
ASIAN J. MATH. c© 2017 International Press
Vol. 21, No. 6, pp. 1153–1182, December 2017 007

COMPARING THE π-PRIMARY SUBMODULES OF THE DUAL

SELMER GROUPS∗

MENG FAI LIM†

Abstract. In this paper, we compare the structure of Selmer groups of certain classes of
Galois representations over an admissible p-adic Lie extension. Namely, we show that the π-primary
submodules of the Pontryagin dual of the Selmer groups of two Galois representations have the
same elementary representations when two Galois representations in question are either Tate dual
to each other or are congruent to each other. In the first situation, our result gives a partial answer
to the question of Greenberg on whether the Pontryagin dual of the Selmer groups of two Galois
representations that are Tate dual to each other are pseudo-isomorphic (up to a twist of the Iwasawa
algebra). In the second situation, our result will be applied to study the variation of the π-primary
submodules of the dual Selmer groups of certain specialization of a big Galois representation. One
of the important ingredient in our proofs is an asymptotic formula for π-primary modules over a
noncommutative Iwasawa algebra which can be viewed as a generalization of a weak analog of the
classical Iwasawa asymptotic formula.
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1. Introduction. Throughout the paper, p will always denote a rational prime.
Let O be the ring of integers of a fixed finite extension K of Qp, and let π be a
local parameter of O. Let F be a number field and F∞ an admissible p-adic Lie
extension of F with Galois group G. For a Galois representation defined over a
number field F with coefficients in O, one can attach a Selmer group to these data,
and the resulting Selmer group has a natural module structure over O�G� which is the
Iwasawa algebra of the Galois group of the given admissible p-adic Lie extension. For a
module over such an Iwasawa algebra, Howson [Ho1] and Venjakob [V1] independently
developed the notion of a generalized μ-invariant which extends the classical notion
of the μ-invariant. Building on this notion of the μ-invariant, they have established
a structural description of the π-primary submodules of modules defined over such
an Iwasawa algebra (see [Ho2, V1]). To be precise, they are able to show that the
π-primary submodules can be expressed uniquely in term of a product of factors of
the form O�G�/πα (up to pseudo-isomorphism). Following the classical situation, we
call this the elementary representation of the π-primary submodule. In the midst
of establishing their structural theorem, they also show that the μ-invariant can be
expressed as a sum of the α’s appearing in the elementary representation. The aim
of this article is to compare the π-primary submodules of the Pontryagin dual of the
Selmer groups of two Galois representations in the two situations as mentioned in the
abstract. We briefly describe these situations in the next two paragraphs.

The main conjecture of Iwasawa theory is a conjecture on the relation between a
Selmer group and a conjectural p-adic L-function (see [CF+, FK, Gr1]). This p-adic
L-function is expected to satisfy a conjectural functional equation in a certain sense.
In view of the main conjecture and this conjectural functional equation, one would
expect to have certain algebraic relationship between the Selmer group attached to
a Galois representation and the Selmer group attached to the Tate twist of the dual
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of the Galois representation which can be thought as an algebraic manifestation of
the functional equation. In particular, an immediate consequence of this algebraic
functional equation is that the Selmer group attached to a Galois representation and
the Selmer group attached to the Tate twist of the dual representation have the
same generalized Iwasawa μ-invariants. In the case of a cyclotomic Zp-extension,
this study on the μ-invariants has been undertaken in [Gr1, Mat]. (Actually, in
[Gr1], Greenberg also established the full “algebraic” functional equation of the Selmer
groups, which we will not treat in this article. Readers interested in this subject may
refer to [BZ, Hs, JP, LLTT, Z1, Z2].) For a noncommutative p-adic Lie extension, this
equality has been verified for Selmer groups of an abelian variety without complex
multiplication (see [Bh]). In a previous unpublished note [Lim], the author has also
verified the equality of the μ-invariants. In this paper, we will show an even stronger
relation, namely, the π-primary submodules of the dual Selmer groups in question
have the same elementary representations. In particular, our result will imply the
equality of the generalized Iwasawa μ-invariants. We like to emphasize that although
this latter result is motivated by the main conjecture of Iwasawa and the functional
equation of the conjectural p-adic L-functions, we do not assume these conjectures in
all our argument. We also mention that our result answers the π-primary part of the
question of Greenberg on whether the Pontryagin dual of the Selmer groups of two
Galois representations are pseudo-isomorphic (up to a twist of the Iwasawa algebra).

The second situation is concerned with comparing the Selmer groups of two con-
gruent Galois representations, or in general, a family of Galois representations with
suitable congruence relations. Such studies were carried out over the cyclotomic
Zp-extension in [EPW, Gr2, GV, Ha, We] and over noncommutative p-adic Lie exten-
sions in [Ch, SS]. One of the motivations behind these studies lies in the philosophy
that the “Iwasawa main conjecture” should be preserved by congruences. We should
mention that in the cyclotomic case, this philosophy is rather well understood (see
[EPW, GV, Oc]), although the general noncommutative situation still seems much
of a mystery (for instance, see [B, CS]). An important observation made in most of
the above cited works is that if the Iwasawa μ-invariant of one of the Selmer groups
vanishes, so does the other. It is then natural to consider the situation when the said
Iwasawa μ-invariants are nonzero and ask if one can relate the Iwasawa μ-invariants.
To the best of the author’s knowledge, such studies have only been considered in
[B, BS]. As observed in these works and as we will see in this paper, to be able to
even compare the Iwasawa μ-invariants meaningfully, we require the congruence of the
Galois representations to be high enough. In this paper, we will show the stronger
assertion, namely, that the π-primary submodules of the Selmer groups of congruent
Galois representations have the same elementary representations.

We now describe briefly the idea behind the comparison of the π-primary submod-
ules of the dual Selmer groups of two Galois representations defined over some number
field F . Let A and B be quotient modules of the two Galois representations. Here the
quotient module is obtained from the Galois representation by taking the quotient
of the representation by a Galois-invariant lattice. Then one can attach dual Selmer
groups to these quotient modules (see Section 3) which we denote to be X(A/F∞)
and X(B/F∞), where F∞ is an admissible p-adic Lie extension whose Galois group
is a uniform pro-p group of dimension r. It follows from the theory developed in
Subsection 2.4 that to compare π-primary submodules of the dual Selmer groups, we
need to show the equality

μO�G�

(
X(A/F∞)/πn

)
= μO�G�

(
X(B/F∞)/πn

)
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for enough n (see Propositions 2.4.6 and 2.4.7 for details). To prove the above equality,
we proceed by establishing the following estimate∣∣∣∣(μO�G�

(
X(A/F∞)/πn

)
− μO�G�

(
X(B/F∞)/πn

))
prm

∣∣∣∣ = O(p(r−1)m)

for each fixed n. If we denote Fm to be the intermediate extension of F in F∞

corresponding to fixed field of the (m + 1)-term of the lower p-series of Gal(F∞/F ),
we then have the following inequality∣∣∣∣(μO�G�

(
X(A/F∞)/πn

)
− μO�G�

(
X(B/F∞)/πn

))
prm

∣∣∣∣ ≤∣∣∣μO�G�

(
X(A/F∞)/πn

)
prm − ordq

(
S(A/F∞)[πn]Gm

)∣∣∣
+
∣∣∣μO�G�

(
X(B/F∞)/πn

)
prm − ordq

(
S(B/F∞)[πn]Gm

)∣∣∣
+
∣∣∣ordq(S(A[πn]/Fm)

)
− ordq

(
S(A/F∞)[πn]Gm

)∣∣∣
+
∣∣∣ordq(S(B[πn]/Fm)

)
− ordq

(
S(B/F∞)[πn]Gm

)∣∣∣
+
∣∣∣ordq(S(A[πn]/Fm)

)
− ordq

(
S(B[πn]/Fm)

)∣∣∣.
Therefore, we are reduced to showing that the five quantities on the right are

O(p(r−1)m) (for a fixed n). The estimates for the first and second quantities are
where we require the asymptotic formulas for π-primary modules. The estimates for
the third and fourth quantities follow from a descent argument. The estimate of the
final quantity is where we make use of the facts that A and B are either Tate dual to
each other or congruent to each other for a high enough power. In the case that A and
B are Tate dual to each other, our argument follows the approach of Greenberg in
[Gr1]. We like to highlight that in the situation of a cyclotomic Zp-extension, the error
quantities have bounded order in the intermediate sub-extensions of the cyclotomic
Zp-extension. However, since we may have infinite decomposition of primes over a
p-adic Lie extension of dimension r > 1, the error quantities may not be bounded,
and therefore, we will need a slightly more careful argument.

We now give a brief description of the layout of the paper. In Section 2, we
recall certain algebraic notion which will be used subsequently in the paper. It is
also here where we develop a method to compare the π-primary submodules of two
O�G�-modules. In the final subsection, we will prove an asymptotic formula for π-
primary modules over an Iwasawa algebra of a (possibly noncommutative) uniform
pro-p group. As seen in the previous paragraph, this asymptotic formula is crucial in
establishing our main results.

In Section 3, we introduce the Selmer groups which are the main object of study
in this paper. These Selmer groups are defined for a set of data which arises from
an ordinary Galois representation. Actually, to be precise, the Selmer group that
we consider is called the strict Selmer group in Greenberg’s terminology [Gr1]. We
will also introduce another variant of the Selmer group (called the Greenberg Selmer
group) and an appropriate Selmer complex closely related to the strict Selmer group
we are working with. In Section 4, we will prove our main theorems for the strict
Selmer groups. But it will follow from the discussion of Section 3 that all our main
results also hold for the Greenberg Selmer group and the Selmer complex. In Section
5, we will apply our main results to study the variation of the π-primary submodules
of the dual Selmer groups of the specializations of a big Galois representation. When
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the p-adic Lie extension is of dimension 2, we will also apply our main results to study
the variation of the MH(G)-property of the dual Selmer groups.

