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REPRESENTATION AND DERIVED REPRESENTATION RINGS OF
NAKAYAMA TRUNCATED ALGEBRAS AND A VIEWPOINT

UNDER MONOIDAL CATEGORIES∗

MIN HUANG† , FANG LI‡ , AND YICHAO YANG§

Abstract. The main aim of this study is to characterize representation rings and derived
representation rings of a class of finite dimensional Hopf algebras constructed from the Nakayama
truncated algebras KZn/Jd with certain constraints. For the representation ring r(KZn/Jd), we
completely determine its generators and the relations of generators via the method of the Pascal
triangle. For the derived representation ring dr(KZn/J2)(i.e., d = 2), we determine its generators
and give the relations of generators. For these two aspects, the polynomial characterizations of the
representation ring and the derived representation rings are both given.

Representation rings are well-known as Green rings from module categories over Hopf algebras.
We have studied Green rings in the context of monoidal categories such that representations of Hopf
algebras can be investigated through Green rings of various levels from module categories to derived
categories from a unified viewpoint. Firstly, as analogues of representation rings of Hopf algebras, we
set up so-called Green rings of monoidal categories, and then we list some such categories including
module, complex, homotopy, derived and (derived) shift categories, and the relationship among their
corresponding Green rings.

Key words. Representation ring, derived representation ring, shift ring, Nakayama truncated
algebra, Pascal triangle, monoidal category.
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1. Introduction. Throughout this paper let K be an algebraically closed field
and all modules left modules. The Grothendieck group K0(A) plays an important role
for a K−algebra A. If A is not only an algebra, but also a Hopf algebra, we can define
a ring structure onK0(A) using the comultiplication Δ, that is, the Grothendieck ring.
However, the Grothendieck ring reflects only the relations among irreducible represen-
tations, but not all indecomposable representations. Therefore, in some studies (e.g.
[6] [14]), representation rings of finite groups were introduced to study modular repre-
sentation theory through the structure of representation rings such as semi-simplicity.

Let H be a K-Hopf algebra over K with comultiplication Δ and counit ε. It is
well-known that Hmod is a monoidal category with the tensor product ⊗K . Usually,
the representation ring of H , denoted by r(H) (see [14]), is also called the Green
ring, which we write as gr(Hmod). In this case, r(H) is generated by all [V ] of
indecomposable H-modules V ∈ ind(H) with [V ] + [W ] = [V ⊕W ] and [V ][W ] =
[V ⊗K W ]. Note that

(i) the module structure of V ⊗K W is obtained by h(v × w) =
∑
(h)

(h′v × h′′w)

for h ∈ H, v ∈ V,w ∈W ;
(ii) For the identity [K], K is viewed as an H-module by h · k = ε(h)k for any

h ∈ H , k ∈ K;
(iii) The distributive law of r(H) is due to the bilinearity of ⊗K ;
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(iv) If H is cocommutative, then r(H) is a commutative ring.
For a representation-finite K-Hopf algebra H , up to isomorphism, let M =

{M1, · · · ,Mt} be the set of all t indecomposable H-modules. In particular, say
M1 = K. The representation ring r(H) can be realized as a quotient of a certain
finitely generated free ring. That is, for the free algebra K〈X〉 on a set of indetermi-
nates X = {x1, x2, · · · , xt}, we can define an epimorphism of rings ϕ : K〈X〉 → r(H)
satisfying ϕ(1) = [K], ϕ(xi) = [Mi] for i = 1, · · · , t.

Then, for any 1 ≤ i, j ≤ t, there are non-negative integers kli,j(i ≤ l ≤ t) appearing
as the structure constants of the representation ring r(H) satisfying

[Mi][Mj] =
∑

1≤l≤t

kli,j [Ml]. (1)

Define an ideal I of K〈X〉 generated by {xixj−
∑

1≤l≤t k
l
i,jxl | 1 ≤ i, j ≤ t}, then

the representation ring r(H) can be realized as r(H) ∼= K〈X〉/(I, 1− x1).
Moreover, if H is cocommutative, then r(H) becomes a commutative ring due to

the definition of a representation ring. In this case, the free algebra K〈X〉 is replaced
by the polynomial algebra K[X] through the relations [Mi][Mj] = [Mj ][Mi], that is,
r(H) ∼= K[X]/(I, 1− x1).

However, in general, using some relations among the t indecomposable modules
of a representation-finite K-Hopf algebra H , it is possible to find a positive integer
s with s < t and s generators consisting of iso-classes of indecomposable modules to
generate r(H) with more relations. Then, we will be able to find Y = {y1, · · · , ys} so
as to obtain an epimorphism K[Y ] → r(H). This will be described in Section 4 for
some Nakayama truncated algebras H = KZn/J

d.
Most of this paper is devoted to characterizing representation rings and derived

representation rings of a special class of finite dimensional Hopf algebras, i.e., the
Nakayama truncated algebras KZn/J

d with d = pm ≤ n over an algebraically closed
field K of characteristic p. Nakayama algebras, also called generalized uniserial al-
gebras, were introduced by Nakayama who characterized this kind of algebras as an
artinian ring R in which each R-module is a direct sum of quasi-primitive modules (i.e.
those factor modules of primitive one-sided ideals) (see [1],[11],[25]). The Nakayama
truncated algebras, which were also studied in [2],[3], are always basic self-injective
Nakayama algebras. Some well-known algebras can be realized as Nakayama trun-
cated algebras, such as the Taft algebras and the generalized Taft algebras studied
in [17],[26],[29]. Another reason why we consider this kind of Nakayama truncated
algebras is that they have Hopf algebra structures, see Proposition 2.1.

The representation rings of certain Hopf algebras have been computed, such as
finite dimensional semi-simple Hopf algebra, the enveloping algebra of a complex semi-
simple Lie algebra, the polynomial Hopf algebra K[x] and the Sweedler 4-dimensional
Hopf algebra (see [9],[10],[12],[23],[31]). There have also been recent studies by Chen,
Oystaeyen in [8] and Zhang for Taft algebras and by Li and Zhang for the generalized
Taft algebras in [21].

Although all the algebraic structures of Taft algebras, generalized Taft algebras
and Nakayama truncated algebras can be written as the form KZn/J

d for an oriented
cycles Zn in the cases of d = n, d|n and d = pm ≤ n respectively, their structures as
coalgebras differ substantially.

The Nakayama truncated algebra KZn/J
d is of the finite representation type and

becomes a cocommutative Hopf algebra in the case we discuss. We give the genera-
tors of its representation ring with cardinality less than the number of iso-classes of
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indecomposable modules and determine the relations of these generators. For clearer
expression, we introduce the method of the Pascal triangle. Finally, we use linear
recurrent sequence to obtain the polynomial characterization of the representation
ring r(KZn/J

d).

As an application of the polynomial characterization of representation rings, we
give a preliminary discussion of the isomorphism problem on representation rings.
The complexified representation ring R(KZn/J

d) is defined from r(KZn/J
d) and

then using it, a sufficient condition for two such representation rings R(KZn1
/Jd1)

and R(KZn2
/Jd2) with n1d1 = n2d2 to be isomorphic is given by that, in their

polynomial characterizations, the ideals generated by the relations in the polynomial
rings are both radical ideals.

In essence, representation rings are constructed by (indecomposable) objects from
the module categories of Hopf algebras and then are used as a tool to reflect the
properties of Hopf algebras. Hence, we can apply the same idea to more categories
enjoying similarity, in which monoidal categories seem be the most natural. So, in this
paper, we also introduce the concept of Green rings over monoidal categories which
we regard as the de-categorification of monoidal categories. Conversely, monoidal
categories can be thought of as the categorification of their Green rings.

The viewpoint of Green rings of monoidal categories is important, since under this
we can unify a series of special monoidal categories via Green rings. Representation
rings over module categories are most important. The others include those for a Hopf
algebra H , the complex category Ch(H), the homotopy category K(H), the derived
categoryDb(H) and their subcategories Chsh(H) and Dsh(H) with Green rings called
complex rings, derived representation rings and (derived) shift rings, respectively. In
this part, we also give the relations among the Green rings of these special monoidal
categories.

In general, the Green rings mentioned above are non-commutative. However,
when the Hopf algebras are cocommutative, even non-cocommutative for some spe-
cial cases (e.g. (generalized) Taft algebras), Green rings are commutative. We can
characterize these rings via free algebras. In particular, when the Hopf algebras are
cocommutative, we can use polynomial algebras to characterize the Green rings. At
the end of this section, we give the characterizations of shift rings and derived repre-
sentation rings using free algebras and polynomial algebras.

Our other aim is to calculate the derived representation ring of the algebra
KZn/J

d. In fact, the representation ring r(KZn/J
d), which is characterized com-

pletely in Section 7, is a sub-ring of the derived ring dr(KZn/J
d). Another sub-ring

of dr(KZn/J
d) is the shift ring sh(KZn/J

d), which has a graded structure which
is easy to describe (Proposition 5.1). However, the calculation of the structure co-
efficients of the derived representation ring dr(KZn/J

d) is more difficult than that
of sh(KZn/J

d) and r(KZn/J
d). Indeed, we have been able to investigate only the

derived representation ring for the case d = 2, i.e. H = KZn/J
2, see Theorem 5.9

where the generators of dr(KZn/J
2), the relations of generators and the polynomial

characterization are given respectively in (i), (ii) and (iii). The remaining problem is
that in Theorem 5.9, for the case s > s′ > 1, the decomposition of the double complex
P •(j′+s′−1, j′)⊗P •(j+s−1, j) has three choices and we still cannot determinate ac-
tually which one is appropriate. For this problem, we conjecture that there can be only
one choice of decomposition of the double complex P •(j′+s′−1, j′)⊗P •(j+s−1, j)
(see Conjecture 5.8).

This paper is organized as follows. In Section 2, we review some basic defini-
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tions of Nakayama truncated algebras KZn/J
d and list all the indecomposable mod-

ules, and then show the Hopf algebra structure of KZn/J
d according to some results

from [1] and [13]. Moreover, we give an elementary lemma to simplify our proof
in the process, and then for integers 0 ≤ i, i′, l ≤ d − 1 and a sequence of integers
U = {uj}0≤j≤l, we describe a combinatorial way to construct the indecomposable sub-
module M(i, i′, l, {u0, u1, · · · , ul}) of the tensor product of indecomposable modules
M(i, 0)⊗M(i′, 0) via the Pascal triangle. Furthermore, we describe the generators of
the representation ring r(KZn/J

d) of the Nakayama truncated algebras KZn/J
d. In

Section 3, we show the relations between these generators and the representation ring
r(KZn/J

d) are characterized by the certain quotient ring of the corresponding poly-
nomial ring. As an application of the polynomial characterization of representation
rings, we then discuss the isomorphism problem of representation rings. In Section 4,
we generalize our representation rings over module categories to the viewpoint of a
Green ring from a monoidal category. In Section 5, we first give the structure of the
shift ring sh(KZn/J

d) and then calculate the derived representation ring dr(KZn/J
2)

through the generators and their relations, although the same discussion for general
dr(KZn/J

2) remains problematic.

2. The generators of the representation ring r(KZn/J
d).

2.1. Hopf structure and indecomposable modules of Nakayama trun-
cated algebra KZn/J

d. The Nakayama truncated algebras, or truncated cycle alge-
bras, were first described by Bardzell et al. in [2]. Let Zn be an oriented cycle of length
n, which has n vertices {v0, · · · , vn−1} and n arrows {α0, · · · , αn−1} such that the
origin vertex s(αi) of the arrow αi equals the terminus vertex t(αi−1) of αi−1. Here,

the subscript indices of vertices and arrows in Zn are denoted by {0, 1, · · · , n− 1},
the set of elements of the residue class of the abelian group Z/nZ, since in the sequel
we will correspond the set of the vertices of Zn to the set of the elements of group
G = Z/nZ, see (Proposition 2.1). Let J denote the two-sided ideal of the path algebra
KZn generated by all arrows.

The Nakayama truncated algebras are defined asKZn/J
d for any positive integers

d, which are called the truncated quotients of the path algebras KZn for any n.
For A = KZn/J

d, by Theorem V.3.5 in [1], for any indecomposable A-module M ,
there exists an indecomposable projective A-module P and an integer t with 1 ≤ t ≤ d
such that M ∼= P/radtP . Thus, there is a total of nd indecomposable A-modules

M(i, j) = Pj/rad
iPj , 1 ≤ i ≤ d

where Pj is the indecomposable projective A-module at the vertex vj . Denote by Sj

the simple A− module at vj and notice that M(1, j) = Sj and M(d, j) = Pj .
Green and Solberg(1998) showed in [1] that for a finite dimensional ba-

sic Hopf algebra H over K, there exists a finite group G and a weight se-
quence W = (w1, w2, · · · , wr) of G (i.e., for each g ∈ G, the sequence W and
(gw1g

−1, gw2g
−1, · · · , gwrg

−1) are the same up to a permutation), such that H ∼=
KΓG(W )/I as Hopf algebras for an admissible ideal I, where the quiver ΓG(W ) is
defined as: the vertex set ΓG(W )0 = {vg}g∈G and the arrow set ΓG(W )1 = {(ai, g) =
(vg−1 → vwig−1)|g ∈ G,wi ∈ W}, which is simply the ordinary quiver of H . This
quiver ΓG(W ) is called the covering quiver of H with respect to the weight sequence
W .

Now, we can give the condition for the Nakayama truncated algebra KZn/J
d to

be a cocommutative Hopf algebra with the comultiplication Δ, the counit ε and the
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antipode S, which are defined as follows:

Δ(vh) =
∑

g1+g2=h, g1,g2∈G

vg1 ⊗ vg2 , ε(vh) =

{
1, h = 0
0, h 
= 0

, S(vh) = v−h (2)

Δ(αh) =
∑

g1+g2=h, g1,g2∈G

(αg1 ⊗ vg2 + vg1 ⊗ αg2), ε(αh) = 0, S(αh) = −αh (3)

where vh ∈ (Zn)0 the vertex set of Zn and αh ∈ (Zn)1 the arrow set of Zn.

