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MAGNETIC GEODESICS VIA THE HEAT FLOW∗

VOLKER BRANDING† AND FLORIAN HANISCH‡

Abstract. Magnetic geodesics describe the trajectory of a particle in a Riemannian manifold
under the influence of an external magnetic field. In this article, we use the heat flow method to
derive existence results for such curves. We first establish subconvergence of this flow to a magnetic
geodesic under certain boundedness assumptions. It is then shown that these conditions are satisfied
provided that either the magnetic field admits a global potential or the initial curve is sufficiently
small. In the former case, we can in particular conclude that there exists a magnetic geodesic in
each homotopy class of curves. For non-exact fields, the behavior of the flow depends on the exact
choice of the initial curve in relation to the magnetic field. We finally discuss different examples to
illustrate these results.
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1. Introduction and results. The trajectory of a free point particle in a Rie-
mannian manifold is modeled by a geodesic. Geodesics arise from a variational prob-
lem, the existence of closed solutions can be studied by various methods and is well
understood at present. A powerful method to ensure their existence is the so called
heat flow method. Here, one deforms a given initial curve γ0 by a heat-type equation
and obtains a closed geodesic in the end. For geodesics, this method was successfully
applied by Ottarsson [Ott85] building on the famous existence result for harmonic
maps into manifolds with non-positive curvature due to Eells and Sampson [ES64].

The aim of this article is to study the equation which determines the trajectory
of a point particle in a Riemannian manifold of arbitrary dimension in the presence
of an external magnetic field, given by a closed two-form Ω. This equation is known
as equation for magnetic geodesics or prescribed geodesic curvature equation. It can
also be derived from a variational principle but the corresponding energy functional
is U(1)-valued in general.

The existence of magnetic geodesics has been ensured by various methods. This
includes methods from dynamical systems and symplectic geometry [Arn86], [Gin87],
[BT98], [BP02], [Gin96a], [Gin96b], [Mir06] and variational methods for multivalued
functionals (Morse-Novikov-theory) [Tăı91], [Tăı92], [NT84]. Furthermore, one can
also derive an existence result by Aubry-Mather’s theory [CMP04]. Recently, a new
approach was introduced ([Sch11], [Sch12]) which establishes the existence of mag-
netic geodesics on S2 and also on closed hyperbolic surfaces by studying the zeros of
certain vector fields. Besides many results for two-dimensional geometries, these ref-
erences also include discussions of magnetic geodesics in arbitrary target geometries
for different types of magnetic fields, see e.g. [NT84], [BT98] and [Gin96b] 2.7 - 2.12.

In this article, we use the heat flow method to approach the existence of magnetic
geodesics. Namely, we deform a given initial curve γ0 by a heat-type equation and
study in which cases this family of curves converges to a magnetic geodesic. This
approach was initiated in [Koh09]; the present article is a sequel and focuses on
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establishing sufficient conditions for the convergence of the flow. In [FRR00] a similar
problem is discussed, namely the heat flow for harmonic maps coupled to a potential.

Let us describe the problem in more detail. Suppose that N is a closed Rieman-
nian manifold and γ : S1 → N is a smooth curve. The U(1)-valued energy functional
for magnetic geodesics is given by

C∞(S1, N)→ U(1), γ �→ ei
1

2

∫
S1 |γ′|2ds Hol(γ), (1.1)

where Hol(γ) represents the holonomy of the magnetic field (more precisely, of the
corresponding gerbe G) along γ. Moreover, γ′ represents the derivative with respect
to the curve parameter s.

In the case that the magnetic field is given by an exact form Ω ∈ Γ(Λ2T ∗N) (or
in the language of gerbes: the curvature 2-form is exact), we may rewrite the energy
functional as the sum of a kinetic and a magnetic contribution

E(γ) = Ekin(γ) + EA(γ) :=
1

2

∫
S1

|γ′|2ds+
∫
S1

γ∗A, (1.2)

where the one-form A is the potential for the magnetic field, i.e. Ω = dA. The critical
points of (1.1) and (1.2) are given by

τ(γ) = Z(γ′), (1.3)

where τ denotes the tension field of the curve γ and Z ∈ Γ(Hom(TN, TN)) - also rep-
resenting the magnetic field strength - is the skew endomorphism metrically associated
to the 2-form through the equation

〈η, Z(ξ)〉 = Ω(η, ξ) (1.4)

for all η, ξ ∈ Γ(TN). Note that the critical points are globally defined, even in the
case that the potential and hence the energy functional is not.

In the following, we are studying the L2-gradient flow of the energy functional
(1.2), which is given by{

γ̇(s, t) = τ(γ)(s, t)− Z(γ′)(s, t), (s, t) ∈ S1 × [0,∞),
γ(s, 0) = γ0(s).

(1.5)

Here, γ : S1× [0, T )→ N is a smooth family of curves rather than a single curve and
γ̇ denotes its derivative with respect to t ∈ [0, T ). Throughout the manuscript, we
will use the notation γt(s) = γ(s, t). The precise meaning of the symbol γ will always
be clear from the context.

Note that neither the functionals (1.1) and (1.2) nor the equations of motion
derived from them are invariant under rescaling of the domain of definition. Thus,
strictly speaking, we have a different problem for each class of curves C∞(S1

r , N)
where S1

r denotes the circle of length 2πr. From a physical point of view, the length
of the circle encodes the period of revolution of the charged particle. Since we are
interested in the existence of closed trajectories regardless of this time, we ultimately
look for critical points defined on some S1

r . We will nevertheless mostly work with
S1 := S1

1 but make use of the possibility of rescaling the circle in Corollary 3.18. It
should be noted that many of the references quoted above do not take (1.1), (1.2)
as a starting point but rather the corresponding functionals based on length, not on
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energy. The associated critical points are again characterized by (1.3) (see [Gin96a]
Theorem 2.1), however, these modified functionals are scale invariant.

The existence of a short-time solution of the evolution equation (1.5) with exis-
tence interval [0, T ) for initial data γ0 ∈ C2+α(S1, N) is guaranteed by Theorem 19 in
[Koh09]. Moreover, Theorem 1 in the same reference shows that (1.5) has a unique,
smooth solution for all t ∈ [0,∞). However, the question in which cases the gradient
flow converges was not systematically addressed in [Koh09].

In this article, we will prove the following main results:

Theorem 1.1. Let γ : S1 × [0,∞) → N denote the unique solution of (1.5)
associated to Z ∈ Γ(Hom(TN, TN)) and initial condition γ0 ∈ C2+α(S1, N).

(1) If the magnetic field admits a global potential, then (1.5) subconverges and
we obtain a smooth magnetic geodesic γ∞. If γ0 is not null-homotopic or
E(γ0) ≤ 0 and γ0 is not constant, then the magnetic geodesic γ∞ is not
trivial (i.e. not a point).

(2) If |Z|L∞ is sufficiently small and the initial curve has sufficiently small kinetic
energy (see Theorem 3.13 for a precise formulation), then (1.5) subconverges.
Under a stronger assumption on |Z|L∞ (see Corollary 3.15), γt converges to
a point.