Acknowledgments. A significant portion of this work was written up when the
author was a Postdoctoral fellow at the GANITA Lab at the University of Toronto. He
would like to acknowledge the hospitality and conducive working conditions provided
by the GANITA Lab and the University of Toronto while this work was in progress.
The author would also like to thank Otmar Venjakob for answering his question on the
asymptotic formulas. The author is also supported by the National Natural Science
Foundation of China under the Research Fund for International Young Scientists
(Grant No: 11550110172).

2. Algebraic preliminaries. In this section, we recall some algebraic prelimi-
naries that will be required in the later part of the paper. Namely, we gather various
notation and definitions which will be required for the discussion of the paper. In
Subsection 2.4, we develop various criterions which allow us to compare the structure
of the π-primary submodules of two modules. In the final subsection of this section,
we will prove a asymptotic formula over an Iwasawa algebra of a uniform pro-p group
which is a generalization of a weak analog to the classical Iwasawa asymptotic formula
over an Iwasawa algebra of Γ ∼= Zp [Iw].

2.1. Compact p-adic Lie group. Fix a prime p. In this subsection, we recall
some facts about compact p-adic Lie groups. The standard references for the material
presented here are [DS+, Laz].

For a finitely generated pro-p group G, we write Gpi

= 〈gp
i

| g ∈ G〉, that is, the
group generated by the pith-powers of elements in G. The pro-p group G is said to
be powerful if G/Gp is abelian for odd p, or if G/G4 is abelian for p = 2. We define
the lower p-series by P1(G) = G, and

Pi+1(G) = Pi(G)p[Pi(G), G], for i ≥ 1.

It follows from [DS+, Thm. 3.6] that if G is a powerful pro-p group, then Gpi

=
Pi+1(G) and the p-power map

Pi(G)/Pi+1(G)
·p
−→ Pi+1(G)/Pi+2(G)

is surjective for each i ≥ 1. If the p-power maps are isomorphisms for all i ≥ 1, we
say that G is uniformly powerful (abrev. uniform). Note that in this case, we have
an equality |G : P2(G)| = |Pi(G) : Pi+1(G)| for every i ≥ 1. In fact, it is not difficult
to see that |G : Pi+1(G)| = pir, where r = dimG.

We now recall the following characterization of compact p-adic Lie groups due to
Lazard [Laz] (see also [DS+, Cor. 8.34]): a topological groupG is a compact p-adic Lie
group if and only if G contains a open normal uniform pro-p subgroup. Furthermore,
if G is a compact p-adic Lie group without p-torsion, it follows from [Ser, Corollaire
1] (see also [Laz, Chap. V Sect. 2.2)]) that G has finite p-cohomological dimension.

2.2. Torsion modules and pseudo-null modules. As before, p will denote a
fixed prime. Let O be the ring of integers of a finite extension of Qp. For a compact
p-adic Lie group G, the completed group algebra of G over O is given by

O�G� = lim
←−
U

O[G/U ],



COMPARING π-PRIMARY SUBMODULES OF DUAL SELMER GROUPS 1157

where U runs over the open normal subgroups of G and the inverse limit is taken with
respect to the canonical projection maps.

When G is pro-p and has no p-torsion, it is well known that O�G� is an Auslander
regular ring (cf. [V1, Theorem 3.26]; for the definition of Auslander regular rings, see
[V1, Definition 3.3]). Furthermore, the ring O�G� has no zero divisors (cf. [Neu]), and
therefore, admits a skew field Q(G) which is flat over O�G� (see [GW, Chapters 6 and
10] or [Lam, Chapter 4, §9 and §10]). If M is a finitely generated O�G�-module, we
define the O�G�-rank of M to be

rankO�G� M = dimQ(G) Q(G)⊗O�G� M.

We will say that an O�G�-module M is torsion if rankO�G� M = 0. As we will also
need to work with various equivalent formulations of a torsion O�G�-module, we state
the following.

Lemma 2.2.1. Let Λ be a Auslander regular ring with no zero divisors. Let M
be a finitely generated Λ-module. Then the following are equivalent.

(a) The canonical map φ : M −→ HomΛ(HomΛ(M,Λ),Λ) is zero.

(b) Q(Λ)⊗Λ M = 0, where Q(Λ) is the skew field of Λ.

(c) HomΛ(M,Λ) = 0.

Proof. The equivalence of (a) and (c) follows from [V1, Remark 3.7]. Suppose that
Q(Λ)⊗ΛM = 0. Let f ∈ HomΛ(M,Λ) and x ∈ M . Then since Q(Λ)⊗ΛM = 0, there
exists λ ∈ Λ \ {0} such that λx = 0. This in turn implies that λf(x) = f(λx) = 0.
Since Λ has no zero divisor, we have f(x) = 0. This shows that HomΛ(M,Λ) = 0
and the implication (b)⇒(c). Conversely, suppose that HomΛ(M,Λ) = 0. Write
M++ = HomΛ(HomΛ(M,Λ),Λ). By [V1, Proposition 2.5] and the Auslander condi-
tion, the canonical map φ : M −→ M++ has kernel and cokernel which are Λ-torsion.
Therefore, φ induces an isomorphism

Q(Λ)⊗Λ M
∼
−→ Q(Λ)⊗Λ M++.

Now if φ = 0, then it will follow that Q(Λ)⊗Λ M = 0. This establishes (a)⇒(b).

Therefore, if G is pro-p and has no p-torsion, it follows from the above lemma that
a finitely generated O�G�-module M is torsion if and only if HomO�G�(M,O�G�) = 0.
Now if M is a finitely generated torsion O�G�-module, we say that M is pseudo-

null if Ext1O�G�(M,O�G�) = 0. For an equivalent definition, we refer readers to
[V1, Definitions 3.1 and 3.3; Proposition 3.5(ii)]. For the purpose of this article, the
definition we adopt will suffice. Finally, we mention that every subquotient of a torsion
O�G�-module (resp., pseudo-null O�G�-module) is also torsion (resp. pseudo-null).

2.3. μ-invariant. Let O be the ring of integers of a fixed finite extension K of
Qp as defined in the preceding subsection. Fix a local parameter π for O and denote
the residue field of O by k. The completed group algebra of G over k is given by

k�G� = lim
←−
U

k[G/U ],

where U runs over the open normal subgroups of G and the inverse limit is taken with
respect to the canonical projection maps.

For a compact p-adic Lie group G without p-torsion, it follows from [V1, Theorem
3.30(ii)] that k�G� is an Auslander regular ring. Furthermore, if G is pro-p without p-
torsion, then the ring k�G� has no zero divisors (cf. [AB, Theorem C]). Therefore, one
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can define the notion of k�G�-rank as above whenG is pro-p without p-torsion. We will
say that that the module N is a torsion k�G�-module if rankk�G� N = 0. By Lemma
2.2.1, we have that N is a torsion k�G�-module if and only if Homk�G�(N, k�G�) = 0.

For a given finitely generated O�G�-module M , we denote M(π) to be the O�G�-
submodule of M which consists of elements of M that are annihilated by some power
of π. Since the ring O�G� is Noetherian, the module M(π) is finitely generated over
O�G�. Therefore, one can find an integer r ≥ 0 such that πr annihilates M(π).
Following [Ho1, Formula (33)], we define

μO�G�(M) =
∑
i≥0

rankk�G�

(
πiM(π)/πi+1

)
.

(For another alternative, but equivalent, definition, see [V1, Definition 3.32].) By the
above discussion and our definition of k�G�-rank, the sum on the right is a finite one.
It is clear from the definition that μO�G�(M) = μO�G�(M(π)). Also, it is not difficult
to see that this definition coincides with the classical notion of the μ-invariant for
Γ-modules when G = Γ ∼= Zp.

We now record certain properties of the μO�G�-invariant which will be required
in the subsequent of the paper.

Lemma 2.3.1. Let G be a compact pro-p p-adic Lie group with no p-torsion and

let M be a finitely generated O�G�-module. Then we have the following statements.

(a) For every finitely generated O�G�-module M , one has

μG(M) =
∑
i≥0

(−1)iordq
(
Hi(G,M(π))

)

where q is the cardinality of k.
(b) Suppose that G has a closed normal subgroup H such that G/H ∼= Zp. If

M is a O�G�-module which is finitely generated over O�H�, then one has

μO�G�(M) = 0.
(c) Suppose that we are given a short exact sequence of finitely generated O�G�

modules

0 −→ M ′ −→ M −→ M ′′ −→ 0.

(1) One has μO�G�(M) ≤ μO�G�(M
′) + μO�G�(M

′′). Moreover, if M , and

hence also M ′ and M ′′, is O�G�-torsion, the inequality is an equality.

(2) If μO�G�(M
′′) = 0, then one has μO�G�(M

′) = μO�G�(M).
(d) Suppose that G has a closed normal subgroup H such that G/H ∼= Zp and sup-

pose that we are given an exact sequence of finitely generated O�G�-modules

A −→ B −→ C −→ D

such that A is finitely generated over O�H� and μG(D) = 0. Then one has

the equality μG(B) = μG(C).
(e) μO�G�(M) = 0 if and only if M(π) is pseudo-null.

Proof. Statements (a), (b) and (c)(1) are proven in [Ho1, Corollary 1.7], [Ho1,
Lemma 2.7] and [Ho1, Proposition 1.8] respectively. Statement (e) is shown in [V1,
Remark 3.33]. The remaining statements can be deduced from the previous statements
without too much difficulties.
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2.4. π-primary modules. Throughout this subsection, G will always denote a
pro-p p-adic Lie group without p-torsion. Therefore, both rings O�G� and k�G� are
Auslander regular and have no zero divisors. For a finitely generated O�G�-module
M , it then follows from [Ho2, Proposition 1.11] (see also [V1, Theorem 3.40]) that
there is a O�G�-homomorphism

ϕ : M(π) −→

s⊕
i=1

O�G�/παi ,

whose kernel and cokernel are pseudo-null O�G�-modules, and where the integers s
and αi are uniquely determined. We will call

⊕s
i=1 O�G�/παi the elementary repre-

sentation of M(π). In fact, in the process of establishing the above, one also has that

μO�G�(M) =

s∑
i=1

αi (see loc. cit.). We will set

θO�G�(M) := max
1≤i≤s

{αi}.