Proposition 2.1. For the Nakayama truncated algebra KZn/J
d over a field

K of characteristic p, let G = Z/nZ = {0, 1, · · · , n− 1} be the residue class group
modulo n with a weight sequence W = {1}. Then,

(i) the covering quiver ΓG(W ) is simply the n-th oriented cycle Zn;
(ii) KZn/J

d is a cocommutative Hopf algebra with covering quiver Zn and Hopf
structure given in (2) and (3) if and only if d = pm ≤ n for some m > 0.

Proof. (i) It follows directly from the definition of ΓG(W ).
(ii) “Only if”: In the oriented cycle ΓG(W ) = Zn, the vertex set

(Zn)0 = {vg}g∈G and the arrow set (Zn)1 = {αg = (vg → v1+g) | g ∈ G}. The

conclusion follows from ([13], Lemma 5.3) and the fact that gcd(
(
d
1

)
,
(
d
2

)
, · · · , ( d

d−1

)
) ={

p, d is the power of prime p;
1, otherwise,

in [27].

“If”: If d = pm ≤ n holds for some m > 0, then Jd is a Hopf ideal in KΓG(W )
by the sufficient and necessary condition of Lemma 5.3 in [13], then KZn/J

d becomes
a Hopf algebra due to the results of Corollary 5.4 in [13], whose cocommutativity
follows directly from the definition of the comultiplication Δ.

There are more results for criterion of KZn/J
d having Hopf structures which are

various with that from (2) and (3), see [7] and [22]. One may discuss, under these
Hopf structures, the same topics in this paper, e.g. derived representation rings in
the sequel.

2.2. Elementary Lemma. First, we define some notations. Denote the basis
of M(i, j) as

{vj , αj , αj+1αj , · · · , αj+i−2 · · ·αj+1αj},

and abbreviate them as v0
j
= vj , v

1
j
= αj ,· · · , vi−1

j
= αj+i−2 · · ·αj+1αj , respectively.

Fig. 1 illustrates the module M(i, j).
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From now on, we assume that d = pm for some prime p, m > 0 and charK = p;
dim,⊗ and Hom stand for dimK , ⊗K and HomK , respectively. All modules stand
for (KZn/J

d)-modules. For an A-module X , we denote Xl as its corresponding
vector space at the vertex vl, dimX as its dimension vector and (dimX)l as the
component of dimX at the vertex vl. The following two lemmas are easily proved
from a straightforward verification.

Lemma 2.2. For all 1 ≤ i, i′ ≤ d, 0 ≤ j, j′ ≤ n−1, (dim(M(i, j)⊗M(i′, j′)))l is

equal to the number of partitions of l = l1+ l2 under the condition (dimM(i, j))l1 
= 0

and (dimM(i′, j′))l2 
= 0.

Proof. Choose the bases of M(i, j) and M(i′, j′) as {v0
j
, v1

j
, · · · , vi−1

j
} and

{v0
j′
, v1

j′
, · · · , vi′−1

j′
}, respectively, then the basis of M(i, j)⊗M(i′, j′) is {vk

j
⊗ vk

′

j′
|0 ≤

k ≤ i− 1, 0 ≤ k′ ≤ i′ − 1}.
Additionally, (dim(M(i, j)⊗M(i′, j′)))l = dim(vl · (M(i, j)⊗M(i′, j′))), and

vl · (vkj ⊗ vk
′

j′
) = Δ(vl)(v

k
j
⊗ vk

′

j′
) =

∑
g1+g2=l,g1,g2∈G

(vg1 ⊗ vg2)(v
k
j
⊗ vk

′

j′
)

=
∑

g1+g2=l,g1,g2∈G

δg1,j+kδg2,j′+k′(v
k
j
⊗ vk

′

j′
)

=

{
vk
j
⊗ vk

′

j′
, if g1 = j + k, g2 = j′ + k′

0, otherwise

where δi,j is the Kronecker symbol. Thus, (dimM(i, j)⊗M(i′, j′))l
= �{the partitions of l = j + k + j′ + k′ such that 0 ≤ k ≤ i− 1, 0 ≤ k′ ≤ i′ − 1}.

Denote l1 = j+k, l2 = j′+k′. By the definition of M(i, j), (dimM(i, j))l1 
= 0 if

and only if j ≤ l1 ≤ j + i− 1, (dimM(i′, j′))l2 
= 0 if and only if j′ ≤ l2 ≤ j′ + i′ − 1.
Then, we have l = (j + k) + (j′ + k′) = l1 + l2.

Thus, the number of the partitions of l = j + k + j′ + k′ with 0 ≤ k ≤ i− 1, 0 ≤
k′ ≤ i′ − 1 is equal to the number of the partitions of l = l1 + l2 with j ≤ l1 ≤
j + i − 1, j′ ≤ k′ ≤ j′ + i′ − 1 and moreover, is equal to the number of partitions of
l = l1 + l2 satisfying (dimM(i, j))l1 
= 0 and (dimM(i′, j′))l 
= 0}.

Following this result, in the case that (dim(M(i, j) ⊗M(i′, j′)))l 
= 0, the basis
of (M(i, j)⊗M(i′, j′))l is that

{vl1−j

j
⊗ vl2−j′

j′
| l1 + l2 = l, (dimM(i, j))l1 
= 0, (dimM(i′, j′))l2 
= 0}.

Lemma 2.3. If (dimM(i, j))l1 
= 0, (dimM(i′, j′))l2 
= 0 and l = l1 + l2, then in

the module M(i, j)⊗M(i′, j′), it holds that

αl · (vl1−j

j
⊗ vl2−j′

j′
) = αl1

(vl1−j

j
)⊗ vl2−j′

j′
+ vl1−j

j
⊗ αl2

(vl2−j′

j′
).
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Proof.

αl · (vl1−j

j
⊗ vl2−j′

j′
)

= Δ(αl)(v
l1−j

j
⊗ vl2−j′

j′
)

=
∑

g1+g2=l,g1,g2∈G

(αg1 ⊗ vg2 + vg1 ⊗ αg2)(v
l1−j

j
⊗ vl2−j′

j′
)

=
∑

g1+g2=l,g1,g2∈G

δg1,l1δg2,l2(αl1
(vl1−j

j
)⊗ vl2−j′

j′
+ vl1−j

j
⊗ αg2(v

l2−j′

j′
))

= αl1
(vl1−j

j
)⊗ vl2−j′

j′
+ vl1−j

j
⊗ αl2

(vl2−j′

j′
).

The next lemma can express the module M(i, j) as the tensor product of M(i, 0)
and M(1, 1)’s, which will be used to simplify calculations in the following discussion.
We call this result the elementary lemma.

Lemma 2.4 (Elementary lemma). For all 1 ≤ i ≤ d,

M(i, j)⊗M(1, j′) ∼= M(1, j′)⊗M(i, j) ∼= M(i, j + j′).

Proof. By Lemma 2.2, we have (dimM(i, j) ⊗ M(1, j′))l ={
1, j + j′ ≤ l ≤ j + j′ + i− 1
0, otherwise

and for any j + j′ ≤ l ≤ j + j′ + i − 1, the

basis of (M(i, j)⊗M(1, j′))l is v
l−j−j′

j
⊗ v0

j′
.

It suffices to check the morphism coinciding with the morphism of M(i, j + j′).
By Lemma 2.3, for j + j′ ≤ l ≤ j + j′ + i − 1, choose l = l1 + l2 = (l − j′) + j′, then
we have

αl · (vl−j′−j

j
⊗ v0

j′
) = αl−j′ (v

l−j′−j

j
)⊗ v0

j′
+ vl−j′−j

j
⊗ αj′ (v

0
j′
)

= αl−j′ (v
l−j′−j

j
)⊗ v0

j′

=

{
vl−j′+1−j

j
⊗ v0

j′
, j + j′ ≤ l ≤ j + j′ + i− 2

0, otherwise

therefore M(i, j)⊗M(1, j′) ∼= M(i, j + j′). The other one is similar.

By the elementary lemma we can restrict our study to the form M(i, 0), 1 ≤ i ≤ d
and M(1, 1). Indeed, for any 1 ≤ i, i′ ≤ d, 0 ≤ j, j′ ≤ n− 1, we have

M(i, j)⊗M(i′, j′) ∼= M(i, 0)⊗M(i′, 0)⊗M(1, 1)⊗(j+j′), (4)

where M(1, 1)⊗(j+j′) means M(1, 1)⊗M(1, 1)⊗ · · ·M(1, 1)︸ ︷︷ ︸
(j+j′)−times

for simplicity. In the

sequel, the meaning of M(i, j)⊗k, in general, is the same.
Additionally, if (M(i, 0)⊗M(i′, 0))l 
= 0, then the basis of M(i, 0)⊗M(i′, 0) is

{vk
0
⊗ vk

′

0
|k + k′ = l, 0 ≤ k ≤ i− 1, 0 ≤ k′ ≤ i′ − 1}.

For simplicity, from now on, we abbreviate vk
0
⊗ vk

′

0
as vk ⊗ vk

′

.
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2.3. Indecomposable modules associated with the Pascal triangle . In
this section, we give a combinatorial way to construct the indecomposable submodules
M of M(i, 0)⊗M(i′, 0) via the Pascal triangle.

Step 1. First we introduce some notations. We label rows of the Pascal triangle
as 0-th row, 1-st row, · · · from the top to the bottom, label the symmetry axis of the
Pascal triangle as 0-th column; 1-st column, 2-nd column from this axis to the right;
the (−1)-st column, (−2)-nd column from this axis to the left, and call the point in
the i- row and j-th column the (i, j) position, (Fig. 2).

Fig. 2.

Step 2. Next, for the initial data (i, i′, l, {uj}0≤j≤l), we complete the Pascal
triangle by filling one number in each position. More precisely, for 0 ≤ i, i′, l ≤ d− 1
and a sequence of integer coefficients U = {uj}0≤j≤l, we fill the Pascal triangle in the
following way:

(i) For the entries in the (i, j) position with 0 ≤ i < l, let ♦(i, j) = 0, where
♦(i, j) denotes the number filling the (i, j) position.

(ii) For the entries in the (l, j) position, let ♦(l,−l) = u0,♦(l,−l + 2) =
u1, · · · ,♦(l, l) = ul.

(iii) For the entries in the (i, j) position with i > l, finish the Pascal triangle via
the Pascal triangle rules, that is, if i+j = 0, then let ♦(i, j) = ♦(i−1, j+1). If i = j,
then let ♦(i, j) = ♦(i−1, j−1), otherwise let ♦(i, j) = ♦(i−1, j−1)+♦(i−1, j+1).

Step 3. Finally, we associate each vertex vl+k a vector space Vl+k in the following

way. It has basis ♦(l+ k,−l− k) vl+k ⊗ v0 + · · ·+♦(l+ k, l+ k) v0 ⊗ vl+k. Here are
some remarks.

(i) We have k ≥ 0 and vn+s = vs, s ≥ 0.
(ii) If vs is on the left side of the ⊗ symbol and s ≥ i, then vs = 0.

(iii) If vt is on the right side of the ⊗ symbol and t ≥ i′, then vt = 0.
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Now we associate a KZn/J
d-module with a given data (i, i′, l, {uj}0≤j≤l) as fol-

lows.

Definition 2.5. Given initial data (i, i′, l, {uj}0≤j≤l), define a KZn/J
d-module

M as follows:
(i) M =

⊕
k≥0

Vl+k as vector space;

(ii) For each vertex vk and its associated vector space Vk, the module action in
M is defined as

αk · (vl1 ⊗ vk−l1 ) = αl1
(vl1)⊗ vk−l1 + vl1 ⊗ αk−l1

(vk−l1 ),

which is just the simplified form of the result of Lemma 2.3.
From this definition, we denote this module by M = M(i, i′, l, {uj}0≤j≤l).

The following proposition shows that M is indeed an indecomposable submodule
of M(i, 0)⊗M(i′, 0).

Proposition 2.6. For any 0 ≤ i, i′, l ≤ d − 1 and a sequence of integer coef-
ficients U = {uj}0≤j≤l. If l ≤ min{i, i′}, then the module M = M(i, i′, l, {uj}0≤j≤l)
constructed above is an indecomposable submodule of M(i, 0)⊗M(i′, 0).

Proof. Firstly, since l ≤ min{i, i′}, Vl is a subspace of (M(i, 0) ⊗ M(i′, 0))l.
Moreover, M inherits the module structure of M(i, 0)⊗M(i′, 0) and M is generated

by w0 = u0v
l ⊗ v0 + u1v

l−1 ⊗ v1 + · · · + ulv
0 ⊗ vl. Hence, M is a submodule of

M(i, 0)⊗M(i′, 0).
Moreover, the indecomposability of M can be obtained as a consequence of the

actions of the morphisms αl, αl+1, · · · on the vector spaces Vl, Vl+1, · · · , according to
the construction of M =

⊕
k≥0

Vl+k. In fact, by the definition of M , it is generated by

the element w0, which is a basis of Vl. If M is decomposable, write M = M ′ ⊕M ′′,
then w0 ∈M ′ or w0 ∈M ′′. Assume w0 ∈M ′. ThusM ′∩Vl 
= {0}. But dimVl = 1, we
obtain Vl ⊆ (M ′)l. So, M =

⊕
k≥0

Vl+k is a submodule of M ′ since M is generated by

w0. This means thatM = M ′ andM ′′ = 0, which implies thatM is indecomposable.

By Proposition 2.6, the coefficient of vi⊗ vj is stored in the (i+ j, j− i) position.
Therefore from now on, we write this phenomenon as c(i, j) = ♦(i+ j, j− i) for short.

