
o(Aq(f)) respectively fixed in §2.4.

5.2. (Co)orientations induced on the boundaries of descending and as-
cending manifolds. For a Morse–Smale pair (f, μ) and its critical points p, q, we
shall describe the induced (co)orientations of the faces FrDp(f) (resp. FrA q(f)) of
∂1Dp(f) (resp. ∂1A q(f)) of flow lines broken at a critical point r, which are induced
from the (co)orientation of Dp(f) (resp. A p(f)).
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We consider coorientations of the faces FrDp(f) and FrA q(f) as follows. Let
b̄ : Dp(f) → M be the map that assigns to each (possibly broken) flow sequence
the terminal endpoint. If i(p) − i(r) = 1 and if a is a point of M that is the image
of b̄ from a once broken flow sequence â in ∂1Dp(f) broken at a critical point r ∈
Σ(f), then by Proposition 3.14 there is an open neighborhood Na of a in M such
that b̄−1(Na) is a disjoint union of finitely many half-disks whose set of components

naturally corresponds to the finite set M ′(f ; p, r). Let N̂â be the component of

b̄−1(Na) on which â lies. The restriction of b̄ to N̂â is an embedding and hence the

coorientation of ∂1Dp(f) at a in M makes sense by identifying N̂â with b̄(N̂â). The
same is also true for ∂1A q(f) at a once broken flow sequence broken at r ∈ Σ(f) such
that i(r)− i(q) = 1.

Note that Int b̄(N̂â) is an open subset of Dp(f) and its closure in Na is b̄(N̂â).

Hence the (co)orientation of Dp(f) induces a (co)orientation of the boundary ∂b̄(N̂â)
at a. We define o∗M (∂1Dp(f))a to be the one induced in this way. We also define
o∗M (∂1A q(f))a similarly.

Lemma 5.1. Under the assumption above, let p, r be critical points of f such that
f(p) > f(r) and i(p)− i(r) = 1. Let Na and a ∈ b̄(N̂â) be as above. Let b be a point of

M ′(f ; p, r) such that the component N̂â corresponds to b. Then the following identity
in

∧•
T ∗
aM holds.

o∗M (∂1Dp(f))a = (−1)i(r)εf (p, r)b o∗M (Dr(f))a.

Proof. Put i = i(r). By assumptions f(p) > f(r) and i(p) − i(r) = 1, the
index of r is in 0 ≤ i(r) ≤ d − 1. It suffices to check the assertion for one broken
flow line. By Morse Lemma there is a local coordinate (x1, . . . , xd) around r on

which f agrees with f(r) − x2
1

2
− · · · − x2

i

2
+

x2
i+1

2
+ · · · + x2

d

2
. In this coordinate,

Dr(f) agrees with {(x1, . . . , xd) ∈ Rd;xi+1 = · · · = xd = 0} and Ar(f) agrees with
{(x1, . . . , xd) ∈ Rd;x1 = · · · = xi = 0}. We may put

o(Dr(f)) = β dx1 · · · dxi (β = ±1).
We may assume without loss of generality that Dp(f) agrees with {(x1, . . . , xd) ∈
Rd;xi+1 = · · · = xd−1 = 0, xd > 0} in a neighborhood of r and we may put

o(Dp(f)) = αdx1 · · · dxidxd (α = ±1).
Moreover we may assume that a = (a1, 0, . . . , 0) for some a1 ≥ 0. Then b̄(N̂â) agrees
with {(x1, . . . , xd) ∈ Rd;xi+1 = · · · = xd−1 = 0, xd ≥ 0} ∩Na on Na and

o(∂b̄(N̂â))a = ι

(
−

∂

∂xd

)
αdx1 · · · dxidxd = (−1)i+1

αdx1 · · · dxi = (−1)i+1
αβ o(Dr(f))a.

On the other hand, by assumption we have

o∗M (Dp(f))b = (−1)d−1−iα dxi+1 · · · dxd−1,

o∗M (Ar(f))b = ∗β dxi+1 · · · dxd = (−1)i(d−i)β dx1 · · · dxi

for b = (0, . . . , 0, bd), bd > 0. Hence

o∗M (Dp(f))b ∧ o∗M (Ar(f))b = (−1)di+d−1αβ dxi+1 · · · dxd−1dx1 · · · dxi

= (−1)d−1αβ dx1 · · · dxd−1 = −αβ ι
(
− ∂

∂xd

)
dx1 · · · dxd
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and εf (p, r)b = −αβ. This together with the equality above, we obtain the desired

identity o(∂b̄(N̂â))a = (−1)iεf(p, r)b o(Dr(f))a.

Lemma 5.2. Under the assumption above, let q, r be critical points of f such that
f(q) < f(r) and i(r) − i(q) = 1. Let Na and a ∈ b̄(N̂â) be as above. Let b be a point

of M ′(f ; r, q) such that N̂â corresponds to b. Then the following identity in
∧• T ∗

aM
holds.

o∗M (∂1A q(f))a = −εf(r, q)b o∗M (Ar(f))a.

The proof of Lemma 5.2 is similar to that of Lemma 5.1. See [Wa1] for the proof.
The following corollary shows that the boundary operator ∂ of the Morse complex

satisfies ∂ ◦ ∂(p) = ∑
q

∑
r #M ′(f ; p, r) ·#M ′(f ; r, q) q = 0.

Corollary 5.3. Let p, r, q be critical points of f such that f(q) < f(r) < f(p)

and i(p)− i(r) = i(r)− i(q) = 1. Let Na and a ∈ b̄(N̂â) be as above for â ∈ ∂1Dp(f).

Let b be a point of M ′(f ; p, r) such that N̂â corresponds to b. Then the following
identity in

∧• T ∗
aM holds.

o∗M (∂Dp(f) � Aq(f))a = −εf(p, r)b εf (r, q)a ι(−grad f) o(M)a.

Proof. By Lemma 5.1 and (B.5), o∗M (∂Dp(f) � Aq(f))a is given as follows.

(−1)deg o∗M (Aq(f))a(−1)i(r)εf (p, r)b o∗M (Dr(f))a ∧ o∗M (Aq(f))a

= (−1)i(q)+i(r)εf (p, r)b εf (r, q)a ι(−grad f) o(M)a

= −εf(p, r)b εf (r, q)a ι(−gradf) o(M)a.

If a lies between the levels f(r) and f(p), then one may obtain consistent formula
for o∗M (Dp(f) � ∂A q(f))a by using Lemma 5.2.

5.3. (Co)orientation induced on the boundary of M 2(f). Let f : M0 → R
be a Morse function and μ be a metric on M0 that is Morse–Smale and that is
Euclidean near critical points. For a critical point r of f , we shall describe the induced
orientations of the face FrM 2(f) of ∂1M 2(f) of flow lines broken at a critical point
r, that are induced from the orientation of M 2(f). In the following we again follow
the orientation convention of Appendix B.

Let b̄ : M 2(f)→M ×M be the map that assigns to each (possibly broken) flow
sequence the pair of initial and terminal endpoints. If a ∈ Ar(f) and a′ ∈ Dr(f),
then there are open neighborhoods Na and Na′ of a and a′ in M0 respectively such
that b̄ : b̄−1(Na × Na′) → Na × Na′ is an embedding. Put N̂(a,a′) = b̄−1(Na × Na′).

Then the coorientation o∗M×M (∂1M 2(f))(a,a′) makes sense by identifying N̂(a,a′) with

b̄(N̂(a,a′)).

Note that Int b̄(N̂(a,a′)) is an open subset of M2(f) and its closure in Na×Na′ is

b̄(N̂(a,a′)). Hence the coorientation of M2(f) induces a coorientation of the boundary

∂b̄(N̂(a,a′)) at (a, a
′). We define o∗M×M (∂1M 2(f))(a,a′) to be the one induced in this

way.

Lemma 5.4. Under the assumption above, let a ∈ Ar(f) and a′ ∈ Dr(f). Then

o∗M×M (∂1M 2(f))(a,a′) = (−1)(i(r)+1)do∗M (Ar(f))a ∧ o∗M (Dr(f))a′ .
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Proof. Let i = i(r). By Morse lemma, it suffices to check the assertion for the

standard form h(x1, . . . , xd) = −x2
1

2
− · · · − x2

i

2
+

x2
i+1

2
+ · · · + x2

d

2
in place of f and

for r = (0, · · · , 0). By convention,

o∗
Rd(Dr(h))x = βdxi+1 · · · dxd, o∗

Rd(Ar(h))x = (−1)i(d−i)βdx1 · · · dxi

for some β = ±1.
First, assume i ≥ 1. We assume without loss of generality that a = (0, . . . , 0, ad),

a′ = (a′1, 0, . . . , 0) for some ad ≥ 0 and a′1 > 0. Recall that M 2(h) is the set of
points (ρu, v) × (u, ρv) for u ∈ Ri, v ∈ Rd−i, ρ ∈ [0, 1] (Lemma 3.6). Since the
Jacobian matrix of ϕ(ρ, u, v) = (ρu, v) × (u, ρv) at u = a′ ∈ Ri, v = a ∈ Rd−i

is (3.5), T ∗
ϕ(ρ,u,v)M 2(h) is spanned by a′1dx1 + addyd, ρdx1 + dy1, . . . , ρdxi + dyi,

dxi+1 + ρdyi+1, . . . , dxd + ρdyd if dx1, . . . , dxd (resp. dy1, . . . , dyd) is the standard
basis of T ∗

aR
d (resp. T ∗

a′Rd).In fact, if ρ > 0 and small,

o(M2(h))ϕ(ρ,u,v) ∼ −(a′1dx1 + addyd) ∧
i∧

k=1

(ρdxk + dyk) ∧
d∧

k=i+1

(dxk + ρdyk). (5.1)

Indeed, by convention in §5.1,

o(M2(h))(u,v)×(etu,e−tv) =

i∧
k=1

(dxk + etdyk) ∧
d∧

k=i+1

(dxk + e−tdyk) ∧ dy1

for u �= 0, v �= 0, t > 0. Then

o(M2(h))(u,v)×(etu,e−tv) ∧ dy2 · · · dyd = dx1 · · · dxd ∧ dy1 · · · dyd.

On the other hand,

− (a′1dx1 + addyd) ∧
i∧

k=1

(ρdxk + dyk) ∧
d∧

k=i+1

(dxk + ρdyk) ∧ dy2 · · · dyd

= (a′1 − ρad)ρ
i−1 dy1dx1dx2 · · · dxddy2 · · · dyd

= −(a′1 − ρad)ρ
i−1 dx1 · · · dxd ∧ dy1 · · · dyd.

The coefficient −(a′1 − ρad)ρ
i−1 is negative if ρ is small.

The expression (5.1) is convenient because it extends smoothly to an orientation
of M 2(h) except the point from (u, v) = (0, 0). At the boundary point

(a, a′) = ϕ(0, (a′1, 0, . . . , 0), (0, . . . , 0, ad)) ∈ ∂1M 2(h), a′1 > 0, ad ≥ 0,

the dual of the outward normal vector at (a, a′) is given by −(a′1dx1 + addyd). Hence

o(∂1M 2(h))(a,a′) = dy1 · · · dyidxi+1 · · · dxd,

o∗
Rd×Rd(∂1M 2(h))(a,a′) = (−1)d−idx1 · · · dxidyi+1 · · · dyd

= (−1)(i+1)do∗
Rd(Ar(h))a ∧ o∗

Rd(Dr(h))a′ .
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5.4. Orientations of some faces of ∂Cn(M). Now assume that d = 3. We
shall describe the orientation of the face ∂ijCn(M) := ∂{i,j}Cn(M) induced from the
standard orientation o(M)x1 ∧ o(M)x2 ∧ · · · ∧ o(M)xn of Cn(M). Let

Δij = {(x1, x2, . . . , xn) ∈Mn;xi = xj}.
The interior of the face ∂ijCn(M) is naturally identified with an open subset of
∂B	Δij (M

n). By definition of blow-up, the boundary of B	Δij (M
n) is the normal

sphere bundle of the submanifold Δij . More precisely, let NΔij be the total space
of the normal bundle of Δij . By identifying a small tubular neighborhood of Δij

with that of the zero section of NΔij , we may identify a small collar neighborhood of
∂B	Δij (M

n) with that of ∂B	0(NΔij ).
A framing τ : TM → R3 ×M induces a trivialization φij : NΔij → R3 × Δij .

Namely, if {e(i)1 , e
(i)
2 , e

(i)
3 } is the basis of TxiM induced by τ , then (T�xΔij)

⊥ is spanned

by {e(j)1 − e
(i)
1 , e

(j)
2 − e

(i)
2 , e

(j)
3 − e

(i)
3 } and φij is defined by

φij(a1(e
(j)
1 − e

(i)
1 ) + a2(e

(j)
2 − e

(i)
2 ) + a3(e

(j)
3 − e

(i)
3 ), �x) = (a1, a2, a3)× �x. (�x ∈ Δij)

This is smoothly extended to a trivialization φij : B	0(NΔij ) → B	0(R3) ×Δij . Let
ωp−1 denote the closed (p − 1)-form on B	0(Rp) that is the pullback of the SOp-

invariant volume form
∑p

i=1(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxp (dxi is deleted) on
Sp−1 by the natural map B	0(Rp)→ Sp−1 (see Appendix D). If i < j, let

o(Δij)�x = (−1)jo(M)x1 ∧ · · · ∧ o(ΔM )(xi,xj) ∧ · · · ∧ ô(M)xj
∧ · · · ∧ o(M)xn .

Now we orient ∂B	Δij (M
n) = ∂B	0(NΔij ) as follows.

o(∂B	0(NΔij )) = φ
∗
ij(ω2 ∧ o(Δij)).

This is the one induced from the standard orientation o(M)x1 ∧o(M)x2 ∧· · ·∧o(M)xn

of Cn(M). See [Wa1] for detail.

5.5. Standard co-orientation of MΓ from graph orientation. We shall first
give another definition of MΓ(�f) using M2(f) and Npq(f). For a graph Γ without

bivalent vertices, the space MΓ(�f) can be defined as the intersection of submanifolds
of Cn(M), as follows. Suppose for simplicity that the separated edges of Γ are labeled
1, 2, . . . , a. Let πij : Cn(M) → C2(M) be the projection (x1, . . . , xn) �→ (xi, xj) and
let Θ� and H� be the submanifolds of Cn(M) defined by

Θ� = π−1
ij (M2(f�)), H� = π−1

ij (Np�q�(f�)),

where i = σ(	), j = τ(	). Their codimensions are codimΘ� = 2, codimH� = 3 −
i(p�) + i(q�) = 3− η�. Then we have

MΓ(�f) =
a⋂

j=1

Hj ∩
m⋂

j=a+1

Θj,

where we assume that the intersection is transversal.
Let o∗Cn(M)(Θ�) ∈ Ω2

dR(B) and o∗Cn(M)(H�) ∈ Ω3−η�

dR (B) be differential forms on a

neighborhood B of a point on the crossing MΓ(�f) in Cn(M), defined by

o∗Cn(M)(Θ�) = π∗
ijo

∗
C2(M)(M2(f�)), o∗Cn(M)(H�) = π∗

ijo
∗
C2(M)(Np�q�(f�)).
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We represent co-orientation of MΓ(�f) by a wedge product of o∗Cn(M)(Hj)’s and

o∗Cn(M)(Θj)’s. Let G 0
n,m,Σ(1,1,...,1)(

�C) = G 0
n,m,(2,1,...,1)(

�C) ∪ G 0
n,m,(1,2,1,...,1)(

�C) ∪ · · · ∪
G 0
n,m,(1,1,...,2)(

�C) and G 0
n,m,Σ−1(1,1,...,1)(

�C) = G 0
n,m,(0,1,...,1)(

�C) ∪ G 0
n,m,(1,0,1,...,1)(

�C) ∪
· · · ∪ G 0

n,m,(1,1,...,0)(
�C). We now define the coorientations for the graphs that are

relevant.

5.5.1. Graphs in G 0
2k,3k(

�C), G 0
2k,3k,Σ(1,1,...,1)(

�C), G 0
2k,3k,Σ−1(1,1,...,1)(

�C). Now

we assume that Γ ∈ G 0
2k,3k(

�C), so that codimΘj = codimHj = 2. We shall define

a standard co-orientation of MΓ(�f) in a product of M from the labels and the edge
orientations of Γ, as follows. The labels of trivalent vertices determine the corre-
spondence between V (Γ) and the coordinate (x1, x2, . . . , x2k). The edge orientation
determine which of πij and πji is used to define Θ� orH�. Then we define the standard

co-orientation of MΓ(�f) by the formula

o∗C2k(M)(MΓ(�f)) =

a∧
j=1

o∗C2k(M)(Hj) ∧
3k∧

j=a+1

o∗C2k(M)(Θj) ∈ Ω6k
dR(B).

Since codimΘj and codimHj are even, the order of wedge product does not matter.

This depends only on the orientation o(Γ) of Γ. This gives #MΓ(�f) in §2.5.
The same rule equally works for graphs in G 0

2k,3k,Σ(1,1,...,1)(
�C),

G 0
2k,3k,Σ−1(1,1,...,1)(

�C) etc. without bivalent vertices, since in that case only one

Hj is odd codimensional, so again the coorientation of MΓ(�f) is canonically
determined from the graph orientation by the same formula.

5.5.2. Graphs in G 0
2k,3k,�η(

�C), ηj2 = 2, ηj0 = 0. For a graph in G 0
2k,3k,�η(

�C)
without bivalent vertices such that there is exactly one j with ηj = 2, exactly one
j with ηj = 0 and otherwise ηj = 1, let j2 and j0 be such that ηj2 = 2, ηj0 = 0.
The codimensions of Hj0 and Hj2 are odd. Then we define a standard co-orientation

o∗C2k(M)(MΓ(�f)) of MΓ(�f) by

o∗C2k(M)(Hj0) ∧ o∗C2k(M)(Hj2) ∧
∧

1≤j≤a
j �=j0 ,j2

o∗C2k(M)(Hj) ∧
3k∧

j=a+1

o∗C2k(M)(Θj).

5.5.3. Graphs in G 0
2k,3k,Σ(1,1,...,1)(

�C) with one bivalent vertex. We also con-

sider co-orientations of (not yet defined) MΓ(�f) for graphs Γ ∈ G 0
2k,3k,Σ(1,1,...,1)(

�C)
with only one bivalent vertex. For three possibilities for the position of the bivalent
vertex in Γ, we define MΓ(�f) and its standard co-orientation as follows.

(1) Γ = , i(pi) = i(ri) + 1 = i(qi) + 2. Let Γ′ be the graph obtained

from Γ by removing the segment ∂(i)(pi, ri). In this case, we define

MΓ(�f) = M
′(fi; pi, ri)×MΓ′(�f).

If a point b ∈ M ′(fi; pi, ri) is specified, we may consider a coorientation of {b} ×
MΓ′(�f) in C2k(M) by identifying it with MΓ′(�f). Under these assumptions, we
define

o∗C2k(M)(MΓ(�f))b×(x1,...,x2k) = εf (pi, ri)b o
∗
C2k(M)(MΓ′(�f))(x1,...,x2k).
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(2) Γ = , i(qi) = i(si) − 1 = i(pi) − 2. Let Γ′ be the graph obtained

from Γ by removing the segment ∂(i)(si, qi). In this case, we define

MΓ(�f) = M
′(fi; si, qi)×MΓ′(�f).

