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ISOMETRIC EMBEDDING VIA STRONGLY SYMMETRIC
POSITIVE SYSTEMS*

GUI-QIANG CHENT, JEANNE CLELLAND!, MARSHALL SLEMROD$, DEHUA WANGY,
AND DEANE YANG!/

Abstract. We give a new proof for the local existence of a smooth isometric embedding of
a smooth 3-dimensional Riemannian manifold with nonzero Riemannian curvature tensor into 6-
dimensional Euclidean space. Our proof avoids the sophisticated arguments via microlocal analysis
used in earlier proofs.

In Part 1, we introduce a new type of system of partial differential equations (PDE), which is
not one of the standard types (elliptic, hyperbolic, parabolic) but satisfies a property called strong
symmetric positivity. Such a PDE system is a generalization of and has properties similar to a system
of ordinary differential equations with a regular singular point. A local existence theorem is then
established by using a novel local-to-global-to-local approach. In Part 2, we apply this theorem to
prove the local existence result for isometric embeddings.
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1. Introduction. Let (M, g) be an n-dimensional C*° Riemannian manifold.
Recall that a C*> map y : M — RY is called an isometric embedding if y is injective
and the restriction of the Euclidean metric on RY to the image y(M) agrees with the
metric g on M. In terms of local coordinates x = (x!,...,2™) on M, this is equivalent

to the condition that

diy - 0¥ = gijs 1<id,j<n, (1.1)
where g = g;;dz’dz? and 0; denotes 2.

In this paper, we study the local isometric embedding problem, which asks
whether, given a Riemannian manifold (M, ¢) and a point xg € M, there exists an iso-
metric embedding of some neighborhood of x into RV —i.e., whether the PDE system
(1.1) has local C'*° solutions in some neighborhood of xy. The system (1.1) consists
of %n(n + 1) partial differential equations for N unknown functions y = (y!,...,y™);
thus it is overdetermined when N < %n(n—i— 1), underdetermined when N > %n(n-i— 1),
and determined when N = Jn(n + 1).

The isometric embedding problem has a long and active history. The famous
theorem of Cartan and Janet (see, e.g., [13]) guarantees that, when the metric g is
real analytic, local real analytic solutions to (1.1) always exist in the determined case
N = in(n+1). In the C* category, much less is known. Nash [21] proved a global
existence theorem in the highly underdetermined case N = %n(n—i— 1)(3n+11). Later,
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refinements were given by Greene [5] and Gunther [6] for the local existence problem
that improved the upper bound on the embedding dimension to N = %n(n +1)+n.

When N = In(n + 1), known results for g in the C* category are limited to
n < 4. Most research activity has been concentrated on the case n = 2, where local
isometric embeddings of varying regularity have been shown to exist in a neighborhood
of any point x¢g € M where either the Gauss curvature K (x¢) is nonzero, K(xg) =
0 and VK (xq) # 0, or K(x¢) vanishes to finite order in certain precise ways (cf.
8,9, 11, 12, 14, 15, 16]). For a detailed account, see [10].

For n > 3, there are fewer results. Bryant, Griffiths, and Yang [1] showed that, for
n = 3, local C'*° isometric embeddings exist in a neighborhood of any point xo € M
where the Einstein tensor has rank greater than 1. Subsequent work was able to relax
this restriction on the Einstein tensor: In [20], Nakamura and Maeda extended the
existence theorem to a neighborhood of any point where the Riemann curvature tensor
does not vanish, and in [24], Poole extended the existence theorem to a neighborhood
of any point where the Riemann curvature tensor vanishes but its covariant derivative
does not. Meanwhile, for n = 4, the results of [1], [4], and [20] imply that there
exists a finite set of algebraic relations among the Riemann curvature tensor and its
covariant derivatives, with the property that a local isometric embedding exists in a
neighborhood of any point where these relations do not all hold.

Our main result is a new, simpler proof of the following theorem of Nakamura-
Maeda [20] when n = 3 and N = 6 (also see Goodman-Yang [4]):

THEOREM (cf. Theorem 2). Let (M,g) be a C* Riemannian manifold of
dimension 3; let xo € M, and suppose that the Riemann curvature tensor R(xq) is
nonzero. Then there exists a neighborhood Q@ C M of x¢ for which there is a C*
isometric embedding y :  — RS,

Our proof, like the previous ones, uses the Nash-Moser implicit function theorem
(cf. Theorem A.1) to obtain a solution. This requires showing that the linearized
system has a solution that satisfies certain estimates known as “smooth tame esti-
mates”. This terminology is due to Hamilton; see [7]. The advantage of our approach
is that it completely eliminates the need for the microlocal analysis and Fourier inte-
gral operators used in the proofs of Nakamura-Maeda and Goodman-Yang; instead,
it is based on Friedrichs’s theory of symmetric positive systems.

Friedrichs [3] introduced the notion of a symmetric positive partial differential
operator P to study a class of first order linear systems of PDEs

Pv=A9v+Bv=h (1.2)

that do not necessarily fall into one of the standard types (elliptic, hyperbolic,
parabolic). He proved, under suitable boundary conditions on the domain 2, the
existence and uniqueness of an L?(Q) solution to the system (1.2). No higher order
regularity of solutions is guaranteed, even if the functions A%, B, and h are C>.

We call a domain that satisfies Friedrichs’s boundary condition P-convex (cf.
Definition 2.3). Such a domain Q has the remarkable property that any solution
v to a symmetric positive system (1.2) on Q is unique in L?(Q2), without assuming
any boundary conditions on v. This surprising rigidity occurs because a symmetric
positive operator P always has a subtle type of singularity in the interior of a P-
convex domain. In §3, we give a 1-dimensional example, where the system reduces to
a scalar ODE, that illustrates how this occurs.

We introduce in this paper a new positivity condition that we call strong symmet-
ric positivity (cf. Definition 2.1) and prove a local existence and regularity theorem
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for first order linear and nonlinear systems satisfying it (cf. Theorem 1). As the
name indicates, this condition is a strengthening of Friedrichs’s notion of symmetric
positivity. Moser [19] introduced a similar but weaker assumption, closely related to
the Legendre-Hadamard condition, and proved that any real analytic system of the
form (1.2) satisfying this condition on a P-convex domain has a unique real analytic
solution v. Tso [30] proved a similar C*° existence theorem on a P-convex domain
under Moser’s condition, but we believe that his proof actually requires the stronger
assumption of strong symmetric positivity. Both Moser and Tso used their results
for linear systems to prove analogous perturbation theorems for nonlinear strongly
symmetric positive systems

O(u)=f (1.3)

on a domain Q C R”, provided that f is sufficiently close to ®(ug) for a given function
ug and €2 is P-convex, where P is the linearization of ® at ug.

Our proof of Theorem 2 proceeds in two major steps. In Part 1 (§2-8§4), we
establish the local solvability of a nonlinear strongly symmetric positive system using
the Nash-Moser implicit function theorem. In Part 2 (§5-89), we show that, if the
Riemann curvature tensor is nonzero at xog € M, then there exists an approximate
isometric embedding on a neighborhood of xy where the linearized operator can be
made strongly symmetric positive by applying a carefully chosen change of variables.
This argument consists primarily of linear algebra and requires essentially no analysis
beyond that required for Part 1. Theorem 2 then follows by the smooth tame estimates
established in Part 1 and the Nash-Moser implicit function theorem.

The first step requires solving linear strongly symmetric positive systems on a
sufficiently small, but fixed, neighborhood of a point x( in the domain and showing
that solutions satisfy smooth tame estimates. Surprisingly, Tso’s global existence
theorem for strongly symmetric positive systems on a P-convex domain does not
directly imply a local solvability theorem. This is because there does not necessarily
exist a P-convex domain in a neighborhood of a given point xg. This subtle fact is
best illustrated by the 1-dimensional example given in §3. In §4, we show how this
difficulty may be overcome by first restricting the linearized system to a sufficiently
small neighborhood of xy and then extending the restricted system to a large ball in
R™ that is P-convex for the extended system.

Before proceeding, we recall the following standard notations and facts regarding
Sobolev spaces on a domain 2 C R™:

e The Euclidean norm on vectors or matrices is denoted by |-|, and the £..-norm
on vectors or matrices is denoted by | - |-
e The Sobolev spaces are denoted by

WEP(Q) = {u e L7(Q) ¢ ||ullk, < oo},

where ||ullkp = 32, <4 D%z is the Sobolev norm for the multi-index

_ _ 0%u
a= (a1, ..., a), and D% = @y (G

e For p =2, W"2(Q) is denoted by H*(f2), with the norm || - |
I - Nk
e The C*¥(Q)-norm is denoted by

k,2 denoted by

k

oo =D Y sup [D*u(x)].

§=0 |a] <5 %€
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e The Sobolev embedding theorem [28] implies that H*+™ () can be continu-
ously embedded into C*(€2) whenever m > 1+ [%]; in particular, there exist
constants My, depending only on €2, such that

llullk,c0 < Mg

= ||u||k+1+[%] (14)

Part 1. A Local Existence Theorem for Strongly Symmetric Positive
Systems.

2. Strong symmetric positivity. Let 2 C R"™ be a bounded, open domain
with piecewise smooth boundary 9§ and coordinates x = (z!,...,2"). Let ® :
C>=(Q,R%) — C>=(Q,R®) be a C*, nonlinear first-order partial differential operator.
Explicitly, for u € C*(Q, R?), write

®(u) = F(x,u,Vu),

where F(x,z,p) = (F' (2", 2% p¢),..., F5(a', 2%, p{)) is a C>, R*-valued function on
Q x R* x R™. Given a function f € C’OO (©2,R?), consider the PDE system

®(u) =f. (2.1)

The linearization of ® at the function ug € C(Q,R*) is the linear first-order

partial differential operator ®'(ug) : C°(Q, R®) — C>°(Q, R*) defined by

®(ug +tv) = > A'9;v + Bv, (2.2)
t=0 i=1

d
®'(ug)v = 7

where A', B € C>(Q, R***) are given by

A0 = [(4°09)5] = | G 0e o). Tuo )

B(x) = [(B(X))Z] {% :(x up(x), Vuo(x))} .

We will also consider the linear PDE system
> A'9iv+Bv=h, (2.3)
i=1

where h € C*°(Q, R?).