We end this section with the following example for constructing module M =
M(i, i′, l, {uj}0≤j≤l).

Example 2.7. Let i = i′ = 2, l = 0, u0 = 1, n = 6, d = p = 5, then
M(2, 2, 0, {1}) = ⊕5

k=0Vk is an indecomposable submodule of M(2, 0) ⊗M(2, 0) by
Proposition 2.6. Through the Pascal triangle we have the following processes.

(i) V0 = span{v0 ⊗ v0} ∼= K;

(ii) V1 = span{v1 ⊗ v0 + v0 ⊗ v1} ∼= K, since α0 · (v0 ⊗ v0) = v1 ⊗ v0 + v0 ⊗ v1;

(iii) V2 = span{2v1 ⊗ v1} ∼= K, since α1 · (v1 ⊗ v0 + v0 ⊗ v1) = v2 ⊗ v0 + 2v1 ⊗
v1 + v0 ⊗ v2 = 2v1 ⊗ v1 with v2 = α1α0 = 0 in M(2, 0);

(iv) V3 = V4 = V5 = 0, since α2 · (2v1 ⊗ v1) = 2v2 ⊗ v1 + 2v1 ⊗ v2 = 0.

Thus, M(2, 2, 0, {1}) = span{v0 ⊗ v0, v1 ⊗ v0 + v0 ⊗ v1, 2v1 ⊗ v1}.
In Fig. 3, the figure on the right expressesM(2, 2, 0, {1}), in which the coefficients

occurring in the basis of M(2, 2, 0, {1}) are surrounded by the dotted line; the figure
on the left expressesM(3, 0). The figure on the right can be induced from the figure on
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the left under the action of arrows; conversely, the figure on the left is directly obtained
from the figure on the right. Hence, from Fig. 3, we have shown that M(2, 2, 0, {1}) ∼=
M(3, 0), which is an indecomposable submodule of M(2, 0)⊗M(2, 0).

K K K 0 0 01 1 0 00

0

1

1 1

1 1

1 1

1 1 1

1 1

2

3 3

4 4

0 0 0 0

Fig. 3.

2.4. The generators of r(KZn/J
d) . This section is devoted to calculating the

generators of representation ring r(KZn/J
d).

First, we give the following Lemma which is similar to Lemma 3.8 given by Chen
et al. in [8]. Here, we give another verification by the notation introduced in Section
5.

Lemma 2.8. (i) For all 1 ≤ i ≤ d, 0 ≤ j ≤ n− 1,

M(i, j)⊗M(1, 0) ∼= M(1, 0)⊗M(i, j) ∼= M(i, j), M(1, 1)⊗n ∼= M(1, 0).

(ii) M(2, 0)⊗M(t, 0) ∼= M(t+ 1, 0)⊕M(t− 1, 1) for all t ≥ 2, p � t.
(iii) M(2, 0)⊗M(t, 0) ∼= M(t, 0)⊕M(t, 1) for all t > 0, p|t.
Proof. (i) follows directly from Lemma 2.4.
(ii) For t ≥ 2, p � t, by Proposition 2.6 we have two submodules M1 =

M(2, t, 0, {1}) and M2 = M(2, t, 1, {1− t, 1}) of M(2, 0)⊗M(t, 0). The coefficients of
the bases of (M1)l, (M2)l, 0 ≤ l ≤ n− 1 are given in the following table:

Rows in

Pascal triangle
0 1 · · · l · · · t− 1 t t+ 1 · · · n− 1

M1 (0, 1) (1, 1) · · · (l, 1) · · · (t− 1, 1) (t, 0) (0, 0) · · · (0, 0)

M2 (0, 0) (1− t, 1) · · · (l − t, 1) · · · (−1, 1) (0, 0) (0, 0) · · · (0, 0)

where the coefficient pair (c1, c2) in the s-position means that c1 = c(1, s− 1), c2 =
c(0, s), which are stored in the upper-right two diagonals of the Pascal triangle.

Thus, for p � t, we have M1
∼= M(t + 1, 0), M2

∼= M(t − 1, 1), dim (M1)l +
dim (M2)l = dim (M(2, 0)⊗M(t, 0))l and (M1)l ∩ (M2)l = {0} for any 0 ≤ l ≤ n− 1.
Therefore,

M(2, 0)⊗M(t, 0) ∼= M1 ⊕M2
∼= M(t+ 1, 0)⊕M(t− 1, 1).

(iii) Similarly with (ii), M(t, 0) ∼= M(2, t, 0, {1}), M(t, 1) ∼= M(2, t, 1, {1, 0}).
The basis of M(t, 0)l is v

0 ⊗ vl + l v1 ⊗ vl−1 and the basis of M(t, 1)l is v
1 ⊗ vl−1 for

1 ≤ l ≤ t.
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To determine the generators of the Green ring r(KZn/J
d), we need more obser-

vations.

Lemma 2.9. For any 1 ≤ u ≤ d, the isomorphism class [M(u, 0)]
of the indecomposable module M(u, 0) can be expressed as a polynomial of
[M(1, 1)], [M(2, 0)], [M(pl + 1, 0)] for 1 ≤ l ≤ m− 1 in r(KZn/J

d).

Proof. In the case that u− 1 is a power of p, the conclusion follows at once.
Otherwise, in the case that u− 1 is not a power of p, we prove this conclusion by

induction on u.
When u = 1, the conclusion is trivial.
When u > 1 and u − 1 is not a power of p, assuming that for any 1 ≤ v < u,

M(v, 0) can be expressed as a polynomial of [M(1, 1)], [M(2, 0)], [M(pl + 1, 0)], ∀1 ≤
l ≤ m − 1 in r(KZn/J

d). Because gcd(
(
u−1
1

)
,
(
u−1
2

)
, · · · , (u−1

u−2

)
) = 1 in [20], there

exists w, 1 ≤ w ≤ u− 2 such that
(
u−1
w

) 
= 0 in K with charK = p.
Now, we will prove the result on M(u, 0) by the induction hypotheses. For this

purpose, consider the decomposition ofM(u−w, 0)⊗M(w+1, 0) into indecomposables.
Firstly, since

(
u−1
w

) 
= 0 in K, M(u − w,w + 1, 0, {1}) is a submodule of M(u −
w, 0)⊗M(w + 1, 0), generated by v0 ⊗ v0 and the corresponding figure in the Pascal
triangle is the rectangle with points at (0, 0), (u − w − 1, 0), (0, w), (u − w − 1, w)
positions. Then, it is clear that M(u, 0) ∼= M(u− w,w + 1, 0, {1}).

Given the decomposition of M(u − w, 0) ⊗M(w + 1, 0) into the direct sum of
indecomposables as M(u−w, 0)⊗M(w+1, 0) = M1⊕M2 · · ·⊕Mt, since dim (M(u−
w, 0)⊗M(w+1, 0))0 = 1, there exists a unique s with 1 ≤ s ≤ t such that dim (Ms)0 =

1. Without loss of generality, say s = 1, then it follows that v0 ⊗ v0 ∈ M1. Then,
M(u, 0) becomes a submodule of M1 since M(u, 0) is generated by v0 ⊗ v0.

Because M1 is a submodule of M(u−w, 0)⊗M(w+1, 0), we have dim (M1)l = 0
for u ≤ l ≤ n− 1. Thus, dim M1 ≤ (u− 1)− 0 + 1 = u = dim M(u, 0).

Therefore, M1 = M(u, 0) and then we haveM(u−w, 0)⊗M(w+1, 0) = M(u, 0)⊕
M2 · · · ⊕Mt. From this, in r(KZn/J

d), we find that

[M(u, 0)] = [M(u− w, 0)][M(w + 1, 0)]− [M2]− · · · − [Mt]. (5)

For any 2 ≤ s ≤ t, there are 1 ≤ is, js ≤ u − 2 such that Ms
∼= M(is, js) and by

the elementary lemma, M(is, js) = M(is, 0)⊗M(1, 1)⊗js . Thus [Ms] = [M(is, js)] =
[M(is, 0)][M(1, 1)]js .

Hence, from the induction hypotheses, all of [M(u − w, 0)], [M(w +
1, 0)], [M2], · · · , [Mt] can be expressed as a polynomial of [M(1, 1)], [M(2, 0)], [M(pl +
1, 0)], ∀1 ≤ l ≤ m− 1 in r(KZn/J

d). By (5), so can [M(u, 0)].

By Lemma 2.4, we have [M(u,w)] = [M(u, 0)][M(1, 1)]w for 1 ≤ u ≤ d, 0 ≤ w ≤
n− 1. By this fact and Lemma 2.9, we obtain the following.

Theorem 2.10. Let charK = p and n ≥ d = pm. Then, the representa-
tion ring r(KZn/J

d) of the Nakayama truncated algebra KZn/J
d is generated by

[M(1, 1)], [M(2, 0)] and [M(pl + 1, 0)], 1 ≤ l ≤ m− 1.

The following corollary is more precise.

Corollary 2.11. For any 1 ≤ u ≤ pl, 1 ≤ l ≤ m, 0 ≤ r ≤ n − 1, then the
element [M(u, r)] in r(KZn/J

d) can be expressed as a polynomial of

[M(1, 1)], [M(2, 0)], [M(p+ 1, 0)], [M(p2 + 1, 0)], · · · , [M(pl−1 + 1, 0)].
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Proof. We may use the induction on l. When l = 1, by Lemma 2.4, we have

[M(i, j)] = [M(i, 0)][M(1, j)] = [M(i, 0)][M(1, 1)]j

and by Lemma 2.8, recursively, we have

[M(2, 0)][M(2, 0)] = [M(3, 0)] + [M(1, 1)],

[M(2, 0)][M(3, 0)] = [M(4, 0)] + [M(2, 1)], · · · ,
[M(2, 0)][M(p− 1, 0)] = [M(p, 0)] + [M(p− 2, 1)].

It follows that for any 1 ≤ u ≤ p, 0 ≤ r ≤ n− 1, [M(u, r)] can be expressed as a
polynomial of [M(1, 1)], [M(2, 0)].

Assume the result is true for l− 1. Now consider it for l. Let 1 ≤ u ≤ pl, 0 ≤ r ≤
n− 1.

If 1 ≤ u ≤ pl−1, then the result follows by the induction hypothesis. So, we need
only to consider the case pl−1 + 1 ≤ u ≤ pl by using induction again on u.

Firstly, if u = pl−1 + 1, then the result is trivial since we have [M(u, r)] =
[M(pl−1+1, 0)][M(1, 1)]r by Lemma 2.4. Now, suppose the result holds for all u′ < u
and then consider [M(u, 0)].

In this case pl−1 + 2 ≤ u ≤ pl, u − 1 is not a power of p. According to the proof
of Lemma 2.9, there exists 1 ≤ w ≤ u− 2 such that

(
u−1
w

) 
= 0 in K and the following
holds:

[M(u, 0)] = [M(u− w, 0)][M(w + 1, 0)]− [M2]− · · · − [Mt]. (6)

where for any 2 ≤ s ≤ t, Ms
∼= M(is, js) for some is, js with 1 ≤ is, js ≤ u− 2.

Finally, the result follows by the induction hypotheses applied to the terms [M(u−
w, 0)], [M(w + 1, 0)], [M2], · · · , [Mt].

From this result, there is a unique ring epimorphism φ :
Z[y, z, w1, · · · , wm−1] −→ r(KZn/J

d) with φ(1) = [M(1, 0)], φ(y) = [M(1, 1)], φ(z) =
[M(2, 0)] and φ(wl) = [M(pl + 1, 0)], for 1 ≤ l ≤ m− 1.

In the next section, we start to show the relations among the generators
[M(1, 1)], [M(2, 0)], [M(pl+1, 0)], ∀1 ≤ l ≤ m−1 of the representation ring r(KZn/J

d)
and their corresponding pre-images y, z, w1, · · · , wm−1.

3. Polynomial characterization of r(KZn/J
d) and its application.

3.1. Polynomial characterization . This section is devoted to a discussion of
the relations among the generators of the representation ring r(KZn/Jd). We will
need the following facts.

Lemma 3.1. Let R be a unital ring and N1, N2 be two unital R-modules. If
N1 ⊕ N2 has a simple submodule S, then either N1 or N2 has a simple submodule
isomorphic to S.

Proof. Since S is a simple module, then S = Rb for some b 
= 0 in N1 ⊕N2. Let
b = b1 + b2 for b1 ∈ N1, b2 ∈ N2. Without loss of generality, say b1 
= 0. Then, the
annihilator of b, that is, Ann(b) = {r ∈ R | rb = 0} is a maximal left ideal of R, since
R/Ann(b) ∼= Rb is simple as R-module.
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However, Ann(b1) is a proper left ideal of R and Ann(b1) ⊇ Ann(b). Therefore,
Ann(b1) = Ann(b) due to the maximum of Ann(b). Then, as a submodule of N1, we
have Rb1 ∼= R/Ann(b1) = R/Ann(b) ∼= S.

Lemma 3.2. M(pl + 1, 0)⊗M(kpl + 1, 0) ∼=
⎧⎨⎩

W1, if k ≡ −1(mod p)
W2, if k ≡ 0(mod p)
W3, otherwise

where

W1 = M(kpl + pl, 0)⊕M(kpl + pl, 1)⊕ (⊕pl−1
j=2 M(kpl, j))⊕M(kpl − pl + 1, pl),

W2 = M(kpl + pl + 1, 0)⊕ (⊕pl

j=1M(kpl, j)),

W3 = M(kpl+pl+1, 0)⊕M(kpl+pl− 1, 1)⊕ (⊕pl−1
j=2 M(kpl, j))⊕M(kpl−pl+1, pl).

