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THE MEAN CURVATURE FLOW FOR INVARIANT
HYPERSURFACES IN A HILBERT SPACE WITH AN ALMOST
FREE GROUP ACTION*

NAOYUKI KOIKET

Abstract. In this paper, we study the regularized mean curvature flow starting from invariant
hypersurfaces in a Hilbert space equipped with an isometric almost free Hilbert Lie group action
whose orbits are minimal regularizable submanifolds, where “almost free” means that the stabilizers
of the group action are finite. First we obtain the evolution equations for some geometric quantities
along the regularized mean curvature flow. Next, by using the evolution equations, we prove a
horizontally strongly convexity preservability theorem for the regularized mean curvature flow. From
this theorem, we derive the strongly convexity preservability theorem for the mean curvature flow
starting from compact Riemannian suborbifolds in the orbit space (which is a Riemannian orbifold)
of the Hilbert Lie group action.
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1. Introduction. R. S. Hamilton ([Ha]) proved the existenceness and the
uniqueness (in short time) of solutions satisfying any initial condition of a weakly
parabolic equation for sections of a finite dimensional vector bundle. The Ricci flow
equation for Riemannian metrics on a fixed compact manifold M is a weakly parabolic
equation, where we note that the Riemannian metrics are sections of the (0, 2)-tensor
bundle T2 M of M. Let f; (0 <t < T) be a C*®°-family of immersions of M into
the m-dimensional Euclidean space R™. Define a map F : M x [0,T) — R™ by
F(z,t) :== fu(x) ((z,t) € M x [0,T)). The mean curvature flow equation is described
as

OF
a, Atft7

ot
where /\; is the Laplacian operator of the metric g;: on M induced from the Euclidean
metric of R™ by f;. Here we note that A\, f; is equal to the mean curvature vector of f;.
This evolution equation also is a weakly parabolic equation, where we note that the
immersions f;’s are regarded as sections of the trivial bundle M x R™ over M under
the identification of f; and its graph immersion idys X f : M — M x R™ (idps :the
identity map of M). Hence we can apply the Hamilton’s result to this evolution
equation and hence can show the existenceness and the uniqueness (in short time)
of solution of this evolution equation satisfying any initial condition. In this paper,
we consider the case where the ambient space is a (separable infinite dimensional)
Hilbert space V. Let M be a Hilbert manifold and f; (0 < ¢ < T) be a C*°-family
of immersions of M into V. Assume that f; is regularizable, where "regularizability”
means that the codimension of f is finite, for each normal vector v of M, the shape
operator A, is a compact operator, and that the regularized trace Tr, A, of A, and
the trace Tr A2 of A2 exist. Note that the notions of the regularized trace and the
regularized mean curvature vector were introduced in [HLO] (see the next section
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about the definitions of these notions). Denote by H; the regularized mean curvature
vector of f;. Define a map F : M x [0,T) — V as above in terms of f;’s. We call f;’s
(0 <t < T) the regularized mean curvature flow if the following evolution equation
holds:

OF

(1.1) o = DUk

Here A} f; is defined as the vector field along f; satisfying
<A:ftvv> = Tr?“<(vtdft)('7 ')7’U>ti (V’U € V)a

where V? is the Riemannian connection of the metric g; on M induced from the
metric (, ) of V by fi, {(Vtdfi)(,-),v)* is the (1,1)-tensor field on M defined by
g (((VHf) (-, ), 0)H(X),Y) = (Vidf)(X,Y),v) (X,Y € TM) and Tr,(-) is the regu-
larized trace of (-). Note that A f; is equal to H;. In general, the existenceness and
the uniqueness (in short time) of solutions of this evolution equation satisfying any
initial condition has not been shown yet. For we cannot apply the Hamilton’s result
to this evolution equation because it is regarded as the evolution equation for sections
of the infinite dimensional vector bundle M x V over M. However we can show the
existenceness and the uniqueness (in short time) of solutions of this evolution equa-
tion in special case. In this paper, we consider a isometric almost free action of a
Hilbert Lie group G on a Hilbert space V whose orbits are regularized minimal, that
is, they are regularizable submanifold and their regularized mean curvature vectors
vanish, where “almost free” means that the stabilizers of the action are finite. Let
M(C V) be a G-invariant submanifold in V. Assume that the image of M by the
orbit map of the G-action is compact. Let f be the inclusion map of M into V. We
first show that the regularized mean curvature flow starting from M exists uniquely
in short time (see Proposition 4.1). In particular, we consider the case where M is a
hypersurface. The first purpose of this paper is to obtain the evolution equations for
various geometrical quantities along the regularized mean curvature flow starting from
G-invariant hypersurfaces (see Section 4). The second purpose is to prove a maximum
principal for an evolution equation related to a G'-invariant symmetric (0, 2)-tensor
fields S¢’s on a Hilbert manifold M equipped with an isometric almost free Hilbert
Lie group action G’ such that M/G’ is a finite dimensional compact Riemannian
orbifold (see Section 5). The third purpose is to prove a horizontally strongly con-
vexity preservability theorem for the regularized mean curvature flow starting from
the above invariant hypersurface by using the evolution equations in Section 4 and
imitating the discussion in the proof of a maximum principal in Section 5 (see Section
6). From this theorem, we derive the strongly convexity preservability theorem for
the mean curvature flow starting from compact Riemannian suborbifolds in the orbit
space V/G (which is a Riemannian orbifold) (see Section 7).

2. The regularized mean curvature flow. Let f; (0 < t < T) be a one-
parameter C*°-family of immersions of a manifold M into a (finite dimensional) Rie-
mannian manifold N, where T is a positive constant or 7' = co. Denote by H; the
mean curvature vector of f;. Define a map F : M x [0,T) — N by F(z,t) = f:(z)

F
((x,t) € M x [0,T)). If, for each ¢t € [0,T), 8—t = H, holds, then f; (0 <t < T)is

0
called a mean curvature flow.
Let f be an immersion of an (infinite dimensional) Hilbert manifold M into a
Hilbert space V and A the shape tensor of f. If codimM < oo and A, is a com-
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pact operator for each normal vector v of f, then M is called a Fredholm subman-
ifold. In this paper, we then call f a Fredholm immersion. Furthermore, if, for
each normal vector v of M, the regularized trace Tr, A, and Tr A2 exist, then M is
called regularizable submanifold, where Tr, A, is defined by Tr, A, := > (u + p;)
i=1
(py <pg <---<0<--- < u; < uf : the spectrum of A,). Note that the notion of
the regularized trace was defined in [HLO] and that it differs from the trace defined
in terms of the zeta function in [KT]. In this paper, we then call f regularizable im-
mersion. If f is a regulalizable immersion, then the reqularized mean curvature vector
H of f is defined by (H,v) = Tr, A, (Vv € T+M), where {, ) is the inner product
of V and T M is the normal bundle of f. If H = 0, then f is said to be minimal. In
particular, if f is of codimension one, then we call the norm ||H|| of H the regularized
mean curvature function of f.

Let f; (0 <t < T) be a C*®-family of regularizable immersions of M into V.
Denote by H; the regularized mean curvature vector of f;. Define a map F : M X
0,7) = V by F(z,t) := fu(z) ((z,t) € M x [0,T)). If 2L = H, holds, then we call f;
(0 <t < T) the regularized mean curvature flow. It has not been known whether the
regulalized mean curvature flow starting from any regularizable hypersurface exists
uniquely in short time. However its existence and uniqueness (in short time) is shown
in a special case (see Proposition 4.1).

3. The mean curvature flow in Riemannian orbifolds. In this section,
we shall define the notion of the mean curvaure flow starting from a suborbifold in
a Riemannian orbifold. First we recall the notions of a Riemannian orbifold and
a suborbifold following to [AK, BB, GKP, Sa, Sh, Th|. Let M be a paracompact

Hausdorff space and (U, ¢, U /T) a triple satisfying the following conditions:

(i) U is an open set of M,
(i) U is an open set of R™ and T is a finite subgroup of the C*-diffeomorphism
group Diff*(U ) of U,
(iii) ¢ is a homeomorphism of U onto U/T.

Such a triple (U, ¢, ﬁ/F) is called an n-dimensional orbifold chart. Let O :=
{(Ux, 2, U/TA) | A € A} be a family of n-dimensional orbifold charts of M satisfying
the following conditions:

(O1) {Ux| X € A} is an open covering of M,

(02) For A\, € A with Uy NU,, # 0, there exists an n-dimensional orbifold chart
(W,d),ﬁ/\/F’) such that C*-embeddings p, : W < U, and Pu W o 17#
satisfying ¢y ' o 7, o px = ¥~ o 7 and ¢, tomr, opu =Y~ omr, where
7Ty, 7r,, and s are the orbit maps of I'y, I’ and T, respectively.