If a point b ∈ M ′(fi; si, qi) is specified, we may consider a coorientation of {b} ×
MΓ′(�f) in C2k(M) by identifying it with MΓ′(�f). Under these assumptions, we
define

o∗C2k(M)(MΓ(�f))b×(x1,...,x2k) = εf (si, qi)b o
∗
C2k(M)(MΓ′(�f))(x1,...,x2k).

(3) Γ = . In this case, o∗C2k(M)(MΓ(�f)) is determined by the intersection of

H ′
� = π−1

ij (Ar�(f�)×Dr�(f�)) (codimension i(r�)+(3−i(r�)) = 3) with the intersection

of Θj’s and Hj ’s of codimension 2. We define o∗C2k(M)(MΓ(�f)) by

o∗C2k(M)(Hj2 ) ∧
∧

1≤j≤a
j �=j2

o∗C2k(M)(Hj) ∧ o∗C2k(M)(H
′
�) ∧

∧
a+1≤j≤3k

j �=�

o∗C2k(M)(Θj).

5.6. Induced coorientation on ∂M Γ. Now we define boundary operators,
which formally describe the boundary of moduli space of flow graphs. We define a

linear map d : Gn,m,�η(�C)→⊕�
j=1 Gn−1,m−1,(η1,...,η̂j ,...,η�)(C

(1)
∗ , . . . , Ĉ

(j)
∗ , . . . , C

(�)
∗ ) by

d(Γ, o) =
∑

e∈Comp(Γ)

(Γ/e, induced ori),

where for ej = (u, v) (u, v: vertices) the induced orientation of Γ/ej is formally given

by −ι(v∗)(v1 ∧ · · · ∧ vn) ∧ (e+1 ∧ e−1 )∧
j

ˆ· · · ∧(e+m ∧ e−m), where v∗ is the dual of v with
respect to the standard inner product of RB(Γ) and ι is the interior product. Also, let
d′Γ =

∑
e∈Comp(Γ)∪Se(Γ) d

′
eΓ, where

d′e =
∑

ri∈P
(i)
∗

(−1)i(ri) (β(i) = e),

d′e =
∑

ri∈P
(i)
∗

i(ri)=i(pi)−1

(−1)i(qi) +
∑

si∈P
(i)
∗

i(si)=i(qi)+1

(−1)i(si) ,

(β(i) = e), where the orientation of d′eΓ is the naturally induced one.

Let b̄Γ : M Γ(�f) → C2k(M) be the map which gives the positions of the 2k

trivalent vertices in a flow-graph (Remark 4.2). We call a face of M Γ(�f) corresponding
to a degeneration of one of the terms in (d + d′)Γ a principal face. We call a face of

M Γ(�f) that is not principal a hidden face. When Γ consists only of compact edges, we

define the anomalous face of M Γ(�f) as the hidden face corresponding to the collapse

of all the 2k points. Let M
hi

Γ (
�f) denote the union of all the hidden faces of M Γ(�f).
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Proposition 5.5. Suppose d = 3 and (�f, �μ) is generic as in Proposition 2.5.

For Γ ∈ G 0
2k,3k,Σ(1,...,1)(

�C) without bivalent vertices, there is a natural diffeomorphism

∂M Γ(�f) ∼= M (d+d′)Γ(�f)
∐

M
hi

Γ (�f)

of oriented 0-manifolds (for some orientation of M
hi

Γ (�f)), where M Γ1+···+Γr = M Γ1+
· · ·+ M Γr .

Proof. We shall compare the co-orientation of a face of ∂M Γ(�f) induced from

o∗C2k(M)(MΓ(�f)) and the standard one of the same face of ∂M Γ(�f) fixed in §5.5.
Suppose that Γ ∈ G 0

2k,3k,�η(
�C) has no bivalent vertex and that there is only one

number j2 with ηj2 = 2 and η� = 1 for 	 �= j2. As in §5.5, we consider MΓ(�f) as the
intersection of the chains Hj ’s and Θj ’s in C2k(M).

For a number 	 such that 1 ≤ 	 ≤ 3k, let

Σ� =

{ ⋂
1≤j≤a

j �=�
Hj ∩

⋂3k
j=a+1 Θj if 1 ≤ 	 ≤ a⋂a

j=1 Hj ∩
⋂

a+1≤j≤3k
j �=�

Θj if a+ 1 ≤ 	 ≤ 3k

Then by Proposition 2.4, codimΣ� = codimMΓ(�f)− codimH� = (2kd− (2k− 3k)d−
3k − 1)− (d+ η�) = 6k − 4− η� ≡ η� (mod 2).

First, we consider the faces corresponding to the collapse of a compact edge. We
check that the contribution of such faces is M dΓ(�f). We consider the principal face
corresponding to the collapse of the 	-th edge of Γ. By convention,

o(M 2(f�))(x,y) = o(ΔM )(x,x) ∧ (−df�)y +O(d(x, y)),

where d(x, y) is the geodesic distance. Let ξ = −gradf�. The orientation induced on
the face ΔM of ∂M 2(f�) is

ι(ξx ⊕ (−ξy))o(ΔM )(x,x) ∧ (−df�)y = −o(ΔM )(x,x) (if x = y).

This implies that the coorientation of the boundary of M 2(f�) on ∂B	ΔM (M2) is given

by ω2, showing that the contribution of a collapse of a compact edge is M dΓ(�f).

Let X be one of the graphs that appear in the sum d′β(k)Γ. We shall describe

the co-orientation of the face SX of ∂M Γ(�f) corresponding to X induced from the

standard co-orientation of MΓ(�f) in C2k(M).

(1) X = , where p�, q�, r� ∈ Σ(f�). By Lemma 5.1, (B.3) and (B.5),

the co-orientation of SX induced from the standard one

o∗C2k(M)(MΓ(�f)) = o∗M (Aq�(f�)) ∧ o∗M (Dp�
(f�)) ∧ o∗C2k(M)(Σ�) (5.2)

is given by

(−1)d−1(−1)2kd−1(−1)i(r�)(−1)η�εf (p�, r�)b o
∗
M (Aq�(f�)) o

∗
M (Dr�(f�)) o

∗
C2k(M)(Σ�)

= (−1)i(q�)εf (p�, r�)b o∗C2k(M)(MΓ′(�f)) = (−1)i(q�) o∗C2k(M)(MX(�f)).
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(2) X = , where p�, q�, s� ∈ Σ(f�). By Lemma 5.2, (B.3) and (B.5),

the co-orientation of SX induced from the standard one (5.2) is given by

− (−1)d−1(−1)2kd−1(−1)3−i(p�)(−1)η�εf (s�, q�)b o
∗
M (As�(f�)) o

∗
M (Dp�(f�)) o

∗
C2k(M)(Σ�)

= (−1)i(s�)εf (s�, q�)b o
∗
C2k(M)(MΓ′(�f)) = (−1)i(s�)o∗C2k(M)(MX(�f)).

(3) X = , where r� ∈ Σ(f�). The induced co-orientation on the boundary is

as in Lemma 5.4, which differs from the standard coorientation by (−1)i(r�)+1+η� =
(−1)i(r�).

Now we have seen that the signs in the formula of the definition of d′ are consistent
with the induced co-orientations on the boundary of M Γ(�f).

6. Independence of combinatorial propagator. In the definition of
Z2k,3k(�f), a sequence �g = (g1, . . . , g3k) of combinatorial propagators for �C is chosen.

Recall that Z2k,3k(�f) = Tr�g(γ̃2k,3k) for γ̃2k,3k =
∑

Γ∈G 0
2k,3k(

�C) #MΓ(�f) Γ ∈ G2k,3k(�C).

In this section, we shall prove the following lemma.

Lemma 6.1. Z2k,3k(�f) = Tr�g(γ̃2k,3k) does not depend on the choice of �g.

6.1. Boundary strata of M Γ.

Proposition 6.2. Suppose d = 3. Let Γ be a graph in G 0
2k,3k,Σ(1,...,1)(

�C) without

bivalent vertices. For a permutation σ ∈ S3k and for a subset τ ⊂ E(Γ), let Γτ
σ denote

the labeled graph obtained from Γ by permuting the labels of edges by σ and reversing
the orientations of all the edges in τ . For �f generic, we have∑

σ∈S3k

∑
τ⊂E(Γ)

(−1)|τ |#M (d+d′)Γτ
σ
(�f) =

∑
σ∈S3k

∑
τ⊂E(Γ)

(−1)|τ |#∂M Γτ
σ
(�f) = 0. (6.1)

The sum in the LHS of (6.1) can be considered as a part of the sum∑
Γ #M (d+d′)Γ(�f) Γ because the sign (−1)|τ | will be canceled out with the change

of the graph orienation: Γτ
σ = (−1)|τ |Γ. For the proof of Proposition 6.2, we need

two lemmas, which are analogues of Kontsevich’s lemma [Ko, Lemma 2.2]. In the

following H is a subgraph of Γ ∈ G 0
2k,3k,Σ(1,...,1)(

�C) with only compact edges.

Lemma 6.3. Suppose that H has a bivalent black vertex a and that the edges of
H including the vertex a are (b, a) and (a, c) where b and c are both black vertices (it
may happen that b = c). Let H ′ be the labeled graph obtained from H by exchanging
labels for edges (b, a) and (a, c). Let α(H) and α(H ′) be the chains of M given by the

projections M
local

H (�γ)→M and M
local

H′ (�γ)→M , respectively. Then we have

α(H) + α(H ′) = 0.

Proof. Let n = |V (H)| and let (x1, . . . , xn) ∈ C
local

n (R3) be a point on M
local

H (�γ).
Suppose that the vertices a, b and c of H correspond to xα, xβ and xγ respectively.

Then consider the automorphism s : C
local

n (R3) → C
local

n (R3) which sends xα to

xβ + xγ − xα and fixes other points. Then s exchanges M
local

H (�γ) and M
local

H′ (�γ).
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Put yα = xβ + xγ − xα and θ(	)(x,y) = o∗
R3×R3(Θ�(γ�))(x,y) (see Definition 2.7). Let

Vα ∈
∧3

TxαR
3 and V ′

α ∈
∧3

TyαR
3 be nontrivial elements that give the orientation

of R3. Then the evaluation with Vα (resp. with V ′
α) gives a map

∧k
(TxαR

3+Txβ
R3+

TxγR
3)→ ∧k−3

(Txβ
R3+TxγR

3) (resp.
∧k

(TyαR
3+Txβ

R3+TxγR
3)→ ∧k−3

(Txβ
R3+

TxγR
3)) and we have

〈θ(	)(xβ ,xα) ∧ θ(	′)(xα,xγ), Vα〉 = 〈s∗(θ(	)(yα,xγ) ∧ θ(	′)(xβ ,yα)), Vα〉
= 〈θ(	)(yα,xγ) ∧ θ(	′)(xβ ,yα), ds∗Vα〉 = −〈θ(	′)(xβ ,yα) ∧ θ(	)(yα,xγ), V

′
α〉.

This implies that the projections (xα, xβ , xγ) �→ (xβ , xγ) and (yα, xβ , xγ) �→ (xβ , xγ),

whose fiber in M
local

H (�γ) and M
local

H′ (�γ) is at most 0-dimensional, induce opposite
chains.

The following lemma can be proved in the same way as Lemma 6.3.

Lemma 6.4. Suppose that H has a bivalent black vertex a and that the edges of
H including the vertex a are (a, b) and (a, c) where b and c are both black vertices (it
may happen that b = c). Let H ′ be the labeled graph obtained from H by exchanging
labels for edges (a, b) and (a, c) and reversing the orientations of both edges. Let

α(H) and α(H ′) be the chains of M given by the projections M
local

H (�γ) → M and

M
local

H′ (�γ)→M , respectively. Then we have

α(H) + α(H ′) = 0.

Lemma 6.5. Suppose that H has a univalent black vertex a and |V (H)| ≥ 3.
Then M local

H (�γ) admits a smooth free R-action.

Proof. Suppose that the edge of H including the vertex a is (a, b) where b is a
black vertex. There is a dilation of the linear trajectory corresponding to (a, b) in
M local

H (�γ), which fixes points in V (H)− {a}. Since |V (H)| ≥ 3, this R-action is free

in C
local

n (R3) and gives a desired R-action.

Proof of Proposition 6.2. The assumption Γ ∈ G 0
2k,3k,Σ(1,...,1)(

�C) implies that

M Γ(�f) is 1-dimensional by Proposition 2.4. Obviously, #∂M Γτ
σ
(�f) = 0. Hence

by Proposition 5.5, it suffices to prove that the contributions of the hidden faces
cancel each other out in the sum. For a subset A of V (Γ), let ΓA denote the
subgraph of Γ such that V (ΓA) = A and E(ΓA) consists of all edges of E(Γ) be-
tween points in A. Suppose Γ and A are such that E(ΓA) = Comp(ΓA). Let
�fA ⊂ �f be the subsequence corresponding to the subset E(ΓA) ⊂ E(Γ) and let

−grad �fA = (−gradfi1 , . . . ,−gradfi|A|
), where i1, . . . , i|A| are the labels of the edges

in ΓA. According to the description of ∂Cn(M) in §4.2, the face of ∂M Γ(�f) coming
from the face ∂ACn(M) is diffeomorphic to the pullback of the diagram

M Γ/ΓA
(�f \ �fA)→M ←M

local

ΓA
(−grad �fA),

which is at most an oriented 0-manifold. Here, we consider M
local

ΓA
(−grad �fA) as a

subspace of the C
local

|A| (R3)-bundle over B	(M,
⋃

i∈A Σ(fi)). If |A| ≥ 3, then since Γ is

a graph in G 0
2k,3k,Σ(1,...,1)(

�C), the subgraph ΓA must have bivalent or univalent black
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vertices or none of them. If |A| = 2 and ΓA is a ‘double-edge’, namely, consists of two
black vertices and two compact edges connecting them, then ΓA has a bivalent black
vertex.

If ΓA has a bivalent black vertex, then we have α(ΓA)+α(Γ′
A) = 0 by Lemma 6.3

or 6.4. Hence by taking the sum over σ and τ , the contributions of ΓA with bivalent
vertex cancel with each other. If ΓA has a univalent black vertex, then the dimension

of the image of the projection M
local

ΓA
(−grad �fA)→M decreases by 1 by Lemma 6.5

and the total dimension of the corresponding face is −1, in which case the face is
generically empty.

If E(ΓA) = ∅, then Γ/ΓA has a vertex of valence ≥ 6. In this case, one can see

by Proposition 2.4 that M Γ/ΓA
(�f \ �fA) = M Γ/ΓA

(�f) = ∅ if �f is generic.

Finally, we must check that there are no contribution of ∂A∪{∞}C2k(M) for

generic �f . This has been checked in [Sh]. We outline the proof with our notations.
We may identify the interior of ∂A∪{∞}C2k(M) with C2k−j(M)× C∞

j (R3), where

C∞
j (R3) =

{
(y1, . . . , yj) ∈ Cj(R

3);

j∑
�=1

‖y�‖2 = 1
}
.

Let f∞
j : R3 → R (j = 1, 2, . . . , 3k) be the linear map such that ϕ∗∞f∞

j agrees with fj

near ∞M . Let �f∞ = (f∞
1 , . . . , f∞

3k ) and let B = V (Γ) \A. Suppose that E(Γ/ΓB) =

Comp(Γ/ΓB). Let M∞
Γ/ΓB

(�f∞\ �f∞
B ) be the space of affine graphs (Γ,ΓB)→ (R3, {0})

modulo the dilation of R3 whose edge not in E(ΓB) labeled 	 follows the negative gra-

dient of f∞
� . Then (the interior of) the face of ∂M Γ(�f) coming from ∂A∪{∞}C2k(M)

is diffeomorphic to MΓB (
�fB) ×M∞

Γ/ΓB
(�f∞ \ �f∞

B ). The configuration space C∞
j (R3)

is (3j − 1)-dimensional. If the number of edges in E(Γ) that intersect both V (ΓA)

and V (ΓB) is m, then the codimension of M∞
Γ/ΓB

(�f∞ \ �f∞
B ) is 2 × 3j+m

2 = 3j +m.

Since m is non-negative, the codimension exceeds dimC∞
j (R3) = 3j−1 and the mod-

uli space M∞
Γ/ΓB

(�f∞ \ �f∞
B ) must be empty. Hence there are no face of ∂M Γ(�f) in

∂A∪{∞}C2k(M).

These together with Proposition 5.5 imply the proposition.

6.2. Independence of combinatorial propagator. Let ∂(i)(x, y) denote the

graph where x, y ∈ P
(i)
∗ . Let Γ be a �C-colored graph having a separated edge

β(i) ∈ Se(Γ) such that basis elements x and y ∈ P
(i)
∗ attached on the input and

output white vertex, respectively. To specify that Γ has such an edge, we will write
Γ = Γ(x, y)i. This notation allows us to express the graph obtained from Γ by
replacing x and y with x′ and y′ respectively, as Γ(x′, y′)i. We will write Γ(∅, ∅)i the
graph obtained from Γ by replacing the separated edge β(i) with a compact edge.
We denote by ∂(i)(pi, ri)∗Γ(ri, qi)i or Γ(pi, ri)∗∂(i)(ri, qi) the composition (one point

union) of two graphs at the univalent vertices on which ri is attached, and let ∂
(i)
piri ∈ Z

be the coefficient in ∂(i)pi =
∑

ri
∂
(i)
piriri.

Proof of Lemma 6.1. We prove the assertion for �g = (g, g(2), . . . , g(m)) and �g′ =
(g′, g(2), . . . , g(m)), where g and g′ are two combinatorial propagators for (C

(1)
∗ , ∂(1)).

As mentioned in §C, there exists an endomorphism h ∈ End2(C
(1)
∗ ) such that ∂(1)h−
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h∂(1) = g − g′. Then the difference Trg,...(γ̃2k,3k)− Trg′,...(γ̃2k,3k) equals

Trg−g′,...

[ ∑
Γ(p1,q1)1

i(p1)=i(q1)+1

#MΓ(p1,q1)1(
�f) Γ(p1, q1)1

]
= Tr∂(1)h−h∂(1),...

[ ∑
Γ(p1,q1)1

#MΓ(p1,q1)1(
�f) Γ(p1, q1)1

]
= Trh,...

[ ∑
Γ(p1,q1)1

∑
x1∈P

(1)
∗

i(x1)=i(p1)+1

∂(1)
x1p1

·#MΓ(p1,q1)1(
�f) Γ(x1, q1)1

−
∑

Γ(p1,q1)1

∑
y1∈P

(1)
∗

i(y1)=i(q1)−1

∂(1)
q1y1

·#MΓ(p1,q1)1(
�f) Γ(p1, y1)1

]

= Trh,...

[ ∑
Γ(p1,q1)1

∑
x1

#M∂(1)(x1,p1)∗Γ(p1,q1)1(
�f) Γ(x1, q1)1

−
∑

Γ(p1,q1)1

∑
y1

#MΓ(p1,q1)1∗∂(1)(q1,y1)(
�f) Γ(p1, y1)1

]
.