Proof. Here, we give the precise proof only for the W3 case with l = 1, p > 2. For
the remaining cases, the proofs are similar.

Firstly, we construct a sequence of submodules {Mi}0≤i≤p ofM(p+1, 0)⊗M(kp+
1, 0) via the Pascal triangle, and then prove that

M0
∼= M(kp+ p+ 1, 0),M1

∼= M(kp+ p− 1, 1),Mp
∼= M(kp− p+ 1, p), (7)

M2
∼= M(kp, 2),M3

∼= M(kp, 3), · · · ,Mp−1
∼= M(kp, p− 1). (8)

Lastly, we show that M(p+ 1, 0)⊗M(kp+ 1, 0) ∼= ⊕p

i=0 Mi.

Step 1. We define the submodules {Mi}0≤i≤p as follows:

Ml =

{
M(p+ 1, kp+ 1, l, {0, · · · , 0, 1, 0, · · · , 0}), if l is even;
M(p+ 1, kp+ 1, l, {0, · · · , 0, 1,−k, 0, · · · , 0}), if l is odd

where the numbers of 0 on the left-side and the right-side of 1 are the same, as are
those on the left-side and the right-side of {1,−k}.

Step 2. Claim that M0
∼= M(kp + p + 1, 0) and for even l = 2, 4, · · · , p − 1,

Ml
∼= M(kp, l). For odd l, the proof is similar.
Indeed, the Pascal triangle associated with M0 is given on the left of Fig. 4, where

the coefficients are surrounded by a red dotted rectangle.
For example, since

(
p
0

)
=

(
p
p

)
= 1 and

(
p
i

)
= 0 in K for 1 ≤ i ≤ p − 1, we see

that the p-row of the Pascal triangle associated with M0 is {1, 0, · · · , 0, 1}. By the
definition of M(kp+ p+ 1, 0), it follows that M0

∼= M(kp+ p+ 1, 0) at once.
Furthermore, operating M0’s Pascal triangle by going down 1 unit, we obtain

the Pascal triangle associated with M2, shown on the right-side of Fig. 4, where the
coefficients are again surrounded by a red dotted rectangle. It is clear that M2

∼=
M(kp, 2) by the definition of M(kp, 2).

Continuing this process, through applying M0’s Pascal triangle by going down
2, 3, · · · , p−1

2 units, it follows that Ml
∼= M(kp, l) for even l = 4, · · · , p− 1.

Step 3. It remains to be shown that M(p+ 1, 0)⊗M(kp+ 1, 0) ∼= ⊕p

l=0 Ml.
By Proposition 2.6, all Ml, as well as

∑p

l=0 Ml, are submodules of M(p+ 1, 0)⊗
M(kp+ 1, 0). Next, we claim by induction that

∑p

l=0 Ml is indeed a direct sum.
For any i with 0 ≤ i ≤ n − 1, we denote by βl,i the basis of the vector space

{(Ml)i} when (Ml)i 
= 0 and denote by Pl the Pascal triangle corresponding to the
module Ml.

It is easy to see that T0 = Skp+p+1, T1 = Skp+p−1, Ti = Skp+i−1, ∀2 ≤ i ≤ p− 1,
Tp = Skp is respectively the unique simple submodule of M0, M1, Mi, ∀2 ≤ i ≤ p− 1,
Mp.
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Fig. 4.

When p = 1, we have M0 ∩M1 = {0} since T0 � T1. Hence M0 +M1 is a direct
sum.

Assume that for p − 1 the result holds, that is,
∑p−1

j=0 Mlj is a direct sum for
any subset {l0, l1, · · · , lp−1} of {0, 1, · · · , p}. Now consider the case of p for the sum∑p

l=0 Ml.

By Lemma 3.1 and the induction assumption, the direct sum
∑p−1

j=0 Mlj =⊕p−1
j=0 Mlj has all p simple submodules Tl0 , · · · , Tlp−1

, all of which are not isomorphic

to Tlp , the unique simple submodule of Mlp for lp. Thus,
⊕p−1

j=0 Mlj has no any simple
submodule isomorphic to Tlp . It follows that for any lp ∈ {0, 1, · · · , p},

(

p−1⊕
j=0

Mlj) ∩Mlp = {0}.

Therefore,
p∑

l=0

Ml =
p∑

j=0

Mlj =
⊕p

j=0 Mlj is a direct sum.

Finally, let us show that the dimension vectors of M(p + 1, 0) ⊗ M(kp + 1, 0)
and

⊕p
l=0 Ml are the same. It follows from the equation below, that for each i with

0 ≤ i ≤ p,

dim (M(p+ 1, 0)⊗M(kp+ 1, 0))i =

⎧⎪⎪⎨⎪⎪⎩
i+ 1, if 0 ≤ i ≤ p− 1;
p+ 1, if p ≤ i ≤ kp;
kp+ p+ 1− i, if kp+ 1 ≤ i ≤ kp+ p;
0, otherwise.

=

p∑
l=0

dim (Ml)i. (9)

In fact, the basis ofM(p+1, 0)⊗M(kp+1, 0) is {vs⊗vt|0 ≤ s ≤ p, 0 ≤ t ≤ kp} and
for each case on i, dim (M(p+1, 0)⊗M(kp+1, 0))i can be easily calculated to obtain
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the value in (9) by partition of the rectangle (0, 0), (0, p), (kp, 0), (kp, p) in the x-y-
coordinate system via the diagonals x+ y = l. On the other hand, dim (

∑p

l=0 Ml)i =∑p
l=0 dim(Ml)i, which is equal to the middle value in (9) for each case on i according

to the isomorphisms

M0
∼= M(kp+ p+ 1, 0), M1

∼= M(kp+ p− 1, 1), Mp
∼= M(kp− p+ 1, p)

M2
∼= M(kp, 2), M3

∼= M(kp, 3), · · · , Mp−1
∼= M(kp, p− 1).

Now, we can realize the representation ring r(KZn/J
d) as the quotient of a poly-

nomial ring by using Lemma 3.2. In preparation, we first give the formula of a linear
recurrent sequence. Given two initial values a1, a2 and the recursion relation

an = zan−1 − yan−2, n ≥ 2

with fixed y, z satisfying z2 − 4y 
= 0, by the well-known result on linear recurrence
sequences, we have

an =
2a2 − (z −

√
Δ)a1

2
√
Δ

(
z +

√
Δ

2
)n−1 +

(z +
√
Δ)a1 − 2a2

2
√
Δ

(
z −

√
Δ

2
)n−1. (10)

and further write the right side of (10) as a polynomial g of a1, a2, denoted an by
g(n, a1, a2).

For the following discussion, we first define the order

y < z < w1 < w2 < · · · < wm−1 (11)

in the polynomial ring Z[y, z, w1, · · · , wm−1] and then consider the order of the mono-
mials according to the dictionary order.

For a monomial azi11 · · · zinn of a polynomial f(z1, · · · , zn), denote by
I(axi1

1 · · ·xin
n ) = (i1, · · · , in), which is called the index series of the monomial

azi11 · · · zinn . Arranging its monomials in descending order, the leading term of the
polynomial f is the largest monomial, denoted by lt(f). Meanwhile, we denote I(f)
as the index series of the leading term lt(f) of the polynomial f under the descending
order, i.e. I(f) = I(lt(f)).

Now we are in the position of determining the relations among the generators
[M(1, 1)], [M(2, 0)] and [M(pl + 1, 0)](∀1 ≤ l ≤ m − 1) of the Nakayama truncated
algebra KZn/J

d.

Step 1. Determine the relations among [M(1, 1)] and [M(2, 0)].
By Lemma 2.8 (i), the relation [M(1, 1)]n = [M(1, 0)] holds, which corresponds

to yn − 1 = 0.
By Lemma 2.8 (iii), the relation ([M(2, 0)] − [M(1, 1)] − [M(1, 0)])[M(p, 0)] = 0

holds, which corresponds to (z − y − 1)g(p, 1, z) = 0.
Now define

g0(y, z, w1, · · · , wm−1) = yn − 1, g1(y, z, w1, · · · , wm−1) = (z − y − 1)g(p, 1, z).

Note the leading terms of g0(y, z, w1, · · · , wm−1) and g1(y, z, w1, · · · , wm−1) are yn

and zp, respectively.
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Step 2. Determine the relations among [M(pl + 1, 0)] for 1 ≤ l ≤ m− 1.
Firstly, choosing k = 1, 2, · · · , p − 1 in Lemma 3.2 successively, we obtain the

following equalities:
[M(pl + 1, 0)]2 = [M(2pl + 1, 0)] + · · ·
[M(pl + 1, 0)][M(2pl + 1, 0)] = [M(3pl + 1, 0)] + · · ·
.............
[M(pl + 1, 0)][M((p− 2)pl + 1, 0)] = [M((p− 1)pl + 1, 0)] + · · ·
[M(pl + 1, 0)][M((p− 1)pl + 1, 0)] = [M(pl+1, 0)] + [M(pl+1, 1)] + · · ·
Then, from the first formula, we have [M(2pl + 1, 0)] = [M(pl + 1, 0)]2 − · · · .

By substituting it into the second formula, we find that [M(3pl + 1, 0)] = [M(pl +
1, 0)]3 − · · · , then by substituting [M(3pl + 1, 0)] into the third formula, · · · · · · , by
continuing this process, we obtain that [M((p− 1)pl+1, 0)] = [M(pl+1, 0)]p−1− · · · .
By substituting it into the last formula, we finally obtain a polynomial gl+1 such that
the formula

gl+1([M(1, 1)], [M(2, 0)], [M(p+ 1, 0)], [M(p2 + 1, 0)], · · · , [M(pl + 1, 0)]) = 0.

holds.
Then after substituting [M(1, 1)] by y, [M(2, 0)] by z and [M(ps + 1, 0)] by ws,

1 ≤ s ≤ l respectively, we have the polynomials gl+1(y, z, w1, · · · , wl) for 1 ≤ l ≤ m−1.
Step 3. Finally, we construct the ideal I of Z[y, z, w1, · · · , wm−1] generated by

the polynomials gi(y, z, w1, · · · , wm−1), 0 ≤ i ≤ m.
The following observations are crucial.

Lemma 3.3. Given l, s satisfying 1 ≤ l ≤ m, 2 ≤ s ≤ p, let p ≤ u ≤ spl, 0 ≤
r ≤ n− 1 and denote by fu,r the corresponding polynomial of [M(u, r)] generated by
[M(1, 1)], [M(2, 0)] and [M(pl +1, 0)], 1 ≤ l ≤ m− 1 in Theorem 2.10. Then fu,r is a
polynomial in Z[y, z, w1, · · · , wl], however, no wt

l (t ≥ s) appears in any monomials
of fu,r.

Proof. It is obvious that the polynomial fu,r is a polynomial in Z[y, z, w1, · · · , wl]
according to Corollary 2.11 and the correspondence among [M(1, 1)], [M(2, 0)],
[M(pl + 1, 0)] and y, z, wl for 1 ≤ l ≤ m− 1.

Now we need only to prove that wt
l (t ≥ s) will not appear in any monomials

of fu,r. It is sufficient to prove the result for [M(u, 0)] instead of [M(u, r)] since
I(fu,r) = I(fu,0) + (0, 0, · · · , 0, r) for u ≤ p. We will prove the result by induction on
s satisfying 2 ≤ s ≤ p.

When s = 2, we have p ≤ u ≤ 2pl. We will claim that I(fu,0) < I(w2
l ).

In the case p ≤ u ≤ pl, the result follows from Corollary 2.11 since wl does not
appear in the polynomial fu,0.

In the case pl +1 ≤ u ≤ 2pl, we will use the induction on u. Firstly if u = pl +1,
then I(fu,0) = I(wl) < I(w2

l ). Now we assume the result holds for u′, pl + 1 ≤
u′ < u ≤ 2pl. Since in this case u − 1 is not a power of p, we have [M(u, 0)] =
[M(u − w, 0)][M(w + 1, 0)] − [M2] − · · · − [Mt] for some w such that 1 ≤ w ≤ u − 2
and

(
u−1
w

) 
= 0 in K, due to the proof of Lemma 2.9. Moreover, Mk
∼= M(ik, jk) for

any 2 ≤ k ≤ t with 1 ≤ ik, jk ≤ u− 2.
By the induction hypotheses on u, we have I(fik,jk) < I(w2

l ) for 2 ≤ k ≤ t. Thus,

it remains to prove that I(fu−w,0fw+1,0) < I(w2
l ). Since (u−w) + (w+ 1) = u+1 ≤

2pl + 1, we find that either u − w < pl + 1 or w + 1 < pl + 1. Assume the former
case is true, then by Corollary 2.11, we have I(fu−w,0) < I(wl), i.e., wl does not
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appear in fu−w,0. Again by the induction hypotheses on u, since w + 1 < u, we have
I(fw+1,0) < I(w2

l ). Therefore,

I(fu−w,0fw+1,0) = I(fu−w,0) + I(fw+1,0) < I(w2
l ).

In the latter case, i.e. w + 1 < pl + 1, a similar discussion can be given.
Hence, the result is proved when s = 2.
Now we assume for all integers s′ with 2 ≤ s′ < s, the result is true. Then, if p ≤

u ≤ (s− 1)pl, by the induction hypotheses on s, we have I(fu,0) < I(ws−1
l ) < I(ws

l ),
which means the result is true in this case.

Now we consider the result in the case (s−1)pl+1 ≤ u ≤ spl, using the induction
on u simultaneously.

Actually, for any u, (s − 1)pl + 1 ≤ u ≤ spl, since u − 1 is not a power of p, we
again have the equation [M(u, 0)] = [M(u − w, 0)][M(w + 1, 0)] − [M2] − · · · − [Mt]
for some w satisfying 1 ≤ w ≤ u − 2 and

(
u−1
w

) 
= 0 in K. In this case the remaining
proof is similar to that of the case s = 2 by replacing I(w2

l ) with I(ws
l ). Indeed, we

will use the fact that (u−w)+(w+1) = u+1 ≤ spl+1 and the induction hypotheses
on u.