Such a family O is called an n-dimensional C’k—orbzfold atlas of M and the pair (M, O)
is called an n-dimensional C*-orbifold. Let (U, dy, ﬁA/FA) be an n-dimensional orb-
ifold chart around = € M. Then the group (I'y)z := {b € 'y | b(Z) = Z} is unique for
2 up to the conjugation, where Z is a point of Uy with (¢5" o7, )(z) = z. Denote
by (T')). the conjugate class of this group (T'»)z, This conjugate class is called the
local group at x. If the local group at x is not trivial, then x is called a singular
point of (M,0). Denote by Sing(M,O) (or Sing(M)) the set of all singular points

of (M,0). This set Sing(M, Q) is called the singular set of (M 0). Let z € M
and (UA,gZ))\,UA/FA) an orbifold chart around z. Take Z) € UA with 7p, (Zy) = =.
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The group (I'y)z, acts on T%, U » naturally. Denote by O, the subfamily of O con-

sisting of all orbifold charts around z. Give T, := ) Tz, Uy/ (T'x)z, an
(Ux,8x,Ux/TA)€EO,

equivalence relation ~ as follows. Let (Us,, éa, Ux,/T'a,) and (Ux,, ¢ry, Ury/T'a,) be

members of O,. Let n be the dlﬁeomorphlsm of a suﬂimently small neighborhood of

Ty, in U,\1 into U,\2 satisfying ¢)\ o7y, 01N = ¢)\ onr,,. Define an equivalence

relatiton ~ in 7, as the relation generated by

[01] ~ [vo] == [v2] = [ (01)]
([1}1] € folﬁ)\l/(FAl)i,\lv [UQ] € Tf)\2 ﬁkz/(rkz)i\&)a

where [v;] (i = 1,2) is the (I'y, )z, -orbits through v; € T%, Uy,. We call the quotient

space T,/ ~ the orbitangent space of M at x and denote it by T, M. If (M, Q) is

of class C* (r > 1), then TM := @& T,M is a C"~!-orbifold in a natural manner.
reM

We call TM the orbitangent bundle of M. The group (I'y)z, acts on the (r, s)-tensor

space Ti(i’s)ﬁA of T3, Uy naturally. Give T := ) Ti(i’s)ﬁA/(FA)@
(Ux,6x,Ux/TA)EO,

an equivalence relation ~ as above. We call the quotient space 7;(T’S)/ ~ the (r, s)-

orbitensor space of M at x and denote it by ngT ST (M, 0) is of class C* (r > 1),

then T M := @ T M is a C"~'-orbifold in a natural manner. We call 7 M
zeM

the (r, s)-orbitensor bundle of M.

Let (M,Op) and (N,Op) be orbifolds, and f a map from M to N. If, for
cach # € M and each pair of an orbifold chart (Us, x, Ux/T'x) of (M,Oy) around
x and an orbifold chart (V,, ¢, ‘A/#/FL) of (N,On) around f(z) (f(Ux) C V), there
exists a C*-map J?ML : ﬁA — ‘A/# with f o (;5;1 omr, = 1/);1 o Ty, © J?Mu then f is
called a C*-orbimap (or simply a C*-map). Also J?A,u is called a local lift of f with
respect to (Ux, éx, Ux/T'») and Vi, ps ?M/FL) Furthermore, if each local lift f,\# is
an immersion, then f is called a C*-orbitmmersion (or simply a C*-immersion) and
(M, OM) is called a C*-(immersed) suborbifold in (N, Oy, g). Similarly, if each local
lift f>\ 4 is a submersion, then f is called a C*-orbisubmersion.

In the sequel, we assume that » = co. Denote by pry), and pro.« s the natural
projections of TM and T("*) M onto M, respectively. These are C>°-orbimaps. We
call a C*-orbimap X : M — TM with prpy, o X = id a C*-orbitangent vector
field on (M, Oy) and a C*-orbimap S : M — T"*)M with prye.e, 08 = id a
(r, 5)-orbitensor field of class C* on (M, Oy). If a (r,s)-orbitensor field g of class
C* on (M, Oyy) is positive definite and symmetric, then we call g a C*-Riemannian
orbimetric and (M, O, g) a C*-Riemannian orbifold.

Let f be a C*-orbiimmersion of an C*-orbifold (M, Oys) into C*°-Riemannian
orbifold (N, Oy, g). Take an orbifold chart (Uy, ¢y, Ux/Tx) of M around z and an
orbifold chart (V, M,wu,f} /T,) of N around f(x) with f(Ux) C V,. Let f,\u be the
local lift of f with respect to these orbifold charts and g, that of g to V Denote by
(TA UA) the orthogonal complement of (fA w)* (TIAUA) in (T @, V#, (g#)f(w)u) The

group (I,) = i@, acts on (T@ Uy) x naturally. Give

e e e (T4 D)W/ () .
(U>\1¢>\1U>\/F>\)€0M,z(qubwvu/ru)eolvwf(w)
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an equivalence relaticin ~ as follows. Let (Ux,, éx,,Ux, /T',) (i = 1,2) be members of
Ome and (Vi , ¥, Vi /T,,) (0 = 1,2) members of Oy y(,y with f(Uy, ) C V. Let
Moz be the diffeomorphism of a sufficiently small neighborhood of f ( )y, in V#1
into V satisfying ¢, Lo T, O My = w;ll omy, . Define an equivalence relatiton

~ in ’7} as the relation generated by

(1] ~ [&2] <= (o] = [Ny o)+ (€1)]

def -
([51] ( U)\l)Hl/(F;ll)f(m) [52] = (TEM U)‘Z)“Q/(F/Hz)f/(;) )’

M2

where [§] (i = 1,2) is the (F;L)f/(;) -orbits through ¢; € (Tfﬁ(%\)# We call the

quotient space T/ ~ the orbinormal space of M at x and denote it by T;-M. If f

is of class C™°, then T*M := @ T}+M is a C*®-orbifold in a natural manner. We
zeM

call T+ M the orbinormal bundle of M. Denote by pry.,, the natural projection of
T+M onto M. This is C*-orbisubmersion. We call a C*-orbimap ¢ : M — T+M
with prp.,, 0 &€ =id a Ck-orbinormal vector field of (M, Oy;) in (N, Oy, g).

Take an orbifold chart (U)\,(b)\,ﬁ)\ /Tx) of M around z and an orbifold chart
(Vs s Vu/T,) of N around f(z) with f(Ux) C V.. Denote by (Ta Ux)i™ the

(r, s)-tensor space of (Tg; [/J\'A)M. The group (Fu)ﬂx\)u acts on (T, U/\)EL rs) naturally.
Give

TH = e o (T4 005 /()
(U>\7¢>\1U>\/F>\)€0M,z (Vuwwuvvu/ru)eoN,f(m) #

an equivalence relation ~ as follows. Let (Uy,, éa,, Ux, /T, ), (Vs Y ‘A/#/F;M) (1=

1,2) and 7,, ., be as above. Define an equivalence relatiton ~ in (7)) as the

relation generated by

[$1] ~ [Se] <= [S1] = (M1 )" (S1)]

(191 € (T, 005 (T iy, o 192 € (T, Un)? /(T i )

M2

where [S;] (i = 1,2) is the (I, )ﬁ\) -orbits through S; € (TEJ;I_U,\i),(ﬁ’S). We

denote the quotient space (T;5)("*)/ ~ by (T;-M)"™*). 1If f is of class C™,
then (T+M)™®) .= @ (T;2M)™) is a C™-orbifold in a natural manner. We call
M

zE
(T+M)™%) the (r,s)-orbitensor bundle of T+M. Denote by Pr(7L e the natural
projection of (T+M)("*) onto M. This is C*°-orbisubmersion.
Next we shall define the tensor product 75 M @ (T+M)E"t) of T() M and
(T+M) ") Take an orbifold chart (Uy, ¢, [7,\/1",\) of M around z and an orbifold
chart (Vuﬂbua‘/}u/l—‘;t) of N around f(z) with f(Uy) C V,. The group (I'y)z, X

(r )f/(\) acts on (Téﬁ’s)ﬁ )® (TA Uy )(S ) naturally. Give

7;(7«,5) ® (El)(S’vt') — @ @
(Ux;02,UA/TA)EOM, 2 (Viu,t0u, Vi /T EON £ (a)

