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ON LOWER BOUNDS FOR SLOPES OF TOTALLY RAMIFIED

TRIPLE COVER FIBRATIONS∗

PAN LIU† , JUN LU‡ , AND FEI YE§

Abstract. Let f : S → C be a totally ramified triple cover fibration of type (g, γ). We prove

that the slope of f has a sharp lower bound 24(g−1)
5g−6γ+1

given that g > 15
2
γ + 5

2
. We also characterize

fibrations that achieve the bound.
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1. Introduction. In this paper, we always work over C.
A fibration, denoted by f : S C, is a smooth projective surface S with a

surjective morphism f onto a smooth curve C whose fibers are connected. A fibration
f : S C is relatively minimal if there is no (−1)-curve on S contained in any fiber
of f . A fibration is of genus g if the genus of a general fiber is g. Let b = g(C) and
g = g(F ) be genera of the base curve C and a general fiber F respectively.

We have the following very important relative numerical invariants:

K2
f

def
= K2

S/C = K2
S − 8(g − 1)(b− 1), (1)

χf
def
= deg f∗OS(Kf ) = χ(OS)− (g − 1)(b− 1), (2)

ef
def
= χtop(S)− χtop(C)χtop(F ) = χtop(S)− 4(g − 1)(b − 1). (3)

It is well known that they are all non-negative and related by Noether’s formula (see
for instance [BHPV04])

12χf = K2
f + ef .

Whenever χf 6= 0, the slope of the fibration f is defined to be λf = K2
f/χf . Noether’s

formula implies that λf ≤ 12. The equality holds if and only if f is a Kodaira fibration.
The slope λf and its bounds play important roles in the study of geography of

algebraic surfaces. Under different conditions, lower bounds as well as upper bounds
for slopes of fibrations have been studied by many authors (For lower bounds, see
for instance [Xia87], [CH88], [Hor91], [Che93], [Kon91], [Kon93], [Kon96], [SF00],
[Mat90], [Per81] and [Tan96]. For upper bounds, see for instance [CT06], [Tan96],
and [Xia85]). It needs to be pointed out that searching for sharp lower bounds is
more difficult in general and still active. The paper [AK02] provides a very good
survey in this direction.

In this paper, we focus on lower bounds for slopes of triple cover fibrations. We
are motivated by the work [Bar01], [BZ01] and [CS08] on double cover fibrations.
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A fibration f : S C of genus g is called a double cover (resp. triple cover)
fibration of type (g, γ) if it is relatively minimal and there exists a relatively minimal
fibration ϕ : P0 C of genus γ and a generic double cover (resp. triple cover)
φ : S P0 such that the following diagram commutes,

S P0

C

φ

f ϕ (4)

For a double cover fibration of type (g, γ), Barja [Bar01] (for γ = 1), Barja-Zucconi
[BZ01] and Cornalba-Stoppino [CS08] proved that

λf ≥
4(g − 1)

(g − γ)

for g ≥ 4γ+2 by using double cover trick and Hodge index theorem. Moreover, there
are examples showing that the bound is sharp.

For triple cover fibrations, the same idea works but the calculation is much more
difficult.

Assume that f is a triple cover fibration. One can lift φ to a general finite
morphism S̃ P0 by a sequence of blow-ups ρ : S̃ S. Furthermore, by Stein
factorization, we have

S̃ S0

S P0

C

ρ π

φφ

f ϕ

(5)

where π : S0 P0 is a triple cover. We call f a totally ramified triple cover fibration,
if π is a totally ramified triple cover.

When γ = 0, to find lower bounds for the slope λf , we may and, unless otherwise
stated, will assume that π is a normalized triple cover(see Lemma 2.1).

We say that a fibration f : S C is isotrivial if all smooth fibers are isomorphic.
We say that a fibration is locally trivial if it is isotrivial and all fibers are smooth.

By carefully studying local invariants of triple cover fibrations, we obtain

Theorem 1.1. Let f : S C be a totally ramified triple cover fibration of type
(g, γ). If g > 15

2 γ + 5
2 , then

λf ≥
24(g − 1)

5g − 6γ + 1
.