DEFINITION 2.1. The linear partial differential operator (2.2) is called:

o symmetric if the matrices A*(x),..., A"(x) are symmetric for all x € ();
o symmelric positive if it is symmetric and the quadratic form Qo(x) : R® — R
defined by

Qu(x)(€) = € (B(x) + BT (x ZM )¢ (2.4)

is positive definite for all x € €;
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e strongly symmetric positive if it is symmetric positive and the quadratic form
Q1(x) : R™ — R defined by

n

Q) (&, 6n) = Y & (04 (x) + 0 A (x)) & (2.5)

5,J=1

is positive definite for all x € Q.
The nonlinear system (2.1) is called symmetric (resp., symmetric positive, strongly
symmetric positive) at ug if the linearization (2.2) of ® at ug is symmetric (resp.,
symmetric positive, strongly symmetric positive).

REMARK 2.2. A few remarks are in order regarding Definition 2.1:
e The quadratic form Q;(x) can be represented by the symmetric ns x ns

matrix
[ 204 DA2(x) + A X) | - | 1A” () + 9nA (%) |
81 A%(x) + 92 Al (x) 202 A%(x) coo | AT (x) 4+ B, A% (x)
Q1(x) =
| AT (X) + 0 AN (x) | 02A™ () + 0 A (x) | -+ 20,4%(x) |
(2.6)

We will use the notation (Q1);;(x) to denote the (7, j)th block of Q1(x):
(Q1)ij(x) = i A7 (x) + 9; A'(x).

e The positivity of Q1(x) is called the Legendre condition ([17], p.10). Moser
[19] established an existence theorem in the real analytic category under the
slightly weaker Legendre-Hadamard condition ([17], p.11), which requires only
that

(Q1)ij) o (X)EXE D = AlE|*|n|? (2.7)

for all £ € R*,n € R, and some A > 0. But in the C* category, the stronger
Legendre condition is necessary ([27], [31]).

DEFINITION 2.3. Given a linear strongly symmetric positive first order partial
differential operator P = A'9; + B on a domain 2 C R", the domain € is called
P-convez if the characteristic matrix

n

Blx) =Y vi(x) A’ (x),

i=1
where v(x) = (11(x), . .., Vs (x)) denotes the outer unit normal vector to 92 at x € 99,
is positive definite at each point x € 9.

Tso [30] proved the following:

THEOREM (Theorem 5.1, [30]). Suppose that ®(0) = 0 and that the system (2.1)
is strongly symmetric positive at every C™ function u in some C'-neighborhood of
the function ug = 0 on a domain Q@ C R™ that is P-convex for the linearization P
of ® at ug = 0. Then there exist an integer B and a small constant € > 0 such that,
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Jor any £ € C=(Q,R*) with ||f||s < e, there exists a solution u € C*(Q,R*) to the
nonlinear system (2.1) on Q.

REMARK 2.4. Note that the condition that a PDE system is symmetric is not an
open condition with respect to the coefficients. Since the Nash-Moser implicit function
theorem requires solving the linearized equation not just at ug, but at all u near uy, it
is necessary to assume that ®’(u) is symmetric for all u in some neighborhood of uy.
The positivity conditions, however, are open conditions; hence it suffices to assume
that they hold at ug.

Moser [19] proved this theorem in the case where ® and the function f in equation
(2.1) are real analytic, under the weaker assumption of symmetric positivity together
with the Legendre-Hadamard condition (2.7). Tso [30] stated this theorem assuming
these same conditions; however, we believe that Tso’s proof, which uses the Garding
inequality for non-compactly-supported vector-valued functions on the domain €2, is
correct only if the stronger Legendre condition holds. See [27] and the discussion at
[31].

3. A local existence theorem for strongly symmetric positive systems.
The goal of Part 1 of this paper is to prove the following local version of T'so’s theorem:

THEOREM 1. Suppose that the linearization ®'(u) of ® is symmetric for all u
in some Ct-neighborhood of ug € C>®(Q,R?), and that ®'(ng) is strongly symmetric
positive at some point xg € ). Then there exist a neighborhood Q¢ C Q of xg, an
integer 3, and € > 0 such that, for any f € C>(Qo,R*) with ||®(ug) — f||g < €, there
exists a solution u € C*°(Qy,R?) to the nonlinear system (2.1) on Q.

We wish to emphasize that Tso’s theorem does not immediately imply the local
existence result, because strong symmetric positivity on a domain €2 does not neces-
sarily guarantee the existence of a P-convex neighborhood of xq. In fact, as we show
in the example below, in general no such neighborhood exists.

ExAMPLE 3.1. Consider the following ODE:
(x — zo)u’ + bu = h(z) (3.1)

with h € C. It is straightforward to verify that:
(i) (3.1) is strongly symmetric positive if b > 5;
(ii) An interval Q = (x1,22) is P-convex if and only if z¢ € (z1,22), i.e., if and
only if the regular singular point of this ODE lies in the domain.
Meanwhile, the general solution of (3.1) is

uw) = —— [ "y — z0)*h(y) dy + .

(x —20)" /sy (z — z0)

which is smooth at x = z¢ if and only if C'= 0. Thus we see that:

e The P-convexity condition forces the uniqueness of a C'*° solution of (3.1) on
Q, without specifying any initial or boundary data for w.

o If Q is not P-convex—i.e., if 29 ¢ , then the ODE (3.1) has infinitely
many solutions on €. In this case, P-convexity—and hence uniqueness of the
solution—can be achieved by extending the domain to one that contains the
singular point xg.
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In higher dimensions, a similar phenomenon occurs: Consider the strongly sym-
metric positive linear PDE system (2.3) on a domain 2 C R”, and let x;,x2 € 02
be located on opposite sides of 99, with v = v(x1) = —v(x2). In order to have
B(x1), B(x2) > 0, the matrix 1; A*(x) must be positive definite at x; and negative def-
inite at xa. Therefore, P-convexity requires that each of its eigenvalues must change
sign somewhere in the interior of 2. For n > 2, this does not necessarily imply that
the system (2.3) has any singular points in €2, but it is still true that any C*° solution
on Q is unique. Moser discussed this in [19], concluding that, “The reason for this
strange phenomenon is that usually the conditions [of the theorem] imply the presence
of a singularity and a solution which remains smooth at the singularity is unique.”

Our proof of Theorem 1 will proceed as follows: Without loss of generality, assume
that up = 0 and ®(0) = 0.

e In §4.1, we restrict the nonlinear system (2.1) to a neighborhood €y C € of
xp on which the quadratic forms (Qu)o(x) and (Qu)1(x) associated to any
sufficiently small function u on €y remain sufficiently close to Qy(0) and
Q1(0), respectively.

e In §4.2, we extend the linear PDE system (2.3) from the domain Qg to a
strongly symmetric positive system on all of R™, where the coefficients satisfy
C'! bounds that will be needed later.

e In §4.3, we show that, for sufficiently large R > 0, the ball By of radius R is
P-convex for the extended linear system.

e In §4.4, we use the extended linear system on Bpr to prove the smooth tame
estimates required to implement a Nash-Moser iteration scheme to solve the
nonlinear system (2.1) on .

Appendix A contains the precise statements of the Stein extension theorem [29]
and the Nash-Moser implicit function theorem [26] that will be used in the proof of
Theorem 1.

4. Proof of Theorem 1.

4.1. Restriction of the nonlinear system to an appropriate neighbor-
hood of xo. Without loss of generality, assume that up = 0, ®(0) = 0, and x¢ = 0.
First, we show how to choose an appropriate neighborhood 2y on which to construct
a solution for the system (2.1).

For ease of notation, set

B = B(0), Al = AY(0), Al = 9;A7(0).

Using Taylor’s theorem with remainder, we can write

B(x) = B+ B(x), A'(x) :AWZH:Q:J’A;Z + Al(x), (4.1)

Jj=1

where B, A" € C>(Q, R***) are such that B vanishes to order 1 and A’ vanishes to
order 2 at x = 0. The strong symmetric positivity hypothesis at x = 0 is equivalent
to the assumption that the quadratic forms Qo : R® — R and @1 : R™® — R defined
by

Q@O -(B+B -YA)e Qb= Y & (T+ &) (42

i=1 i,j=1
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are positive definite.

LEMMA 4.1. Suppose that ® satisfies the hypotheses of Theorem 1 at x = 0.
Let Mg, A1 > 0 denote the minimum eigenvalues of Qo and Q1, respectively, and
let B, C R™ denote the ball of radius r about x = 0. Then, given real numbers
My, My > 1 and § > 0, there exist real numbers r,p > 0 and an integer o > 0 such
that B, C Q and, for anyu € C*(B,,R?®) with ||ul|o < p, the matriz-valued functions
By, A%, € C(B,,R¥*%) associated to the linearization of ® at u may be written as

Bu(x) = By + Bu(x), AL (x) = AL+ a2l (Ay)) + Al (x),
j=1

where
» B J T\ Fi J Ti Ti
IBu—Bloo<§, |(Au)j—Aj|oo<§, |Ay, — Ao <6,
) 5 ) 5 A 5 (4.3)
| Bullo,oo < 2—]\407 [Aull1,00 < oM, [ Aullo,0c < ﬁo'

For convenience, we will refer to any function u € C*°(B,.,R®) with ||ul|, < p as
“admissible.”

Proof. Choose r > 0 so that the restrictions of B and A’ to the ball B, of radius
r satisfy

]

I T
or e <

1Bllo,c < 140,00 < (4.4)

0 0
4y’ 2My°
Then the Sobolev embedding estimate (1.4) and the smallness of the Taylor remainder
terms for small p imply that we may choose p and « so that equations (4.3) hold.

Indeed, we may choose any o > 3 4 [5] and then choose p > 0 accordingly. O

In §4.2, we will show how to choose the constants §, My, and M; so that the restric-
tion of the system (2.1) to the domain €y = B, has the property that its linearization
at any admissible u € C*°(B,,R?®) may be extended to a strongly symmetric positive
system on all of R".