(6.2)

We show that (6.2) vanishes. We write �C[j] = (C
(1)
∗ , . . . , Ĉ

(j)
∗ , . . . , C

(m)
∗ ) and

�η[j] = (η1, . . . , η̂j , . . . , ηm) for simplicity. If we define d∗ :
⊕m

j=1 Gn−1,m−1,�η[j](�C[j])→
Gn,m,�η(�C) by the coefficient of 1⊗Γ in

∑
Γ′∈G 0

n,m,�η
(�C) Γ

′⊗ dΓ′, then Im d∗ is the span

of the IHX-relation.
Let p′1, q

′
1 ∈ P

(1)
∗ be such that i(p′1) = 	 and i(q′1) = 	−2. Then we consider graphs

of the form Γ(p′1, q′1)1. We denote by pi = pi(Γ(p
′
1, q

′
1)1) and qi = qi(Γ(p

′
1, q

′
1)1) the

critical points attached on the input and the output white vertex of the i-th edge of
Γ(p′1, q

′
1)1, respectively. By Proposition 6.2, the following expression vanishes:

Trh,...
[ ∑

Γ(p′1,q′1)1∈

G0
n,m,(2,1,...,1)

(�C)

#M(d+d′)Γ(p′1,q
′
1)1

(�f) Γ(p′1, q
′
1)1

]

= Trh,...
[ ∑

Γ′(p′
1
,q′

1
)1∈

∏
j G0

n−1,m−1,(2,1,...,1)[j]
(�C[j])

#MΓ′(p′1,q
′
1)1

(�f) d∗Γ′(p′1, q
′
1)1 +

∑
Γ(p′

1
,q′

1
)1∈

G0
n,m,(2,1,...,1)

(�C)

#Md′Γ(p′1,q
′
1)1

(�f) Γ(p′1, q
′
1)1

]

= Trh,...
[ ∑
Γ(p′1,q

′
1)1

( ∑
r′1∈P

(1)
�−1

(−1)�#M∂(1)(p′1,r
′
1)∗Γ(r′1,q

′
1)1

(�f)

+ (−1)�−1#MΓ(p′1,r
′
1)1∗∂

(1)(r′1,q
′
1)
(�f)

)
Γ(p′1, q

′
1)1

+
∑

Γ(p′1,q
′
1)1

∑
i�=1

i/∈Comp(Γ(p′
1
,q′

1
)1)

( ∑
ri∈P

(i)
i(pi)−1

(−1)i(pi)−1#M∂(i)(pi,ri)∗Γ(p′1,q
′
1)1(ri,qi)i

(�f)

+
∑

ri∈P
(i)
i(pi)

(−1)i(pi)#MΓ(p′1,q
′
1)1(pi,ri)i∗∂

(i)(ri,qi)
(�f)

)
Γ(p′1, q

′
1)1

+
∑

Γ(p′1,q
′
1)1

∑
e∈Comp(Γ(p′

1
,q′

1
)1)

e�=1

#Md′eΓ(p′1,q
′
1)1

(�f) Γ(p′1, q
′
1)1

]
.

In this expression, the first line agrees with (−1)� times the part of (6.2) of i(x1) =
i(y1) = 	 − 1. The vanishing of the last two lines can be shown as follows: for each
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p′1, q′1 ∈ P
(1)
∗ with i(p′1) = i(q′1) + 2 and for i �= 1, we have

Trh,...,g(i),...

[ 3∑
j=1

∑
pi∈P

(i)
j

qi∈P
(i)
j−1

( ∑
ri∈P

(i)
j−1

(−1)j−1#M∂(i)(pi,ri)∗Γ(p′
1,q

′
1)1(ri,qi)i

(�f)

+
∑

ri∈P
(i)
j

(−1)j#MΓ(p′
1,q

′
1)1(pi,ri)i∗∂(i)(ri,qi)(

�f)
)
Γ(p′1, q

′
1)1(pi, qi)i

]

= Trh,...,∂(i)g(i)+g(i)∂(i),...

[ 3∑
j=0

(−1)j
∑

p′
i,q

′
i∈P

(i)
j

#MΓ(p′
1,q

′
1)1(p

′
i,q

′
i)i
(�f) Γ(p′1, q

′
1)1(p

′
i, q

′
i)i

]

= Trh,...,id,...

[ 3∑
j=0

(−1)j
∑

r′i∈P
(i)
j

#MΓ(p′
1,q

′
1)1(r

′
i,r

′
i)i
(�f) Γ(p′1, q

′
1)1(r

′
i, r

′
i)i

]
.

This cancels with the corresponding term in

Trh,...

[ ∑
e∈Comp(Γ(p′1,q′1)1)

e�=1

#Md′
eΓ(p

′
1,q

′
1)1

(�f) Γ(p′1, q
′
1)1

]
.

This completes the proof.

7. Independence of 4-cobordism and sections on it.

7.1. Spin cobordism invariance of Zanomaly
2k,3k . In this section we assume that

M is a Z-homology 3-sphere. We say that two compact spin 4-manifolds W and
W ′ with ∂W = ∂W ′ = M are relatively spin cobordant if there is a compact spin 5-
manifold V with corners with ∂V = (−W )∪∂ ([0, 1]×M)∪∂ W

′ whose spin structure
is an extension of those of −W and W ′.

Proposition 7.1. Let W and W ′ be two compact spin 4-manifolds with ∂W =
∂W ′ = M and χ(W ) = χ(W ′) = 1 as in Lemma 2.9 (1). If W and W ′ are relatively
spin cobordant, then the following assertions hold.

(1) There exists a framing τM of TM0 such that the associated 4-framing τ ′M of
Lemma 2.9 can be extended to 4-framings of both TW and TW ′. Hence one
can find sequences of GM sections �γW ∈ Γ(T vW )3k and �γW ′ ∈ Γ(T vW ′)3k

with �γW |M−U ′
∞

= �γW ′ |M−U ′
∞

= −grad �f .
(2) For any such extensions �γW and �γW ′ , which are generic in the sense of Propo-

sition 2.12 (1), we have

Zanomaly
2k,3k (�γW ) = Zanomaly

2k,3k (�γW ′). (7.1)

Proof. (1) PutX = (−W )∪g ([0, 1]×M)∪g′W ′, where the gluing maps g : −∂W =
−M → {0} ×M and g′ : ∂W ′ = M→ {1} ×M are the natural ones. By assumption,

we have [X ] = 0 ∈ Ωspin
4 . There is a 5-dimensional compact spin manifold V with

corners with ∂V = X whose smooth structure near [0, 1]×M is isomorphic to that of
[0, 1]×W . Then TV restricts on the boundary to a vector bundle that is isomorphic
to ε1 ⊕ TX .
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By the isomorphism sign : Ωspin
4

∼→ 16Z and by Hirzebruch’s signature theorem
signX = 1

3 〈p1(TX), [X ]〉 for X closed, it follows that

p1(TW
′; τ ′M )− p1(TW ; τ ′M ) = 〈p1(ε1 ⊕ TX), [X ]〉 = 3 signX = 0

for any choice of τM . By choosing τM suitably, we may assume that p1(TW ; τ ′M ) =
p1(TW

′; τ ′M ) = 0 by Lemma 2.9 (2). By Lemma 2.9 (2), such a 4-framing τ ′M extends
to 4-framings on both W and W ′.

(2) Since the 4-framings τW and τW ′ obtained in (1) above are extensions of τ ′M ,
they can be trivially extended to a sub 4-framing τX of ε1 ⊕ TX by the product
structure of [0, 1]×M. The sub 3-framing of τX whose restriction to {0}× (M −U ′

∞)
agrees with τM spans a rank 3 subbundle T vX of ε1⊕TX . Then there is a piecewise
smooth GM sections �γX of T vX , which is a gluing of �γW , �γW ′ and pr−1�γW |M−U ′

∞
∈

Γ(T v([0, 1]× (M − U ′
∞)))3k together at the boundary. By definition of Zanomaly

2k,3k ,

Zanomaly
2k,3k (�γX) = Zanomaly

2k,3k (�γW ′)− Zanomaly
2k,3k (�γW ). (7.2)

Then Lemma 7.2 below completes the proof.

Lemma 7.2. Let X and �γX be as in the proof of Proposition 7.1 (2). Then we

have Zanomaly
2k,3k (�γX) = 0.

We use the following lemma in the proof of Lemma 7.2.

Lemma 7.3. Let X be as in the proof of Proposition 7.1 (2) and τX be as above.
Then X

∐
X bounds a compact connected parallelizable 5-manifold V on which the

stabilization of the 4-framing τX
∐

τX extends as a 5-framing.

Proof. Since X is spin null-cobordant, there exists a compact connected spin 5-
manifold V with corners with ∂V = X . We first consider the obstruction to extending
the stable framing n⊕τX of ε1⊕TX to a 5-framing on TV , where n is the unit vector
field normal to the span of τX with respect to a metric of V .

Since V is spin and since π2(SO5) = 0 and π3(SO5) ∼= Z, the first obstruction
o1(V ;n ⊕ τX) to the extension lies in the group H4(V, ∂V ;π3(SO5)) ∼= H1(V ;Z).
We shall see that we may assume that this group is trivial after changing V by
surgery. It is easy to see that any class in H1(V ;Z) can be realized by an embedding
f : S1 → IntV . Since V is oriented, the normal bundle Nf of the image of f is trivial.
By a surgery along a framed embedding (f, τf ), i.e., attaching of a 6-dimensional 2-
handle along a tubular neighborhood of Im f through the trivialization, the homology
class [f ] can be eliminated. Moreover, by replacing the 4-framing τf suitably, we may
assume that the resulting 5-manifold of the surgery is spin since π1(SO4)→ π1(SO5)
and π1(SO4) → π1(SO6) are isomorphisms. Namely, choose a 5-framing τ2 on an
open neighborhood U of the 2-skeleton of a CW structure on V . We may assume
after an isotopy that the image of f is included in U . Since π1(SO5, SO4) = 0, τ2 can
be deformed to a 5-framing τ ′2 whose restriction to Im f consists of tangent vectors of
f and a normal 4-framing of Im f . The obstruction to extending a stabilization of τ ′2
to a 6-framing on the 2-handle D2 × D4 lies in H2(D2, ∂D2;π1(SO6)) ∼= Z2, which
can be removed by a π1(SO4)-twist of the attaching map. Since π2(SO6, SO5) = 0,
the 6-framing on the 2-handle can be modified so that its restriction to the 2-skeleton
of the boundary of the 6-dimensional 2-handle is a stabilization of a 5-framing. Now
the 2-skeleton of the result of the surgery is framed. Hence the result of the surgery
is spin again.
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Now we assume H1(V ;Z) = 0 by doing surgeries as above if necessary.
Then the next obstruction o2(V ;n ⊕ τX) for the extension lies in the group
H5(V, ∂V ;π4(SO5)) ∼= Z2 since π4(SO5) = Z2. To eliminate o2(V ;n ⊕ τX), we
consider the connected sum V ′ = V#V taken between the interiors. Then one can
check that the obstruction o2(V

′;n⊕ τX
∐

n⊕ τX) ∈ H5(V ′, ∂V ′;π4(SO5)) vanishes
in any case. This completes the proof.

Proof of Lemma 7.2. We prove Zanomaly
2k,3k (�γX) = 0 by constructing cobordisms of

moduli spaces. Let V be a compact parallelizable 5-manifold with ∂V = X
∐

X as
in Lemma 7.3. Roughly, we will construct 1-dimensional moduli spaces M local

Γ (�γ) in
a fiber bundle over V for each 3-valent graph Γ and we will see that

2Zanomaly
2k,3k (�γX) =

∑
Γ∈G2k,3k

#∂M
local

Γ (�γ) [Γ] = 0.

Since the replacement of X with X
∐

X and V with V#V changes Zanomaly
2k,3k (�γX)

just by a multiple of 2, it is enough for our purpose to assume that the obstruction
o2(V ;n⊕ τX) vanishes in advance. Because of this we assume for simplicity that we
have a framed 5-manifold (V, τV ) that extends (X,n⊕ τX).

We shall now define the moduli space M local
Γ extended over V . Let Γ be a

labeled graph in G 0
2k,3k. Since we assume that the 5-framing τV extends n ⊕ τX ,

we have a sub 3-framing of τV that is an extension of the 3-framing of T vX and
it spans a rank 3 subbundle T vV of TV . Moreover by Lemma 2.10 there is a GM
extension �γ = (γ1, . . . , γ3k) ∈ Γ(T vV )3k of �γX . Since for each j, Σ(γj) is a compact
2-submanifold of V , we may arrange that Σ(γj)’s are disjoint from each other by a
general position argument. Then we consider the blow-up q : V → V , where

V = B	(V,
∐3k

�=1 Σ(γ�)).

We identify IntV with V −∐
�Σ(γ�) by q. Consider the pullback bundle q∗TV over V

and we set T vV = q∗T vV . Note that T vV is not a subbundle of TV . We identify the

total space of the C
local

2k (R3)-bundle associated to T vV with V × C
local

2k (R3) via the
trivialization τV . The nowhere zero sections γ1, . . . , γ3k of T v(V −∐

� Σ(γ�)) extends
smoothly to nowhere zero sections of T vV . We denote by Θ�(γ�) the closure of Θ�(γ�)

in V ×C
local

2k (R3), which is a compact oriented submanifold with boundary. Then we
may define the compact moduli space

M
local

Γ (�γ) =

3k⋂
�=1

Θ�(γ�) ⊂ V × C
local

2k (R3). (7.3)

We shall see that this gives a desired 1-cobordism. We need two lemmas.

Claim 1. After a C0-small perturbation of �γ in Γ(T vV )3k without affecting the

general (disjoint) positions for Σ(γj)’s, we may arrange that M
local

Γ (�γ) is a com-

pact smooth 1-submanifold of V × C
local

2k (R3) and that the 1-manifold M
local

Γ (�γ) is

transversal to ∂V × C
local

2k (R3).

Proof. The restriction for the singularities of GM sections γj given in §2.8.2 is
used here. Let Γ′ be the graph obtained from Γ by replacing E(Γ) with E(Γ)−{β(j)},
let Vj = V −∐

� �=j Σ(γ�) and V j = B	(V,
∐

� �=j Σ(γ�)). Let π′ : V × C
local

2k (R3) → V
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Fig. 5. The intersection in π′−1
j (B�(Ux, Ux ∩Σ(γi)))

and π′
j : V j ×C

local

2k (R3)→ V j be the projections. Then as mentioned in the proof of

Proposition 2.12 (1), M local
Γ′ (�γ\{γj}) is a submanifold of Vj×C local

2k (R3) of codimension

6k− 2, i.e., 3-dimensional, and we may define its compactification M
local

Γ′ (�γ \ {γj}) as
the closure of M local

Γ′ (�γ \ {γj}) in V j × C
local

2k (R3).

We denote by M
local

Γ′ (�γ \ {γj};V ) the closure of M local
Γ′ (�γ \ {γj}) ∩ π′−1(V −∐3k

�=1 Σ(γ�)) in V ×C
local

2k (R3). This can be obtained from M
local

Γ′ (�γ\{γj}) by blowing-

up π′−1Σ(γj) in V j × C
local

2k (R3). Then we have

M
local

Γ (�γ) = Θj(γj) ∩M
local

Γ′ (�γ \ {γj};V ) ⊂ V × C
local

2k (R3).

M
local

Γ (�γ) may have boundary points on π′−1q−1(Σ(γj)). Such boundary points can-

not always be avoided since the 3-manifold M
local

Γ′ (�γ \ {γj}) may intersect the codi-

mension 3 submanifold π′−1
j (Σ(γj)) of V j ×C

local

2k (R3). After a small perturbation of
γj in a small neighborhood of Σ(γj), we may arrange that the intersection of the two

submanifolds is transversal and that π′
j(M

local

Γ′ (�γ \ {γj})) and Σ(γj) are transversal.

We shall give a local description of M
local

Γ′ (�γ \ {γj};V ) near the transversal inter-

section. Take a point x ∈ M
local

Γ′ (�γ \ {γj}) � π′−1
j (Σ(γj)) and a small open neighbor-

hood U ′
x of x in V j × C

local

2k (R3) so that U ′
x contains exactly one intersection point.

Let Ux = π′
j(U

′
x). After a suitable C0-small perturbation of �γ \ {γj} in a small

neighborhood of Σ(γj), we may arrange that
(i) π′

j(x) is a Morse singularity of γj and Ux ∩ Σ2(γj) = ∅,
(ii) π′

j(M
local

Γ′ (�γ\{γj})) is tangent to T vV j at π
′
j(x). (This is possible since Σ(γj)

is transversal to both T vV j and π′
j(M

local

Γ′ (�γ \ {γj})).)
We consider the blow-up B	(Ux, Ux ∩ Σ(γj)) and let

M
local

Γ′ (�γ \ {γj};Ux) = M local
Γ′ (�γ \ {γj}) ∩ π′−1

j (Ux − Σ(γj)) (the closure)

in B	(Ux, Ux ∩ Σ(γj)) × C
local

2k (R3). Since M
local

Γ′ (�γ \ {γj}) is transversal to

π′−1
j (Σ(γj)) ∩ U ′

x, M
local

Γ′ (�γ \ {γj};Ux) is a submanifold of B	(Ux, Ux ∩ Σ(γj)) ×
C

local

2k (R3) with boundary that meets ∂B	(Ux, Ux ∩Σ(γj))×C
local

2k (R3) transversally.
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Fig. 6.

On the other hand, Θj(γj) ⊂ (V − ∐3k
�=1 Σ(γ�)) × C

local

2k (R3) has the closure

Θj(γj ;Ux) in B	(Ux, Ux ∩ Σ(γj)) × C
local

2k (R3) that is a submanifold with boundary

that meets ∂B	(Ux, Ux ∩ Σ(γj)) × C
local

2k (R3) transversally since Ux ∩ Σ(γj) consists
only of Morse singularities. By the assumption (ii), the intersection of Θj(γj ;Ux) and

M
local

Γ′ (�γ \ {γj};Ux) is transversal even on the boundary and forms a 1-submanifold

of B	(Ux, Ux ∩ Σ(γj))× C
local

2k (R3) with boundary. Let

M
local

Γ (�γ;Ux) = Θj(γj ;Ux) � M
local

Γ′ (�γ \ {γj};Ux).

See Fig. 5 for a schematic illustration. M
local

Γ (�γ;Ux) is a local model of M
local

Γ (�γ).

Clearly M
local

Γ (�γ;Ux) is transversal to ∂B	(Ux, Ux ∩ Σ(γj)) × C
local

2k (R3). By simi-
lar arguments for other intersection points x and for other j, we may arrange that

M
local

Γ (�γ) is transversal to the boundary.

Claim 2. If �γ is as in Claim 1, then the boundary contribution of M
local

Γ (�γ) at

the ‘inner’ boundary (∂V −∂V )×C
local

2k (R3) is canceled with that of some other graph
Γ∗ by symmetry, namely,

#∂M
local

Γ (�γ;Ux) [Γ] + #∂M
local

Γ∗ (�γ;Ux) [Γ
∗] = 0.