The bound is sharp. When γ ≥ 1 or that γ = 0, g > 3 and π : S0 P0 (see diagram
(5)) is normalized, the equality holds if and only if the following conditions hold:

(1) the morphism ϕ : P0 C (see diagram (4)) is locally trivial;
(2) the branch locus R of π is numerically equivalent to a Q-linear combination

of the relative canonical divisor KP0/C and a fiber of ϕ : P0 C whenever
γ 6= 1;
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(3) the singularities of the triple cover π : S0 P0 (see diagram (5)) are at most
rational double points.

Remark 1.2. In the case that (g, γ) = (3, 0) and λf = 3, the singularities of S0

are not necessarily rational double points (See Example 3.3).

The proof of this theorem involves computations on invariants of triple cover
fibrations which are much more difficult than those of double cover fibrations. We
will first study the singularities of branch loci of triple covers and describe how to
compute the invariants in section 2. By using the invariants of triple covers and the
Hodge index theorem, we will prove Theorem 1.1 in section 3 and give an example to
show that our bound is sharp.

Acknowledgement. The authors would like to thank Professor Zhijie Chen
and Professor Sheng-Li Tan for introducing the present research field and for their
encouragement and help on this work. The authors thank the referee for the valuable
comments and suggestions.

2. Preliminaries on the triple covers. In this section we recall some facts
about triple covers from [Tan01] and [Tan02].

2.1. Triple cover data. Let P0 be a smooth algebraic surface and π : S0 P0

be a normal triple cover. It is known that a normal triple cover is always determined
by some triple cover data (s, t,L), where L is an invertible sheaf on P0, s ∈ H

0(P0,L
2)

and 0 6= t ∈ H0(P0,L
3). Note that S0 is the normalization of the surface defined by

z3 + sz + t = 0 in the line bundle of L on P0.

If s = 0, then the triple cover is cyclic and everything is known (see for instance
[Tan02, Section 1.4]). Assume that s 6= 0. Let

a =
4s3

gcd (s3, t2)
, b =

27t2

gcd (s3, t2)
, c =

4s3 + 27t2

gcd (s3, t2)
.

Then a, b and c are coprime sections of an invertible sheaf such that a + b = c.
Conversely, any coprime triples (a, b, c) with a+ b = c determines a triple cover over
P0(in fact, one can recover s and t by using (a, b, c)). It is well known that the
following decompositions hold:

a = 4a1a
2
2a

3
0, b = 27b1b

2
0, c = c1c

2
0,

where a1, a2, b1, c1 are square-free and gcd (a1, a2) = 1. The corresponding divisors of
those sections are denoted by

Ai = Div(ai), Bi = Div(bi), Ci = Div(ci).

Recall that the branch locus of the triple cover π is R = 2D2 +D1, where D2 =
A1 +A2 and D1 = B1 +C1 are the totally ramified branch locus and simply ramified
branch locus respectively. We remark that the triple cover π : S0 P0 is totally
ramified if and only if the divisor D1 = 0. A Galois triple cover is clearly totally
ramified. However, the converse may be not true (see [Tok92]).
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2.2. Canonical resolution. For a triple cover π0 : S0 → P0, a canonical reso-
lution τ : S̃ S0 of singularities of S0 is a commutative diagram.

S̃ = Sk · · · S2 S1 S0

P̃ = Pk · · · P2 P1 P0

τk

π̃=πk

τ2

π2

τ1

π1 π0=π

σk σ2 σ1

(6)

In the diagram (6),
(1) the morphism σi+1 is the blowing-up of Pi at a singular point pi of the

branch locus of πi, the surface Si+1 is the normalization the fiber product
of Pi+1 ×Pi

Si, the morphism π̃ = πk has a smooth branch locus, and hence
S̃ = Sk is smooth;

(2) the corresponding data (a(i), b(i), c(i)) of πi is obtained from

(σ∗
i a

(i−1), σ∗
i b

(i−1), σ∗
i c

(i−1))

by eliminating the common factors.
The above canonical resolution works for any triple cover [Tan91]. We remark that

a canonical resolution for a cyclic triple cover was also given in [AK91]. Also another
method to deal with canonical resolutions of triple covers was given by Ashikaga
[Ash92].

