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SPECIAL FUNCTION IDENTITIES FROM SUPERELLIPTIC
KUMMER VARIETIES*

ADRIAN CLINGHER', CHARLES F. DORAN!, AND ANDREAS MALMENDIERS

Abstract. We prove that a well-known reduction formula by Barnes and Bailey that implies
the factorization of Appell’s generalized hypergeometric series into a product of two Gauss’ hyper-
geometric functions follows entirely from geometry: we first construct a surface of general type as
minimal nonsingular model for a product-quotient surface with only rational double points from a
pair of superelliptic curves of genus 2r — 1 with » € N. We then show that this generalized Kum-
mer variety is equipped with two fibrations with general fiber of genus 2r — 1. When periods of
a holomorphic two-form over carefully crafted transcendental two-cycles on the generalized Kum-
mer variety are evaluated using either of the two fibrations, the answer must be independent of the
fibration and the aforementioned family of special function identities is obtained. This family of
identities is a multivariate generalization of Clausen’s Formula. Interestingly, this paper’s finding
bridges Ernst Kummer’s two independent lines of research, algebraic transformations for the Gauss’
hypergeometric function and nodal surfaces of degree four in P3.

Key words. Kummer surfaces, product-quotient surfaces, special function identities, hyperge-
ometric functions.
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1. Introduction. The Appell series Fy is a hypergeometric series in two vari-
ables that was introduced by Paul Appell in 1880 as generalization of Gauss’ hy-
pergeometric series o F of one variable. Appell established the set of linear partial
differential equations of rank four which this function is a solution of, and found var-
ious reduction formulas for this and three closely related series Fi, F3, Fy in terms of
hypergeometric series of one variable. In 1933 Bailey derived a reduction formula for
the Appell series Fy as product of two Gauss’ hypergeometric functions. Later Bailey
himself — when studying unpublished manuscripts left by Barnes after his death —
realized that Barnes had already obtained this reduction of Fy in 1907 [4]. When
this reduction formula is combined with another result of Bailey’s relating the Appell
series Fy to Fy [3, Eq. (3.1)], a corresponding reduction formula for the Appell series
Fy is obtained. However, only such Appell series Fy are obtained in this way that
satisfy the quadric property that four of the linearly independent solutions of the as-
sociated system of linear partial differential equations are quadratically related [30].
The explicit form of the reduction formula for the Appell series F, appeared recently
in [31] where the author investigated specializations of Appell’s functions to univariate
hypergeometric functions. The reduction formula for all Appell series Fy satisfying
the quadric property can be regarded as a multivariate generalization of the classical
Clausen Identity [12] that relates generalized univariate hypergeometric functions of
type 3% to products of two Gauss’ hypergeometric functions!. Carlson later classi-
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909



910 A. CLINGHER, C. F. DORAN, AND A. MALMENDIER

fied all quadratic transformations of so-called double integral averages with two rows
and two columns into itself in [9]. It turns out that the multivariate reduction for-
mula of Bailey and Barnes is in fact the only quadratic transformation that relates
the Appell series Fy with two independent variables and two free parameters to a
product of two o Fj-series. Clausen’s original identity has played a central role in the
construction of periods and mirror maps in the context of string theory in [25] and
in the proof of the Bieberbach conjecture in [13]. At the same time, this multivariate
identity incorporates many other classical identities for Gauss’ hypergeometric func-
tions. For example, taken in conjunction with an obvious symmetry of the Fb-system,
the decomposition realizes the most important quadratic identity? for the Gauss’ hy-
pergeometric function o F} which was first derived by Kummer [19]. A complete list
of all quadratic identities was later given by Goursat [16]. The importance of these
identities was originally founded on the fact that they enable one to determine the
value of a hypergeometric function 2F3(z) at z = —1 by relating it to the value of
another hypergeometric function at z = 1 which, in turn, could be evaluated using
Gauss’ theorem [20]. There are many generalizations giving the value of a hyperge-
ometric function as an algebraic number at special rational values that are based on
higher-degree identities.