Proof. By the assumption (ii) in the proof of Claim 1, the boundary of

π′
j(M

local

Γ (�γ;Ux)) lies in the fiber S2
x of the unit sphere bundle S(T vV ) at π′

j(x).
Let Γ∗ denote the graph obtained from Γ by reversing the orientation of the edge
labeled j. Notice that there are individual terms for Γ and Γ∗ in the formula of

Zanomaly
2k,3k (�γX) in Definition 2.11. Since M

local

Γ (�γ;Ux)
∐

M
local

Γ∗ (�γ;Ux) is transversal

to ∂B	(Ux, Ux∩Σ(γj))×C
local

2k (R3) by Claim 1 and since on a neighborhood of Σ(γj)

there is a symmetry between the moduli spaces M
local

Γ (�γ;Ux) and M
local

Γ∗ (�γ;Ux) by
the assumption (i) and by the symmetry of the standard model around a Morse point,

the intersection of π′
j(M

local

Γ (�γ;Ux)
∐

M
local

Γ∗ (�γ;Ux)) with ∂B	(Ux, Ux ∩ Σ(γj)) con-

sists of two points in S2
x that are in an antipodal position. Hence one may see that

#∂M
local

Γ (�γ;Ux) [Γ] + #∂M
local

Γ∗ (�γ;Ux) [Γ
∗]

=
(
#∂M

local

Γ (�γ;Ux)−#∂M
local

Γ∗ (�γ;Ux)
)
[Γ]

=
(
#∂M

local

Γ (�γ;Ux)−#∂M
local

Γ (�γ;Ux)
)
[Γ] = 0.

Here, the second equality follows by the facts that the symmetry reverses the orienta-

tion of Θj , and that the inward normal vectors at ∂M
local

Γ (�γ;Ux) and ∂M
local

Γ∗ (�γ;Ux)
are opposite. See Fig. 5 and 6.
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We continue the proof of Lemma 7.2. Now by Claims 1 and 2,

0 =
∑

Γ∈G 0
2k,3k

#∂M
local

Γ (�γ) [Γ] = Zanomaly
2k,3k (�γX)−

∑
Γ∈G 0

2k,3k

#M
local

dΓ (�γ) [Γ].

The second term in the RHS vanishes by the IHX relation of A2k,3k.

Remark 7.4. Proposition 7.1 shows that Zanomaly
2k,3k (�γW ) does not depend on the

GM extension �γW of −grad �f . However, we fixed a diffeomorphism ϕ∞ : U ′
∞ → U∞

and extension τ ′M of n ⊕ τM , so we must check that Zanomaly
2k,3k (�γW ) does not depend

on these choices. It will be checked in Lemma 10.1.

7.2. Well-definedness of the correction term. To prove Proposition 2.12
(2), we consider general pairs of spin 4-manifolds W and W ′ with ∂W = ∂W ′ = M ,
χ(W ) = χ(W ′) = 1 which may not be relatively spin cobordant. We choose 3-framings
σM and τM on TM0 so that

p1(TW ; τ ′M ) = p1(TW
′;σ′

M ) = 0,

which are canonical up to homotopy. Then by Lemma 2.9, τ ′M extends to a 4-framing
of W and σ′

M extends to a 4-framing of W ′. But τM may not be homotopic to σM , so
we may not have a stable framing of ε1⊕TX ,X = (−W )∪g ([0, 1]×M)∪g′W ′, namely,
X may be just almost parallelizable. Although we do not have a stable framing of
ε1 ⊕ TX , we have a rank 3 (possibly nontrivial) subbundle T vX of ε1 ⊕ TX that
agrees with pr∗1TM0 on [0, 1]×M0, which extends those spanned by σM and τM . By

Lemma 2.10, there exists a GM sections �γX ∈ Γ(T vX)3k extending −grad �f and one

can define Zanomaly
2k,3k (�γX) ∈ A2k,3k.

More generally, one can also define Zanomaly
2k,3k (�γX) for any almost parallelizable,

closed, connected, spin 4-manifold4 with χ(X) = 2. Namely, by a straightforward
analogue of [KM, Theorem 2.2], the restriction of a framing on X − Int ([0, 1]×D3)
to ∂([0, 1]×D3) can be deformed to a framing of the form pr−1

1 τD3 ⊕ pr−1
2 τ[0,1] if and

only if χ(X) = 2.

Let Ωspin
4 (2) denote the set of spin cobordism classes of closed, connected, spin 4-

manifolds X with χ(X) = 2. By the same argument as in the proof of Lemma 7.2, one

may see that the assignment X �→ Zanomaly
2k,3k (�γX) for generic �γX defines a well-defined

map

Zanomaly
2k,3k : Ωspin

4 (2)→ A2k,3k.

The set Ωspin
4 (2) has a group structure given by connected sum. More precisely, if

X is a closed, connected, spin 4-manifold with χ(X) = 2, then there is a framing on
X − [0, 1] × D3. If X ′ is another closed, connected, spin 4-manifold with χ(X ′) =
2, then by forming the boundary connected sum X − [0, 1]×D3 �X ′ − [0, 1]×D3

and capping by [0, 1] × D3 along the boundary in a natural way, we will obtain an
almost parallelizable, closed, connected, spin 4-manifold X ′′ with χ(X ′′) = 2 that is

diffeomorphic to X#X ′. This defines an abelian group structure on Ωspin
4 (2) on which

the inverse of X is given by −X .

4Note that any compact connected spin 4-manifold is almost parallelizable. Thus the assumption
of almost parallelizability is unnecessary.
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Lemma 7.5. The map Zanomaly
2k,3k : Ωspin

4 (2)→ A2k,3k is a group homomorphism.

Proof. If [X ] = 0 ∈ Ωspin
4 (2), then we have 0 = signX = 1

3 〈p1(ε1X⊕TX), [X ]〉 and
χ(X) = 2, thus by Lemma 2.9, the stabilization of the 4-framing on ∂X − [0, 1]×D3

induced from that ofX−[0, 1]×D3 extends overX . Namely, X is stably parallelizable.

Then by the same argument as in the proof of Lemma 7.2, we have Zanomaly
2k,3k (�γX) = 0

for any generic GM sections �γX ∈ (Γ(T vX))3k. The additivity of Zanomaly
2k,3k follows

from the fact that Zanomaly
2k,3k is invariant under spin cobordism as shown in Propo-

sition 7.1, and that X
∐

X ′ and X#X ′ are spin cobordant. Hence Zanomaly
2k,3k is a

homomorphism.

Proof of Proposition 2.12 (2). By Lemma 7.5, Zanomaly
2k,3k is a restriction of a group

homomorphism Ωspin
4 → A2k,3k. So there exists a constant μk ∈ A2k,3k such that

Zanomaly
2k,3k (�γX) = μk signX,

for X = (−W )∪g ([0, 1]×M)∪g′ W ′. By (7.2) and by the additivity of the signature,

Zanomaly
2k,3k (�γW ′ )− Zanomaly

2k,3k (�γW ) = μk signX = μk signW
′ − μk signW.

This completes the proof.

8. Moduli space of gradient flow graphs in 1-parameter family. The
next two sections contain preliminaries for the proof of the main Theorem 2.13, which
are 1-parameter analogues of the results in §3 to §5. We consider generic 1-parameter
families of smooth functions fs : M0 → R and metrics μs on M0 parametrized by
s ∈ [0, 1], and see what happens to the moduli spaces of flow graphs during the
homotopy {(fs, μs)}s∈[0,1]. We shall extend the definition of the moduli spaces M2(f)

and MΓ(�f) to those for 1-parameter families (§8.2) and give their compactifications
to smooth manifolds with corners. Proofs of some lemmas that are analogous to the
lemmas appeared previously will be a bit brief to make the paper not too long.

8.1. Bifurcations in 1-parameter family of smooth functions and met-
rics. Let f, f ′ : M0 → R be two Morse functions. Then there exists a smooth
1-parameter family {fs : M0 → R}s∈[0,1] of functions on M0 such that f0 = f and
f1 = f ′ and fs is standard near ∞M with respect to a chart ϕ∞s : U ′

∞s → U∞
(∞M ∈ U ′∞s), where we say that a 1-parameter family {fs}s∈[0,1] is smooth if the
map F : [0, 1]×M0 → R, F (s, x) = fs(x) is smooth. It is known that F can be chosen
so that for all s ∈ [0, 1], fs does not have higher singularities.

Lemma 8.1 ([Ce]). Two Morse functions on a manifold can be connected by a
smooth 1-parameter family of smooth functions with only Morse or birth-death (A2)
singularities.

The proof of the lemma can be found in [Lau, §4.3].
In the following, we will often identify a smooth 1-parameter family {fs}s∈[a,b] of

functions on M0 with the smooth map F : [0, 1]×M0 → R, F (s, x) = fs(x). Under
this identification, we consider fs as both a map M0 → R and a map {s} ×M0 → R.
We will consider Dp(fs) etc as subsets of M0 or M0 ×{s}, depending on the context.

Let {(fs, μs)}s∈[0,1] be a smooth 1-parameter family of smooth functions and
metrics such that (f0, μ0) and (f1, μ1) are Morse–Smale. Here we say that the family
{μs}s∈[0,1] of metrics is smooth if it is the restriction of a smooth metric on [0, 1]×M0



A GENERALIZATION OF FUKAYA’S INVARIANT OF 3-MANIFOLDS I 155

that is standard near [0, 1]×∞M . We will sometimes call s ∈ [0, 1] a time and we say
that a time s0 ∈ [0, 1] is a bifurcation if (fs0 , μs0) is not Morse–Smale or not ordered.

Lemma 8.2 ([HW](p. 42), Lemma 2.11 of [Hu]). After a perturbation of
{(fs, μs)}s∈[0,1] fixing endpoints, we may arrange that there are finitely many bifurca-
tion times in [0, 1] each of which is one of the following.

(1) Level exchange, i.e., a time where the order of the critical values changes.
(2) Birth-death bifurcation, i.e., a time s where Σ(fs) consists of Morse singu-

larities and one birth-death singularity.
(3) i/i-intersection ([HW]), i.e., a time where a family of descending manifolds

and a family of ascending manifolds of the same index i intersect transversally
in [0, 1]×M .

(4) A time where the intersection of a descending manifold and an ascending
manifold is not transversal.

We may assume that no two different bifurcations overlap on a single time. (We will
call such a 1-parameter family a generic 1-parameter family.)

At a bifurcation, the topologies of the moduli spaces M ′(fs; ps, qs), ps, qs ∈ Σ(fs),
may change.

Lemma 8.2 can be proved as follows. By Lemma 8.1 and by definition of bifurca-
tions, it is enough to prove (3) and (4) of the lemma in the case where fs is ordered
Morse for all s ∈ [0, 1] (see Lemma 3.1 for the definition of ordered Morse function).
Put J = [0, 1]. It suffices to prove that for a pair of critical loci p = {ps}s∈J and

q = {qs}s∈J , the submanifolds Ãp(fJ) =
⋃

s∈J Aps(fs) and D̃q(fJ) =
⋃

s∈J Dqs(fs) of
J×M0 can be made transversal. They are indeed submanifolds of J×M0 for a similar
reason as the descending and ascending manifolds are submanifolds of M0. Namely,
by the parametrized Morse lemma ([Ig2, Appendix]) one may see that they are sub-
manifolds on a neighborhood of the critical locus and then extended by the gradient
flow without changing its diffeomorphism type. By modifying the 1-parameter family
{μs}s∈J of metrics on M0 suitably, one can show, by a similar argument as the proof

of the genericity of the Morse–Smale condition (see e.g. [Pe]), that Ãp(fJ)’s and

D̃q(fJ)’s intersect mutually transversal in the trivial M0-bundle over J after a fiber-
wise small perturbation of the metrics. Note that even if so, it may not be true that
Aps(fs) and Dqs(fs) are transversal for every s. If the transversality of Aps(fs) and
Dqs(fs) for i(ps) = i(qs) fails, then s is of type (3). For other indices, the intersection

Ãp(fJ) ∩ D̃q(fJ) is a submanifold of J ×M0. Let L̃ be a level surface locus for fJ
such that for each s ∈ J , L̃∩ ({s}×M) is a level surface of fs that lies between fs(ps)

and fs(qs). We may assume that the map pr : (̃A p(fJ ) ∩ D̃q(fJ )) ∩ L̃ → J induced

from the projection J×M0 → J is Morse for every pair (p, q) of distinct critical loci5.
There are finitely many6 critical values of pr, which are bifurcations of type (4).

We say that a 1-parameter family (fJ , μJ) = {(fs, μs)}s∈J of Morse pairs satisfies
the parametrized Morse–Smale condition if for every pair (p, q) of critical loci of fJ
the intersection of Ãp(fJ ) and D̃q(fJ) is transversal.

5If Ãp(fJ ) and D̃q(fJ ) are transversal, then that Aps(fs) and Dqs (fs) are transversal is equivalent

to that s is a regular value of pr : Ãp(fJ )∩D̃q(fJ ) → J . This can be checked by applying the formula
dim V +W = dim V + dim W − dim V ∩W for vector spaces twice.

6The finiteness is proved by using compactifications of Ãp(fJ ) and D̃q(fJ ) given later. Although
we use Lemma 8.2 in the construction of the compactification, there is no problem in this because
we do not use the finiteness of the bifurcations for the compactifications.
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Fig. 7. Cerf’s graphic equipped with the information of i/i-intersections

It is convenient to represent bifurcations in a 1-parameter family by the graph of
critical values, equipped with the information of i/i-intersections. See Fig. 7 for an
example. Such a diagram is called Cerf’s graphic ([Ce]). In a graphic, a level exchange
corresponds to a crossing of two curves, an i/i-intersection between a pair of critical
points is represented by a dotted arrow, and a birth-death bifurcation corresponds to
beaks.

8.2. Moduli space MΓ in 1-parameter family and transversality. Let
{(fs, μs)}s∈[0,1] be a generic 1-parameter family. Let J = [s0, s1] be a closed interval
in [0, 1] on which {(fs, μs)}s∈J does not have birth-death bifurcation. We consider

a 1-parameter family �fs = (fs, f2, . . . , fm), s ∈ J , and extend the definition of the

moduli space MΓ(�f) to the family �fJ = {�fs}s∈J .

The moduli space MΓ(�fs) for a generic parameter s ∈ J is defined similarly as

MΓ(�f) by replacing f1 in the definition of MΓ(�f) (§2.4) with fs, μ1 with μs and critical
points with critical loci. For graphs Γ with dimMΓ < 0 with respect to the formula
of Proposition 2.4, the moduli space MΓ(�fs) is empty at a generic parameter s, but

we will see that MΓ(�fs) may be non-empty at finitely many non-generic parameters

in J if the formula of Proposition 2.4 gives dimMΓ(�fs) = −1.
Proposition 8.3. Let {(fs, μs)}s∈J be a generic 1-parameter family with no

birth-death bifurcation as above and let �C be the sequence (C(s0), C(2), C(3), . . . , C(m))
of acyclic complexes, where C(s0) is the Morse complex for (fs0 , μs0). Suppose that

Γ ∈ G 0
n,m,�η(

�C) has no bivalent vertex. For a generic choice of {(fs, μs)}s∈J , the

space MΓ(�fJ) =
⋃

s∈J MΓ(�fs), �fJ = {(fs, f2, . . . , fm)}s∈J , is a smooth submanifold
of J × Cn(M) of dimension (n−m)d+

∑m
i=1 ηi + 1.

For simplicity, we only check the transversality on the moduli space MΓ(�fJ) for
the special graph

Γ = ∈ G
0
4,6(

�C) (8.1)

since other cases are similar. Suppose that �fs0 = (fs0 , f2, . . . , f6) ∈ (Cr
ϕ∞

(M0))
6 is

generic in the sense of Proposition 2.4. We decompose Γ into two parts:

Γ′ = , and Γ′′ = .
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The moduli space MΓ′′( �f ′′) ⊂ C4(M), �f ′′ = (f2, . . . , f6), is given by MΓ′′( �f ′′) =
pr1(Φ

−1
�f ′′
(Δ′′)), where Φ �f ′′ : C4(M)× R5

+ →M9
0 is defined by

Φ �f ′′(x1, . . . , x4, t2, . . . , t6)

= (x1, x2,Φ
t2
f2
(x1), x3,Φ

t4
f4
(x1),Φ

t5
f5
(x2), x4,Φ

t3
f3
(x2),Φ

t6
f6
(x3)),

and Δ′′ = {(x1, x2, x2, x3, x3, x3, x4, x4, x4) ; x1, x2, x3, x4 ∈ M0}. By the genericity

of �fs0 , we may assume that MΓ′′( �f ′′) is a submanifold of C4(M) of dimension (4d+
5)+4d−9d = 5−d. On the other hand, the moduli space MΓ′(fJ) =

⋃
s∈J MΓ′(fs) is

given by the (d+η1+1)-dimensional manifold Npq(fJ) =
⋃

s∈J Npq(fs) ⊂ J×C2(M).

Then we have MΓ(�fJ ) = π̃−1
14 (MΓ′(fJ)) ∩ (J ×MΓ′′( �f ′′)), where π̃14 : J × C4(M)→

J × C2(M) is the projection (s, x1, x2, x3, x4) �→ (s, x1, x4). By the transversality
theorem, we may assume after a small perturbation like Lemma 4.1 of the family
{(fs, μs)}s∈J that the intersection is transversal, and hence MΓ(�fJ) =

⋃
s∈J MΓ(�fs)

is a submanifold of dimension (d+η1+1+2d)+(5−d+1)−(4d+1) = −2d+(η1+5)+1.
If the first edge of Γ were a compact edge, then MΓ′(fJ) would be replaced with
M2(fJ) =

⋃
s∈J M2(fs).

8.3. Compactification of the moduli space M2 of trajectories in 1-
parameter family of Morse pairs. Let J ⊂ [0, 1] be a compact interval and
let {(fJ , μJ)}s∈J be a generic 1-parameter family without birth-death bifurcation,
namely, fJ is a 1-parameter family of Morse functions. We construct compactifica-
tions of the spaces

M2(fJ) =
⋃
s∈J

M2(fs), Npq(fJ) =
⋃
s∈J

Npq(fs) ⊂ J ×M2
0 .

The goal of this subsection is to prove the following proposition.

Proposition 8.4. Let (fJ , μJ) = {(fs, μs)}s∈J be a generic 1-parameter family
of Morse pairs that satisfies the parametrized Morse–Smale condition. There is a
natural compactification M 2(fJ) of M2(fJ ) =

⋃
s∈J M2(fs) such that

(1) The complement of b̄−1(Δ̂M ) in M 2(fJ), where b̄ : M 2(fJ) → M ×M is
the smooth extension of the evaluation map M2(fJ)→M0×M0, is a smooth
manifold with corners.

(2) The codimension k stratum of M2(fJ) − b̄−1(Δ̂M ) for k ≥ 1 consists of
families of k times broken trajectories and ∂k−1M 2(f∂J), the codimension

k − 1 stratum of M 2(f∂J)− b̄−1(Δ̂M ) in ∂J ×M .

Let b̄J : M 2(fJ )→ (J ×M)× (J ×M) be the evaluation map with time, which
is defined for a possibly broken trajectory γ in {s} × M with b̄(γ) = (x, y) to be
b̄J(γ) = (s, x)× (s, y). For a critical locus p = {ps}s∈J of fJ , we write

C Ãp(fJ) = b̄−1
J ((J ×M)× p), C D̃p(fJ) = b̄−1

J (p× (J ×M)).

Let b̄A : C Ãq(fJ )→ J ×M (resp. b̄D : C D̃p(fJ)→ J ×M) be the map that assigns
the initial endpoint (resp. terminal endpoint) of a possibly broken flow line. Let
ΔJ ×M2 be the subset of (J ×M)2 consisting of points of the form (s, x)× (s, y) and
let

N pq(fJ ) = (b̄A × b̄D)−1(ΔJ ×M2) ⊂ C Ãq(fJ)× C D̃p(fJ).
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Let bb : C Ãq(fJ ) × C D̃p(fJ ) → M × M be the composition of b̄A × b̄D and the

projection (J ×M)2 →M ×M . For subsets Ã, B̃ ⊂ J ×M , let Ã×J B̃ = (Ã× B̃) ∩
(ΔJ ×M2) and let

M2(fJ ; Ã, B̃) = M2(fJ) ∩ (Ã×J B̃).