Unless otherwise stated, we will assume that our triple covers are totally ramified
triple covers in what follows. In this case, the branch locus R = 2(A1 + A2). Such a
triple cover is smooth if and only if A1 +A2 is a smooth divisor.

We put

di = min{mpi(A
(i)),mpi(B

(i)),mpi(C
(i))},

where mp(D) is the multiplicity of a divisor D at p. We note that each triple cover
πi : Si Pi in the canonical resolution is still totally ramified, which can be seen
by induction on i. For i = 0, π0 = π is totally ramified by our assumption. Assume
that πi is totally ramified. Since mpi(B

(i)) and mpi(C
(i)) are both even, di is also

even. Therefore, after blowing up, there is no new square free component contained

in B(i+1) or C(i+1). Thus B
(i+1)
1 + C

(i+1)
1 = 0, i.e., πi+1 is also totally ramified.

Let Ei be the exceptional curve of σi, Ei (resp., Ei) be the total (resp., strict)
transform of Ei in P̃ , and σ = σ1 · · ·σk : P̃ P0 be the compositions of the maps σi.
Then the branch locus of π̃ is

D̃2 = σ∗(D2)−

k−1∑

i=0

niEi+1,

where the numbers ni are given by (see [Tan02, page 158] or [CT06, page 4])

ni =

{
mpi(D

(i)
2 ), if di ≡ mpi(A

(i)) (mod 3);

mpi(D
(i)
2 )− 1, otherwise.

(7)

It is not difficult to see that (also see [CT06, Lemma 2.1])

ni =

{
mpi(D

(i)
2 )− 1, Ei+1 in the support of D

(i+1)
2 ;

mpi(D
(i)
2 ), otherwise.
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Now we have the following formulae, which will be used in the proof of Theorem
1.1, for a totally ramified triple cover (see [Tan02, Section 6] or [CT06, Section 2]).

χ(OS̃) =3χ(OP0
) +

5

18
D2

2 +
1

2
D2KP0

−

k−1∑

i=0

ni(5ni − 9)

18
, (8)

K2
S̃
=3K2

P0
+

4

3
D2

2 + 4D2KP0
−
k−1∑

i=0

4ni(ni − 3)

3
− 3k. (9)

Noting that R = 2D2 in our case, one can restate Lemma 5.2 in [CT06] as follows.

Lemma 2.1. If γ = 0, then the surface P̃ in the diagram (6) can be contracted
to a relatively minimal model P with a ruling ϕ : P C satisfying the following
conditions.

P̃ P

C

ψ̃

ϕ̃
ϕ

(1) Let D̃2 be the totally ramified branch locus of π̃, and D2 be the image of D̃2.

Then ψ̃ : P̃ P is the canonical resolution of D2.
(2) Let D2,h be the horizontal part of D2 (i.e., D2,h does not contain any fibers

of ϕ and D2,v = D2 −D2,h is the sum of some fibers), then the multiplicities
of the singular points of D2,h (resp. D2) are less or equal to (g + 2)/2 (resp.
(g + 4)/2).

The triple cover over P totally ramified over D2 (induced by the triple cover
S̃ P̃ ) is called normalized.

Note that the invariants KS̃ and χ(OS̃) can also be obtained via the formulae
(8) and (9) from the induced normalized triple cover over P . So, in what follows,
whenever γ = 0, we will assume that the triple cover π0 : S0 P0 is the normalized
triple cover induced by S̃ P̃ .

2.3. Singular points of branch locus. Let pi be a singular point of the branch
locus of the totally ramified triple cover πi : Si Pi occurring in the canonical
resolution diagram (6).

As a special case in [LT14, Theorem 1.3], we have

Lemma 2.2. A singularity in S0 corresponding to pi is a rational double (resp.
triple) point if and only if the following conditions hold.

(1) ni = 1 (resp. ni = 2);
(2) each infinitely close point of pi, says pj, satisfies nj ≤ 2.