The reduction formula — which we will also refer to as Multivariate Clausen Iden-
tity — stems from the fact that a quadric in P? is ruled and decomposes into P! x P!,
If we consider this ruled quadric the period domain of a family of polarized varieties,
then the decomposition formula — as we will show — has a purely algebro-geometric
interpretation as period computation on a generalized Kummer variety. In the sim-
plest case, this generalized Kummer variety is an ordinary Kummer surface of two
non-isogenous elliptic curves. On the one hand, we can view this Kummer surface as a
resolution of the quotient of an Abelian surface by an involution. On the other hand,
the Kummer surface can be equipped with the structure of a Jacobian elliptic K3
surface of Picard-rank 18 [27]. However, for the purpose of realizing hypergeometric
function identities only those Jacobian elliptic fibrations will prove relevant that relate
the K3 surface to an extremal Jacobian rational elliptic surface by a quadratic twist or
a quadratic base transformation and that have non-trivial two-torsion. Equivalently,
we can say that the Kummer surface is equipped with two Jacobian elliptic fibrations,
an isotrivial fibration and a non-isotrivial one.

The central idea of this article is that non-trivial relations on special functions can
be shown to follow entirely from geometry. In particular, periods of a holomorphic
two-form over carefully crafted transcendental two-cycles on a Kummer surface can
be evaluated using either of the two aforementioned elliptic fibrations. As the answer
must be independent of the fibration used we obtain a special function identity that
is the Multivariate Clausen Identity. However, the most general version of the Mul-
tivariate Clausen Identity which has additional free rational parameters cannot be
realized in the framework of a classical Kummer surface. Therefore, we will construct
a generalized Kummer variety as minimal nonsingular model for a product-quotient
surface with only rational double points from a pair of two highly symmetric curves
of genus 2r — 1 with r € N, so-called superelliptic curves. Product-quotient surfaces
have become an important tool in the construction of smooth connected minimal
complex projective surfaces of general type [5, 10, 11]. In fact, the Kummer variety
we construct is a family of such surfaces of general type with irregularity ¢ = 4(r — 1)

2The quadratic identity in question consists in fact of two quadratic identities, but for comple-
mentary moduli of the Gauss’ hypergeometric function in question.
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and geometric genus p, = 1 + 2(r?2 — 1). Furthermore, we will establish on such a
generalized Kummer variety the structure — not of elliptic fibrations with section —
but of fibrations with fibers of genus 2r — 1. When periods of a holomorphic two-form
over carefully crafted transcendental two-cycles on the generalized Kummer variety
are evaluated using either of two fibrations, the answer must be independent of the
fibration and the aforementioned family of special function identities is obtained.
Therefore, the major result of this article is as follows:

THEOREM 1.1.

(1) Every Appell hypergeometric function with rational parameters satisfying the
quadric property can be obtained as period integral of a suitable holomorphic
two-form on the generalized Kummer variety of two superelliptic curves.

(2) The Multivariate Clausen Identity of Barnes and Bailey follows entirely from
geometry, i.e., from the existence of an isotrivial fibration and a second mon-
isotrivial fibration on the generalized Kummer variety of two superelliptic
curves.

The above theorem summarizes the more technical statements that will be proved
in Lemma 5.2, Lemma 5.3, and Theorem 5.4. It is interesting that Ernst Kummer
was the first person who investigated both quadratic identities for the Gauss’ hy-
pergeometric function as well as the nodal surfaces of degree 4 in P? [21] that we
call Kummer surfaces today. This article connects precisely these two subjects using
today’s understanding of variations of Hodge structure and period mappings.

This article is structured as follows: in Section 2 we will review some basic facts
about Gauss’ hypergeometric functions and the multivariate generalization F5. For
Appell’s hypergeometric system satisfying the quadric property we prove that the
associated Pfaffian system decomposes as outer tensor product of two rank-two hy-
pergeometric systems. Next, we will review the Multivariate Clausen Identity that
decomposes the holomorphic solution F5 into a product of two Gauss’ hypergeometric
functions o Fy. In Section 3 we will prove some basic facts about superelliptic curves,
the resolution of their singularities, the construction of a holomorphic one-form and
the lifting of certain cyclic group actions to the resolution curves, and compute period
integrals of the first kind in terms of Gauss’ hypergeometric functions. In Section 4
we will construct a generalized Kummer variety as minimal nonsingular model of
a product-quotient surface with only rational double points from a pair of two su-
perelliptic curves, determine its Hodge diamond, and the explicit defining equations
for certain fibrations with fibers of genus 2r — 1 on it. In Section 5, we prove that
the Multivariate Clausen Identity realizes the equality of periods of a holomorphic
two-form evaluated over a suitable two-cycle using the structure of either of the two
constructed fibrations.
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2. Appell’s hypergeometric function F;. Appell’s hypergeometric function
F5 is defined by the following double hypergeometric series

F2<a’ ﬂhBQ 21, 2'2) Z Z m+n /81 Inglﬂ/i)' Z{n Z;z (21)