(@00 @ (@005 ) /(e x (T 5 )
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an equivalence relation ~ as follows. Let (Uy,, éx,, Ux, /Tx,), (Vﬂﬁwﬂi"/}ﬂi/]‘—‘il.i) (i =
1,2) and n,, ., be as above. Also let ny, x, be a diffeomorphism defined in similar to

Nuy,ue - Define an equivalence relation ~ in T g (T)") as the relation generated
by

[S1] ~ [Se] &= [S1] = (03, e ® 1ty 102 )52]
([Sl] ( rs)U ) (TELM fJ\v)\l)(s’Jg’))7 [52] € (Tf(:’;)ﬁkg) ® (T}Qﬁkz)(s,vt,))),

M1 TX H2
where [Si] (i = 1,2) is the ((Tx,)a,, x (I7,,) 77, )-orbits through S; € (TV0y) ®
(TJ- U, )(S * ))) We denote the quotient space (7;(“) @ (THE) ) ~ by T M ®

(TjM)(S . Set THIM @ (THM)) = @ (Té’”*”M@(TjM)(S/*”). If f is of
xeM

class C, then T M @ (T+M) 1) is a C>-orbifold in a natural manner. We call
TS M@ (TM)E"E) the orbitensor product bundle of T M and (T+M)' ) De-
note by prye.«) prg(rL e+ the natural projection of T M@ (T+M)E ) onto M.
This is a C-orbisubmersion. We call a C*-orbimap S : M — T M @ (T+M) ")
with Proeopgriane e © 5 = id a Ck-section of T"IM @ (TEM)) . Let
g, h, A, H and &£ be the induced metric, the second fundamental form, the shape ten-
sor, the mean curvature and a unit normal vector field of the immersion f|y/\sing(ar) :
M \ Sing(M) — N\ Sing(N), respectively. It is easy to show that g, h, A and H ex-
tend a (0, 2)-orbitensor field of class C* on (M, Oys), a C*-section of T M QT+ M,
a C*-section of THYD M @ (T M)V and a C*-orbinormal vector field on (M, Q).
We denote these extensions by the same symbols. We call these extensions g, h, A
and H the induced orbimetric, the second fundamental orbiform, the shape orbitensor
and the mean curvature orbifunction of f. Here we note that & does not necessarily
extend a C*°-orbinormal vector field on (M, Q) (see Fig. 2).

Now we shall define the notion of the mean curvature flow starting from a C'°-
suborbifold in a C°°-Riemannian orbifold. Let f; (0 < ¢t < T) be a C*°-family
of C*°-orbiimmersions of a C*-orbifold (M, Op) into a C*°-Riemannian orbifold
(N,On,g). Assume that, for each (zg,t9) € M x [0,T) and each pair of an orbifold
chart (Ux, ¢, Ux/T») of (M, Oyr) around aq and an orbifold chart (V,,, ¢y, V,,/T",) of
(N,Op) around fy,(xo) such that f:(Ux) C V,, for any ¢ € [to, o +¢) (e : asufficiently
small positive number), there exists local lifts (ft)A e Uy — V of fy (t € [to,to+¢))
such that they give the mean curvature flow in (Vw Ju), where g, is the local lift of ¢
to V#. Then we call f; (0 <t < T) the mean curvature flow in (N,On, g).

THEOREM 3.1. For any C*-orbitmmersion [ of a compact C*°-orbifold into a
C*°-Riemannian orbifold, the mean curvature flow starting from f exists uniquely in
short time.

Proof. Let f be a C*°-orbiimmersion of an n-dimensional compact C*°-orbifold
(M,0Oypr) into an (n + r)-dimensional C'*°-Riemmannian orbifold (N, Opn,g). Fix
2o € M. Take an orbifold chart (Uy,¢x,Ux/Tx) of (M,Oy) around zo and an
orbifold chart (V, #,1/)#,\7 /T,) of (N, ON) around f(xo) such that f(Ux) C V, and
that U, is relative compact Also, let fA wt Uy = V be a local lift of f and g, a local
lift of g (to V) Since U, is relative compact, there exists the mean curvature flow
(f)\,#) Uy — (17#,’9\#) (0 <t < T) starting from J/c\)\”u Uy — (V#,g#) Since J?ML is
projetable to f|y, and g, is I') -invariant, (]?)\,#)t (0 <t < T) also are projectable to
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maps of Uy into V,. Denote by (fi.)¢’s these maps of Uy into V,,. It is clear that
(fau)t (0 <t < T)is the mean curvature flow starting from f|y,. Hence, it follows
from the arbitrariness of xy and the compactness of M that the mean curvature flow
starting from f exists uniquely in short time. O

Vi
\/ (_’> /%‘L-‘L \ ’s : ﬁ)\7u

(a local lift of H)

l 65t o, l ¥t oy,
- &
Uy
Fia. 1.
Fau(0x) (foau(Ux) (¢ >0)

............... >
time goes by

Fic. 1 (CONTINUED).
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v,

W ~
\/ cA_> \ g H)\,,u
(a local lift of H)

time goes by

Fic. 2 (CONTINUED).



MEAN CURVATURE FLOW IN A HILBERT SPACE 961

4. Evolution equations. Let G ~ V be an isometric almost free action with
minimal regularizable orbit of a Hilbert Lie group G on a Hilbert space V equipped
with an inner product ( , ). The orbit space V/G is a (finite dimensional) C*°-orbifold.
Let ¢ : V — V/G be the orbit map and set N := V/G. Here we give an example of
such an isometric almost free action of a Hilbert Lie group.

Ezxample. Let G be a compact semi-simple Lie group, K a closed subgroup of G and
I" a finite subgroup of G. Denote by g and £ the Lie algebras of G and K, respectively.
Assume that a reductive decomposition g = € + p exists. Let B be the Killing form
of g. Give G the bi-invariant metric induced from B. Let H°([0,1],g) be the Hilbert
space of all paths in the Lie algebra g of G which are L2-integrable with respect to
B. Also, let H'([0,1],G) the Hilbert Lie group of all paths in G which are of class
H?! with respect to g. This group H'([0, 1], G) acts on H°([0, 1], g) isometrically and
transitively as a gauge action:

(a*u)(t) = Adg(a(t))(u(t) = (Ra)s ' (a'(t)) (a € H'([0,1],G), u € H([0,1],9)),

where Adg is the adjoint representation of G' and R4 is the right translation by a(t)
and a’ is the weak derivative of a. Set P(G,T' x K) := {a € H*([0,1],G) | (a(0), a(1))
€ I x K}. The group P(G,T x K) acts on H°([0,1],g) almost freely and isomet-
rically, and the orbit space of this action is diffeomorphic to the orbifold T'\ G / K.
Furthermore, each orbit of this action is regularizable and minimal.

Give N the Riemannian orbimetric such that ¢ is a Riemannian orbisubmersion. Let
f: M — V be a G-invariant submanifold immersion such that (¢o f)(M) is compact.
For this immersion f, we can take an orbiimmesion f of a compact orbifold M into N
and an orbifold submersion ¢5; : M — M with ¢o f = fopr. Let f, (0 <t <T) be
the mean curvature flow starting from f. The existenceness and the uniqueness of this
flow in short time is assured by Proposition 3.1. Define a map F : M x [0,T) — N by
F(x,t) := f,(z) ((x,t) € M x [0,7)). Denote by H the regularized mean curvature
vector of f and H that of f. Since ¢ has minimal regularizable fibres, H is the
horizontal lift of . Take z € M and u € ¢}, (x). Define a curve ¢, : [0,T) — N by
cz(t) := f,(x) and let (cz)E : [0,T) — V be the horizontal lift of ¢, to f(u) satisfying
((cz)E) (0) = H,,. Define an immersion f; : M < V by fi(u) = (cz)E(t) (u € M) and
amap F: M x [0,T) =V by F(u,t) = fe(u) (u,t) € M x [0,T)).

PROPOSITION 4.1. The flow f; (0 <t < T) is the regularized mean curvature
flow starting from f.

Proof. Denote by H; the mean curvature vector of f, and H; the regularized
mean curvature vector of f;. Fix (u,t) € M x [0,T). It is clear that ¢o f, = f, 0 dur.
Hence, since each fibre of ¢ is regularizable and minimal, (H;), coincides with one of
the horizontal lifts of (H¢)g(u) t0 (¢Cou))5 (£). On the other hand, from the definition of

F —
F', we have %—t(u, t) = ((cd,(u))ﬁ)’(t), which is one of the horizontal lifts of (H¢)g() to

oF oF
(Co(u))E (t). These facts together with E(u, 0) = H,, implies that E(u, t) = (Ht)u-

Thus f; (0 <t < T) is the regularized mean curvature flow starting from f. This
completes the proof. O



962 N. KOIKE

-FixG

~
7

V/G

Fia. 3.