From [LT14, Corollary 5.2, Corollary 6.1], one also has

Lemma 2.3. If ni = 1, then Ei+1 is a (−3)-curve and lies in the totally ramified
branch locus. Thus the pull-back of Ei+1 is a (−1)-curve.

To prove Theorem 1.1, we need classify the singular points pi with ni = 1. From

the definition (7) of ni, we see that ni = 1 if and only if mpi(D
(i)
2 ) = 2 and the
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exceptional curve Ei+1 lies in the totally ramified branch locus. Moreover, the local

equation of D
(i)
2 at pi can be written as

x2 + ym = 0, pi = (0, 0). (10)

In a local neighborhood of pi, such a triple cover is a Galois cover totally ramified
over D2 (See [Tan02, Theorem 2.1] and its proof).

From the above discussion and Lemma 2.3, if ni = 1, the local triple cover over a
neighborhood of pi can be defined by a local equation

z3 = x2 + ym.

So one can easily write down the canonical resolution of the corresponding singularities
(see [Tan02, Section 1.2]).

In Figures 1-5, a thick line represents a component contained in the triple ramifi-
cation divisor D2, and a dash line represents a component not contained in the branch
locus. The self-intersection number is marked near the component. The number un-

der an arrow ←−
ni=?

represents the invariant ni associated to this blowing-up, and
1:3
←−

means a triple cover.
Based on the above discussion and Lemma 2.3, by a straightforward resolution,

we see that a singular point pi with ni = 1 is one of the following types:

Type 1: ni = 1 and D2 is locally defined as x2 + y2 = 0 at pi = (0, 0). The
corresponding singularity in Si is a rational double point of type A2.

pi ni = 1 pi+1 ni+1 = 2

−2

−1
pi+2 ni+2 = 2

−3

−1 −1

1 : 3
−1

−3 −3

Fig. 1. Resolution graph for type 1 singularity

pi has two distinct infinitely close points pi+1 and pi+2 in Ei+1 with ni+1 = ni+2 = 2.

Type 2: ni = 1 and D2 is locally defined as x2 + y3 = 0 at pi = (0, 0). The
corresponding singularity in Si is a rational double point of type D4.

pi ni = 1

−1

pi+1 ni+1 = 2

−2

−1

pi+2 ni+2 = 2

−3

−1

−2

1 : 3
−1

−3

−2
−2

−2

Fig. 2. Resolution graph for type 2 singularity

Type 3: ni = 1 and D2 is locally defined as x2 + y4 = 0 at pi = (0, 0). The
corresponding singularity in Si is a rational double point of type E6.

pi ni = 1

−1

pi+1 ni+1 = 2

−2

−1

pi+2 ni+2 = 2

−3

−1

−2

pi+3 pi+4

· · ·

Fig. 3. Resolution graph for type 3 singularity
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Both infinitely close points pi+3 and pi+4 are of type 1 again. We omit the rest of
the resolution.

Type 4: ni = 1 and D2 is locally defined as x2 + y5 = 0 at pi = (0, 0). The
corresponding singularity in Si is a rational double point of type E8.

Here the infinitely close point pi+3 is of type 3. We omit the rest of the resolution
again.

pi ni = 1

−1

pi+1 ni+1 = 2

−2

−1

pi+2 ni+2 = 2

−3

−1

−2
pi+3

· · ·

Fig. 4. Resolution graph for type 4 singularity

Type 5: ni = 1 and D2 is locally defined as x2 + ym = 0 at pi = (0, 0), m ≥ 6.
However the corresponding singularity in Si is not a rational double point by Lemma
2.2.

pi ni = 1

−1

pi+1 ni+1 = 2

−2

−1

pi+2 ni+2 = 2

−3

−1

−2
pi+3

−3

−1

−3

−1

· · ·

Fig. 5. Resolution graph for type 5 singularity

If pi+3 admits an infinitely close point, say pi+4, after a blowing-up, then pi+4 is one
of type 1-5 again and its local equation is x2 + ym−6 = 0.