V1,72 =0 1m0

that converges absolutely for |z1| + |22] < 1. The series is a bivariate generalization
of the Gauss’ hypergeometric series

2F1<a 5‘ ) > O(a)”(m”z" (2.2)

(7 n !

that converges absolutely for |z| < 1. Outside of the radius of convergence we can
define both 5 F} and F, by their analytic continuation. As a multi-valued function of
z or z; and zs, the function oF} or Fy, respectively, are analytic everywhere except
for possible branch loci. For oF}, the possible branch points are located at z = 0,
z=1and z = co. For Fy, the possible branch loci are the union of the following lines

z21=0, z1=1, z1=00, 20=0, 20=1, 29=00, 21+ 20=1. (2.3)

We call the branch obtained by introducing a cut from 1 to oo on the real z-axis or the
real z1- and z-axes, respectively, the principal branch of o F} and F5, respectively.
The principal branches of 5 F; and Fy are entire functions in «, 8 or «, 31, B2, and
meromorphic in 7 or 1,7y, with poles for v,v1,72 = 0,—1,—2,.... Except where
indicated otherwise we always use principal branches.

Appell’s function Fy satisfies a Fuchsian® system of partial differential equations
analogous to the hypergeometric equation for the function o F;. The differential equa-
tion satisfied by oF is

2
(1—2)(22—|—(7—(a—|—ﬁ+1)z)fl—};—aﬂF=O. (2.4)

It is a Fuchsian equation with three regular singularities at z =0, z =1 and z = ©
with local exponent differences equal to 1 —~, v —a — 3, and a — 3, respectively. The
system of partial differential equations satisfied by F5 is given by

0*F O*F OF OF
Z- g _ 1 2 il
B Az o +(n—(a+B1+1)21) o B1z2 97

0’F O*F OF oF
22(1 — »2’2)872g — 2122 52105 +(v2—(a+P2+1)22) =— 97 — Baz 17 —afF =0.

21(1—21) —aﬂlF:O,

(2.5)

This is a holonomic system of rank 4 whose singular locus on P! x P! is the union of
the lines in (2.3). For Re(y) > Re() > 0, the Gauss’ hypergeometric function o Fy
has an integral representation

(") = ramis | s 29

We have the following well-known generalization for the Appell hypergeometric func-
tion:

3Fuchsian means linear homogeneous and with regular singularities.
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LEMMA 2.1. For Re(v1) > Re(B1) > 0 and Re(y2) > Re(B2) > 0, we have the
following integral representation for Appell’s hypergeometric series

2 (Oﬁ b1, B2 ) _ L'(71) T'(y2)
2 21, 22 | =
1,72 L(B1) T(B2) I'(y1 = B1) L2 — B2) 2.7)
X /1 d /1 d ! |
0 u 0 r UI*BQ (]_ — u)1+,32*’72 xlfﬁl (1 — x)1+61*71 (1 — 21X — %9 u)a :
Proof. The series expansion is obtained for |z1] + |z2] < 1 as follows
1 1 1
/ du/ dx
0 0 ul_B’z (1 — u)1+ﬂ2_72 xl_ﬂl (1 — $>1+Bl_71 (1 — 21T — 29 u)a
-3 (Vg /1 (z12)™ dx /1 (z2w)" du
_m,nZO mln!  Jo 21701 (1 —2)1th-n [ ul=B2 (1u)t+P2—r
2.8
m4+n _m _n 1T™m Y1 — P1 2TN Y2 — P2
" @nin TG BTG W =5 29
oo min! b 72 L(y1 +m) [(v2 +n)

_TB)T (= B1) T(B2) T (72 = B2) 3 (@) (B (B2)n "
]-—‘('71) F(’YZ) m! (’yl)m n! (72)71 L2

m,p>0
This proves the lemma. O

The connection between Gauss’ hypergeometric function oy and Appell’s hyper-
geometric function Fy is given by an integral transform:

COROLLARY 2.2. For Re(vy1) > Re(f1) > 0 and Re(y2) > Re(fB2) > 0, we
have the following integral relation between Gauss’ hypergeometric function oFy and
Appell’s hypergeometric function Fy:

LF (Oé; B1,B2] 1 1B> :7F(72)(A*B)1772
Ax T2\ ['(B2) (2 — B2)

AT A
1
7

Proof. Using the variable U = (1 — zou)/z1 or u = (1 — 21U) /22, we obtain

(2.9)

X/B dUu e
4 (A—U)=F (U= B) "y > '