Assume that the codimension of M is equal to one. Denote by H (resp. V) the
horizontal (resp. vertical) distribution of ¢. Denote by prj (resp. prg) the orthogonal

projection of TV onto H (resp. 17) For simplicity, for X € TV, we denote prg(X)
(resp. pry(X)) by Xy (resp. Xy). Define a distribution Hy on M by fe.((Hi)u) =
fex(TuM)NH 4, () (u € M) and a distribution V; on M by fi.(Vi)u) = Vy,(u) (u € M).
Note that V; is independent of the choice of ¢t € [0,T). Denote by g, he, At, Hy
and & the induced metric, the second fundamental form, the shape tensor and the
regularized mean curvature vector and the unit normal vector field of f;, respectively.
The group G acts on M through f;. Since ¢ : V — V/G is a G-orbibundle and
H is a connection of the orbibundle, it follows from Proposition 4.1 that this action
G ~ M is independent of the choice of ¢ € [0,T). It is clear that quantities g;, h¢, A¢
and H; are G-invariant. Also, let V! be the Riemannian connection of g;. Let mas
be the projection of M x [0,T) onto M. For a vector bundle E over M, denote by
7y E the induced bundle of E by mp;. Also denote by I'(E) the space of all sections
of E. Define a section g of 5, (T2 M) by g(u,t) = (g¢)u ((u,t) € M x [0,T)),
where T(%2)M is the (0,2)-tensor bundle of M. Similarly, we define a section h of
i (T2 M), a section A of w5, (THYM), amap H : M x [0,T) — TV and a map
E: Mx[0,T)— TV. Weregard H and £ as V-valued functions over M x [0,T) under
the identification of T,,V’s (u € V') and V. Define a subbundle X (resp. V) of w3, T M
by Hut) = (Ht)u (resp. Viup) = (Vi)u). Denote by pry, (resp. pry,) the orthogonal
projection of 7}, (T'M) onto H (resp. V). For simplicity, for X € m},(T'M), we
denote pry, (X) (resp. pri(X)) by Xy (resp. Xy). The bundle 7},(T'M) is regarded

OB
as a subbundle of T(M x [0,T)). For a section B of 5, (T M), we define wn by
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0B dB(u,t) . . . o -
N = T’, where the right-hand side of this relation is the derivative of
(u,t)

the vector-valued function t — B, ) (€ Ty’s)M ). Also, we define a section By of
i (T M) by

By = (pry @ - @ pry) oBo (pry @ - @ pry).

(r—times) (s—times)

The restriction of By to H X -+ X H (s-times) is regarded as a section of the (r,s)-
tensor bundle H("*) of #. This restriction also is denoted by the same symbol By.
For a tangent vector field X on M (or an open set U of M), we define a section X

of w3, TM (or 73, TM|v) by X := Xu ((u,t) € M x[0,T)). Denote by V the
Riemannian connection of V. Define a connection V of 73,7M by
d}/(uv)

dt

(VxY) (1) = ViY( s and VoY :=

* de(u,t) . . .
for X € T(y4)(M x {t}) and Y € I'(r3,TM), where it the derivative of

the vector-valued function ¢ + Y(, 4 (€ T,M). Define a connection VH of H by
VRY := (VxY)y for X € T(Mx[0,T))and Y € T'(H). Similarly, define a connection
VY of V by VXY := (VxY)y for X € T(M x [0,T)) and Y € T'(V). Now we shall
derive the evolution equations for some geometric quantities. First we derive the
following evolution equation for g .

LEMMA 4.2. The sections (gy)¢’s of i (T %2 M) satisfy the following evolution
equation:

Ognu
9IH _ _o)|H||h
5t [ H || by,

where ||H|| .= /g(H, H).
Proof. Take X,Y € T'(TM). We have

09 (X ¥) = D (X7 = 2 (Ko, Vo) = (1 Koy, FL o)
= <%(XHF)aYHF> + (X F, g(YHF»
(X (%f) Lft XH] F.YouF) + (X3 F, Yoy (%f) {aﬁ % ]F>

= (Xu(llF1), eF) + (Xu . Vi | H€)) o
= —|[H|[g(AX3, Ya) — [|H[|g(X3, AYn) = =2[|H|[|he (X, Y),
where we use { ,XH] €V and [2,

5 YH] € V. Thus we obtain the desired evolution

at

equation. [
Next we derive the following evolution equation for &.

LEMMA 4.3. The unit normal vector fields &’s satisfy the following evolution
equation:

o8

5 =~ F(erad, |||,
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where grad, (|| H||) is the element of 3, (T'M) such that d||H||(X) = g(grad,||H||, X)
for any X € w3, (TM).

Proof. Since (£,£) = 1, we have <%, ) = 0. Hence % is tangent to f;(M). Take

any (uo,to) € M x [0,T). Let {e;}32, be an orthonormal base of T, M with respect
t0 G(uo,t0)- By the Fourier expanding % lt=t, , we have

9¢ 3

BN = <6t s frox (€ili=to)) frow (€ilt=t,)

t=to

_ Ofi«(&:)
- _Z<§t07 ot
0
- - tory o, é’LF
p( 5 (i) -

e, (2 €ilt=t
——Xﬁma<&tﬂ>mwA_J

=— Z<§tm (eiH )t=to) frox(€ilt=t,)
= Z(éi||H||)|t:t0fto*(éi|t:t0>

== g, (grady, |[Hil|, €ili=ro) fron (@ili=to)
= —fuo+(grady, [[Hy,l|) = —Fi(grady[[H|[)]i=t,

t=to

) frox (€ilt=to)

t=to

) frox(€ilt=to )

0
on U, where we use [—,ez} = 0. Here we note that ) (-); means lim >, ¢ (-); as
ot k—o0 1Pk

Sk :={i||(-)il > £} (k € N). In particular, we obtain

0
(ﬁ> — (B ((grady || o)
ot (w0,t0)

This completes the proof. O

Let S; (0 <t <T) be a C®-family of a (r, s)-tensor fields on M and S a section
of 74, (T"*) M) defined by Sut) = (S¢)u. We define a section Ay S of 73, (T M)
by

(AHS)(u,t) = Z Vei veisv

=1

where V is the connection of 75, (T M) (or 7}, (T"**Y M)) induced from V and
{e1,- -+ ,en} is an orthonormal base of H, +) with respect to (g#)(u,¢). Also, we define
a section NSy, of H %) by

(AKSH) ey =D VIEVHSy,
1=1

where V* is the connection of (%) (or H("*t1)) induced from V* and {ey, - ,e,}
is as above. Let A? be the section of T*V @ T*V ® TV defined by

ALY = (Vx, Y)p + (Vx, V) (XY €TV).
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Also, let 7% be the section of T*V ® T*V ® TV defined by
TRY == (Vx, Y)5 + (Vx, Yp)z (X,Y € TV).
Also, let A; be the section of T*M @ T*M ® T'M defined by
(A)xY = (Vi Y )v + Vi, Yv)u, (X,Y € TM).

Also let A be the section of 73, (T*M ® T*M @ TM) defined in terms of A,’s (t €
[0,T)). Also, let T; be the section of T*M @ T*M ® TM defined by

(T)xY = (Vi, Yo, + (Vi, Yu v, (X,Y € TM).

Also let T be the section of 7}, (T* M QT*M QT M) defined in terms of 7¢’s (¢t € [0,T)).
Clearly we have

F(AxY) = A} (F.Y
for X,Y € H and
F.(TwX) =Tg wh.X

for X € Hand W € V. Let E be a vector bundle over M. For a section S of

J

w4 (IO M ® E), we define Try, S(--- 8, ,,--) by

. j K - i K
(Trgq.‘ S( ) @y 7.;"'))(u,t) :Zs(u,t)( y €yt 7ei;"')

i=1

((u,t) € M x[0,T)), where {e1,--- ,e,} is an orthonormal base of H, ;) with respect

k
to (9#) (u,t)> S(- - ,2, --+, e, ---) means that e is entried into the j-th component and

the k-th component of S and S, 4)(--- ,eji, e ,ekl-, --+) means that e; is entried into
the j-th component and the k-th component of S, ).

Then we have the following relation.