The following corollaries are immediate consequences (analogue of Proposition 3.14)
of Proposition 8.4.

Corollary 8.5. Let (fJ , μJ) = {(fs, μs)}s∈J be a generic 1-parameter fam-
ily of Morse pairs as in Proposition 8.4 and let p be a critical locus of fJ . Then

C D̃p(fJ ) (resp. C Ãp(fJ )) is a compactification of D̃p(fJ) (resp. Ãp(fJ )) such that

the complement of b̄−1(Δ̂M ) in C D̃p(fJ) (resp. C Ãp(fJ)) is a smooth manifold with
corners whose codimension k stratum for k ≥ 1 consists of families of k times broken
trajectories and ∂k−1Dp(f∂J) (resp. ∂k−1A p(f∂J)).

Corollary 8.6. Let (fJ , μJ) = {(fs, μs)}s∈J be a generic 1-parameter family of
Morse pairs as in Proposition 8.4 and let p, q be critical loci of fJ . Then N pq(fJ)

is a compactification of Npq(fJ) such that the complement of bb−1(Δ̂M ) in N pq(fJ)
is a smooth manifold with corners whose codimension k stratum for k ≥ 1 consists of
families of k times broken trajectories and ∂k−1N pq(f∂J).

8.3.1. The moduli space M 2(fJ ) around a level exchange bifurcation.
We first construct the compactification of M2(fJ ) around level exchange bifurcations
(Lemma 8.2 (1)) and then extend to whole of J . In the construction of M 2(f) (in
§3.3), we assumed that the critical values of f are all distinct (Lemma 3.1). However,
this is not the case for a 1-parameter family, due to level exchange bifurcations. We
consider the space of ‘semi-short’ trajectories that are close to an exchanging pair of
critical loci to construct a compact space of trajectories around the level exchange
bifurcation. Let u ∈ J be a level exchange bifurcation and choose a small compact
interval Ju = [u − ε, u+ ε] so that there are no other bifurcations over Ju. We shall
prove the following lemma.

Lemma 8.7. Let Ju be as above and suppose that μJu is such that μs is Euclidean
near Σ(fs) for each s ∈ Ju. If ε is sufficiently small, then there is a natural compact-

ification M 2(fJu) of M2(fJu) such that M 2(fJu) − b̄−1(Δ̂M ) is a smooth manifold
with corners whose codimension k stratum for k ≥ 1 consists of families of k times
broken trajectories and ∂k−1M 2(fu±ε).

Let p = {ps}s∈Ju, q = {qs}s∈Ju be the pair of critical loci of fJu = {fs}s∈Ju that
are in a level exchange position. Then there exist smooth functions γa, γb : Ju → R
such that

(1) γa(s) < γb(s) for all s ∈ Ju,
(2) fs(ps), fs(qs) ∈ (γa(s), γb(s)) for all s ∈ Ju,
(3) for each s ∈ Ju, there are no critical points of fs in f−1

s [γa(s), γb(s)] except
ps and qs.

We put L̃a =
⋃

s∈Ju
f−1
s (γa(s)), L̃b =

⋃
s∈Ju

f−1
s (γb(s)), Wpq(s) = f−1

s [γa(s), γb(s)],
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Fig. 8.

W̃pq =
⋃

s∈Ju
Wpq(s), all considered as subsets of Ju ×M0. We define

M 2(fJu ; L̃b, L̃a) = Closure(M2(fJu ; L̃b, L̃a)) ⊂ L̃b ×Ju L̃a,

M 2(fJu ; L̃b, W̃pq) = Closure(M2(fJu ; L̃b, W̃pq)) ⊂ L̃b ×Ju W̃pq,

M 2(fJu ; W̃pq , L̃a) = Closure(M2(fJu ; W̃pq, L̃a)) ⊂ W̃pq ×Ju L̃a,

M 2(fJu ; W̃pq , W̃pq) = Closure(M2(fJu ; W̃pq, W̃pq)) ⊂ W̃pq ×Ju W̃pq.

Lemma 8.8. Suppose that D̃p(fJu) ∩ Ãq(fJu) = ∅. Then the following hold.

(i) M 2(fJu ; L̃b, L̃a)−ΔJ ×{∞2
M} is a submanifold of L̃b×Ju L̃a with boundary

whose boundary consists of once broken flow sequences and the moduli spaces
at endpoints of Ju.

(ii) M 2(fJu ; L̃b, W̃pq)−ΔJ ×{∞2
M} is a submanifold of L̃b×Ju W̃pq with corners

whose boundary consists of once broken flow sequence and of points in L̃b×Ju

∂W̃pq and the moduli spaces at endpoints of Ju.

(iii) M 2(fJu ; W̃pq, L̃a) −ΔJ × {∞2
M} is a submanifold of W̃pq ×Ju L̃a with cor-

ners whose boundary consists of once broken flow sequences and of points in
∂W̃pq ×Ju L̃a and the moduli spaces at endpoints of Ju.

(iv) M 2(fJu ; W̃pq, W̃pq) − Δ̂
W̃pq

is a submanifold of W̃pq ×Ju W̃pq with corners

whose boundary consists of once broken flow sequences and of points in
∂(W̃pq ×Ju W̃pq) ∪ Δ̂

W̃pq
and the moduli spaces at endpoints of Ju.

Proof. First, we prove (i). We assume for simplicity that both p and q are neither

maximal nor minimal for all s ∈ Ju. Let K̃p =
⋃

s∈Ju
(Dps(fs) ∪ Aps(fs)) ∩Wpq(s)

and K̃q =
⋃

s∈Ju
(Dqs(fs) ∪ Aqs(fs)) ∩ Wpq(s). See Fig. 8. Take small compact

neighborhoods B̃p and B̃q of K̃p ∩ L̃b and K̃q ∩ L̃b respectively in L̃b. Let Ãp ⊂ L̃a

be the union of K̃p ∩ L̃a and the subset of L̃a consisting of points (s, 	) such that

	 = Φt
fs
(x) for a point x ∈ B̃p ∩ ({s} ×M0) and for some t > 0. In other words, Ãp

be the union of K̃p ∩ L̃a and the image of the negative gradient flow from B̃p ∩ L̃b.

Ãq ⊂ L̃a is defined similarly for K̃q ∩ L̃a. Let C̃p be the subset of W̃pq consisting of

points (s, x) such that either (s, x) ∈ K̃p or such that the integral curve γx of gradμs
fs

in {s} ×M0 with γx(0) = (s, x) intersects B̃p. C̃q ⊂ W̃pq is defined similarly for K̃q

and B̃q.

Since K̃p ∩ K̃q = ∅, we may assume that any trajectory starting from B̃p (resp.

B̃q) are disjoint from trajectories starting from the complement of B̃p (resp. B̃q).
Thus we have

M2(fJu ; B̃p, L̃a) = M2(fJu ; B̃p, Ãp), M2(fJu ; B̃q, L̃a) = M2(fJu ; B̃q, Ãq), (8.2)
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and in particular, the two moduli spaces are disjoint in M2(fJu ; L̃b, L̃a). Since each

of C̃p and C̃q has only one critical locus, the compactifications M 2(fJu ; B̃p, Ãp),

M 2(fJu ; B̃q, Ãq) can be defined in a similar way as Lemma 3.7 (using parametrized
Morse lemma [Ig2, Appendix], assuming μs is Euclidean with respect to the lo-
cal coordinate). They are smooth manifolds with boundary and are closures of

M2(fJu ; B̃p, Ãp) and M2(fJu ; B̃q, Ãq) in L̃b ×Ju L̃a. In accordance with (8.2), we
define

M 2(fJu ; B̃p, L̃a) = M 2(fJu ; B̃p, Ãp), M 2(fJu ; B̃q, L̃a) = M 2(fJu ; B̃q, Ãq).

We construct an extension of M 2(fJu ; B̃p, L̃a)
∐

M 2(fJu ; B̃q, L̃a) to M 2(fJu ; L̃b, L̃a)

as follows. Let X̃ ⊂ L̃b be the closure of the complement of B̃p ∪ B̃q. Since there is

no critical loci except p and q in W̃pq, the negative gradient flow carries X̃ diffeomor-

phically onto a compact subset Ỹ of L̃a, where Ỹ is the closure of the complement
of Ãp ∪ Ãq. Hence M2(fJu ; X̃, L̃a) = M2(fJu ; X̃, Ỹ ) ≈ X̃, which is compact. The

union M 2(fJu ; B̃p, L̃a)∪M2(fJu ; X̃, L̃a)∪M 2(fJu ; B̃q, L̃a) is a smooth manifold with

boundary and is the closure of M2(fJu ; L̃b, L̃a) in L̃b ×Ju L̃a, namely, agrees with

M 2(fJu ; L̃b, L̃a).

For the compactifications M 2(fJu ; L̃b, W̃pq), M 2(fJu ; W̃pq, L̃a),

M 2(fJu ; W̃pq, W̃pq) etc. we consider M 2(fJu ; L̃b, C̃p), M 2(fJu ; C̃p, L̃a),

M 2(fJu ; C̃p, C̃p) etc. by a similar way as the unparametrized case and extend
them as previous paragraph.

Proof of Lemma 8.7. We may assume that all the critical loci except p and q are
ordered over the interval Ju and according to Lemma 8.2, we may assume that (fs, μs)
is Morse–Smale for all s ∈ Js if ε is sufficiently small. Thus fiber-product construction
similar to Lemma 3.13 can be applied with the moduli spaces in Lemma 8.8 and we will
finally get a compactification M 2(fJu) of M2(fJu). Then straightforward analogues

of Lemmas 3.11, 3.12 and 3.13 show that M 2(fJu)− b̄−1(Δ̂M ) is a smooth manifold
with corners satisfying the conditions of the lemma.

By the same construction at all the level exchange points u1, u2, . . . , ur ∈ Ju, we
will obtain a compactification M 2 on

∐r
j=1 Juj .

Remark 8.9. We assumed in Lemma 8.7 that μs is Euclidean near critical loci
with respect to the local coordinate of parametrized Morse lemma. However, this
assumption is not essential because if μs is not Euclidean near critical loci, then the
flow lines near a critical locus are the images of flow lines in Ju×R3 for the standard
quadratic form with respect to the Euclidean metric of R3 under a fiber-preserving
diffeomorphism defined on a neighborhood of Ju × {0}. This remark will be taken
into account to make sure that the compactification M 2(fJ) in Proposition 8.4 is
consistent with that at a birth-death bifurcation.

8.3.2. The moduli space M 2(fJ) on ordered 1-parameter family of
Morse pairs. Next, we extend the compactifications of moduli spaces on

∐r
j=1 Juj ,

given in §8.3.1, over the whole of J . We assume u1 < u2 < · · · < ur. Let Ij ⊂ J ,
j = 0, 1, 2, . . . , r be a sequence of mutually disjoint compact intervals such that

(1)
⋃r

j=0 Ij ∪
⋃r

j=1 Juj = J ,
(2) Int Ij ∩ IntJuj �= ∅ if j > 0, and Int Ij ∩ IntJuj+1 �= ∅ if j < r,
(3) (

∐r
j=0 Ij) ∩ {u1, . . . , ur} = ∅,
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Fig. 9.

(4) Ij ⊂ (uj , uj+1) if 1 ≤ j < r.

See Fig. 9. We shall construct a compactification M 2(fIj ) of M2(fIj ), which connects

M 2(fJuj
) and M 2(fJuj+1

).

Lemma 8.10. Let Ij be as above. Then there is a natural compactification

M 2(fIj ) of M2(fIj ) such that M 2(fIj ) − b̄−1(Δ̂M ) is a smooth manifold with cor-
ners whose codimension k stratum for k ≥ 1 consists of families of k times broken
trajectories and ∂k−1M 2(f∂Ij ).

Proof. For each j, the critical values are consistently ordered over Ij , so we can
separate critical loci by families of level surfaces of fs. The compactification of the
moduli space of trajectories that lie in a piece between level surfaces can be done as
before, by means of the parametrized Morse lemma (e.g., [Ig2, Appendix]) and by the
same argument as §3.3.

Recall that in Lemma 3.11, the Morse–Smale condition is required. However, the
Morse–Smale condition may not be satisfied for all s ∈ Ij . For example, it fails at an
i/i-intersection bifurcation, as we have seen at Lemma 8.2. Instead, we require the
parametrized Morse–Smale condition and this suffices for the moduli space to be a
smooth submanifold of a fiber bundle over Ij (with fiber C2(M)), though the moduli
space may not be a subbundle. Using the parametrized Morse–Smale condition in the
fiber-product constructions by straightforward analogues of Lemmas 3.11, 3.12 and
3.13, we may get a compactification M 2(fIj ) as desired.

Proof of Proposition 8.4. It remains to check that the compactifications obtained
on Juj and Ij in Lemmas 8.7 and 8.10 respectively can be glued smoothly on the

overlapping intervals Ij ∩ Juj and Ij ∩ Juj+1 . Let L̃1, . . . , L̃N−2 be the loci of level

surfaces for fJuj
that are used to define M 2(fuj ) and let L̃′

1, . . . , L̃
′
N−1 be the loci

of level surfaces for fIj that are used to define M 2(fIj ). We may assume without

loss of generality that L̃i and L̃′
j are disjoint for any i, j (see Remark 3.5(3)). Let

M
∩
2 (fJuj

∩Ij ) be the compactification of M2(fJuj
∩Ij ) defined by using the loci of level

surfaces L̃1, . . . , L̃N−2, L̃
′
1, . . . , L̃

′
N−1. Note that there may be intervals of heights

between level surfaces that do not have critical loci. The fiber product construction
as Lemma 3.11 with M 2 for such an interval does not yield new corners. The forgetful
maps give natural embeddings

M
∩
2 (fJuj

∩Ij )→M 2(fJuj
), M

∩
2 (fJuj

∩Ij )→M 2(fIj )
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which gives a strata preserving gluing map between M 2(fJuj
) and M 2(fIj ). We

consider M
∩
2 (fJuj

∩Ij ) as a subspace of both M 2(fJuj
) and M 2(fIj ). Let

M 2(fJuj
∪Ij ) = M 2(fJuj

) ∪
M

∩

2 (fJuj
∩Ij

) M 2(fIj ).

For other overlapping intervals, we also glue compactifications similarly. By Lem-
mas 8.7 and 8.10, the result is as desired.

8.4. Gluing of a separated trajectory at birth-death bifurcation. Let
I = [0, 1] and let s0 ∈ I be a birth-death bifurcation in a generic 1-parameter family
(fI , μI) = {(fs, μs)}s∈I . Let p+ and p− be the critical loci of fI that are involved in
the birth or death bifurcation s0, such that i(p−) = i(p+)+1. The space Np−p+(fI) ⊂
[0, 1] × C2(M) can be considered as the moduli space of ‘separated’ trajectories. In
this subsection we shall see that Np−p+(fI) and M2(fI) are smoothly glued together
at the time s = s0. Here, we shall only study a death point since a birth point is
symmetric.

Let s0 ∈ [0, 1] be a death parameter in a generic 1-parameter family and let
Js0 ⊂ [0, 1] be a small open interval including s0. Let v ∈ M0 be the death point at
s0. By the normal form lemma for an unfolding of a birth-death singularity (e.g., [Ig2,
Appendix], [Ce]), there is a local coordinate on a neighborhood Mv of v in Js0 ×M
on which fs agrees with

hu(x) = c(u) +
x3
1

3
+ ux1 − x2

2

2
− · · · − x2

i

2
+

x2
i+1

2
+ · · ·+ x2

d

2
, u ∈ R,

where u is a reparametrization of s such that s = s0 corresponds to u = 0, and c(u)
is a smooth function of u, and one can choose a metric on Js0 ×M0 whose restriction
on Mv agrees with the restriction of the standard metric on R × Rd. The negative
gradient of hu with respect to the standard metric is

−gradhu = (−x2
1 − u, x2, . . . , xi,−xi+1, . . . ,−xd).

On u > 0, there are no critical points of hu. At u = 0, there is only one critical
point of hu at the origin, and on u < 0, there are exactly two critical points p± =
(±√|u|, 0, . . . , 0) of hu. From now on we shall describe how a pair of trajectories going
from/to critical points of hu on u < 0 are glued together into a single trajectory on
u > 0. It gives a gluing of a moduli space of a separated edge and that of a compact
edge.

8.4.1. Gradient trajectories of hu in u > 0. Here, we may assume for sim-
plicity that c(u) = 0 for u ∈ R, without changing the gradients. The integral curve
γ : R → Rd, γ(t) = (γ1(t), . . . , γd(t)) of −gradhu is determined by the system of
differential equations:

γ̇1(t) = −γ1(t)2 − u, γ̇2(t) = γ2(t), . . . , γ̇i(t) = γi(t),

γ̇i+1(t) = −γi+1(t), . . . , γ̇d(t) = −γd(t),
(8.3)

for each given initial point (γ1(0), . . . , γd(0)). In u > 0, the solution of (8.3) is given
explicitly by

γ1(t) =

√
uγ1(0)− u tan

√
u t√

u+ γ1(0) tan
√
u t

, γ2(t) = γ2(0)e
t, . . . , γi(t) = γi(0)e

t,

γi+1(t) = γi+1(0)e
−t, . . . , γd(t) = γd(0)e

−t.

(8.4)
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For a small number ε > 0, let Lε and L−ε be the subsets of Rd given by

Lε = {(ε, x2, . . . , xd) ∈ Rd ; x2, . . . , xd ∈ R},
L−ε = {(−ε, x2, . . . , xd) ∈ Rd ; x2, . . . , xd ∈ R}.

These are approximations of level surfaces at the levels ±ε in a neighborhood of the
origin. Since (−gradhu)(0,x2,...,xd) = (−u, x2, . . . , xi,−xi+1, . . . ,−xd), one may see
that any trajectory of hu in u > 0 and in Mv intersects both Lε and L−ε. Conversely,
for any point a of Lε ∩Mv (resp. L−ε ∩Mv), there exists a unique (shift equivalence
class of) gradient trajectory of hu which intersects Lε (resp. L−ε) at a. So there is
a one-to-one correspondence between a point on Lε or L−ε and a gradient trajectory
of hu that is close to the origin. We identify a gradient trajectory with the pair of its
intersection points with L−ε

∐
Lε.

Now suppose that an integral curve γ(t) of −gradhu starts at a point of Lε. We
shall describe the point Im γ ∩ L−ε. If γ(t−ε) ∈ L−ε at t−ε > 0, then by (8.3),

t−ε = −
∫ −ε

ε

dx

x2 + u
=

2√
u
Tan−1 ε√

u

for 0 < u < ε2. We put τε(u) =
2√
u
Tan−1 ε√

u
. The point γ(t−ε) can be expressed by

using τε(u) as follows.

γ(t−ε) =
(−ε, γ2(0)eτε(u), . . . , γi(0)eτε(u), γi+1(0)e

−τε(u), . . . , γd(0)e
−τε(u)

)
.