4.2. Extension of the linearized system to R™. We will use Stein’s extension
operator (cf. Theorem A.2) to extend the coefficient matrices in the linearized system
(2.3) from B, to all of R”. First we need the following lemma, which states that the
bounding constants in this construction are independent of r:

LEMMA 4.2. There exist constants My, ,,, 1 <p < oo, 0 <k < o0, and extension
operators &, : L*(B,) — LY(R™) for all r > 0 such that, for all f € W*P(B,),

1€ fllk,p < Micpll fllk,p-

Proof. Theorem A.2 guarantees the existence of such constants and an extension
operator for r = 1; then a straightforward rescaling of the operator and a standard
rescaling argument shows that these constants are independent of r. O

Now, set

MOZMO,OO; Ml :Ml,oov
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where My, and M o are as in Lemma 4.2. Choose § > 0 such that, for any matrices
A}’ and B’ with

|B" — Blo < 0, |4 — Al <6, 1<i,j<n,

the quadratic forms Q' : R®* — R and Q) : R — R defined by

Qe = €T (B+ (BT =3 A)e Qi) - Z&T(A“ A&

i=1 i,j=1

are positive definite with minimum eigenvalues greater than or equal to %/\0 and %)\1,
respectively. Then take r > 0 as given by Lemma 4.1, and set ¢y = B,.. Henceforth,
we will restrict the systems (2.1) and (2.3) and all relevant quantities to B..

Next, we construct an extension of the linearized system (2.3) on B, to all of R"
in such a way that the coefficients of the extended system are bounded in W*?(R")
with respect to the WP (B,) norms of the coefficients of the original system on B,.
After replacing the functions B, A%, and h by their restrictions to B,., define C>°
functions B, A%, and h on R" by

B(x) = B+ (&B)(x),
Al(x) = A"+ "2l A+ (€,47)(x), (4.5)
j=1
h(x) = (&,h)(x).
Similarly, for any admissible u € C*(B,,R*), let A% and B, denote the analogous

extensions of the functions A’ and B, corresponding to the linearization of ® at u.
Then we have the extended linear systems

> AL0iv+ Byv=h (4.6)
i=1
on R™.

PROPOSITION 4.3. For any admissible u € C*(B,,R®), the extended system
(4.6) is strongly symmetric positive on R™. Moreover, for any x € R™, the associated
quadratic forms (Qu)o(x) : R® = R and (Qu)1(x) : R — R defined by

(Qu)o(x)(©) = €7 (Bu(x) + BI(x ZM ))e

(4.7)
Qi€ &) = 3 & (0000 + 0,440 &
ij=1
have minimum eigenvalues greater than or equal to %)\0 and %)\1, respectively.
Proof. By construction, the functions &, By and STflfl satisfy
€ Buloce < 50 NErALlloo < 5, (4.9




10 G.-Q. CHEN ET AL.

The first and second inequalities in (4.8) imply that, for all x € R™, we have
|Bu(x) — Bloo < |Bu — Bloo + |8Tf3u(x)|oo <9,
105 A4(%) = Al|oo < [(Au)} = Affos +10;(ErA}) (%) o0 < 6,
and the result follows immediately. O

4.3. Boundary conditions on Bp for large R. Next, we show that, for R
sufficiently large, Bg is P-convex for the extended linear system (4.6).

PROPOSITION 4.4. Let R > 0. Forx € OBg, let v(x) = (11(%),...,v,(x)) denote
the outward-pointing unit normal vector to OBgr at x. Then, for R sufficiently large,
the characteristic matrix

Bx) = Z vi(x) A (x) (4.9)

is positive definite for all admissible u € C*°(B,,R?) and x € 0Bg.

Proof. The normal vector to the sphere 0Bp is given by

Thus, we have

1 - i AT
500 = >t Al ()
L . . (4.10)
== ( Soal A+ Y alad(An)+ Y xZ(ETAL)(x))
=1 1,j=1 1=1
The first and third terms in equation (4.10) are bounded:
Lo i il in
‘E >oa'Al| < mmax{|Alw o 1 AGle )
= (4.11)

%gﬂ@%mk<m

where the second equation in (4.11) follows from the third inequality in (4.8). Mean-
while, we claim that the second term in equation (4.10) has minimum eigenvalue
greater than or equal to %R/\l. This can be seen as follows: Consider the correspond-

ing quadratic form (Qu)!(x) : R® — R given by
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Then, by Proposition 4.3, we have

(Qu)i()(©)] = i (Quhi(x)(@'¢, ..., 2"¢)]

> E/\l (J € + ... + [2"¢)?)

:EW D @)l
—)\1R2|f|2
imﬂsl?

Therefore, the minimum eigenvalue of (Qyu)!(x) is greater than or equal to 1R
Together with the inequalities in (4.11), this implies that, for R sufficiently large,
B(x) is positive definite for all x € Bg. O

4.4. Application of the Nash-Moser iteration scheme. The final step in
the proof of Theorem 1 is to apply the Nash-Moser implicit function theorem (cf.
Theorem A.1).

NoTATION 4.5. We will adopt the following conventions:
e Functions without tildes are taken to be defined on B, and ||v||; will denote
the H*-norm of v € H*(B,).
e Functions with tildes are taken to be defined on Bg, and ||v||;; will denote
the H*-norm of v € H*(Bg).

Let By = H**Y(B,,R*) and F}, = H*(B,,R*®), with the usual H*-norms; then we
have Eo, = Fow = C°(B,,R®). Let Dy C Ey denote the ball of radius p > 0 centered
at ug.

Smoothing operators S(t) : Fy — Fo may be constructed as follows (see., e.g.,
1] o [25]). First, choose a compactly supported function x € C§°(R™) with x > 0
and fR" x)dx = 1. For t > 0, define

xi(x) = t"x(tx),

and define S, : L2(R",R®) — C®(R",R*) by
G = [ ulx—yuly)dy.

Then, define S; : Ey — Eo by composing S; with the Stein extension operator
&, LY(B,) — L*(R"): For u € Ey = HY(B,,R?), define

(Stll) = (S’tgru”Br

It is straightforward to show that the operators S; satisfy the required inequalities;
see [25] for details.

The fact that @ is C? follows from the fact that F is C*°, and the bounds (A.2)
for any a > 0 follow from the Gagliardo-Nirenberg and Sobolev inequalities (see, e.g.,
[2]). To complete the proof, it suffices to show that there exists an integer o > 0
such that, for any integer m > a + 1, given any u € D,,, the extended linear system
(4.6) on Bp corresponding to the linearization of (2.1) at u has a unique solution
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v € H™*(Bpg) for any h € H™(Bpg), and that the restriction v = ¥|, satisfies the
smooth tame estimates (A.3).

First, because the extended system (4.6) corresponding to a given admissible
u € H™(B,) is symmetric positive with coefficient matrices (omitting the subscript
u to avoid notational clutter) A',..., A", B € H™ '(Bg) and Bg is P-convex for
(4.6), Friedrichs’s theory of symmetric positive systems [3] guarantees the existence
of a unique solution v € L?(Bg). Moreover, we can obtain an explicit L? bound for
v, and hence for v, as follows. Multiply the matrix equation (4.6) by v to obtain
the scalar equation

> VA 0% +v'Bv =v"h. (4.12)
=1

Then, because A? is symmetric and

n

;ai (VTAW) 3 (2VTAz ; +9T(81-Ai)\7),

=1

we can write equation (4.12) as

Y V@AY VBV =vTh- LY 0 (VA (4.13)
i=1 =1
Multiply by 2 and use the fact that v' Bv = %GT(B + BT) ¥ to obtain
(B +BT - Z ; Al ) =25"h-Y 0, (GT/U{/) . (4.14)
1=1 1=1

By Proposition 4.3, it follows that

L2 < 2vTh — Zn:ai (vTAiv)

Z°|v|2 |h|2 Z 0 (vTAiv) .

Integrate over Bpr, apply Stokes’ theorem, and use the fact that 3 is positive definite
on OBR to obtain

- ~ 4 T o ~
115 < Co(Xo)?|RF — " /aB V1BV dS < Co(ho)?|[h]3, (4.15)

where C'(Aog) > 0 is a universal constant depending on A\g. Therefore, the restriction
v of v to B, satisfies

[vllo < [[¥]lo < Co(Ao)lIh]lo < Co(Xo)Mo.2[lhlo, (4.16)

where My 2 is as in Lemma 4.2.

The bounds on the derivatives of v may be computed similarly by differentiation,
and then the existence of these derivatives follows from standard results in analysis.
First, differentiate the system (4.6) with respect to 27 to obtain

S (Az 029 + (9; A0, v) + BV + (9;B)% = 0;h. (4.17)
i=1
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Multiply the matrix equation (4.17) by 9;v' to obtain
3 ((ajoT)Ai 02v + (ajoT)(ain)aio) + (9B ;v + (9,57)(9;B)% = (8;v")9;h.
=1
(4.18)
By an argument similar to that above, we can write equation (4.18) as

o7 (B+ BT - ZaA)av—i—QZ )(9; A0,
(4.19)
= 20,97 (ajfl (9;B) ) Za (a VT A1, v)

Now sum equation (4.19) from j = 1 to n, and note that the second term can be
written as

2 Z )(0;A0:% = > (9,90 A" + 0, 47)(9,9).
i,j=1

7,j=1

Thus the summed equation can be written as

znja "(B+BT - ZaA)av+Z (0;9T)(0;A + 0,47)(9:%)
j=1

- oo (4.20)
=> |20,%7 — (9;B) 0; (0,vT Aoy ) :
> (7 (o8- 0) - oo (057 195)
or, in other words,
ZQO (0;9) + Qu(Dr¥, ..., 0,7)
(4.21)

M: i

<2a v (ajfl — (9,B)%) — zn: i (ajvTAiajcf)> .

By Proposition 4.3, it follows that

Lo+ M) zn: 19;v]2 < Zn: <2ajvT (ajfl - (@B)v) - Zn:ai (@-v%i@v))
j=1 '

Jj=1

<10+ A)> 09 +

Jj=1

> (178 +10; B3 o 91%)

)\—f—)\ f

<.

n

=Y o (097 Aloyv).

i=1
Integrate over Bpr, apply Stokes’ theorem, and use the fact that 3 is positive definite
on 0Bp again to obtain

191 < €1 (x, A1>2 (I + 11311313 o)
(9;v"BO;v) dS
/\0-|-/\1 Z~/BBR MY (4.22)

< G100 M)? (B2 + I9IB1BIE )
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where C1(Ag, A1) > 0 is a universal constant depending on Ao and ;.

By the Sobolev embedding estimate (1.4), we have
1Bl1,00 < K||B||2+[g]
for some constant K; thus we can write the inequality (4.22) as
191 < €3 (IR0 + 151311 B34 15
and hence
1905 < Cr (IRl + 1900l Bllasgy) -
Therefore, the restriction v of v to B, satisfies

vl < 19l < C (IRl + 19100l Bl i)
< Mz (bl + Ivloll Bllat )
< &1 (Il + ol Bllay 3 )

¢t (Il + ibllolalls: 1)

(4.23)

where the last inequality follows from the fact that B is a C'°° function of u and its
first derivatives.