LEMMA 4.4. Let S be a section of FX/[(T(O’2)M) which is symmetric with respect
to g. Then we have

(A S)u(X,Y) = (AMSH)(X,Y)
—2Try, (VaS)(AeX,Y)) — 21}, (Ve S) (ALY, X))
—Try, S(Ae(AX),Y) — Tr), S(As(AY), X)
—Tr5, S(VeA)e X, Y) = Try, S((VeA)aY, X)
—2Tr8, S(AX, AY)

for X,Y € H, where V is the connection of w5, (T2 M) induced from V.

Proof. Take any (uo,to) € M x[0,T). Let {e1,--- ,e,} be an orthonormal base of
H (uo,to) With respect to (92)(ug,t)- Take any X, Y € H(y, 4,)- Let X be a section of
# on a neighborhood of (ug, to) With X(uy o) = X and (V*X) (1) = 0. Similarly
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we define Y and ¢;. Let W = X,Y or e;. Then, it follows from (VZW)(M%) =
0, (Ve W) (ug to) = Ae; W and the skew-symmetricness of Alz 3 that

I

(A’H,S)H(Xa Y) = (VEiVEiS)(X’ Y)

=1

[
M=

(VIVESH)(X,Y)
1

.
Il

M=

-2 ((veis)(‘Aein Y)+ (Vels)(‘AeZY7X))

1

(S(Ae; (Ae; X), V) + 5(Ae, (A, Y), X))

Flﬁs 0

i=1

(S(Ve; A)e; X, Y) + S((Ve, A)e, Y, X))

K2

23" 5(Ae, X, A, Y).

i=1

The right-hand side of this relation is equal to the right-hand side of the relation in
the statement. This completes the proof. O

Also we have the following Simons-type identity.
LEMMA 4.5. We have
Ayh = Vd||H|| + [|H|(A%); = (Tr (A%)3)h,
where (A%)y is the element of T(w5,TC?D M) defined by (A?)4(X,Y) = g(A2X,Y)
(XY €75, TM).
Proof. Take X,Y,Z, W € ©},;(T'M). Since the ambient space V is flat, it follows
from the Ricci’s identity, the Gauss equation and the Codazzi equation that
(VxVyh)(Z,W) = (VzVwh)(X,Y) = (VxVzh)(Y, W) = (VZzVxh)(Y,W)
=X, Y)Rh(AZ, W) — h(Z,Y)h(AX, W)
+h(X,W)h(AZ,)Y) — h(Z,W)h(AX,Y).
By using this relation, we obtain the desired relation. O
NOTE. In the sequel, we omit the notation F for simplicity.
Define a section R of 75, (H(®?)) by
R(X,Y) :=Try, h(Ae(AeX),Y) + Trj, h(Ae(AY), X)
+Try, (Ve A)e X, Y) + Try h((VeA)eY, X)
+2Try, (Veh)(AeX,Y) +2Tr5 (Veh)(ALY, X)
+2Try, h(Ae X, AY) (X, Y e H).

From Lemmas 4.3, 4.4 and 4.5, we derive the following evolution equation for (hy):’s.
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THEOREM 4.6. The sections (hy)i’s of i (T2 M) satisfies the following evo-
lution equation:

6(;1—;{()(7 Y) = (AXhy)(X,Y) = 2||H||((An)?)s(X,Y) — 2||H||((A‘§)2)u(X, Y)
+Tr ((AH)2 - ((A?)Q)H) hu(X,Y) — R(X,Y)
for XY e H.

Proof. Take X,Y € H(y,). Easily we have
AX = Ay X + ALX, (4.1)
and
(A X = (A%)’X — (AD)’X, (42)
where we use

(%Wg)ﬁ - (%gw W, g])ﬁ - (%W)ﬁ = AW

for W € T'(V) because of [W, ] € T(V). Also, since |:%,X’H:| €V, we have

0 .
o K| = 2011 (13)
From Lemma 4.3, (4.1), (4.2) and (4.3), we have

(i;l—;t(X,Y) = g(hy()_(,?)) = %(&XH(YHF))

ot
= (5 Xu(TuF) + (6 o1 (XnlFF)

= —(Fi(grad,||H)), Vx F. Yy) + (€, X <YH (%—f))

HE X (L Pl ) + (6 [0, Xl (Pu )
= —glarad, ||, Vx Vi) + X (Val HI|) ~ |HI(E, ¥ P (A(Vr)

- o . _
HE VB, Yaul)) + (6 Vg s, FiYn)
= (VA[[H|)(X,Y) = [[H|[h3(X, A2 Y) + || H| (X, ALY) + 2| H||h(A{ X, )

= (VA[[H|)(X,Y) = [[H|lgn((Ax)*X,Y) = 3[| H||g((AL)* X, Y).
From this relation and the Simons-type identity in Lemma 4.5, we have

O ;g — 2| H|(Ane))e — 20 HII((A)?)s

ot (4.4)
+Tr (432 = (AD)) o

Substituting the relation in Lemma 4.4 into (4.4), we obtain the desired relation. O



968 N. KOIKE

From Lemma 4.2, we derive the following relation.

LEMMA 4.7. Let X andY be local sections of H such that g(X,Y) is constant.

Then we have g(V%X, Y) —|—g(X,V%Y) =2||H||h(X,Y).
Proof. From Lemma 4.2, we have

0 dg
Eg(Xv Y) = E(Xv Y) +g(v%X7 Y) +g(X,V%Y)
= _2||H||h(X7 Y) +g(v%X7 Y) +g(X7V%Y)
Hence the desired relation follows from the constancy of ¢(X,Y). O

Next we prepare the following lemma for R.

LEMMA 4.8. For X, Y € H, we have
R(X,Y) =2Tx (((AZX, A2(AnY)) + ((AZY, AL (Ax X))
+ 2T, ({(AZX, AL (Aye)) + (ALY, A% (Ane))
+ 215, ((VoA?)eY, ALX) + (VaA?) X, ALY))
+ Y, (<(%.A¢).X, ALY) + (Ve A?).Y, A§X>)
+ 2T, (T, & ALY),
where we omit F.

Proof. Take e, X, Y € H. Easily we have

(Veh)(AcX,Y) = e((AZX, AZY)) — h(Ac(AcX),Y)
- h((ve-A)eXa Y) - h(-AeXa -Aey)'

(4.5)

(4.6)

On the other hand, by simple calculation, we have ((66A¢’)X§)9 = —((68.14‘;5)5)()9.

By using this relation, we can show

e((ALX,ALY)) = (VeA?) X, ALY) + (VeA?)eY, A2X) + h(Ay Axe,e).  (4.7)

Also, by simple calculations, we have

h(Ac(AeX),Y) = —(ATX, AZ(AnY))

h(Ay (Axe),e) = (A2 X, AT (Axe)),

W((VeA)e X, V) = (VeA?) X, AZY),
hAX, AY) = —(T? 4o & ALY).

From (4.6), (4.7) and the relations in (4.8), we have the desired relation. O
Also, we prepare the following lemma.

LEMMA 4.9. For X,Y,Z € H, we have

2<Tj§,( OALZ) = —(ALZ, (VX AP)eY ) + (AL Z, (Vy A?)e X).
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Proof. Fix (uo, to) € M %[0, 1:) Letf( be an element of I'(H) satisfying )N((u[hto) =
X and (V*X) (4049 = 0. Let Y and Z be similar elements of I'(#) for ¥ and Z,
respectively. At (ug,to), we have
(AR Z, AL (A X)) = = (AL 2, Vy (Vx€) = Vy (A59)
= — (AYZ Vx(Vy &) + Vivx€ — Vy (A%E)
= (AL Z,Vx(AY)) = 2(A% 2,V 4o &)
+ (AL Z, (Vy A) x€) — (AL Z, AL (AY))
= (AR Z, AL (A3 X)) = (A Z, (Ve A7) v)
= 2AALZ, T, (&) + (ALZ, (Vy A”)xE),

(4.9)

where we use (%HX)(uo,tg) = (%Hf/)(uwo) = (%HZ)(uo,tg) = 0. Also we have
(AL Z, (VxA?)y€) = —(A%Z, (VX A®)eY)

and
(A2, (Vy A%)x€) = ~(ALZ, (Vy A%)eX).

Form (4.9) and these relations, we obtain the desired relation. O

LEMMA 4.10. For X € ‘H, we have

R(X,X) = ATr, (AZX, AL (Ay X)) + 4Trd, (ALX, A% (Aye))
+ 3T}, (VeA?)e X, AZX) + 2T0), (VoA?)o X, ALX)
+Trs, (APX, (Vi A®)eo)

and hence

T R(e,e) =0.

9H

Proof. The first relation follows from the relations in Lemmas 4.8 and 4.9 directly.
Also, the second relation follows from the first relation directly. O

By using Theorem 4.6 and Lemmas 4.7 and 4.10, we can show the following
evolution equation for ||Hyl|’s.