If we put ε2 = γ2(0)e
τε(u), . . . , εi = γi(0)e

τε(u), εi+1 = γi+1(0), . . . , εd = γd(0), then
the integral curve starting at the point(

ε, ε2e
−τε(u), . . . , εie

−τε(u), εi+1, . . . , εd
) ∈ Lε (8.5)

intersects L−ε at the point(−ε, ε2, . . . , εi, εi+1e
−τε(u), . . . , εde

−τε(u)
) ∈ L−ε. (8.6)

This observation motivates the gluing formula below.

8.4.2. Gradient trajectories of hu going from/to critical points in u ≤ 0.
In u < 0, the ascending and descending manifolds of hu are described as follows.

Ap+(hu) = {(x1, . . . , xd) ∈ Rd ; x2 = · · · = xi = 0, x1 ≥ −
√
|u|},

Dp+(hu) = {(x1, . . . , xd) ∈ Rd ; xi+1 = · · · = xd = 0, x1 =
√
|u|},

Ap−(hu) = {(x1, . . . , xd) ∈ Rd ; x2 = · · · = xi = 0, x1 = −
√
|u|},

Dp−(hu) = {(x1, . . . , xd) ∈ Rd ; xi+1 = · · · = xd = 0, x1 ≤
√
|u|}.

See Fig. 10. Hence

Lε ∩Ap+(hu) = {(ε, 0, . . . , 0, εi+1, . . . , εd) ∈ Rd ; εi+1, . . . , εd ∈ R},
L−ε ∩Dp−(hu) = {(−ε, ε2, . . . , εi, 0, . . . , 0) ∈ Rd ; ε2, . . . , εi ∈ R}. (8.7)

One may check that this also holds for u = 0, in which case p+ = p− = v.
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Fig. 10.

8.4.3. Gluing formula at u = 0. We define an injective map

ϕ : (−ε2, ε2)× Rd−1 → (−ε2, ε2)× Rd−1 × Rd−1 by

ϕ(u; ε2, . . . , εd) =

⎧⎨⎩
u× (

ε2e
−τε(u), . . . , εie

−τε(u), εi+1, . . . , εd
)

×(
ε2, . . . , εi, εi+1e

−τε(u), . . . , εde
−τε(u)

)
, if u > 0

u× (
0, . . . , 0, εi+1, . . . , εd

)× (
ε2, . . . , εi, 0, . . . , 0

)
, if u ≤ 0

For any u we may identify the space of gradient trajectories of hu or pairs of gradient
trajectories of hu intersecting both Lε and L−ε, with a subspace of Lε×L−ε through ϕ.
By (8.7), the non-positive part ϕ((−ε2, 0]×Rd−1) is the space of pairs (γp+(t), γp−(t))
of integral curves of −gradhu satisfying the conditions

lim
t→∞ γp+(t) = p+, γp+(0) ∈ Lε, lim

t→−∞ γp−(t) = p−, γp−(0) ∈ L−ε. (8.8)

On the other hand, by (8.5) and (8.6), the positive part ϕ((0, ε2)×Rd−1) is the space
of negative gradient trajectories of hu, u > 0, near the origin. In other words,

ϕ((−ε2, 0]× Rd−1) = Np−p+({hu}u∈(−ε2,0]) ∩ (−ε2, 0]× (Lε × L−ε),

ϕ((0, ε2)× Rd−1) = M2({hu}u∈(0,ε2)) ∩ (0, ε2)× (Lε × L−ε).

The following proposition gives a gluing of moduli spaces of short trajectories.

Proposition 8.11. The map ϕ is smooth and is an embedding. Hence Imϕ is a
smooth submanifold of (−ε2, ε2)× (Lε × L−ε) without boundary.

Proof. Let σε : (−ε2, ε2)→ R be the function defined by

σε(u) =

{
e−τε(u) if u > 0
0 if u ≤ 0

The map ϕ can be rewritten as

ϕ(u; ε2, . . . , εd) = u× (ε2σε(u), . . . , εiσε(u), εi+1, . . . , εd)

× (ε2, . . . , εi, εi+1σε(u), . . . , εdσε(u)).

One may see that σε is C∞ differentiable (see [Wa1] for the proof). Hence ϕ is C∞

differentiable. That the Jacobian matrix has full rank is obvious from the definition
of ϕ on u ≤ 0. Hence ϕ is an embedding.
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8.5. Compactification of MΓ(�fJ) in generic 1-parameter family.

8.5.1. Compactification of the moduli space MΓ(�fI) in 1-parameter fam-
ily of Morse pairs. By using the compactification M 2(fJ) and N pq(fJ) given in
§8.3, one can also define the compactification M Γ(fJ) of MΓ(fJ) in a similar way as
§4.3. We have the following proposition.

Proposition 8.12. Suppose d = 3, Γ ∈ G 0
2k,3k(

�C) and that Γ does not have a
bivalent vertex. After a small perturbation of the family (fJ , μJ ) = {(fs, μs)}s∈J of

Morse pairs fixing the endpoints, we may arrange that M Γ(�fJ) is a compact smooth
1-manifold with boundary. The boundary consists of flow graphs with a once broken
trajectory or with a subgraph collapsed to a point.

The proof of Proposition 8.12 is analogous to Proposition 2.5 (proof in §4.3).
Namely, we construct a singular compactification M

×
Γ (

�fJ) of MΓ(�fJ) in
∏3k

j=1 Q̃j ,

where Q̃j is either M 2(�fJ ) or N pq(�fJ). Then a sequence of blowing-ups along the

diagonals yields M Γ(�fJ ).

8.5.2. Gluing of M Γ(�fJ) at birth-death point. Let s0 ∈ [0, 1] be a death
parameter in a generic 1-parameter family {(fs, μs)}s∈[0,1]. For sufficiently small
number ε′ > 0, let (p1, q1) be the pair of critical points of fs0−ε′ , such that i(p1) =
i(q1)+ 1 and such that they are eliminated on s > s0 after passing through the death
point v. Then we have the following proposition.

Proposition 8.13. Suppose d = 3 and that s0 is as above. Let Γ(p1, q1)1 ∈
G2k,3k(�C

(s0−ε′)) be a graph with no bivalent vertices and let Γ(∅, ∅)1 be the graph
obtained from Γ(p1, q1)1 by replacing the separated edge β(1) with a compact edge. If
ε′ is sufficiently small, then the embedding ϕ of Proposition 8.11 induces a smooth
compact 1-dimensional cobordism between

M Γ(∅,∅)1(�fs0+ε′) and M Γ(p1,q1)1(
�fs0−ε′)

∐
M Γ(∅,∅)1(�fs0−ε′).

Proof. If d = 3, then by Proposition 2.4, dimM Γ(�fs) = 0 for Γ ∈ G 0
2k,3k(

�C(s))
and for generic parameter s. If ε′ is sufficiently small, there exists ε > 0 such that the
pair of half trajectories that converge to p1 and q1 at s = s0 − ε′ intersects Mv ∩L−ε

and Mv ∩Lε respectively, since the broken trajectory at s = s0 satisfies this property.
Thus we may use Imϕ of Proposition 8.11 to construct the desired cobordism by a
fiber-product construction similar to Lemma 3.11, 3.12 and 3.13.

9. (Co)orientation of the moduli spaces in 1-parameter family.

9.1. Convention for (co)orientations in 1-parameter family. Let J =
[s0, s1] and let (fJ , μJ) be a 1-parameter family of Morse pairs. In this section,
we assume without loss of generality that fs = fs0 for all s ∈ [s0, s0+ ε) (ε > 0 small)
and fs = fs1 for all s ∈ (s1 − ε, s1]. We orient J ×M and J × C2k(M) by

o(J ×M)(s,x) = ds ∧ o(M)x, o(J ×M2k)(s,�x) = ds ∧ o(M2k)�x.

We define the coorientations o∗J×M (D̃p(fJ)) and o∗J×M (Ãp(fJ )) so that their restric-
tions to {s0} ×M are equivalent to o∗{s0}×M (Dp(fs0)) and o∗{s0}×M (Ap(fs0)) respec-

tively. Similarly, we define the coorientations o∗J×M2(M2(fJ)) and o∗J×M2(Npq(fJ))
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so that their restrictions to {s0} × M2 are equivalent to o∗{s0}×M2(M2(fs0)) and

o∗{s0}×M2(Npq(fs0)) respectively. Thus

o∗J×M2 (Npq(fJ)) = o∗J×M (Ãq(fJ)) ∧ o∗J×M (D̃p(fJ)).

For Γ ∈ G 0
2k,3k(

�C), we define the coorientation o∗J×M2k (MΓ(�fJ)) so that its restriction

to {s0} ×M2k is equivalent to o∗{s0}×M2k(MΓ(�fs0)).

If p and r are critical loci of fJ such that i(p) = i(r), then the moduli space

M
′(fJ ; p, r) = (D̃p(fJ) � Ãr(fJ)) � L̃,

where L̃ is the level surface locus that lies just below p, is a compact 0-manifold in
IntJ ×M for a generic family fJ . At each point b ∈M ′(fJ ; p, r), the wedge product

o∗J×M (D̃p(fJ ))b∧o∗J×M (Ãr(fJ ))b ∈
∧d T ∗

b L̃ ⊂
∧d T ∗

b (J×M) defines a coorientation of
the flow line passing through b (see Appendix B (B.4)). We define the sign εfJ (p, r)b =
±1 so that the following equivalence holds.

o∗J×M (D̃p(fJ))b ∧ o∗J×M (Ãr(fJ))b ∼ εfJ (p, r)b ι(−grad fs0) o(J ×M)b.

9.2. (Co)orientations induced on the boundaries of D̃, Ã at i/i-
intersection. Suppose that an i/i-intersection occurs at s = u. For a small number
ε > 0, let J = [u − ε, u + ε]. For a parametrized Morse–Smale pair (fJ , μJ) and its

critical loci p, q, we shall describe the induced (co)orientations of the faces FrC D̃p(fJ)

(resp. FrC Ãq(fJ)) of ∂1C D̃p(fJ ) (resp. ∂1C Ãq(fJ)) of flow lines broken at a critical

locus r, which are induced from the (co)orientation of C D̃p(fJ ) (resp. C Ãp(fJ )).

We consider coorientations of the faces FrC D̃p(fJ) and FrC Ãq(fJ) as follows.

Let b̄ : C D̃p(fJ ) → J ×M be the map that assigns to each (possibly broken) flow
sequence the terminal endpoint. If i(p)− i(r) = 0 and if a is a point of J ×M that is

the image of b̄ from a once broken flow sequence â in ∂1C D̃p(fJ ) broken at a critical
locus r, then by Corollary 8.5 there is an open neighborhood Na of a in J ×M such
that b̄−1(Na) is a disjoint union of finitely many half-disks whose set of components

naturally corresponds to the finite set M ′(fJ ; p, r). Let N̂â be the component of

b̄−1(Na) on which â lies. The restriction of b̄ to N̂â is an embedding and hence the

coorientation o∗J×M (∂1C D̃p(fJ ))a makes sense by identifying N̂â with b̄(N̂â). The

same is also true for ∂1C Ãq(fJ) at a once broken flow sequence broken at r such that
i(r) − i(q) = 0.

Note that Int b̄(N̂â) is an open subset of D̃p(fJ) and its closure in Na is b̄(N̂â).

Hence the (co)orientation of D̃p(fJ) induces a (co)orientation of the boundary ∂b̄(N̂â)

at a. We define o∗J×M (∂1C D̃p(fJ))a to be the one induced in this way. We also define

o∗J×M (∂1C Ãq(fJ))a similarly.

Lemma 9.1. Under the assumption above, let p, r be critical loci of fJ such that
fJ(p) > fJ(r) and i(p) − i(r) = 0. Let Na and a ∈ b̄(N̂â) be as above. Let b be a

point of M ′(fJ ; p, r) such that N̂â corresponds to b. Then the following identity in∧•
T ∗
a (J ×M) holds.

o∗J×M (∂1C D̃p(fJ))a = (−1)i(r)εfJ (p, r)b ds ∧ o∗J×M (D̃r(fJ))a.
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Proof. Let i = i(r). By assumptions fJ(p) > fJ(r) and i(p)− i(r) = 0, the index
of r is in 1 ≤ i(r) ≤ d − 1. It suffices to check the assertion for one broken flow line.
By parametrized Morse Lemma there is a local coordinate (x1, . . . , xd) around r on

which fs agrees with fs(r) − x2
1

2
− · · · − x2

i

2
+

x2
i+1

2
+ · · · + x2

d

2
. In this coordinate,

D̃r(fJ) agrees with {(s, x1, . . . , xd) ∈ J ×Rd;xi+1 = · · · = xd = 0} and Ãr(fJ) agrees
with {(s, x1, . . . , xd) ∈ J ×Rd;x1 = · · · = xi = 0}. By convention of §9.1, we may put

o(D̃r(fJ)) = β ds dx1 · · · dxi, o(Dr(fs)) = β dx1 · · · dxi (β = ±1)

By the transversality theorem, we may assume that the intersection of D̃p(fJ) with
the plane {(s, x1, . . . , xd) ∈ J × Rd;xd = 1} agrees with the set

{(s, (s− u)λ, a2, . . . , ai, 0, . . . , 0, 1); s ∈ J, a2, . . . , ai ∈ R}

for some λ �= 0. Hence D̃p(fJ) agrees locally with the set of points

(s, (s− u)λet, a2e
t, . . . , aie

t, 0, . . . , 0, e−t), t ∈ R.

By putting a′1 = (s − u)λet, a′2 = a2e
t, . . . , a′i = aie

t, s′ = (s − u)/a′1, one may see
that the closure of this agrees with the set of points

(s′a′1 + u, a′1, a
′
2, . . . , a

′
i, 0, . . . , 0, s

′λ), a′1, a
′
2, . . . , a

′
i ∈ R, s′ ∈ [−ε/a′1, ε/a′1],

whose first order approximation is (u, a′1, a
′
2, . . . , a

′
i, 0, . . . , 0, s

′λ). Hence for a =
(u, 0, . . . , 0) ∈ J × Rd, we may put

o(b̄(N̂â))a = αλdx1dx2 · · · dxidxd (α = ±1).
Then we have

o(∂b̄(N̂â))a = ι

(
−

∂

∂xd

)
αλ dx1 · · · dxidxd = (−1)i+1

αλdx1 · · · dxi = (−1)i+1
αβλ o(Dr(fu))a.

On the other hand, by assumption we have

o∗J×M (D̃p(fJ ))b = (−1)dαλds dxi+1 · · · dxd−1,

o∗J×M (Ãr(fJ ))b = (−1)i(d−i)β dx1 · · · dxi

for b = (0, . . . , 0, 1). Hence

o∗J×M (D̃p(fJ))b ∧ o∗J×M (Ãr(fJ))b = (−1)i+dαβλds dx1 · · · dxd−1

= (−1)i+1αβλ ι
(
− ∂

∂xd

)
o(J ×M)

and εfJ (p, r)b = (−1)i+1αβλ. This together with the equality above, we obtain

o(∂1C D̃p(fJ))a = o(∂b̄(N̂â))a = εfJ (p, r)b o(Dr(fu))a,

o∗J×M (∂1C D̃p(fJ))a = εfJ (p, r)b o
∗
J×M (Dr(fu))a = εfJ (p, r)b (−1)iβ ds dxi+1 · · · dxd

= (−1)iεfJ (p, r)b ds ∧ o∗J×M (D̃r(fJ ))a.
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Lemma 9.2. Under the assumption above, let q, r be critical points of f such
that fJ(q) < fJ(r) and i(r) − i(q) = 0. Let Na and a ∈ b̄(N̂â) be as above. Let b be

a point of M ′(f ; r, q) such that N̂â corresponds to b. Then the following identity in∧• T ∗
a (J ×M) holds.

o∗J×M (∂1C Ãq(fJ))a = (−1)i(r)+d+1εfJ (r, q)b ds ∧ o∗J×M (Ãr(fJ))a.

The proof of Lemma 9.2 is similar to that of Lemma 9.1. See [Wa1] for the proof.

9.3. Change of combinatorial propagator at i/i-intersection. Suppose
that an i/i-intersection between critical points (loci) p and q occurs at s = u ∈ I in
a generic 1-parameter family (fI , μI). For a small number ε > 0, we may identify the

underlying Z-modules of C
(u−ε)
∗ and C

(u+ε)
∗ and moreover we identify critical points

and critical loci as bases of Z-modules. We put J = [u − ε, u + ε], C
(J)
∗ = C

(u−ε)
∗ =

C
(u+ε)
∗ and P

(J)
∗ = P

(u−ε)
∗ = P

(u+ε)
∗ . Let h : C

(J)
∗ → C

(J)
∗ be the homomorphism of

homogeneous degree 0, defined for each critical point (locus) x ∈ P
(J)
i by

h(x) =
∑

y∈P
(J)
i

#M
′(fJ ;x, y) · y, #M

′(fJ ;x, y) =
∑

b∈M ′(fJ ;x,y)

εfJ (x, y)b.

Since the moduli space M ′(fJ ;x, y) corresponds to an i/i-intersection, h is non-zero
only if x = p. Then for b ∈ M ′(fJ ; p, q), we have h(p) = εfJ (p, q)b · q. We denote

the boundary operators of C
(u−ε)
∗ and C

(u+ε)
∗ by ∂ and ∂′ respectively. The following

lemma describes the bifurcation of Morse complex at the i/i-intersection and is stated
in several papers (e.g. [Lau, Hu] and [Fuk2, Lemma 5.1]).

Lemma 9.3. Under the assumption above, we have

∂ − ∂′ = ∂h− h∂′ = ∂′h− h∂,

or equivalently, (1 − h) ◦ ∂′ = ∂ ◦ (1 − h) and (1 + h) ◦ ∂ = ∂′ ◦ (1 + h), or 1 + h :

C
(u−ε)
∗ → C

(u+ε)
∗ is a chain map.

Proof. Let p, q be critical loci of fJ such that i(p) − i(q) = 0. We check the
identities

∂′ − ∂ + ∂h− h∂′ = 0, ∂′ − ∂ + ∂′h− h∂ = 0.

We consider the boundary of the moduli spaces M ′(fJ ; p, r) and M ′(fJ ; r′, q) com-

pactified using the compactifications C D̃ and C Ã . The contribution of ∂J is ∂′ − ∂.
The other contributions come from the broken flow lines of the i/i-intersection at
s = u. For a critical locus r with i(r) = i(p) − 1, the broken flow line from p to
r broken at q contributes as −εfJ (p, q)b εfu(q, r)a. Indeed, the coorientation of the
boundary of M ′(fJ ; p, r) is

(−1)i(r)o∗J×M (∂C D̃p(fJ))a ∧ o∗J×M (Ãr(fJ))a

= (−1)i(r)(−1)i(q)εfJ (p, q)b ds ∧ o∗J×M (D̃q(fJ))a ∧ o∗J×M (Ãr(fJ))a

= (−1)i(r)+i(q)εfJ (p, q)b ds ∧ εfu(q, r)a ι(−grad fu) o(M)a

= (−1)i(r)+i(q)+1εfJ (p, q)b εfu(q, r)a ι(−grad fu) o(J ×M)a

= εfJ (p, q)b εfu(q, r)a ι(−grad fu) o(J ×M)a.
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Here we have used (B.5) and Lemma 9.1. This gives rise to +∂h (= +∂′h). For a
critical locus r′ with i(r′) = i(q) + 1, the broken flow line from r′ to q broken at
p contributes as εfu(r

′, p)a εfJ (p, q)b. Indeed, the coorientation of the boundary of
M ′(fJ ; r′, q) is

o∗J×M (D̃r′(fJ ))a ∧ o∗J×M (∂C Ãp(fJ))a

= (−1)i(p)+d+1εfJ (p, q)b o
∗
J×M (D̃r′(fJ))a ∧ ds ∧ o∗J×M (Ãp(fJ))a

= (−1)i(p)+d+1(−1)d−i(r′)εfJ (p, q)b ds ∧ o∗J×M (D̃r′(fJ))a ∧ o∗J×M (Ãp(fJ))a

= (−1)i(r′)+i(p)+1εfu(r
′, p)a ds ∧ εfJ (p, q)b ι(−grad fu) o(M)a

= (−1)i(r′)+i(p)εfu(r
′, p)a εfJ (p, q)b ι(−gradfu) o(J ×M)a

= −εfu(r′, p)a εfJ (p, q)b ι(−grad fu) o(J ×M)a.