Summarizing the above classification, we get

Lemma 2.4. Let pi be a singular point of the branch locus of the triple cover
πi : Si Pi in the commutative diagram of the canonical resolution. Assume that the
invariant ni = 1. Then

(1) The point pi has at least two infinitely close points in Ei+1, say pi+1 and
pi+2, with invariants ni+1 = ni+2 = 2.

(2) The exceptional curve Ei+1 lies in totally ramified branch locus, and its
pulling-back in S̃ = Sk is a (−1)-curve.

(3) The singularity in Si corresponding to pi is a rational double point if and only
if pi is one of types 1-4.

3. Proof of Theorem 1.1. This section is devoted to prove Theorem 1.1. We
use notations introduced in the previous sections. Let f : S C be a totally ramified
triple cover fibration of type (g, γ). Then the canonical resolution π̃ : S̃ P̃ (Figure
6) induces a fibration f̃ : S̃ C. Since f : S C is relatively minimal, by the
uniqueness of relatively minimal model, after contracting all (−1)-curves in fibers of
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f̃ , we get f : S C again. Namely, we have the following commutative diagram

S

S̃ S0 P0

P̃ P0 C

φ

τ

π̃

ρ

π ϕ

σ

(11)

where ρ : S̃ S is the morphism contracting all (−1)-curves in fibers of f̃ . We denote
by ε the number of the (−1)-curves in fibers contracted by ρ. More precisely, ρ can

be decomposed as ρ1 : S̃ S′ and ρ2 : S′ S where ρ1 contracts all (−1)-curves
in fibers occurring in exceptional sets of the singularities of S0 and ρ2 contracts all
extra (−1)-curves in fibers. Let εi be the number of (−1)-curves contracted by ρi
(i = 1, 2). One has ε = ε1+ ε2. Obviously, if γ > 0, then ε2 = 0, i.e., there is no extra
contractions.

From the formulae for relatively numerical invariants, we have

K2
P0

= K2
P0/C

+ 8(γ − 1)(b− 1),

χ(OP0
) = χϕ + (γ − 1)(b− 1).

and

K2
f = K2

S̃/C
+ ε,

χf = χf̃ .

Therefore, the formulae (8) and (9) imply that

K2
f = 3K2

P0/C
+

4

3
D2

2 + 4D2KP0/C −

k−1∑

i=0

(
4ni(ni − 3)

3
+ 3) + ε, (12)

χf = 3χϕ +
5

18
D2

2 +
1

2
D2KP0/C −

k−1∑

i=0

ni(5ni − 9)

18
. (13)

Proof of Theorem 1.1. Let

λ =
24(g − 1)

5g − 6γ + 1
.

By formulae (12) and (13), we have

K2
f − λχf = 3(K2

P0/C
− λχϕ) + (

4

3
−

5λ

18
)D2

2 + (4−
λ

2
)D2KP0/C + τ(λ), (14)

where

τ(λ) =

k−1∑

i=0

((
5

18
λ−

4

3
)n2
i + (4−

λ

2
)ni − 3) + ε. (15)

It is easy to see that theorem 1.1 follows from the following two claims:
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Claim 1.

K2
f − λχf − τ(λ) ≥ 0.

Moreover, if γ 6= 1, then the equality holds if and only if ϕ is locally trivial, and
D2 ≡num aKP0/C + bFϕ, for some a, b ∈ Q .

Claim 2.

τ(λ) ≥ 0.

Moreover, if (g, γ) 6= (3, 0), then τ(λ) = 0 if and only if all singularities of π : S0 P0

are rational double points.

Proof of Claim 1. By Hurwitz’s formula, we have

2g − 2 = 3(2γ − 2) + 2D2Fϕ, (16)

where Fϕ is a general fiber of ϕ : P0 C. Hence

D2KP0
= D2KP0/C + 2(g − 1)(b− 1)− 6(γ − 1)(b− 1). (17)

It then follows from (16) and (17) that

(
4

3
−

5λ

18
)D2

2 + (4−
λ

2
)D2KP0/C

=
4

5g − 6γ + 1
(2(D2Fϕ)(KP0/CD2)− (KP0/CFϕ)(D

2
2)). (18)

We will divide the proof of Claim 1 into three cases:

Case A. Assume that γ = 0.