COROLLARY 4.11. The norms ||H||’s of Hy satisfy the following evolution equa-
tion:

o\ H|

o = OnllH| + [[H||Tr(Ay)* — 3| H || Tr((AL)*) -

Proof. Fix (ug,to) € M x[0,T). Take a local orthonormal frame field {eq,-- ,en}
of H (with respect to g) over a neighborhood U of (ug, to) consisting of the eigenvectors



970 N. KOIKE

of Az . Since the fibres of ¢ are minimal regularizable submanifolds, we have ||H|| =

> h(ei,e;) on U. Clearly we have
i=1

Ol H]| Ohw
p -y S (eise) +2hu(V geier) ) (4.10)

i=1
On the other hand, it follows from Theorem 4.6 that

=~ Oh
—ap(eies) = Dl | H|| = || H||Te(Ar)* = 3] | H| [ Tr((A9)*)3, (4.11)

i=1

where we use Z(AHhH)(ez,ez) = Ay||H|| and Trj, R(e,e) = 0 (by Lemma 4.10).
Since each e; 1s_an eigenvector of Az, we have h(e;,e;) =0 (i # j). By using Lemma
4.7, we can show

D hu(Vaeie) =Y g(Vaenehlese) = |[H|Tr(Ax)*. (4.12)
i=1 i=1
From (4.10), (4.11) and (4.12), we obtain the desired relation. O

From we derive the following evolution equation for Tr(Az)?.

COROLLARY 4.12. The quantities Tr(Ay)?’s satisfy the following evolution equa-
tion:

OTr(Ay)?

e Aqy(Tr(Ag)?) = 2TeTe}, (Vi Ay 0 VIEAy)

+ 2Tr((An)?) (Tr((A3)?) = Tr((A2)?))
— 4[|H||Tr (((A?)?) o AH) —2TyS, R(Awse,e).
Proof. Fix (ug,t9) € M x[0,T). Take alocal orthonormal frame field {ey,--- ,e,}

of H (with respect to gy) over a neighborhood U of (ug,ty) consisting of the eigen-
vectors of Ay;. From Lemma 4.2, we have

Oh 0 0A
(X, Y) = L (4 X,Y) + gu( SR (X), )
ot ot ot
oA (4.13)
= —2||H|[ha(AnX,Y) + gu(=5(X),Y)
for any X,Y € w3, TM. Since {e1, - ,e,} consists of the eigenvectors of Ay, it

follows from Lemma 4.7 that

9(Vaei e;) = |[[HIh(e;,e;). (4.14)
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From these relations, Lemmas 4.2 and 4.7, we have

OTr(Ay)?
ot

9

NE

~+

(hH(AHeZ-, 61))

N
Il
-

Ohy 0A
8—(AH6“ ei) + ha( 8tH( €i), €;) + 2hy (Ayes, Vgei))

9]

(

( gt (Aﬂeuez)‘f'g’w‘—l((agtﬂ( i), Awer)
(

(

I
NE

@
Il
=

I
M:

@
I
=

(4.15)
+2||H||h(ei, e5)h (Anes, €;))

Ohy
ot

+2||H||h(ei, €:)g((Ax) i €:))

2——

I
NE

(Anei,ei) + 2||H||g((AH) €, €i)

@
Il
=

n

-3

i=1

oh
2200 () + Al g (A Perc) ).
Also we have

n 1 .
D (Afha) (Anes, ei) = iaﬂm(AHﬁ) ~TrTx}, (VEAu o VIAy).  (4.16)
=1

From Theorem 4.6, (4.15) and (4.16), we obtain the desired relation. O

By using Corollaries 4.11 and 4.12, we can show the following evolution equation.

[[H:l? 5
n

COROLLARY 4.13. The quantities Tr (Ay)? — s satisfy the following evolu-

tion equation:

2 _ lIH] 2
AP = )~ e (1 - I 3 2 g

2
+ 2TI‘(AH)2 X (TI‘(AH)2 — M)
n
—2TeTy}, (VH Ay 0 VHAy)

— (A (e(an? - L)

— i (e (422 (4 - ) )
_ome R ((AH - @id) .,.) ,

where grad||H|| is the gradient vector field of ||H|| with respect to g and ||grad||H]|||
is the norm of grad||H|| with respect to g.
Proof. This relation follows directly from Corollaries 4.11, 4.12 and Ay||H||?> =
2
2([H||Awl[HI| + 2 ||grad]|H|[]]". O

REMARK 4.1. From the evolution equations obtained in this section, the evolution
equations for the corresponding geometric quantities of f,(: M — V/G) are derived,
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respectively. In the case where the G-action is free and hence V/G is a (complete)
Riemannian manifold, these derived evolution equations coincide with the evolution
equations for the corresponding geometric quantities along the mean curvature flow
in a complete Riemannian manifold which were given by Huisken [Hu2|. That is, the
discussion in this section give a new proof of the evolution equations in [Hu2| in the
case where the ambient complete Riemannian manifold occurs as V/G. In the proof of
[Hu2], one need to take local coordinates of the ambient space to derive the evolution
equations. On the other hand, in our proof, one need not take local coordinates of
the ambient space because the ambient space is a Hilbert space. This is an advantage
of our proof.

5. A maximum principle. Let M be a Hilbert manifold and g, (0 <t < T)
a C*°-family of Riemannian metrics on M and G ~ M a almost free action which
is isometric with respect to ¢;’s (¢ € [0,T)). Assume that the orbit space M/G is
compact. Let H; (0 < ¢ < T) be the horizontal distribution of the G-action and
define a subbundle H of 73, TM by H(, s = (Hi).. For a tangent vector field X
on M (or an open set U of M), we define a section X of 73, TM (or n},TM|v)
by Xz == Xz ((z,t) € M x [0,T)). Let V! (0 < ¢ < T) be the Riemannian
connection of g; and V the connection of 7}, 7'M defined in terms of V*’s (t € [0,T)).
Define a connection V* of H by VIY = pr,, (VxY) for any X € T(M x [0,T))
and any Y € T'(H). For B € T'(x},T("0*0) M), we define maps ¢ps and 1gp from
D(73, T M) to T(r, T +7os+50) M) by

VY (S) :=B®S, and ¢gp(S):=S®B (S e (xy,T"M),
respectively. Also, we define a map 1gr of T'(75, T M) to I'(r, T+ M) by
Yer(S) =S®---® 8 (k—times) (S € F(WX/[T(T’S)M),
Also, we define a map g, ;; (i < j) from T(x}, T M) (or T(r5, TS M)) to
D(r3, T~ M) (or T'(x}, T2 M)) by
(V920,15 (8)) (@t (X1, - -+, Xs—2)

= ZS(M)(XM"' s Xio1 e, X, Xy, ey Xjr, oo Xoo2)
k=1

and define a map vy, ; from T'(7%, T M) to T'(n, T3~V M) by
(¢H,1(S))(w,t) (X17 e 7XS*1) =Tr S(w,t)(Xla e 7Xi*15 .7Xi7 e 7XS*1)7

where X; € T,M (i=1,---,s—1) and {ey, -+ ,en} is an orthonormal base of (H;)s
with respect to g;. We call a map P from I'(7},T(%*) M) to oneself given by the
composition of the above maps of five type a map of polynomial type.

In this section, we prove the following maximum principle for a C°°-family of
G-invariant symmetric (0, 2)-tensor fields on M.

THEOREM 5.1. Let S € T'(n5, (T2 M)) such that, for each t € [0,T), Si(:=
S(.)) s a G-invariant symmetric (0,2)-tensor field on M. Assume that Si’s (0 <
t < T) satisfy the following evolution equation:

03
i = DLiSH + V% 5w + P(S)n, (5.1)

where Xo € T(TM) and P is a map of polynomial type from T(m}, (T2 M)) to
oneself.
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(i) Assume that P satisfies the following condition:

X € Ker((S+ag)H)(w,t) = P(S+€g>(m,t)(X7X) >0
(Ve >0, (z,t)e M x[0,T)).

If (Su)(0) = 0 (resp. > 0), then (Sw)(4+ > 0 (resp. > 0) holds for all
tel0,T).
(ii) Assume that P satisfies the following condition:

X € Ker((S+ag)H)(w,t) = P(S+€g)(m,t)(X7X) <0

(Ve >0, (z,t)€ M x[0,T)). (*g,,)

If (S#)(0) <0 (resp. < 0), then (Sp)(.p) < 0 (resp. < 0) holds for all
tel0,T).

