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FANO-RICCI LIMIT SPACES AND SPECTRAL CONVERGENCE∗

AKITO FUTAKI† , SHOUHEI HONDA‡ , AND SHUNSUKE SAITO§

Abstract. We study the behavior under Gromov-Hausdorff convergence of the spectrum of
weighted ∂-Laplacian on compact Kähler manifolds. This situation typically occurs for a sequence
of Fano manifolds with anticanonical Kähler class. We apply it to show that, if an almost smooth
Fano-Ricci limit space admits a Kähler-Ricci limit soliton and the space of all L2 holomorphic vector
fields with smooth potentials is a Lie algebra with respect to the Lie bracket, then the Lie algebra
has the same structure as smooth Kähler-Ricci solitons. In particular if a Q-Fano variety admits
a Kähler-Ricci limit soliton and all holomorphic vector fields are L2 with smooth potentials then
the Lie algebra has the same structure as smooth Kähler-Ricci solitons. If the sequence consists of
Kähler-Ricci solitons then the Ricci limit space is a weak Kähler-Ricci soliton on a Q-Fano variety
and the space of limits of 1-eigenfunctions for the weighted ∂-Laplacian forms a Lie algebra with
respect to the Poisson bracket and admits a similar decomposition as smooth Kähler-Ricci solitons.
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1. Introduction. In this paper we study the behavior of the spectrum of a
weighted ∂-Laplacian under Gromov-Hausdorff convergence of a sequence of compact
Kähler manifolds. Typically we consider a sequence (Xi, gi) of Fano manifolds Xi and
Kähler metrics gi where the Kähler form ωi of gi represents 2πc1(Xi), i.e. 2π times
the anti-canonical class. Since the Ricci form Ric(ωi) also represents 2πc1(Xi) there
is a real valued smooth function Fi, called the Ricci potential, given by

Ric(ωi)− ωi = i∂∂Fi.

The weighted ∂-Laplacian ΔFi

∂
we consider is given for a smooth function u by

ΔFi

∂
u = e−Fi∂

∗
(eFi∂u).

This is a self-adjoint elliptic operator with respect to the weighted measure eFidH .
Assuming the one side bound of the Ricci curvature

Ric(gi) ≥ Kgi

for a constant K, upper diameter bound, uniform bound of ||Fi||L∞ and L2-strong
convergence of Fi and complex structures Ji (see subsection 2.1 for more detail), we
consider non-collapsing Kähler-Ricci limit space. When the sequence consists of Fano
manifolds with anti-canonical Kähler class the limit is called a Fano-Ricci limit space.

In the Riemannian case the behavior of the spectrum of the Laplacian under
Gromov-Hausdorff convergence was studied by Fukaya [14] and Cheeger and Colding
[6]. We see in section 3.1 that the spectral behavior for the weighted ∂-Laplacian is
continuous with respect to the Gromov-Hausdorff topology (Proposition 3.13).
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On the Fano manifold Xi we have the following Weitzenböck formula:∫
Xi

|ΔFi

∂
fi|2 dHn

Fi
=

∫
Xi

|∇′′grad′fi|2 dHn
Fi

+

∫
Xi

|∂fi|2 dHn
Fi
. (1)

In Theorem 4.1 we show the following Weitzenböck inequality on the Fano-Ricci limit
space: ∫

X

|ΔF
∂
f |2 dHn

F ≥
∫
X

|∇′′grad′f |2 dHn
F +

∫
X

|∂f |2 dHn
F . (2)

This implies the first non-zero eigenvalue λ1(Δ
F
∂
, X) of the weighted ∂-Laplacian ΔF

∂
on the limit space X satisfies

λ1(Δ
F
∂
, X) ≥ 1,

and if f is in the domain D2
C
(ΔF

∂
, X) of ΔF

∂
with ΔF

∂
f = f , then ∇′′grad′f = 0. In

particular if U is an open subset of X and (U, gX |U , J |U ) is a smooth Kähler manifold
with F |U ∈ C∞(U), then f |U ∈ C∞

C
(U) and grad′f is a holomorphic vector field on

U (Corollary 4.2).
For a smooth Fano manifold M , the Lie algebra hol(M) of all holomorphic vector

fields on M is isomorphic to the space Λ1 of the eigenfunctions corresponding to
the eigenvalue 1 (1-eigenfunctions for short) for ΔF

∂
with the Poisson structure, see

[16, 17, 18]. The Poisson structure can be defined on the noncollapsed Kähler-Ricci
limit space X as in Definition 4.17. However there is a difficulty in finding if the space
of all grad′f obtained as above forms a Lie algebra since it is not clear if the space of
1-eigenfunctions of ΔF

∂
on the limit space is closed under Poisson bracket. A key to

overcome this difficulty is to see when the Lie bracket of two L2 vector fields of the
form grad′f as obtained above becomes L2 again.

If a smooth Fano manifold M admits a Kähler-Ricci soliton ω, i.e. Ric(ω)− ω =
i∂∂F with grad′F is a holomorphic vector field, then the Lie algebra hol(M) of all
holomorphic vector fields on M is known to have the following structure ([47]):

hol(M) = hol0(M)⊕
⊕
α>0

holα(M),

where holα(M) is the α-eigenspace of the adjoint action of −grad′F . Furthermore,
hol0(M) is a maximal reductive Lie subalgebra. Note that the direct sum decompo-
sition is meant as a vector space and [holα(M), holβ(M)] ⊂ holα+β(M) holds as a Lie
algebra.

If a sequence of Kähler-Ricci solitons Xi converges to X then the limit X is a
Kähler-Ricci limit soliton which is also a Q-Fano variety. Then the vector space Λ
consisting of the limit of the 1-eigenfunctions (eigenfunctions with eigenvalue 1) on
Xi form a Lie algebra, and a similar decomposition theorem holds for Λ on the limit
X as in the case of smooth Kähler-Ricci solitons as described above (Theorem 6.2).
This is proved by showing that the L2-Lie bracket property as mentioned above is
satisfied.

If the Ricci limit spaceX is a Q-Fano variety then holomorphic vector fields on the
regular part extend to X and they form a Lie algebra hol(X). If we assume they are
all L2 with smooth potentials, then they are gradient vector fields of 1-eigenfunctions
(Proposition 6.1). Thus, assuming that the limit X is a Kähler-Ricci soliton on the
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regular part and that the Lie algebra hol(X) consists of L2 holomorphic vector fields
with smooth potentials on the regular part, hol(X) has a similar decomposition as in
the smooth Kähler-Ricci solitons (Theorem 6.4).

The theory of Cheeger-Colding [4, 5, 6] and Cheeger-Colding-Tian [7] has been
applied to complex geometry by Donaldson-Sun [12, 13] where the two side bound of
Ricci curvature

−Cg ≤ Ric ≤ Cg

for some constant C > 0 is assumed. Further the theory of Cheeger, Colding and Tian
was used to prove Yau-Tian-Donaldson conjecture by Chen-Donaldson-Sun [8, 9, 10],
Tian [46], and to study the compactification of the moduli space of Kähler-Einstein
manifolds in [39], [43], [38], [34]. The difference between these works and ours is that
we employ one side lower bound of Ricci curvature, and the two side bound ensures
a C2,α differentiable structure on an open set of the limit while the one side lower
bound only ensures a weak C1,1 structure outside the singular set of measure zero. In
particular, except for section 5 and section 6, we do not require the openness of the
regular set.

This paper is organized as follows.
In Section 2, we consider Lp-convergence for C-valued tensor fields in the Gromov-

Hausdorff setting, which is known on the real setting in [25]. Main results are Rellich
compactness (Theorem 2.6) and Proposition 2.9, which play key roles to prove the
spectral convergence of the weighted ∂-Laplacian.

In Section 3, we first establish the spectral convergence of the weighted ∂-
Laplacian on general setting. Second, we define the covariant derivative ∇′′ on a non-
collapsed Kähler-Ricci limit space, which is a key notion to establish the Weitzenböck
inequality (2) on a Fano-Ricci limit space. The essential idea of the definition of ∇′′
is based on Gigli’s approach to nonsmooth differential geometry discussed in [21] via
the regularity theory of the heat flow on RCD-spaces by Ambrosio-Gigli-Savaré [1].
A main property of ∇′′ is the L2-weak stability (Proposition 3.25), which plays a key
role in the proof of the Weitzenböck inequality (2).

In Section 4, we first prove the Weitzenböck inequality (2). Next we discuss the
regularity of the Ricci potential on a Fano manifold with a lower Ricci curvature
bound. As a corollary, we establish a compactness with respect to the Gromov-
Hausdorff topology, which states that a sequence of Fano manifolds with uniform
lower bound of the Ricci curvature, uniform lower bound of the volumes, uniform
lower bound of the Ricci potentials, and uniform upper bound of the diameters, has
a convergent subsequence to a Fano-Ricci limit space (Corollary 4.11).

We also discuss in Section 4 the behavior of holomorphic vector fields and the
Futaki invariant with respect to the Gromov-Hausdorff topology. As a corollary, we
give a new uniform bound of the dimension of the space of all holomorphic vector fields
on a Fano manifold (Corollary 4.13). The final subsection of Section 4 is devoted to
constructing a Lie algebra consisting of L2-holomorphic vector fields with smooth
potentials on a nonsmooth Fano-Ricci limit space. As we mentioned above, this has
a difficulty in showing that the Lie bracket of two L2-vector fields is L2. Proposition
4.30 and Corollary 4.31 are used to overcome this difficulty by considering the limit
holomorphic vector fields.

In Section 5, under an additional assumption that a Fano-Ricci limit space is
almost smooth, we study holomorphic vector fields in further detail. In particular, we
establish a similar decomposition as smooth Kähler-Ricci solitons as in [47] (Theorem
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5.7). It is worth pointing out that hol0(X) being reductive Lie subalgebra in the
decomposition theorem comes from a Cheeger-Colding’s result in [5] that the isometry
group of a noncollapsed Ricci limit space is a Lie group.

In the final section, Section 6, we consider the case that a Fano-Ricci limit space
is a Q-Fano variety. Then we prove that the space is an almost smooth in the sense of
Section 5 (Proposition 6.1). Thus we can apply the decomposition theorem in Section
5 to this case (Theorem 6.4). We also check that combining results above with Phong-
Song-Sturm’s recent work [41], this situation typically occurs if a sequence we consider
consists of Kähler-Ricci solitons (Theorem 6.2).

2. Noncollapsed weighted Kähler-Ricci limit spaces. In this section we
discuss the spectral behavior of Kähler manifolds with respect to the Gromov-
Hausdorff topology. Recall that a sequence of compact metric spaces (Xi, dXi) is
said to Gromov-Hausdorff converges to a compact metric space (X, dX) if there exist
a sequence of positive numbers εi with εi → 0 and a sequence of maps φi : Xi → X
such that

(i) X = Bεi(φi(Xi)) where Br(A) is the r-neighborhood of A, and
(ii) |dXi(x, y) − dX(φi(x), φi(y))| < εi holds for any i and x, y ∈ Xi where dX is

the distance function of X .
Then for a sequence xi ∈ Xi and a point x ∈ X we denote xi

GH→ x if φi(xi) → x in
X .

Moreover for a sequence of Borel regular measures υi on Xi and a Borel regu-
lar measure υ on X , (Xi, dXi , υi) is said to converge to (X, dX , υ) in the measured
Gromov-Hausdorff sense if

lim
i→∞

υi(Br(xi)) = υ(Br(x))

holds for any r > 0 and xi
GH→ x.

2.1. Setting. Our setting in this section is the following:
(2.1a) Let K ∈ R and let d > 0.
(2.1b) Let (Xi, gXi , Ji) be a sequence of m-dimensional compact Kähler manifolds

with RicXi ≥ KgXi and diamXi ≤ d where gXi , Ji and RicXi respectively
denote a Riemannian metric, a complex structure and the Ricci curvature of
Xi with (gi, Ji) giving a Kähler structure. We put n = 2m.

(2.1c) Let X be the Gromov-Hausdorff limit of (Xi, gXi) and let gX denotes the
(canonical) Riemannian metric in a weak sense (we give an explanation be-
low).

(2.1d) Let Fi be a sequence of real valued functions Fi ∈ L∞(Xi) with L :=
supi ||Fi||L∞ <∞.

(2.1e) Let F, J be the L2-strong limits of Fi, Ji on X , respectively. See Definition
2.2 and 2.3 below for the meaning of strong convergence.

In this setting it was shown in [27, Theorem 6.19] that (X, gX) is the noncollapsed
limit of (Xi, gXi), i.e. the Hausdorff (or topological) dimension of X is equal to n and
that J ◦J = −id in L∞(TX ⊗T ∗X) � L∞(EndTX). In particular it follows from [4,
Theorem 5.9] that (Xi, gXi , H

n) converges to (X, gX , Hn) in the measured Gromov-
Hausdorff sense with 0 < Hn(X) <∞ whereHn denotes the n-dimensional Hausdorff
measure. Note that for every sequence Gi ∈ C0(R) which converges uniformly to G
on every compact subset of R, Gi(Fi) L

p-converges strongly to G(F ) on X for every
p ∈ (1,∞) (c.f. [24, Proposition 4.1]). In particular, (Xi, gXi , e

FiHn) converges to
(X, gX , eFHn) in the measured Gromov-Hausdorff sense.



FANO-RICCI LIMIT SPACES & SPECTRAL CONVERGENCE 1019

From now on we give a short introduction of the study of Ricci limit spaces which
are Gromov-Hausdorff limit spaces with Ricci curvature bounded below.

Cheeger and Colding proved that (X,Hn) is rectifiable (see [6], section 5, (i), (ii),
(iii)). In particular we can construct the (real) tangent bundle

π : TX → X

and define the canonical metric gX on each fibers. Note that the fibers TxX are
well-defined at a.e. x ∈ X and that gX is compatible with the metric structure in the
following sense; For every Lipschitz function f on an open subset U of X there exists
a gradient vector field gradf(x) which is well-defined at a.e. x ∈ U such that

| gradf |(x) :=
√
gX(gradf, grad f)(x) = lim

y→x

( |f(x)− f(y)|
d(x, y)

)
holds for a.e. x ∈ U . Similarly we can define the cotangent bundle T ∗X with the
canonical metric g∗X , more generally, the tensor bundle

π : T r
sX :=

r⊗
i=1

TX ⊗
s⊗

i=1

T ∗X → X,

for any r, s ∈ Z≥0, the differential df and so on in an ordinary way of Riemannian
geometry. We denote by (gX)rs the canonical metric on T r

sX defined by gX .
Moreover it was proven in [26, 27] that (X,Hn) has the canonical (weakly) second

order (or weak C1,1-) differentiable structure which is compatible with Gigli’s one
[21]. In particular we can define the Levi-Civita connection, the Hessian of a twice
differentiable function, the covariant derivative of a differentiable tensor field and so
on. We give a quick introduction of the second order differentiable structure on our
setting only for reader’s convenience.

In general, the singular set of a Gromov-Hausdorff limit of a sequence of Rieman-
nian manifolds with uniform lower Ricci curvature bound has measure zero (see [4,
Theorem 2.1]), however, even if the limit is noncollapsed, we do not know whether the
singular set is closed. In fact, Otsu-Shioya showed in [40] that there exist a sequence
of two dimensional compact nonnegatively curved manifolds and the noncollapsed
compact Gromov-Hausdorff limit Y such that the singular set of Y is dense in Y . See
Example (2) in page 632 of [40]

Cheeger-Colding proved in [6] that there exist a countable family of Borel subsets
Ci of X and a family of bi-Lipschitz embeddings φi from Ci to Rn such that

Hn

(
X \

⋃
i

Ci

)
= 0

(which means that (X,Hn) is rectifiable).
Since each transition map

φj ◦ (φi)
−1 : φi(Ci ∩ Cj)→ φj(Ci ∩ Cj)

is bi-Lipschitz, Rademacher’s theorem yields that there exists a Borel subset Di,j of
φi(Ci ∩ Cj) such that

Hn (φi(Ci ∩ Cj) \Di,j) = 0
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and that φj ◦ (φi)
−1 is differentiable at every x ∈ Di,j (see Section 3 in [26] for the

definition of differentiability of a function defined on a Borel subset of a Euclidean
space). Thus the Jacobi matrix of φj ◦ (φi)

−1:

J
(
φj ◦ (φi)

−1
)
(x)

is well defined for every x ∈ Di,j .
It is known that, for any i, j, there exists a countable family of Borel subsets Ei,j,k

of Di,j such that

Hn

(
Di,j \

⋃
k

Ei,j,k

)
= 0

and that each restriction

J
(
φj ◦ (φi)

−1
) |Ei,j,k

is a Lipschitz map. We say that the family{(
(φi)

−1(Ei,j,k), φi

)}
is a second order differentiable structure of (X,Hn).