Successive differentiations of the system (4.6) produce similar results. To ob-
tain an estimate for ||v||;, differentiate the system (4.6) k times, with respect to
2 ..., xd%. This yields an equation of the form

n k
1 qk+1 ~ k ~
z(A L+ 0 A, )+Ba

i=1
) et (4.24)
e 0 (z D 0 ) )
m=1 \i=1
where, on the right-hand side, D™ indicates an appropriate differential operator of
order m. Multiply the matrix equation (4.24) by 20, vT, rewrite the first term

and rearrange as in the previous cases, so that the left-hand side of equation (4.24)
becomes

n k

8;1 gk VY (B + BT Za A J1 ka + 2(8;1 Jk{’T) Z(aqul)8214.4}q.4.jkO' (425)
i=1 i=1 g=1

Now sum over ji,..., ji, and note that the second term in (4.25) can be rearranged

as follows by using the commutativity of mixed partial derivatives and relabeling as
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appropriate:

2 S Ok LA,

4,715 k=1 q=1

n k
k i ~
2 Z Z(ajqﬁm}qm]k )(6 A )aljl Jq~~~jkv

4,015+ ;jk_l q=1

= Z Z Jqd1--dq---dk )(8Jqu—|—8A3q)8] g ka

=k > (@ IO A+ G A,
4,15 k=1
Thus the summed equation can be written as
Z Qo(a§1,~~~7jkv)+k Z Ql( J1yee Jk—l;l‘?""’ajkh ,Jk—lﬂl‘})
J1yee k=1 J1seejk—1=1
k ~T (ok k ~
= Z (Zajlmjk (8J1 ]kh (831 ]kB)V)
J1se-Jk=1
- . (4.26)
_ Z ak i ~T<ZDk+l—mAz + Dk—mB) D™V
m=1 i=1

—anai (5., " A0, my)).
=1

By Proposition 4.3, the left-hand side of equation (4.26) is bounded below by

n

%()\o-i-k)\l) Z | it 7kV|

J1seedk=1

Thus, after performing operations similar to those above, we obtain

I911% < Cr(Do, A1) <||f1|i + VI IBIIR, oo

+ Z I\vl\m<Z|\AJ|\k+1 mooo + | Blli- mm)> (4.27)

m=1
< Ci(o, M)” <|fllli + Z Hf'l\i(Z 1A |7 41,00 + IBIIim,w>> .
m=0 j=1

By the Sobolev embedding estimate (1.4), we have

A7 |54 1-m,00 < Kkl A7 [|ks2—m (2], 1Bllk—m.co < Kil Blles1—m+2]

2

for some constant Kj; thus we can write the inequality (4.27) as

k—1
”VHk <Ck Hh”k+ Z ||V||2 (Z|A ||k+2 m+[2] +HB”k+1 m+["]) ’

m=0 Jj=1
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and hence

k—1 n
¥k < C | Il + IIf’IIm(Z A7 | k42 —me (2] + |B||k+1m+[g]) - (4.28)

m=0 j=1

By the Gagliardo-Nirenberg interpolation inequality [2] and the Cauchy-Schwarz
inequality, for 0 < m < k — 1, we have

¥l A7 s r2-mt 131 < Con(¥ 0l A7 24 31 + 19 16-11 A7 l343)),
¥l Bller1-m12) < Con (190l Bllks1+15) + 19llk-11Bll2+12))
for some constant C,,. Substituting into equation (4.28), we obtain
I¥llie < Ci | 1Bl + ||‘7|0<Z 1A (|03 + ||B|k+1+[g])

Jj=1

(4.29)
+||‘~’|k—1<z |\Aj||3+[%] + |B||2+[Z]>

j=1

Now let a > 4 + [3]. It follows from the fact that A and B are C*° functions of

u and its first derivatives that there exist constants K » and K k,p such that, for any
u € D,, the extended linear system (4.6) corresponding to the linearization of (2.1)
at u satisfies

1431, 1B lasi2) < Kor 1A iz, 1Bllksregy < KoL+ ulerasig).
Thus (4.29) becomes
191k < 2 (1Bl + 1900wl 21 + 19111 ) (4.30)

It then follows by induction (with the inequality (4.23) as the base case) that

190 < G (1Bl + 19 0ollullksssz) (4.31)

Therefore, the restriction v of v to B, satisfies

vl < 191 < G (1Bl + 1900 lullrss )
< ' Mz (Il + [V lolulesssiz ) (4.32)

< Cic (Il + I lolull a3 -

All the hypotheses of Theorem A.1 have now been verified for any o > 3 + [§];
thus the conclusion of Theorem A.1 gives the desired solution u € C*°(B,,R®) to the
nonlinear system (2.1) on B,.. This completes the proof of Theorem 1.
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Part 2. Application to Isometric Embedding.

5. Local existence theorems for isometric embedding. The remainder of
this paper will be devoted to giving a new proof, based on Theorem 1, for the following
local existence theorem:

THEOREM 2. Let (M, g) be a C* Riemannian manifold of dimension n =2 or
n=3;let N = %n(n—i— 1); let xg € M, and suppose that the Riemann curvature tensor
R(xq) is nonzero. Then there exists a neighborhood Q@ C M of xo for which there is
a C™ isometric embedding y : Q — RV,

Here we briefly describe our strategy for proving Theorem 2. Let n = 2 or n = 3,
and let N = in(n + 1). For convenience, choose local coordinates x = (z,...,2")
based at xg, so that without loss of generality we may assume that xo = 0. Given
a O metric g on a neighborhood Q of x = 0, choose a real analytic metric g on 2
that agrees with g to sufficiently high order at x = 0. By the Cartan-Janet theorem,
there exists a real analytic isometric embedding (possibly on a smaller neighborhood)
yo: Q — RY of (,g) into RY.

The linearization of the isometric embedding system (1.1) at yq is a first-order
PDE system of N equations for the unknown function v : @ — RN. This system
decomposes into a system of n first-order PDEs for the tangential components of
v, together with (N — n) equations that determine the normal components of v
algebraically in terms of the tangential components.

We will show that, under the hypotheses of Theorem 2, the embedding y, can be
chosen so that the tangential subsystem becomes strongly symmetric positive after
a fairly simple, but carefully chosen, change of variables. Consequently, it follows
from the argument given in the proof of Theorem 1 that the tangential components
of v satisfy the smooth tame estimates required to implement a Nash-Moser iteration
scheme for the isometric embedding system (1.1), and then the remaining algebraic
equations will imply the necessary estimates for the normal components of v. Theorem
2 then follows directly from the Nash-Moser implicit function theorem (cf. Theorem
Al).

NOTATION 5.1. We will use the Einstein summation convention for the remainder
of this paper.

6. The linearized isometric embedding system and Nash-Moser iter-
ation. Let Q C R" be a neighborhood of x = 0. Let yo : 2 — RY be a smooth
embedding, and let g = g;;dz'dz? be the metric on  induced by the restriction of the
Euclidean metric on RY to yo(Q). Linearization of the isometric embedding system
(1.1) at the function yq yields the linear PDE system

&-yo . 8jV + 8jy0 . 8iV = hij, 1 S i,j S n, (61)

for the function v : Q — RY | where h;j = gij — Gij-

As described in [1], the linearized system (6.1) can be reformulated as a system
of n linear PDEs for the n tangential components of v, together with a system of
(N —n) algebraic equations for the normal components. To this end, note that, since
Yo is an embedding, for each x € Q the tangent vectors {d1yo(x),...,0,yo(x)} are
linearly independent and span an n-dimensional subspace Ty, C RY. We can therefore
decompose the second derivatives of yq as follows:

9%y0 =I50kyo + Hij, (6.2)
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where, for each 1 < i,j < n, the vector-valued function H;; = Hj; : Q@ — RY satisfies
H;j - Oryo = 0 for 1 < k < n. The functions I’fj : 2 — R are the Christoffel symbols
of the metric g;;, and the quadratic form H,jdz'dz’ is the second fundamental form
of the embedding yy.

Let S,, denote the %n(n + 1)-dimensional space of quadratic forms on R”, rep-

resented by symmetric n x n matrices [s;;]. For each x € 2, the vectors H;;(x)
determine a linear map Hy : RN — S, given by

Hy(v) = [(Hi5(x),v)].

We denote the image by Il = Hyx (RN). Since the kernel of the map Hy contains Tk,
we have

1 1
dim T, < in(n +1)—n= in(n —1). (6.3)

DEFINITION 6.1. The embedding yo : Q2 — RY is called nondegenerate if
dimIlx = $n(n — 1) for all x € Q.

Now, let S denote the dual space to S, represented by symmetric matrices [s¥],
with the pairing S x S,, — R defined for A € S}, H € S,, by

(A, H) = Zn: A" H,;. (6.4)

ij=1
DEFINITION 6.2. The annihilator Hi of the subspace IIx C S, is the subspace
of Sy defined by
I ={AecS: : (A H)=0for all H € I1,}.

It follows from equation (6.3) that dim Hi > n, with equality for all x € Q if and
only if y¢ is nondegenerate.

ASSUMPTION 6.3. Henceforth, we will assume that yg is nondegenerate, and that

consequently dim Il = in(n — 1) and dim Iy =n for all x € Q.

Now, the system (6.1) can be rewritten as follows:
@((fijyo . V) + aj((?iyo . V) —2v- 61-2ij = hij, 1 < i,j <n. (65)
Define functions v; and V;v; by

’Di:V'aiy07 1<z§n,
le_)i = 8j1_)i — Fﬁ-@k, 1< 1,5 < ng

then the system (6.5) can be written as
ij + le_)i —2v - Hij = hij; 1 S Z,j S n. (66)

Since dim Hi = n, there must exist smooth maps A',..., A" : Q — S such that,
for each x € Q, the matrices A*(x),..., A”(x) comprise a basis of IIJ. By writing
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AF = [A¥J] and pairing each of these matrices with equations (6.6) as in (6.4), w
obtain the following system of n first order PDEs for the functions oy, ..., Uy,:
Ak (Vif)j + Vj’lji) = Akijhij, k=1,...,n. (6.7)

Because A* € S*, we have A*J = A%’ but the component functions A do not

n’

necessarily possess any other symmetries.