1 /1 dx
(1 — 22 u)a 0 {Elfﬂl (]_ — x)1+51*71 (1 _ Z1 x)a

1—zou
BT —f) 1 F(mal1>
- L(n) g Ue 2! v)-

Setting 21 = 1/A and zo = 1 — B/A or, equivalently, A =1/z; and B = (1 — 22) /21,

we obtain
1
1 1 «, ﬁl ]-
d F —
/0 U 1P (1 —u)+B—2 0 Uo 2 1( " U)
F «, ﬁl
A (A=U)7F (U= B)fme U= 20 oy

Al

(2.10)

22

- (Z)lw /B dU

(o3

21

)
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Equation (2.9) follows. O

REMARK 1. Equation (2.7) is the two-parameter generalization of the FEuler
integral transform formula relating o F; and 3F5. To see this in more detail, let us
start with the classical Euler integral transform formula, i.e.,

Z1> _ I'(m)
LB Ly = Br)

y /1 dx P a, 1+a—
217 .
0 rl=51 (1_];)14—[31—71 241 1+O(_72_~_/82 1
We compare Equation (2.11) with an expression similar to Equation (2.7), but where

we have replaced the ramification point © = 1 by & = oo as upper integration limit*
and changed the normalization factor, i.e.,

<0[, Blv 1+C¥—’72
355
Y1, L+ a—7y2+ B2

(2.11)

132(0@ Prpe| 22) _ ()" T() T+ a—72)
V1,2 ' L(B)T(B2) D1 — B) (1 + o — 72 + B2) (2.12)
oo 1 1 :
x /0 d“/o dr =g, (1 —w) P2 g1 (1 — ) A (1 — 210 — 2 w)®
Mapping u + 1 — 1/u, we obtain
=~ [ a; B, P2 > L'(m)
F 5 =
2( vy | L(B1)T(n — B2) (2.13)

1
dx a, 1+a—
X F -1
/o xl—B1(1_x)1+l31—722 1<1+04—72+52 212+ (22 )]

and, therefore,

152(045 B1, B2
1,72

a, B, 1+a—y
21, 1) =3k
7, l+a—y+pF

21) . (2.14)

The functions F» and Fy satisfy the same system of linear partial differential equations,
but different boundary conditions. This is in agreement with [31, Thm. 2.1] where it
was shown that the two restrictions
a; B,
zl> and Fg( RERE

a, fr, 1+ a—
3F5
T, L+ =y + B V1,72

21, 1) (2.15)

satisfy the same ordinary differential equation.

REMARK 2. Equation (2.9) is of particular geometric importance since it makes
apparent that two linear transformation formulas for Appell’s function F5 are induced
by the maps (A4, B) — (B, A) and (A, B) — (1 — A,1 — B) on the variables. In fact,
the variables (A, B) will later be identified with geometric moduli. Concretely, the
right hand side of Equation (2.9) is invariant under interchanging A and B if we map
(B2,72) = (y2 — B2,72) as well. This proves the well-known identity

1 FQ(Oz; B, Ba| 1 1 B) 1 F2<a§ B1, v2 — B2

- 14
Ae Y1572 B Y1572

T 1—3) . (2.16)

4As we will explain later, this corresponds to a different choice of A-cycle in the fiber of a variety
fibered over P? whose Picard-Fuchs equation is given by Appell’s hypergeometric system.

AT A
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Similarly, using the classical linear transformation for the hypergeometric function
1

«, ﬁl 1 U ¢ «, 71_61
F — | = F P 2.1
2 1( " U) (Ul) 2 1( o’ ) (2.17)

we can check that right hand side of Equation (2.9) is also invariant under mapping
U—1-U, (A,B)— (1-A,1-B) if we map (B1,71) — (71— B1,71) as well, proving
the well-known identity

1 Q; 617 62 1 B)

el —1-=

Ao 2( Mo AT A 218
1 pfem—bupy 1 | 1-B '

(A—1)~ 2 M, V2 1—A’ 1-A) "

2.1. Quadratic relation between solutions. In [30] Sasaki and Yoshida stud-
ied several systems of linear differential equations in two variables holonomic of rank 4.
Using a differential geometric technique they determined in terms of the coefficients
of the differential equations the quadric property condition that the four linearly inde-
pendent solutions are quadratically related. For Appell’s hypergeometric system the
quadric condition is as follows:

PROPOSITION 2.3 (Sasaki, Yoshida). Appell’s hypergeometric system satisfies the
quadric property if and only if

1
a=51+ﬂ2—§7 M =281 12 =20 . (2.19)

REMARK 3. For Appell’s hypergeometric system satisfying the quadric property
the transformations (A, B) — (B, A) and (A, B) — (1— A, 1— B) are isometries. This
is obvious from Equations (2.16) and (2.18).