It was also shown in [27, Theorem 6.19] that J is compatible with gX and that
J is differentiable at a.e. x ∈ X with ∇J ≡ 0. These mean that (gX , J) gives a
Kähler structure in some weak sense. We here do not discuss further detail of the
above results and just refer to [26, 27] because one of our main applications will be
devoted to almost smooth setting and the assumptions above are satisfied trivially
under almost C2-setting with the C1-Riemannian metric, e.g. under the condition
that the Ricci curvature has two-side bound and the limit is noncollapsing. We shall
explain Lp-convergence with respect to the Gromov-Hausdorff topology in section 2.2.

We use the standard notations:

TCX := TX ⊗R C = T ′X ⊕ T ′′X,

where T ′X and T ′′X are respectively
√−1 and −√−1-eigenspaces of J (note that we

extended gX and J in the C-linear way to TCX respectively. Define the Hermitian
metric hX by

hX(u, v) := gX(u, v),

where v is the conjugate of v.

T ∗CX := T ∗X ⊗R C = (T ∗X)′ ⊕ (T ∗X)′′,

where (T ∗X)′ and (T ∗X)′′ are
√−1 and −√−1-eigenspaces of J∗ which is the conju-

gate complex structure of J and is extended C-linearly to T ∗
C
X . Define the Hermitian

metric h∗X by

h∗X(u, v) := g∗X(u, v).

(T r
s )CX :=

r⊗
i=1

TCX ⊗
s⊗

i=1

T ∗CX �
(

r⊗
i=1

TX ⊗
s⊗

i=1

T ∗X

)
⊗R C.
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We denote the canonical Hermitian metric on this space by (hX)rs.
For a Borel subset A of X and p ∈ [1,∞], let Lp

C
((T r

s )CA) be the set of complex
valued Borel Lp-tensor fields on A. In particular when r = s = 0, that is, the case of
functions, we denote by Lp

C
(A) the space of C-valued Lp-functions on A. For a Borel

subset A of X and a C-valued Borel tensor field T of type (r, s) on A we say that
T is differentiable at a.e. x ∈ A if T i is differentiable at a.e. x ∈ A in the sense of
[26], where T = T 1 ⊕ √−1T 2 and T i is an R-valued tensor field for each i = 1, 2.
Then we put ∇T := ∇T 1 ⊕ √−1∇T 2. Similarly for a.e. differentiable function f ,
we define ∂f, ∂f, grad′f, grad′′f by df = ∂f + ∂f as T ∗

C
X = (T ∗X)′ ⊕ (T ∗X)′′ and

gradf = grad′f ⊕ grad′′f as TCX = T ′X ⊕ T ′′X .
For an open subset U of X and p ∈ (1,∞) let H1,p

C
(U) be the completion of the

space LIPloc,C(U), which is the set of C-valued locally Lipschitz functions on U , with
respect to the norm

||f ||H1,p
C

(U) :=

(∫
U

(|f |p + |df |p) dHn

)1/p

. (3)

It is easy to check that a C-valued function f on U is in H1,p
C

(U) if and only if
f i ∈ H1,p(U) for each i = 1, 2, where f = f1 +

√−1f2 and H1,p(U) is the Sobolev
space for R-valued functions defined by the completion with respect to the norm (3) of
the space LIPloc(U) of all R-valued locally Lipschitz functions on U . In particular for
every f ∈ H1,p

C
(U), f is differentiable a.e. on U and ||f ||H1,p

C

= (||f ||pLp + ||df ||pLp)1/p.

Recall that the Levi-Civita connection and Chern connection coincide on a smooth
Kähler manifold. The following is a nonsmooth analogue of this fact.

Proposition 2.1. Let A be a Borel subset of X and let V be a vector field on A
which is differentiable at a.e. x ∈ A. If V (x) ∈ T ′X (resp. ∈ T ′′X) holds a.e. x ∈ A,
then ∇V (x) ∈ T ′X ⊗ T ∗

C
X (resp. ∈ T ′′X ⊗ T ∗

C
X) holds a.e. x ∈ A.

Proof. The proof is standard. See for instance page 4 of [45] with ∇J ≡ 0.

2.2. Lp-convergence on complex setting. In [25, 33] the notion of Lp-
convergence of R-valued functions, or more generally, R-valued tensor fields, with
respect to the Gromov-Hausdorff topology was introduced. In this section we extend
this to the C-valued case and discuss its applications.

For the reader’s convenience we first recall the definition of Lp-convergence of

R-valued functions [25, 33]. Let p ∈ (1,∞), let R > 0 and let xi
GH→ x, where xi ∈ Xi

and x ∈ X .

Definition 2.2 (Lp-convergence of R-valued functions). Let fi be a sequence in
Lp(BR(xi)).

(i) We say that fi Lp-converges weakly to f ∈ Lp(BR(x)) on BR(x) if
supi ||fi||Lp <∞ and

lim
i→∞

∫
Br(yi)

fi dH
n =

∫
Br(y)

f dHn

hold for any sufficiently small r > 0 and yi
GH→ y, where yi ∈ BR(xi) and

y ∈ BR(x).
(ii) We say that fi Lp-converges strongly to f ∈ Lp(BR(x)) on BR(x) if fi Lp-

converges weakly to f ∈ Lp(BR(x)) on BR(x) and

lim sup
i→∞

∫
BR(xi)

|fi|p dHn =

∫
BR(x)

|f |p dHn.
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Next we consider the case of vector fields:

Definition 2.3 (Lp-convergence of R-valued vector fields). Let Vi be a sequence
in Lp(TBR(xi)).

(i) We say that Vi Lp-converges weakly to V ∈ Lp(TBR(x)) on BR(x) if
supi ||Vi||Lp <∞ and

lim
i→∞

∫
Br(yi)

gXi(Vi, grad rzi) dH
n =

∫
Br(y)

gX(V, grad rz) dH
n

holds for any sufficiently small r > 0 and yi, zi
GH→ y, z, respectively, where

yi, zi ∈ BR(xi), y, z ∈ BR(x) and rz denotes the distance function from z.
(ii) We say that Vi Lp-converges strongly to V ∈ Lp(TBR(x)) on BR(x) if it is

an Lp-weak convergent sequence and

lim sup
i→∞

∫
BR(xi)

|Vi|p dHn =

∫
BR(x)

|V |p dHn.

The following proposition shows that the weighted version of Lp-convergence is
equivalent to the unweighted version:

Proposition 2.4. Let Vi be a sequence in Lp(TBR(xi)). Then Vi L
p-converges

weakly to V on BR(x) if and only if supi ||Vi||Lp <∞ and

lim
i→∞

∫
Br(yi)

gXi(Vi, grad rzi) dH
n
Fi

=

∫
Br(y)

gX(V, grad rz) dH
n
F (4)

hold for any sufficiently r > 0 and yi, zi
GH→ y, z, respectively. Moreover Vi Lp-

converges strongly to V on BR(x) if and only if Vi Lp-converges weakly to V on
BR(x) and

lim sup
i→∞

∫
BR(xi)

|Vi|p dHn
Fi

=

∫
BR(x)

|V |p dHn
F (5)

holds.

Proof. We only give a proof of ‘if’ part because the proof of the converse is similar.
Suppose that supi ||Vi||Lp <∞ and (4) hold. Then by definition, eFiVi L

p-converges
weakly to eFV on BR(x). Thus Vi, which is equal to e−Fi(eFiVi), L

p-converges weakly
to V = e−F (eFV ) on BR(x) (c.f. [25, Proposition 3.48]).

Next suppose that Vi Lp-converges weakly to V on BR(x) and that (5) holds.
Then by definition, eFi/(2p)Vi Lp-converges strongly to eF/(2p)V on BR(x). Thus
Vi = e−Fi/(2p)(eFi/(2p)Vi) L

p-converges strongly to

V = e−F/(2p)(eF/(2p)V )

on BR(x) (c.f. [25, Proposition 3.70]).

We skip the introduction of the definition of Lp-convergence of general tensor
fields. However note that we can prove the equivalence as in Proposition 2.4 for
Lp-tensor fields. See [25] for the detail.

Let r, s ∈ Z≥0.
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Definition 2.5 (Lp-convergence of C-valued tensor fields). Let Ti be a sequence
in Lp

C
((T r

s )CBR(xi)). We say that Ti L
p-converges weakly (or strongly, respectively) to

T ∈ Lp
C
((T r

s )CBR(x)) on BR(x) if T j
i Lp-converges weakly (or strongly, respectively)

to T j on BR(x) for each j = 1, 2, where Ti = T 1
i +

√−1T 2
i and T = T 1 +

√−1T 2.

From the definition we see that many properties for Lp-convergence in real setting
given in [25] can be extended canonically to the complex setting. For example we have
the following:
(2.2a) An Lp-bounded sequence has an Lp-weak convergent subsequence (c.f. [25,

Proposition 3.50]).
(2.2b) The Lp-norms of an Lp-weak convergent sequence is lower semicontinuous

(c.f. [25, Proposition 3.64]).
(2.2c) If supi ||Ti||L∞ <∞, then Ti L

p-converges weakly (or strongly, respectively)
to T on BR(x) for some p ∈ (1,∞) if and only if Ti Lp-converges weakly
(or strongly, respectively) to T on BR(x) for every p ∈ (1,∞) (c.f. [25,
Proposition 3.69]).

(2.2d) The equivalence as in Proposition 2.4 also holds for complex valued tensor
fields by the same reason.

(2.2e) Let f be a complex valued Lipschitz function on X . Then by [24, Theorem
4.2] there exists a sequence of fi ∈ LIPC(Xi) with

sup
i
||dfi||L∞ <∞

such that fi, dfi L
2-converge strongly to f, df on X , respectively.

(2.2f) Let T ∈ Lp
C
((T r

s )CBR(x)). Then there exists a sequence of Ti ∈
Lp
C
((T r

s )CBR(xi)) such that Ti L
p-converges strongly to T on BR(x).

The following Rellich Lemma plays a key role in establishing the spectral conver-
gence of weighted (∂-) Laplacian:

Theorem 2.6 (Rellich compactness). Let fi be a sequence in H1,p
C

(BR(xi)) with

supi ||fi||H1,p
C

< ∞. Then there exist a subsequence fi(j) and f ∈ H1,p
C

(BR(x)) such

that fi(j) Lp-converges strongly to f on BR(x) and that dfi(j) Lp-converges weakly to
df on BR(x).

Proof. This is a direct consequence of the real version shown in [25, Theorem
4.9].

For every l ∈ {1, . . . , r+ s} let J l be the complex structure on (T r
s )xX defined by

J l(v1 ⊗ · · · ⊗ vr ⊗ v∗r+1 ⊗ · · · ⊗ v∗r+s)

:=

{
v1 ⊗ · · · ⊗ vl−1 ⊗ Jvl ⊗ vl+1 · · · ⊗ vr ⊗ v∗r+1 ⊗ · · · ⊗ v∗r+s if l ≤ r,

v1 ⊗ · · · ⊗ vr ⊗ v∗r+1 ⊗ · · · ⊗ v∗l−1 ⊗ J∗v∗l ⊗ v∗l+1 · · · ⊗ v∗r+s if l ≥ r + 1.

Proposition 2.7. Let Ti be a sequence in Lp
C
((T r

s )CBR(xi)) and let T ∈
Lp
C
((T r

s )CBR(x)). Then the following are equivalent.
(1) Ti L

p-converges weakly (or strongly, respectively) to T on BR(x).
(2) For every l ∈ {1, . . . , r + s}, T ′i and T ′′i Lp-converge weakly (or strongly,

respectively) to T ′ and T ′′ on BR(x), respectively, where Ti = T
′

i ⊕ T
′′

i and

T = T ′ ⊕ T
′′

with respect to the decompositions by ±√−1-eigenspaces of J l
i

and J l, respectively.
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(3) For some l ∈ {1, . . . , r + s}, T
′

i and T
′′

i Lp-converge weakly (or strongly,

respectively) to T
′

and T
′′

on BR(x), respectively.

Proof. Since J l
i L2-converges strongly to J l on X with supi ||J l

i ||L∞ < ∞, the
assertion follows from [25, Propositions 3.48 and 3.70] and equalities

T
′

i =
1

2
(Ti −

√−1J l
iTi), T

′′

i =
1

2
(Ti +

√−1J l
iTi).

Remark 2.8. It is a direct consequence of Proposition 2.7 that the type of tensor
fields is preserved with respect to the Lp-weak convergence. For example the Lp-weak
limit of a sequence of (q, r)-forms is also a (q, r)-form.

Proposition 2.9. Let f and g be in the set LIPC(X) of all Lipschitz functions
on X. Then∫

X

h∗X(df, dg)dHn = 2

∫
X

h∗X(∂f, ∂g)dHn = 2

∫
X

h∗X(∂f, ∂g)dHn. (6)

In particular, ∫
X

|df |2 dHn = 2

∫
X

|∂f |2 dHn = 2

∫
X

|∂f |2 dHn

and ∫
X

|df |2 dHn
F

L�
∫
X

|∂f |2 dHn
F

L�
∫
X

|∂f |2 dHn
F ,

where for any nonnegative real numbers a, b, a
L� b means that there exists a positive

constant C := C(L) > 1 depending only on L such that C−1b ≤ a ≤ Cb holds, L being
the constant in (2.1d).

Proof. By (2.2e), there exist sequences fi and gi ∈ LIPC(Xi) such that

sup
i

(||dfi||L∞ + ||dgi||L∞) <∞

and that fi, dfi, gi and dgi L
2-converge strongly to f, df, g and dg on X respectively.

By the smoothing via the heat flow (c.f. [1, 22]) without loss of generality we can
assume fi, gi ∈ C∞

C
(Xi) for every i <∞, where C∞

C
(Xi) is the set of C-valued smooth

functions on Xi. Since Δ = 2Δ∂ holds on smooth setting, we have∫
Xi

h∗Xi
(dfi, dgi) dH

n =

∫
Xi

(Δfi)gi dH
n (7)

= 2

∫
Xi

(Δ∂fi)gi dH
n

= 2

∫
Xi

h∗Xi
(∂fi, ∂gi) dH

n.

Thus since Proposition 2.7 yields that ∂fi and ∂gi L
2-converge strongly to ∂f and ∂g

on X respectively by letting i→∞ in (7), we have∫
X

h∗X(df, dg) dHn = 2

∫
X

h∗X(∂f, ∂g) dHn.
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Similarly we have ∫
X

h∗X(df, dg) dHn = 2

∫
X

h∗X(∂f, ∂g) dHn.

This completes the proof.

Remark 2.10. By Proposition 2.9 the completion of LIPC(X) with respect to the
norm (∫

X

(|f |2 + |∂f |2) dHn
F

)1/2

coincides with H1,2
C

(X) (however the norms are different).

Corollary 2.11. Let fi be a sequence of H1,2
C

(BR(xi)) with

sup
i

(∫
BR(xi)

(|fi|2 + |∂fi|2) dHn

)
<∞,

and let f be the L2-weak limit of them on BR(x). Then for every r < R we see
that f |Br(x) ∈ H1,2

C
(Br(x)), that fi L

2-converges strongly to f on Br(x) and that dfi
L2-converges weakly to df on Br(x). Moreover if ∂fi L

2-converges strongly to ∂f on
Bs(x) for some s < R, then df L2-converges strongly to df on Br(x) for every r < s.