Case (1.1), where the magnetic field is not derived from a global potential, is
particularly challenging since (1.5) is no longer the gradient flow associated to a
globally defined, real-valued energy. In fact, the flow then exhibits features which
are different from the familiar case (no magnetic term): It does not subconverge to a
solution in every homotopy class (in fact, there does not necessarily exist a solution
in each class) and moreover, the question of convergence also depends on the precise
choice of the initial curve (cf. Remark 4.1). We want to point out that for these
reasons, the evolution equation for magnetic geodesics is more complicated then the
one for ordinary geodesics. Even though from an analytical point of view, the magnetic
contribution is of lower order, it has a big influence on the asymptotic behavior of the
flow. Due to this reason we need to apply more powerful tools and put restrictions on
initial conditions or the magnetic field in order to achieve convergence of the evolution
equation.

This paper is organized as follows: In Section 2 we recall the derivation of the
equation for magnetic geodesics and the Bochner formulas for the associated evolution
equation. Section 3 then discusses the convergence of the gradient flow. We give a
general criterion for subconvergence of the flow (Theorem 3.2) and show that it can be
applied to the cases where either the field admits a global potential (Theorem 3.20) or
the initial curve has sufficiently low energy and the magnetic field is weak (Theorem
3.13). We also discuss a rescaling technique to circumvent the latter assumption on Z.
Finally, in Section 4 we calculate some examples and compare our general theorems
with these explicit results.

2. Critical points and the gradient flow. Let us briefly recall the derivation
of the critical points, see for example ([Koh08] Proposition 2.4).

Lemma 2.1 (Critical points and Second Variation). Let Ω ∈ Γ(Λ2T ∗N) be an
exact magnetic field with potential A ∈ Γ(Λ1T ∗N).

(1) The critical points of the energy functional (1.2) satisfy

τ(γ)(s) = Z(γ′)(s), (2.1)
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where τ is the tension field of the curve γ and Z ∈ Γ(Hom(TN, TN)) is given
by (1.4).

(2) The second variation of the energy functional (1.2) yields

δ2

δγ2
E(γ) =

∫
S1

(|∇η|2 − 〈RN (η, γ′)γ′, η〉+ 〈(∇ηZ)(γ′), η〉+ 〈Z(∇η), η〉)ds.
(2.2)

Solutions of (2.1) are called magnetic geodesics.

Proof. Consider a family of smooth variations of γ satisfying γ0 = γ and ∂γt

∂t

∣∣
t=0

=
η. The first variation of the energy of a curve is given by

d

dt

∣∣∣∣
t=0

1

2

∫
S1

|γ′
t|2ds = −

∫
S1

〈τ(γ), η〉ds

with variational vector field η, see for example [LW08], p.2.
The first variation of the holonomy functional on the other hand gives

d

dt

∣∣∣∣
t=0

∫
S1

γ∗
t A = −

∫
S1

Ω(η, γ′)ds

with variational vector field η and Ω = dA, see for example [Bry08], p.234. Since Z
is defined by equation (1.4), the formula for the first variation follows.

Concerning the second variation, remember the second variation of the energy of
a curve, (see for example [LW08], p.8)

d

dt

∣∣∣∣
t=0

1

2

∫
S1

|γ′
t|2ds =

∫
S1

(|∇η|2 − 〈RN (η, γ′)γ′, η〉)ds.

For the second variation of the magnetic term, consider again a variation of γ satisfying
∂γt

∂t

∣∣
t=0

= η and calculate

∇
∂t

Z(γ′
t) = (∇γ̇t

Z)(γ′
t) + Z(∇γ̇t).

Evaluating at t = 0 yields the result.

Remark 2.2. If the magnetic field is not exact, then the first variation of (1.1)
also gives (2.1).

Now we recall two standard Bochner-formulas, which were already proven in
[Koh09], Proposition 10.

Lemma 2.3 (Bochner Formulas). Let γ : S1 × [0, T )→ N be a solution of (1.5)
and let Z ∈ Γ(Hom(TN, TN)). Then the following Bochner formulas hold:

∂

∂t

1

2
|γ′

t|2 = Δ
1

2
|γ′

t|2 − |τ(γt)|2 + 〈Z(γ′
t), τ(γt)〉, (2.3)

∂

∂t

1

2
|γ̇t|2 = Δ

1

2
|γ̇t|2 − |∇γ̇t|2 + 〈RN (γ̇t, γ

′
t)γ

′
t, γ̇t〉 (2.4)

− 〈(∇γ̇t
Z)(γ′

t), γ̇t〉 − 〈Z(
∇
∂t

γ′
t), γ̇t〉.
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Proof. Regarding the first equation, a direct computation yields

∂

∂t

1

2
|γ′

t|2 = Δ
1

2
|γ′

t|2 − |τ(γt)|2 − 〈∇Z(γ′
t), γ

′
t〉.

Using the identity

〈∇Z(γ′
t), γ

′
t〉 =

∂

∂s
〈Z(γ′

t), γ
′
t〉︸ ︷︷ ︸

=0

−〈Z(γ′
t), τ(γt)〉,

the first assertion follows. For the second statement, again by a direct computation,
we get

∂

∂t

1

2
|γ̇t|2 = Δ

1

2
|γ̇t|2 − |∇γ̇t|2 + 〈RN (γ̇t, γ

′
t)γ

′
t, γ̇t〉 − 〈

∇
∂t

Z(γ′
t), γ̇t〉.

Differentiating with respect to t we find

∇
∂t

Z(γ′
t) = (∇γ̇t

Z)(γ′
t) + Z(

∇
∂t

γ′
t)

and thus the statement follows.

With the help of the maximum principle we are now able to derive estimates
which are obtained similar to Corollary 13 in [Koh09]:

Lemma 2.4. Let γ : S1 × [0, T ) → N be a solution of (1.5) and let Z ∈
Γ(Hom(TN, TN)). Then the following estimates hold

|γ′
t|2 ≤|γ′

0|2eC1t, (2.5)

|γ̇t|2 ≤|γ̇0|2eC2e
t+C3t. (2.6)

The constant C1 depends on |Z|L∞, the constant C2 depends on
N, |Z|L∞ , |∇Z|L∞ , |γ′

0| and the constant C3 depends on |Z|L∞ , |γ′
0|.

Proof. To derive the first inequality, we estimate the Bochner formula (2.3) and
find

∂

∂t

1

2
|γ′

t|2 ≤ Δ
1

2
|γ′

t|2 +
1

4
|Z|2L∞ |γ′

t|2.

Now, apply the maximum principle and set c1 = 1
2 |Z|2L∞ . Regarding the second

inequality, we estimate the Bochner formula (2.4) and use the estimate on |γ′
t|2 to

obtain

∂

∂t

1

2
|γ̇t|2 ≤Δ1

2
|γ̇t|2 − |∇γ̇t|2 + c2|γ′

t|2|γ̇t|2 + c3|γ̇t|2|γ′
t|+

√
2c1|γ̇t|| ∇

∂t
γ′| (2.7)

≤Δ1

2
|γ̇t|2 + c2|γ̇t|2|γ′

0|2ec1t + c3|γ̇t|2|γ′
0|e

c1
2
t +

c1
2
|γ̇t|2

≤Δ1

2
|γ̇t|2 + |γ̇t|2

(
c2|γ′

0|2ec1t + c3|γ′
0|e

c1
2
t +

c1
2

)
with the constants c2 = |RN |L∞ and c3 = |∇Z|L∞ . Again, by application of the
maximum principle, we have to estimate the solution of

∂

∂t
|γ̇t|2 ≤ c4|γ̇t|2(ec1t + c5)
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with some positive constants c4 and c5. Integrating the ODE and rearranging the
constants completes the proof.