REMARK 4. The condition in Eq. (2.19) — implying that the four linearly inde-
pendent solutions of Appell’s hypergeometric system Fh are quadratically related —
was used in [30, Sec. 5.4] to regain Bailey’s formula [3, Eq. (3.1)] relating the Appell
series F» and Fy from a geometric point of view as rational map from P? to P2.

In the following, we will be exclusively concerned with Appell’s hypergeometric
system satisfying this quadric property. Geometrically, the quadric condition will
correspond to one of the Hodge-Riemann relations for a polarized Hodge structure.
The system (2.5) of linear differential equations satisfied by the Appell hypergeometric

_ L.
FQ(BI"’/@Q 2761”62

function
261, 265 o ZQ)

can be written as Pfaffian system for the vector-valued function

F=(F, 0.,F, 0.,F, 0.,0.,F)"
with 0,, = z; 0,,. The Pfaffian system associated with (2.5) is the rank-four system

dF = QF2) . F (2.20)
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where the connection matrix Q) is given in Equation (2.35). Next, we introduce
two copies of the rank-two Pfaffian system associated with the Gauss’ hypergeometric
function, i.e., for

Fao = (F(Ag), 0, F(A))!

where

Br+ B2 — 3, Ba
514—%

for i = 1,2. The two systems have the form

f(Az)_2F1<

Az>

dfa, = Q@™ fa (2.21)

7

with connection matrices given in Equation (2.36). The outer tensor product of the
two rank-two Pfaffian systems is constructed by introducing H = fx, K fa,, i.e.,

H = (f(A1) F(A2), 00, (A1) F(A2). F(A1) 62, f(A2), 64, (Ar) On, S (A2))"
The associated Pfaffian system is the rank-four system
dH = Q(zF®:F)  f (2.22)
with the connection form

Qhe:n) — =M Ky 1R Q™ (2.23)

1

The connection matrix is given in Equation (2.37). Conversely, the quadric property
implies that the Pfaffian system for Appell’s hypergeometric system can be decom-
posed as outer tensor product of two rank-two Fuchsian systems. In particular, we
have the following proposition:

PROPOSITION 2.4. The connection form of Appell’s hypergeometric system sat-

isfying the quadric condition decomposes as

(2F1) (2F1) -1 F. -1
Q/\1 DI+ 18 QAQ =9 Q( 5 (21,22)=T(A1,A2) gra-dg (224)

where the gauge transformation g is given in Equation (2.38) and the transformation
T is given by

A1As
21 = m ;
1 2
2.2
(A1) (A3 - 1) 229
Z9 = — .
(A + Ay)?

Proof. By direct computation using the given matrices. O

The theorem proves that two Pfaffian systems are equivalent. However, even
more is true: one can explicitly relate certain holomorphic solutions of the two Pfaffian
systems directly. To such extent, Vidunas derived an explicit formula in [31, Eq. (35)].
Here, we present his formula using the variables A, B of Corollary 2.2 and correct a
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typographic error. As mentioned in the introduction, Equation (2.26) is Bailey’s
famous reduction formula for the Appell series Fy [4, Eq. (1.1)] when combined with
another result of Bailey’s relating the Appell series Fy and Fy [3, Eq. (3.1)].

THEOREM 2.5 (Multivariate Clausen Identity). For Re(f1),Re(f2) > 0, |z1]| +
|z2] < 1, |A3| < 1, and |1 — A3| < 1, Appell’s hypergeometric series factors into two
hypergeometric functions according to

21, ZQ)

F2<ﬂ1+52 %% B, B2
261a 262
2B1+262—1 61 + ﬁ? - 17 52
= (A1 +A9) 2F1< B+ %2

1—A§>

( AN, (A%—1)<A5—1)>.

Af) (2.26)

1
><2F1</81+6225;2’ Ba

with

21,722) = 5
(21,22) (A1 + As)? (A1 + As)?