Proof. This follows directly from Theorem 2.6 and the following claim:

Claim 2.12. Let f ∈ H1,2
C

(BR(x)) with∫
BR(x)

(|f |2 + |∂f |2) dHn ≤ L̂.

Then for every r < R we have∫
Br(x)

|df |2 dHn ≤ C(r, R, L̂).

The proof is as follows: Let r < R and u := (r + R)/2. Let gr,R be the Lipschitz
function on R defined by

gr,R(t) :=

⎧⎪⎨⎪⎩
1 if t ≤ r,
u−t
u−r if r ≤ t ≤ u,

0 if u ≤ t,

and let G = Gx
r,R be the Lipschitz function on X defined by G(y) := gr,R(dX(x, y)).

Then since |∇G| ≤ C(r, R), we have Gf ∈ H1,2
C

(X) and∫
X

|∂(Gf)|2 dHn ≤ C(r, R, L̂),

Proposition 2.9 gives∫
Br(x)

|df |2 dHn ≤
∫
X

|d(Gf)|2 dHn = 2

∫
X

|∂(Gf)|2 dHn ≤ C(r, R, L̂).
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This completes the proof of Claim 2.12.
Claim 2.12 with Theorem 2.6 yields that for every r < R we see that f |Br(x) ∈

H1,2
C

(Br(x)), that fi L
2-converges strongly to f on Br(x) and that dfi L

2-converges
weakly to df on Br(x).

Next we suppose that ∂fi L
2-converges strongly to ∂f on Bs(x) for some s < R.

Let r < s, let Gi := Gxi
r,s and let G := Gx

r,s. Then since drxi L2-converges strongly
to drx on X (c.f. [25, Proposition 3.44]), we see that Gi, dGi L2-converge strongly
to G, dG on X , respectively. Note that Gifi ∈ H1,2

C
(Xi) and Gf ∈ H1,2

C
(X) hold.

Proposition 2.9 and the assumption give

lim
i→∞

∫
Xi

|d(Gifi)|2 dHn

= 2 lim
i→∞

∫
Xi

|∂(Gifi)|2 dHn

= 2 lim
i→∞

∫
Br(xi)

(|fi|2|∂Gi|2 + fiGihXi(∂fi, ∂Gi)

+ fiGihXi(∂Gi, ∂fi) + |Gi|2|∂fi|2
)
dHn

= 2

∫
Br(x)

(|f |2|∂G|2 + fGhX(∂f, ∂G) + fGhX(∂G, ∂f) + |G|2|∂f |2) dHn

= 2

∫
X

|∂(Gf)|2 dHn

=

∫
X

|d(Gf)|2 dHn.

Thus d(Gifi) L
2-converges strongly to d(Gf) on X . By restricting this on Br(x) we

have the assertion.

3. Weighted Laplacian on the limit space.

3.1. Weighted Laplacian and weighted ∂-Laplacian. From now on we con-
sider the weighted measure:

dHn
Fi

:= eFi dHn.

As stated in 2.1, this measure converges to eFdHn in our setting. Let U be an open
subset of X .

Remark 3.1. The completion of LIPC(U) with respect to the weighted norm(∫
U

(|f |p + |df |p) dHn
F

)1/p

.

coincides with H1,p
C

(U) (but the norms differ) because 0 < C1(L) ≤ eF ≤ C2(L) <∞
holds, where Ci(L) is a positive constant depending only on L in (2.1d).

Definition 3.2 (Weighted Laplacian). Let D2
C
(ΔF , U) be the set of f ∈ H1,2

C
(U)

such that there exists g ∈ L2
C
(U) satisfying∫

U

h∗X(df, dφ) dHn
F =

∫
U

gφ dHn
F (8)
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for every φ ∈ LIPc,C(U), where LIPc,C(U) is the space of C-valued Lipschitz functions
on U with compact support. Since g is unique we denote it by ΔF f .

If F ≡ 0, then we put Δ := Δ0.
Recall that we can define ΔF as real operator as follows: Let D2(ΔF , U) be the set

of f ∈ H1,2(U) such that there exists a real valued L2-function g ∈ L2(U) satisfying
(8) for every φ ∈ LIPc(U), where L2(U) is the set of R-valued Borel L2-functions on
U and LIPc(U) is the set of R-valued Lipschitz functions on U with compact support.
In this case since g is unique we denote it by ΔF

R
f , or ΔF f because the following

proposition holds:

Proposition 3.3. Let f = f1 +
√−1f2 be a function on U . We see that

f ∈ D2
C
(ΔF , U) holds if and only if f i ∈ D2(ΔF , U) holds for each i = 1, 2. Moreover

if f ∈ D2
C
(ΔF , U), then ΔF f = ΔF

R
f1 +

√−1ΔF
R
f2.

Proof. It is a direct consequence to substitute f = f1 +
√−1f2 and φ = φ1 +√−1φ2 in (8).

Corollary 3.4. Let f ∈ D2
C
(ΔF , U). Then f ∈ D2

C
(ΔF , U) with ΔF f = ΔF f .

Moreover we have the following:
(1) The eigenvalues of ΔF are nonnegative real numbers.
(2) For any f ∈ D2

C
(ΔF , X) and λ ≥ 0, f is a λ-eigenfunction of ΔF if and only

if f i is a λ-eigenfunction of ΔF for each i = 1, 2,

Proof. Proposition 3.3 yields f ∈ D2
C
(ΔF , U) with ΔF f = ΔF f1 −√−1ΔF f2 =

ΔF f .
Let f be a λ-eigenfunction of ΔF . Since

0 ≤
∫
X

h∗X(df, df) dHn
F =

∫
X

(ΔF f)f dHn
F = λ

∫
X

|f |2 dHn
F ,

λ is a nonnegative real number. Therefore

ΔF f1 = ΔF

(
f + f

2

)
=

ΔF f +ΔF f

2
= λf1.

Similarly we have ΔF f2 = λf2. This completes the proof.

We now give the definition of weighted ∂-Laplacian.

Definition 3.5 (Weighted ∂-Laplacian). Let D2
C
(ΔF

∂
, U) be the set of f ∈

H1,2
C

(U) such that there exists g ∈ L2
C
(U) satisfying∫

U

h∗X(∂f, ∂φ) dHn
F =

∫
U

gφdHn
F (9)

for every φ ∈ LIPc,C(U). Since g is unique we denote it by ΔF
∂
f .

If F ≡ 0, then we put Δ∂ := Δ0
∂
.

The following relationship between Δ and Δ∂ is well known on smooth setting:

Proposition 3.6. We have D2
C
(Δ, U) = D2

C
(Δ∂ , U) for every open subset U of

X. Moreover for every f ∈ D2
C
(Δ, U) we have

Δf = 2Δ∂f.
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Proof. This is a direct consequence of the following:

Claim 3.7. Let f ∈ H1,2
C

(U) and let g ∈ LIPc,C(U). Then∫
U

h∗X(df, dg)dHn = 2

∫
U

h∗X(∂f, ∂g)dHn.

The proof is as follows. There exists φ ∈ LIPc(U) such that φ|supp g ≡ 1. Then
since it is easy to check that φf ∈ H1,2(X), (6) gives∫

U

h∗X(df, dg)dHn =

∫
X

h∗X(d(φf), dg)dHn

= 2

∫
X

h∗X(∂(φf), ∂g)dHn = 2

∫
U

h∗X(∂f, ∂g)dHn.

The eigenvalues of ΔF
∂
on X are also nonnegative real numbers because∫

X

(ΔF
∂
u)v dHn

F =

∫
X

h∗X(∂u, ∂v) dHn
F =

∫
X

uΔF
∂
v dHn

F

holds for any u, v ∈ D2
C
(ΔF

∂
, X).

Proposition 3.8. Assume that Hn(X \ U) = 0 and that the inclusion

H1,2
c (U) ↪→ H1,2(X)

is isomorphic, where H1,2
c (U) is the closure of LIPc(U) in H1,2(X). Let f ∈ H1,2

C
(X)

with f |U ∈ D2
C
(Δ∂ , U) (or f |U ∈ D2

C
(ΔF , U), respectively). Then f ∈ D2

C
(Δ∂ , X) (or

f ∈ D2
C
(ΔF , X), respectively).

Proof. We only give a proof in the case of ΔF
∂
.

Let g ∈ LIPC(X). By the assumption, there exists a sequence gi ∈ LIPc,C(U)

such that gi → g in H1,2
C

(X). Then since∫
X

hX(∂f, ∂gi) dH
n
F =

∫
X

(ΔF
∂
f)gi dH

n
F ,

letting i→∞ shows that f ∈ D2
C
(ΔF

∂
, X).

Remark 3.9. In general, if dimH(X \ U) < n− 2, then the inclusion

H1,2
c (U) ↪→ H1,2(X)

is isomorphic. See for instance [31, Theorem 4.6], [32, Theorem 4.13] and [42, Theo-
rem 4.8]. Moreover if X \U satisfies a good regularity (e.g. it is a submanifold), then
the above isometry hold even if dimH(X \ U) = n− 2.

We end this section by giving a relationship between ΔF ,ΔF
∂
and Δ,Δ∂ , respec-

tively, which are well-known on smooth setting.

Proposition 3.10. Suppose F |U ∈ H1,2(U). Then for every f ∈ H1,2
C

(U), we
have the following equivalence:
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(1) If g∗X(df, dF ) ∈ L2
C
(U), then f ∈ D2

C
(ΔF , U) holds if and only if f ∈ D2

C
(Δ, U)

holds. In this case ΔF f = Δf − g∗X(df, dF ).
(2) If hX(∂f, ∂F ) ∈ L2

C
(U), then f ∈ D2

C
(ΔF

∂
, U) holds if and only if f ∈

D2
C
(Δ∂ , U) holds. In this case ΔF

∂
f = Δ∂f − h∗X(∂f, ∂F ).

Proof. We give a proof of ‘only if’ part of (2) because the proofs of the other cases
are similar.

Let f ∈ D2
C
(ΔF

∂
, U) and let φ ∈ LIPc,C(U). Since e−Fφ ∈ LIPc,C(U), we have∫

U

(ΔF
∂
f)φdHn =

∫
U

(ΔF
∂
f)e−FφdHn

F

=

∫
U

h∗X
(
∂f, ∂(e−Fφ)

)
dHn

F

=

∫
U

h∗X
(
∂f,−e−Fφ∂F + e−F∂φ

)
eF dHn

= −
∫
U

h∗X
(
∂f, ∂F

)
φdHn +

∫
U

h∗X
(
∂f, ∂φ

)
dHn.

Thus ∫
U

h∗X
(
∂f, ∂φ

)
dHn =

∫
U

(
ΔF

∂
f + h∗X

(
∂f, ∂F

))
φdHn.

This completes the proof.

Remark 3.11. Similarly we can define the weighted ∂-Laplacian, ΔF
∂ , and prove

similar results above. By combining Remark 2.10 with Theorem 2.6 we see that the
spectrums of ΔF

∂
, ΔF

∂ and ΔF are discrete and unbounded, and that each eigenspace
is finite dimensional.

Remark 3.12. For any q ∈ (1,∞) and p ∈ [1,∞), let Dq,p
C

(ΔF
∂
, X) be the

set of f ∈ H1,q(U) such that there exists g ∈ Lp
C
(U) such that (9) holds for every

φ ∈ LIPC(X). Since g is unique, we also denote it by ΔF
∂
f . Then by the proof of

Proposition 3.10, for every f ∈ D2
C
(ΔF

∂
, U) (or f ∈ D2

C
(Δ∂ , U), respectively), we have

f ∈ D2,1
C

(Δ∂ , U) (or f ∈ D2,1
C

(ΔF
∂
, U), respectively) with ΔF

∂
f = Δ∂f − h∗X(∂f, ∂F ).

Note that D2,2
C

(ΔF
∂
, U) = D2

C
(ΔF

∂
, U).

3.2. Spectral convergence. From now on we will discuss the behavior of ΔF
∂

with respect to the Gromov-Hausdorff topology. We first show the spectral conver-
gence. Note that by Proposition 2.9 the smallest eigenvalue of ΔF

∂
on X is 0.

Proposition 3.13. For every k ≥ 1 we have

lim
i→∞

λk(Δ
Fi

∂
, Xi) = λk(Δ

F
∂
, X),

where λk(Δ
F
∂
, X) denotes the k-th positive eigenvalue of ΔF

∂
on X counted with mul-

tiplicity.

Proof. This is a direct consequence of Theorem 2.6 and min-max principle. How-
ever we give a proof in the case k = 1 for reader’s convenience (c.f. [27, Theorem
1.5]).
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We first prove the upper semicontinuity of λ1(Δ
Fi

∂
, Xi). Recall that

λ1(Δ
F
∂
, X) = inf

f

∫
X
|∂f |2 dHn

F∫
X |f |2 dHn

F

where f runs over all nonconstant Lipschitz functions with∫
X

f dHn
F = 0. (10)

Let f be a nonconstant complex valued Lipschitz function on X with (10). Then by
(2.2e), there exists a sequence of fi ∈ LIPC(Xi) with∫

Xi

fi dH
n
Fi

= 0

such that fi, dfi L
2-converge strongly to f, df on X , respectively. Thus

lim sup
i→∞

λ1(Δ
Fi

∂
, Xi) ≤ lim

i→∞

∫
Xi
|∂fi|2 dHn

Fi∫
Xi
|fi|2 dHn

Fi

=

∫
X
|∂f |2 dHn

F∫
X |f |2 dHn

F

.

Since f is arbitrary, we have

lim sup
i→∞

λ1(Δ
Fi

∂
, Xi) ≤ λ1(Δ

F
∂
, X).

Next we prove the lower semicontinuity. Let fi be a sequence in D2
C
(ΔFi

∂
, Xi) with

ΔFi

∂
fi = λ1(Δ

Fi

∂
, Xi)fi

and ∫
Xi

|fi|2 dHn
Fi

= 1.

Then it follows from∫
Xi

|∂fi|2 dHn
Fi

=

∫
Xi

(ΔFi

∂
fi)fi dH

n
Fi

= λ1(Δ
Fi

∂
, Xi)

and the upper semicontinuity of λ1(Δ
Fi

∂
, Xi) that supi ||fi||H1,2

C

<∞ holds. Thus by

Theorem 2.6 without loss of generality we can assume that there exists f ∈ H1,2
C

(X)
such that fi L

2-converges strongly to f on X and that dfi L
2-converges weakly to df

on X . In particular Proposition 2.7 yields that ∂fi L
2-converges weakly to ∂f on X .

Thus by the lower semicontinuity of the L2-norms of an L2-weak convergent sequence,
we have

lim inf
i→∞

λ1(Δ
Fi

∂
, Xi) = lim inf

i→∞

∫
Xi

|∂fi|2 dHn
Fi

≥
∫
X

|∂f |2 dHn
F

≥ λ1(Δ
F
∂
, X),
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where we used ∫
X

|f |2 dHn
F = lim

i→∞

∫
Xi

|fi|2 dHn
Fi

= 1

and ∫
X

f dHn
F = lim

i→∞

∫
Xi

fi dH
n
Fi

= 0.

This completes the proof.

Proposition 3.14. Let f be the L2-weak limit on X of a sequence of fi ∈
D2

C
(ΔFi

∂
, Xi) with

sup
i
(||fi||H1,2

C

+ ||ΔFi

∂
fi||L2) <∞.

Then we have the following:

(1) f ∈ D2
C
(ΔF

∂
, X).

(2) fi, dfi L
2-converge strongly to f, df on X, respectively.

(3) ΔFi

∂
fi L

2-converges weakly to ΔF
∂
f on X.

Proof. By Theorem 2.6 we see that f ∈ H1,2
C

(X), that fi L
2-converges strongly

to f on X and that dfi L2-converges weakly to df on X . By the compactness of
L2-weak convergence, without loss of generality we can assume that there exists the
L2 weak limit G ∈ L2

C
(X) of ΔFi

∂
fi. Let φ ∈ LIPC(X). By [24, Theorem 4.2] there

exists a sequence φi ∈ LIPC(Xi) such that φi, dφi L2-converge strongly to φ, dφ on
X , respectively. Proposition 2.7 yields that ∂fi L

2-converges weakly to ∂f on X and
that ∂φi L

2-converges strongly to ∂φ on X . Since∫
Xi

hXi(∂fi, ∂φi) dH
n
Fi

=

∫
Xi

(ΔFi

∂
fi)φi dH

n
Fi
,

by letting i→∞ we have∫
X

hX(∂f, ∂φ) dHn
F =

∫
X

GφdHn
F .