PROPOSITION 6.4. Any solution (U1,...,70,) : @ — R™ to (6.7) uniquely de-
termines a solution v :  — RN to equation (6.1); moreover, v can be determined
algebraically from (01, ..., 0p).

Proof. Suppose that v1,..., 9, satisfy (6.7), and define
nij = hij — Vﬂ_}j — Vjai; 1 S Z,j S n. (68)

Equation (6.7) implies that [n;;(x)] € IIx for each x € Q. Assumption 6.3 implies
that Hy has maximal rank so that, for each x € €2, there exists a unique v(x) € RY
such that

v(x) - Oiyo(x) = 1;(x), 1<i<n,

6.9
ov(x) Hy() =mg(x),  1<ij<n. (69)
Therefore, the map v : 2 — RY satisfies (6.6), which in turn is equivalent to (6.1). O

It follows from Proposition 6.4 that, in order to solve the linearized equations
(6.1), it suffices to solve equations (6.7). This system can be written as

A0, + 0, - Mo = by, k=1..m  (610)

Since AF9 = AkJ" and 1"’“ =Tk

;i» this is equivalent to the system

Ak ((%’Uj — Ffj’ljg) = %Akijhij, k=1,...,n. (611)
We can write this system in matrix form as follows: For i = 1,...,n, let A* denote
the matrix
Alil .. Alm
Ai _ [Aku] —
Anil . Anin

Then the system (6.11) can be written as

A'9;v + BV = h, (6.12)
where
v=1_v B = [BFI] = [— ARt
(051, . [BY] = om] (6.13)
h= [ A ], 1< 4,k l,m<n.

Our proof of Theorem 2 is based on the following key result.

PROPOSITION 6.5. Suppose that the system (6.12) is strongly symmetric positive
at x = 0. Then there exist a neighborhood 2o C 0 of x = 0, an integer B, and € > 0
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such that, for any C™ metric g on Qo with ||g — gllg < €, there exists a C™ solution
y : Qo — RY to the isometric embedding system (1.1).

Moreover, the conclusion holds if the system (6.12) becomes strongly symmetric
positive after performing a change of variables of the form

X = ¢(x), w = S(x)v, (6.14)

where ¢ : Q@ — R™ is a local diffeomorphism of Q0 with ¢(0) =0, and S : Q — R"*"
is a C°°, n x n matriz-valued function on Q with S(0) invertible.

Proof. First, suppose that the system (6.12) is strongly symmetric positive at
x = 0. The argument from the proof of Theorem 1 shows that, under the hypotheses
of the proposition, there exists a neighborhood Qy C € of x = 0 on which the
system (6.12) corresponding to the linearization of (1.1) at any function y : Qo — RY
sufficiently close to yo has a solution v that satisfies the estimates of the form

190 < G (Il + Bllolly = Yollessrz ), k>0, (6.15)

for some constants C},. Then it follows from equation (6.8) that

Inlle < CF (Illksr + I0lolly = Yollessrig) . * 20,

for some constants C}/. These estimates, together with equations (6.9) and Assump-
tion 6.3, imply (possibly after shrinking €2y) that

IVl < Coc (IBlless + [Bllolly = Yollkrasiz)) s k20, (6.16)

for some constants Cj. The existence of a solution y : Q9 — RY to the system (1.1)
then follows from Theorem A.1, just as in the proof of Theorem 1.

For the second statement, assume that €2y has been chosen so that the restriction
of ¢ to Qo is smoothly invertible and the matrix S(x) is invertible for all x € o,
with the determinant of S(x) bounded away from 0. Then it suffices to observe
that a change of coordinates of the form (6.14) induces linear maps 1, : H*(€p) —
H*(¢(Q0)) defined by

Yi(v) = w,

and that these maps are continuous with continuous inverse. Thus the estimates of
the form (6.15) for the function w imply similar estimates for v, which in turn imply
the estimates (6.16) for v. O

Thus it remains to show that, under the hypotheses of Theorem 2, the approx-
imate embedding yo : © — R can be chosen so that the linearized system (6.12)
becomes strongly symmetric positive at x = 0 after a change of variables of the form
(6.14).

7. Symmetrization. The matrices A® in the system (6.12) are not necessarily
symmetric, because the functions A% and A’ are not necessarily equal. The sys-
tem (6.12) can be re-expressed as a symmetric system if and only if there exists an
invertible n x n matrix C' such that the matrices

CA',...,CA"
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are all symmetric, in which case multiplying the system (6.12) by C' results in a
symmetric system.

Observe that multiplying (6.12) by an invertible matrix C' is equivalent to re-
placing the basis A!,..., A" for the annihilator Hi at each point with the alternate
basis

A = CpAF.
Moreover, a given basis A!, ..., A" for Hi will lead to symmetric matrices A', ..., A"
if and only if

AR = ATk, (7.1)

i.e., if and only if the coefficients A“* are symmetric in all their indices. Therefore, in
order to determine whether the system (6.12) is symmetrizable, it suffices to determine
whether there exists a basis A¥ = [A%J] for II} for which the coefficients A¥J are
symmetric in all their indices. If we choose such a basis for Hi, then we will have

AR = AF
and there will be no need to distinguish between the two.

PROPOSITION 7.1. When n = 2 or n = 3, the linearized system (6.12) is sym-
metrizable.

Proof. When n = 2, we have N = 3. Choose any smoothly varying basis element
H3(x) € II. Consider the 4-dimensional space of all symmetric cubic forms

0 0 0

-0 —— 0 ————
ozt  0OxJ  Oxk

A = Aidk ( ) € S3(TR?),

and for k = 1,2, let A* denote the matrix A* = [A*”]. The annihilator equations
(A¥ H?) =0, k=12,

form a system of 2 homogeneous linear equations for the 4 functions A*”. Thus there
must be at least a 2-dimensional solution space at each point x € U, and choosing
A(x) to be any smoothly varying, nonvanishing element of this space produces a
symmetric linearized system (6.12).

When n = 3, we have N = 6. Choose any smoothly varying basis
(H*(x), H?(x), H5(x)) for the space II,. Consider the 10-dimensional space of all
symmetric cubic forms

0 0 0

-0 —— 0 ————
ozt  0OxJ  OxF

A= Ak ( ) € S*(TR?),

and for k = 1,2,3, let A¥ denote the matrix A¥ = [4*¥7]. The annihilator equations
(Ak H>) =0, k=1,2,3, a=4,5,6,

form a system of 9 homogeneous linear equations for the 10 functions A**. Thus there
must be at least a 1-dimensional solution space at each point x € U, and choosing
A(x) to be any smoothly varying, nonvanishing element of this space produces a
symmetric linearized system (6.12). O
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REMARK 7.2. The result of Proposition 7.1 does not hold for a generic choice
of IIx when n > 4; this is the primary obstruction to applying our methods to the
isometric embedding problem in higher dimensions.

For the remainder of this paper, we will restrict to the cases n = 2 and n = 3.
We will assume that the functions A*” are symmetric in all their indices, so that the
matrices A’ in the linear system (6.12) are symmetric and may be identified with the
matrices A*. We will use the convention that Roman indices (i, j, k, etc.) range from
1 to n, while Greek indices (o, 3,7, etc.) range from (n + 1) to N = In(n+1).

8. Compatibility equations and normal forms. In this section, we will show
how the Gauss and Codazzi equations (also called the “compatibility equations”) for
the embedding yo : 2 — RY introduce constraints on the values of the matrices A’
(now assumed to be symmetric) and their first derivatives at x = 0, and we will show
how the matrices A’ can be put into a simple normal form at the point x = 0.

Let x = (2!,...,2") be local coordinates on Q centered at x = 0. We will assume
that x is a mormal coordinate system at 0 with respect to the metric g on €, i.e.,
that Ffj(O) =0 for 1 <i,j,k <n. We will not, however, assume that g;;(0) = d;;,
because our argument will involve a nontrivial GL(n,R) action on the tangent space
ToM. The specific values of g;;(0) will not affect our argument, in any case.

Let g be a real analytic metric on 2 that agrees with g up to order at least
(where @ is as in Proposition 6.5) at x = 0, and note that this implies that the
Riemann curvature tensors of g and g agree up to order at least (8 — 2) at x = 0.
By the Cartan-Janet isometric embedding theorem [13], there exists a real analytic
isometric embedding (possibly on a smaller neighborhood) yg : Q — RY of (€2, g) into
RN,

Let (€541, - .,en) be a smoothly varying orthonormal basis for the normal bundle
of the embedded submanifold yo(€2) C RY, chosen so that
Vie.(0)=0 (8.1)

forn+1 < a < N and all w € ToM, where V- denotes the connection on the normal
bundle induced by the Euclidean connection on RY. This condition is the analog for
the normal bundle of the normal coordinates condition I'};(0) = 0. Then we can write
the second fundamental form of y( as

Hijdl'i ody’ = e, ® Hgd:vl o da’ (82)

for scalar-valued functions Hf; : & — R.
The embedding yo : 2 — R must satisfy the following conditions at x = 0:
e Metric conditions:

(0iy0 - 0;¥0)|lx=0 = gi;(0), 1<1i,j<mn,
Vi(0;¥0)lx=0 = (Ffjak}’o”x:o =0, 1<4,5,k<n;

e Gauss equations and their first derivatives:

N
a=n+1 x=0
N
am < Z (Hﬁc jaf - H'L(ijak)> = (877LRiij)(0)7 1 S i7j7 k7(7m S n,
a=n-+1 x=0

(8.4)
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where R;jre denotes the components of the Riemann curvature tensor of

(M, g);
Codazzi equations:

(OiH$) | o = O HR) | o = (ORHJ)|, o0 1<i 5,k <n, n+l<a<N.

(8.5)
This form of the Codazzi equations at x = 0 relies on the normal coordinates
condition Fé-k(O) = 0 and the condition (8.1) on the covariant derivatives of
eq.

Conversely, the Cartan-Janet theorem guarantees that, for any choice of real numbers
H{(0) and 0y H{%(0) satisfying equations (8.3)~(8.5), there exists a real analytic iso-
metric embedding yo : © — RY of (£, g) (possibly after shrinking ) whose second
fundamental form agrees with the given values up to first order at x = 0.

NotatioN 8.1. Henceforth, we will only be concerned with the values of Hf,
AFi7 - and their first derivatives at x = 0. Thus we will use the following notations:

H: will denote the real number H%(0), and H* will denote the matrix [H}].
fi; will denote the real number 0y Hf(0), and hf will denote the matrix

[h3i;]. Note that the Codazzi equations (8.5) are equivalent to the condition

that the hy,; are fully symmetric in their lower indices.