The following fundamental lemma gives a relationship between the μO�G�-
invariant and O�G�-rank of a finitely generated O�G�-module.

Lemma 2.4.1. Let M be a finitely generated O�G�-module. Suppose that there is

a O�G�-homomorphism

ϕ : M(π) −→

s⊕
i=1

O�G�/παi ,

whose kernel and cokernel are pseudo-null O�G�-modules. Then we have

μO�G�(M/πn) = n rankO�G�(M) +
s∑

i=1

min{n, αi} for n ≥ 1.

In particular, we have μO�G�(M/πn) ≤ n rankO�G�(M)+μO�G�(M) which is an equal-

ity if and only if n ≥ θO�G�(M).

Proof. Write Mf = M/M(π). Consider the following commutative diagram

0 �� M(π)

πn

��

�� M

πn

��

�� Mf

πn

��

�� 0

0 �� M(π) �� M �� Mf
�� 0

with exact rows, and the vertical maps are given by multiplication by πn. Since Mf

has no π-torsion, the rightmost vertical map is injective, and therefore, we have an
exact sequence

0 −→ M(π)/πn −→ M/πn −→ Mf/π
n −→ 0

of torsion O�G�-modules. By Lemma 2.3.1(c)(1), we have

μO�G�(M/πn) = μO�G�(M(π)/πn) + μO�G�(Mf/π
n).
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To prove the lemma, it therefore suffices to show the following two equalities.
(1) μO�G�(M(π)/πn) =

∑s
i=1 min{n, αi}.

(2) μO�G�(Mf/π
n) = n rankO�G�(Mf ) = n rankO�G�(M).

To see that (1) holds, note that since any subquotient of a pseudo-null module is
also pseudo-null, it follows that ϕ induces an O�G�-homomorphism

M(π)/πn −→

s⊕
i=1

O�G�/πmin{n,αi},

whose kernel and cokernel are pseudo-null O�G�-modules. The equality in (1) will
now follow by combining this observation with statements (c)(1) and (e) of Lemma
2.3.1.

Since M(π) is clearly a torsion O�G�-module, we have rankO�G�(Mf ) =
rankO�G�(M). Therefore, it remains to verify the first equality in (2). In other
words, we are reduced to showing that if M is a finitely generated O�G�-module with
M(π) = 0, then μO�G�(M/πn) = n rankO�G�(M). We shall proceed by induction.
Suppose that n = 1. Then we have

rankO�G�(M) = rankk�G�(M/π) =
∑
i≥0

(−1)i dimk

(
Hi(G,M/π)

)
= μO�G�(M/π),

where the first equality follows from [Ho1, Corollary 1.10] and the assumption that
M [π] = 0, the second equality follows from [Ho1, Proposition 1.6], and the third
equality follows from Lemma 2.3.1(a). Therefore, we have established the n = 1 case.

Now suppose that n > 1, and suppose that μO�G�(M/πn−1) = (n −
1) rankO�G�(M). Then consider the following commutative diagram

M

πn−1

��

M

πn

��

0 �� M
π

�� M �� M/π �� 0

with exact bottom row (note that injectivity follows from the assumption that M [π] =
0). By the snake lemma, we have an exact seqeuence

0 −→ M/πn−1 −→ M/πn −→ M/π −→ 0

of torsion O�G�-modules which in turn yields

μO�G�(M/πn) = μO�G�(M/π) + μO�G�(M/πn−1)
= rankO�G�(M) + (n− 1) rankO�G�(M) = n rankO�G�(M).

The proof of the lemma is completed.

Remark 2.4.2. When G ∼= Zr
p, one can prove the above lemma by appealing

directly to the structure theory (cf. [NSW, Proposition 5.1.7]).

We record the following lemma which enables one to relate M(π) and N(π) in
certain situation.

Lemma 2.4.3. Suppose that H is a closed normal subgroup of G with G/H ∼= Zp.

Let ϕ : M −→ N be a homomorphism of finitely generated O�G�-modules, whose
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kernel and cokernel are finitely generated over O�H�. Then M(π) and N(π) have the

same elementary representations.

Proof. The statement will follow if it holds in the two special cases of exact
sequences

0 −→ P −→ M −→ N −→ 0,
0 −→ M −→ N −→ P −→ 0,

where P is a finitely generated O�H�-module. We will prove the first case, the second
case has a similar argument. Choose a sufficiently large n such that πn annihilates
M(π) and N(π). Consider the following commutative diagram

0 �� P

πn

��

�� M

πn

��

�� N

πn

��

�� 0

0 �� P �� M �� N �� 0

with exact rows, and the vertical maps are given by multiplication by πn. Applying
the Snake Lemma, we obtain

0 −→ P [πn] −→ M(π) −→ N(π) −→ P/πn

By Lemma 2.3.1(b) and (e), we have that P [πn] and P/πn are pseudo-null O�G�-
modules. Let

f : N(π) −→

s⊕
i=1

O�G�/παi

be a homomorphism of O�G�-modules, whose kernel and cokernel are pseudo-null
O�G�-modules. Then

f ◦ ϕ : M(π) −→
s⊕

i=1

O�G�/παi

is a homomorphism of O�G�-modules, whose kernel and cokernel are pseudo-null.
Therefore, M(π) and N(π) have the same elementary representations.

Proposition 2.4.4. Let M and N be two finitely generated torsion O�G�-
modules such that μO�G�(M/πθO�G�(M)) = μO�G�(N/πθO�G�(M)). Then we have

μO�G�(M) ≤ μO�G�(N).

Proof. By Lemma 2.4.1, we have

μO�G�(M) = μO�G�(M/πθO�G�(M)) = μO�G�(N/πθO�G�(M)) ≤ μO�G�(N).

Now for a given finitely generated torsion O�G�-module M , the elementary rep-
resentation of M(π) can be rewritten as

θ⊕
i=1

(O�G�/πi)si
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for some nonnegative integers si. Here θ = θO�G�(M). Then for every 1 ≤ n ≤ θ, we
have

μO�G�(M/πn) = s1 + 2s2 + · · ·+ (n− 1)sn−1 + n(sn + · · · sθ).

Putting these equations into a matrix form, we have

⎛
⎜⎜⎜⎜⎜⎝

μO�G�(M/π)
μO�G�(M/π2)
μO�G�(M/π3)

...
μO�G�(M/πθ)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

. . .
...

1 2 3 · · · θ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

s1
s2
s3
...
sθ

⎞
⎟⎟⎟⎟⎟⎠ .

It is a simple linear algebra exercise to verify that the square matrix in the above
equation is invertible. Therefore, the integers si, and hence the elementary repre-
sentation of M(π), are determined by the values of μO�G�(M/πi). We record this
observation in the next proposition.

Proposition 2.4.5. Let M and N be two finitely generated torsion O�G�-
modules. Then the following are equivalent.

(a) θO�G�(M) = θO�G�(N), and μO�G�(M/πi) = μO�G�(N/πi) for every 1 ≤ i ≤
θO�G�(M).

(b) M(π) and N(π) have the same elementary representations.

Proof. The discussion before the proposition establishes the implication (a) ⇒ (b).
The reverse implication is obvious.

The preceding proposition may be difficult to apply due to the condition
θO�G�(M) = θO�G�(N) which is perhaps not easy to check. However, one can build
on the proposition to obtain the following which is perhaps easier for application.

Proposition 2.4.6. Let M and N be two finitely generated O�G�-modules such

that M is a torsion O�G�-module and such that μO�G�(M/πi) = μO�G�(N/πi) for

every 1 ≤ i ≤ θO�G�(M) + 1.
Then N is torsion over O�G� and we have the equality θO�G�(M) = θO�G�(N).

In particular, M(π) and N(π) have the same elementary representations.

Proof. We first prove the proposition for the case when θO�G�(M) = 0. Then
by the hypothesis of the proposition, we have μO�G�(N/π) = μO�G�(M/π) = 0. By
Lemma 2.4.1, this in turns implies that rankO�G�(N) = 0 and μO�G�(N) = 0. There-
fore, we have that N is torsion over O�G� and θO�G�(N) = 0. Hence we have that
M(π) and N(π) are both pseudo-null by Lemma 2.3.1(e), and therefore, have the
same elementary representations.

Now suppose that θO�G�(M) ≥ 1. Suppose that the elementary factor of N(π) is
given by

t⊕
i=1

O�G�/πβi .

Write a = rankO�G�(N). By Lemma 2.4.1, we then have

μO�G�(M) = μO�G�(M/πn) = μO�G�(N/πn) = na+

t∑
i=1

min{n, βi}
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for n = θO�G�(M), θO�G�(M) + 1. This in turn implies that

θO�G�(M)a+
t∑

i=1

min{θO�G�(M), βi} =
(
θO�G�(M)+1

)
a+

t∑
i=1

min{θO�G�(M)+1, βi}.

Since one always has θO�G�(M)a ≤
(
θO�G�(M) + 1

)
a and min{θO�G�(M), βi} ≤

min{θO�G�(M) + 1, βi}, in order for the above equality to hold, we must have a = 0
and min{θO�G�(M), βi} = min{θO�G�(M) + 1, βi} for 1 ≤ i ≤ t. The formal equality
then shows that N is a torsion O�G�-module, and the latter equalities show that
βi ≤ θO�G�(M) for all i, or in other words, θO�G�(N) ≤ θO�G�(M). Therefore, we
may repeat the above argument (noting that we have shown that N is O�G�-torsion)
replacing θO�G�(M) by θO�G�(N) and interchanging the roles of M and N to obtain
the reverse inequality θO�G�(M) ≤ θO�G�(N). The remaining assertion will now follow
from an application of Proposition 2.4.5.

In particular, it follows from Proposition 2.4.6 that if M and N are two finitely
generated torsion O�G�-modules such that μO�G�(M/πi) = μO�G�(N/πi) for every

i ≥ 1, then M(π) and N(π) have the same elementary representations. In fact, we
can even establish the following stronger statement.

Proposition 2.4.7. Let M and N be two finitely generated O�G�-modules such

that μO�G�(M/πi) = μO�G�(N/πi) for every i ≥ 1.