The estimates from the last Lemma are sufficient to establish the following state-
ment, which is proven in [Koh09], Theorem 1:

Theorem 2.5. For any γ0 ∈ C2+α(S1, N), there exists a unique γ ∈ C∞(S1 ×
[0,∞), N) satisfying (1.5) with initial condition γ(·, 0) = γ0.

3. Convergence of the gradient flow. If we want to achieve the convergence
of the gradient flow, we have to establish energy estimates that are independent of
the deformation parameter t. Thus, we have to improve the estimates obtained by
the maximum principle (2.5) and (2.6). We will make use of the following Lemma,
which combines the pointwise maximum principle with an integral norm.

Lemma 3.1. Assume that (M,h) is a compact Riemannian manifold. If a func-
tion u(x, t) ≥ 0 satisfies

∂u

∂t
≤ Δhu+ Cu,

and if in addition we have the bound

U(t) =

∫
M

u(x, t)dM ≤ U0,

then there exists a uniform bound on

u(x, t) ≤ eCKU0

with the constant K depending only on the geometry of M .

Proof. A proof can for example be found in [Tay11], Lemma 2.2, p. 327.

Based on this result, we obtain the following general result concerning convergence
of the heat flow:

Theorem 3.2 (Convergence). Let γ : S1 × [0,∞) → N be a solution of (1.5)
and (N, g) be a compact Riemannian manifold. If we have uniform bounds∫

S1

|γ′
t|2ds ≤ C,

∫ ∞

0

∫
S1

|γ̇t|2dsdt ≤ C (3.1)

for all t ∈ [0,∞), then the evolution equation (1.5) subconverges in C2(S1, N) to a
magnetic geodesic γ∞.

Proof. By assumption, we have a uniform bound on the L2 norm of γ′
t. Together

with the pointwise equation (2.3) and Lemma 3.1 we get the pointwise bound |γ′
t|2 ≤

C. Using this bound on |γ′
t|2 together with an estimate analogous to (2.7), we note

that |γ̇t|2 now satisfies

∂

∂t
|γ̇t|2 ≤ Δ|γ̇t|2 + C|γ̇t|2

for some constant C. Integrating over S1 and t from 0 to T , we find the bound∫
S1

|γ̇t|2ds ≤
∫
S1

|γ̇0|2ds+
∫ T

0

∫
S1

|γ̇t|2dsdt ≤ C. (3.2)
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By Lemma 3.1 and the assumption, we now also obtain a pointwise bound on |γ̇t|2 ≤
C, uniform in t.

As a next step, we apply Nash’s embedding theorem that is we assume that N is
realized as a Riemannian submanifold of some R

q. Thus, we may work with vector
valued maps S1× [0,∞)→ R

q and S1 → R
q whose image is contained in N ⊂ R

q and
use the associated Hölder spaces Ck,α(S1,Rq). Equation (1.5) now takes the form

γ̇t = −ΔS1,Rn(γt) + I
N (γ′

t, γ
′
t) + Z(γ′

t), (3.3)

where ΔS1,Rn denotes the linear Hodge-Laplacian acting on C∞(S1,Rq) and I
N the

second fundamental form of the embedding N ⊂ R. We improve our estimates with
the help of Schauder theory. Following the presentation in ([Koh09] proof of Theorem
22, in particular (31)) and viewing (3.3) as a linear elliptic equation for γt, the elliptic
Schauder estimates ([Bes08], p.463, Theorem 27) in R

q yield

|γt|C1,α(S1,Rq) ≤ C
(|γ′

t|2L∞(S1,Rq) + |γ′
t|L∞(S1,Rq) (3.4)

+ |γt|L∞(S1,Rq) + |γ̇t|L∞(S1,Rq)

)
,

where the constant C may depend on N,Z, γ0, α and the embedding N ↪→ R
q but

not on t ∈ [0,∞). By the first part of the proof and the compactness of N , we thus
get the bound

|γt|C1,α(S1,Rq) ≤ C

uniform in t. Viewing (3.3) as a linear parabolic equation for γ and using the corre-
sponding Schauder estimates (see again [Koh09], proof of Theorem 22 and also [Lie96],
Theorem 4.9 for the local version of the estimate), we obtain

|γt|C2,α(S1,Rq) + |γ̇t|Cα(S1,Rq) ≤ C
(|IN (γ′

t, γ
′
t) + Z(γ′

t)|Cα(S1,Rq) + |γt|L∞(S1,Rq)

)
≤ C

(|γ′
t|2Cα(S1,Rq) + |γ′

t|Cα(S1,Rq) + |γt|L∞(S1,Rq)

)
.

Using the compactness of N and (3.4), we get bounds

|γt|C2,α(S1,Rq), |γ̇t|Cα(S1,Rq) ≤ C, (3.5)

which are again uniform in t ∈ [0,∞). Now, by assumption, we have the estimate∫ ∞

0

∫
S1

|γ̇t|2dsdt ≤ C.

Hence, there exists a sequence tk →∞ such that

|γ̇tk |2L2(S1) → 0 (3.6)

as k→∞. Using the bounds from (3.5) and the Theorem of Arzelà and Ascoli, there
exists a subsequence (again denoted by γtk), which converges in C2 to a limiting map
γ∞ ∈ C2(S1,Rq) such that γ̇tk converges in C0(S1,Rq). In fact, γ∞ defines an element
of C2(S1, N) because we have γt(S

1) ⊂ N ⊂ R
q for all t. Finally, (3.6) implies that

limk→∞ γ̇tk = 0 and we conclude that γ∞ is a C2-solution of (2.1). Since γ is smooth
in t, it is moreover clear that γ∞ is homotopic to γ0.

Since the limit in the previous proof is a C2-solution of (2.1) by construction and
recalling that a magnetic geodesic has constant energy, which follows from

∂

∂s

1

2
|γ′

∞|2 = 〈τ(γ∞), γ′
∞〉 = 〈Z(γ′

∞), γ′
∞〉 = 0,
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the standard bootstrap argument for elliptic equations now implies the following reg-
ularity result:

Corollary 3.3. The limit γ∞ from Theorem 3.2 is smooth.

Remark 3.4. In the case of the heat flow for geodesics and under the assumption
that the target manifold N has non-positive curvature, a theorem due to Hartmann
[Har67] states that the limiting map γ∞ is independent of the chosen subsequence.
This theorem uses the fact that the second variation of the harmonic energy is positive.
Due to the extra term in the energy functional (1.2), there is a corresponding term in
the second variation (2.2) and we do not get such a statement here.

Remark 3.5. So far, we have established the existence of a convergent subse-
quence. This does not necessarily imply that the gradient flow converges itself. This
phenomena also occurs in the heat flow for closed geodesics, see [CP13].