Lemma 3.4. Under the order y < z < w1 < w2 < · · · < wm−1, the leading
terms of the polynomials g0, g1, g2, · · · , gm constructed above are yn, zp, wp

1 , · · · , wp
m−1

respectively.

Proof. The leading terms of g0, g1 are yn, zp due to the definitions of g0, g1.
Due to Step 2 in this section, for 2 ≤ s ≤ m, we have a series of equalities in the

form [M(ps−1 + 1, 0)]p =
∑

[M(r, t)] with r ≤ ps, which correspond respectively to
the equalities wp

s−1 =
∑

fr,t satisfying r ≤ ps. Then according to the construction of
gs in Step 2, the polynomial gs = wp

s−1 −
∑

fr,t. By Theorem 2.10 and Lemma 3.3,
all the terms fr,t with r ≤ ps on the right side of the equations can be represented
by a polynomial with variables y, z, w1, · · · , ws−1 and I(fr,t) < I(wp

s−1). Thus, the
result follows at once.

With the above constructions, we have the following main theorem.

Theorem 3.5. Let charK = p and n ≥ d = pm, then the representation ring
r(KZn/J

d) of the Nakayama truncated algebra KZn/J
d is isomorphic to the quotient

ring Z[y, z, w1, · · · , wm−1]/I, induced by the ring epimorphism

φ : Z[y, z, w1, · · · , wm−1] −→ r(KZn/J
d)

satisfying φ(1) = [M(1, 0)], φ(y) = [M(1, 1)], φ(z) = [M(2, 0)] and φ(wl) =
[M(pl + 1, 0)], ∀ 1 ≤ l ≤ m − 1, where the ideal I is generated by the polynomials
gi(y, z, w1, · · · , wm−1), 0 ≤ i ≤ m defined as above.

Proof. Firstly, by the construction of the ideal I, the ring epimorphism φ can
induce a ring epimorphism

φ̄ : Z[y, z, w1, · · · , wm−1]/I → r(KZn/J
d) (12)

such that φ̄(v̄) = φ(v) for all v ∈ Z[y, z, w1, · · · , wm−1].
To prove that φ̄ is a ring isomorphism, it is enough to claim that the ranks of two

sides of the epimorphism φ̄ in (12) are equal.
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By Lemma 3.4, the leading terms of the polynomials g0, g1, g2, · · · , gm are
yn, zp, wp

1 , · · · , wp
m−1, respectively. Thus it is easy to see that

B = {yizjwl1
1 · · ·wlm−1

m−1 | 0 ≤ i < n, 0 ≤ j < p, 0 ≤ lk < p, k = 1, · · · ,m− 1}
forms a Z-basis of Z[y, z, w1, · · · , wn−1]/I.

Since the ranks of two sides of the epimorphism φ̄ in (12) are both npm = nd, the
conclusion follows from the fact that two free abelian groups are isomorphic if and
only if both have the same rank.

Finally, we will give the following example to illustrate our result precisely.

Example 3.6. Let n = 10, then the representation ring r(KZ10/J
d) is shown as

follows:
Case 1. When char K1 = 2, then
r(K1Z10/J

2) ∼= Z[y, z]/(y10 − 1, (z − y − 1)z).
r(K1Z10/J

4) ∼= Z[y, z, w1]/(y
10 − 1, (z − y − 1)z, (w1 − y)(w1 + y − z − yz)).

r(K1Z10/J
8) ∼= Z[y, z, w1, w2]/(y

10−1, (z−y−1)z, (w1−y)(w1+y−z−yz), w2
2−

y4 − z(w1 − y)(1 + y)(w2 + 2y2 − y2z − yz)).
Case 2. When char K2 = 3, then
r(K2Z10/J

3) ∼= Z[y, z]/(y10 − 1, (z − y − 1)(z2 − y)).
r(K2Z10/J

9) ∼= Z[y, z, w1]/(y
10 − 1, (z − y − 1)(z2 − y), (w1 + y + y2 + yz − z2 −

yz2)(w2
1 − y3 − 2yzw1 + y2z2)).

Case 3. When char K3 = 5, then
r(K3Z10/J

5) ∼= Z[y, z]/(y10 − 1, (z − y − 1)(z4 − 3yz2 + y2)).
Case 4. When char K4 = 7, then
r(K4Z10/J

7) ∼= Z[y, z]/(y10 − 1, (z − y − 1)(z6 − 5yz4 + 6y2z2 − y3)).

3.2. Application to isomorphism problem. At the end of this section, we
apply the polynomial characterization in Theorem 3.5 and discuss the isomorphic
problem on representation rings, that is, what conditions should be satisfied for two
Nakayama truncated algebras KZn1

/Jd1 and KZn2
/Jd2 such that r(KZn1

/Jd1) ∼=
r(KZn2

/Jd2) as rings?
In fact, we have to replace r(KZn/J

d) by its complexified representation al-
gebra R(KZn/J

d) = C ⊗Z r(KZn/J
d) and then discuss the conditions in which

R(KZn1
/Jd1) ∼= R(KZn2

/Jd2) holds.
Recall that for a field K, a positive integer t and the polynomial algebra

K[x1, · · · , xt], let V be a subset of Kt, then denote I(V ) = {f ∈ K[x1, · · · , xt]|f(v) =
0 for all v ∈ V } which is an ideal of K[x1, · · · , xt], known as the corresponding ideal
of V ; conversely for an ideal I of K[x1, · · · , xt], denote V (I) = {v ∈ Kt|f(v) = 0 for
all f ∈ I} ⊂ Kt, which is called an algebraic set of Kt corresponding to I.

A subset V ⊂ Kt is called an affine variety if it is an irreducible closed subset
of Kt in terms of Zariski topology; and an ideal I of K[x1, · · · , xt] is called a radical
ideal if

√
I = I for

√
I = {f |f s ∈ I for some integer s > 0}.

It is well-known that there exists a one-to-one correspondence between affine
varieties V of Kt and radical ideals I of K[x1, · · · , xt].

Furthermore, we will denote K[V ] as the homogeneous coordinate ring of the
affine variety V . For details, see [16],[28].

Lemma 3.7 (Corollary 4.5, [28]). For two affine varieties V and W in Kt,
a polynomial map f : V → W is an isomorphism if and only if the dual map f∗ :
K[W ]→ K[V ] is an isomorphism.
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We know K[V ]
def.
= {f : V → K|f is a polynomial function}; for a polynomial

function g ∈ K[W ], f∗ is defined by f∗(g) = g ◦ f . For two finite sets V,W in Kt,
there exists a polynomial isomorphism between V and W if and only if |V | = |W |.
Then, we have the following:

Corollary 3.8. Let charK = p and ni ≥ di = pmi , i = 1, 2 satisfying n1d1 =
n2d2, and I, I ′ be the ideals of Z[y, z, w1, · · · , wm1−1] and Z[y, z, w1, · · · , wm2−1] re-
spectively, given in Theorem 3.5 in the process of polynomial characterization of
the representation rings r(KZn1

/Jd1), r(KZn2
/Jd2). If both I and I ′ are radi-

cal ideals, then their complexified representation algebras are isomorphic, that is,
R(KZn1

/Jd1) ∼= R(KZn2
/Jd2).

Proof. Denote N = n1d1 = n2d2, then the algebraic sets V (I), V (I ′) both have
N points, i.e. N = |V (I)| = |V (I ′)|. In fact, by the Grobner basis theory, since
the degree of g0, g1, g2, · · · , gm1

in Theorem 3.5 are n1, p, p, · · · , p respectively, in the
order y < z < w1 < w2 < · · · < wm1−1, it follows that the algebraic set V (I) has
n1 · p · p · · · p = n1 · d1 = N points. So does V (I ′).

It follows that N = |V (
√
I)| = |V (I)| = |V (I ′)| = |V (

√
I ′)| <∞, and then there

exists a polynomial isomorphism f from V (
√
I) to V (

√
I ′), which means by Lemma

3.7 there exists a K-algebra isomorphism f∗, as the dual of f , from the homogeneous
coordinate ring C[V (

√
I ′)] to C[V (

√
I)].

Since both I and I ′ are radical ideals, we have C[V (
√
I)] ∼=

C[y, z, w1, · · · , wm1−1]/I(V (
√
I)) = C[y, z, w1, · · · , wm1−1]/

√
I =

C[y, z, w1, · · · , wm1−1]/I ∼= R(KZn1
/Jd1), similarly the isomorphism C[V (

√
I ′)] ∼=

R(KZn2
/Jd2) holds. Hence, we find that R(KZn1

/Jd1) ∼= R(KZn2
/Jd2), which

completes the proof.

From this result, it is possible to find some different Nakayama truncated algebras
whose complexified representation algebras are isomorphic.

However, in general, the ideal I in Theorem 3.5 is not always a radical ideal.
For instance, if we choose n = 10, d = p = 2, then in Example 3.6 we find that
r(K1Z10/J

2) ∼= Z[y, z]/(y10 − 1, (z − y − 1)z). That is, the ideal I = (y10 − 1, (z −
y − 1)z), but, by calculation using Maple 17 software, it is easy to see that

√
I =

(y10 − 1, (z − y − 1)z, y
10−1
y+1 z) � I, which shows that I is not a radical ideal.

Moreover, although two complexified representation algebras R(KZn1
/Jd1) ∼=

R(KZn2
/Jd2), their original representation rings can still be not isomorphic, in gen-

eral. For example, let A = Z[x]/(x2 − 1) and B = Z[x]/(x2 + 1). First, note
that A and B are not isomorphic as Z-algebras. Indeed, for any homomorphism
f : A → B, we have (f(x))2 = (ax+ b)2 = 1 in B, hence a = 0, b = ±1, so
f(x) = ax+ b = ±1, which can not be an isomorphism. However, it is easy to see
that f : C[x]/(x2 − 1)→ C[x]/(x2 + 1) which shows that x to ix is an isomorphism.
Therefore, A and B are not isomorphic as Z-algebras themselves, but are isomorphic
as C-algebras after complexification.

4. Green rings from monoidal categories and some special cases.

4.1. General theory. In this section, we describe the theory of representation
rings (i.e. Green rings) of module categories in the context of monoidal categories.

Monoidal categories (also called tensor categories) were introduced by Bènabou
[5] in 1963 and are used to define the concept of a monoid object and an associated
action on the objects of the category. They are also used in enriched categories.
The theory of monoidal categories has numerous applications, for example, to define
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models for the multiplicative fragment of intuitionistic linear logic, and to form the
mathematical foundation for the topological order in condensed matter. Braided
monoidal categories have applications in quantum field theory and string theory.

We will review the method of Green rings in the context of monoidal categories
and then introduce analogue methods via module, complex, homotopy, derived and
(derived) shift categories, where derived shift categories can be viewed as full subcat-
egories of complex categories (bounded derived categories).

A monoidal category (C,⊗, I, a, l, r) is a category C equipped with a tensor product
⊗ : C × C → C, an object I, called the unit of C, an associativity constraint a, a left
unit constraint l and a right unit constraint r with respect to I such that the Pentagon
Axiom and the Triangle Axiom are satisfied, see [20].

Throughout this paper, we assume the monoidal category C to be an additive
Krull-Schmidt category and its tensor product ⊗ to be an additive bifunctor.

Definition 4.1. Assume a monoidal category (C,⊗, I, a, l, r) is an additive Krull-
Schmidt category with ⊗ as an additive bifunctor. Denote by [C] the isomorphism
class of an object C in C. Then the Green ring gr(C) of C is defined as the ring
with identity [I] which is an additive abelian group generated by all [C] modulo the
relations [C] + [D] = [C ⊕D] with multiplication given by [C][D] = [C ⊗D] for any
C,D ∈ Ob(C).

There have been some references, e.g. [19][18], where Green rings were introduced
and studied for some special monoidal categories.

Indeed, the Green ring gr(C) can be viewed as the de-categorification of the
monoidal category C in categorification theory, as we will show below.

Recall that an additive 2-category is a category enriched over the category of
additive categories, i.e. for any two objects i, j, the morphism set between i and j is
endowed with an additive category structure which satisfies some axioms. For details,
refer to [24].

The split Grothendieck category [C ]⊕ of a 2-category C is the category which
has the same objects as that of C and for any i, j ∈ [C ], we have Hom[C ]⊕(i, j) =
[C (i, j)]⊕, where [C (i, j)]⊕ denotes the split Grothendieck group of C (i, j). That is,
the quotient of the free abelian group generated by the isomorphic classes of C (i, j)
modulo the relations [Y ] − [X ] − [Z] when Y ∼= X ⊕ Z, with the multiplication of
morphisms given by [M ] ◦ [N ] = [M ◦N ].

An additive 2-category C is called a categorification of a K-linear category
D if K ⊗Z [C ] is isomorphic to D . In this case, the category D is called a K-
decategorification of C .

Clearly, an additive Krull-Schmidt monoidal category C with an additive bifunctor
⊗ can be regarded as an additive 2-category C which has only one object i and the
morphism class C (i, i) = C with the multiplication of morphisms as M ◦N = M ⊗N
for any M,N ∈ C. We denote this 2-category as CC . Moreover, a K-algebra A can
be regarded as a linear K-category A which has only one object i and the morphism
class A(i, i) = A with the multiplication of morphisms as a ◦ b = ab for any a, b ∈ A.