Here we have used (B.5) and Lemma 9.2. This gives rise to −h∂′ (= −h∂).
The following corollary follows immediately from Lemma 9.3.

Corollary 9.4 (Lemma 5.7 of [Fuk2]). Let g be a combinatorial propagator for

(C
(u−ε)
∗ , ∂). Then the endomorphism

g′ = (1 + h) ◦ g ◦ (1− h) ∈ End1(C
(u+ε)
∗ )

is a combinatorial propagator for (C
(u+ε)
∗ , ∂′). Moreover, by hgh = hg′h = 0,

g′ − g = hg − gh = hg′ − g′h.

9.4. Orientations of some faces of J×∂C2k(M). The orientations of the faces
J × ∂{i,j}C2k(M) and J × ∂{1,2,...,2k}C2k(M) induced from the standard orientation

ds∧o(M)x1∧· · ·∧o(M)x2k
of J×M2k are given as follows. Let Δa = {(x1, . . . , x2k) ∈

M2k;x1 = · · · = x2k}. We have

o(J × ∂B	Δij (M
2k)) = −ω2 ∧ ds ∧ o(Δij),

o(J × ∂B	Δa(M
2k)) = −ω6k−4 ∧ ds ∧ o(Δa),

(9.1)

where o(Δa)�x =
∧3

�=1(du
(�)
1 + du

(�)
2 + · · ·+ du

(�)
2k ) and (u

(1)
i , u

(2)
i , u

(3)
i ) is a local coor-

dinate around xi. This can be checked as follows. For �x = (x1, x2, . . . , x2k) ∈ Δa, we
have

ds ∧ o(Δa)�x ∧
2k∧
i=2

(du
(1)
i − du

(1)
1 ) ∧ (du

(2)
i − du

(2)
1 ) ∧ (du

(3)
i − du

(3)
1 )

= (2k)3 ds ∧ o(M2k)�x.

The part
∧2k

i=2(du
(1)
i − du

(1)
1 )∧ (du

(2)
i − du

(2)
1 )∧ (du

(3)
i − du

(3)
1 ) gives an orientation of

the fiber of the normal bundle NΔa → Δa and the part ds∧o(Δa)�x is a 4-form. Hence
the orientation of the unit sphere bundle of NΔa induced from the left hand side of
the above expression is −ds∧ o(Δa) ∧ ω6k−4. The orientation of J × ∂B	Δij(M

2k) is
similar to that of ∂B	Δij(M

2k) given in §5.4.
Now the integer #M local

Γ (−grad �fJ) is defined by the sum of signs determined

by exterior products of coorientations of submanifolds of the C
local

2k (R3)-bundle over
J ×M0 as in Definition 2.7 and by (9.1).
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9.5. Standard co-orientations of MΓ in 1-parameter family. Let Γ be a
trivalent graph with 2k vertices and without bivalent vertices such that 0 ≤ 3(2k −
3k) +

∑3k
i=1 ηi + 1 ≤ 1, according to Proposition 8.3. In a generic 1-parameter family

(fJ , μJ), the moduli space MΓ(�fJ ) is a smooth manifold of dimension 3(2k − 3k) +∑3k
i=1 ηi + 1 and is the transversal intersection of the preimages of M2(fj)’s and

Npq(fj)’s in J×C2k(M). We may define o∗J×C2k(M)(MΓ(�fJ )) by the exterior product

of coorientations of the preimages of M2(fj)’s and Npq(fj)’s in J×C2k(M) as in §5.5.
9.6. (Co)orientations induced on ∂M Γ. Let (fJ , μJ) = {(fs, μs)}s∈J be a

generic 1-parameter family of Morse pairs. Let �fJ be a sequence of 1-parameter
families of Morse pairs that is obtained from the tuple �f of generic Morse–Smale pairs
(in the sense of Proposition 2.4) by replacing f1 with fJ . For a graph Γ ∈ G 0

2k,3k(
�C),

we consider the co-orientation of ∂M Γ(�fJ) induced from o∗J×M2k(MΓ(�fJ )) defined
above. Let d′′Γ =

∑
e∈Se(Γ) d

′′
eΓ, where

d′′e =
∑

ri∈P
(i)
∗

i(ri)=i(pi)

−
∑

si∈P
(i)
∗

i(si)=i(qi)

(β(i) = e)

and or(d′′eΓ) is the induced one. As before, we call a face of M Γ(�fJ) corresponding to
a degeneration of one of the terms in dΓ, d′Γ, d′′Γ a principal face. We call a face of
M Γ(�fJ ) that is not principal a hidden face. When Γ consists only of compact edges, we

define the anomalous face of M Γ(�fJ) as the hidden face corresponding to the collapse
of all the 2k points. The following proposition is an analogue of Proposition 6.2.

Proposition 9.5. Suppose that d = 3 and that (�fJ , �μJ ) is generic as in Propo-

sition 8.12. Let Γ be a graph in G 0
2k,3k(

�C). We have∑
σ∈S3k

∑
τ⊂E(Γ)

(−1)|τ |(#MΓτ
σ
(�fs1)−#MΓτ

σ
(�fs0))

=

⎧⎪⎪⎨⎪⎪⎩
∑
σ,τ

(−1)|τ |(#M(d−d′−d′′)Γτ
σ
(�fJ) + #M

local
Γτ
σ

(−grad �fJ)) if E(Γ) = Comp(Γ)∑
σ,τ

(−1)|τ |#M(d−d′−d′′)Γτ
σ
(�fJ ) if E(Γ) �= Comp(Γ)

Proof. By Proposition 8.12, we know the types of the graphs that may occur at
the boundary of M Γ(�fJ). We check that 0 = #∂M Γ(�fJ) is the sum of #MΓτ

σ
(�fs1)−

#MΓτ
σ
(�fs0) + #M(−d+d′+d′′)Γτ

σ
(�fJ) and the contribution of the hidden faces.

First, we consider the contribution of J × ∂C2k(M). The vanishing of the con-
tributions of the hidden faces that are not anomalous follows from Lemmas 6.3, 6.4
and 6.5. The contributions of the collapse of a compact edge or of the anomalous
face are −#MdΓ(�fJ) and −#M local

Γ (−grad �fJ) respectively. This is immediate from
the sign convention and from (9.1). The contribution of the faces ∂A∪{∞}C2k(M)

are as follows. Recall that the interior of the face ∂A∪{∞}C2k(M) is diffeomorphic
to the space C2k−j(M) × C∞

j (R3) (Proof of Proposition 6.2). Let f∞
j : R3 → R

(j = 2, . . . , 3k) be the linear map such that ϕ∗
∞f∞

j agrees with fj near ∞M and let

f∞
s : R3 → R (s ∈ J) be the linear map such that ϕ∗

∞sf
∞
s agrees with fs near ∞M .
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Let �f∞
s = (f∞

s , f∞
2 , . . . , f∞

3k ),
�f∞
J = {�f∞

s }s and let B = V (Γ) \ A. Suppose that

E(Γ/ΓB) = Comp(Γ/ΓB). Let M∞
Γ/ΓB

(�f∞
J \ (�f∞

J )B) be the space of affine graphs in

J × R3 modulo the dilation of R3 whose edge labeled 	 �= 1 (resp. 	 = 1) follows the
negative gradient of f∞

� (resp. f∞
s ). Let π1 : J×C2k−j(M)×C∞

j (R3)→ J×C2k−j(M)

and π2 : J × C2k−j(M)× C∞
j (R3)→ J × C∞

j (R3) be the projections. Then the face

of ∂M Γ(�fJ ) coming from ∂A∪{∞}C2k(M) is diffeomorphic to

π−1
1 MΓB ((

�fJ )B) ∩ π−1
2 M

∞
Γ/ΓB

(�f∞
J \ (�f∞

J )B).

If the number of edges in E(Γ) that intersect both V (ΓA) and V (ΓB) is m, then the

codimension of M∞
Γ/ΓB

(�f∞
J \ (�f∞

J )B) is 3j+m. Since dim J × C∞
j (R3) = 3j, m must

be zero if M∞
Γ/ΓB

(�f∞
J \ (�f∞

J )B) �= ∅. That m = 0 implies that A = {1, 2, . . . , 2k}. But
in such a case ΓB is empty and the translation in R3 acts on M∞

Γ/ΓB
(�f∞

J \ (�f∞
J )B)

freely. By a dimensional reason, this shows that M∞
Γ/ΓB

(�f∞
J \ (�f∞

J )B) must be empty.

Next, we consider the contributions of the inner boundaries. Suppose for simplic-
ity that separated edges of Γ are labeled 1, 2, . . . , a. For a number 	 in 1 ≤ 	 ≤ 3k,
put

Σ̃� =

{ ⋂
1≤j≤a

j �=�
H̃j ∩

⋂3k
j=a+1 Θ̃j if 1 ≤ 	 ≤ a⋂a

j=1 H̃j ∩
⋂

a+1≤j≤3k
j �=�

Θ̃j if a+ 1 ≤ 	 ≤ 3k

Then codim Σ̃� = codimMΓ(�fJ)− codim H̃� = 6k− 4 ≡ 0 (mod 2). Let X be a graph

obtained from Γ by replacing an edge labeled 	 with a broken edge such that MX(�fJ )

is 0-dimensional. We shall describe the co-orientation of the face SX of ∂M Γ(�fJ )

corresponding to X induced from the standard co-orientation of MΓ(�fJ) using (B.3)
and (B.5). In the following, we let 	 = 1.

(1) X = . For MX(�fJ ) to be 0-dimensional, i(r�) = i(p�) − 1 or

i(r�) = i(p�). When i(r�) = i(p�), the co-orientation of Fr�M Γ(�fJ) induced from the
standard one

o∗J×M2k(MΓ(�fJ )) = o∗J×M (D̃p�
(f�)) ∧ o∗J×M (Ãq�(f�)) ∧ o∗J×M2k(Σ̃�) (9.2)

is given by

(−1)(d+1)−1(−1)(2kd+1)−1o∗J×M (Ãq�(fJ))

∧ (−1)i(r�)εfJ (p�, r�) ds ∧ o∗J×M (D̃r�(fJ )) ∧ o∗J×M2k(Σ̃�)

= (−1)i(q�)+i(r�)+dεfJ (p�, r�) ds ∧ o∗J×M (Ãq�(fJ)) ∧ o∗J×M (D̃r�(fJ)) ∧ o∗J×M2k(Σ̃�)

= εfJ (p�, r�) ds ∧ o∗J×M (Ãq�(fJ)) ∧ o∗J×M (D̃r�(fJ )) ∧ o∗J×M2k (Σ̃�).

Here we used Lemma 9.1 and (B.3). This agrees with the standard co-orientation

o∗J×M2k (MX(�fJ)).

When i(r�) = i(p�)− 1, the co-orientation of Fr�M Γ(�fJ) induced from the stan-
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dard one is given by

(−1)d−1(−1)(2kd+1)−1εfs0 (p�, r�) o
∗
J×M (Ãq�(fJ))

∧ (−1)i(r�)o∗J×M (D̃r�(fJ)) ∧ o∗J×M2k (Σ̃�)

= (−1)i(r�)εfs0 (p�, r�) o∗J×M (Ãq�(fJ)) ∧ o∗J×M (D̃r�(fJ)) ∧ o∗J×M2k(Σ̃�)

= (−1)i(q�)εfs0 (p�, r�) o∗J×M (Ãq�(fJ)) ∧ o∗J×M (D̃r�(fJ )) ∧ o∗J×M2k (Σ̃�).

Here we used Lemma 5.1 and (B.3). The sign (−1)i(q�) agrees with the coefficient of
X in d′Γ.

(2) X = . For MX(�fJ) to be 0-dimensional, i(s�) = i(q�) + 1 or

i(s�) = i(q�). When i(s�) = i(q�), the co-orientation of Fs�M Γ(�fJ) induced from the
standard one (9.2) is given by

(−1)(d+1)−1(−1)(2kd+1)−1(−1)d−i(p�)(−1)i(s�)+d+1εfJ (s�, q�) ds ∧ o∗J×M (Ãs�(fJ ))

∧ o∗J×M (D̃p�
(fJ )) ∧ o∗J×M2k (Σ̃�)

= (−1)i(p�)+i(s�)+d+1εfJ (s�, q�) ds ∧ o∗J×M (Ãs�(fJ )) ∧ o∗J×M (D̃p�
(fJ)) ∧ o∗J×M2k(Σ̃�)

= −εfJ (s�, q�) ds ∧ o∗J×M (Ãs�(fJ )) ∧ o∗J×M (D̃p�
(fJ)) ∧ o∗J×M2k(Σ̃�).

Here we used Lemma 9.2 and (B.3). This is opposite to the standard co-orientation.

When i(s�) = i(q�) + 1, the co-orientation of Fs�M Γ(�fJ) induced from the stan-
dard one is given by

− (−1)d−1(−1)(2kd+1)−1(−1)d−i(p�)εfs0 (s�, q�) o
∗
J×M (Ãs�(fJ))

∧ o∗J×M (D̃p�
(fJ )) ∧ o∗J×M2k (Σ̃�)

= (−1)i(s�)εfs0 (s�, q�) o∗J×M (Ãs�(fJ )) ∧ o∗J×M (D̃p�
(fJ )) ∧ o∗J×M2k (Σ̃�).

Here, we used Lemma 5.2 and (B.3). The sign (−1)i(s�) agrees with the coefficient of
X in d′Γ.

(3) X = . The induced co-orientation on the boundary is as in Lemma 5.4,

which differs from the standard co-orientation by (−1)2d−1(−1)(2kd+1)−1(−1)i(r�)+1 =
(−1)i(r�).

Now we have seen that the signs in the formula of the definitions of d′ and d′′ are
consistent with the induced co-orientations on the boundary of M Γ(�fJ ).

10. Proof of main theorem. We shall prove that Ẑ2k,3k(�f) is invariant un-
der bifurcations of types (1), (2), (3), (4) in Lemma 8.2 and complete the proof of
Theorem 2.13.

10.1. Invariance on ordered 1-parameter family without i/i-

intersections. We check the invariance of Ẑ2k,3k(�f) with respect to bifurcations of
type (4) for different Morse indices in Lemma 8.2.

Lemma 10.1. Suppose that a generic 1-parameter family {(fs, μs)}s∈J , J =
[s0, s1], of Morse pairs is ordered and has no i/i-intersections over J . Then

Ẑ2k,3k(�fs0) = Ẑ2k,3k(�fs1).
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Proof. Note that the moduli space Md′′Γ(�fJ ) is empty since fJ has no i/i-

intersections. By Proposition 9.5, the difference Z2k,3k(�fs1)− Z2k,3k(�fs0) equals

Tr�g

[ ∑
Γ∈G 0

2k,3k(
�C)

#M(d−d′)Γ(�fJ) Γ
]
+ Zanomaly

2k,3k (−grad �fJ).

As in the proof of Lemma 6.1, the sum Tr�g

[∑
Γ∈G 0

2k,3k(
�C) #MdΓ(�fJ)Γ

]
vanishes by

the IHX relation. Moreover, Tr�g

[∑
Γ∈G 0

2k,3k(
�C) #Md′Γ(�fJ )Γ

]
equals

Tr�g

[ 3k∑
i=1

∑
Γ′(p̃i,q̃i)i
i(p̃i)=i(q̃i)

(−1)i(p̃i)#MΓ′(p̃i,q̃i)i(
�fJ) d

′∗Γ′(p̃i, q̃i)i
]
,

where the second sum is taken over graphs of degree (η1, . . . , η3k), ηj = 1 (j �= i),
ηi = 0, such that β(i) ∈ Se(Γ), and d′∗Γ′(p̃i, q̃i)i denotes∑

xi∈P
(i)
∗

i(xi)=i(p̃i)+1

∂
(i)
xip̃i

Γ′(xi, q̃i)i +
∑

yi∈P
(i)
∗

i(yi)=i(q̃i)−1

∂
(i)
q̃iyi

Γ′(p̃i, yi)i + δp̃i q̃iΓ
′(∅, ∅)i.

For each fixed pair p̃i, q̃i ∈ P
(i)
∗ with i(p̃i) = i(q̃i), we have

Tr�g

[ ∑
xi∈P

(i)
∗

i(xi)=i(p̃i)+1

∂
(i)
xip̃i

Γ′(xi, q̃i)i +
∑

yi∈P
(i)
∗

i(yi)=i(q̃i)−1

∂
(i)
q̃iyi

Γ′(p̃i, yi)i + δp̃iq̃iΓ
′(∅, ∅)i

]

=Tr...,∂(i)g(i)+g(i)∂(i),...

[
Γ′(p̃i, q̃i)i

]
+Tr�g

[
δp̃i q̃iΓ

′(∅, ∅)i
]

=Tr...,id,...

[
Γ′(p̃i, q̃i)i

]
+Tr�g

[
δp̃iq̃iΓ

′(∅, ∅)i
]
= δp̃i q̃iTr�g

[
−Γ′(∅, ∅)i + Γ′(∅, ∅)i

]
= 0.

Hence we have

Z2k,3k(�fs1)− Z2k,3k(�fs0) = Zanomaly
2k,3k (−grad �fJ).

For the correction terms of Ẑ2k,3k(�fs0) and Ẑ2k,3k(�fs1), we may choose the same
spin 4-manifold W . Then we choose generic GM sections �γW and �γ ′

W of Γ(T vW )3k as

in §2.8.1 that are extensions of −grad �fs0 and −grad �fs1 respectively. Then it follows
from Lemma 7.2 that

Zanomaly
2k,3k (�γ ′

W )− Zanomaly
2k,3k (�γW )− Zanomaly

2k,3k (−grad �fJ) = 0.

This completes the proof.

10.2. Invariance at level exchange bifurcation. We check the invariance of
Ẑ2k,3k(�f) with respect to bifurcations of type (1) in Lemma 8.2.

Lemma 10.2. Suppose that s0 ∈ J is a level exchange bifurcation for the generic
1-parameter family {(fs, μs)}s∈J of Morse pairs. If ε is sufficiently small,

Ẑ2k,3k(�fs0−ε) = Ẑ2k,3k(�fs0+ε).

The proof is the same as Lemma 10.1.
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10.3. Invariance at birth-death bifurcation. We check the invariance of
Ẑ2k,3k(�f) with respect to bifurcations of type (2) in Lemma 8.2.