Remark 3.6. Let γ be a solution of (1.5). Then for T > 0, we have

1

2

∫
S1

|γ′
T |2ds+

∫ T

0

∫
S1

|γ̇t|2dsdt+
∫ T

0

∫
S1

Ω(γ̇t, γ
′
t)dsdt =

1

2

∫
S1

|γ′
0|2ds. (3.7)

The only term in (3.7) not having a definite sign is the last term on the left hand side.
By Theorem 3.2, we may in particular expect that if we have a uniform bound∫ T

0

∫
S1

Ω(γ̇t, γ
′
t)dsdt ≥ C > −∞,

then the evolution equation (1.5) subconverges to a magnetic geodesic.

In the following we will describe two situations in which we can ensure the nec-
essary estimates such that we can apply Theorem 3.2.

3.1. The case of small, null-homotopic curves. Throughout this subsection,
we do not assume that Ω admits a global potential. However, the results presented
here do only apply to flows such that all curves γt are null-homotopic.

If U is a subset of N , we define

κU := sup{〈RN(X,Y )Y,X〉 | X,Y ∈ TpN, |X | = |Y | = 1, p ∈ U}. (3.8)

To give a sufficient condition for the application of Theorem 3.2, we want to apply
the following Poincaré type inequality (for a derivation see [Ott85], p.58):

Theorem 3.7. Let γ : S1 → N be a non-constant closed C2 curve and assume
w.l.o.g. that the maximum of the energy density occurs at s = 0. Suppose that the
image of γ is contained in a Ball B := Br(γ(0)) such that the exponential map

expγ(0) : Tγ(0)N → N,

restricted to Br(0) in Tγ(0)N , is a diffeomorphism onto Br(γ(0)). In case κB > 0,
assume in addition that r < (2

√
κB)

−1. Then the following inequality holds:

1

4π2

∫
S1

|γ′|2ds ≤
∫
S1

|τ(γ)|2ds. (3.9)
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Remark 3.8. The estimate in (3.9) can be improved for specific geometries.
As an example, consider R

n with the flat Euclidean metric. A simple calculation
using Fourier series (see also [Ott85] p.57) then shows that the inequality still holds
with 1/4π2 replaced by 1. For a general Riemannian manifold (N, g), let us denote by
CO(N, g) the optimal Ottarsson constant for (N, g), i.e. the biggest constant such that
the following estimate holds for all curves satisfying the assumptions from Theorem
3.7:

CO(N, g)

∫
S1

|γ′|2ds ≤
∫
S1

|τ(γ)|2ds. (3.10)

By Theorem 3.7, we thus have CO(N, g) ∈ [1/(4π2),∞). Computing the integrals for
γ a circle with radius 1, it is also straightforward to see that actually CO(R

n, gEucl) =
CO(T

n, gflat) = 1.

Remark 3.9. The following examples show that the assumptions in Theorem
3.7 are necessary: Consider the two-dimensional flat torus and a nontrivial closed
geodesic on it. Since (3.9) is clearly violated, we see that the condition concerning
the exponential map cannot be omitted. Similarly, the statement is not valid without
the bound on the radius r in case of κB > 0: Consider a circle ch of latitude h > 0
on S2. Clearly, for each point p on ch, the curve is completely contained in the ball
of radius π (= the injectivity radius of S2) around p. On the other hand, for h↘ 0,
this circle converges to the equator and hence

∫
S1 |τ(ch)|2ds→ 0, whereas

∫
S1 |c′h|2ds

converges to some positive number. This shows that we have to restrict to balls of
radius smaller than the injectivity radius in order to ensure (3.9) without assuming
K ≤ 0.

Lemma 3.10. Let γ : S1 × [0,∞) → N be a solution of (1.5) and (N, g) be a
compact Riemannian manifold. Assume that

|Z|2L∞ ≤ CO(N, g) (3.11)

and that Theorem 3.7 can be applied to the curves γt for all t ∈ [0,∞). Then we
obtain the uniform bounds∫

S1

|γ′
t|2ds ≤ C,

∫ ∞

0

∫
S1

|γ̇t|2dsdt ≤ C. (3.12)

Proof. We rewrite (3.7) in the following way:

1

2

∫
S1

|γ′
T |2ds+

1

2

∫ T

0

∫
S1

|γ̇t|2dsdt = 1

2

∫
S1

|γ′
0|2ds−

1

2

∫ T

0

∫
S1

|γ̇t|2dsdt

−
∫ T

0

∫
S1

Ω(γ̇t, γ
′
t)dsdt.

By a direct calculation using the evolution equation (1.5) we obtain

−1

2
|γ̇t|2 − Ω(γ̇t, γ

′
t) = −

1

2
|τ(γt)|2 + 1

2
|Z(γ′

t)|2.

Combining both equations, we find for T > 0:∫
S1

|γ′
T |2ds+

∫ T

0

∫
S1

|γ̇t|2dsdt =
∫
S1

|γ′
0|2ds+

∫ T

0

∫
S1

(−|τ(γt)|2 + |Z(γ′
t)|2)dsdt.
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Using the assumption on |Z|2L∞ and applying Ottarsson’s inequality (3.10), we obtain∫
S1

|Z(γ′
t)|2ds−

∫
S1

|τ(γt)|2ds ≤
(

|Z|2L∞

CO(N,g) − 1
)∫

S1

|τ(γt)|2ds ≤ 0, (3.13)

which gives the result.

Remark 3.11. If we think of magnetic geodesics as curves of prescribed geodesic
curvature, then the assumption of Lemma 3.10 means that we have to restrict to small
curvature.

We next discuss the question whether the conditions from Theorem 3.7 are pre-
served under the flow, i.e. whether we may use estimate (3.10) provided it is satisfied
for t = 0. The following Lemma shows that this is indeed possible for curves of
sufficiently low kinetic energy. To give a precise statement of this condition, let us
define

r(N) :=

{
injrad(N) if κN ≤ 0,

min(injrad(N), (2
√
κN )−1) if κN > 0,

(3.14)

where κN was defined in (3.8).

Lemma 3.12. If the assumptions from Lemma 3.10 on Z are satisfied, then for
any initial curve of kinetic energy smaller than r(N)2/(16π), Ottarsson’s estimate
(3.10) is valid for all curves γt, t ∈ [0,∞) of the associated flow.

Proof. We first observe that

∂

∂t

1

2

∫
S1

|γ′
t|2ds = −

∫
S1

|τ(γt)|2ds+
∫
S1

〈τ(γt), Z(γ′
t)〉ds

≤ 1

2

(− ∫
S1

|τ(γt)|2ds+ |Z|2L∞

∫
S1

|γ′
t|2ds

)
≤ 1

2

(|Z|2L∞ − CO(N, g)
) ∫

S1

|γ′
t|2ds, (3.15)

where we applied (3.10) in the last step. By the definition of r(N) from (3.14) and the
compactness of N , we have r(N) > 0. Let γ0 be an initial curve satisfying Ekin(γ0) <
(r(N))2/(16π). By the Cauchy-Schwarz inequality, the length of γ0 can be estimated
by L(γ0) < r(N)/2. Thus, for any point p ∈ γ0(S

1), we have γ0(S
1) ⊂ Br(N)(p)

and by the choice of r(N) and continuity, we may apply Theorem 3.7 on some time
interval [0, ε). Now assume that

J := {t ∈ [0,∞) | (3.10) is not valid } ⊂ [0,∞)

is not empty. Then, T := inf(J) ≥ ε > 0 and (3.10) holds on [0, T ). By (3.15) and the
assumption on Z, we have ∂Ekin(γt)/∂t ≤ 0 on [0, T ) which implies E(γT ) ≤ E(γ0).
Thus, we may argue as before to show that (3.10) is in fact valid on [0, T + ε′). This
contradiction proves that J must be empty, i.e. (3.10) holds for all t > 0.