In this case, λ = λ0 = 24(g−1)
5g+1 , and ϕ : P0 C is a ruled surface. Thus

K2
P0/C

= χϕ = 0.
Since the Picard number of P0 is 2, the determinant of the intersection matrix of

KP0/C , Fϕ, D2 is zero, where Fϕ is a general fiber of ϕ : P0 C. Thus one has

D2
2 = −(D2Fϕ)(D2KP0/C),

that is, D2KP0/C = −
D2

2

g+2 by formula (16).
Hence

K2
f − λ0χf − τ(λ0) = (

4

3
−

5λ0
18

)D2
2 + (4−

λ0
2
)D2KP0/C

=
24(g − 1)− (5g + 1)λ0

18(g + 2)
D2

2

= 0.

In this case, D2 is always numerically equivalent to a Q-linear combination of KP0/C

and Fϕ.

Case B. Assume γ = 1.



990 P. LIU, J. LU, AND F. YE

In this case, λ = λ1 = 24
5 and

KP0/C ≡ (χϕ +
∑

j

rj − 1

rj
)Fϕ

where rj ’s are the multiplicities of singular fibers of ϕ : P0 C (see [BHPV04,
Corollary V.12.3]). Thus K2

P0/C
= 0. One has that

K2
f −

24

5
χf − τ(

24

5
) = −

72

5
χϕ +

8

5
D2KP0/C

= −
72

5
χϕ +

8(g − 1)

5
(χϕ +

∑

j

(rj − 1)

rj
)

≥
8g − 80

5
χϕ

≥ 0.

The equalities hold if and only if χϕ = 0 and ri = 1 for all i, if and only if ϕ is locally
trivial (see [BHPV04, Theorem III.18.2]).

Case C. Assume γ ≥ 2.
Since K2

P0/C
≥ 0, then the Hodge Index Theorem implies that the determinant

of the intersection matrix of KP0/C , Fϕ, D2 is non-negative. Therefore,

2(D2Fϕ)(KP0/CFϕ)(KP0/CD2)− (KP0/CFϕ)
2D2

2 ≥ (D2Fϕ)
2K2

P0/C
.

Combining this inequality with (18), one has that

(
4

3
−

5λ

18
)D2

2 + (4−
λ

2
)D2KP0/C ≥

2(g − 3γ + 2)2

(5g − 6γ + 1)(γ − 1)
K2
P0/C

.

On the other hand, from Xiao’s inequality (see [Xia87]), we have

K2
P0/C

≥ (4−
4

γ
)χϕ.

Therefore, the following inequality holds

K2
f − λχf − τ(λ) ≥ 3(1−

λγ

4(γ − 1)
)K2

P0/C
+

2(g − 3γ + 2)2

(5g − 6γ + 1)(γ − 1)
K2
P0/C

=
(2g − 15γ − 5)(g − 1)

(5g − 6γ + 1)(γ − 1)
K2
P0/C

≥ 0.

Looking upon the proof of Case C, one can see clear that the equality holds if and
only if ϕ is locally trivial, and D2 ≡ aKP0/C + bFϕ, for some a, b ∈ Q.

This completes the proof of Claim 1.

Proof of Claim 2. Define a function

f(n) = (
5

18
λ−

4

3
)n2 + (4−

λ

2
)n− 3.
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Let ls be the number of singular points pi of the branch locus occurring in the canonical
resolution such that the corresponding invariants ni = s. Thus

τ(λ) =
∑

s≥1

f(s)ls + ε.

From Lemma 2.4, one has l2 ≥ 2l1 and ε ≥ ε1 ≥ l1. We divide our proof into two
cases.

Case A. Assume that γ > 0.
In this case ε2 = 0. Since f(s) > 0 for s ≥ 2 and f(1) + 2f(2) = −1, we have

τ(λ) ≥ (f(1) + 2f(2) + 1)l1 = 0.