Then we have that rankO�G�(M) = rankO�G�(N) and that M(π) and N(π) have

the same elementary representations.

Proof. For n ≥ max{θO�G�(M), θO�G�(N)}, it follows from the assumption
μO�G�(M/πn) = μO�G�(N/πn) and Lemma 2.4.1 that

n rankO�G�(M) + μO�G�(M) = n rankO�G�(N) + μO�G�(N).

In other words, we have

rankO�G�(M) +
1

n
μO�G�(M) = rankO�G�(N) +

1

n
μO�G�(N).

Letting n → ∞, we obtain

rankO�G�(M) = rankO�G�(N).

This proves the first assertion.

As seen in the proof of Lemma 2.4.1, we have

μO�G�(M/πi) = μO�G�(M(π)/πi) + i rankO�G�(M).

One has a similar equality for N . It then follows from these equalities and what we
proved in the preceding paragraph that

μO�G�(M(π)/πi) = μO�G�(N(π)/πi)

for all i ≥ 1. The second assertion will now follow from an application of Proposition
2.4.6 on M(π) and N(π).
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2.5. An asymptotic formula. In this subsection, G will always denote a pro-p
p-adic Lie group without p-torsion. We denote by r the dimension of G. We fix an
open normal uniform subgroup G0 of G (such a group exists by virtue of Lazard’s
theorem [Laz]). In the event that G is already a uniform group, we take G0 = G. We
now write Gm for Pm+1(G0) which is defined as in Subsection 2.1. As before, O is the
ring of integers of a finite extension K of Qp, π is a local parameter of O and k is the
residue field of O. Denote q to the order of k. Every finite O-module can be viewed
as a O/πn-module for some n. Since O/πn has order of a power of q, so is every finite
O-module. For a finite O-module, we will denote ordq(M) to be the exponent of q in
the order of M , i.e., |M | = qordq(M).

We take this opportunity to introduce a notion which will used in this paper.
A sequence of real numbers (am)m≥1 is said to satisfy O(Qm) for some nonnegative
number Q if |am| ≤ CQm for some constant C (independent of m) for all sufficiently
large m. We will write am = O(Qm). If (bm)m≥1 is another sequence of real numbers,
we will write am = bm +O(Qm) to mean am − bm = O(Qm).

We can now state the main theorem of this subsection.

Theorem 2.5.1. Let G be pro-p p-adic Lie group without p-torsion. Write

r = dimG. Let M be a finitely generated O�G�-module such that M = M(π). Then

we have

ordq
(
MGm

)
= [G : G0]μO�G�(M)prm +O(p(r−1)m)

and

ordq
(
Hi(Gm,M)

)
= O(p(r−1)m)

for every i ≥ 1.

Remark 2.5.2. The first asymptotic formula in the above result is a weak analog
of the asymptotic formula of Iwasawa [Iw, Theorem 4] (see also [NSW, Proposition
5.3.17]). When G = Zr

p, this can also be viewed as a weak analog of the asymptotic
formula of Cucuo and Monsky [CM, Theorem 4.13] (see also [Mon, Theorem 3.12]).

It seems possible that the above formula might be known among the experts.
Despite so, due to a lack of proper reference, we will include a proof here. (In fact,
as we shall see, the tools required for the proof are available from [Har1, Har2, Ho1,
Ho2, V1].) For our purpose in this paper, we will only require the first asymptotic
formula. Despite so, we have included the proof of the asymptotic formulas for the
higher cohomology groups for completeness.

The proof of Theorem 2.5.1 will take up the remainder of this subsection. As a
start, we note that [G : G0]μO�G�(M) = μO�G0�(M). Since a O�G�-module can be
viewed as a O�G0� by restriction of scalars, it suffices to prove the theorem under the
assumption that G is uniform. In view of this, we therefore can and do assume that

G is uniform for the subsequent of this subsection. For the preparation of the proof,
we require a few lemmas.

Lemma 2.5.3. Let M be a finitely generated torsion k�G�-module. Then

ordq
(
MGm

)
= O(p(r−1)m).

Proof. Since M is finitely generated torsion over k�G�, there is a surjective map⊕
j

k�G�/k�G�fj −→ M
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for a finite set of non-zero and non-unital elements fi ∈ k�G�. Therefore, one is
reduced to the case M = k�G�/k�G�f for some non-zero and non-unital f . The
remainder of the proof then proceeds as in the proofs of [Har1, Lemma 1.10.1] and
[Har2, Theorem 1.10], where one passes to the graded ring of k�G� and appeals to the
theory of Hilbert polynomials.

We will also require an estimate for ordq
(
Hi(Gm,M)

)
. Before showing this, we

need the following lemma.

Lemma 2.5.4. Let f be a nonzero nonunital element of k�G�, and set M =
k�G�/k�G�f . Then for every m, we have

ordq
(
H1(Gm,M)) = ordq

(
MGm

)
and Hi(Gm,M) = 0 for i ≥ 2.

Proof. Since k�G� has no zero divisors, we have an exact sequence

0 −→ k�G�
·f
−→ k�G� −→ M −→ 0.

Since Hi(Gm, k�G�) = 0 for i ≥ 1, it follows from considering the Gm-homology that
we obtain an exact sequence

0 −→ H1(Gm,M) −→ k[G/Gm] −→ k[G/Gm] −→ MGm
−→ 0,

and the vanishing of Hi(Gm,M) for i ≥ 2. The first conclusion of the lemma is now
immediate from the four term exact sequence.

We can now give an estimate for ordq
(
Hi(Gm,M)

)
.

Lemma 2.5.5. Let M be a finitely generated torsion k�G�-module. Then for every

i ≥ 1, we have

ordq
(
Hi(Gm,M)

)
= O(p(r−1)m),

where r denotes the dimension of G.

Proof. As above, we have a exact sequence

0 −→ N −→
⊕
j

k�G�/k�G�fj −→ M −→ 0

of torsion k�G�-modules. Taking the Gm-homology, we have an exact sequence

Hi

(
Gm,

⊕
j

k�G�/k�G�fj

)
−→ Hi(Gm,M) −→ Hi−1(Gm, N).

The required estimates will follow from the previous two lemmas.

We now establish our estimates for the case when M = M(π) is a finitely gener-
ated pseudo-null O�G�-module. Note that the said module has trivial μO�G�-invariant
by Lemma 2.3.1(e).

Lemma 2.5.6. Let G be a uniform pro-p group of dimension r. Suppose that

M = M(π) is a finitely generated pseudo-null O�G�-module. Then for each i ≥ 0, we
have

ordq
(
Hi(Gm,M)

)
= O(p(r−1)m).
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Proof. Since M is annihilated by a power of π, it is a finite successive extension
of subquotients πiM/πi+1. Therefore, it suffices to bound each of these subquotients.
Since subquotients of a pseudo-null O�G�-module are also pseudo-null, we are reduced
to showing that if M is a finitely generated pseudo-null O�G�-module with πM = 0,
then ordq

(
MGm

)
= O(p(r−1)m). Since πM = 0, we may also view M as a k�G�-

module. By a standard spectral sequence argument (for instance, see [V1, Section
3.4]), we have

Extik�G�(M,k�G�) ∼= Exti+1
O�G�(M,O�G�)

for any integer i. In particular, we have

Homk�G�(M,k�G�) ∼= Ext1O�G�(M,O�G�) = 0,

where the last equality follows from the fact that M is pseudo-null over O�G�. Hence
M is a torsion k�G�-module. The first estimate then follows from Lemma 2.5.3. The
estimates for the higher cohomology groups can be proven similarly making use of
Lemma 2.5.5.

We record one more lemma.

Lemma 2.5.7. Suppose that M and N are two finitely generated O�G�-modules

with M = M(π) and N = N(π). Assume that there is a O�G�-homomorphism

ϕ : M −→ N which has pseudo-null kernel and cokernel. Then for i ≥ 0, we have

ordq
(
Hi(Gm,M)

)
= ordq

(
Hi(Gm, N)

)
+O(p(r−1)m)

Proof. The statement will follow if it holds in the two special cases of exact
sequences

0 −→ M −→ N −→ P −→ 0,
0 −→ P −→ M −→ N −→ 0,

where P is a pseudo-null O�G�-module. Note that P = P (π). Taking Gm-homology
of the first exact sequence, we have

H1(Gm, P ) −→ MGm
−→ NGm

−→ PGm
−→ 0.

By Lemmas 2.5.3 and 2.5.5, we have

ordq
(
H1(Gm, P )

)
= ordq

(
PGm

)
= O(q(r−1)m).

The cases for the higher cohomology groups and for the second exact sequence can
be proven similarly.

We can now prove our theorem.

Proof of Theorem 2.5.1. Let

ϕ : M −→
s⊕

i=1

O�G�/παi

be a O�G�-homomorphism whose kernel and cokernel are pseudo-null (recall that we
are assuming M = M(π)). By Lemma 2.5.7, we have

ordq
(
Hi(Gm,M)

)
=

s∑
i=1

ordq

(
Hi

(
Gm,O�G�/παi

))
+O(p(r−1)m).
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Therefore, we are reduced to showing that

ordq

(
Hi

(
Gm,O�G�/πα

))
=

{
αprm if i = 0,

0 if i ≥ 1.

Since O�G� has no zero divisors, we have an exact sequence

0 −→ O�G�
·πα

−→ O�G� −→ O�G�/πα −→ 0.

Since Hi(Gm,O�G�) = 0 for i ≥ 1, it follows from considering the Gm-homology that

Hi(Gm,O�G�/πα) = 0

for i ≥ 1. It remains to show the first equality, and this is immediate from the facts
that O[G/Gm]/πα ∼= (O/πα)p

rm

(as abelian groups) and that |O/πα| = qα.

3. Arithmetic preliminaries. In this section, we introduce the Selmer groups
and Selmer complexes. Here, we fix the notation that we shall use throughout this
section. To start, let p be a prime. We let F be a number field. If p = 2, we assume
further that F has no real primes. Denote O to be the ring of integers of some finite
extension K of Qp, and fix a local parameter π for O. Suppose that we are given the
following datum

(
A, {Av}v|p, {A

+
v }v|R

)
defined over F :

(a) A is a cofinitely generated cofree O-module of O-corank d with a continuous,
O-linear Gal(F̄ /F )-action which is unramified outside a finite set of primes
of F .