Combining the results of Theorem 3.2 and Lemmas 3.10, 3.12, we have shown

Theorem 3.13. Let Z satisfy |Z|2L∞ ≤ CO(N, g) and assume that Ekin(γ0) <
r(N)2/(16π). Then the solution of (1.5) subconverges to a magnetic geodesic.
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Since all curves satisfying the assumptions of Theorem 3.7 are contractible, the
question of nontriviality of the limit curve γ∞ arises naturally. To discuss this ques-
tion, we first observe that integrating the estimate (3.15) with respect to t directly
yields the following estimate on the kinetic energy under the flow:

Lemma 3.14. Let γ : S1 × [0,∞) → N be a solution of (1.5) and (N, g) be a
compact Riemannian manifold. If Theorem 3.7 can be applied to the curves γt for all
t ∈ [0,∞), then we have∫

S1

|γ′
t|2ds ≤ e

(
|Z|2L∞−CO(N,g)

)
t

∫
S1

|γ′
0|2ds. (3.16)

This allows us to conclude that the flow in fact converges to a point in many
cases:

Corollary 3.15. If the magnetic field Z satisfies

|Z|2L∞ < CO(N, g), (3.17)

then the flow converges to the trivial magnetic geodesic γ∞. In fact, under this as-
sumption on Z, any magnetic geodesic that satisfies (3.10) is trivial.

Proof. Lemma 3.14 directly implies, that Ekin(γ∞) = 0, i.e. γ∞ is constant.
An argument analogous to the one used in [CP13] (Chapter 9) shows that under
this condition, the flow does not only subconverge but actually converges. More-
over, if a curve γ satisfies (2.1) together with (3.10), we have

∫
S1 |τ(γ)|2ds ≤

|Z|2L∞CO(N, g)−1
∫
S1 |τ(γ)|2ds. Hence,

∫ |τ(γ)|2ds = 0 and (3.10) implies that γ
is constant.

Remark 3.16. The situation described in Corollary 3.15 is similar to the one for
the heat flow for geodesics, see [Ott85], Theorem 4A and also [CP13], Chapter 9.

Remark 3.17. Corollary 3.15 states that we obtain convergence to a trivial
limit in case |Z|2L∞ < CO(N, g). A non-trivial limit γ∞ can only be obtained, if
|Z|2L∞ = CO(N, g) (note that for larger values, Theorem 3.13 may no longer be
applied!). In general, it is difficult to say what happens in this case of equality.
However, we will later see from Example 4.1 that our result is in fact optimal in the
following sense: In accordance with Corollary 3.15, the flow converges to a point for
|Z|2L∞ < 1 = CO(T

2, gflat). For |Z|2L∞ = 1, we do in fact obtain a nontrivial limit and
for |Z|L∞ > 1, the flow does not converge in general. Finally, all periodic magnetic
geodesics in this example are in fact contractible.

Theorem 2.5 and Theorem 3.13 in fact also allow us to conclude the existence
of nontrivial periodic magnetic geodesics via the heat flow method without assuming
that Z is small. Let Λ > 0 and γ : S1 × [0,∞) → N a solution of (1.5), defined on
the circle of length 2π. Then, a straightforward calculation shows that the rescaled
curve γΛ : S1

Λ−1 × [0,∞), γΛ(s, t) := γ(Λs,Λ2t) satisfies the rescaled equation

γ̇Λ = τ(γΛ)− ΛZ(γΛ). (3.18)

Using this rescaling technique, we obtain

Corollary 3.18. Given an arbitrary Z ∈ Γ(Hom(TN, TN)), there exist so-
lutions to (1.5) which converge to (possibly trivial) closed magnetic geodesics with
respect to Z, defined on a possibly rescaled loop.
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Proof. Choose Λ ≤ CO(N, g)/|Z|2L∞ and set ZΛ := ΛZ. Then Theorem 2.5
guarantees a solution γΛ : S1 × [0,∞) to (3.18). By Theorem 3.13 and the choice of
Λ, this flow subconverges (as t → ∞) to γΛ,∞, which satisfies τ(γΛ,∞) = ZΛ(γ

′
Λ,∞).

Scaling by Λ−1 as described above, the resulting map γ : S1
Λ × [0,∞), γ(s, t) :=

γΛ(Λ
−1s,Λ−2t) solves the original equation (1.5). It is clear that γ still subconverges

to a solution of the equation for magnetic geodesics with the originalZ which, however,
is defined on S1

Λ.

Of course, choosing Λ < CO(N, g)/|Z|2L∞ , Corollary 3.15 implies, that the limit
will always be trivial.

Remark 3.19. It is well know that in our (approximately flat) physical space R3,
periodic magnetic geodesics - in fact circles - can be observed for homogeneous mag-
netic fields of (almost) arbitrary strength B0. This is included in Corollary 3.18 but
not in Theorem 3.13 if B0 is large. In fact, it is easy to see that we have to perform
a rescaling to include these solutions: Setting charge and mass to 1, a straightfor-
ward calculation shows that equality of Lorentz- and centrifugal force translates into
2π/T = B0 where T denotes the time of revolution. Since T corresponds to the length
of S1

Λ, it is obvious that its length has to be “adjusted”.

3.2. The case of an exact magnetic field. In this section, we discuss the
convergence of the gradient flow in the case that the magnetic field is exact. Under
this assumption we can exploit the fact that (1.5) is derived from the well-defined
energy E(γ). It is in fact possible to interpret (2.1) as geodesic equation for a metric
on N × S1 (see [MR99], chapter 7.6 and references given there) but we will not
elaborate on this and work with the energy E(γ).

Theorem 3.20. If the two-form Ω is exact, then the solution γ of (1.5) subcon-
verges to a magnetic geodesic γ∞.

Proof. Using the fact that our evolution equation (1.5) is the L2-gradient flow of
E(γ), we obtain

E(γT ) +

∫ T

0

∫
S1

|γ̇t|2dsdt = 1

2

∫
S1

|γ′
T |2ds+

∫
S1

γ∗
TA+

∫ T

0

∫
S1

|γ̇t|2dsdt = E(γ0).

(3.19)

Thus, we may directly conclude that

1

4

∫
S1

|γ′
T |2ds+

∫ T

0

∫
S1

|γ̇t|2dsdt ≤ E(γ0) + Vol(S1)|A|2L∞ . (3.20)

Using (2.3) and (2.4) together with (3.1), we obtain a uniform bound on |γ′
t|2 and |γ̇t|2

from (3.20). Thus, the assumptions of Theorem 3.2 are satisfied and the evolution
equation (1.5) subconverges in C2(S1, N) to a magnetic geodesic γ∞. Since γt is
smooth, it is clearly homotopic to γ0.