τ(λ) = 0 if and only if ls = 0 (s ≥ 3), l2 = 2l1 and ε = ε1 = l1. It is equivalent to
that each pi is either of type 1-4 in Section 2 or an infinitely close point of type 1-4.
On the other hand, by Lemma 2.2, the point pi is corresponding to a rational double
point if and only if pi is either of type 1-4 or a infinitely close point of type 1-4. Thus
τ(λ) = 0 if and only if the singularities of S0 are at most rational double points.

Case B. Assume that γ = 0.

In this case, λ = 24(g−1)
5g+1 and

f(n) = −
8

5g + 1
n2 +

8g + 16

5g + 1
n− 3.

Since we assume that π0 : S0 P0 is normalized, it follows from Lemma 2.1 that
ni ≤ (g+4)/2 for all i. By a straightforward computation, one has f(s) ≥ 0 whenever
s ≥ 2. Furthermore, if g > 3, then f(s) > 0 for s ≥ 2. Similar to the discussion in
Case A, one finds that τ(λ) ≥ 0.

In what follows, we assume g > 3. Therefore, τ(λ) = 0 if and only if ls = 0
(s ≥ 3), l2 = 2l1, ε2 = 0 and ε = ε1 = l1. Equivalently, the singularities of S0 are at
most rational double points and there is no extra contractions.

Conversely, if all singularities of S0 are rational double points, then ni ≤ 2 for all
i, l2 = 2l1, ε1 = l1 by the discussions in Sec. 2.3. From Lemma 3.1 in the following,
we see that ε2 = 0. Therefore, τ(λ) = 0.

Lemma 3.1. If g > 3, γ = 0 and all singularities in S0 are rational double points,
then ε2 = 0.

Proof. Suppose on the contrary that ε2 > 0.
We use the notations in the paragraph containing the diagram (11). Let f̃ : S̃ C

be the fibration induced by π̃ : S̃ P̃ and Γ be an irreducible component of some fiber
of f̃ such that Γ′ = ρ1(Γ) is a (−1)-curve. Let f ′ : S′ C be the fibration induced by
ρ1 and F ′ be the fiber containing Γ′. By the definition of extra contraction, σπ̃(Γ) is

not a point, hence it is a fiber F0 of ϕ0 : P0 C. So F̃0 := π̃(Γ) is the strict transform
of F0. The fiber of f̃ containing Γ is exactly π̃∗σ∗F0. Thus, the multiplicity of Γ′ in
F ′ equals the multiplicity of Γ in π̃∗F̃0. Since S0 has at most rational double points,
F ′ consists of some ADE curves and all components of ρ1(π̃

∗F̃0).

Recall that π̃ is a totally ramified triple cover. Suppose that π̃∗F̃0 is irreducible,
i.e., π̃∗F̃0 = dΓ (d = 1 or 3). Since F ′ consists of Γ′ and some ADE curves, and the
multiplicity of Γ′ in F ′ is d, one has

2g − 2 = KS′F ′ = dKS′ · Γ′ = −d < 0,
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which is a contradiction. Hence π̃∗F̃0 = Γ + Γ1 + Γ2, where Γ1, Γ2 are irreducible
components isomorphic to Γ as well as F̃0.

Suppose that there are at least two singular points of D2 lying in F0. Then Γ′

meets with at least two (−2)-curves, say C1, C2, since the singularities of S0 are at
most rational double points. Thus (2Γ′ +C1 +C2)

2 ≥ 0. Note that Γ′ ∪C1 ∪C2 is in
the support of F ′. Then F ′ is proportional to 2Γ′+C1+C2 by [Rei97, Theorem A.7].
Consequently, we would have g = 0 by adjunction formula, which is a contradiction.
Therefore, there is a unique singular point p1 of D2 lying in F0.

By our assumption and the classification of p1 in Section 2.3, the ADE curve on
S′ over p1, denoted by E, is of type A2, D4, E6, E8. Let Z be the fundamental cycle
supported on E. Since (Γ′ + Z)2 ≤ 0, Γ′2 = −1, Z2 = −2 and Γ′Z ≥ 1, we see that
Z · Γ′ = 1 and (Γ′ + Z)2 = −1. It follows that Γ′ meets transversely with only one
component of E, say C1, and the multiplicity of C1 in Z is 1. In particular, E is not of
type E8. Suppose that E is of type E6. One will find that Γ′+E is not semi-negative
via contracting repeatedly (−1)-curves from Γ′+E. That is a contradiction. Suppose
that E is of type D4, then (2Γ′ + C1 + Z)2 = 0. So F ′ = 2Γ′ + C1 + Z and g = 0.
Again, it is a contradiction.