(b) For each prime v of F above p, Av is a Gal(F̄v/Fv)-submodule of A which is
cofree of O-corank dv.

(c) For each real prime v of F , we write A+
v = AGal(F̄v/Fv) which is assumed to

be cofree of O-corank d+v .
(d) The following equality

∑
v|p

(d− dv)[Fv : Qp] = dr2(F ) +
∑
v real

(d− d+v ) (3.0.1)

holds. Here r2(F ) denotes the number of complex primes of F .

We now consider the base change property of our datum. Let L be a finite
extension of F . We can then obtain another datum

(
A, {Aw}w|p, {A

+
w}w|R

)
over L as

follows: we consider A as a Gal(F̄ /L)-module, and for each prime w of L above p, we
set Aw = Av, where v is a prime of F below w, and view it as a Gal(F̄v/Lw)-module.
Then dw = dv. For each real prime w of L, one sets AGal(L̄w/Lw) = AGal(F̄v/Fv) and
writes d+w = d+v , where v is a real prime of F below w. In general, the dw’s and d+w ’s
need not satisfy equality (3.0.1). We now record the following lemma which gives some
sufficient conditions for equality (3.0.1) to hold for the datum

(
A, {Aw}w|p, {A

+
w}w|R

)
over L.

Lemma 3.0.1. Suppose that
(
A, {Av}v|p, {A

+
v }v|R

)
is a datum defined over F .

Suppose further that at least one of the following statements holds.

(i) All the archimedean primes of F are unramified in L.
(ii) [L : F ] is odd

(iii) F is totally imaginary.
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(iv) F is totally real, L is totally imaginary and∑
v real

d+v = d[F : Q]/2.

Then we have the equality∑
w|p

(d− dw)[Lw : Qp] = dr2(L) +
∑

w real

(d− d+w).

Proof. Note that if either of the assertions in (ii) or (iii) holds, then the assertion
in (i) holds. Therefore, to prove the lemma in these cases, it suffices to prove it under
the assumption of (i). We first perform the following calculation∑

w|p

(d− dw)[Lw : Qp] =
∑
v|p

∑
w|v

(d− dv)[Lw : Fv][Fv : Qp]

=
∑
v|p

(d− dv)[Fv : Qp]
∑
w|v

[Lw : Fv]

= [L : F ]
∑
v|p

(d− dv)[Fv : Qp]

= d[L : F ]r2(F ) + [L : F ]
∑
v real

(d− d+v ).

Now if (i) holds, then every prime of L above a real prime (resp., complex prime) of
F is a real prime (resp., complex prime). Therefore, one has [L : F ]r2(F ) = r2(L)
and

[L : F ]
∑
v real

(d− d+v ) =
∑

w real

(d− d+w).

The required conclusion then follows.
Now suppose that (iv) holds. Then r2(F ) = 0 and we have∑

w|p

(d− dw)[Lw : Qp] = [L : F ]
∑
v real

(d− d+v ) = [L : F ]
∑
v real

d− [L : F ]
∑
v real

d+v

= [L : F ][F : Q]d− [L : F ]d[F : Q]/2

= d[L : Q]/2 = dr2(L).

We now describe briefly the arithmetic situation, where we can obtain the above
set of data from. Let V be a d-dimensional K-vector space with a continuous
Gal(F̄ /F )-action which is unramified outside a finite set of primes. Suppose that
for each prime v of F above p, there is a dv-dimensional K-subspace Vv of V which is
invariant under the action of Gal(F̄v/Fv), and for each real prime v of F , V Gal(F̄v/Fv)

has dimension d+v . Choose a Gal(F̄ /F )-stable O-lattice T of V (Such a lattice exists
by compactness). We can obtain a data as above from V by setting A = V/T and
Av = Vv/T ∩ Vv. Note that A and Av depends on the choice of the lattice T . We
mention some concrete examples.

(1) Let B be an abelian variety of dimension g defined over a number field F .
For simplicity, we assume that F is totally imaginary and that the abelian variety B
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has semistable reduction over F . We define a set of data (A, {Av}) by first setting
A = B[p∞]. For each prime v of F above p, let Fv be the formal group attached to
the Neron model for B over the ring of integers OFv

of Fv, and we assume that Fv

is a formal group of height g for all v|p. For instance, this latter condition is satisfied
if B has good ordinary reduction at all v|p. We then set Av = Fv(m)[p∞], where m

is the maximal ideal of the rings of integers of F v. Note that Av
∼= (Qp/Zp)

g as an
abelian group by our height assumption. It is easy to see that (A, {Av}) satisfies the
condition in Section 3 by taking d = 2g and dv = g. It is worthwhile mentioning
that the (strict) Selmer groups attached to this set of data coincide with the classical
Selmer groups of the abelian variety, when the Selmer groups are considered over an
admissible p-adic Lie extension (see [CG]).

(2) More generally, a source of examples where we can obtain such a datum is
that of a nearly ordinary Galois representation in the sense of Weston [We]. This is
a finite-dimensional K-vector space equipped with a K-linear action of the absolute
Galois group Gal(F̄ /F ) such that for each prime v of F dividing p, there is sequence

0 = Vv,0 ⊆ Vv,1 ⊆ · · · ⊆ Vv,n = V

of nearly ordinary Gal(F̄v/Fv)-subspace of V , where Vv,i hasK-dimension i. Following
[We], a set of Selmer weights for V is a choice of integers cv (0 ≤ cv ≤ d) for each v
dividing p such that ∑

v|p

cv[Fv : Qp] = dr2(F ) +
∑
v real

(d− d+v ),

where r2(F ) denotes the number of complex primes of F . Set Vv = Vv,d−cv . (In other
words, our dv is d − cv.) For more concrete examples, we refer readers to [Gr1, §9]
and [We, Section 1.2].

3.1. Selmer groups. We now introduce the Selmer groups. Let S be a finite
set of primes of F which contains all the primes above p, the ramified primes of A
and all the infinite primes of F . Denote FS to be the maximal algebraic extension of
F unramified outside S and write GS(L) = Gal(FS/L) for every algebraic extension
L of F which is contained in FS . Let L be a finite extension of F contained in FS

such that the data
(
A, {Aw}w|p, {A

+
w}w|R

)
satisfies (3.0.1). For a prime w of L lying

over S, set

H1
str(Lw, A) =

{
ker

(
H1(Lw, A) −→ H1(Lw, A/Aw)

)
if w divides p,

ker
(
H1(Lw, A) −→ H1(Lur

w , A)
)

if w does not divide p,

where Lur
w is the maximal unramified extension of Lw. The (strict) Selmer group

attached to the data is then defined by

S(A/L) := Selstr(A/L) := ker
(
H1(GS(L), A) −→

⊕
w∈SL

H1
s (Lw, A)

)
,

where we writeH1
s (Lw, A) = H1(Lw, A)/H

1
str(Lw, A) and SL denotes the set of primes

of L above S. It is straightforward to verify that S(A/L) = lim
−→
n

S(A[πn]/L), where

S(A[πn]/L) is the Selmer group defined similarly as above by replacing A by A[πn]
and Av by Av[π

n]. Here the direct limit is taken over the maps S(A[πn]/L) −→
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S(A[πn+1]/L) which are induced by the natural injections A[πn] ↪→ A[πn+1] and
Aw[π

n] ↪→ Aw[π
n+1]. We will write X(A/L) for its Pontryagin dual.

We shall say that F∞ is an S-admissible p-adic Lie extension of F if (i)
Gal(F∞/F ) is compact p-adic Lie group, (ii) F∞ contains the cyclotomic Zp ex-
tension Fcyc of F and (iii) F∞ is unramified outside S. Write G = Gal(F∞/F ),
H = Gal(F∞/Fcyc) and Γ = Gal(Fcyc/F ). We define S(A/F∞) = lim

−→
L

S(A/L), where

the limit runs over all finite extensions L of F contained in F∞. We write X(A/F∞)
for the Pontryagin dual of S(A/F∞). By a similar argument to that in [CS, Corollary
2.3], one can show that X(A/F∞) is independent of the choice of S as long as S
contains all the primes above p, the ramified primes of A, the primes that ramify in
F∞/F and all infinite primes.

We introduce another variant of the Selmer groups which is usually called the
Greenberg Selmer group. Now set

H1
Gr(Fv, A) =

{
ker

(
H1(Fv, A) −→ H1(Fur

v , A/Av)
)

if v|p,

ker
(
H1(Fv, A) −→ H1(Fur

v , A)
)

if v � p.

The Greenberg Selmer group attached to these data is then defined by

SelGr(A/F ) = ker
(
H1(GS(F ), A) −→

⊕
v∈S

H1
g (Fv , A)

)
,

where we write H1
g (Fv , A) = H1(Fv, A)/H

1
Gr(Fv, A). For an S-admissible p-adic Lie

extension F∞, we define SelGr(A/F∞) = lim
−→
L

SelGr(A/L) and denote XGr(A/F∞)

to be the Pontryagin dual of SelGr(A/F∞). The following lemma compares the two
Selmer groups of Greenberg.

Lemma 3.1.1. We have an exact sequence

0 −→ S(A/F∞) −→ SelGr(A/F∞) −→ N −→ 0,

where N is a cofinitely generated O�H�-module.