Note that we did not use Ottarsson’s Theorem 3.7 and henceforth do not have
to restrict to contractible curves. Starting with initial conditions in a prescribed
homotopy class, we thus obtain

Corollary 3.21. If Ω is exact, then each homotopy class of curves in N contains
a magnetic geodesic.
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Note that in contrast to the heat flow for geodesics on manifolds with negative
curvature, the magnetic geodesic need not be unique in its homotopy class. The
argument which is used for the heat flow of ordinary geodesics (see [Har67]) is no
longer valid because of the presence of the magnetic contribution to the energy. We
will see an explicit counterexample in Example 4.3: H2 (or compact quotients thereof),
equipped with a suitable magnetic field Z, allows for contractible nontrivial closed
magnetic geodesics.

The following statement shows that under additional assumptions on the initial
conditions, the limit γ∞ will be nontrivial, even in the contractible case.

Proposition 3.22. Let Ω = dA be exact and γ∞ be the limit of the associated
flow (which exists by Theorem 3.20) with initial condition γ0. Moreover, assume
E(γ0) ≤ 0 and, in case E(γ0) = 0, furthermore assume that γ0 is nontrivial. Then,
γ∞ is a nontrivial closed magnetic geodesic.

Proof. Let γ be the solution to (1.5). By (3.19) applied to the interval t ∈ [t1, t2],
we have E(γt2) ≤ E(γt1) for any t2 ≥ t1 and hence, E(γ∞) ≤ E(γt) for any t ≥ 0. If
E(γt) < 0 for some t (in particular for t = 0), this proves the claim since the energy
of a constant curve clearly vanishes. If E(γt) = 0 for all t, then we conclude from
(3.19) that γ̇ = 0 and γ∞ = γ0, which is nontrivial by assumption in this case.

The existence of contractible initial conditions γ0 satisfying E(γ0) ≤ 0 can in fact
be ensured provided the field does not vanish:

Corollary 3.23. Assume that Ω = dA �= 0. Then there exists γ0 : S1
Λ → N for

some Λ > 0 such that the resulting flow from Theorem 2.5 subconverges to a nontrivial
magnetic geodesic.

Proof. By assumption, A ∈ Ω1(N) cannot be closed. Thus, we can always find
a small ball B ⊂ N and a loop c : S1 → B such that

∫
S1 c

∗A �= 0. Reversing the
orientation of c if necessary, we may assume

∫
S1 c

∗A < 0. Rescaling c as described
above (3.18), we see that Ekin(cΛ) becomes arbitrary small if Λ tends to zero, whereas
the term

∫
S1

Λ

(cΛ)
∗A is independent of Λ. Putting γ0 := cΛ for an appropriate choice

of Λ yields E(γ0) ≤ 0 and we can apply Proposition 3.22.

Remark 3.24.

(1) Most of the references listed in this work discuss the existence of magnetic
geodesics at a fixed energy level, where the level c of a magnetic geodesic γ∞ is
given by the (constant) value of |γ′

∞|. We are currently unable to control the
change of this quantity under the flow since our estimates only give limited
control of

∫
S1 |γ′

∞|2ds. This aspect should be addressed in future work.
(2) Results concerning the existence of contractible, closed, magnetic geodesics

have also be obtained in [Tai10] Theorem 1 and 2. Note that the condition
E(γ) < 0 appearing in Proposition 3.22 was also used in this reference to
discuss existence of closed magnetic geodesics.

(3) In case that Ω is not exact, the argument used in the proof of Proposition
3.22 breaks down since there is no longer a well defined energy. Of course, Ω
always admits local potentials Aloc and the argument clearly remains valid
provided one can show that the curves γt stay inside the domain of Aloc. The
examples in Section 4 show that this may or may not be the case, see Remark
4.1 (5) and Remark 4.2. We are currently not aware of a condition ensuring
the applicability of Proposition 3.22 in the non-exact case.
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4. Examples. In this section we discuss some explicit examples on the two-
dimensional torus T 2, on the two-dimensional sphere S2 and in the hyperbolic plane
H

2. They illustrate the influence of different background geometries and initial con-
ditions on the heat flow. Moreover, we believe it is helpful to discuss the abstract
results from Section 3 in view of these examples. Even though the following discussion
can be easily generalized to the corresponding geometries in arbitrary dimension, we
decided to restrict to dimension two in order to keep the presentation simple.

4.1. Magnetic geodesics on the torus. A general existence result for mag-
netic geodesics on the two-dimensional flat torus has been obtained using methods
from symplectic geometry in [CMP04] (Section 5). The heat flow in this specific
case was studied in [Koh09], p.457ff. Here, we want to make some further remarks
concerning this example.

Let C := S1 × R ⊂ R
3 denote the cylinder of radius 1. Using cylindrical coor-

dinates (ϕ, z) ∈ (−π, π) × R, a curve on C depending on some parameter t may be
represented as

γ(s, t) = (cos(ϕ(s, t)), sin(ϕ(s, t)), z(s, t)).

The magnetic field Z at x ∈ C is defined by taking the vector product (in R
3) of

v ∈ TxC and the vector B(x):

Zx(v) := v ×B(x), B = B0(cos(ϕ(x), sin(ϕ(x)), 0). (4.1)

Here, B0 ∈ R is a constant describing the strength of the magnetic field. Since B(x) ⊥
TxC, we clearly have Zx ∈ End(TxC). It follows directly from (4.1) that ∇CZ = 0
and thus, the associated two-form Ω (cf. (1.4)) is closed. Finally, taking the quotient
by Z in z-direction, we obtain a field Z ∈ End(TT 2) enjoying the same properties.
Note that the resulting induced field strength in Ω2(T 2) is given by ΩT 2 = B0volT 2 .
In particular, it is not exact. On the opposite, it is easy to check that on C, we have
ΩC = −d(zdϕ), i.e. there exists a global potential A = −zdϕ ∈ Ω1(C).

Before solving the flow equation, we briefly discuss the solution to the ODE
(2.1) for magnetic geodesics in case B0 �= 0. This is most easily done on the level
of the universal coverings R

2 → T 2 and R
2 → C, respectively. In fact, viewing

R
2 as subspace of R3, we have to determine the trajectories subject to a magnetic

field of constant strength B0 which is perpendicular to R
2. It is well known that

all the trajectories are circles in R
2 of radius |B0| and hence closed and contractible.

Projecting to T 2 or C, we conclude that all magnetic geodesics on these spaces subject
to the magnetic field from (4.1) are closed and contractible.

The heat flow equation (1.5) is equivalent to the following system of partial dif-
ferential equations

ϕ̇ = ϕ′′ −B0z
′, ż = z′′ +B0ϕ

′,

which can be rewritten in terms of the complex variable ξ = ϕ+ iz as

ξ̇ = ξ′′ + iB0ξ
′. (4.2)

The integrand of the magnetic term in the energy identity (3.7), which determines
the asymptotic behavior of the system, can be computed explicitly:

Ω(γ̇, γ′) = 〈γ̇, Z(γ′)〉 = B0〈γ̇, γ′ ×B〉 = B0(z
′ϕ̇− żϕ′).
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We can integrate (4.2) directly and obtain a family of solutions

ξk = eikse−(B0k+k2)t, (4.3)

where k ∈ N. The most general solution is obtained by summing over all k. Similar
to [Koh09], we now solve this system for different types of initial data.