This gives (1) and (3).

On the other hand

lim
i→∞

∫
Xi

|∂fi|2 dHn
Fi

= lim
i→∞

∫
Xi

(ΔFi

∂
fi)fi dH

n
Fi

=

∫
X

(ΔF
∂
f)f dHn

F

=

∫
X

|∂f |2 dHn
F .

Thus by Proposition 2.4, ∂fi L
2-converges strongly to ∂f on X . Therefore Corollary

2.11 gives (2).
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Proposition 3.15. For any r ≤ R and f ∈ H1,2
C

(Br(x)) we have

1

Hn
F (Br(x))

∫
Br(x)

∣∣∣∣∣f − 1

Hn
F (Br(x))

∫
Br(x)

f dHn
F

∣∣∣∣∣
2

dHn
F (11)

≤ C(n,K,R, L)
r2

Hn
F (Br(x))

∫
Br(x)

|df |2 dHn
F .

Proof. It is a direct consequence of [6, Theorem 2.15] that (11) holds if F ≡ 0.
Since e−L ≤ eF ≤ eL and the left hand side of (11) is equal to

inf
c∈C

(
1

Hn
F (Br(x))

∫
Br(x)

|f − c|2 dHn
F

)
,

we have

inf
c∈C

(
1

Hn
F (Br(x))

∫
Br(x)

|f − c|2 dHn
F

)

≤ C(n,K,R, L) inf
c∈C

(
1

Hn(Br(x))

∫
Br(x)

|f − c|2 dHn

)

≤ C(n,K,R, L)
r2

Hn(Br(x))

∫
Br(x)

|df |2 dHn

≤ C(n,K,R, L)
r2

Hn
F (Br(x))

∫
Br(x)

|df |2 dHn
F .

This completes the proof.

Proposition 3.16. Let g ∈ L2
C
(X). Then there exists f ∈ D2

C
(ΔF

∂
, X) such that

ΔF
∂
f = g holds if and only if ∫

X

g dHn
F = 0. (12)

Moreover f as above is unique if ∫
X

f dHn
F = 0. (13)

Thus we denote it (ΔF
∂
)−1g.

Proof. We give a proof of ‘if’ part only because the proof of ‘only if’ part is trivial.

Suppose that (12) holds. Let H
1,2

C (X) be the closed subspace of f ∈ H1,2
C

(X) with
(13). Then by Propositions 2.9 and 3.15 we have∫

X

|f |2 dHn
F ≤ C(n,K, d, L)

∫
X

|∂f |2 dHn
F

for every f ∈ H
1,2

C (X). In particular

||f ||
H

1,2
C

:=

(∫
X

|df |2 dHn
F

)1/2
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gives a Hilbert norm on H
1,2

C (X) which is equivalent to || · ||H1,2
C

. Let us consider a

C-linear functional F on H
1,2

C (X) defined by

F(φ) :=
∫
X

φ g dHn
F .

The Riesz representation theorem yields that there exists a unique f ∈ H
1,2

C (X) such
that

F(φ) =
∫
X

h∗X(∂φ, ∂f) dHn
F

for every φ ∈ H
1,2

C (X). Then it is easy to check that f ∈ D2
C
(ΔF

∂
, X) with ΔF

∂
f = g.

The uniqueness also follows from the argument above.

Proposition 3.17. Let g be the L2-weak limit on X of a sequence of gi ∈ L2
C
(Xi)

with ∫
Xi

gi dH
n
Fi

= 0.

Then (ΔFi

∂
)−1gi, d((Δ

Fi

∂
)−1gi) L2-converge strongly to (ΔF

∂
)−1g, d((ΔF

∂
)−1g) on X,

respectively.

Proof. Let fi := (ΔFi

∂
)−1gi. Propositions 2.9 and 3.15 yield∫

Xi

|fi|2 dHn
Fi
≤ C(n,K, d, L)

∫
Xi

|∂fi|2 dHn
Fi

≤ C(n,K, d, L)

∫
Xi

gifi dH
n
Fi

≤ C(n,K, d, L)

(∫
Xi

|gi|2 dHn
Fi

)1/2 (∫
Xi

|fi|2 dHn
Fi

)1/2

.

In particular we have supi ||fi||H1,2
C

<∞. Thus by Theorem 2.6 and Proposition 3.14

without loss of generality we can assume that there exists f̂ ∈ D2
C
(ΔF

∂
, X) such that

fi, dfi L
2-converge strongly to f̂ , df̂ on X , respectively and that ΔFi

∂
fi L

2-converges

weakly to ΔF
∂
f̂ on X . Since ΔF

∂
f̂ = g and∫

X

f̂ dHn
F = lim

i→∞

∫
X

fi dH
n
Fi

= 0,

we have f̂ = (ΔF
∂
)−1g. This completes the proof.

Remark 3.18. Similar results as above also hold for ΔF and ΔF
∂ .

Proposition 3.19. Assume that Hn(X \ U) = 0 and that the inclusion

H1,2
c (U) ↪→ H1,2(X)

is isomorphic. Let f be a complex valued function on U such that f |O ∈ H1,2
C

(O)
for every relatively compact open subset O of U and that ∂f ∈ L2((T ∗U)′′) (or ∂f ∈
L2
C
((T ∗U)′), respectively). Then we have the following:
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(1) There exists u ∈ H1,2
C

(X) such that ∂f = ∂u on U (or ∂f = ∂u on U ,
respectively).

(2) If f ∈ L1
C
(U), then f ∈ H1,2

C
(X).

In particular, the map

H1,2
C

(X)→ H1,2
C

(U)

defined by the restriction is isomorphic.

Proof. We only give a proof of the case of ∂f ∈ L2
C
((T ∗U)′′). We first assume

f ∈ L∞
C
(U). By our assumption of the isomorphism H1,2

c (U) ↪→ H1,2(X), there

exists a sequence φi ∈ LIPc,C(U) such that φi → 1 in H1,2
C

(X). We use the following
notation; for any real valued function g and L1 < L2, let

gL2

L1
(x) :=

⎧⎪⎨⎪⎩
L2 if g(x) ≥ L2,

g(x) if L1 < g(x) < L2,

L1 if g(x) ≤ L1.

Since (φi)
1
0 ∈ LIPc,C(U) converges to 1 in H1,2

C
(X), without loss of generality we can

assume that 0 ≤ φi ≤ 1. Then since φif ∈ H1,2
C

(X), we have∫
X

|d(φif)|2 dHn

= 2

∫
X

|∂(φif)|2 dHn

= 2

∫
X

(|φi|2|∂f |2 + |f∂φi|2 + φifh
∗
X(∂f, ∂φi) + φifh

∗
X(∂φi, ∂f)

)
dHn.

In particular, since φif → f in L2
C
(X) and

lim sup
i→∞

∫
X

|d(φif)|2 dHn <∞,

we have f ∈ H1,2
C

(X).
From now on, we prove Proposition 3.19 for general f . For every L ≥ 1, let

fL := (f1)
L
−L +

√−1(f2)L−L. Note that fL ∈ L∞(X), that fL|O ∈ H1,2
C

(O) for every

relatively compact open subset O of U and that ∂fL ∈ L2
C
((T ∗U)′′) with∫

X

|∂fL|2 dHn ≤
∫
X

|∂f |2 dHn.

Thus from the above, we have fL ∈ H1,2
C

(X). By Theorem 2.6 and Proposition 3.15,

there exist u ∈ H1,2
C

(X) and a sequence Li →∞ such that the functions

fLi −
1

Hn(X)

∫
X

fLi dH
n (14)

converges to u in L2
C
(X) and that ∂fLi L

2 converges weakly to ∂u on X .
On the other hand, since f = fL on DL := {x ∈ X ; |f(x)| ≤ L}, we have

∂f(x) = ∂fL(x) for a.e. x ∈ DL (see for instance [3, Corollary 2.25]). Thus we see
that ∂fLi L

2 converges weakly to ∂f on X . This completes the proof of (1).
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Moreover if f ∈ L1
C
(X), then since the functions (14) converges to

f − 1

Hn(X)

∫
X

f dHn

in L1
C
(X), we have (2).

3.3. The covariant derivative ∇′′ in the manner of Gigli. In this section
we define ∇′′ for vector fields on nonsmooth setting in the manner of [21]. For that,
let us start giving an observation on smooth setting (note that in this section we will
always consider the nonweighted case).

Let (M, gM , J) be a compact Kähler manifold and let V be a smooth C-valued
vector field on M . Then it is easy to check that

f0 gM (∇′′V, gradf1 ⊗ df2) = gM (f0 grad
′′f2, grad gM (V, grad f1))

−f0 gM (V,∇grad′′f2 grad f1)

for any fi ∈ C∞
C
(M), where ∇V = ∇′V ⊕ ∇′′V with respect to the decomposition

TCX ⊗ T ∗
C
X = (TCX ⊗ (T ∗X)′)⊕ (TCX ⊗ (T ∗X)′′). In particular∫
M

f0 gM (∇′′V, grad f1 ⊗ df2) dH
n (15)

=

∫
M

(−div(f0 grad′′f2) gM (V, gradf1)− f0 gM (V,∇grad′′f2 gradf1
)
dHn.

Note that this gives a characterization of ∇′′V , that is, if some T ∈ L2
C
(TCM ⊗T ∗

C
M)

satisfies∫
M

f0 gM (T, gradf1 ⊗ df2) dH
n

=

∫
M

(−div(f0grad′′f2)gM (V, gradf1)− f0 gM (V,∇grad′′f2 gradf1
)
dHn.

for any fi ∈ C∞
C
(M), then T = ∇′′V in L2

C
(TCM ⊗ T ∗

C
M). This follows directly from

the fact that the space{
N∑
i=1

f0,i gradf1,i ⊗ df2,i ; N ∈ N, fj,i ∈ C∞C (M)

}

is dense in L2
C(TCM ⊗ T ∗

C
M).

We will extend this observation to our singular setting. For this purpose we first
give the following definition:

Definition 3.20 (Divergence). Let D2
C
(div, U) be the set of V ∈ L2

C
(U) such

that there exists f ∈ L2
C
(X) satisfying∫
U

gX(V, gradh) dHn = −
∫
U

fh dHn

for every h ∈ LIPc,C(U). Since f is unique, we denote it by div V .

Proposition 3.21. Let V be the L2-weak limit on BR(x) of a sequence Vi ∈
D2

C
(div, BR(xi)) with

sup
i
||div Vi||L2 <∞.
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Then we see that V ∈ D2
C
(div, BR(x)) and that div Vi L2-converges weakly to div V

on BR(x).

Proof. By the compactness of L2-weak convergence, without loss of generality
we can assume that there exists the L2-weak limit f of div Vi on BR(x). Let h ∈
LIPc,C(BR(x)). By (2.2e), there exists a sequence hi ∈ LIPc,C(BR(x)) such that
hi, dhi L

2-converge strongly to h, dh on X , respectively. Since∫
BR(xi)

gXi(Vi, gradhi) dH
n = −

∫
BR(xi)

(div Vi)hi dH
n,

we obtain by letting i→∞∫
BR(x)

gX(V, gradh) dHn = −
∫
BR(x)

fh dHn.

This gives V ∈ D2
C
(div, BR(x)) with div V = f .

Remark 3.22. It is a direct consequence of simple calculation that for any V ∈
D2

C
(div, U) and f ∈ LIPloc,C(U) with ||df ||L∞ <∞, we have fV ∈ D2

C
(div, U) with

div(fV ) = gX(grad f, V ) + fdivV.

Proposition 3.23. Let f ∈ D2
C
(Δ, U). Then for every open subset W of X with

W ⊂ U , we have grad′′f |W ∈ D2
C
(div,W ) with div (grad′′f) = tr(∇grad′′f).

Proof. We first prove the assertion under the assumption U = X . Let g := Δf .
By (2.2e), there exists a sequence of gi ∈ C∞

C
(Xi) with∫

Xi

gi dH
n = 0

such that gi L2-converges strongly to g on X . Let fi := Δ−1gi. Note that by [27,
Theorem 1.1] with Proposition 3.3 (or Remark 3.18) we see that fi, dfi L

2-converge
strongly to f, df on X , respectively and that Hessfi L

2-converges weakly to Hessf on
X . Since

div(grad′′fi) = tr(∇grad′′fi) (16)

and

∇grad′′fi = ∇
(
1

2

(
grad fi +

√−1J grad fi
))

=
1

2
∇ grad fi +

√−1
2
∇(J gradf)

with |∇J gradfi| = |∇ grad fi|, letting i → ∞ in (16) with Proposition 3.21 and [25,
Proposition 3.72] yields the assertion.

Next we prove the assertion for general U . Since the statement is local, it suffices
to check the assertion under U = BR(x) for some R > 0 and x ∈ X . Let r < R. By
[25, Corollary 4.29], there exists φ ∈ D2

C
(Δ, X) ∩ LIP(X) such that 0 ≤ φ ≤ 1, that

φ|Br(x) ≡ 1, that suppφ ⊂ BR(x) and that Δφ ∈ L∞(X). From [27, Theorem 4.5],
we have φf ∈ D2(Δ, X). Since

div(grad′′(φf)) = tr(∇grad′′(φf)),
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by restricting this to Br(x) with Remark 3.22 we have the assertion.

In order to define ∇′′ for vector fields in the manner of [21], we recall the test
class of R-valued functions, TestF (X), defined by Gigli [21] as follows:

TestF (X) := {f ∈ D2(Δ, X) ∩ LIP(X);Δf ∈ H1,2(X)}.

We define the complex version of this as follows:

TestCF (X) := {f ∈ D2
C(Δ, X) ∩ LIPC(X);Δf ∈ H1,2

C
(X)}.

Proposition 3.3 yields that for every C-valued function f on X , f ∈ TestCF (X) holds
if and only if f i ∈ TestF (X) holds for every i = 1, 2, where f = f1 +

√−1f2 and f i

is R-valued. On the other hand it is known in [21, 27] that the space

Test(T 1
1X) :=

{
N∑
i=1

f0,i gradf1,i ⊗ df2,i;N ∈ N, fj,i ∈ TestFX

}

is dense in L2(TX ⊗ T ∗X). This gives that the space

TestC((T
1
1 )CX) :=

{
N∑
i=1

f0,i grad f1,i ⊗ df2,i;N ∈ N, fj,i ∈ TestCFX

}

is also dense in L2
C
(TCX ⊗ T ∗

C
X).

Definition 3.24 (∇′′ for vector fields in the manner of Gigli). Let D2
C
(∇′′, X)

be the set of V ∈ L2
C
(TCX) such that there exists T ∈ L2

C
(TX ⊗ T ∗

C
X) satisfying∫

X

f0 gX(T, gradf1 ⊗ df2) dH
n (17)

=

∫
X

(−div(f0 grad′′f2) gX(V, grad f1)− f0 gX(V,∇grad′′f2 grad f1
)
dHn

for any fi ∈ TestCF (X). Since T is unique, we denote it by ∇′′V .

The following stability result for ∇′′ with respect to the Gromov-Hausdorff topol-
ogy plays a key role in this paper:

Proposition 3.25. Let V be the L2-strong limit on X of a sequence of Vi ∈
D2

C
(∇′′, Xi) with supi ||∇′′Vi||L2 < ∞. Then we see that V ∈ D2

C
(∇′′, X) and that

∇′′Vi L
2-converges weakly to ∇′′V on X.

Proof. By the compactness of L2-weak convergence, without loss of generality we
can assume that there exists the L2-weak limit T of ∇′′Vi on X .

We first prove:

Claim 3.26. The equation (17) holds if Δfi ∈ LIPC(X) holds for i = 1, 2.