Proof. First we shall show the part of “If (S%)(.,0) > 0, then (S3;)(. s > 0 holds

for all t € (0,7)” in the statement (i). For positive numbers ¢ and §, we define S; 5

by (55)5)(9“5) = S(m,t) + 8(5 + t)g(m,t)'
Step I. In this step, we show the following statement:

() 30 >0s.t. “((Se,6)1) (@) >0 (V(x,t) € M x[0,0),Ve >0)".

Suppose that such a positive number § does not exists. Fix a sufficiently small
positive number ¢. For some gy > 0, there exists (zo,t9) € M x [0,0) such
that ((Sc,6)#)(z0,t0) = 0. Here we take tp as smally as possible. ~We have
Ker((Seo,s)#) (woto) # 10} and ((Sep,6)t)n, > 0 (Vt € [0,%0]). Take vy €
Ker((Sey,)#) (wo,to)) With gzg.t0)(v1,v1) = 1. From the assumption (*;{) for P,
we have

P((Se.,6) (z0,t0)) (V1,01) > 0. (5.2)

The map P is of polynomial type, M /G is compact and S; is G-invariant. Hence, for
each t € [0,T), there exists a positive constant Cs; (depending only on ||(S3)(. 4|l
and ||((S(50,6))H)(,t)||) such that

H((P(Sz0.6)1) ) = (PS)#) |l < Co.l1((Seo.6)20) 0y = (S) (-l (5.3)

on M, where || - || is the pointwise norm of a tensor field (-). We take Cs, as smally
as possible. Since P is of polynomial type, lims_, 1 Cs; exists and lims_, 1o Cs+ > 0.
Denote by C; this limit. Fix Ty € (to,T). Set

Cs :=max< max Csy, max <%) (v,v)
0st<Th ({E,t) € M x [Oa Tl] ot (1)
veTMst. gi(v,v) =1
and
C :=max { max (Y, max <%) (v,v)
0<t<Ty (z,t) € M x [0,T1] ot /e

veTM st gi(v,v) =1
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Since C' is independent of the choice of §, we may assume that C'd < i by replacing
6 to a smaller positive number if necessary. Furthermore, since § — Cjs is upper
semi-continuous and lims_, ¢ Cs+ < 00, we may assume that Csé < % by replacing ¢
to a smaller positive number if necessary. From (5.2) and (5.3), we have

P(S)(mo,to)(vhvl) > —2Cse06. (5.4)

Let X7 be a section of H on a normal neighborhood U of (zg,%o) in M x [0,T) such
that (X1)(z,t0) = v1 and that YHXl = 0 at (xg,tp). Define a function p on U by
p(x,t) = (Seo,8) (2.6) (X1) (2,6), (X1)(2,)) ((w,1) € U). Since we take (zo,t9) and vy as
above, we have (%)(Io,to) <0 (see Fig. 4). Also, we have

9p ~ [(0Su dan
(5>(101t0) N ( ot )(onto) ('Ula’Ul) + 50(6 + tO) ( ot )(onto) (’Ul,’Ul) + €g.

Hence we have
oS 0
(8—:> (’Ul,’l}l) < —80(5+t0) (%) (’Ul,’l}l) — €. (55)
(:Eo,t()) (101750)

Take w € T,o(M x {to}). Clearly we have dp(, ) (w) = 0. Also we have
Ap(zo,t0) (W) = (VIE(Sey.5)2) (wo,t0) (V1, v1). Hence we have

(V(Se0,8)%) (20,10) (1, 11) = 0. (5.6)

Clearly we have (A, pty)ae = 0, where A, is the Laplacian operator with respect to
Gto- Also, we have (Ay, pro)ze = (A (Seq,6)#)(v1,v1). Hence we have

(AFi(Seo,8)m) (v1,01) > 0. (5.7)
From (5.1), (5.5), (5.6) and (5.7), we have

Ign
P < — t —_—
(S)(I(),to)(vl?vl) = 50+50(6+ 0) ( Ot )(wo,to)(vlvvl) (58)
< — g + 269C56.

From (5.4) and (5.8), we have C56 > 1. This contradicts C56 < ;. Therefore the
statement (x) is true.

Step II. Let ¢ be a positive number as in the statement (x). Then, for any
(z,t) € M x [0,0) and any ¢ > 0, we have ((Scs5)#),) > 0. Hence we have
1_15_10((‘95,5)7{)(1,15) = (S'H)(w,t) > 0 for any (Iat) €M x [055) Set
€

Ty == sup{t1 | (%) (z,4) = 0 (V(z,t) € M x [0,11]}.

Suppose that 7y < T. Then, by the similar discussion for (S3)(. r,) instead of
(S#)(.,0), we can show that (Sy)(,,) > 0 for any t € [T1, Ty + '] and any = € M,
where ¢’ is some positive number. This contradicts the definition of T;. Therefore we
have Ty = T'. Thus we obtain (S#)(.+ > 0 for any t € [0,T).

Similarly we can show the part of “If (S3;)(.0) > 0, then (S%)(.+ > 0 holds for
all t € (0,7)” in the statement (i) as follows. The map P is of polynomial type,
M/G is compact and S; is G-invariant. Hence it follows from (S%). o) > 0 that
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(S74)(-,0) = b(g21)(.,0) holds for some positive coonstant b. Set S :=8 —bg. Then it is
easy to show that S satisfies
0Sy
ot
+

for some map P of polynomial type satisfying the condition (*§ E
H

= A%EH + V§0§H + ﬁ(g)q.[

X e Ker((§+6g)?{)(w,t) = ﬁ(§+€g)(w,t)(XaX) >0
(Ve>0, (2,t)€M x[0,T)).

Hence, it follows from Theorem 5.1 that (S3)(.+) = 0 (hence (Sz)(.+) > 0) holds for
all t € [0,T). The statement (ii) also are derived by the similar discussion. O

R

The graph of p

Fic. 4.

REMARK 5.1. (i) According to the proof of the maximum principle by R.S.
Hamilton (Theorem 9.1 of [Ha]), we can improve the statement of his maximum
principle as follows.

Let g: (0 <t <T) be aC®-family of Riemannian metrics on a com-
pact manifold M and Sy (0 <t < T) be a C®-family of symmetric
(0,2)-tensor field on M. Assume that S;’s (0 < t < T) satisfy the
following evolution equation:

08

i AS + Vg S+ P(5),

where AS is the Laplacian of S with respect to the connection of
7*TM defined by the Levi-Civita connections V'’s of g, Xo €
[(TM) and P is a map of polynomial type from T(m%, (T *? M))
to oneself. Assume that P satisfies the following condition:

(xs) X cKer(S+eg)en = P(S+eg)(en(X,X)>0
(Ve>0, V(z,t) e M x[0,T)).
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If S > 0 (resp. >0), then S¢ > 0 (resp. > 0) holds for allt € [0,T).

The null-eigenvector condition in [Ha] means the following condition:

X €Ker(S) sy = P(8)@n(X,X)>0
(VS : symmetric (0,2)—tensor field on M, V(z,t) € M x [0,T)).

This condition is stronger than the above condition (*g). In [Hul], G. Huisken proved
the statement of Theroem 4.3 in [Hul] by showing that the family S = (S;; =
}}{] — €gi;) of symmetric (0,2)-tensor fields satisfies the above condition (*g) and
applying the maximum principle of R.S. Hamilton. In his proof, it is not shown
that the family S satisfies the null-eigenvector condition. The statement of Theorem
4.2 in [Hu2] also was proved by showing that some another family S of symmetric
(0, 2)-tensor fields satisfies the above condition (xg).

(ii) The constant Cs in this proof corresponds to the constant C in the proof of
Theorem 9.1 in [Ha].

Similarly we obtain the following maximal principle for a C°-family of G-
invariant functions on M.

THEOREM 5.2. Let p be a C®-function over M x [0,T) such that, for each
t €10,T), pe(:= p(,1)) is a G-invariant function on M. Assume that p;’s (0 <t <T)
satisfy the following evolution equation:

o
ot

where Xo € T'(TM) and P is a map of polynomial type from C>°(M x [0,T)) to
oneself.
(i) Assume that P satisfies the following condition:

Dyp + dp(Xo) + P(p),

(P+e)ery=0 = Plp+e)ay =0
(Ve>0, (z,t) e M x[0,T)).

If po > 0 (resp. >0), then p; > 0 (resp. > 0) holds for all t € [0,T).
(i1) Assume that P satisfies the following condition:

(p+€)(x7t) =0 = P(p+€)(x7t) <0
(Ve>0, (z,t) e M x[0,T)).