Proof. Now consider the following commutative diagram

0 �� S(A/F∞)

��

�� H1(GS(F∞), A) ��
⊕

v∈S Jv(A/F∞)

α

��

0 �� SelGr(A/F∞) �� H1(GS(F∞), A) ��
⊕

v∈S JGr
v (A/F∞)

with exact rows, where JGr
v (A/F∞) = lim

−→
L

⊕
w|v

H1
g (Lw, A). It therefore remains to

show that kerα is cofinitely generated over O�H�. Clearly, Jv(A/F∞) = JGr
v (A/F∞)

for v � p. For each v|p, fix a prime w of F∞ above v. Write I∞,w for the inertia
subgroup of Gal(F∞,w/F∞,w) and Uw = Gal(F∞,w/F∞,w)/I∞,w. It then follows
from the Hochschild-Serre spectral sequence that we have

0 −→ H1(Uw, (A/Av)
I∞,w ) −→ H1(Hw, A/Av) −→ H1(I∞,w , A/Av)

Uw .
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Since Uw is topologically cyclic, H1(Uw, (A/Av)
I∞,w ) ∼=

(
(A/Av)

I∞,w
)
Uv

and so is
cofinitely generated over O. Since F∞ contains F cyc, the decomposition group of G
at v has at least dimension one for each v|p. Hence it follows that kerα is cofinitely
generated over O�H�, as required.

Lemma 3.1.2. One has

rankO�G�

(
X(A/F∞)

)
= rankO�G�

(
XGr(A/F∞)

)
,

and X(A/F∞)(π) and XGr(A/F∞)(π) have the same elementary representations.

Proof. By the preceding lemma, one has an exact sequence

0 −→ N ′ −→ XGr(A/F∞) −→ X(A/F∞) −→ 0

for some finitely generated O�H�-module N ′. The first equality is immediate, and
the second assertion follows from Lemma 2.4.3.

3.2. Selmer complexes. We now consider the Selmer complex associated to
the data

(
A, {Av}v|p, {A

+
v }v|R

)
. The notion of a Selmer complex was first conceived

and introduced in [Nek]. In our discussion, we consider a modified version of the
Selmer complex as given in [FK, 4.2.11]. Write T ∗ = Homcts(A, μp∞) and T ∗

v =
Homcts(A/Av, μp∞). For every finite extension L of F and w a prime of L above p,
write T ∗

w = T ∗
v , where v is the prime of F below w. For any profinite group G and

a topological abelian group M with a continuous G-action, we denote by C(G,M)
the complex of continuous cochains of G with coefficients in M . Let F∞ be an S-
admissible extension of F with Galois group G. We define a (O�G�)[GS (F )]-module
FG(T

∗) as follows: as an O-module, FG(T
∗) = O�G�⊗O T ∗, and the action of GS(F )

is given by the formula σ(x ⊗ t) = xσ̄−1 ⊗ σt, where σ̄ is the canonical image of σ in
G ⊆ O�G�. We define the (O�G�)[Gal(F̄v/Fv)]-module FG(T

∗
v ) in a similar fashion.

For every prime v of F , we write C
(
Fv,FG(T

∗)
)
= C

(
Gal(F̄v/Fv),FG(T

∗)
)
.

For each prime v not dividing p, denote Cf

(
Fv,FG(T

∗)
)
to be the subcomplex of

C
(
Fv,FG(T

∗)
)
, whose degree m-component is 0 unless m �= 0, 1, whose degree 0-

component is C0
(
Fv,FG(T

∗)
)
, and whose degree 1-component is

ker
(
C1

(
Fv,FG(T

∗)
)
d=0

−→ H1
(
Fur
v ,FG(T

∗)
))

.

The Selmer complex SC(T ∗, T ∗
v ) is then defined to be

Cone

(
C
(
GS(F ),FG(T

∗)
)

−→
⊕
v|p

C
(
Fv,FG(T

∗)/FG(T
∗
v )
)
⊕
⊕
v�p

C
(
Fv,FG(T

∗)
)
/Cf

(
Fv,FG(T

∗)
))

[−1].

Here [−1] is the translation by −1 of the complex. We will write Hi
(
SC(T ∗, T ∗

v )
)
for

the ith cohomology group of the complex SC(T ∗, T ∗
v ). We now state the following

proposition which is proven in [FK, Proposition 4.2.35].

Proposition 3.2.1. Let G be the kernel of Gal(F̄ /F ) −→ G. For a place v of

F , fixing an embedding F ↪→ Fv, let G(v) be the kernel of Gal(F̄v/Fv) −→ G and let

Gv ⊆ G be the image. Then the following statements hold.

(a) Hi
(
SC(T ∗, T ∗

v )
)
= 0 for i �= 1, 2, 3.
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(b) We have an exact sequence

0 −→ X(A/F∞) −→ H2
(
SC(T ∗, T ∗

v )
)

−→
⊕
v|p

O�G� ⊗O�Gv�

(
T ∗
v (−1)

)
G(v)

−→
(
T ∗(−1)

)
G
−→ H3

(
SC(T ∗, T ∗

v )
)
−→ 0.

Since F∞ contains Fcyc, it follows that for every prime v|p, the group Gv has
dimension at least 1. Therefore,

⊕
v|p O�G�⊗O�Gv�

(
T ∗
v (−1)

)
G(v)

is finitely generated

over O�H�, and one can apply Lemma 2.4.3 to obtain the following statement.

Lemma 3.2.2. X(A/F∞)(π) and H2
(
SC(T ∗, T ∗

v )
)
(π) have the same elementary

representations.

We end the section with the following remark.

Remark 3.2.3. It is clear from the exact sequence in Proposition 3.2.1 that
H3

(
SC(T ∗, T ∗

v )
)

is finitely generated over O. In particular, this implies that

H3
(
SC(T ∗, T ∗

v )
)
(π) is pseudo-null. Now assume further that X(A/F∞) satisfies the

MH(G)-property in the sense of [CF+, CS, FK] (see also Subsection 5.1). Note that
when F∞ is of dimension 1, this is equivalent to saying that X(A/F∞) is a torsion
module. Then it follows from [FK, Proposition 4.3.11] thatH1

(
SC(T ∗, T ∗

v ) = 0 (resp.,

H1
(
SC(T ∗, T ∗

v ) is finitely generated over O) if F∞ is of dimension > 1 (resp., dimen-

sion 1). In either cases, we have that H1
(
SC(T ∗, T ∗

v )
)
(π) is pseudo-null. Therefore,

it follows from the above discussion, Proposition 3.2.1(a) and Lemma 3.2.2 that the
π-primary submodule of X(A/F∞) essentially captures the “π-primary component”
of the Selmer complex SC(T ∗, T ∗

v ).

4. π-submodules of dual Selmer groups. Throughout this section,(
A, {Av}v|p, {A

+
v }v|R

)
is a datum defined as in Section 3 over a number field F . As

before, S will denote a finite set of primes that contain the primes of F above p, the
ramified primes of A and the archimedean primes of F . Let F∞ be an S-admissible
p-adic Lie extension of F whose Galois group G = Gal(F∞/F ) is a pro-p torsion-free
p-adic Lie group of dimension r. We also recall that G0 is a fixed open normal uniform
subgroup of G, and Gm is denoted to be the (m+ 1)-term of the lower p-series of G0

which is defined by

Gm+1 = Gp
m[Gm, G], for m ≥ 0.

Denote Fm to be the fixed field of Gm. Note that this is a finite Galois extension of
F of degree [G : G0]p

rm.
For the remainder of the paper, we will work with X(A/F∞). In view of Lemmas

3.1.2 and 3.2.2, all our main results (Theorem 4.1.1 and Theorem 4.2.1) also hold for
the Greenberg Selmer groups and the second cohomology of the Selmer complexes as
defined in Subsection 3.2.

If G is a pro-p group, we write h1(G) = dimZ/p

(
H1(G,Z/p)

)
and h2(G) =

dimZ/p

(
H2(G,Z/p)

)
. If M is a cofinitely generated O-module, we denote Mdiv to

be the maximal O-divisible submodule of M . We now record a useful lemma which
allows us to estimate the order of certain cohomology groups, whose easy proof is left
to the reader.
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Lemma 4.0.1. Let G be a pro-p group, and let M be a discrete G-module which

is cofinitely generated over O. Let n be a positive integer. If h1(G) is finite, then for

every n ≥ 1, H1(G,M)[πn] is finite and

ordq
(
H1(G,M)[πn]

)
≤ nh1(G)

(
corankO(M) + ordq(M/Mdiv)

)
.

If h2(G) is finite, then for every n ≥ 1, H2(G,M)[πn] is finite and we have the

following inequality

ordq
(
H2(G,M)[πn]

)
≤ nh2(G)

(
corankO(M) + ordq(M/Mdiv)

)
.

4.1. Tate dual. In this subsection, we prove our first main result of the paper.
For a given set of data

(
A, {Av}v|p, {A

+
v }v|R

)
, we define its (Tate) dual data as fol-

lows. For a O-module N , we denote Tπ(N) to be its π-adic Tate module, i.e., Tπ(N) =
lim
←−
i

N [πi]. We then set A∗ = Homcts(Tπ(A), μp∞). Similarly, for each v|p (resp., v

real), we set A∗
v = Homcts(Tπ(A/Av), μp∞) (resp., (A∗)+v = Homcts(Tπ(A/A

+
v ), μp∞)).

It is an easy exercise to verify that
(
A∗, {A∗

v}v|p, {(A
∗)+v }v|R

)
satisfies equality (3.0.1).

Therefore, we can attach Selmer groups to this dual data which we denote by
S(A∗/F∞) and S(A∗[πn]/F∞). We then denote X(A∗/F∞) to be the Pontryagin
dual of S(A∗/F∞). We are now in the position to state the first main theorem of the
paper.

Theorem 4.1.1. Let F∞ be an admissible p-adic Lie extension such that G =
Gal(F∞/F ) is pro-p torsion-free p-adic Lie group. Then X(A/F∞) and X(A∗/F∞)
have the same O�G�-ranks, and X(A/F∞)(π) and X(A∗/F∞)(π) have the same ele-

mentary representations.

For data coming from (nearly) ordinary representations, it is expected that
X(A/F∞) is a torsion O�G�-module (see [Gr1, Conjecture 1] or [We, Conjecture
1.7]). We therefore record the following important corollary.

Corollary 4.1.2. Let F∞ be an admissible p-adic Lie extension such that G =
Gal(F∞/F ) is a pro-p torsion-free p-adic Lie group. Then X(A/F∞) is a torsion

O�G�-module if and only if X(A∗/F∞) is a torsion O�G�-module.

The remainder of the subsection will be devoted to the proof of Theorem 4.1.1.
By Proposition 2.4.7, we are reduced to proving the following proposition.