Proof. The identity (2.26) is equivalent to

1 r Bi+Ba— 55 Bi, Ba2| 1 1_§
A51+B2—% 2 251, 252 A’ A

1
— 22514’252*1 (Al A2)Bl+ﬁ27% 2Fl<ﬁl +62 -9 52

51—&-%
1—A3)7

(1. B (1 1z
(21,22) - (Aal A> ) (AaB) - <Z1’ 2 )
and

(0 22) = (( 4NN (AR -1 (A21)>7 (4. B) = ((A1+A2) (Ar Az + 1) )

A%) (2.27)

1
szl(ﬂl +5§5; 55 B2

where

A +A2)277 (Al +A2)2 4N 1A\ ’ 4N 1A\

We already know that both sides of Equation (2.27) satisfy the same system of linear
differential equations of rank four. In fact, the functions
1- Ag)

_1

A% and 2F1<51+52 35 B2
282

satisfy the same ordinary differential equation but have a different behavior at the

ramification points. Expanding both sides of Equation (2.27) in terms of ¢; = A; and

€2 = 1 — Ag and showing agreement of the first terms proves equality. O

B+ B2 — %, Be
F
21( Byt 1
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REMARK 5. Note that the right hand side of Equation (2.26) is up to a renormal-
ization factor a special solution to the (outer) tensor product of two copies of solutions
to the same ordinary differential equation as the hypergeometric function

/814’527%752 A2> )

b1+ %
The aforementioned factor is precisely the entry g7 of the gauge transformation g
from Proposition 2.4. In fact, the entry g1; together with the coordinate transforma-
tion (2.25) completely determines the entire matrix g. This shows that Equation (2.26)
implies Equation (2.24).

fAi) =2Fy (
REMARK 6. Different branches for the renormalization factor on the right hand
side of Equation (2.26) are connected by duality transformations on the moduli Ay
and A to the particular branch chosen in Theorem 2.5. If we write
261, 282
4 _ l, _1
_ et p ( Bi+Ba—1, B A%> 2F1<ﬁ1 + B2 — 1L, By
instead of Equation (2.26), then the dependence of (A, B), (z1,22) on A; and Ay and
the matching branches for g;; = h?#1+202=1 are given in Table 1.

F2<51 + B2 — %; B, Be . 22>
(2.28)
A2
Bt} 2% | A2> /

‘ duality transformation ‘ A ‘ B H 21 ‘ 2o H h ‘
+1 +1 (A14+A)? (Ay Ap41)2 4 A7 A (A3-1)(A%-1)
(A1, Ag) = (AT, £A5) i As ThA Mtha? | T (arAa® A+ 4y
(A1, Ag) = (FAL, £A2) C(M=A9)® | (A As—1)? __4AAA, _(af-1)(a3-1) A+ A
(A, B) — (1 —A1-— B) 4A1A2 AN A, (Ar—A2)? (A1—A2)? 1 2
(A1, Ag) = (ATH, AFY) (A1Ap+1)? (A1+4,)? 4010, (A-n(az-1) A
(A,B) — (B, A) 4817, 4017, (A1A2+1)2 (A1A2+1)2 1432
(A Ao) = (FATL 2AFY) | (a1 | a-ae)? || aagas (A0 |l _p A +1
(A,B)—~ (1—-B,1—A) 4h1 A, AA17, (MiA2—1)? (A1Ao—1)? 152

Table 1: Relation between variables and moduli

REMARK 7. The left hand side of Equation (2.26) has an obvious symmetry given
by interchanging (21, 22) — (22, 21) and simultaneously swapping (81, 52) — (B2, 51)-
From the integral representation in Equation (2.7) it is clear that this is equivalent to
interchanging the roles of the variables x and w. In terms of the coordinates (A, B)
used in Equation 2.27 and (A1, Ay), respectively, interchanging variables amounts to
symmetry transformations

A A-1 1- Ay 14A,
AB) s (-2 270 A A - L (22
(4, )H<AB’AB>’ (As, 2)H( 1+A2’1A1> (229)

Invariance of the right hand side of Equation (2.26) under transformation (2.29) using

LAy LR AR g g\ PR
1+Ay  1-Ay 2 !
)2/31+2/32—1

- (A1 A,
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recovers the following two quadratic identities for the Gauss’ hypergeometric function
that are due to Kummer [19, Eq. (41) and (51)]:

. Bi+B2— 1L, B <1A2)2
211 1+ A,

514—%

(14 Ay e P Br+B2— 1%, B 1 A2
- 9 241 251 — 42 )
(2.30)
2 Br+B2— 3, B 1 (1A ?
o 2532 1-A

_1
—(1 _A1)2ﬂ1+2/3212F1<ﬂ1 +B2—3, b A%) .