A¥J will denote the real number A*7(0), and A* will denote the matrix

[Ak”]

algij will denote the real number 9,4%7(0), and a¥ will denote the matrix

[afij ]. Note that the algij are fully symmetric in their upper indices, but

there are no symmetries involving the lower index.

R;jke will denote the real number R;jr¢(0). Note that the R;;r, must satisfy

the symmetries of the Riemann curvature tensor:
Rijre = —Rjike = —Rijer = Ryeij-

When n = 2, the only nonzero component of R is the Gauss curvature K =
Ry212; when n = 3, R has 6 nonzero components, represented by Ry212, Ro323,
R3131, Ri223, R2331, R3112.

Tijke,m Will denote the real number 0y, R;jie(0); when n = 2, we will denote
T1212,1 and T1212,2 by kl and k2, respectively. Note that the Tijkt,m must
satisfy the same symmetries as the R;;r¢ in their first four indices, together
with the second Bianchi identities. When n = 2, the second Bianchi identities
are trivial; when n = 3, they are represented by the three equations

723231 + T2331,2 + 71223,3 = T2331,1 + 7'3131,2 + 7'3112,3 (8.6)
=r1223,1 +T3112,2 + T1212,3 = 0.

The values of HS, h¢" Akij,afij are constrained by the following relations and

@50 "Yigko

are otherwise arbitrary (apart from the nondegeneracy condition on the Hg)

Gauss equations:

N

> (HGHS, — HGHS,) = Rijre,  1<ijk0<n;  (8.7)
a=n+1
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Codazzi equations:

Annihilator equations:

AMITH® =0, 1<k<n, n+1<a<N; (8.9)

Derivatives of the Gauss equations:

N

> (HhSem + Hiohiem — HihSim — Hikhiom) = tijhem, 1 <d,5,k, 6,m <n;
a=n-+1
(8.10)
e Derivatives of the annihilator equations:
ARIRS, + Heap” =0, 1<k t<n, n+1<a<N. (8.11)

It will be helpful to reduce to the case where the values H;; and AR take on
relatively simple normal forms. To this end, consider a linear transformation of the
independent variables of the form

X —g-X (8.12)

with g € GL(n,R). This transformation induces an analogous action by g on the
tangent and cotangent spaces ToR™ and TgR"™, and hence on the tensors

R = Rijre(da’ Ada?) o (dzF A da®),

H=e,® Hf;d:rl oda?,

A Aiik ( 0 0 9] ) ’

-0 — 0 ———
ozt OxJ  Oxk

and their covariant derivatives, while preserving the normal coordinates condition
Ik (0) = 0.
J

8.1. Normal form for n = 2. When n = 2, the subspace IIg C Sy is spanned
by the matrix

. lH i,
i,

The nondegeneracy of the embedding yo : @ — R implies that the matrix H? is
nonzero. Then, by an action of the form (8.12), we can arrange that

K 0
H? = l ] , (8.13)
0 1

where K is the Gauss curvature of (M, g) at x = 0. The annihilator equations (8.9)
then imply that we can choose
1 0
. (8.14)
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8.2. Normal form for n = 3. When n = 3, IIg C S3 is the subspace
o = span(H*, H®, H),

where, for o = 4,5,6,

Hpy Hpy Hg

H® = |Hfy Hj Hss

H§, H$, Hg,
Each symmetric matrix H* may also be regarded as representing the quadratic form
Hgdax'dr) € S*(TgR?), or equivalently, the quadratic polynomial H XX/

Following [1], we say that Ilg is general if there exists a nonsingular cubic poly-
nomial Y = YiijinXk such that

< oYy 9y 9y )
IIp = span .

X1 9X2 9X3
In particular, Y must depend on all three variables X', X2, X3,
The following classical lemma may be found, e.g., in [22]:

LEMMA 8.2. If Y € S3(T3R?) is a nonsingular, homogeneous cubic polynomial,
then there exists a unique real number o # —% and a basis (X*, X2, X?) of T§R® such
that

Y = (X1 + (X?)? + (X?)® + 60X X2 X7

It follows that, if IIg is general, then, by an action of the form (8.12), we can
arrange that

1 0 0] [0 0 0 o 0
Ilp=span| [0 0 o|,|0 1 1o 0 o |. (8.15)
0 o 0] |0 0 0 0 1

o o 9

The annihilator equations (8.9) then imply that we can choose

20 0 0 0 0 1 01 0
Al=]10 0 1|, A*=1|0 —20 0], A*=1|1 0 0 |. (8.16)
0 10 1 0 0 0 0 —20

Meanwhile, the Riemann curvature tensor R may be regarded as a quadratic form
on the space A?(TpRR?); as such it is represented by the symmetric matrix

Rasas  Raszsi Riosos
R = |Roszs1 Rsiz1 Raunz| - (8.17)
Ri293  Raiz  Ri2io
The only invariant of R under the action (8.12) is its signature (p, q). The following

proposition is a direct consequence of Theorem F in [1]; we will give an independent
proof below.
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PROPOSITION 8.3. If R is nonzero, then the Gauss equations (8.7) have a solution
(H*, H5, H®) whose span Iy is equivalent under the action (8.12) to the normal form
(8.15) for some o with 0 < |o| < &. In fact, o may be chosen arbitrarily within this
range, the only restrictions being that:

o If the signature of R is (1,0), then we must have o < 0;
o If the signature of R is (0,1), then we must have o > 0.

Proof. Let H* H®, H® denote the basis

1 00 0 0 o 0 o 0
H*=1|0 0 o, H>=1|0 1 0|, HS=1|oc 0 0
0 o 0 o 0 0 0 0 1
for IIg. Then, for a« =4,5,6, let
Ho‘zvgﬁﬁ

for some invertible matrix [”yg‘] Now, for § =4,5,6, let 75 denote the vector

7
8= |73
6
T8
Then it follows from the Gauss equations (8.7) that the corresponding matrix R is
given by
(15-76) =0 (yava) 0 (yays) —o(veve) 0P (v6ra) — o (v5s)
R=|o®(yays) —olyeve) (o) =0’ (1575)  0*(v576) —o(yaya)| . (8.18)
o*(yoma) —o(vsvs) 0 (y5ev6) —o(vava)  (vavs) — 0% (v6%6)

It suffices to show by example that, with the sign restrictions given above, the
vectors 74,7s5,76 may be chosen so as to obtain a matrix R of arbitrary nonzero
signature. We may achieve this as follows: Let 74,75, 76 be linearly independent unit
vectors in R?, oriented so that the angle between any pair of these vectors is equal to
the same real number 6. Geometric constraints require that 0 < 6 < %”, and hence
—% < cosf < 1. Denote cosf by ¢; then from (8.18), we have

p—0% o2p—0 o*p—o
R=|c%p—-0 ¢—0% o2p—0c]. (8.19)
o’p—0 olp—0 ¢—o?
The eigenvalues of the matrix (8.19) are
A=0¢(14+20%) —0c(0+2), (1-0)(¢+0+0¢), (1—0)(p+0+00).

Therefore, for 0 < o < %, we have

(073)7 _%<¢<_UL+17
. (071)5 gbi _UL_Hv )
sen(R) =< (2,1), —3%5 <o <3
(2,0), o= ;’1&’;? ,
(3,0, 3% <<,
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and for —% < o < 0, we have

1 o(0+2)
) -3 < ¢ < 14202
_ o(0+2)
’ (b 142020

)
)
) o(o+2)
)
)

3

3

sgn(R) =

g
’ 14202 <¢<_a+17

3

)

’ (b:_ULHa

[od
;s <e<L

o N N N
W = = O O
S O NN W

)

A slight perturbation of the vectors ~v4,7s5,76 will replace the double eigenvalue of
R with distinct eigenvalues, which will lead to R attaining the remaining possible
signatures ((0,2), (1,2), and (1,1) for ¢ > 0 and (1, 1), (2,1), and (2,0) for o < 0) as
¢ varies. 0

REMARK 8.4. It is possible to show that, when R= 0, all nondegenerate solutions
(H*, H?, H®) to the Gauss equations (8.7) are simultaneously diagonalizable under
the action (8.12) and are therefore equivalent to the normal form (8.15) with ¢ = 0.
The cubic form A thus becomes reducible, with the result that the rank of equations
(8.11) with respect to the variables h¢; drops from 27 to 21. This drop in rank is the
main obstruction to carrying out our construction when R=0.

9. Strong symmetric positivity for the system (6.12). In this section we
will prove the following theorem, thereby completing the proof of Theorem 2.

THEOREM 9.1. Suppose that eithern =2 and K # 0, orn =3 and R #0. Then
the linearized isometric embedding system (6.12) can be transformed to a strongly
symmetric positive system in a neighborhood of x = 0 via a change of variables of the
form

WHER v = (1478w, (9.1)
where cz-k = c?cj € R and Sy,...S, are constant n X n matrices.

In order to prove Theorem 9.1, we will show that, when n = 2 or n = 3, for
any given real numbers R;jre and r;jie,m satisfying the necessary symmetries with
Rijie not all equal to zero, there exist real numbers Hg, hey, A¥7, alzij that satisfy
equations (8.7)—(8.11), together with a change of variables of the form (9.1), that
renders the system (6.12) strongly symmetric positive at x = 0.

At first glance, the strong symmetric positivity condition might appear impossible
to achieve: From the expressions (6.13) and the normal coordinates condition I‘fj (0) =
0, we have B(0) = 0. Therefore, symmetric positivity for the system (6.12) would
require that the matrix

n
a--3d
=1

be positive definite, while strong symmetric positivity would require that each of the
diagonal sub-blocks (Q1);; = 2a’ (no sum on i) of @y (cf. equation (2.6)) be posi-
tive definite. Clearly these two conditions are mutually exclusive, and the situation
appears hopeless. However, it turns out that a change of variables provides some
unexpected flexibility:
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LEMMA 9.2. Under the change of variables (9.1), the symmetric linear system
(6.12) with associated quadratic forms Qo and Q1 at x = 0 is transformed to a sym-
metric system

Ai9;w + Bw = h, (9.2)
with associated quadratic form CZQO at x = 0 given by

Qo = —al + ¢, A, (9.3)
and the (i, j)th block of él (cf. equation (2.6)) at x =0 given by

(Qu)ij = 0;A7(0) + 5‘Ai( )

o (9.4)
=al+al —(ch, +c))AY + STAT + A1S; + STA + A'S;.