Proposition 4.1.3. For every n ≥ 1, we have

μO�G�

(
X(A/F∞)/πn

)
= μO�G�

(
X(A∗/F∞)/πn

)
.

Proof. Let n be an arbitrary fixed positive integer. Then for every m ≥ 1, we have∣∣∣∣[G : G0]
(
μO�G�

(
X(A/F∞)/πn

)
− μO�G�

(
X(A∗/F∞)/πn

))
prm

∣∣∣∣ ≤∣∣∣[G : G0]μO�G�

(
X(A/F∞)/πn

)
prm − ordq

(
S(A/F∞)[πn]Gm

)∣∣∣
+
∣∣∣[G : G0]μO�G�

(
X(A∗/F∞)/πn

)
prm − ordq

(
S(A∗/F∞)[πn]Gm

)∣∣∣
+
∣∣∣ordq(S(A[πn]/Fm)

)
− ordq

(
S(A/F∞)[πn]Gm

)∣∣∣
+
∣∣∣ordq(S(A∗[πn]/Fm)

)
− ordq

(
S(A∗/F∞)[πn]Gm

)∣∣∣
+
∣∣∣ordq(S(A[πn]/Fm)

)
− ordq

(
S(A∗[πn]/Fm)

)∣∣∣.
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The required equality of the proposition will follow once we can show that each of
the five quantities on the right is O(p(r−1)m). The first two quantities are O(p(r−1)m)
by Theorem 2.5.1. We now proceed to show that the third and fourth quantities
are O(p(r−1)m). To show this, we first need to estimate the order of the kernels and
cokernels of the maps

S(A[πn]/Fm)
rm−→ S(A/Fm)[πn]

sm−→
(
S(A/F∞)[πn]

)Gm
.

One sees easily that ker rm ⊆ A(Fm)/πn and ker sm ⊆ H1(Gm, A(F∞))[πn]. It is clear
that one has ordq(ker rm) ≤ nr for every m, and therefore, ordq(ker rm) = O(1). On
the other hand, it follows from Lemma 4.0.1 that ordq

(
H1(Gm, A(F∞))[πn]

)
= O(1)

(noting that h1(Gm) is a constant function in m). Thus, one has ordq(ker sm) = O(1).
To estimate coker rm and coker sm, one first observes that ordq(coker rm) ≤

ordq(ker r
′
m) and that ordq(coker sm) ≤ ordq(ker s

′
m) + ordq(H

2(Gm, A(F∞))[πn]),
where r′m and s′m are given by

r′m =
(
r′m,vm

)
:

⊕
vm∈SFm

H1
s (Fm,vm , A[πn]) −→

⊕
vm∈SFm

H1
s (Fm,vm , A)[πn];

s′m =
(
s′m,vm

)
:

⊕
vm∈SFm

H1
s (Fm,vm , A)[πn] −→

(
lim
−→
m

⊕
vm∈SFm

H1
s (Fm,vm , A)[πn]

)Gm

.

By Lemma 4.0.1, one has that ordq
(
H2(Gm, A(F∞))[πn]

)
= O(1) (noting that h2(Gm)

is a constant function in m; in fact, one has h2(Gm) = r(r − 1)/2 by [DS+, Theorem
4.35]). To estimate coker r′m, we first observe that

ker r′m,vm ⊆
{
ker

(
H1(Fm,vm , A/Avm [πn]) −→ H1(Fm,vm , A/Avm)[πn]

)
if vm|p,

ker
(
H1(Fur

m,vm , A[πn]) −→ H1(Fur
m,vm , A)[πn]

)
if vm � p,

=

{
A/Avm(Fm,vm)[πn] if vm|p,

A(Fur
m,vm)[πn] if vm � p,

It is now clear from the above that ordp(ker r
′
m,vm) is bounded independently

of m and vm (for a fixed n). Combining these estimates with the fact that the
decomposition group of v in G has dimension ≥ 1 for every v ∈ S (since F∞ contains
F cyc), one then has the estimate ordq

(
ker r′m

)
= O(p(r−1)m).

To estimate coker s′m, we observe that

ker s′m,vm ⊆

{
H1

(
Gm,vm , A/Avm(Fm,vm)

)
[πn] if vm|p,

H1
(
Gal(F∞,vm/Fur

m,vm), A(Fm,vm)
)
[πn] if vm � p.

By appealing to Lemma 4.0.1, one verifies easily that ker s′m,vm is bounded inde-
pendent of m and vm (for a fixed n). As before, combining these estimates with the
fact that the decomposition group of v in G has dimension ≥ 1 for every v ∈ S (since
F∞ contains F cyc), we obtain ordq

(
ker s′m

)
= O(p(r−1)m). In conclusion, we have

ordq
(
S(A[πn]/Fm)

)
= ordq

(
S(A/F∞)[πn]Gm

)
+O(p(r−1)m).
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By a similar argument, one also has

ordq
(
S(A∗[πn]/Fm)

)
= ordq

(
S(A∗/F∞)[πn]Gm

)
+O(p(r−1)m).

Therefore, we have shown that the third and fourth quantities are O(p(r−1)m). For
the estimate of the final quantity, we require the following lemma.

Lemma 4.1.4. For every n and m, we have

|S(A[πn]/Fm)|

|H0(GS(Fm), A[πn])|
×

∏
vm|p

|H0(Fm,vm , A[pn]/Avm [πn])|

=
|S(A∗[πn]/Fm)|

|H0(GS(Fm), A∗[πn])|
×

∏
vm|p

|H0(Fm,vm , A∗[πn]/A∗
vm [πn])|,

where the product is taken over all the primes of Fm above p.

Proof. (Sketch of the proof) This is proven in the same way as [Gr1, Formula
(53)] and we give the general idea behind the calculations, leaving the details to the
readers. By appealing to the fact that our datum satisfies equality (3.0.1), one can
verify the following

|H0(GS(Fm), A[πn])||H2(GS(Fm), A[πn])|

|H1(GS(Fm), A[πn])|

=
∏
vm|p

|H0(Fm,vm , A/Avm [πn])||H2(Fm,vm , A/Avm [πn])|

|H1(Fm,vmv,A/Avm [πn])|

by a global-local Euler characteristic argument. The required equality of the lemma
will follow by combining the above with a Poitou-Tate duality argument.

We continue the proof of our main theorem.

Proof of Theorem 4.1.1 (cont’d). Clearly, the quantities |H0(GS(Fm), A[pn])|,
|H0(GS(Fm), A∗[pn])|, |H0(Fm,vm , A[πn]/Av[π

n])| and |H0(Fm,vm , A∗[πn]/A∗
v[π

n])|
are bounded independently of m and vm (for a fixed n). Since there are only fi-
nite number of primes of F cyc above p, the decomposition group of v in G has at
least dimension 1. Therefore, it follows that

∏
vm|p |H

0(Fm,vm , A[πn]/Av[π
n])| and∏

vm|p |H
0(Fm,vm , A∗[πn]/A∗

v[π
n])| are both qO(p(r−1)m). Therefore, in conclusion, we

have

ordq
(
S(A[πn]/Fm)

)
= ordq

(
S(A∗[πn]/Fm)

)
+O(p(r−1)m),

as required. This completes the proof of the theorem.

Remark 4.1.5. (1) If F∞ is a general p-adic Lie extension of F (that does not
contain F cyc) which has the property such that for each prime v ∈ S, the decompo-
sition group of Gal(F∞/F ) at v has dimension ≥ 1, then the argument of Theorem
4.1.1 carries over to give the same conclusion.

(2) When F∞ = F cyc, Greenberg claimed that XGr(A/F cyc) and XGr(A∗/F cyc)
might be pseudo-isomorphic up to an ι-twist (see [Gr1, P. 130, Equation (66)]) and
gave some examples where this pseudo-isomorphism can be shown (see discussion after
[Gr1, P. 130, Equation (66)]). In view of Lemma 3.1.2, Theorem 4.1.1 may therefore
be viewed as providing a positive answer to the π-primary part of the assertion of
Greenberg. (In fact, our result also establishes higher analog of this.)
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4.2. Congruent Galois representations. As before, let F∞ be an admissible
p-adic Lie-extension of F whose Galois group is a pro-p torsion-free p-adic Lie group
of dimension r. We write G = Gal(F∞/F ). To state our result, we introduce another
datum

(
B, {Bv}v|p, {B

+
v }v|R

)
which satisfies the conditions (a)–(d) as in Section 3.

To compare the Selmer groups, we need to expand the set S of primes to contain the
ramified primes of B. We introduce the following important congruence condition on
A and B which allows us to be able to compare the Selmer groups of A and B.

(Congn) : There is an isomorphism A[πn] ∼= B[πn] of GS(F )-modules which induces
a Gal(F̄v/Fv)-isomorphism Av[π

n] ∼= Bv[π
n] for every v|p.

Clearly, (Congn) implies (Congi) for i ≤ n. To simplify notation, we will write
θG(A) = θG

(
X(A/F∞)

)
and θG(B) = θG

(
X(B/F∞)

)
. The following is the second

main theorem of the paper.

Theorem 4.2.1. Let F∞ be an admissible p-adic Lie extension of F whose Galois

group is a pro-p torsion-free p-adic Lie group . Suppose that (CongθG(A)+1) holds and
suppose that X(A/F∞) is torsion over O�G�. Then X(B/F∞) is torsion over O�G�,
and X(A/F∞)(π) and X(B/F∞)(π) have the same elementary representations.