The proof is as follows. Suppose that Δfi ∈ LIPC(X) holds for i = 1, 2. Let gi := Δfi.
By (2.2e) there exists a sequence of gi,j ∈ LIPC(Xj) such that supi,j ||dgi,j ||L∞ <∞,
that ∫

Xj

gi,j dH
n = 0
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and that gi,j , dgi,j L2-converge strongly to gi, dgi on X , respectively. Let fi,j :=
Δ−1gi,j. By Proposition 3.3, Remark 3.18, [27, Theorems 1.1 and 4.13], we see that
fi,j ∈ LIPC(Xj), that supi,j ||fi,j ||L∞ < ∞, that fi,j, dfi,j L2-converge strongly to
fi, dfi on X , respectively, and that Hessfi,j L2-converges weakly to Hessfi on X . In
particular, fi,j ∈ TestCF (X) and df2,j L2-converges strongly to df2 on X . Since∫

Xj

f0,jgXj (∇′′Vi, grad f1,j ⊗ df2,j) dH
n

=

∫
Xj

(−div(f0,jgrad′′f2,j)gXj (Vj , gradf1,j)

−f0,jgXj (Vj ,∇grad′′f2,j grad f1,j)
)
dHn,

by letting j →∞ with Proposition 3.21 we have Claim 3.26.
The following is shown in [27, Proposition 7.5]. For reader’s convenience we give

the proof:

Claim 3.27. Let g ∈ TestCF (X). Then there exists a sequence gk ∈ TestCF (X)
with Δgk ∈ LIPC(X) and supk ||dgk||L∞ <∞ such that gk,Δgk → g,Δg in H1,2

C
(X),

respectively.

The proof is as follows. Let

hδ,εgk := hδ(h̃tg
1
k) +

√−1hδ(h̃tg
2
k),

where gk = g1k +
√−1g2k, ht is the heat flow on X and h̃t is a mollified heat flow

defined by

h̃tgk :=
1

t

∫ ∞

0

hsgkφ(st
−1)ds

for some nonnegatively valued smooth function φ on (0, 1) with∫ 1

0

φds = 1

(see for instance [1] for the heat flow and [21, (3.2.3)] for a mollified heat flow). From
the regularity of the heat flow [1, 21] with Proposition 3.3 we have the following:

(a) hδ,εg ∈ TestCF (X).
(b) Δhδ,εg ∈ LIPC(X).
(c) supδ,ε<1 ||∇(hδ,εg)||L∞ <∞.

(d) hδ,εg,Δhδ,εg → h̃εg,Δh̃εg in H1,2
C

(X), respectively as δ → 0.

(e) h̃εg,Δh̃εg → g,Δg in H1,2
C

(X), respectively as ε→ 0.
This completes the proof of Claim 3.27.

We are now in a position to finish the proof of Proposition 3.25. Let fi ∈
TestCF (X). Then Claim 3.27 yields that there exists a sequence fi,j ∈ TestCF (X)
such that Δfi,j ∈ LIPC(X), that supi,j ||∇fi,j ||L∞ <∞, and that fi,j ,Δfi,j → fi,Δfi

in H1,2
C

(X). Note that by [25, Theorem 1.2], Hessfi,j L2-converges weakly to Hessfi
on X . Claim 3.26 yields∫

X

f0,jgX(T, gradf1,j ⊗ df2,j) dH
n

=

∫
X

(−div(f0,jgrad′′f2,j)gX(V, grad f1,j)− f0,jgX(V,∇grad′′f2,j grad f1,j
)
dHn.
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By letting j → ∞ we have V ∈ D2
C
(∇′′, X) with ∇′′V = T . This completes the

proof.

We end this section by giving a compatibility between our setting and smooth
setting:

Proposition 3.28. Suppose that (U, gX |U , J |U ) is a smooth Kähler manifold.
Then for every V ∈ C∞

C
(U), ∇′′V in the sense of Definition 3.24 coincides with the

ordinary one.

Proof. Let S := ∇′′V be as in the sense of Definition 3.24 and let T := ∇′′V be
as in the ordinary sense. From (15) and Definition 3.24 we have∫

U

gX(S, f0 gradf1 ⊗ df2) dH
n =

∫
U

gX(T, f0 grad f1 ⊗ df2) dH
n

for any fi ∈ C∞c,C(U). Since the space{
N∑
i=1

f0,i gradf1,i ⊗ df2,i;N ∈ N, fj,i ∈ C∞c,C(U)

}

is dense in L2
C
(TCU ⊗ T ∗

C
U), we have S = T .

4. Fano-Ricci limit spaces.

4.1. Definition of Fano-Ricci limit spaces. In this subsection, besides (2.1a)
- (2.1e), we add the following assumptions:
(4.1a) Xi is an m-dimensional Fano manifold with the Kähler form ωi in 2πc1(Xi)

for every i.
(4.1b) For every i, Fi is the Ricci potential, i.e.

Ric(ωi)− ωi =
√−1∂∂Fi.

with the normalization ∫
Xi

eFiωm
i =

∫
Xi

ωm,

or equivalently Hn
Fi
(Xi) = Hn(Xi). (Recall n = 2m.)

Then we call (X, gX , J, F ) the Fano-Ricci limit space of (Xi, gXi , Ji, Fi) or the Fano-
Ricci limit space for short. Since Fi is uniquely determined by gXi we shall omit F
and Fi, and write (X, gX , J) and (Xi, gXi , Ji) if no confusion is likely to occur.

Theorem 4.1 (Weitzenböck inequality). Let f ∈ D2
C
(ΔF

∂
, X). Then we have

grad′f ∈ D2
C
(∇′′, X) with ∇′′grad′f ∈ L2

C
(T ′

C
X ⊗ (T ∗

C
X)′′) and∫

X

|ΔF
∂
f |2 dHn

F ≥
∫
X

|∇′′grad′f |2 dHn
F +

∫
X

|∂f |2 dHn
F . (18)

Proof. Let g := ΔF
∂
f . By (2.2e), there exists a sequence of gi ∈ C∞

C
(Xi) such

that gi, dgi L
2-converge strongly to g, dg on X , respectively and that∫

Xi

gi dH
n
Fi

= 0.
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Let fi := (ΔFi

∂
)−1gi. Propositions 2.7 and 3.17 yield that ∂fi L

2-converges strongly

to ∂f on X . Now we use the Weitzenböck formula on a Fano manifold (see [17, page
41]) ∫

Xi

|ΔFi

∂
fi|2 dHn

Fi
=

∫
Xi

|∇′′grad′fi|2 dHn
Fi

+

∫
Xi

|∂fi|2 dHn
Fi
. (19)

In particular we have supi ||∇′′grad′fi||L2 <∞. Thus by Remark 2.8 and Proposition
3.25, we see that grad′f ∈ D2

C
(∇′′, X), that ∇′′grad′f ∈ L2

C
(T ′

C
X ⊗ T ′′X) and that

∇′′grad′fi L2-converges weakly to ∇′′grad′f on X . Thus by taking i→∞ in (19) we
have (18).

Corollary 4.2. We have the following.
(1) λ1(Δ

F
∂
, X) ≥ 1.

(2) If f ∈ D2
C
(ΔF

∂
, X) with ΔF

∂
f = f , then ∇′′grad′f = 0. In particular if

(U, gX |U , J |U ) is a smooth Kähler manifold with F |U ∈ C∞(U), then f |U ∈
C∞

C
(U) and grad′f is a holomorphic vector field on U .

Proof. Let f ∈ D2
C
((ΔF

∂
, X) be a λ-eigenfunction of ΔF

∂
on X . Then Theorem

4.1 yields

(λ − 1)

∫
X

|f |2 dHn
F ≥

∫
X

|∇′′grad′f |2 dHn
F .

This proves (1). This also shows that if f ∈ D2
C
((ΔF

∂
, X) with ΔF

∂
f = f then

∇′′grad′f = 0.

Finally we assume that (U, gX |U , J) is a smooth Kähler manifold with F |U ∈ C∞(U).
Then Proposition 3.10 and the elliptic regularity theorem yield f |U ∈ C∞

C
(U). Thus

Proposition 3.28 yields that grad′f is a holomorphic vector field on U .

Remark 4.3. Corollary 4.2 with Proposition 2.9 gives that a C-linear map

Φ : Λ1 = Λ1(X) :=
{
f ∈ D2

C(Δ
F
∂
, X);ΔF

∂
f = f

}
→ L2

C(T
′X) ∩ {

V ∈ D2
C(∇′′, X);∇′′V = 0

}
defined by Φ(f) := grad′f is injective.

Let h1(X) be the set of V ∈ L2
C
(T ′X) with V = grad′u for some u ∈ Λ1 (i.e.

h1(X) = Φ(Λ1)). It is known ([16], [17]) that, if (X, gX , J) is a smooth Fano manifold,
then h1(X) coincides with the space of all holomorphic vector fields on X .

Proposition 4.4. Let Vi ∈ h1(Xi) be a sequence with supi ||Vi||L2 < ∞. Then
there exist a subsequence {i(j)}j and V ∈ h1(X) such that Vi(j) L

2-converges strongly
to V on X. In particular,

lim sup
i→∞

dim h1(Xi) ≤ dim h1(X) <∞.

Proof. Let ui ∈ Λ1(Xi) with Vi = grad′ui. By the proof of Proposition 3.17,
we have supi ||ui||H1,2

C

<∞. Thus by Theorem 2.6, without loss of generality we can

assume that there exists the L2-strong limit u ∈ H1,2
C

(X) of ui on X . Proposition 3.17
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gives that ui, dui L
2-converge strongly to u, du on X , respectively. In particular, by

Propositions 2.7 and 3.14, we see that u ∈ Λ1 and that grad′ui L
2-converges strongly

to grad′u ∈ h1(X) on X .
Note that the finite dimensionality of h1(X) follows from that of Λ1. Thus this

completes the proof.

Remark 4.5. It is easy to check that the similar results as above hold even if
each (Xi, gXi , Ji, Fi), is a Fano-Ricci limit spaces.

Finally we define the Futaki invariant of the Fano-Ricci limit space (X, gX , J, F )
as a C-valued linear function on h1(X):

Definition 4.6. We define F : h1(X)→ C by

FX(V, gX) :=

∫
X

V (F ) dHn.

Proposition 4.7. We have the following:
(1) Let V ∈ h1(X) with V = grad′u for some u ∈ Λ1. Then

FX(V, gX) := −
∫
X

u dHn.

(2) Let Vi be a sequence in h1(Xi) and let V ∈ h1(X) be the L2-strong limit on
X. Then

lim
i→∞

FXi(Vi, gXi) = FX(V, gX).

Proof. We first prove (1). By Remark 3.12, we have u ∈ D2,1
C

(Δ∂ , X) with

u = ΔF
∂
u = Δ∂u− h∗X(∂u, ∂F ).

Integrating this with respect to dHn yields (1).
(2) is a direct consequence of the proof of Proposition 4.4 and (1).

We say two Fano-Ricci limit spaces (X, gX , JX) and (Y, gY , JY ) are J-equivalent
if the following condition holds: If (Xi, gXi , JXi) and (Yi, gYi , JYi) converge to
(X, gX , JX) and (Y, gY , JY ) then there are biholomorphic automorphisms ψi of
(Xi, JXi) to (Yi, JYi) for all i. Further, we say that V ∈ h1(X) and W ∈ h1(Y )
are J-equivalent if the following condition holds: if V ∈ h1(X) is an L2-strong limit of
a sequence in Vi ∈ h1(Xi) with respect to gXi then W ∈ h1(Y ) is an L2-strong limit
of (ψi)∗Vi with respect to gYi .

Theorem 4.8. If two Fano-Ricci limit spaces (X, gX , JX) and (Y, gY , JY ) are
J-equivalent and if two vector fields V ∈ h1(X) and W ∈ h1(Y ) are J-equivalent then

FX(V, gX) = FY (W, gY ).

Proof. It is trivial to have

FXi(Vi, gXi) = FYi((ψi)∗Vi, (ψ
−1
i )∗gXi).
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But since FYi((ψi)∗Vi, gYi) is independent of the choice of the Kähler metric gYi with
the Kähler metric in the anti-canonical class by [15], we have

FYi((ψi)∗Vi, (ψ
−1
i )∗gXi) = FYi((ψi)∗Vi, gYi).

Taking the limit as i → ∞ and using Proposition 4.7, (2), we obtain FX(V, gX) =
FY (W, gY ). This completes the proof.

Proposition 4.9. We have the following:
(1) We have ||FX |||op ≤ C(n,K, d, L), where ||FX ||op is the operator norm of

FX , i.e.

||FX ||op := sup
||V ||L2=1

|FX(V )|.

(2) We have

lim sup
i→∞

||FXi ||op ≤ ||FX ||op.

(3) If

lim
i→∞

dim h1(Xi) = dim h1(X),

then

lim
i→∞

||FXi ||op = ||FX ||op.

Proof. We first prove (1). Let u ∈ Λ1 and let V = grad′u. Then from Proposition
3.15 and (1) of Proposition 4.7, we have

|FX(V )| ≤
∫
X

|u|dHn

≤ C(L)

∫
X

|u|dHn
F

≤ C(n,K, d, L)

∫
X

|grad′u|2dHn
F

≤ C(n,K, d, L)

∫
X

|V |2dHn ≤ C(n,K, d, L).

This completes the proof of (1).
Next we prove (2). For every i <∞, there exists Vi ∈ h1(Xi) such that ||Vi||L2 =

1 and that |FXi(Vi)| = ||FXi ||op holds because h1(Xi) is finite dimensional. By
Proposition 4.4, without loss of generality we can assume that there exists V ∈ h1(X)
such that Vi L

2-converges strongly to V on X . Thus (2) of Proposition 4.7 yields

lim sup
i→∞

||FXi ||op = lim sup
i→∞

|FXi(Vi)| = |FX(V )| ≤ ||FX ||op.

Finally we prove (3). Let V ∈ h1(X) with |FX(V )| = ||FX ||op and let {i(j)}j be
a subsequence. Then by Proposition 4.4, there exist a subsequence {j(k)}j of {i(j)}j
and a sequence Vj(k) ∈ h1(Xj(k)) such that ||Vj(k)||L2 = 1 and that Vj(k) L

2-converges
strongly to V on X . Thus applying (2) of Proposition 4.7 again yields

||FX ||op = |FX(V )| = lim
k→∞

|FXj(k)
(Vj(k))| ≤ lim inf

k→∞
||FXj(k)

||op.

Since {i(j)}j is arbitrary, this completes the proof of (3).
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4.2. A compactness with respect to the Gromov-Hausdorff conver-

gence. In this subsection we start without assuming (2.1d), and rather study when
(2.1d) is satisfied, see Proposition 4.14.

Proposition 4.10. Let M be a Fano manifold with RicM ≥ K and diamM ≤ d,
and let F be the Ricci potential with the canonical normalization. Then we have

F ≤ C(n,K, d) (20)

and

1

Hn(M)

∫
M

|∇eF |2 dHn ≤ C(n,K, d). (21)

Proof. By taking the (complex) trace of the equation Ric(ω) − ω = i∂∂F we
have sM/2 − n = −ΔF/2, where sM is the scalar curvature of M in the sense of
Riemannian geometry. Then since

ΔeF = −eF |∇F |2 + eFΔF ≤ eF (2n− sM ) ≤ (2 −K)neF ,

Li-Tam’s mean value inequality [35, Corollary 3.6] (or [36, Theorem 1.1]) yields

eF ≤ C(n,K, d)
1

Hn(M)

∫
M

eF dHn = C(n,K, d).

Thus we have (20).
On the other hand, since

Δe2F = −4e2F |∇F |2 + 2e2FΔF = −4e2F |∇F |2 + 2e2F (2n− sM ),

by integration of this on M , we have

2

∫
M

e2F |∇F |2 dHn ≤
∫
M

e2F (2n− sM ) dHn ≤ (2−K)n

∫
M

e2F dHn ≤ C(n,K, d).

This gives (21).

The following is a direct consequence of [25, Theorem 4.9], [27, Theorem 6.19]
and Proposition 4.10:

Corollary 4.11. Let K ∈ R, let d, v > 0 and let n ∈ N Let Xi be a sequence
of Fano manifolds with RicXi ≥ K, diamXi ≤ d, and Hn(Xi) ≥ v.