B2 + %
REMARK 8. The generalized univariate hypergeometric function 3F5 satisfies the
so-called Clausen Identity
Zl>

3F2<51+ﬂ2—§751,51—52+§

2ﬁ1751+%
2.31
Buy B 1 B By 1] 2 231)
—F | 2 2 12 2 T,
51-1-;

if and only if its parameters satisfy the quadric property in Equation (2.19). Using

the quadratic transformation formula [1, Eq. (15.3.23)], the Clausen identity (2.31)
simplifies to
Zl>

! ) (2.32)
—(1— A2)2r425-1 ) B+ B2 — 3, B2 A2
B+ %

with z; = —4A%/(1 — A?)2. Note that the same relation between z; and A; as well as
the renormalization factor can be obtained by setting Ao = A; and 2o = 1 in Table 1
_ 1.
FQ(ﬁl + B2 — 33 B1, B2

(fourth line), i.e.,
21,1
261, 282 ' )

1
— (1 A22E21, < Pr+ B2~ 3, P2

51+%
_ 1
X2F1<ﬂ1+522ﬂ2 2 52 ].—A%) )

Therefore, using Equation (2.14) we see that the two restrictions

ﬁQ(a; 61’ﬁ2 21, 1) and FQ(Q; 61’ﬁ2 2’1,1> (234)
V1,72 V1,72

satisfy the analogous factorization formulas but different boundary conditions. By
analogy, we call the (unrestricted) Equation (2.26) the Multivariate Clausen Identity.

7 Bi+B2—3%, b1, B1— B2+ 3
342 1
2ﬁl7ﬂl+§

A%) (2.33)
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3. Superelliptic curves and their periods. In this section we discuss some
basic facts about superelliptic curves and their periods. Superelliptic curves and
Jacobians of curves with superelliptic components have been studied extensively from
an arithmetic point of view (cf. [15, 6, 7]). However, our main focus will be on the
computation of periods of the first kind for such superelliptic curves.

3.1. A generalization of the Legendre normal form. Every elliptic curve,
i.e., smooth projective algebraic curve of genus one, can be written in Legendre normal
form as

v=z(x—-1)(z -\ (3.1)
with A ¢ {0,1, 00}.

DEFINITION 3.1. For four positive integers r, s,p,q € N with 2s—p > 0, p+q—s >
0, g—r+s >0 let SE(/\)?;,,,] be the plane algebraic curve given in projective coordinates
[X:Y:Z]eP? by

SEN)?2 o YR Z3sT2ropta — XptaTs (X )2 TP (X - \Z)2P (3.2)

5,P,q

REMARK 9. Unless necessary we will not distinguish between the plane algebraic
curve in Equation (3.2) and the affine curve given by

SEN? 0 y* =gl (= 1)27P (z — NP, (3.3)

5,P,q

To generalize the Legendre normal form in Equation (3.1) we choose three positive
integers r,p,q¢ € N in the range

0<p,q<2r, —r<p—q<r, r<p+4+q<3r, (3.4)
such that the following divisibility constraints hold
(p,2r)=1, (p+g-mr2r)=1, (p—q+mr2r)=1. (3.5)

We will now construct a smooth irreducible curve C' over C(\) associated with the
curve SE(M)2"

TP,q°

REMARK 10. For r = 1 it follows p = ¢ = 1 and Equation (3.3) is the classical
Legendre normal form of an elliptic curve.

REMARK 11. The inequalities and divisibility constraints simplify considerably
in two special cases: in the case ¢ = r, all inequalities and divisibility constraints
simplify to 0 < p < 2r with (p,2r) = 1. Similarly, in the case ¢ = 3r — 2p, all
inequalities and divisibility constraints simplify to 2r < 3p < 4r with (3p,2r) = 1.

LEMMA 3.2. The minimal resolution of the curve SE()\),%”;)’Q s a smooth irre-
ducible curve of genus 2r — 1 if the integers (r,p,q) satisfy the inequalities (3.4), the
divisibility constraints (3.5), and A € C\{0, 1, 0c}.

Proof. The reduced discriminant of Equation (3.3) vanishes for A € {0,1,00}. We
consider the projective curve in P? given by

SEN?2 o Y ZrPte = XPraTr (X 7)EP (X N Z)2P (3.6)

™P,q °
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Given A € C\{0,1, 00}, a straightforward calculation shows that (3.6) is smooth if
r =1 which in turn implies p = ¢ = 1, i.e., the curve is the classical Legendre form of
a smooth elliptic curve. In this case, the curve (3.6) is the desired smooth projective
model.