Proof. By Proposition 2.4.6, it suffices to show that

μO�G�

(
X(A/F∞)/πn

)
= μO�G�

(
X(B/F∞)/πn

)
for 1 ≤ n ≤ θG(A) + 1. Fix such an arbitrary n. Then for m ≥ 1, we have∣∣∣∣[G : G0]

(
μO�G�

(
X(A/F∞)/πn

)
− μO�G�

(
X(B/F∞)/πn

))
prm

∣∣∣∣ ≤∣∣∣[G : G0]μO�G�

(
X(A/F∞)/πn

)
prm − ordq

(
S(A/F∞)[πn]Gm

)∣∣∣
+
∣∣∣[G : G0]μO�G�

(
X(B/F∞)/πn

)
prm − ordq

(
S(B/F∞)[πn]Gm

)∣∣∣
+
∣∣∣ordq(S(A[πn]/Fm)

)
− ordq

(
S(A/F∞)[πn]Gm

)∣∣∣
+
∣∣∣ordq(S(B[πn]/Fm)

)
− ordq

(
S(B/F∞)[πn]Gm

)∣∣∣
+
∣∣∣ordq(S(A[πn]/Fm)

)
− ordq

(
S(B[πn]/Fm)

)∣∣∣.
As seen from the argument in the proof of Theorem 4.1.1, the first four quantities on
the right of the inequality are O(p(r−1)m). It remains to estimate the last quantity. By
the discussion before this theorem, we have that (Congn) holds for 1 ≤ n ≤ θG(A)+1.
This in turn implies that

S(A[πn]/Fm) ∼= S(B[πn]/Fm)

for all m. In particular, the final quantity on the right of the inequality is zero. Hence
we have that∣∣∣∣[G : G0]

(
μO�G�

(
X(A/F∞)/πn

)
− μO�G�

(
X(B/F∞)/πn

))
prm

∣∣∣∣ = O(p(r−1)m)

which implies that

μO�G�

(
X(A/F∞)/πn

)
= μO�G�

(
X(B/F∞)/πn

)
,
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as required.

Remark 4.2.2. If F∞ is a general p-adic Lie extension of F (that does not contain
F cyc) which has the property such that for each prime v ∈ S, the decomposition group
of Gal(F∞/F ) at v has dimension ≥ 1, then the argument of Theorem 4.2.1 carries
over to give the same conclusion.

5. Miscellaneous.

5.1. Some remarks on the MH(G)-property. Let F∞ be an admissible p-
adic Lie extension. As before, we write G = Gal(F∞/F ), H = Gal(F∞/F cyc) and
Γ = Gal(F cyc/F ). We say that an O�G�-module M satisfies the MH(G)-property if
Mf := M/M(π) is finitely generated over O�H�. It has been conjectured for certain
Galois representations coming from abelian varieties with good ordinary reduction at
p or cuspidal eigenforms with good ordinary reduction at p, the dual Selmer group
associated to such a Galois representation satisfies the MH(G)-property (see [CF+,
CS, FK]).

For the remainder of this subsection, we will assume that G is a pro-p group of
dimension 2 and has no elements of order p. As before,

(
A, {Av}v|p, {A

+
v }v|R

)
denotes

a set of data as defined in Section 3. In preparation for further discussion, we record
the following lemma which has a similar proof to that in [CS, Corollary 3.2].

Lemma 5.1.1. Let F∞ be an S-admissible p-adic Lie extension whose Galois

group is a pro-p group of dimension 2 and has no elements of order p. Suppose that

A(F cyc) is finite. Then the following statements are equivalent.

(a) X(A/F∞) satisfies the MH(G)-property.
(b) X(A/F cyc) is a torsion O�Γ�-module, X(A/F∞) is a torsion O�G�-module

and

μO�G�

(
X(A/F∞)

)
= μO�Γ�

(
X(A/F cyc)

)
.

We should mention that the finiteness condition on A(F cyc) has been verified
in many cases, and therefore, the discussion in this subsection may apply to these
situations. In the case of an abelian variety with good ordinary reduction at p, this is
verified in [Im] and for a cuspidal eigenform with good ordinary reduction at p, this is
done in [Su, Proof of Lemma 2.2]. For a more general result on the finiteness condition
for A arising from the Galois representation attached to an étale ith-cohomology group
(for i odd) of a smooth proper variety with potentially good reduction, we refer readers
to [CSW, KT].

We now state the next result which compares the structural properties of
X(A/F∞) and X(A∗/F∞), where X(A/F∞) is the Selmer group associated to the
set of data

(
A, {Av}v|p, {A

+
v }v|R

)
and X(A∗/F∞) is the Selmer group associated to(

A∗, {A∗
v}v|p, {(A

∗)+v }v|R
)
.

Proposition 5.1.2. Let F∞ be an admissible p-adic Lie extension of F , whose

Galois group is a pro-p group of dimension 2 and has no elements of order p. Fur-

thermore, suppose that A(F cyc) and A∗(F cyc) are finite. Then X(A/F∞) satisfies the
MH(G)-property if and only if X(A∗/F∞) satisfies the MH(G)-property.

Proof. It suffices to show that if X(A/F∞) satisfies the MH(G)-property, then
X(A∗/F∞) also satisfies the MH(G)-property. Suppose that X(A/F∞) satisfies the
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MH(G)-property. Then by Lemma 5.1.1, we have that X(A/F cyc) is a torsion O�Γ�-
module, X(A/F∞) is a torsion O�G�-module and

μO�G�

(
X(A/F∞)

)
= μO�Γ�

(
X(A/F cyc)

)
.

By virtue of Theorem 4.1.1, we then have that X(A∗/F cyc) is a torsion O�Γ�-module,
X(A∗/F∞) is a torsion O�G�-module and

μO�G�

(
X(A∗/F∞)

)
= μO�Γ�

(
X(A∗/F cyc)

)
.

By appealing to Lemma 5.1.1 again, this in turn implies that X(A∗/F∞) satisfies the
MH(G)-property.

We also have a similar result as above for congruent representations. Let(
B, {Bv}v|p, {B

+
v }v|R

)
be another set of data defined as in Section 3. The next propo-

sition can be proven similarly by combining Theorem 4.2.1 and Lemma 5.1.1.

Proposition 5.1.3. Let F∞ be an admissible p-adic Lie extension of F , whose

Galois group is a pro-p group of dimension 2 and has no elements of order p. Assume

that A(F cyc) and B(F cyc) are finite. Suppose that (Congθ+1) holds, where θ =
max{θO�Γ�(A), θO�G�(A)}. Then if X(A/F∞) satisfies the MH(G)-property, so does

X(B/F∞).

5.2. Comparing specializations of a big Galois representation. We apply
the main result in Subsection 4.2 to compare the Selmer groups of specializations of
a big Galois representation. As before, let p be a prime. We let F be a number field.
If p = 2, we assume further that F has no real primes. Denote O to be the ring of
integers of some finite extension K of Qp. We write R = O�T � for the power series
ring in one variable. Suppose that we are given the following set of data:

(a) A is a cofinitely generated cofree R-module of R-corank d with a continuous,
R-linear Gal(F̄ /F )-action which is unramified outside a finite set of primes
of F .

(b) For each prime v of F above p, Av is a Gal(F̄v/Fv)-submodule of A which is
cofree of R-corank dv.

(c) For each real prime v of F , we write A+
v = AGal(F̄v/Fv) which we assume to

be cofree of R-corank d+v .
(d) The following equality∑

v|p

(d− dv)[Fv : Qp] = dr2(F ) +
∑
v real

(d− d+v )

holds. Here r2(F ) denotes the number of complex primes of F .
For any prime element f of O�T � such that O�T �/f is a maximal order, then we

can obtain a data
(
A[f ], {Av[f ]}v|p, {A

+
v [f ]}v|R

)
in the sense of Section 3. The next

lemma has a easy proof which is left to reader.

Lemma 5.2.1. Let f and g be prime elements of O�T � with πn|(f − g) such that

O�T �/f and O�T �/g are maximal orders. Then A[f, πn] = A[g, πn]. One also has

similar conclusions for Av and A+
v .

The next proposition compares the π-primary submodules of the dual Selmer
groups of various specializations of a big Galois representation. For a real number x,
we denote �x� to be the smallest integer not less than x.
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Proposition 5.2.2. Let F∞ be an admissible p-adic Lie extension of F such

that G = Gal(F∞/F ) is uniform pro-p group. Let f be a prime element of O�T � such

that O′ := O�T �/f is a maximal order. Set A = A[f ] and suppose that X(A/F∞) is

torsion over O′�G�. Set

n :=

⌈
θO′�G�

(
X(A/F∞)

)
+ 1

e

⌉
,

where e is the ramification index of O′/O. Then for every prime element g of O�T �
with πn|f − g such that O�T �/g is isomorphic to O′, we have that X(A[g]/F∞) is

torsion over O′�G�, and that X(A/F∞)(π′) and X(A[g]/F∞)(π′) have the same ele-

mentary representations.

Note that by Lemma 3.2.2, this proposition may be viewed as a refinement of [B,
Theorem 1.2(1), Corollary 4.37(1)]). We now give the proof.

Proof of Proposition 5.2.2. Let g be a prime element of O�T � which satisfies the
hypothesis in the proposition. Let π′ be a prime element of O′ and write B = A[g]. It
follows from Lemma 5.2.1 that there is an isomorphism of GS(F )-modules A[π′en] ∼=
B[π′en] which induces an isomorphism of Gal(F̄v/Fv)-modules Av[π

′en] ∼= Bv[π
′en]

for each prime v of F above p. By our hypothesis of n, we have en ≥ θO′�G�(A) + 1.
In particular, the congruence hypothesis (Cθ

O′�G�(A)+1) holds for A and A[g]. Hence
the conclusion of the proposition is now immediate from Theorem 4.2.1.

We end the paper with a proposition which is immediate from an application of
Proposition 5.1.3. This proposition is a refinement of [SS, Proposition 8.6] and [B,
Corollary 4.37] when the admissible p-adic Lie extension is of dimension 2.

Proposition 5.2.3. Let F∞ be an admissible p-adic Lie extension of F , whose

Galois group is a pro-p group of dimension 2 and has no elements of order p. Let f be

a prime element of O�T � such that O′ := O�T �/f is a maximal order. Set A = A[f ]
and suppose that X(A/F∞) belongs to MH(G). Set

n :=

⌈
θ + 1

e

⌉
,

where θ = max{θO′�Γ�(A), θO′�G�(A)} and e is the ramification index of O′/O. Then

for every prime element g of O�T � with πn|f − g such that O�T �/g is isomorphic to

O′, we have that X(A[g]/F∞) belongs to MH(G).
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