Then there exist a subsequence Xi(j), the noncollapsed Gromov-Hausdorff limit X,
the L2-strong limit J of Ji(j) on X, and the L2-strong limit G ∈ H1,2(X)∩L∞(X) of

eFi(j) on X such that ∇eFi(j) L2-converges weakly to ∇G on X, where Fi is the Ricci
potential of Xi with the canonical normalization. Moreover, if there exists c ∈ R such
that Fi ≥ c for every i < ∞, then there exists F ∈ L∞(X) with c ≤ F ≤ C(n,K, d)
such that G = eF . In particular Fi L

2-converges strongly to F on X.

Corollary 4.12. Let (X, gX , J, F ) be a Fano-Ricci limit space with Hn(X) ≥ v,
F ≥ c and diamX ≤ d. Then

0 < C1(n,K, d, v, c, l) ≤ λl(Δ
F
∂
, X) ≤ C2(n,K, d, v, c, l) <∞
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for every l ≥ 1.

Proof. We only give a proof of the existence of upper bounds because the proof of
the existence of lower bounds is similar. The proof is done by a standard contradiction.
Assume that the assertion is false. Then there exist l ≥ 1 and a sequence of Fano-Ricci
limit spaces (Xi, gXi , Ji, Fi) with Hn(Xi) ≥ v, diamXi ≤ d, Fi ≥ c and

lim
i→∞

λl(Δ
Fi

∂
, Xi) =∞.

On the other hand by Corollary 4.11 we can assume without loss of generality that
there exist the noncollapsed Gromov-Hausdorff limit X of Xi, the L

2-strong limit J of
Ji on X , and the L2-strong limit F ∈ H1,2(X)∩L∞(X) of Fi on X . Since Proposition
3.13 yields

lim
i→∞

λl(Δ
Fi

∂
, Xi) = λl(Δ

F
∂
, X) <∞,

this is a contradiction.

Similarly, we have the following:

Corollary 4.13. Under the same assumption as in Corollary 4.12, we have

dim h1(X) ≤ C(n,K, d, v, c).

Proof. The proof is done by a contradiction. Assume that the assertion is false.
Then there exist a sequence of Fano-Ricci limit spaces (Xi, Ji, gi, Fi) with RicXi ≥ K,
Hn(Xi) ≥ v, diamXi ≤ d, Fi ≥ c and

lim
i→∞

dim h1(Xi) =∞.

Let {Vj,i}dimh1(Xi)
j=1 be an L2-orthogonal basis of h1(Xi). By Proposition 4.4 and Corol-

lary 4.11, we can assume without loss of generality that there exist the noncollapsed
Gromov-Hausdorff limit X of Xi, the L2-strong limit J of Ji on X , the L2-strong
limit F ∈ H1,2(X) ∩ L∞(X) of Fi on X , and the L2-strong limits Vi ∈ h1(X) of Vj,i

on X . This contradicts the finite dimensionality of h1(X).

We give a sufficient condition to get a uniform lower bound on the Ricci potential
by a standard way of Riemannian geometry:

Proposition 4.14. Let q > n/2, let L̂ > 0, and let M be a Fano manifold with
RicM ≥ K, diamM ≤ d, Hn(X) ≥ v and∫

M

|sM |q dHn ≤ L̂.

Then the Ricci potential F of M with the canonical normalization satisfies

|F | ≤ C(n,K, d, v, q, L̂).

Remark 4.15. In Proposition 4.14 if n/2 < q < n, by [29, Theorem 1.2] with
[23, Theorem 5.1] we have the following quantitative Hölder continuity of F :

|F (x) − F (y)| ≤ Cd(x, y)α
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for any x, y ∈ M , where C := C(n,K, d, v, q, L̂) > 0 and α = 2 − n/q. Moreover if
q > n, then we have the quantitative Lipschitz continuity of F :

|gradF | ≤ C(n,K, d, v, q, L̂).

See [30, Theorem 1.2].

In summary, we have the following compactness.

Corollary 4.16. Let q > n/2, let L̂ > 0 and let Xi be a sequence of Fano
manifolds with RicXi ≥ K, diamXi ≤ d, Hn(Xi) ≥ v and∫

Xi

|sXi |q dHn ≤ L̂.

Then there exist a subsequence Mi(j), the noncollapsed Gromov-Hausdorff limit M ,
the L2-strong limit J of Ji(j) on M , and the L2-strong limit F ∈ H1,2(M)∩L∞(M) of

Fi(j) on M such that supj ||Fi(j)||L∞ ≤ C(n,K, d, v, q, L̂) and that ∇Fi(j) L
2-converges

weakly to ∇F on M .

4.3. The Lie algebra structure of subspaces of Λ1 on nonsmooth setting.

In this section we discuss a subspace of Λ1 which is a Lie algebra by the Poisson bracket
{·, ·}.

Definition 4.17 (Poisson bracket). Let (X, gX , J) be the noncollapsed Kähler-
Ricci limit space of (Xi, gXi , Ji), i.e. (2.1a)-(2.1c) holds and J is the L2-strong limit
of Ji on X. Then for any open subset U of X, and u, v ∈ H1,2

C
(U), let

{u, v} := grad′u(v)− grad′v(u) ∈ L1(U).

By an argument similar to the proof of [27, Theorem 4.11], we have the following:

Proposition 4.18. Under the same setting as in Definition 4.17, let R > 0, let
x ∈ X, and let f ∈ D2

C
(Δ, BR(x)) with∫

BR(x)

(|f |2 + |Δf |2) dHn ≤ L.

Then for any r < R, |∂f |2, |∂f |2 ∈ H
1,2n/(2n−1)
C

(Br(x)) with∫
Br(x)

(∣∣grad|∂f |2∣∣2n/(2n−1)
+
∣∣grad|∂f |2∣∣2n/(2n−1)

)
dHn ≤ C(n,K,L, r, R).

Moreover, for any u, v ∈ D2
C
(Δ, BR(x)) with∫

BR(x)

(|u|2 + |v|2 + |Δu|2 + |Δv|2) dHn ≤ L,

we have {u, v} ∈ H
1,2n/(2n−1)
C

(Br(x)) with∫
Br(x)

|grad{u, v}|2n/(2n−1) dHn ≤ C(n,K,L, r, R)
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for any r < R.

Remark 4.19. By Proposition 4.18 and [27, Lemma 6.1], for any u, v ∈
D2

C
(Δ, X), we see that {u, v} ∈ H1,2

C
(X) holds if and only if grad{u, v} ∈ L2

C
(TCX)

holds.

We need the following:

Proposition 4.20. Let M be a Fano manifold and let u, v ∈ C∞
C
(M).

(1) For the gradient of the Poisson bracket we have

grad′{u, v} = [grad′u, grad′v] +∇grad′′vgrad
′u−∇grad′′ugrad

′v,

(2) If ΔF
∂
u = λu and ΔF

∂
v = νv, then

ΔF
∂
{u, v} = (λ + ν − 1){u, v}

−gM (∇′′grad′u,∇′grad′′v) + gM (∇′′grad′v,∇′grad′′u).

Here, in the standard notation of tensor calculus,

gM (∇′′grad′u,∇′grad′′v) = gijg
k�∇�∇iu∇k∇jv

= ∇�∇iu∇�∇iv.

Proof. We choose a local holomorphic coordinates z1, · · · , zm and use the standard
notations of tensor calculus ∇i = gij∇j or ∇j = gij∇i. Then the Poisson bracket is
written as

{u, v} = ∇iu∇iv −∇iv∇iu,

and the gradient vector field of type (1,0) is written as

grad′ u = ∇iu
∂

∂zi
.

Since ∇A∇Bu = ∇B∇Au for functions u we have

∇i{u, v} = ∇i(∇ju∇jv −∇jv∇ju)

= ∇ju∇j∇iv −∇jv∇j∇iu+∇jv∇j∇iu−∇ju∇j∇iv

The last term is equal to the i-th component of

[grad′u, grad′v] +∇grad′′vgrad
′u−∇grad′′ugrad

′v.

This proves (1). To prove (2) we first compute

Δ{u, v} = −∇k∇k(∇ju∇jv −∇jv∇ju)

= −∇k∇ju∇k∇jv −∇k∇ju∇k∇jv

−∇k∇k∇ju∇jv −∇ju∇k∇k∇jv

+∇k∇jv∇k∇ju+∇k∇jv∇k∇ju

+∇k∇k∇jv∇ju−∇jv∇k∇k∇ju.
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Then using the Ricci identity

∇k∇j∇ku = ∇j∇k∇ku+Rk
jk

i∇iu,

the definition of the Ricci curvature

Rk
jk

i = Ri
j = gj�Ri�,

and the definition of the Ricci potential F

Ri� = gi� +∇i∇�F,

one can see that miraculous cancellations occur to obtain

ΔF
∂
{u, v} = Δ{u, v} − ∇k{u, v}∇kF

= (λ+ μ− 1){u, v} − ∇�∇ju∇�∇jv +∇�∇jv∇�∇ju.

This completes the proof of (2).

Recall that by Propositions 3.13 and 3.14, for any Fano-Ricci limit space
(X, gX , J, F ) of (Xi, gXi , Ji, Fi) and α-eigenfunction u ∈ D2

C
(ΔF

∂
, X) of ΔF

∂
, there

exist sequences λi → α and ui ∈ C∞
C
(Xi) such that ΔFi

∂
ui = λiui and that ui and

dui L2-converge strongly to u anddu on X respectively. We call (λi, ui) a spectral
approximation of u (with respect to (Xi, gXi , Ji, Fi)). Moreover if

sup
i
||hXi(∂ui, ∂Fi)||L2 <∞

holds, then (λi, ui) is said to be compatible.
We first discuss a closedness of the Poisson bracket {·, ·} on Λ1. Recall that from

[27, Theorem 1.9] with Proposition 3.3, for every u ∈ D2
C
(Δ, X), we see that u is twice

differentiable on X in the sense of [26]. In particular,

[grad′u, grad′v]

is well-defined a.e. x ∈ X for any u, v ∈ D2
C
(Δ, X).

Proposition 4.21. Let (X, gX , J, F ) be the Fano-Ricci limit space of the sequence
(Xi, gXi , Ji, Fi) and let u, v ∈ Λ1(X). Assume that there exist compatible spectral
approximations (λi, ui) and (νi, vi) of u and v respectively. Then we see that u, v ∈
D2

C
(Δ, X) and that

{u, v} ∈ Dpn,pn

C
(ΔF

∂
, X)

with

grad′{u, v} = [grad′u, grad′v] (22)

and

ΔF
∂
{u, v} = {u, v},

where pn = 2n/(2n − 1) (see Remark 4.19 for the definition of Dp,q
C

(ΔF
∂
, X)). In

particular, the following are equivalent:
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(a) {u, v} ∈ Λ1(X).
(b) grad{u, v} ∈ L2

C
(TCX).

Proof. By Propositions 3.3, 3.10, 3.6, and [27, Theorem 4.13], we see that u, v ∈
D2

C
(Δ, X), that {u, v} ∈ H1,pn

C
(X), and that Hessui and Hessvi L2-converge weakly

to Hessu and Hessv on X respectively. Propositions 2.6 and 4.18 yield that {ui, vi}
Lpn -converges strongly to {u, v} on X , and that d{ui, vi} Lpn-converges weakly to
d{u, v} on X .

On the other hand, the Weitzenböck formula on a Fano manifold yields

(λi − 1)

∫
Xi

|ui|2dHn
Fi

=

∫
Xi

|∇′′grad′ui|2dHn
Fi
.

Thus letting i→∞ with this gives that ∇′′grad′ui L
2-converges strongly to 0 on X .

Similarly ∇′′grad′vi L2-converges strongly to 0 on X .
Let f ∈ LIPC(X). By (2.2e), there exists a sequence fi ∈ LIPC(X) with

supi ||dfi||L∞ < ∞ such that fi and dfi L2-converge strongly to f and df on X
respectively.

Since (2) of Proposition 4.20 gives∫
Xi

hX(∂{ui, vi}, ∂fi)dHn
Fi

=

∫
Xi

(λi + νi − 1){ui, vi}fidHn
Fi

−
∫
Xi

(
gXi(fi∇′′grad′ui,∇′grad′′vi)− gX(fi∇′′grad′vi,∇′grad′′ui)

)
dHn

Fi
,

letting i→∞ yields that {u, v} ∈ Dpn,pn

C
(ΔF

∂
, X) with ΔF

∂
{u, v} = {u, v}.

On the other hand, since

[grad′ui, grad
′vi] = ∇grad′ui

grad′vi −∇grad′vigrad
′ui,

by [27, Theorem 4.13] we see that [grad′ui, grad
′vi] L

2n/(2n−1)-converges weakly to
[grad′u, grad′v] on X . Therefore by letting i→∞ in (1) of Proposition 4.20, we have
(22). The final equivalence follows from Remark 4.19.

Corollary 4.22. Let (X, gX , J, F ) be the Fano-Ricci limit space of the sequence
(Xi, gXi , Ji, Fi) and let u, v ∈ Λ1(X). Assume that there exist compatible spectral
approximations (λi, ui) and (νi, vi) of u and v, respectively such that

sup
i
||grad′{ui, vi}||L2 <∞. (23)

Then {u, v} ∈ Λ1(X).

Proof. This is a direct consequence of Theorem 2.6, Propositions 2.9 and (the
proof of) 4.21.

Corollary 4.23. Let (X, gX , J, F ) be the Fano-Ricci limit space of the sequence
(Xi, gXi , Ji, Fi). Assume

sup
i
||∂Fi||L∞ <∞.

Moreover we assume that one of the following holds:
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(1) Λ1(X) ⊂ LIPC(X).
(2) F ≡ 0.

Then we have the following closedness of Λ1(X) for the Poisson bracket:

{u, v} ∈ Λ1(X)

for any u, v ∈ Λ1(X).

Proof. Assume that (1) holds. Let u, v ∈ Λ1(X). Then by the proof of Proposition
4.21 and [27, Theorem 4.11] we have Hessu,Hessv ∈ L2

C
(T ∗

C
X ⊗ T ∗

C
X). In particular

the assumption (1) implies

∇{u, v} ∈ L2
C(TCX).

Therefore Proposition 4.21 gives our closedness.

On the other hand, by [6, Theorem 7.9], since if (2) holds, then (1) holds, this
completes the proof.

The rest of this subsection is devoted to a construction of a subspace Λ of Λ1

which is a Lie algebra by the Poisson bracket {·, ·}. Note that, on almost smooth
setting, we will see in Section 5 that if a subspace of Λ1 is closed with respect to the
Poisson bracket {·, ·}, then it becomes a Lie algebra, automatically. See Proposition
5.3.

For this purpose we need the following definition:

Definition 4.24. Let (X, gX , J, F ) be the Fano-Ricci limit space of the sequence
(Xi, gXi , Ji, Fi).

(a) A function u ∈ Λ1(X) is said to be a (compatible) limit 1-eigenfunction if
there exists a (compatible) spectral approximation (1, ui) of u.

(b) A subspace Λ of Λ1(X) is said to be the limit 1-eigenspace if every u ∈ Λ is
a limit 1-eigenfunction with

dimΛ = lim
i→∞

dimΛ1(Xi).

Moreover if every u ∈ Λ is a compatible limit 1-eigenfunction, then Λ is said
to be compatible.

Since it is easy to check that the limit 1-eigenspace is unique if it exists, we denote
it by limi→∞ Λ1(Xi). In general, for a subspace Λ of Λ1, let h

Λ(X) := Φ(Λ), where Φ
is defined in Remark 4.3. Roughly speaking, the following means that hΛ(X) is the
space of L2-strong limits of holomorphic vector fields on Xi if Λ = limi→∞ Λ1(Xi).

Proposition 4.25. Let (X, gX , J, F ) be the Fano-Ricci limit space of the sequence
(Xi, gXi , Ji, Fi).