(1) Let k ∈ Z \ {0}. Prescribing initial conditions (ϕk(s, 0), zk(s, 0)) =
(a cos(ks), b sin(ks)) for a, b > 0, we find the following solution:

ϕk(s, t) =
a+ b

2
cos(ks)e−(kB0+k2)t +

a− b

2
cos(ks)e−(−kB0+k2)t,

zk(s, t) =
a+ b

2
sin(ks)e−(kB0+k2)t − a− b

2
sin(ks)e−(−kB0+k2)t.

Putting B0 = k = 1, we reproduce the solution in [Koh09], Example 8a) and
it is easy to see that the flow converges as t → ∞. More general, a brief
inspection of the exponents shows that the flow (sub)-converges if and only
if |B0| ≤ |k|. In case |B0| < |k|, the flow in fact shrinks to a point and we
only obtain a nontrivial limit for B0 = ±k. It is not hard to check that these
limits are in fact magnetic geodesics. Explicit computation of the magnetic
term in the energy identity (3.7) yields∫ T

0

∫
S1

Ω(γ̇, γ′)dsdt = −πabkB0 − π
4 (b− a)2kB0e

−2T (k2−kB0)

+ π
4 (b+ a)2kB0e

−2T (k2+kB0).

We see that in accordance with Remark 3.6, this term is bounded below with
respect to T if and only if |B0| ≤ k, i.e. if and only if the flow (sub)-converges.

(2) Prescribing the initial conditions (ϕ(s, 0), z(s, 0)) = (s, μ cos(s)) for μ > 0,
we find the following solution:

ϕ = s+
μ

2
sin s(e(B0−1)t − e−(B0+1)t),

z = B0t+
μ

2
cos s(e(B0−1)t + e−(B0+1)t).

Note that this solution contains contributions from (4.3) for all k. It is obvious
that this solution does not converge as t→∞ for any choice of B0 ∈ R \ {0}.
Again, this is reflected in the critical term in (3.7)∫ T

0

∫
S1

Ω(γ̇, γ′)dsdt = −2πB2
0t+B0

πμ2

4
(e−2T (1+B0) − e−2T (1−B0)),

which is not bounded from below with respect to t for any choice of B0 ∈
R \ {0}. Note that the first term on the right hand side is multiplied by B2

0 .
Thus, we cannot change the asymptotic behavior of the solution by changing
the sign of B0, even if |B0| is small.

One may of course produce other explicit solutions using the Fourier decomposi-
tion of ξ from (4.3).

Comparing the findings in this particular example with the general results from
Theorem 3.13 and Theorem 3.20, we can draw the following conclusions:
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Remark 4.1.

(1) In general, we cannot expect to obtain the (sub)convergence of the flow to
a magnetic geodesic in case Ω is not exact unless the initial curve γ0 is con-
tractible. In fact, since all solutions in this example are contractible, the
initial conditions, being in the same homotopy class, have to be contractible,
too. Part (2) of the example shows an initial curve wrapping around the torus
and we have seen that the corresponding flow never converges.

(2) Even if Ω is exact, we need additional assumptions to guarantee |A|L∞ <∞
and hence (sub)-convergence of the flow to a magnetic geodesic. In fact,
the flow from part (2), viewed as an element of C∞(S1 × [0,∞), C), is not
subconvergent. This reflects the fact that the potential A = zdφ is not
essentially bounded on the non-compact cylinder C.

(3) An upper bound on |Z|L∞ (as the one used in Lemma 3.10) is crucial to
obtain convergence. In fact, choosing k := 1 < B0 in part (1) above provides
an example of a divergent flow.

(4) Even if the flow is subconvergent, the limit need not be a magnetic geodesic.
Setting μ := 0 in part (2), we obtain the constant sequence of curves γtm ∈
C∞(S1, T 2) for tm := 2πm, m ∈ N. We have already seen that γ∞ cannot be
a magnetic geodesic because it winds one time around the torus.

(5) Provided |B0| ≤ k, part (1) gives an example, where Proposition 3.22 can
be applied even though Ω is not exact. Moreover, we see that the condition
E(γ0) ≤ 0 cannot be improved: Choosing a = b = 1, we obtain E(γ0) =
Ekin(γ0) + EA(γ0) = π(k2 + kB0). Thus, we find examples of a flow with
positive total energy arbitrary close to zero, which shrinks to a point. On the
other hand, we also see that the aforementioned condition is not necessary
since B0 = k yields an example with positive initial energy converging to a
nontrivial magnetic geodesic.

(6) Part (1) also illustrates the rescaling technique used in Corollary 3.18: For
parameter k > 1, we may consider the flow as map S1

1/k × [0,∞) → T 2.

Rescaling it by 1
k , we get a new flow, defined on S1

1 × [0,∞), which solves

(3.18) for Λ = 1
k . The rescaled flow converges provided |B0

k | ≤ 1 by Remark
3.17. This is equivalent to the condition |B0| ≤ k, which was obtained above
by an explicit calculation. In particular, we find that convergence of the flow
to magnetic geodesics may be obtained for arbitrary large values of |B0| by
suitable rescaling in accordance with Corollary 3.18.

4.2. Magnetic Geodesics on the two-dimensional sphere. Now we study
the case of a two-dimensional spherical target, N := S2 ⊂ R

3. Magnetic geodesics on
S2 have been extensively studied in [Sch11]. A natural choice for a magnetic force is
given by Z(γ′) = B0γ × γ′. Again, it is not hard to see that the associated 2-form
is given by Ω = B0volS2 , which is not exact. In this case, the equation for magnetic
geodesics on S2 acquires the form

γ′′ = −|γ′|2γ +B0γ × γ′. (4.4)

By a direct computation one can check that

γ(s) = (sin θ0 cos(
B0

cos θ0
s), sin θ0 sin(

B0

cos θ0
s), cos θ0) (4.5)

solves (4.4) for a fixed value of θ0. However, note that this equation implicitly assumes
that this solution is defined on a circle S1

r whose radius r is an integer multiple of
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B0

cos θ0
. The corresponding heat flow leads to the following system

γ̇ = γ′′ + |γ′|2γ −B0γ × γ′ (4.6)

with initial data γ0. Here, the relevant term in (3.7) can be expressed as

Ω(γ̇, γ′) = B0〈γ̇, γ × γ′〉 = B0 det(γ̇, γ, γ
′)

and its sign will determine the asymptotic behavior of the evolution equation. Let us
analyze this evolution equation for several different ansätze.

(1) We use the following ansatz:

γ(s, t) = (sin θ(t) cosϕ(s), sin θ(t) sinϕ(s), cos θ(t)) (4.7)

This ansatz leads to a system of differential equations, which can be simplified
easily. From the equation for γ3 we obtain

θ̇

sin θ
= B0ϕ

′ − ϕ′2 cos θ.