Proof. According to the chain rule, up to first order at x = 0, we have

o 0 50 0 _ 0 ;w0

95 = o T g Bai = g T g

Therefore, at x = 0, we have

0 - < a —cikg‘ckij) (I +zSo)w)

ox? ozt g

_ L
= (I—I—x S[) (8:51

Substitution of (9.5) and (9.1) into the linear system (6.12) yields

A <(I + 78)) <£iw — T w>) + (B(I + 7¢8,) + AY(S; — clkxksj)) =h.

Multiply on the left by (I +z°S¢)T, collect the terms and then relabel them to obtain
the system (9.2), where

Al = (I +3°8))T (A° — i7" A7) (I +3"Sy),
B=(I+a'S)" (B(I +208) + A(S; — cgk;zks,-)) : (9.6)
h=(I+z")"h,

and 0; now represents %. Finally, computation of

Qo=B+B" - Z&fli, (Qu)ij = O A7 + 0; A7,

i=1
and evaluating at x = 0 yields equations (9.3) and (9.4). O

In light of Lemma 9.2, our strategy for proving Theorem 9.1 will be as follows:
1. By applying the GL(n,R) action (8.12), we may assume that A*J and HE
are as in equations (8.13)—(8.14) when n = 2 and as in equations (8.15)—(8.16)
when n = 3.
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2. Identify the values of algij for which the system (6.12) can be transformed to
a strongly symmetric positive system (9.2) via a change of variables of the
form (9.1).

3. Identify values of h}; that satisfy equations (8.11) for some a, "7 from Step
2.

4. Show that all possible values of 7;;¢,m satisfy equations (8.10) for some hf‘jk
from Step 3.

5. Conclude that, for any R;jz¢ not all equal to zero and any r;jxe,m, there exist

H, AR ey, and algij that satisfy equations (8.7)—(8.11) and for which the

system (6 12) can be transformed to a strongly symmetric positive system
(9.2).

Proof of Theorem 9.1. First we give the proof for the case n = 2. We begin by
identifying the values of a, ¥ for which we can arrange that

Qo =M, Qi =puly, (9.7)

for given real numbers A, u > 0, where Iy and I4 denote the 2 x 2 and 4 x 4 identity
matrices, respectively.
By applying the GL(2) action (8.12), we can assume that

01 10 K 0
,  A’= ,  HP= :
0 —K 0 1

1 0
0 0
D= ,
0 1

so that the matrices A!, A2, D form a basis for Ss, and write the matrices S; and S5

as
11 12 11 12
g [51 51 ] g [52 S2 ]
1= ) 2 = .
21 .22 21 .22
ST 871 S37 82

Then, after some computation, equation (9.3) can be written as

Al =

Set

Qo = —(a1 + a3) + (ci; + o) A" + (ciy + c39) A%, (9.8)

and the equations (9.4) can be written as

(
(
(

1)11 = 2@% — 2(0%1 — Sil — S%Q)Al — 2(6}2 —+ 2112(8))142 + 4(5}2 + KS%l)D,

1)22 = 2(13 — 2(012 + Z221(S))A1 — 2(052 — 25%1)142 + 4K(s SQ)D,

D12 = ay + a3 — (cly + ¢fy + Z121(5)) A" — (cg9 + ¢fo + Z122(s)) A?
+2(5% +K(51 —i—s%l 5%2))D,

(9.9)

QO On On

where Zwk( ) represents a linear combination of the SZJ whose precise form is irrele-
vant. Regardless of the values of ag , we can set

(Q1)ij = bijulz
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and solve equations (9.9) for the variables s}?,s32, s3? (from the coefficients of D)

and s%2, 531 cly, 2y, ¢2, ey (from the coefficients of A, A%). Note that this solution
makes use of the assumption that K # 0. Then we can set

Qo = M,
and solve equations (9.8) for the variables ci; and c3, if and only if the matrix

o a1l all2 4\ al12 4 122
ay +a; + Al = 112 122 122 222
ay* +as a;”® +ax” + A

is a linear combination of A' and A2, which in turn is true if and only if
(a1 4+ a2 + \) + K(ai' + al2 +)) = 0. (9.10)

Thus, the strong symmetric positivity condition (9.7) can be realized if and only if
the )"/ satisfy equation (9.10).
The next step is to identify the values of h;?’jk that satisfy equations (8.11) for

some afij satisfying equation (9.10). Equations (8.11) may be written in matrix form

as
(A¥.h}) + (H? af) = 0. (9.11)
The condition (9.10) is equivalent to
(H?, a1 + a3) = —(K + 1)\
therefore, (9.11) implies that we must have
(A',h3) + (A%, h3) = —(H?,a} + a3) = (K + 1),
or, equivalently,

3hi1y — Khigy = (K + 1)\ (9.12)

Conversely, for any values of A7,
of alzij that satisfy the condition (9.10).

Finally, consider equations (8.10), which can be written as

that satisfy the condition (9.12), there exist values

Kh?m + h?u = ki,

(9.13)

The values of h%k may be chosen arbitrarily, subject only to the condition (9.12);

therefore, any given values of k; and ks may be realized by an appropriate choice of

B __

We conclude that, for any K # 0 and any k1, k2, there exist solutions h3;;, and a?”

to equations (8.7)—(8.11) that satisfy the conditions (9.10) and (9.12), and hence the

linearized system (6.12) can be transformed to a strongly symmetric positive system
via a change of variables of the form (9.1). This completes the proof for n = 2.

Now consider the case n = 3. The argument is essentially the same as for n = 2,

but the linear algebra requires a bit more effort. We begin by identifying the values

of alzij for which we can arrange that

éo = A137 él - ,ngv (914)
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for given real numbers A, u > 0, where I3 and Iy denote the 3 x 3 and 9 x 9 identity
matrices, respectively.

By applying the GL(3) action (8.12), we can assume that

20 0 0 0 0 1 01 0
A= 0 o0 1}, A2=10 —20 0], AB=110 0
0 1 0 1 0 0 0 0 —20

with 0 < |o| < J. Let H*, H®, H® denote the basis

10 0 0 0 o
H*=10 0 of, H>=10 1 0], HS = 0 (9.15)
0 o 0 o 0 0 0
for Ilp. Then, for « = 4,5, 6, we can write
H* =~5H" (9.16)
for some invertible matrix [vg]. Set
1 0 0 0 00 0 0 0
D=0 0 0, D,=1{0 1 0f, D=0 0 0],
0 0 0 000 0 0 1

so that the matrices A', A%, A%, Dy, D, D5 form a basis for S, and write the matrices
Sl, SQ, 53 as

siosi2 sl sosl2 slP sosl? sl

_ |21 220 23 _ |21 22 23 _ |21 22 23
S1=|si" s7° sT°|, So = |s3 s3° s3°|, Ss = |s3 s5° s3
31 .32 .33 31 .32 .33 31 .32 .33

S 81 S Sa7 827 S S3° 837 53

Then, after some computation, equation (9.3) can be written as

Qo = —(at +a3+a3) + (ch +Eo + hs) A + (cla + o+ E35) A2+ (cls + B + chs) A%, (9.17)
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and the equations (9.4) can be written as

(6121)11 = 2ai — 2(0%1 — 510 — S?S)Al - 2(0%2 + 2112(8))A2 - 2(Ci3 + 2113(8))143
+ 40(5%2 +533 — 251" ) Dy + 4(5?2 +osit — 2025}3)D2 + 4(3%3 +ost — 2025}2)D37
(Q1)22 = 2a3 — 2(clz + Zo21 (5)) A" — 2(c3y — 53" — 53%) A — 2(c3s + Zans(5))A°
+ 4(521 + o8y’ — 202533)D1 + 40(5%1 + 533 — 2332)D2 + 4(5%3 + o83 — 202331)D3,
(Q1)33 = 2a3 — 2(cB5 + Zaai (5)) A" — 2(c35 + Zaaa(s)) A? — 2(chs — 53! — 532) A
+4(s3" + o055 — 20°5°) Dy + 4(s5° + 055> — 20755 ) Dy + 4o (s3' + s5° — 2s5°) D3,
(521)12 =a3+ai — (C%z +chh + Z121(8))A1 - (Céz +cla + 2122(8))142
— (053 +ci+ Zlgg(s))A3 +2 (s?1 + 0(3%2 +s32 453 — 25%1) — 202353) D,
+2 (332 + 0(5%1 +sit s - 25%2) - 2025%3) Do
+2(s1° + 85" +o(si” +53') —20%(s2” +51')) Ds,
(Q1)2 = a3 + a3 — (cls + s + Zaa1(5)) A" — (cBs + B + Zana (s)) A
— (C33 + €33 + Zoss(s)) A% + 2 (s3' + 55" + o(s2° + s3°) — 207 (s5° + 53°)) Da
+2 (3%2 + 0(5%3 +osat 83— 2532) - 202521) Do
+2 (s§3 + 0(5%1 + 522 4832 - 25%3) - 202531) D3,
(521)31 =af +ab — () + cis + Z311(s)) A" — (cha + chg + Za12(s)) A
— (13 + ¢33 + Za13(s))A® + 2 (sf1 +o(s1® + 537+ 550 — 2s3") — 2023?2) D,
+2 (5%2 + 552 +o(s7° +53) — 20%(sT" + sés)) D,
+2 (533 +o(st! + 577 + 530 — 251°) — 2025§2) Ds,
- (9.18)
where Z;;i,(s) represents a linear combination of the s}’ whose precise form is irrele-

vant. Regardless of the values of algij , we can set

(Qij) = bijpls
and solve equations (9.18) for the variables
3

1,1 2,3 3,2 22 13 31 33 12 21 31 32 23 12 13 31 21
S1 5,81 581 S92 Sy ;89 83 ;83 ;83 ;81 ;S92 S8y ;89 ;83,83 5,81

(from the coefficients of Dy, Do, D3) and

2,3 3,2
753 753

33 1,1 22 1 1 2 2 3 3 2 1 92 3 1 3 1 2 3
81 552 583 ,€12,613,€1,2:€23,C13,C23,C1,1,€2,2,C33,C22,C33,C1,1,C2,3,C1 3,C1 2

(from the coefficients of A', A% A3). This solution makes use of the fact that 0 <
lo| < %, and while the explicit solution is rather complicated, it should be fairly clear
that such a solution exists for |o| > 0 sufficiently small. Then we can set

Qo =3
and solve equations (9.17) for the variables c}, ¢35, ¢35 if and only if the matrix

ai + a3 + aj + A3

A bl b alB A a2 pal®ral® ol ol g ol
— (1,%124—04%224—0%23 a}22—|—a§22+a§23—|—/\ a}23+a’%23+a§33

0,%13 _|_a%23 +a§33 CL%23 +CL%23 +a§33 a%33 +a%33 +a§33 A\
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is a linear combination of A', A2, and A%, which in turn is true if and only if

a%ll +a%12 4 aélB 4 20’(&%23 +a§23 4 agSB) 4\ = O,
al?? 1 222 1 a3 1 20(al® + al® + al¥®) + A = 0, (9.19)

at® 4+ a3% + a3 4 20(al? + ad? +al®) + A = 0.