If po <0 (resp. <0), then p; <0 (resp. < 0) holds for allt € [0,T).

6. Horizontally strongly convexity preservability theorem. Let G ~ V
be an isometric almost free action with minimal regularizable orbit of a Hilbert Lie
group G on a Hilbert space V equipped with an inner product (, Yand ¢ : V — V/G
the orbit map. Denote by V the Riemannian connection of V. Set n := dim V/G-1.
Let M(C V) be a G-invariant hypersurface in V' such that ¢(M) is compact. Let f
be an inclusion map of M into V and f; (0 <t < T) the regularized mean curvature
flow starting from f. We use the notations in Section 4. In the sequel, we omit the
notation fy, for simplicity. For each u € V', we set

L := sup max (A% (Vx,A%)x, X4), X5)),
eV (X1, Xs)e(Fa)
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where 7, := {X € H| ||X|| = 1}. Assume that L < co. Note that L < oo in the case
where V/G is compact. In this section, we prove the following horizontally strongly
convexity preservability theorem by using results stated in Section 4 and Theorem 5.1.

THEOREM 6.1. If M satisfies ||Ho|[*(hw)(..0) > 2n*L(g#)(.,0) then T < 0o holds
and |[Hy||?(hay) .0y > 2n°L(g3) (. 1) holds for all t € [0,T).

Proof. Since A? is skew-symmetric, we have

Tr((AZ)?)n < 0. (6.1)

From Corollary 4.11, Tr(A)? > HTP and (6.1), we have

5I|HII IIHII3

> AyllH|| + —— (6.2)
Define a function p over [0,7) by p(t) := min ||H||. Form (6.2), we have % >
L3 Also we have p(0) > 0 by the assumption. Hence we obtain T < STIOLE

1 2n2L
Set S := mh ||Z||3g and S; := S + eg, where € is a positive constant. Take

X,Y € H. By using Lemma 4.2, Theorem 4.6, Corollary 4.8 and Lemma 4.10, we can
show

5y,
- ﬁ(ﬁﬁ’m)(?@ Y) = 2((An)*)s(X,Y) = 2((AD)) (X, Y)
7 (AHIVEI = 2|HITH((AD)) — 4nL) b (X. ) 63
- ROXY) — 2l Hn(X.Y)
+ % (A 4+ 1H]Tr(Aw)? — 3L H [ TH((AD))3 ) 92(X.Y ).

Also, we have

1
||H||( gadHHHhH)(Xa Y)

_ llgrad||H]| ||?
|[H[?

(Vo)) (Se)2) (X, Y) =
h(X,Y) (6.4)

2
+ %Hgmdnﬂn g(X,Y)
and
1
1]

2
|[H[?

(2llgrad|[H[[[|* — [[H|AJIH||) (X, Y)  (6.5)

(AJE(S)1)(X,Y) = ——==(AJiha) (X, Y) — (Vikaaija ) (X, Y)

1
||H| K
3n?L

_|_
1H|I°

(—AllgradllH|| |* + [|H[|AKIH|]) g2(X,Y).
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From (6.3), (6.4) and (6.5), we have

a(5.) B 2
5 B(XY) = AR(Sn(X,Y) + W(v;ad\\HH(SE)H)(Xv Y) (6.6)
+ P(5:)(X,Y),
where P(S.) is defined by
P(S)(Z,W) i= = 2((An)*)s(Z, W) = 2((A?)*)s(Z, W) — ||H||R(Z W)
1 2
+ g (20 HIITe((AL)2) + 4L ) (2, W)
n”L, 2 _ oy2) . 2llerad | H| [

— 2¢[|H|[hw(Z, W)

for Z,W € w3, TM. Fix any positive constant g and any (zo,t0) € M x [0,T). As-
sume that Ker((S )#) (z0.,t0) 7 10}. Take Xo € Ker((S=))#)(zo.t0)) With g(Xo, Xo) =
1. Since

2n L
we have
2n2L
AHXO = <— — Eo||H||> Xo
|H|[?
For simplicity, we set A\ := |2|"H2HL2 —e&o||H||.- By using the first relation in Lemma 4.10,
we have
P(Se,)(Xo, Xo)
6n2L 12n
= ——Tr(Ay)? + ——= gradH 2
14n%L
_ 2((A?)2)u(X0,X0) — ( IGE + 250) Tr((A?)2)H
4 4 (6.7)
+ WTI“' (A%, 0 A%, (Ane)) — WTF. (A2 X0, AL (AnX0))
3 1
5 (Ve d?)x, €, AL X0) — 5 (Vg A)at, A% o)
||H|| ||H|| x
2 TS, (Ved®)s Xo, A%, )
0> .
||H|| o

Hence, since Tr(Ay)?

HIE((A2)2):(X, X) < 0, Tr((A?)2)3 < 0 and the defini-
tion of L, we have

P(Sc,)(Xo, Xo) > 0 (A% 0 AL (Axe))

<A¢X07 AL (A Xo)).
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Since Ay Xo = M Xo, X € Ker((Szy)#) (o,t0) a0d ((Se)#) (z0,t0) = 0, We may assume
that A; is the smallest eigenvalue of (A3;)(zg,40). Let {Xi|i =1,---,n} (A <--- <
An) be the set of all eigenvalues of (A%x)(z,,4)- Let {e1,- - en} be an orthonormal
base of Ty, M with respect to (g#)(a,,t,) Satisfying e; = Xo and Awe; = Nie; (i =
2,-+-,n). Then we have

3

0 (A% 0 AL, (Axge)) — o (AL X0, AZ(An X))

. IIHII
Z (N — M)(AS, ei, A%, ei) > 0.

From (6.8) and this inequality, we obtain P(S.,)(Xo, Xo) > 0. Hence it follows from
the arbitrarinesses of €y and (xo, %) that P satisfies the condition (*JSFH) Therefore
it follows from Theorem 5.1 that (S#)(.+ > 0 holds for all ¢ € [0,7T'). O

7. Strongly convex preservability theorem in the orbit space. Let V, G
and ¢ be as in the previous section. Set N := V/G and n := dim V/G — 1. Denote
by gn and Ry the Riemannian orbimetric and the curvature orbitensor of N. Also,
VY the Riemannian connection of gN|N\Sing(n)- Denote by [|[VY Ry|| the norm of
VN Ry with respect to gn. Set Ly := sup ||[VVNRyl||. Assume that Ly < oo.
Let M be a compact suborbifold of codimension one in N immersed by f and f,
(t € [0,T)) the mean curvature flow starting from f. Denote by g, h¢, A; and H; be
the induced orbimetric, the second fundamental orbiform, the shape orbitensor and
the mean curvature orbifunction of f,, respectively, and &, the unit normal vector
field of ft|M\Sing(M) .

From Theorem 6.1, we obtain the following strongly convexity preservability the-
orem for compact suborbifolds in N.

_ THEOREM 7.1. If f satisfies ||Ho||?ho > n2LnGy, then T < oo holds and
[H||?he > n*Lng, holds for all t € [0,T).

Proof. Set M := {(z,u) € M x V|f(z) = ¢(u)} and define f : M — V
by f(z,u) = v ((x,u) € M). It is clear that f is an immersion. Denote by Hy
the regularized mean curvature vector of f. Define a curve ¢, : [0,7) — N by
cz(t) == fi(z) (t €[0,T)) and let (c,)L be the horizontal lift of ¢, with (c;)Z(0) =u
and ((c2)5)'(0) = (Ho)(s,u), where (z,u) € M. Define an immersion f; : M — V by
felw,u) = (co)L(t) ((z,u) € M). Then f; (t € [0,T)) is the regularized mean curva-
ture flow starting from f (see the proof of Theorem 4.1). Denote by g¢, hs, A* and H,
the induced metric, the second fundamental form, the shape tensor and the mean cur-
vature vector of f;, respectively. By the assumption, f, satisfies ||Ho||?ho > n2L G-
Also, we can show Ly = 2L by long calculation, where L is as in the prevoius section.
From these facts, we can show that fo satisfies ||Ho||?(h#)o > 2n?L(g3)o. Hence, it
follows from Theorem 6.1 that f; (t € [0,T)) satisfies ||H||?(ha)e > 2n?L(g3):. Fur-
thermore, it follows from this fact that f, (t € [0,T)) satisfies ||[H,||*h: > n%2Lyg,. O

REMARK 7.1. In the case where the G-action is free and hence N is a (complete)
Riemannian manifold, Theorem 7.1 implies the strongly convexity preservability the-
orem by G. Huisken (see [Hu2, Theorem 4.2]).
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