From these viewpoints, for a monoidal category C in Definition 4.1 and its corre-
sponding 2-category CC , we have the ring isomorphism gr(C) ∼= [CC ]⊕. After expand-
ing gr(C) to be over K, denoted by grK(C) = K ⊗Z gr(C) (called the K-Green ring)
as a K-linear category, we find that grK(C) ∼= K ⊗Z [CC ]⊕. In summary, we have:

Theorem 4.2. For a monoidal category C, its K-green ring grK(C) is a K-
de-categorification of C; this is equivalent to saying that C is a categorification of the
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K-Green ring grK(C).
Some properties of the Green ring gr(C) of a monoidal category C are listed as

follows:

(i) gr(C) is an associative ring with identity [I] for the unit object I in C. [I] is
the identity of gr(C) since I is the unit object of C. The associativity of gr(C) follows
the associativity constraint a of C; its distributive law is true because ⊗ is an additive
bifunctor.

(ii) Under the addition, gr(C) is a free abelian group with a Z-basis {[D] : D ∈
indC} where indC denotes the subcategory consisting of indecomposable objects in C.

For an arbitraryK-Hopf algebraH , the finitely generated module category Hmod,
the complex category Ch(H), the homotopy categoryK(H), and the bounded derived
category Db(H) are all monoidal categories. Meanwhile, we will construct the new
monoidal categories, that is, two full subcategories Chsh(H) and Dsh(H) of Ch(H)
and Db(H) respectively, where Ob(Chsh(H)) = Ob(Dsh(H)) = M•[s], s ∈ Z, M ∈
ind(Hmod) and their Green rings are the same, known as the shift ring sh(H).

Besides the module category Hmod and its representation ring r(H), in the sequel,
we will also study the categoriesDb(H), Chsh(H) andDsh(H) and their special Green
rings. That is, the derived representation ring dr(H) and its sub-ring, and the shift
ring sh(H).

4.2. On derived representation rings of bounded derived categories.
Recall that in general, for a K-algebra A, Ch(A) denotes the complex category of A,
K(A) the homotopy category of A, D(A) the derived category of A and Db(A) the
bounded derived category of A. For details of derived categories, see [15],[30].

For a complex M• = {Mi, di} in these categories, we call M• an A-complex since
all Mi are A-modules.

For two indecomposable complexes M• = {Mi, di}, N• = {Ni, d
′
i} in Db(A), the

tensor product of chain complexes M• ⊗N• is given by [30] as follows:

Constructing the double complex CM•,N• = {Mi ⊗Nj} together with the maps

dhi = di⊗idNj
: Mi⊗Nj →Mi−1⊗Nj; dvj = (−1)i idMi

⊗d′j : Mi⊗Nj →Mi⊗Nj−1,

the total complex Tot⊕(M•, N•) is defined by (Tot⊕(M•, N•))n =
⊕

i+j=n

Mi ⊗ Nj

with the maps d̂n =
⊕

i+j=n

(dhi + dvj ).

We call Tot⊕(M•, N•) the tensor product of chain complexesM• andN•. That is,

define M•⊗N• = Tot⊕(M•, N•), where d̂n is said to be the differentials of M•⊗N•.

For an arbitrary algebra A, we can only define Mi ⊗ Nj as a left A-module via
the left A-action on Mi, which is not related to the module structure of Nj . So, we
do not think of M• ⊗N• as a complex in Db(A), in general.

We always assume that A = H is a K-Hopf algebra with comultiplication Δ.
Then, for two complexes M• = {Mi, di}, N• = {Nj, d

′
j} ∈ Db(H), based on the H-

module structures of Mi and Nj , we can define canonically an H-module structure
on all terms. That is, for any a ∈ H , mi ∈ Mi, nj ∈ Nj, define a(mi ⊗ nj) =∑
(a)

a′mi ⊗ a′′nj . From this, we have the following:

Lemma 4.3. Let M• = {Mi, di}, N• = {Ni, d
′
i} be two H-complexes in Db(H).

Then the tensor product M• ⊗N• is also an H-complex in Db(H).
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Proof. We know all Mi⊗Nj are H-modules given the above. So, we need only to

claim all differentials d̂n =
⊕

i+j=n

(dhi +dvj ) areH-module morphisms among {Mi⊗Nj}.
In particular, it suffices to prove dhi + dvj are H-module morphisms. In fact, for any
a ∈ H , mi ∈Mi, nj ∈ Nj ,

(dhi + dvj )(a(mi ⊗ nj)) =
∑
(a)

di(a
′mi)⊗ a′′nj +

∑
(a)

a′mi ⊗ d′j(a
′′nj)

=
∑
(a)

a′di(mi)⊗ a′′nj +
∑
(a)

a′mi ⊗ a′′d′jnj

= a((dhi + dvj )(mi ⊗ nj)).

Now let us recall that a morphism f : M• → N• is called a quasi-isomorphism if
it induces group isomorphisms between all homology groups of M• and N•, written

as M•
f∼= N•. We denote by [M•] the isomorphism class of a chain complex M• in

Db(H).
The mapping cone of f , denoted as Cone(f), is defined as a complex M•[1]⊕N•,

with the differentials ( −di−1 0
fi d′i

)
, for all i ∈ Z.

Lemma 4.4. Let f : M• → M ′• and g : N• → N ′• be two quasi-isomorphisms
in Ch(H), then f ⊗ g : M• ⊗N• →M ′• ⊗N ′• is also a quasi-isomorphism.

Proof. We know from [30] that a morphism between two complexes is a quasi-
isomorphism if and only if its mapping cone is acyclic. So, it is enough to prove
that the complex Cone(f ⊗ g) is acyclic. Due to symmetry, we consider only the
exactness of Cone(f ⊗ id). But, we have Cone(f ⊗ id) = Cone(f) ⊗ N•. Since the
double complexes are row and column bounded, we need only to prove that each row
or column is exact by the Acyclic Assembly Lemma of [30]. The row exactness of the
double complex Cone(f)⊗N• follows from the exactness of Cone(f).

Now by Lemma 4.3 and 4.4, the bounded derived category Db(H) is a monoidal
category.

Definition 4.5. Let H be a K-Hopf algebra. The derived representation ring
dr(H) of a K-Hopf algebra H is defined as the Green ring gr(Db(H)) of the monoidal
category Db(H). Concretely, for a bounded H-complex M• in Db(H), we denote by
[M•] the isomorphism class of M•.

(1) dr(H) is the abelian group generated by all isomorphism classes of bounded
complexes in Db(H) with addition defined by the relations [M•] + [N•] = [M• ⊕N•]
for any bounded complexes M•, N• in Db(H);

(2) In dr(H), the multiplication is defined by the relations [M•][N•] = [M•⊗N•].

Note that
(i) The multiplication of dr(H) is well-defined due to Lemma 4.4;
(ii) [K•] is the identity of dr(H), since K• ⊗M• ∼= M• ⊗ K• ∼= M• for any

M• ∈ Db(H), where K• is the stalk complex of the trivial H-module K at the 0-
position;
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(iii) The associativity of dr(H) holds since for any L•,M•, N• in Db(H),

([L•][M•])[N•] = ([L• ⊗M
•])[N•] = [L• ⊗M

• ⊗N
•] = [L•]([M• ⊗N

•]) = [L•]([M•][N•]).

(iv) The distributive law of dr(H) holds since (L• ⊕M•) ⊗ N• ∼= (L• ⊗N•) ⊕
(M• ⊗N•);

(v) The abelian group dr(H) is free with a Z-basis {[M•] | M• ∈ ind(Db(H))}
by the Krull-Schmidt property of Db(H);

(vi) If H is cocommutative, then dr(H) is a commutative ring.

4.3. On shift rings of (derived) shift categories. For any indecomposable
module M ∈ ind(Hmod), its stalk complex M• and shift objects M•[n], n ∈ Z are
indecomposable complexes in Ch(H) and Db(H), where [1] means the shift functor.
It is clear that for all M,N ∈ ind(Hmod), i, j ∈ Z, in Ch(H) and Db(H), we have

M•[i]⊗N•[j] ∼= (M• ⊗N•)[i + j] = (M ⊗N)•[i+ j]. (13)

The isomorphism in (13) on stalk complexes can be extended to any indecom-
posable objects in Db(H). That is, for any M•, N• ∈ indDb(H), m,n ∈ Z, the
isomorphism holds:

M•[m]⊗N•[n] ∼= (M• ⊗N•)[m+ n]. (14)

Define Chsh(H) as the full subcategory of Ch(H) whose objects are all
M•[n], ∀M ∈ Hmod, n ∈ Z. M•[n] is indecomposable in Chsh(H) if and only if
M ∈ ind(Hmod). Because M• ⊗ N• ∼= (M ⊗ N)• in Ch(H) and Chsh(H) is closed
under ⊗ by (13), we see that Chsh(H) is a monoidal subcategory of Ch(H) with the
same tensor product ⊗.

We call the monoidal category Chsh(H) the shift category of H , whose Green ring
is said to be the shift ring of H , denoted as sh(H).

Analogously, we define Dsh(H) as the full subcategory of Db(H) whose objects
are M•[n] for any M ∈ Hmod, n ∈ Z, which is known as the derived shift category of
H . Also, Dsh(H) is a monoidal category.

HomDb(H)(M
•[n],M•[n]) is local when M is an indecomposable H-module, since

HomDb(H)(M
•[n],M•[n]) ∼= HomH(M,M).

Therefore, the indecomposable objects in Dsh(H) are all M•[n] for M ∈
ind(Hmod), n ∈ Z.

Hence, from the above, indecomposable objects of Chsh(H) are the same as those
of Dsh(H). That is, all M•[n] for M ∈ ind(Hmod), n ∈ Z. It follows that the Green
ring of Dsh(H) is the same as that of Chsh(H), that is, the shift ring sh(H).

According to the definition, the following facts are obtained:

Fact 4.6. Let H be a K-Hopf algebra. Then,
(i) The shift ring sh(H) is a sub-ring of the derived representation ring dr(H)

generated by [M•[n]], ∀M ∈ ind(Hmod), n ∈ Z;
(ii) sh(H) is a free abelian group with basis [M•[n]] for M ∈ ind(Hmod), n ∈ Z;
(iii) The shift ring sh(H) has a Z-graded structure, more precisely, for n ∈ Z,

whose component of n-degree sh(H)(n) is the free abelian subgroup generated by
[M•[n]] for all M ∈ ind(Hmod);

(iv) sh(H)(i)sh(H)(j) = sh(H)(i+j) for any i, j ∈ Z;
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(v) The representation ring r(H) is indeed the 0-component of sh(H), that is,
r(H) ∼= sh(H)(0).

Among of these facts, (iv) is from the isomorphism (13) and (v) can be easily
seen from the fact that [M•] = [M•[0]] for all M ∈ ind(Hmod).

Now we can give the connection among r(H), sh(H), dr(H) as visualised in Fig. 5.

Fig. 5.

4.4. Polynomial characterizations of shift rings and derived representa-
tion rings. Throughout this part, H refers to a representation-finiteK-Hopf algebra.
Following the above discussion, as the analogue of polynomial characterizations of rep-
resentation rings in Section 1, we can draw the following conclusions about shift rings
and derived representation rings.

Theorem 4.7. For a representation-finite K-Hopf algebra H, assume the num-
ber of the indecomposable modules of H is t up to isomorphism. Then, the following
statements hold:

(i) The shift ring sh(H) ∼= K〈X′〉/(I ′, 1−X1), where

X′ = {X1[i1], X2[i2], · · · , Xt[it] | i1, · · · , it ∈ Z}

is the set of the indeterminates, and in particular, denote Xk ≡ Xk[0], ∀1 ≤ k ≤ t,
the ideal I ′ is generated by

{Xi[r]Xj [s]−
∑

1≤l≤t

kli,jXl[r + s] | 1 ≤ i, j ≤ t, r, s ∈ Z}

with kli,j(1 ≤ i, j, l ≤ t) the structure constants of r(H) in (1).
(ii) Let {Nλ, λ ∈ Λ} be the set of representatives of the orbits of indecomposable

complexes in Db(H) under the shift functor [1]. Then the derived representation
ring dr(H) ∼= K〈Y′〉/(J ′, 1 − Y1), where Y′ = {Yλ[s] | λ ∈ Λ, s ∈ Z} is the set of
the indeterminates, and in particular, Y1 a fixed indeterminate with 1 ∈ Λ, denote
Yλ ≡ Yλ[0], ∀λ ∈ Λ, the ideal J ′ is generated by

{Yλ[s]Yμ[t]−
∑

η∈Λ,r∈Z

kη,rλ,μYη[r + s+ t] | λ, μ ∈ Λ, s, t ∈ Z},

and kη,rλ,μ is the multiplicity of Nη[r] in the decomposition of Nλ ⊗ Nμ for λ, μ, η ∈
Λ, r ∈ Z.

(iii) Furthermore, when H is cocommutative, then sh(H) ∼= K[X′]/(I ′, 1 −X1)
and dr(H) ∼= K[Y′]/(J ′, 1− Y1).

Proof. For (i), we define a ring homomorphism ϕ : K〈X ′〉 → sh(H) such that
ϕ(Xi[s]) = [M•

i [s]] for any 1 ≤ i ≤ t, s ∈ Z and ϕ(1) = [M•
1 [0]]. It is clear that kerϕ

is an ideal of K〈X ′〉 generated by I ′ and 1−X1[0], then (i) follows at once, from (13).
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The proof of (ii) is similar to that of (i) from (14), only note that to define a ring
homomorphism ψ : K〈Y′〉 → dr(H) such that ψ(Yλ[s]) = [Nλ[s]] for any λ ∈ Λ, s ∈ Z.

Now (iii) follows from (i) and (ii), and the fact that the cocommutativity of H
implies the commutativity of dr(H) and sh(H) directly.

Remark 4.8. In Theorem 4.7 (i), the structure constants of the shift ring sh(H)
are the same as those of the representation ring r(H). Similarly, for the derived repre-
sentation ring dr(H) in Theorem 4.7 (ii), the structure constants kη,rλ,μ in Yλ[s]Yμ[t] =∑

η∈Λ,r∈Z
kη,rλ,μYη[r + s+ t] are the same as those in YλYμ =

∑
η∈Λ,r∈Z

kη,rλ,μYη[r].