Thus, the strong symmetric positivity condition (9.14) can be realized if and only if
the ay" satisty equations (9.19).
The next step is to identify the values of A}, that satisfy equations (8.11) for

some afij satisfying equation (9.19). Equations (8.11) may be written in matrix form

as
(AR hgY 4+ (H™, af) = 0. (9.20)
The conditions (9.19) are equivalent to
(H* aj + a3 +a3) = =\, a=4,5,6;
therefore,
(H,ai + a3 +a3) = (V§H a1 + a5 +a3) = =(7§ + 78 +1§)A,  a=4,56.

Then equation (9.20) implies that we must have
(AT, hY)+(A% ) +(A%, hg) = —(H", ap+a3+as) = (F+95+96)A,  a =456,
or, equivalently,

6hTys — 20(hT1y + hyy + hiss) = (4 + 75 +76)A, a=4,5,6. (9.21)

Conversely, for any values of h{;, that satisfy the conditions (9.21), there exist values
of a?ij that satisfy the conditions (9.19).

Equations (8.10) are considerably more complicated here than in the n = 2 case.
Taking the second Bianchi equations into account, there are 15 equations for the 15
components 7;xe,m, with left-hand sides that are linear functions of the 30 compo-
nents hgy,. We will regard equations (8.10) as defining a linear map G from the
30-dimensional space H of h%k values to the 15-dimensional space R of 7jjx¢,m val-
ues; what remains to show is that the restriction of G to the 27-dimensional affine
subspace defined by equations (9.21) is surjective onto R.

First, observe that we can write equations (8.10) in matrix form as

6
> Gohe =, (9.22)
a=4
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where G denotes the 15 x 10 matrix

[ HS,
HS,
0
~Hg,
0
0

0

0

«
H3 3

e
Hll

«
_H31

0
0

0

[e=]

Hpy
0
—Hg,

0

he denotes the vector

o a «a « a a
h* = [hlll h222 h333 h112 h311

and 7 denotes the vector

f:[T1212,1 T3131,1 7T2331,1 T3112,1

—2H{,

0
—Hg,
g,
Hs,
0
Hs,
—Hg,
0
0

o

[en]

[en]

0

—2Hg,

Hy
Hy
—H3
0
0

a
_H23

—2HS,

e
_Hll
o
H12

e
H31

e’
H33

«
_H31

e
Hll

o
_H31

—2Hg,
Hg
Hys

o
_H33

[«
Hll

o
_H12

—~2H§,
0
—Hg,
Hs,

o
H12

o
_H12

—2HS,
Hiy
Hg

_ g«
Hll

Hg,
—Hiy
Hiy
0
0
Hy |
—H3
Hs
0
0
H,

a
_H33

a
H31 -

T
a a a a a
h223 h122 h331 h233 h123] )

T1223,1 T2323,2 T1212,2 T73112,2

T
T1223,2 7T2331,2 7T3131,3 72323,3 71223,3 72331,3 ?"3112,3]

Thus the map G is represented by the 15 x 30 matrix

acting on the vector

(G4 &5 GO
]CL4

h=|h?
;LG

Now, let G denote the restriction of G to the 27-dimensional subspace defined by
equations (9.21). By solving equations (9.21) for h{y5 and substituting into equation
(9.22), we can represent G as

6
() = 3 G + o,

a=4
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where G% denotes the 15 x 9 matrix

Go =
r HS, 0 0 —2H 0 0 HY 0 0 7
Hg, 0 0 0 -2Hy 0 0 HY 0
%UH% %C’Hgl %UH% —Hgy  Hgs 0 0 —Hf 0
_Hgs_%UHﬁ _%C’Hﬁ _%C’H?l Hg, H, 0 0 0 0
50HP, 30H, 30H Hyy —Hyp 0 —Hgyp 0 0
0 Hg, 0 0 0 —2Hg 0 0 Hg,
0 HY 0 H, 0 0 —2H% 0 0
%UH?Q %C’H?z %UH?Q —H3s 0 —Hpp  Hg 0 0 ;
—to0HS, —H$-1ioHS, —1ioHS, 0 0 Hg,  HS 0 0
S0HS, So0HS, S0HS, 0 0 Hg  —-Hgg 0 —Hp
0 0 HY 0 HE, 0 0 -2H3 0
0 0 HS, 0 0 HS, 0 0 —2HS,
LoHS, LoHS, LoHS, 0 o -Hy, 0 —Hg HY
—+oHg —+toHg  —HY—toHS 0 0 0 0 Hg,  HY
L %UH:% %UHgl %UH:% 0 —Hgs 0 0 HYy,  —Hp
(9.23)

he denotes the vector
2OL (0% (0% « « « « (07 (07 (0% T
NS [hlll h9ae  hgszs hip hgin hSps his  hisy h233] 3
and 7 is the vector obtained by evaluating G on the vector h with
(1123 = %(724_7?—’_73))\7 a:475767
and all other A}, equal to 0. Thus, it suffices to show that the 15 x 27 matrix
[G4 G° G6]
has rank 15.
In order to compute the rank of this matrix, observe that equation (9.16) implies
that
4 5 61 — [~a] [(4 5 (6
@ 6 6] =hgl[e ¢ G,
where G represents the matrix G® with all entries H; replaced by flfj Thus, the

rank of the matrix [G4 G° GG} is equal to the rank of the matrix [G4 G° Gﬁ}.
We can compute this rank explicitly: Substitution of the expressions (9.15) for
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74

5 HS into (9.23) yields

)

0 0 0

—20

0 0 —20

0

—20
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0 0 0 —20 00 0 0 0
1 0 0 000 0 0 0
0 0 0 -1 00 0 -0 O
0 0 0 0 ¢ 0 0 0 0
102 o L 0 00 0O 0 0
0 1 0 000 0 0 0
0 0 0 0 00 —20 0 0
G°=|30> L* L 0 00 0 0 0
0 0 0 0 0o 0 0 O
0 0 0 0 00 -1 0 -0
0 1.0 0 0 ©
0 0 0 0 01 0 0 0
0 0 0 0o 00 0 0 o
—t0 —ic —30 0 0 O O 0 O
L o 0 0 0 00 0 o 0]

Then a direct computation shows that the matrix [G4 G° GG]
has rank 15; for example, the submatrix consisting of columns
(2,3,6,7,9,10,12,14,17,18, 19, 20, 22, 23, 25) has determinant equal to
—510%(0c — 1)3(6? + 0 + 1) # 0. Therefore, G is surjective onto R, and any
given values of 7;;5¢,,m» may be realized by an appropriate choice of h-

We conclude that, for any R # 0 and any 7;jx¢.m, there exist solutions Hg, ARG,

1 and afij to equations (8.7)—(8.11) that satisfy the conditions (9.19) and (9.21),
and hence the linearized system (6.12) can be transformed to a strongly symmetric
positive system via a change of variables of the form (9.1). This completes the proof
forn=3.0

In closing, we note that the strong symmetric positivity condition (2.5) is ex-
tremely fragile under changes of coordinates, as described in Lemma 9.2—indeed,
this is precisely why we have to choose local coordinates so carefully in our proof of
Theorem 9.1. In future work, we hope to explore this condition in more depth and to
obtain a more intrinsic understanding of its significance.

Appendix A. Theorems from analysis.

THEOREM A.l (Nash-Moser-Schwartz-Sergeraert). Let Eo, Fy be real Banach
spaces, and let Ey (resp. Fy), k € N, be vector subspaces of Ey (resp. Fp), such
that Ex11 C Ey (resp., Fp11 C Fy). Let each space Ey (resp. Fy) be equipped with
a Banach norm || - || such that the inclusions Ex1 — FEy (resp. Fyi1 — Fy) are

continuous. Let Fo = ﬂEk and Fy = ka be given the intersection topology.
k=0 k=0
Moreover, suppose that there exists a family of linear “smoothing operators” S(t) :
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Ey — Eo, defined for t € RY, satisfying

lu—Stull; < Mt |ul;, teRTi<juekE; (A1)
1S(t)ull; < M; 7", teRYi<jucFE, .

where M;; are positive real constants.

Let ug € Eo; let Dy C Ey be a neighborhood of ug, and let Dy, = Dy N By for
k>0. Let ® : Dy — Fy be a C? map, and suppose that there exists an integer o > 0
satisfying the following assumptions:

(i) For any k >0, ®(Dy) C F.

(ii) There exists a constant C' such that, for any u € D, and v € E, such that

u+veD,,

[2(u+v) = @()[a < Cva,

, o (A.2)
[®(u+v) —@(u) = P (0)v]o < V]G

(iil) There exist constants Cy, > 0 with the property that, for any u € D, there
exists a continuous linear map R(u) : F,, — Eq such that, for allh € F,,

®’(u) R(u)h = h,
and for all k > 0, u € Diyq, and h € Fyq,
[R(a) bl < Cr(lhllkta + [Blla]u—vollkta)- (A-3)
Then there exists € > 0 such that, for any f € Foo with
If — @(uo)lla <
there exists u € D, such that
O(u) =f1.

The proof of this theorem can be found in [25] and [26].

THEOREM A.2 (Stein). Let Q C R™ be a bounded Lipschitz domain. Then there
ezists a linear extension operator

& LYQ) — LYR")

satisfying:
(i) (Ef)|a = f; i-e., € is an extension operator.
(ii) The restriction of & to W*P(Q) is a bounded linear operator

& WhP(Q) - WEP(R™), 1<p<oo, 0<k<oo.

The proof of this theorem can be found in [29].
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