(1) There exist a subsequence i(j) and the limit 1-eigenspace of Λ1(Xi(j)).
(2) If

sup
i
||∂Fi||L∞ <∞,

then any spectral approximations are compatible. In particular, the limit 1-
eigenspace of Λ1(Xi) is compatible.
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(3) If Λ is the limit 1-eigenspace of Λ1(Xi), then

lim
i→∞

||FXi ||op = ||FX |Λ||op.

In particular,

lim
i→∞

||FXi ||op = ||FX ||op

holds if and only if

FX ≡ 0

on (hΛ(X))⊥, where (hΛ(X))⊥ is the orthogonal complement of hΛ(X) with
respect to the L2-norm.

(4) If

lim
i→∞

h1(Xi) = h1(X),

then the limit 1-eigenspace coincides with Λ1(X).

Proof. (1) is a direct consequence of Proposition 4.4. By Proposition 3.14 and
the definition of the limit 1-eigenspace, (2) and (4) are trivial. The proof of (2) of
Proposition 4.9 yields (3). Thus this completes the proof.

In order to get an L2-estimate (23) for spectral approximations, we prepare the
following.

Proposition 4.26. Let (X, gX , J, F ) be a Fano-Ricci limit space with Hn(X) ≥
v, diamX ≤ d and F ≥ c, and let V ∈ h1(X) with

||V ||Lp ≤ L

for some p ∈ (1, 2). Then

||V ||L2 ≤ C(n,K, d, v, c, L, p).

Proof. The proof is done by a contradiction. Assume that the assertion is false.
Then there exist a sequence of (n,K)-Fano-Ricci limit spaces (Xi, Ji, gXi , Fi) with
Hn(Xi) ≥ v, diamXi ≤ d, Fi ≥ c, and a sequence of Vi ∈ h1(Xi) with

sup
i
||Vi||Lp <∞

and

lim
i→∞

||Vi||L2 =∞. (24)

By (2.2a) and Corollary 4.11, we can assume without loss of generality that there exist
the noncollapsed Gromov-Hausdorff limit X of Xi, the L2-strong limit J of Ji on X ,
the L2-strong limit F ∈ H1,2(X)∩L∞(X) of Fi on X , and the Lp-weak limit V of Vi

on X . Let Wi := ||Vi||−1
L2 Vi ∈ h1(Xi). From (24), we see that Wi L

p-converges weakly
to 0 on X . Since ||Wi||L2 = 1, this is an L2-weak convergence. On the other hand, by
Proposition 4.4, there exist a subsequence Wi(j) and the L2-strong limit W ∈ h1(X).
In particular, ||W ||L2 = 1. This is a contradiction.
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Corollary 4.27. Let (X, gX , J, F ) be the Fano-Ricci limit space of
(Xi, gXi , Ji, Fi). Then

lim
i→∞

dim h1(Xi) = dim h1(X)

holds if and only if for any V ∈ h1(X) and subsequence {i(j)}j, there exist a subse-
quence {j(k)}k of {i(j)}j, p ∈ (1, 2) and a sequence Vj(k) ∈ h1(Xj(k)) such that Vj(k)

Lp-converges weakly to V on X.

Proof. This is a direct consequence of Propositions 4.4 and 4.26.

Corollary 4.28. Let M be a Fano manifold with RicM ≥ K, diamM ≤ d, and
Hn(M) ≥ v, let F be the Ricci potential with the canonical normalization with F ≥ c,
and let u, v ∈ Λ1 with

||hM (∂u, ∂F )||L2 + ||hM (∂v, ∂F )||L2 ≤ L.

Then

||{u, v}||H1,2
C

≤ C(n,K, d, v, c, L).

In particular if (M, gM , J, F ) is a Kähler-Ricci soliton, i.e. F ∈ Λ1(M), and if any α-
eigenfunction w ∈ Λ1(M) of the action −F on Λ1(M) defined by the Poisson bracket
{·, ·}, i.e.

−{F,w} = αw

with

||∂F ||L4 + ||hM (∂w, ∂F )||L2 ≤ L,

then we have

α ≤ C(n,K, d, v, c, L).

Proof. Propositions 3.10, 4.18 and 3.6 yield

||grad′{u, v}||L2n/(2n−1) ≤ C(n,K, d, v, c, L).

Since grad′{u, v} ∈ h1(M) (see for instance Remark 5.2), Proposition 4.26 yields

||grad′{u, v}||L2 ≤ C(n,K, d, v, c, L).

Thus the assertion follows from this, Propositions 2.9 and 3.15.

Remark 4.29. In Corollary 4.28, by [41, Theorem 1.2] with Corollary 4.11, we
drop the assumption of L4-bound on ∂F . In fact, we can get

||∂F ||L∞ ≤ C(n,K, d, v, c),

automatically. See Theorem 6.2.

Proposition 4.30. Let (X, gX , J, F ) be the Fano-Ricci limit space of the sequence
(Xi, gXi , Ji, Fi). Then we have the following:
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(1) Let u, v ∈ Λ1(X) be compatible limit 1-eigenfunctions. Then we see that
{u, v} ∈ Λ1(X), and that FX(grad′{u, v}, gX) = 0.

(2) If Λ := limi→∞ Λ1(Xi) is compatible, then (Λ, {·, ·}) and (hΛ(X), [·, ·]) are Lie
algebras, and FX |hΛ(X) is a character of hΛ(X) as a Lie algebra. Moreover

the map ΨΛ : Λ→ hΛ(X) defined by the restriction of Ψ to Λ, i.e.

ΨΛ(u) := grad′u,

gives an isomorphism between them as Lie algebras.

Proof. We first prove (1). Let (1, ui), (1, vi) be compatible spectral approxi-
mations of u, v, respectively. Propositions 2.6, 3.14 and Corollary 4.28 yield that
{u, v} ∈ Λ1, and that {ui, vi} and d{ui, vi} L2-converge strongly to {u, v} and d{u, v}
on X , respectively. In particular since the Futaki invariant is a character as a Lie
algebra on smooth setting, (2) of Proposition 4.7 yields

FX(grad′{u, v}, gX) = lim
i→∞

FXi(grad
′{ui, vi}, gXi) = 0.

This completes the proof of (1).
We turn to the proof of (2). By Proposition 4.21 and (1), it suffices to check the

Jacobi identity for the Poisson bracket {·, ·}. Let u, v, w ∈ Λ and let (1, ui), (1, vi),
and (1, wi) be compatible spectral approximations of u, v, and w. Since

{ui, {vi, wi}}+ {wi, {ui, vi}}+ {vi, {wi, ui}} = 0,

letting i→∞ with Proposition 4.4 and the proof of (1) gives the Jacobi identity for
the Poisson bracket {·, ·}.

By Propositions 4.14, 4.30 and Remark 4.15, we have the following compactness:

Corollary 4.31. Let (Xi, gXi , Ji, Fi) be a sequence of Fano manifolds with
RicXi ≥ K, Hn(Xi) ≥ v, diamXi ≤ d, and

sup
i

∫
Xi

|sXi |q dHn <∞

for some q > n. Then there exist a subsequence i(j), the Fano-Ricci limit space
(X, gX , J, F ) of (Xi(j), gXi(j)

, Ji(j), Fi(j)) and the compatible limit 1-eigenspace Λ :=

limj→∞ Λ1(Xi(j)) such that (Λ, {·, ·}) and (hΛ(X), [·, ·]) are finite dimensional Lie
algebra. Moreover the map

ΨΛ : Λ→ hΛ(X)

defined by ΨΛ(u) := grad′u gives an isomorphism between them as Lie algebras. Fur-
thermore, FX |hΛ is a character of hΛ(X) as a Lie algebra.

In particular we have the following:

Corollary 4.32. Let (Xi, gXi , Ji, Fi) be a sequence of Fano manifolds with
Hn(Xi) ≥ v, diamXi ≤ d, and

|RicXi | ≤ K.

Then the same conclusion as in Corollary 4.31 holds.

It is worth pointing out that in the setting of Corollary 4.32 we can prove that
F is the Ricci potential of (X, gX , J) in some weak sense. See [28]. We will discuss
again similar results as above in almost smooth setting in Section 5.
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5. Almost smooth Fano-Ricci limit space.

5.1. Decomposition theorem on an almost smooth Fano-Ricci limit

space. Recall that a Fano-Ricci limit space (X, gX , J, F ) is the limit space of
(Xi, gXi , Ji, Fi) satisfying (2.1a) - (2.1e), (4.1a) and (4.1b). We say that (X, gX , J, F )
is an almost smooth Fano-Ricci limit space if in addition the conditions (5.1a) - (5.1c)
below are satisfied.
(5.1a) There exists an open (dense) subset R of X such that Hn(X \ R) = 0, that

(R, gX |R, J |R) is a smooth Kähler manifold, and that F |R ∈ C∞(R) with

Ricω − ω =
√−1∂∂F

on R.
(5.1b) Every L2-holomorphic function on R is constant.
(5.1c) We have

{u ∈ H1,2
C

(X); grad′u|R ∈ hreg(X)} ⊂ D2
C(Δ

F
∂
, X),

where hreg(X) is the set of L2-holomorphic vector fields on R, or equivalently
on X by the assumption (5.1a), having smooth potentials on R.

Note that by Corollary 4.11, we have F ∈ H1,2(X). Recall

Λ1 = {f ∈ D2
C(Δ

F
∂
, X);ΔF

∂
f = f}.

Let Λ be a complex subspace of Λ1, h
Λ(X) the set of V ∈ hreg(X) with V = grad′u for

some u ∈ Λ (i.e. hΛ(X) = Φ(Λ)), and h̃(X) the set of V ∈ hreg(X) with V = grad′u

for some u ∈ H1,2
C

(X). Note that hΛ1 (X) = h1(X).
We remark the following:

Proposition 5.1. We have

hreg(X) = h1(X).

Proof. Let V ∈ hreg(X). Then there exists a C-valued smooth function f on R
such that V = grad′f on R. By (1) of Proposition 3.19, there exists u ∈ H1,2

C
(X)

such that grad′f = grad′u on R. Thus, by the assumption (5.1c), V ∈ h1(X). This
completes the proof.

Remark 5.2. By a simple calculation we have the following:
(1) We have

grad′{u, v} = [grad′u, grad′v]

on R for any u, v ∈ Λ1. In particular by Corollary 4.2, grad′{u, v} is a
holomorphic vector field on R.

(2) If a smooth function u on R satisfies that grad′u is a holomorphic vector field
on R, then

∂(ΔF
∂
u− u) = 0

on R.
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Proposition 5.3. If u ∈ H1,2
C

(X) satisfies grad′u ∈ hreg(X) and∫
X

u dHn
F = 0,

then u ∈ Λ1. In other words, h̃(X) = hΛ1(X)(= h1(X)).

Proof. Let u ∈ H1,2
C

(X) with grad′u ∈ hreg(X). Then (5.1c) gives u ∈ D2
C
(ΔF

∂
, X).

In particular ΔF
∂
u ∈ L2

C
(X).

Thus by (2) of Remark 5.2 and (5.1b), we see that ΔF
∂
u− u is constant. Propo-

sition 3.16 yields ΔF
∂
u− u = 0. This completes the proof.

Proposition 5.4. Assume that for any u, v ∈ Λ, {u, v} ∈ Λ. Then (Λ, {·, ·})
and (hΛ(X), [·, ·]) are finite dimensional complex Lie algebras. Moreover the map
ΨΛ : Λ→ hΛ(X) defined by

ΨΛ(u) := grad′u

gives an isomorphism between them as Lie algebras.

Proof. This is a direct consequence of (1) of Remark 5.2.

5.2. Kähler-Ricci limit solitons. Let (X, gX , J, F ) be an almost smooth Fano-
Ricci limit space, that is, the conditions (2.1a) - (2.1e), (4.1a), (4.1b), (5.1a) - (5.1c)
are satisfied.

Proposition 5.5. Let u ∈ Λ1. Then the following are equivalent:

(1) Re(grad′u) is a Killing vector field on R, where Re(grad′u) is the real part of
grad′u.

(2) Re(u) is constant.

Proof. By a simple calculation we have

LRe(grad′u)ωX =
√−1∂∂Re(u) (25)

on R.
Assume that Re(grad′u) is a Killing vector field on R. By taking the (complex)

trace of (25) we have Δ∂Re(u) = 0 on R. Thus Proposition 3.8 shows that Re(u) is
constant.

By (25), the converse is trivial. This completes the proof.

Definition 5.6 (Kähler-Ricci limit soliton). We say that an almost smooth
Fano-Ricci limit space (X, gX , J, F ) is a Kähler-Ricci limit soliton if grad′F ∈
hreg(X).

Note that by Proposition 5.3, (X, gX , J, F ) is a Kähler-Ricci limit soliton if and
only if F ∈ Λ1 holds. Further, by Proposition 5.5, Re(grad′(iF )) is a Killing vector
field.

Theorem 5.7 (Decomposition theorem). Let (X, gX , J, F ) be a Kähler-Ricci
limit soliton. For a complex subspace Λ of Λ1, we assume the following:

(1) For any u, v ∈ Λ, {u, v} ∈ Λ.
(2) For every u ∈ Λ, {u, F} ∈ Λ.
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Then −grad′F acts on hΛ(X) by the adjoint action and hΛ(X) has a decomposition

hΛ(X) = hΛ0 (X)⊕
⊕
α>0

hΛα(X),

where hΛα(X) is the α-eigenspace of the adjoint action of −grad′F . Furthermore,
hΛ0 (X) is isomorphic as a Lie algebra to the complexification of a real Lie algebra
Λ̃ := {u ∈ Λ|u = −u} with the Poisson bracket {·, ·}, and ⊕

α>0 h
Λ
α(X) is nilpotent.

Moreover, the map

φΛ : Λ̃→ K(R)

defined by φΛ(u) := 2Re(grad′u) is an inclusion of Lie subalgebra, where K(R) is the
space of all Killing vector fields on R. In particular, if R coincides with the regular
set of X and the image of φΛ is contained in the Lie algebra of the isometry group of
R, then hΛ0 is reductive.

Proof. For every u ∈ Λ1, let

ΔF
∂
u := ΔF

∂
u

on R. Then by a simple calculation we have

ΔF
∂
u−ΔF

∂
u = {F, u}

on R. In particular, ΔF
∂
u ∈ H1,2

C
(X). Thus Proposition 3.8 gives u ∈ D2

C
(ΔF

∂
, X).

Therefore for every ξ ∈ hΛα(X), by letting uξ := Ψ−1
Λ (ξ), we have

ΔF
∂
uξ = (α+ 1)uξ.

Thus Corollary 4.2 gives α ≥ 0. Therefore we have a decomposition

hΛ(X) =
⊕
α≥0

hΛα(X).

From the argument above we see that Ψ−1
Λ (hΛ0 (X)) coincides with

Λ1,0 := {u ∈ Λ;ΔF
∂
u = u}.

In particular, for every u ∈ Λ1,0, we have Re(u), Im(u) ∈ Λ1,0. It is easy to check that

Λ̃ is a real Lie algebra and that Λ0,1 is isomorphic to the complexification of Λ̃.
On the other hand, from the Jacobi identity on R, we have

[hΛα(X), hΛβ (X)] ⊂ hΛα+β(X)

for any α, β ≥ 0. Since the dimension of hΛ(X) is finite, there exists a finite subset Γ
of (0,∞) such that hΛα(X) = 0 for every α ∈ (0,∞)\Γ. This shows that ⊕α>0 h

Λ
α(X)

is nilpotent.
Next we prove that φΛ is embedding as Lie algebras. Note that by Proposition

5.5, φΛ is well-defined. By a simple calculation, it is easy to check that φΛ is bracket
preserving. Let u ∈ Λ̃ with φΛ(u) = 0. Since

Re(grad′u) =
grad′u− grad′′u

2
,
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we have grad′u = grad′′u. Thus grad′u = grad′′u = 0. Proposition 3.15 gives that u
is constant. Since ∫

X

u dHn
F =

∫
X

ΔF
∂
u dHn

F = 0,

we have u = 0, i.e. φΛ is embedding as Lie algebras.
Finally we assume that R coincides with the regular set of X and that the image

of φΛ is contained in the Lie algebra g of the isometry group G of R. Note that G
is isomorphic to the isometry group of X because all isometry f : X → X preserve
the regular set (note that in this assumption, the regular set is open and convex. In
particular, the distance function on R defined by the smooth Riemannian metric gX
coincides with the restriction of dX to R. See [5, Theorem 3.7] or [11, Theorem 1.2]).
Therefore, from [5, Theorem 4.1], G is a compact Lie group. Thus we see that hΛ0 (X)
is reductive.