From the next section, we will embed the representation rings of the Nakayama
truncated algebras into the corresponding shift rings and derived representation rings.
For these Nakayama truncated algebras as cocommutative Hopf algebras, the poly-
nomial characterizations of shift rings and derived representation rings will be given
by fewer numbers of indeterminates.

5. Shift rings and derived representation rings of Nakayama truncated
algebra KZn/J

d.

5.1. The shift ring sh(KZn/J
d). For the Nakayama truncated algebra H =

KZn/J
d with charK = p, n ≥ d = pm,m > 0, recall that the indecomposable modules

M(i, j) = Pj/rad
iPj , 0 ≤ i ≤ n− 1, 1 ≤ j ≤ d, s ∈ Z, where Pj is the indecomposable

projective H-module at the vertex j. To calculate the shift ring sh(KZn/J
d), it

suffices to compute the structure constants ki
′′,j′′

i,j,i′,j′ in the decomposition

M(i, j)•[s]⊗M(i′, j′)•[s′] ∼=
∑

0≤i′′≤n−1,1≤j′′≤d

ki
′′,j′′

i,j,i′,j′M(i′′, j′′)•[s+ s′]

for 0 ≤ i, i′, i′′ ≤ n − 1, 1 ≤ j, j′, j′′ ≤ d, s, s′ ∈ Z. However, by the formula (13) in

Section 2, these ki
′′,j′′

i,j,i′,j′ are just the structure constants in the decomposition

M(i, j)⊗M(i′, j′) ∼=
∑

0≤i′′≤n−1,1≤j′′≤d

ki
′′,j′′

i,j,i′,j′M(i′′, j′′)

for 0 ≤ i, i′, i′′ ≤ n−1, 1 ≤ j, j′, j′′ ≤ d in the module category, which we have already
proved by Lemma 2.8 and Lemma 3.2. Hence we can give the generators and relations
of the shift ring rsh(KZn/J

d) as follows.

Proposition 5.1. Let charK = p, n ≥ d = pm,m > 0. Then
(i) The shift ring sh(KZn/J

d) is generated by [M(1, 1)•[r]], [M(2, 0)•[r]] and
[M(pl + 1, 0)•[r]], where r ∈ Z, 1 ≤ l ≤ m− 1.

(ii) The relations in shift ring sh(KZn/J
d) can be determined using the following

formulas:
⎧⎪⎪⎨
⎪⎪⎩

M(i, j)•[r]⊗M(1, 0)•[s] ∼= M(1, 0)•[s]⊗M(i, j)•[r] ∼= M(i, j)•[r + s],
M(1, 1)•[r]⊗n ∼= M(1, 0)•[nr],
M(2, 0)•[r]⊗M(t, 0)•[s] ∼= M(t+ 1, 0)•[r + s]⊕M(t− 1, 1)•[r + s] ∀t ≥ 2, p � t,
M(2, 0)•[r]⊗M(t, 0)•[s] ∼= M(t, 0)•[r + s]⊕M(t, 1)•[r + s] for all t > 0, p|t,

M(pl + 1, 0)•[r]⊗M(kpl + 1, 0)•[s] ∼=
⎧⎨⎩ W1[r + s], if k ≡ −1(mod p)

W2[r + s], if k ≡ 0(mod p)
W3[r + s], otherwise

where r, s ∈ Z and W1,W2,W3 are defined in Lemma 3.2.
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(iii) Let I ′ be the ideal of Z[y[r], z[r], wl[r]]r∈Z,1≤l≤m−1 generated by the relations
which are given from (ii) through replacing [M(1, 1)•[r]], [M(2, 0)•[r]], [M(pl+1, 0)•[r]]
by the indeterminates y[r], z[r], wl[r], r ∈ Z, 1 ≤ l ≤ m − 1, respectively. Then there
is the ring isomorphism:

sh(KZn/J
d) ∼= Z[y[r], z[r], wl[r]]r∈Z,1≤l≤m−1/I

′.

Proof. (i) follows from Theorem 2.10 and (ii) from Lemma 2.8 and Lemma 3.2.
Additionally, (iii) follows from Theorem 3.5. Concretely, we can define a ring homo-
morphism

φ : Z[y[r], z[r], wl[r]]r∈Z,1≤l≤m−1 → sh(KZn/J
d)

by φ(y[r]) = [M(1, 1)•[r]], φ(z[r]) = [M(2, 0)•[r]] and φ(wl[r]) = [M(pl + 1, 0)•[r]],
the remaining is similar.

5.2. The derived representation ring dr(KZn/J
2) . So far, it is difficult to

obtain all indecomposable objects in the bounded derived category Db(H), in gen-
eral, for an arbitrary representation-finite K-Hopf algebra H , even for the Nakayama
truncated algebra H = KZn/J

d.
When d = 2, however, we can list all the indecomposable objects of Db(H) using

the method introduced by Bautista and Liu in [3] since H = KZn/J
2 is a gentle

algebra, or more generally, an elementary algebra with a 2-nilpotent radical. All the
notations and terminologies can be found in [3].

5.2.1. Construction of the indecomposable objects in Db(KZn/J
2).

Lemma 5.2. The set of indecomposable objects of Db(KZn/J
2) is given by

ind(Db(KZn/J
2)) = {P •(i, j)[l] | −∞ ≤ j ≤ i < +∞, l ∈ Z},

where the complex

P •(i, j) : · · · → 0→ Pi → Pi−1 → · · · → Pj → 0→ · · · ,

with the morphisms Pa+1 → Pa defined by the action of arrows for all j ≤ a < i.

Proof. Our proof is dependent on Theorem 3.11 in [3], where the composition of
arrows is from left to right, which differs from the composition in this paper. Here,
we will use the dual conclusion for the converse composition, that naturally follows
from that in [3].

Firstly, it is easy to see that the minimal grading covering Q̃ of Q is just the
infinite Dynkin graph A∞ with the universal covering map sends m to m(under the
relation of modulo n), see Fig. 6. We may further denote the vertices of A∞ as
· · · − 2,−1, 0, 1, 2, · · · .

Since KQ/J2 is an elementary algebra with a 2-nilpotent radical, by Theorem

3.11 in [3] there is a functor F : rep−,p(Q̃) → Db(KQ/J2) which preserves isomor-

phism classes and indecomposability, where rep−,p(Q̃) denotes the fully subcategory

of rep(Q̃) consisting of the bounded-above truncated injective representations. More-

over, by ([3], Lemma 3.4), there exists an indecomposable object N in rep−,p(Q̃) and
an integer n such that M ∼= F (N)[n] for any indecomposable object in Db(KZn/J

2).
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Fig. 6.

Hence, to characterize the indecomposable objects of Db(KZn/J
2), it suffices to com-

pute the indecomposable objects of rep−,p(Q̃).

Secondly, as the quiver Q̃ = A∞ with linear orientation, all the indecomposable
bounded-above objects in rep−,p(Q̃) are {L(i, j)}−∞≤j≤i<+∞, where L(i, j) for any
i, j satisfies

L(i, j)a =

{
K, (j ≤ a ≤ i),
0, otherwise,

L(i, j)a→a+1 =

{
idK , (j ≤ a ≤ i− 1),
0, otherwise.

Finally, we consider the images of L(i, j) under the action of the functor F . By
the definition of L(i, j) above, we find that F (L(i + 1, j + 1)) = P •(i, j), where
P •(i, j) are defined in this lemma. Because P •(i, j) has bounded homology for any

−∞ ≤ j ≤ i < +∞, each such L(i, j) is included in rep−,p(Q̃) by ([3], Proposition
3.8). Therefore, the set of all indecomposable objects of Db(KZn/J

2) is just the set
{P •(i, j)[l]}−∞≤j≤i<+∞,l∈Z by Proposition 3.1 and Theorem 3.11 in [3].

In particular, we have P •(i,−∞) = · · · → 0→ Pi → Pi−1 → · · · . since S•
i+1

[i] is

quasi-isomorphic to P •(i,−∞) in the complex category Ch(H). Hence,

P •(i,−∞) ∼= S•
i+1

[i] in Db(H). (15)

Note that if we choose j = i, then F (L(i, i)) is the stalk complex Pi in the i-th
position.

5.2.2. Structure constants of the derived representation ring
dr(KZn/J

2). The derived representation ring dr(KZn/J
2) is generated by all ob-

jects in ind(Db(H)) = {(P •(i, j))[l] | − ∞ ≤ j ≤ i < +∞, l ∈ Z}. From (15), we
have

P •(i′,−∞)[l′]⊗ P •(i,−∞)[l] ∼= S•
i′+1

[i′ + l′]⊗ S•
i+1

[i+ l]

∼= S•
i′+i+2

[i′ + i+ l′ + l]

∼= P •(i′ + i+ 1,−∞)[l′ + l − 1], (16)

So, it remains to consider the structure constants associated with the tensor product
P •(i′, j′)[l′] ⊗ P •(i, j)[l] where at least one of j′ and j is not equal to −∞. For
simplicity, we may further assume that l = l′ = 0.
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To calculate the decomposition of P •(i′, j′) ⊗ P •(i, j) in the case that one of j′

and j is equal to −∞ and the other is not −∞, we need the following lemma about
Pi′ ⊗ Si.

Lemma 5.3. There is a complex isomorphism from

· · · → 0→ Pi′+1 ⊗ Si

αi′⊗id−−−−→ Pi′ ⊗ Si → 0→ · · ·

to

· · · → 0→ Pi+i′+1

αi+i′−−−→ Pi+i′ → 0→ · · ·
where αj is defined by the action of the corresponding arrows for j = i′, i+ i′.

Proof. Note that Pj = M(2, j), Sj = M(1, j) for any j ∈ Z. By Lemma 2.4,
we have Pj ⊗ Si

∼= Pi+j . Denote this isomorphism by fj for j = i′, i′ + 1. Hence
fj(ej ⊗ ei) = ej+i, fj(αj ⊗ ei) = αj+i for j = i′, i′ +1, where ej denotes the primitive
idempotent element corresponding to vertices j = i′, i′ + i, respectively. Now by
calculation, we obtain the following commutative diagram.

Pi′+1 ⊗ Si

αi′⊗id−−−−→ Pi′ ⊗ Si

fi′+1

⏐⏐� fi′

⏐⏐�
Pi+i′+1

αi+i′−−−−→ Pi+i′

,

then the complex isomorphism follows at once.

Proposition 5.4.

P •(i′, j′)[l′]⊗ P •(i,−∞)[l] ∼= P •(i′ + i+ 1, j′ + i+ 1)[l′ + l − 1] (17)

for any −∞ ≤ j′ ≤ i′ <∞, i, l′, l ∈ Z.

Proof. Firstly, in the case for j′ = −∞, the result follows from (16).
Next, in the case for −∞ < j′ ≤ i′, by Lemma 5.3 we have the following complex

isomorphism

· · · −−−−−−−→ 0 −−−−−−−→ P
i′
⊗ S

i
−−−−−−−→ P

i′−1
⊗ S

i
−−−−−−−→ · · · −−−−−−−→ P

j′
⊗ S

i
−−−−−−−→ 0 −−−−−−−→ · · ·

0

⏐
⏐
� f

i′

⏐
⏐
� f

i′−1

⏐
⏐
� f

j′
⏐
⏐
� 0

⏐
⏐
�

· · · −−−−−−−→ 0 −−−−−−−→ P
i′+i

−−−−−−−→ P
i′+i−1

−−−−−−−→ · · · −−−−−−−→ P
j′+i

−−−−−−−→ 0 −−−−−−−→ · · ·

i.e., P •(i′, j′)⊗ S•
i
[i] ∼= P •(i′ + i, j′ + i). From (15), we have the isomorphisms

P •(i′, j′)⊗ P •(i,−∞) ∼= P •(i′, j′)⊗ S•
i+1

[i] ∼= P •(i′ + i+ 1, j′ + i+ 1)[−1].

Finally the result follows by M•[l′] ⊗ N•[l] ∼= M• ⊗ N•[l′ + l] for any M•, N• ∈
Db(KZn/J

2), l′, l ∈ Z.

Now we consider the decomposition of P •(i′, j′)[l] ⊗ P •(i, j))[l′] in the case j, j′

are both not −∞. Firstly, we calculate all of its homological groups.

Proposition 5.5. For j, j′, s, s′ ∈ Z and −∞ < s′ ≤ s, let

L = P •(j′ + s′ − 1, j′)⊗ P •(j + s− 1, j).
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Then the homological groups Hm(L) of L for all m ∈ Z are listed as follows:

Hm(L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sj+j′+s+s′ , if m = j + j′ + s+ s′ − 2, s′ 
= 1;

Sj+j′+s, if m = j + j′ + s− 1, s 
= s′, s′ 
= 1;

Sj+j′+s′ , if m = j + j′ + s′ − 1, s 
= s′, s′ 
= 1;

Sj+j′+s ⊕ Sj+j′+s′ , if m = j + j′ + s− 1, s = s′ 
= 1;

Pj+j′+s, if m = j + j′ + s− 1, s 
= s′ = 1;

Sj+j′ , if m = j + j′, s′ 
= 1;

Pj+j′ , if m = j + j′, s 
= s′ = 1;

Pj+j′+1 ⊕ Pj+j′ , if m = 0, s = s′ = 1;

0, otherwise.

(18)

Proof. For the notations in relation to spectral sequence, refer to ([30], §5.6). As
there exists a double complex C∗∗ such that L = Tot⊕(C∗∗), we can calculate the
homological groups Hm(L) through C∗∗ using the method of spectral sequences.