We say that a birth-death point v in a 1-parameter family {(fs, μs)}s∈[0,1], say
at s = s0, is independent if on a neighborhood of s0 in [0, 1] the descending and
the ascending manifold of v are disjoint from all the other descending and ascending
manifolds of critical points. The following lemma is an immediate consequence of
[HW, page 62].

Lemma 10.3. A 1-parameter family {(fs, μs)}s∈[0,1] of pairs of generalized Morse
functions and metrics on M0 can be deformed so that every birth-death points are
independent.

Lemma 10.4. Suppose that s0 ∈ J is a parameter on which an independent
birth-death point v occurs in a generic 1-parameter family. If ε is sufficiently small,

Ẑ2k,3k(�fs0−ε) = Ẑ2k,3k(�fs0+ε).

Proof. We prove the lemma only for death point since the case of birth point
is symmetric. If (p, q) is the critical point pair at s = s0 − ε that disappears on

s > s0, then the Morse complex at s = s0−ε is the direct sum C
(s0+ε)
∗ ⊕Celem

∗ , where

C
(s0+ε)
∗ = (C

(s0+ε)
∗ , ∂(s0+ε)) is the Morse complex at s = s0 + ε and

Celem
∗ = {0→ Celem

i+1 = Z{p} ≈→ Celem
i = Z{q} → 0}.

Choose a combinatorial propagator g of C
(s0+ε)
∗ . The acyclic complex Celem∗ has

a unique combinatorial propagator gelem defined by gelem(q) = p. We consider g

and gelem as homogeneous degree 1 maps of C
(s0+ε)
∗ ⊕ Celem

∗ by setting g(Celem
∗ ) = 0

and gelem(C
(s0+ε)
∗ ) = 0. Then one can check that g′ = g + gelem is a combinatorial

propagator for C
(s0+ε)
∗ ⊕ Celem∗ .

Since v is independent, we need only to check the identity of the lemma in the
case where a gluing of trajectories happens at v. Suppose that the separated edge
labeled by 1 in a flow graph of Γ(p, q)1 ∈ G 0

2k,3k(
�C(s0−ε)) converges to a broken edge

as s→ s0 and that p and q converges to v. Then by Proposition 8.13 we have

Trg′,···
(
Γ(p, q)1

) ·#M Γ(p,q)1(
�fs0−ε) + Trg′,···

(
Γ(∅, ∅)1

) ·#M Γ(∅,∅)1(�fs0−ε)

= Trg,···
(
Γ(∅, ∅)1

)(−#M Γ(p,q)1(
�fs0−ε) + #M Γ(∅,∅)1(�fs0−ε)

)
= Trg,···

(
Γ(∅, ∅)1

) ·#M Γ(∅,∅)1(�fs0+ε).

(10.1)

Here, we must check that the signs of the boundaries of the 1-cobordism are correct.
It suffices to check the coorientations for the standard model hu in §8.4 for a 1-
parameter family around a death bifurcation. For u < 0 with |u| small and for
x = (x1, . . . , xd) ∈ Ap+(hu), y = (y1, . . . , yd) ∈ Dp−(hu), put

o∗M (Ap+(hu))x = αdx2 · · · dxi, o∗M (Dp−(hu))y = β dyi+1 · · · dyd (α, β ∈ {−1, 1}).
By convention, o∗M×M (Np−p+(hu))(x,y) = o∗M (Ap+(hu))x ∧ o∗M (Dp− (hu))y . On the
other hand,

o∗M (Dp−(hu))x ∧ o∗M (Ap+(hu))x = αβ dxi+1 · · · dxddx2 · · · dxi

= (−1)i−1αβ dx2 · · · dxd = (−1)i−1αβ ι
( ∂

∂x1

)
o(Rd)x.
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Hence εhu(p−, p+) = (−1)i−1αβ. For u > 0 small, consider points x′ =
(x′

1, . . . , x
′
d), y

′ = (y′1, . . . , y′d) ∈ Rd such that x′ is close to x, y′ is close to y and
y′ = Φt

hu
(x′). By using the explicit solution (8.4) and by convention, o(M2(hu))(x′,y′)

is given by

(dx′
1 + δ(x′

1)dy
′
1) ∧

i∧
k=2

(dx′
k + etdy′k) ∧

d∧
k=i+1

(dx′
k + e−tdy′k) ∧ (−dhu)y′ ,

where δ(x′
1) = ∂γ1(t)/∂x

′
1. Then

o(M2(hu))(x′,y′) ∧ dx′
2 · · · dx′

i ∧ dy′i+1 · · · dy′d
= (−1)i−1(et)i−1(−y21 − u)dx′

1 · · · dx′
d dy

′
1 · · · dy′d.

Assuming that x′, y′ converge to x, y respectively as u → 0, the coorientation
limu→0+ o∗M×M (M2(hu))(x′,y′) is equivalent to

lim
u→0−

−εhu(p−, p+) o
∗
M (Ap+(hu))x ∧ o∗M (Dp−(hu))y.

This shows that the signs in (10.1) are correct. The proof of the invariance of the

other terms in Ẑ2k,3k(�fs0−ε) is the same as Lemma 10.1 since v is independent.

10.4. Invariance at i/i-intersection. We check the invariance of Ẑ2k,3k(�f)
with respect to bifurcations of type (3) in Lemma 8.2.

Lemma 10.5. Suppose that s0 ∈ J is a point on which an i/i-intersection between
critical points (loci) p and q occurs in a generic 1-parameter family {(fs, μs)}s∈J . If
ε > 0 is sufficiently small, then

Ẑ2k,3k(�fs0−ε) = Ẑ2k,3k(�fs0+ε).

Proof. By Proposition 9.5, we may assume without loss of generality that∑
σ∈S3k

∑
τ⊂E(Γ)

(
#M Γτ

σ
(�fs0+ε)−#M Γτ

σ
(�fs0−ε) + #M d′′Γτ

σ
(�fJ )

)
= 0

if ε is sufficiently small. Let g, g′ be the combinatorial propagators considered in §9.3
and put �g = (g, g2, . . . , g3k), �g

′ = (g′, g2, . . . , g3k), �C = (C
(s0−ε)
∗ , C

(2)
∗ , . . . , C

(3k)
∗ ) and

�C′ = (C
(s0+ε)
∗ , C

(2)
∗ , . . . , C

(3k)
∗ ). Using Corollary 9.4 we have∑

Γ∈G 0
2k,3k(

�C)

Tr�g′

(
Γ
) ·#M Γ(�fs0+ε)−

∑
Γ∈G 0

2k,3k(
�C′)

Tr�g
(
Γ
) ·#M Γ(�fs0−ε)

=
∑
Γ

Tr�g′

(
Γ
) · (#M Γ(�fs0−ε)−#M d′′Γ(�fJ)

)
−

∑
Γ

Tr�g
(
Γ
) ·#M Γ(�fs0−ε)

=
∑
Γ

Trg′−g,...

(
Γ
) ·#M Γ(�fs0−ε)−

∑
Γ

Tr�g′

(
Γ
) ·#M d′′Γ(�fJ)

=
∑
Γ

Trhg′−g′h,...

(
Γ
) ·#M Γ(�fs0−ε)−

∑
Γ

Tr�g′

(
Γ
) ·#M d′′Γ(�fJ)

= Trg′,...

[ ∑
p1,q1

i(p1)=i(q1)+1

∑
Γ(p1,q1)1

Γ(p1, q1)1 ·#M (h∗Γ−Γ∗h)(p1,q1)1(
�fJ)

]
− Tr�g′

[ ∑
p1,q1

i(p1)=i(q1)+1

∑
Γ(p1,q1)1

Γ(p1, q1)1 ·#M d′′Γ(p1,q1)1(
�fJ )

]
= 0.
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This completes the proof.

Proof of Theorem 2.13. Lemmas 10.1, 10.2, 10.4, 10.5 show that Ẑ2k,3k(�fs) is
invariant under all possible bifurcations listed in §8.1. This completes the proof.

Appendix A. Some facts on smooth manifolds with corners.

We follow the convention in [BT, Appendix] for manifolds with corners, smooth
maps between them and their transversality. We write down some necessary terms
from [BT, Appendix], some of which are specialized than those in [BT, Appendix].

Definition A.1.

(1) A map between manifolds with corners is smooth if it has a local extension, at
any point of the domain, to a smooth map from a manifold without boundary,
as usual.

(2) Let Y, Z be smooth manifolds with corners, and let f : Y → Z be a bijective
smooth map. This map is a diffeomorphism if both f and f−1 are smooth.

(3) Let Y, Z be smooth manifolds with corners, and let f : Y → Z be a smooth
map. This map is strata preserving if the inverse image by f of a connected
component S of a stratum of Z is a union of connected components of strata
of Y .

(4) Let X,Y be smooth manifolds with corners and Z be a smooth manifold
without boundary. Let f : X → Z and g : Y → Z be smooth maps. Say that
f and g are (strata) transversal when the following is true: Let U and V be
connected components in stratums of X and Y respectively. Then f : U → S
and g : V → S are transversal.

We use the following proposition, which is a corollary of [BT, Proposition A.5].

Proposition A.2. Let X,Y be smooth manifolds with corners and Z be a smooth
manifold without boundary. Let f : X → Z and g : Y → Z be smooth maps that are
transversal. Then the fiber product

X ×Z Y = {(x, y); f(x) = g(y)} ⊂ X × Y

is a smooth manifold with corners, whose strata have the form U ×Z V where U ⊂ X
and V ⊂ Y are strata.

If f, g are inclusions then X×Z Y = (X×Y )∩ΔZ = ΔX∩Y , which is canonically
diffeomorphic to X ∩ Y . Thus we obtain the following corollary.

Corollary A.3. Let X,Y be smooth manifolds with corners that are submani-
folds of a smooth manifold Z without boundary. Suppose that the inclusions X → Z
and Y → Z are transversal. Then the intersection X ∩ Y is a smooth manifold with
corners, whose strata have the form U ∩ V where U ⊂ X and V ⊂ Y are strata.

The following elementary proposition is useful.

Proposition A.4. Let Z be a smooth manifold without boundary and let X be
a compact smooth submanifold of Z with corners. Suppose that dimX > 0. Then the
closure of the codimension 0 stratum IntX of X in Z agrees with X.

Proof. Let n = dimX and N = dimZ. Let

Rn〈m〉 = {(x1, . . . , xn);x1 ≥ 0, . . . , xm ≥ 0} ⊂ Rn (m ≤ n).



A GENERALIZATION OF FUKAYA’S INVARIANT OF 3-MANIFOLDS I 177

Choose an open covering {Oλ}λ of X by small open N -disks Oλ in Z, say by open
ε-balls with respect to the geodesic distance for a Riemannian metric on Z for small ε,
so that for each λ there is a chart ϕλ : Oλ → ϕλ(Oλ) ⊂ RN such that the restriction
ϕλ|Oλ∩X : Oλ ∩ X → RN factors as ι ◦ φλ where φλ : Oλ ∩ X → Rn〈mλ〉 is a chart
and ι : Rn → RN is the inclusion (x1, . . . , xn) �→ (x1, . . . , xn, 0, . . . , 0).

The codimension 0 stratum IntX of X is the union of preimages of ι(IntRn〈mλ〉)
under charts ϕλ: IntX =

⋃
λ Oλ ∩ϕ−1

λ ι(IntRn〈mλ〉). The relation IntX ⊂ X follows
immediately from definition of the closure and the compactness of X . We prove the
converse. Since X is compact in Z, there is a finite subcovering {Oλ1 , . . . , Oλr} of X .
Then we have

IntX =
⋃r

i=1 Oλi ∩ ϕ−1
λi

ι(IntRn〈mλi〉) =
⋃r

i=1 ϕ
−1
λi

ϕλi(Oλi ) ∩ ι(IntRn〈mλi〉)
⊃ ⋃r

i=1 ϕ
−1
λi

(ϕλi (Oλi) ∩ ι(Rn〈mλi〉)) =
⋃r

i=1 Oλi ∩ ϕ−1
λi

ι(Rn〈mλi〉) = X.

Here at the first equality we have used the identity A1 ∪ · · · ∪ Ar = A1 ∪ · · · ∪Ar for
arbitrary subsets A1, . . . , Ar (r < ∞) of a topological space, and between the first
and the second line we have used the relation O ∩ A ⊃ O∩A for O open, A arbitrary,
and the assumption n ≥ 1.

Appendix B. Orientations on manifolds and their intersections. For
a d-dimensional orientable manifold M , we will represent an orientation on M by a
nowhere vanishing d-form of Ωd

dR(M) and denote by o(M). IfM is a submanifold of an
oriented Riemannian e-dimensional manifold E and if (v1, . . . , ve) is an orthonormal
frame on a neighborhood of x ∈M such that v1, . . . , vd spans TM , then we may define
o(M)x = ±v∗1∧· · ·∧v∗d, where v∗1 , . . . , v∗e is the dual basis. We may alternatively define
o(M) from an orientation o∗E(M) of the normal bundle of M by the rule

o(M) ∧ o∗E(M) ∼ o(E). (B.1)

Note that o∗E(M) is defined canonically by the Hodge star operator: o∗E(M) = ∗o(M).
o∗E(M) is called a coorientation of M in E. We assume that (B.1) is always satisfied
so that coorientation is just an alternative way to represent orientation.

Let N be an oriented smooth manifold and let π : N → E be a smooth map that
is transversal to M . Then the preimage π−1M is naturally an oriented submanifold
of N . We may define the coorientation of π−1M by π∗o∗E(M). We denote simply
by o∗E(M) the coorientation π∗o∗E(M). For example, if N = D × E for an oriented
manifold D and if π : D×E → E is the projection, then D×M = π−1M is naturally
cooriented by o∗E(M).

If M has boundary ∂M , we provide an induced orientation on ∂M from o(M) as
follows: let n be an outward normal vector field on ∂M , then we define

o(∂M)x = ι(nx)o(M)x. (B.2)

In other words, if n∗
x is the dual of nx with respect to the metric and if o(M)x = n∗

x∧αx

for αx ∈ Ωd−1
dR (∂M), then o(∂M)x = αx. This gives

o∗E(∂M)x = (−1)e−1o∗E(M)x ∧ n∗
x. (B.3)

Suppose M and M ′ are two cooriented submanifolds of E of dimension i and j
that intersect transversally. The transversality implies that at an intersection point
x, the form o∗E(M)x ∧ o∗E(M

′)x is a non-trivial (2e− i− j)-form. We define

o∗E(M � M ′)x = o∗E(M)x ∧ o∗E(M
′)x. (B.4)
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This depends on the order of the product. Note that if M and M ′ may have bound-
aries, then by (B.3), the induced coorientations on ∂(M � M ′) is

o∗E(∂M � M ′)x = (−1)deg o∗E(M ′)xo∗E(∂M)x ∧ o∗E(M
′)x,

o∗E(M � ∂M ′)x = o∗E(M)x ∧ o∗E(∂M
′)x.

(B.5)

Appendix C. The complex of endomorphisms of an acyclic complex. For
a finitely generated, based free acyclic chain complex (C∗, ∂), Ci = ZPi , we consider
the Z-module Endk(C∗) of endomorphisms C∗ → C∗+k of homogeneous degree k. The
boundary operator ∂′ : Endk(C∗)→ Endk−1(C∗) is defined by

∂′f = ∂ ◦ f + (−1)k+1f ◦ ∂.
Then the pair (End∗(C∗), ∂′) forms a chain complex. By the canonical isomorphism
Endk(C∗) ∼=

⊕
i∈Z

Ci+k ⊗Hom(Ci,Z) of chain complexes and the Künneth theorem,
one can show that the complex (End∗(C∗), ∂′) is acyclic. For example, f ∈ End0(C∗)
is a cycle iff ∂′f = ∂f − f∂ = 0. In particular, id ∈ End0(C∗) is a cycle and hence is
a boundary. So there exists g ∈ End1(C∗) such that

∂′g = ∂g + g∂ = id.

If two such endomorphisms g, g′ are given, then the difference g − g′ is a ∂′-cycle,
since ∂′(g − g′) = id− id = 0. So there exists h ∈ End2(C∗) such that

∂′h = ∂h− h∂ = g − g′.

Appendix D. Blow-up.

D.1. Blow-up of the origin in Ri. Let γ̃1(Ri) denote the total space of
the tautological oriented half-line ([0,∞)) bundle over the oriented Grassmannian

G̃1(Ri) ∼= Si−1. Namely, γ̃1(Ri) = {(x, y) ∈ Si−1×Ri; ∃t ∈ [0,∞), y = tx}. Then the
tautological bundle is trivial and that γ̃1(Ri) is diffeomorphic to Si−1 × [0,∞). Let

B	(Ri, {0}) = γ̃1(Ri)

and call B	(Ri, {0}) the blow-up of 0 in Ri. Let π : γ̃1(Ri)→ Ri be the map defined
by π = pr2 ◦ ϕ in the following commutative diagram:

γ̃1(Ri)
ϕ

��

π
���

�
�
�
�
�
�
�
�
�
�

Si−1 × Ri

pr2

��

pr1
�� Si−1

Ri

where ϕ : γ̃1(Ri)→ Si−1×Ri is the embedding which maps a pair (x, y) ∈ Si−1×Ri

with y = tx to (x, y). If y �= 0, then ϕ(x, y) = ( y
|y| , y). We call π the projection of the

blow-up. Here, π−1(0) = ∂γ̃1(Ri) is the image of the zero section of the tautological
bundle pr1 ◦ ϕ : γ̃1(Ri)→ Si−1 and is diffeomorphic to Si−1.

Lemma D.1.

(1) The restriction of π to the complement of π−1(0) = ∂γ̃1(Ri) is a diffeomor-
phism onto Ri − {0}.

(2) The restriction of ϕ to the complement of π−1(0) has the image in Si−1×Ri

whose closure agrees with the full image of ϕ from γ̃1(Ri).
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D.2. Blow-up of Ri ⊂ Rd. When d > i ≥ 0, we put B	(Rd,Ri) = γ̃1(Rd−i)×Ri

(the blow-up of Ri in Rd) and define the projection � : B	(Rd,Ri)→ Rd by π× idRi .
This can be straightforwardly extended to the blow-up B	(Y,X) of a submanifold X
in a manifold Y , by replacing the normal bundle with the associated γ̃1(Rd)-bundle
over X .

Acknowledgments. I would like to thank Professor Kenji Fukaya for encour-
aging me to write my result for publication. I would also like to thank Professor
Masamichi Takase for valuable comments on spin 4-manifolds and would like to thank
Professors Katrin Wehrheim and Tatsuro Shimizu for helpful comments. I am deeply
grateful to the referees for the careful reading and for helpful comments. During the
preparation and the revision of this paper, I have been supported by JSPS Grant-in-
Aid for Young Scientists (B) 23740040 and 26800041.

REFERENCES

[AS] S. Axelrod and I. M. Singer, Chern–Simons perturbation theory, in Proceedings of
the XXth DGM Conference, Catto S., Rocha A. (eds.), pp. 3–45, World Scientific,
Singapore, 1992, II, J. Diff. Geom., 39 (1994), pp. 173–213.

[BN1] D. Bar-Natan, Perturbative Aspects of the Chern-Simons Topological Quantum Field

Theory, Ph.D. Thesis, Princeton University, 1991.
[BN2] D. Bar-Natan, On the Vassiliev knot invariants, Topology, 34:2 (1995), pp. 423–472.
[BGRT] D. Bar-Natan, S. Garoufalidis, L. Rozansky, and D. Thurston, The Århus integral
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