Equating the expressions for γ1 and γ2 yields tan(ϕ)ϕ′′ = − cot(ϕ)ϕ′′, which
implies that ϕ′′ = 0. Hence, ϕ(s) = c · s and after a suitable rescaling, which
only affects the value of B0, we may assume ϕ(s) = s. The equations for
γi, (i = 1, 2, 3) now lead to

θ̇ = − sin θ cos θ +B0 sin θ = sin θ(B0 − cos θ). (4.8)

This equation cannot be integrated directly for arbitrary B0.
To understand the asymptotics of (4.8), we study the zero’s of the right hand
side. It can easily be checked that the right hand side vanishes for θ =
0, π, θ0 := arccos(B0) and the functions θ(t) = 0, π, θ0 are clearly solutions of
(4.8). Moreover, it is straightforward to check that

θ > θ0
θ < θ0

}
=⇒

{
sin θ(B0 − cos θ) > 0
sin θ(B0 − cos θ) < 0

(4.9)

Thus, depending on the initial condition, the solution will converge to θ∞ = 0,
θ∞ = π or, more interestingly, to θ∞ = θ0, see also [Tes12], Lemma 1.1.
Moreover, we see that if θ(0) �= θ0, then the flow equation (4.8) causes θ(t) to
approach one of the poles, i.e. limt→∞ θ(t) = 0, π. The corresponding limit
curve γ∞ will either be one of the poles of the sphere (and hence constant)
or given by the curve

γ∞(s) = (
√
1−B2

0 cos s,
√
1−B2

0 sin s,B0), (4.10)

which is a parametrization of (4.5). We have seen above that unless we
already start on this particular solution (θ(0) = θ0), the flow will converge to
one of the poles. Hence, (4.5) represents a non-stable solution, whereas both
trivial solutions are stable, at least within the limits of our ansatz (4.7).
In addition, we check the critical term in (3.7) for this ansatz:

Ω(γ̇, γ′) = B0〈γ̇, γ × γ′〉 = B0ϕ
′ d
dt (cos θ).

When integrating this expression over S1, we find that it vanishes, in accor-
dance with Remark 3.6 and the fact that this ansatz converges.
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(2) We now use a different ansatz:

γ(s, t) = (sin θ(s) cosϕ(t), sin θ(s) sinϕ(t), cos θ(s)). (4.11)

The magnetic field now reads Z(γ′) = B0(− sinϕ(t)θ′,− cosϕ(t)θ′, 0) and the
equation for γ3 then directly implies θ′′ = 0. Multiplying the equation for
γ1 with sinϕ, multiplying the equation for γ2 with cosϕ and adding up both
contributions then yields

ϕ̇ = −B0
θ′

sin θ
.

But this means that both sides have to be equal to a constant λ, leading to

−θ′ = λ sin θ.

In addition, we know that θ′ is constant such that θ = 0. Hence, the curve γ
will stay at the north pole of S2. The critical term in (3.7) takes the form

Ω(γ̇, γ′) = −B0ϕ̇
d
ds (cos θ)

and this expression again vanishes when integrated over S1.

In addition to the comments at the end of Example 4.1, we can draw additional
conclusions concerning the heat flow approach from the current example on S2:

Remark 4.2.

(1) By (4.5), there exist nontrivial contractible periodic magnetic geodesics. How-
ever, the heat flow method is not appropriate to establish their existence since
the nontrivial solution is unstable. Given a generic choice for the initial curve
γ0, the flow will converge to one of the poles. This behavior is analogous to
the properties of the ordinary heat flow for closed geodesics on S2.

(2) The discussion of ansatz (1) also provides an example where the criterion in
Proposition 3.22 for non-triviality of γ∞ explicitly fails. Choosing a potential
Ap on S2 \ {p} for some point p ∈ S2 and an initial curve γ0 such that
1
2

∫ |γ′
0|2ds+

∫
γ∗
0A ≤ 0, it may be shown that the flow either passes through

p at some time or converges to p. Thus, the argument in 3.22 breaks down.

4.3. Magnetic geodesics on the hyperbolic plane. Finally, we assume that
N is the hyperbolic plane H

2 with constant curvature −1. A general existence result
for magnetic geodesics on H

2 was recently established in [Sch12]. We choose the
convention

H
2 = {(γ1, γ2, γ3) ∈ R

3 | γ2
1 − γ2

2 − γ2
3 = 1},

i.e. the axis of rotation of the hyperboloid points in the γ1-direction. As in [Sch12],
p.6, we define a modified cross product between two vectors v, w by

v×̃w = (v3w2 − v2w3, v1w3 − v3w1, v1w2 − v2w1). (4.12)

The equation for magnetic geodesics is now given by

γ′′ = γ|γ′|2 +B0γ×̃γ′
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and as in the spherical case, an explicit solution can easily be found:

γ(s) = (cosh θ0, sinh θ0 cos(
B0

cosh θ0
s), sinh θ0 sin(

B0

cosh θ0
s)). (4.13)

Note that for B0 → 0, the solution shrinks to a point. This reflects the fact that there
do not exist ordinary closed geodesics on H

2.
The evolution equation for magnetic geodesics then reads

γ̇ = γ′′ − γ|γ′|2 −B0γ×̃γ′ (4.14)

for some given initial data γ0. Let us make the following ansatz

γ(s, t) = (cosh θ(t), sinh θ(t) cosϕ(s), sinh θ(t) sinϕ(s)).

Similar to the spherical case, this leads to the two equations

θ̇ = − cosh θ sinh θϕ′2 − sinh θϕ′, ϕ′′ = 0.

Thus, setting ϕ = s, we obtain

θ̇ = − cosh θ sinh θ +B0 sinh θ.

As in the spherical case, we cannot integrate this equation directly. Thus, we again
analyze the zero’s of the right hand side, which are given by 0, θ0 := arcoshB0. Similar
to (4.9), we moreover have

θ > θ0
θ < θ0

}
=⇒

{
sinh θ(B0 − cosh θ) < 0
sinh θ(B0 − cosh θ) > 0

(4.15)

In contrast to the spherical case, we now find that unless θ(0) = 0, we have
limt→∞ θ(t) = θ0. Hence, depending on the initial condition, the solution will stay at
(1, 0, 0) if it started at this point or converges to the curve

γ∞ = (B0,
√
B2

0 − 1 cos s,
√
B2

0 − 1 sin s), (4.16)

which again coincides with (4.13) up to a parametrization.

Remark 4.3. In contrast to Example 4.2, the nontrivial solution on H
2 is sta-

ble, at least within the limits of our ansatz. In particular, the heat flow method is
appropriate for establishing the existence of the nontrivial magnetic geodesics (4.13).
Again, this reflects the properties of the heat flow for ordinary geodesics where critical
points are stable if the manifold has strictly negative curvature. Due to the magnetic
terms in (2.2), we do not fully understand the role of curvature for magnetic geodesics
at present.
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[NT84] S. P. Novikov and I. A. Tăımanov, Periodic extremals of multivalued or not everywhere

positive functionals, Dokl. Akad. Nauk SSSR, 274:1 (1984), pp. 26–28.
[Ott85] S. K. Ottarsson, Closed geodesics on Riemannian manifolds via the heat flow, J.

Geom. Phys., 2:1 (1985), pp. 49–72.
[Sch11] M. Schneider, Closed magnetic geodesics on S2, J. Differential Geom., 87:2 (2011),

pp. 343–388.
[Sch12] M. Schneider, Closed magnetic geodesics on closed hyperbolic Riemann surfaces, Proc.

Lond. Math. Soc. (3), 105:2 (2012), pp. 424–446.
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