When s ≥ s′ > 1, since C∗∗ is bounded, we obtain a spectral sequence {IEr
pq},

which converges to Hp+q(L) via the natural filtration by columns. More precisely,
the spectral sequence starts with {IE0

p,q = Cp,q} and the differentials d0pq = dvpq,
where dvpq (∀p, q ∈ Z) are the vertical differentials of C∗∗ and denote dv = {dvpq}p,q∈Z,
d0 = {d0pq}p,q∈Z. Now we find that

IE1
p,q = Hv

q (Cp,∗) =

⎧⎨⎩
Pj′+p ⊗ Sj+s, if j′ ≤ p ≤ j′ + s′ − 1, q = j + s− 1;

Pj′+p ⊗ Sj , if j′ ≤ p ≤ j′ + s′ − 1, q = j;

0, otherwise.

Furthermore, the maps d1pq : IE1
p,q → IE1

p−1,q are induced by the horizontal

differentials dhpq of C∗∗. Hence we find that the 2-piece IE2
p,q is as follows:

IE2
p,q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Sj′+s′ ⊗ Sj+s = Sj+j′+s+s′ , if p = j′ + s′ − 1, q = j + s− 1;

Sj′+s′ ⊗ Sj = Sj+j′+s′ , if p = j′ + s′ − 1, q = j;

Sj′ ⊗ Sj+s = Sj+j′+s, if p = j′, q = j + s− 1;

Sj′ ⊗ Sj = Sj+j′ , if p = j′, q = j;

0, otherwise.

Since s ≥ s′, there exist no p, q such that both IE2
p,q and IE2

p−2,q+1 are not zero.

Thus the maps d2pq : IE2
p,q → IE2

p−2,q+1 are zero maps, which implies that IE2
p,q =

IE3
p,q = · · · IEm

p,q = IE∞
p,q. Since the spectral sequence {IEr

pq} converges to Hp+q(L),
it follows that Hm(L) has a filtration {FpHm(L)} such that FpHm(L)/Fp−1Hm(L) ∼=
IE∞

p,m−p for any m ∈ N.
In case s 
= s′, for any m, there is at most one p0 such that IE∞

p,m−p 
= 0. Hence

by the filtration of Hm(L), we have Hm(L) =I E∞
p0,m−p0

.
In case s = s′, by the filtration of Hs−1(L), there is an exact sequence

0→ Sj+j′+s → Hj+j′+s−1(L)→ Sj+j′+s → 0.

Moreover, since Ext1H(Sj+j′+s, Sj+j′+s) = 0, we have Hj+j′+s−1(L) = Sj+j′+s ⊕
Sj+j′+s. Additionally, for m 
= s−1, there is at most one p0 such that IE∞

p0,m−p0

= 0.

Hence by the filtration of Hm(L), we obtain Hm(L) =I E∞
p0,m−p0

.
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In a word, when s 
= s′, we have

Hm(L) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Sj+j′+s+s′ , if m = j + j′ + s+ s′ − 2;

Sj+j′+s, if m = j + j′ + s− 1;

Sj+j′+s′ , if m = j + j′ + s′ − 1;

Sj+j′ , if m = j + j′;

0, otherwise;

(19)

when s = s′, we have

Hm(L) =

⎧⎪⎪⎨⎪⎪⎩
Sj+j′+s+s′ , if m = j + j′ + s+ s′ − 2;

Sj+j′+s ⊕ Sj+j′+s′ , if m = j + j′ + s− 1;

Sj+j′ , if m = j + j′;

0, otherwise.

(20)

The proof in the case s′ = 1 is similar following the explanation below.
When s > s′ = 1, the first piece of the spectral sequence {IEr

p,q} can be calculated
as:

IE1
p,q =

⎧⎨⎩
Pj′ ⊗ Sj+s

∼= Pj+j′+s, if p = j′, q = j + s− 1;

Pj′ ⊗ Sj
∼= Pj+j′ , if p = j′, q = j;

0, otherwise.

Since there exists no p, q such that both IE1
p,q and IE1

p−1,q are non-zeros, the maps

d1pq : IE1
p,q → IE1

p−1,q are zero maps, which implies that IE1
p,q = IE2

p,q = · · · IEm
p,q =

IE∞
p,q. Thus,

Hm(L) =
⎧⎨⎩

Pj+j′+s, if m = j + j′ + s− 1;

Pj+j′ , if m = j + j′;

0, otherwise.

(21)

Finally, when s = s′ = 1, L = Pj′ [j
′]⊗ Pj [j

′] ∼= Pj+j′+1[j + j′]⊕ Pj+j′ [j + j′].

Through Proposition 5.5 and some calculations, we can characterize objects in
Db(H) whose homological groups are isomorphic to Hm(L) in two cases.

(I) When s′ = 1, an object R in Db(H) satisfies Hm(R) ∼= Hm(L) for all m ∈ Z
if and only if R ∼= P •

j+j′
[j + j′]⊕ P •

j+j′+s
[j + j′ + s− 1].

(II) When s′ > 1, an object R in Db(H) satisfies Hm(R) ∼= Hm(L) for all m ∈ Z
if and only if one of the following four cases holds:
Case 1: R has a direct summand with the form Sk[m] for some 0 ≤ k ≤ n − 1 and
m ∈ Z;
Case 2: R ∼= R2 = P •(j + j′ + s′ − 1, j + j′)⊕ P •(j + j′ + s+ s′ − 1, j + j′ + s)[−1];
Case 3: R ∼= R3 = P •(j + j′ + s− 1, j + j′)⊕ P •(j + j′ + s+ s′ − 1, j + j′ + s′)[−1];
Case 4: R ∼= R4 = P •(j + j′ + s+ s′ − 1, j + j′)⊕ P •(j + j′ + s− 1, j + j′ + s′)[−1].
This case applies only if s > s′.

Obviously the isomorphic objects in Db(H) must have isomorphic homological
groups. Therefore, from (I), when s′ = 1, we have the decomposition

L = P •(j′+ s′− 1, j′)⊗P •(j+ s− 1, j) = P •
j+j′ [j+ j′]⊕P •

j+j′+s[j+ j′+ s− 1]; (22)

when s′ > 1, the decomposition of L must be equal to one of R’s in the above four
cases. However, the following Proposition 5.7 tells us that the decomposition of L is
impossible when it takes the form in Case 1 above in (II).
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Lemma 5.6. A chain map f : P •(i,−∞)→ P •(i,−∞) is null homotopic if and
only if f = 0.

Proof. If f = (fj)j∈Z is null homotopic, then there exist sj : Pj → Pj+1 such that
fj = sj−1dj +dj+1sj for all j ∈ Z, where dj denote the differentials of P •(i,−∞). By
the definition of H , it is easy to see that HomH(Pi,Pi+1) = 0. Therefore sj = 0 for
all j ∈ Z. Hence fj = 0 for all j ∈ Z. The converse is trivial.

Proposition 5.7. L = P •(j′ + s′ − 1, j′)⊗ P •(j + s− 1, j) contains no direct
summand as the form S•

k
[m] for 0 ≤ k ≤ n− 1 and m ∈ Z.

Proof. Otherwise, there exists m ∈ Z, 0 ≤ k ≤ n − 1 such that S•

k
[m] is

a direct summand of L. Since K−(I) ∼= Db(H), P •(k − 1,−∞) is the minimal
injective resolution of Sk and K−(I) is the bounded-above homotopy category of
injective complexes, which is a subcategory of a homotopy category consisting of
bounded-above injective complexes, thus P •(k − 1,−∞)[m] is a direct summand
of L in K−(I). Therefore, there exists f ∈ HomK−(I)(L,P•(k − 1,−∞)[m]) and

g ∈ HomK−(I)(P
•(k− 1,−∞)[m],L) such that fg = id in K−(I). Equivalently, there

exists f ∈ HomCh(H)(L,P•(k − 1,−∞)[m]) and g ∈ HomCh(H)(P
•(k − 1,−∞)[m],L)

such that fg−id is null homotopic in Ch(H). By Lemma 5.6, fg−id = 0, so fg = id.
Then we deduce that P •(k−1,−∞)[m] is a direct summand of L in Ch(H). But this
is impossible because P •(j + s− 1, j)⊗ P •(j′ + s′ − 1, j′) is a bounded complex.

From Proposition 5.7, we know that the decomposition of L cannot be in Case 1
when s′ > 1.

Additionally, when s = s′ > 1, Case 2 coincides with Case 3 and Case 4 does not
appear. Hence in this condition, we have the decomposition:

L = P •(j + j′ + s′ − 1, j + j′)⊕ P •(j + j′ + s+ s′ − 1, j + j′ + s)[−1]. (23)

Therefore, we need only to consider the decomposition of L when s > s′ > 1.
Unfortunately, so far we cannot determine the decomposition of L in the form of
Cases 2, 3 and 4 exactly in general. We conjecture that only Case 2 can occur in the
decomposition of L, according to several decompositions we have already calculated.
We can summarize the above discussion in the following conjecture.

Conjecture 5.8. Using the above notations in Db(KZn/J
2) for all j, j′, s, s′ ∈

Z and s′ ≤ s, we always have the following decomposition of indecomposable com-
plexes:

L = P •(j′ + s′ − 1, j′)⊗ P •(j + s− 1, j)
∼= P •(j + j′ + s′ − 1, j + j′)⊕ P •(j + j′ + s+ s′ − 1, j + j′ + s)[−1]. (24)

From the above discussion, we know that this conjecture has been affirmed except
for the case s > s′ > 1.

Lastly, we give a summary of the derived representation ring dr(KZn/J
2) as

follows.

Theorem 5.9. For charK = p = 2, n ≥ 2, the following statements hold:
(i) The derived representation ring dr(KZn/J

2) is generated by [P •(i, j)[l]], where
l ∈ Z,−∞ ≤ j ≤ i < +∞.

(ii) The relations of the generators of dr(KZn/J
2) in (i) can be determined by:

(a) P •(i′, j′)[l′]⊗ P •(i,−∞)[l] ∼= P •(i,−∞)[l]⊗ P •(i′, j′)[l′] ∼= P •(i′ + i+ 1, j′ + i+
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1)[l′ + l − 1] for all −∞ ≤ j′ ≤ i′ <∞, i, l, l′ ∈ Z;
(b) for all j, j′, s, s′ ∈ Z and s′ ≤ s:
(1) when s′ = 1, the decomposition

P •(j′ + s′ − 1, j′)[l′]⊗ P •(j + s− 1, j)[l]

= P •
j+j′

[j + j′ + l + l′]⊕ P •
j+j′+s

[j + j′ + s+ l + l′ − 1];

(2) when s = s′ > 1, the decomposition:

P •(j′ + s′ − 1, j′)[l′]⊗ P •(j + s− 1, j)[l]

= P •(j + j′ + s′ − 1, j + j′)[l + l′]⊕ P •(j + j′ + 2s− 1, j + j′ + s)[l + l′ − 1];

(3) when s > s′ > 1, one of the three possible decompositions:

P •(j′ + s′ − 1, j′)[l′]⊗ P •(j + s− 1, j)[l]

= P •(j + j′ + s′ − 1, j + j′)[l + l′]⊕ P •(j + j′ + s+ s′ − 1, j + j′ + s)[l + l′ − 1];

P •(j′ + s′ − 1, j′)[l′]⊗ P •(j + s− 1, j)[l]

= P •(j + j′ + s− 1, j + j′)[l + l′]⊕ P •(j + j′ + s+ s′ − 1, j + j′ + s′)[l + l′ − 1];

P •(j′ + s′ − 1, j′)[l′]⊗ P •(j + s− 1, j)[l]

= P •(j + j′ + s+ s′ − 1, j + j′)[l + l′]⊕ P •(j + j′ + s− 1, j + j′ + s′)[l + l′ − 1].

(iii) For the indeterminates ν(i, j)[l], let I ′′ be the ideal of the polynomial ring
Z[ν(i, j)[l]]l∈Z,−∞≤j≤i<+∞ generated by the relations given in (ii) in this theorem
through replacing [P •(i, j)[l]] by ν(i, j)[l], for l ∈ Z,−∞ ≤ j ≤ i < +∞. Then there
is the ring isomorphism

dr(KZn/J
2) ∼= Z[ν(i, j)[l]]l∈Z,−∞≤j≤i<+∞/I ′′.

Proof. (i) follows by Lemma 5.2. For the proof of (iii), in detail, it suffices to note
that all the indecomposable objects of Db(KZn/J

2) are P •(i, j)[l]−∞≤j≤i<+∞,l∈Z

and the ring homomorphism ψ : Z[ν(i, j)[l]]l∈Z,−∞≤j≤i<+∞ → dr(KZn/J
2) can be

defined by ψ(ν(i, j)[l]) = [P •(i, j)[l]].

For (ii), (a) follows from Proposition 5.4; and (b) is according to the above dis-
cussion with (22), (23) and the cases 2,3 and 4 in (II).

Furthermore, if Conjecture 5.8 is confirmed, we can unify (1), (2) and (3) of
Theorem 5.9 (ii) with the decomposition (24) in Conjecture 5.8.

Remark 5.10. In Proposition 5.1, when d = 2 = p, then m = 1 and thus
the shift ring sh(KZn/J

2) is generated by [M(1, 1)•[r]], [M(2, 0)•[r]] for r ∈ Z. As
we know, sh(KZn/J

2) is a sub-ring of dr(KZn/J
2). And, M(1, 1)•[r] = S•

1
[r] ∼=

P •(0,−∞)[r] and M(2, 0)•[r] ∼= P •
0
[r] ∼= P •(0, 0)[r]. So, the generators [M(1, 1)•[r]]

and [M(2, 0)•[r]] of sh(KZn/J
2) in Proposition 5.1 are simply those P •(0,−∞)[r]

and P •(0, 0)[r] of dr(KZn/J
2) for r ∈ Z in Theorem 5.9.
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