Therefore, E is of type A2. Firstly, we claim that {p1} = D2 ∩ F0. Suppose that
there is another point q ∈ D2∩F0. Since p1 is a unique singular point ofD2 lying in F0,
D2 is smooth at q. If D2 meets transversely with F0 at q, then π̃∗F̃0 is locally defined
by z3 = x. Hence, π̃∗F̃0 is irreducible, which contradicts that π̃∗F̃0 = Γ+Γ1 +Γ2. If
D2 is tangent to F0 at q, then Γ′ meets with ρ1(Γ1) and ρ1(Γ2). Recall that Γ

′2 = −1.
From Zariski’s lemma, we know that Γ′F ′ = 0. Consequently, the multiplicity of Γ′

in F ′ is at least 2. So the multiplicity of Γ in the fiber π̃∗σ∗F0 of f̃ is at least 2. It
implies that the multiplicity of Γ in π̃∗F̃0 is at least 2, a contradiction. Therefore,
{p1} = D2∩F0. By Hurwitz formula and adjunction formula, the intersection number
of D2 and F0 at p1 is g + 2.

By choosing a suitable local coordinates, one can write the local equation of π
near p1 as z3 = x(t + xg+1), where t = 0 is the local equation of F0 passing through
p1 = (0, 0). By a straightforward resolution, one can see that Γ′ is not a (−1)-curve,
which contradicts that ε2 > 0.

Theorem 1.1 clearly follows from Claim 1 and 2.

Here we present an example which shows that the bound given in Theorem 1.1 is
indeed sharp. The construction of the example comes similarly from [CS08].

Example 3.2. Let F and C be smooth curves with genera γ = g(F ) and g(C) = 1
respectively. Let p1 : C × F C and p2 : C × F F be the projections, and H1,
H2 be their general fibers. For sufficiently large integers n and m, the linear system
|3nH1+3mH2| is base-point-free. Hence, by Bertini’s Theorem there exists a smooth
divisor D2 ∈ |3nH1 + 3mH2|. Since D2 ≡ 3L for some effective divisor L, we can
construct a triple cyclic cover π : S C × F branched over D2. Consider the
fibration f := p1 ◦ π : S C. A general fiber is a triple cover over F , and its genus
is g = 3γ + 3m− 2. Note that

Kf ∼ π
∗(KC×F/C + 2nH1 + 2mH2)) ∼ π

∗(2nH1 + (2γ + 2m− 2)H2),

which yields that K2
f = 24n(m+ γ − 1), and also we have

χf = n(5m+ 3γ − 3).
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Therefore, the slope of f is exactly

λf =
24(g − 1)

5g − 6γ + 1
.

The following example shows that a triple fibration of type (g, γ) = (3, 0) with
extreme slope λf = 3 does not need to satisfy satisfy the condition (3) in Theorem
1.1.

Example 3.3. Let

ϕ0 = pr1 : P0 = P1 × P1 P1, (t, x) t.

Consider the cyclic triple cover π0 : S0 P0 defined by the equation

z3 = t(t− 2)x(x + t)(x2 − 1).

In this case,

A1 = F0 + F2 +∆0 +∆1 +∆−1 + L, A2 = ∆∞,

where Fα (resp. ∆β) is a fiber (resp. section) defined by t = α (resp. x = β) and L
is the line defined by x+ t = 0. By a straightforward computation, one has

K2
f = 12, χf = 4, ef = 36,

where f : S P1 is of genus 3. So K2
f = 3χf . However, the branch locus contains

a singular point p1 defined by tx(x + t) = 0 with n1 = 3. So π−1(p1) ∈ S0 is not a
rational point by Lemma 2.2.
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