Remark 5.8. Assume that R coincides with the regular set of X. Then since
the isometry group of R is isomorphic to that of X and is a compact Lie group, we
see that for every Killing vector field V on R, V is in the Lie algebra of the isometry
group of R if and only if V is complete.

Remark 5.9. One of key points for the condition (5.1b) in the arguments above
is the following:

(�) If u ∈ H1,2(X) satisfies grad′u ∈ hreg(X) and
∫
X u dHn

F = 0, then u ∈ Λ1.

In fact if we replace (5.1b) by (�), then we can prove the same results above.
It is worth pointing out that (�) holds if the Weitzenböck formula∫

X

|ΔF
∂
f |2 dHn

F =

∫
X

|∇′′grad′f |2 dHn
F +

∫
X

|∂f |2 dHn
F . (26)

holds for every f ∈ D2
C
(ΔF

∂
, X). Note that by using a result in [28] we can establish

(26) under an additional assumption:

sup
i
|RicXi | <∞.

5.3. Remarks on the Lie algebra structure of Λ1 on almost smooth

setting. Let (X, gX , J, F ) be an almost smooth Fano-Ricci limit space so that (2.1a)
- (2.1e), (4.1a), (4.1b), (5.1a) - (5.1c) are satisfied. We add the following assumption:
(5.3a) The inclusion

H1,2
c (R) ↪→ H1,2(X)

is isomorphic.
Then we can apply Proposition 3.19 with U = R.

Compare the following with Proposition 4.21.

Proposition 5.10. Let (X, gX , J, F ) be an almost smooth Fano-Ricci limit space.
Then for any u, v ∈ Λ1, the following are equivalent:

(1) {u, v} ∈ Λ1.
(2) {u, v} ∈ H1,2

C
(X).



FANO-RICCI LIMIT SPACES & SPECTRAL CONVERGENCE 1057

Moreover if (5.3a) holds, then these also are equivalent to the following:

(3) grad′{u, v} ∈ L2
C
(T ′X).

Proof. It is trivial that if (1) holds, then (2) holds.

Assume that (2) holds. Then by (1) of Remark 5.2, we have grad′{u, v} ∈ hreg(X).

In particular grad′{u, v} is a holomorphic vector field on R. Since {u, v} ∈ H1,2
C

(X),
we have grad′{u, v} ∈ L2

C
(T ′X). Therefore by (5.1c), we have {u, v} ∈ D2

C
(ΔF

∂
, X).

By a simple calculation we have

∂(ΔF
∂
{u, v} − {u, v}) = 0

on R, i.e. ΔF
∂
{u, v} − {u, v} ∈ hreg(X). Thus by (5.1b), ΔF

∂
{u, v} − {u, v} is a

constant function.

On the other hand we have∫
X

{u, v} dHn
F =

∫
X

(grad′u)v dHn
F −

∫
X

(grad′v)u dHn
F

=

∫
X

hX(∂u, ∂v) dHn
F −

∫
X

hX(∂v, ∂u) dHn
F

=

∫
X

(ΔF
∂
u)v dHn

F −
∫
X

(ΔF
∂
v)u dHn

F

=

∫
X

uv dHn
F −

∫
X

uv dHn
F = 0.

Thus Proposition 3.16 shows ΔF
∂
{u, v} − {u, v} = 0, i.e. {u, v} ∈ Λ1. Thus we have

(1).

Finally if (5.3a) holds, then the equivalence between (2) and (3) follows from
Proposition 3.19, (2).

Compare the following with Corollary 4.22.

Proposition 5.11. Let (X, gX , J, F ) be an almost smooth Fano-Ricci limit space.
Moreover we assume that one of the following holds:

(1) Λ1 ⊂ LIPC(X).
(2) All L1-holomorphic vector fields on R are in L2

C
(TCX) with (5.3a).

(3) F ≡ 0.

Then (Λ1, {·, ·}) is a Lie algebra. In particular, if (X, gX , J, F ) is a Kähler-Ricci limit
soliton, then we have the decomposition for h1(X) as in Theorem 5.7.

Proof. If (2) holds, then the assertion follows directly from Proposition 3.19 and
(1) of Remark 5.2.

Next we assume that (1) holds. Note that by Propositions 3.10 and 3.6, we have
Λ1 ⊂ D2

C
(Δ, X). Let u, v ∈ Λ1. Then by [27, Theorem 4.12] we have Hessu,Hessv ∈

L2
C
(T ∗

C
X ⊗ T ∗

C
X). In particular ∇{u, v} ∈ L2(X). Thus by Remark 4.19, we have

{u, v} ∈ H1,2
C

(X). Therefore Propositions 5.4 and 5.10 show that (Λ1, {·, ·}) is a Lie
algebra.

Finally if (3) holds, then Theorem 5.7 and [6, Theorem 7.9] yield that (1) holds.
This completes the proof.
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5.4. Remarks on the Lie algebra structure of h1(X) on almost smooth

setting.

Proposition 5.12. Let (X, gX , J, F ) be an almost smooth Fano-Ricci limit space
with the assumption (5.3a). Then for any complex subspace Λ of Λ1 and u, v ∈ Λ1,
the following are equivalent:

(a) {u, v} ∈ Λ.
(b) [grad′u, grad′v] ∈ hΛ(X).

In particular, (Λ, {·, ·}) is a Lie algebra if and only if (hΛ(X), [·, ·]) is a Lie algebra.
Moreover if Λ = Λ1, then the conditions above are equivalent to the following:
(c) [grad′u, grad′v] ∈ L2

C
(TCX).

Proof. Proposition 5.4 yields that if (a) holds, then (b) holds. Thus we assume
that (b) holds.

Then by (1) of Remark 5.2, there exists w ∈ Λ such that grad′{u, v} = grad′w.
In particular, grad′{u, v} ∈ L2

C
(T ′X). Since {u, v} ∈ L1

C
(X), Proposition 3.19 yields

{u, v} ∈ H1,2
C

(X). Thus by Propositions 2.9 and 3.15, we see that {u, v} − w is
constant. Since ∫

X

{u, v} dHn
F =

∫
X

w dHn
F = 0,

we have {u, v} = w which gives (a).
It also follows from the argument above that if Λ = Λ1 and (c) hold, then (a)

holds. This completes the proof.

Proposition 5.13. Let (X, gX , J, F ) be an almost smooth Fano-Ricci limit space
with the assumption (5.3a). Moreover we assume that h1(X) ⊂ L∞

C
(T ′X). Then

(h1(X), [·, ·]) is a Lie algebra.

Proof. Let u, v ∈ Λ1. Proposition 3.10 yields u, v ∈ D2
C
(Δ, X). In particular by

[27, Theorem 4.11] we have Hessu,Hessv ∈ L2
C
(T ∗

C
X ⊗ T ∗

C
X). Since

[grad′u, grad′v] = ∇grad′ugrad
′v −∇grad′vgrad

′u,

we have [grad′u, grad′v] ∈ L2
C
(TCX). By Proposition 5.12 this completes the proof.

6. Decomposition theorem for Ricci limit Q-Fano spaces. In this section
we consider the case when the Fano-Ricci limit space is a Q-Fano variety. Let X
be an m-dimensional Q-Fano variety, that is, X is a normal projective variety whose
anti-canonical divisor K−1

X is an ample Q-Cartier divisor. Fix a sufficiently large
integer m, so that K−m

X is a very ample Cartier divisor. Let Φm : X → PN(C) be the
Kodaira embedding defined byK−m

X . Let hol(X) be the Lie algebra of all holomorphic
vector fields on X . By the normality of X , hol(X) is isomorphic to hol(X0) where
X0 is the regular part as a Q-Fano variety. Note that hol(X) is a Lie subalgebra
of pgl(N + 1,C). In particular, hol(X) is finite-dimensional. We say that X has a
structure of Ricci limit Q-Fano space if (X, gX , dH) a Fano-Ricci limit space of a
sequence of m-dimensional Fano manifolds (Xi, gXi , Ji, Fi) and the regular part R as
a Ricci limit space coincides with the regular part X0 as a Q-Fano variety and the
metric gX on X0 is smooth, and satisfies (5.1a). More precisely, the conditions (2.1a)
- (2.1e), (4.1a), (4.1b), R = X0 and (5.1a) are satisfied. In order for (X, gX , dH)
to satisfy the condition of an almost smooth Fano-Ricci limit space, it has to satisfy
(5.1b), and (5.1c). However because of normality X satisfies
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(6.1a) Every holomorphic function on R is constant,
and thus (5.1b) is satisfied trivially.

Proposition 6.1. A Ricci limit Q-Fano space is an almost smooth Fano-Ricci
limit space.

Proof. It suffices only to show (5.1c). Let u ∈ H1,2
C

(X) with grad′u ∈ hreg(X).
Then by a simple calculation we have

∂(ΔF
∂
u− u) = 0

on R. Thus by (6.1a), we see that ΔF
∂
u−u is constant. In particular, ΔF

∂
u ∈ L2(X).

Thus Proposition 3.8 yields u ∈ D2
C
(ΔF

∂
, X). This completes the proof.

We can use Phong-Song-Sturm’s compactness [41] to show the following compact-
ness of decomposition theorems for Kähler-Ricci solitons.

Theorem 6.2. Let (Xi, gXi , Ji, Fi) be a sequence of Kähler-Ricci solitons
with RicXi ≥ K, Hn(Xi) ≥ v, diamXi ≤ d, and Fi ≥ c. Then there ex-
ist a subsequence i(j), a Ricci limit Q-Fano space (X, gX , J, F ) of the subsequence
(Xi(j), gXi(j)

, Ji(j), Fi(j)), and the limit 1-eigenspace Λ of Λ1(Xi(j)) such that

sup
j
||∂Fi(j)||L∞ <∞,

that (X, gX , J, F ) is a Kähler-Ricci limit soliton, that −grad′F acts on hΛ(X) by the
adjoint action, and that the spectral convergence for the adjoint actions of − grad′ Fi(j)

holds, i.e.

lim
i→∞

λj(Xi, Fi) = λj(X,F ) ≤ C(n,K, d, v, c),

where λj(X,F ) denote the j-th eigenvalue of the adjoint action of − grad′ F counted
with multiplicity. Moreover the decomposition as in Theorem 5.7 holds for hΛ(X),
hΛ0 (X) is reductive, and FX |hΛ(X) is a character of hΛ(X) as a Lie algebra.

Proof. By (21), Corollaries 4.11, 4.28, Propositions 4.30, 6.1, Theorem 5.7 and [41,
Theorem 1.2], it suffices to check that hΛ0 (X) is reductive (note that the assumption
on upper bounds for Futaki invariants in [41, Theorem 1.2] is satisfied by (21)).

Let V = grad′u ∈ hΛ0 (X) for some u ∈ Λ. By the normality ofX , V is a restriction
of a holomorphic vector field W on PN (C). This can be seen as follows. First, by
normality V extends to the singular set of X and the one parameter group acts on
the sections of the pluri-anticanonical bundle. By Kodaira embedding it induces a
one parameter group of projective transformations. Let W be its infinitesimal vector
field. The restriction of W to the embedded X coincides with V .

In particular Re(W ) is complete on PN (C). This implies that Re(grad′u) is
complete on R. Therefore Theorem 5.7 with Remark 5.8 yields the assertion.

Remark 6.3. For a sequence of compact shrinking solitons with uniformly
bounded potentials ||Fi||L∞ < C, the diameters of the sequence are uniformly bounded
by [48, 37, 44]. Thus in Theorem 6.2 the diameter bound diamXi ≤ d follows from
Fi ≥ c and Corollary 4.11. Uniform lower bound of dimeters is always satisfied with-
out any assumption on the potential Fi (see [20, 19]).

We also have the following decomposition theorem.
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Theorem 6.4. If a Ricci limit Q-Fano space is a Kähler-Ricci limit soliton and if
all holomorphic vector fileds on X are L2 and with smooth poteitials on the regular set,
i.e. hol(X) = hreg(X), then hol(X) has the same structure as a smooth Kähler-Ricci
soliton. That is,

hol(X) = hol0(X)⊕
⊕
α>0

holα(X),

where holα(X) is the α-eigenspace of the adjoint action of −grad′F . Furthermore,
hol0(X) is a maximal reductive Lie subalgebra.

Proof. By Proposition 6.1, a Ricci limit Q-Fano space is an almost smooth Ricci
limit space. By Proposition 5.1 we have hreg(X) = h1(X). But by our assumption
hreg(X) = hol(X), which is naturally a Lie algebra. Thus taking Λ to be Λ1, (1)
and (2) in Theorem 5.7 are satisfied. Then our theorem is a direct consequence of
Theorem 5.7.

The case of smooth Kähler-Ricci solitons have been obtained in [47].

Remark 6.5. It is known by Berman and Witt Nyström [2] that if a Q-Fano va-
riety X admits a Kähler-Ricci soliton with the Kähler potential extended continuously
on the whole X then hol0(X) is reductive.

Remark 6.6. It is not known when all holomorphic vector fields on X are L2 with
respect to the Ricci limit space structure, or when L2 holomorphic vector fields consist
a Lie algebra. By Remark 3.7 and the normality, the condition (5.3a) is satisfied, and
the results in subsection 5.4 can be applied.
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[31] T. Kilpeläinen, J. Kinnunen, and O. Martio, Sobolev spaces with zero boundary values on

metric spaces, Potential Anal., 12 (2000), pp. 233–247.
[32] J. Kinnunen, and O. Martio, The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn.

Math., 21 (1996), pp. 367–382.
[33] K. Kuwae and T. Shioya, Convergence of spectral structures: a functional analytic theory

and its applications to spectral geometry, Commun. Anal. Geom., 11 (2003), pp. 599–673.
[34] C. Li, X. Wang, and C. Xu, Quasi-projectivity of the moduli space of smooth Kähler-Einstein

Fano manifolds, arXiv preprint, arXiv:1502.06532 (2015).
[35] P. Li, Harmonic functions on complete Riemannian manifolds, Handbook of geometric anal-

ysis, No. 1, pp. 195–227, Adv. Lect. Math. 7, Int. Press, Somerville, MA, 2008.
[36] P. Li and L. F. Tam, The heat equation and harmonic maps of complete Riemannian mani-

folds, Invent. Math., 105 (1991), pp. 1–46.
[37] M. Limoncu, The Bakry-Emery Ricci tensor and its applications to some compactness theo-

rems, Math. Zeit., 271:3-4 (2012), pp. 715–722.
[38] Y. Odaka, Compact moduli space of Kähler-Einstein Fano varieties, arXiv preprint,

arXiv:1412.2972 (2014).



1062 A. FUTAKI, S. HONDA, AND S. SAITO

[39] Y. Odaka, C. Spotti, and S. Sun, Compact Moduli Spaces of Del Pezzo Surfaces and Kähler-

Einstein metrics, J. Differential Geom., 102 (2016), pp. 127–172.
[40] Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential

Geom., 39 (1994), pp. 629–658.
[41] D. H. Phong, J. Song, and J. Sturm, Degeneration of Kähler Ricci solitons on Fano mani-

folds, Univ. Iagel. Acta Math., 52 (2015), pp. 29–43.
[42] N. Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math., 45 (2001),

pp. 1021–1050.
[43] C. Spotti, S. Sun, and C. Yao, Existence and deformations of Kähler-Einstein metrics on

smoothable Q-Fano varieties, Duke Math. J., 165 (2016), pp. 3043–3083.

[44] H. Tadano, Remark on a diameter bound for complete manifolds with positive Bakry-Émery

Ricci curvature, Diff. Geom. Appl., 44 (2016), pp. 136–143.
[45] G. Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich (Notes
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