Let us now assume that r > 1. The curve (3.6) is singular and has at most the
four isolated singular points

[X:Y:Z]e{[0:0:1],[1:0:1],[>\:0:1},[0:1:0}}, (3.7)
and is smooth everywhere else. The homogeneous polynomial
F(X,Y,Z) ==Y 7Pt XPHa—" (X — Z)2 P (X —\Z)*P (3.8)

is irreducible. We first observe that the only point at infinity is [X : Y : Z] =[0:1: 0],
and it is a singular point if » — p 4+ ¢ > 1. Setting Y = 1 in Equation (3.8) we can
read off the multiplicity » — p + ¢ of SE()\)ﬁg,yq at [0:1:0]. A generic line through

the point [0:1: 0] is of the from X/ = Z/k and Y = 1. Thus, any point [p§ : 1 : pk]
on this line also lies on the curve if p is a root of the equation

0= _pr—p-i-q KTTPTC p3r—p+q §p+q—r (5 _ K)Qr—p (5 _ )\K)Qr—p .

For the equation to have additional roots, £ must vanish and the line [p€ : 1 : 0]
then has 3r — p + ¢ of its intersections coincident with the curve in [0 : 1 : 0], i.e.,
it is a nodal tangent. Moreover, because of the coefficient being " P14, all of the
nodal tangents coincide. Any irreducible plane curve can be transformed, by a finite
succession of standard quadratic transformations, into a curve whose multiple points
are all ordinary, i.e., all nodal tangents are distinct at these points. Blowing-up then
resolves the singularity into a set of simple points on the transform corresponding to
directions of the nodal tangents. Because of the relation

Br—p+qr—p+q)=Q2rr—p+q) =Q2r,—r—p+q)=Q2rp—q+r)=1

there is only one point above infinity on the blow-up. In other words, the point
over infinity is totally ramified. We then proceed in the same way for the remaining
singular points. The points in Equation (3.7) are found to have multiplicities

pHq—r, 2r—p, 2r—pr—p+q. (3.9)

Requiring total ramification over each singular point leads to the divisibility con-
straints (3.5). We thus obtain a smooth irreducible model. In particular, the degree
2r map ¢ : SE(N)Z, , — P! given by ¢ : [X : Y : Z] = [X : Z] is totally ramified at
the singular points. The Riemann-Hurwitz formula implies

2l—g)=22r)(1 —-0)—4(2r—1). (3.10)
Hence, we find g =2r — 1. O

To understand the resolution process from Lemma 3.2 from the point of local
normalization, we compute the Puiseux expansions for the defining polynomial f in
Equation (3.8) in terms of a local parameter zg, 21, 2, 200 € C around each singular
point given in Equation (3.7). The leading terms that determine the analytic equiv-
alence class of each singularity are listed in Table 2 where yo(2%"), y1(2%7), yx(2?"),

Too(2%") are — by construction — convergent power series in z27.
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X:Y:2 0:0:1] [1:0:1) A:0:1] 0:1:0]
multiplicity ptqg-—r 2r—p 2r—p r—p+q
Li“_‘é::l;;\ @2rp+q-—r) (2r,2r —p) (2r,2r —p) @Br—p+qr—p+q
- praper X1 Xoarg X = 274 (14 (2)
Ci;‘::‘sn Y= N (L) | Y = (- N () | Y= 00— 0) T T ) | Y=t
Z=1 Z=1 z=1 Z = gpha

Table 2: Puiseux expansions about singular points

We observe that each singularity is locally analytically equivalent to a neigh-
borhood of the origin for the curve 2 — y® = 0 in C? where a, b are relatively prime
integers. By [8, Prop. 1, p. 224] such a singularity is topologically equivalent to a cone
over a torus knot of type (a,b). The resolution graph is obtained using a Theorem of
Enriques and Chisini [8, Thm. 12, p. 516] by running an Euclidean division algorithm
on the two integers a,b. The corresponding blow-ups are described in [8, Example
2, p. 471] in detail. It is then immediate from Kummer theory that the degree 2r
map ¢ : SE(A)Z . — P! given by ¢ : [X : Y : Z] = [X : Z] is totally ramified at
the singular points: over the points [0 : 1], [1 : 0], [1 : 1], and [A : 1], the extension
of (fraction fields of) local rings is simply adjoining a 2rth root of an element whose
order of vanishing is relatively prime to 2r if the divisibility constraints (3.5) hold.

Next we prove that the involution automorphism on the curve SE(X)?",  given

by

v (z,y) = (2, —y) (3.11)
lifts to its minimal resolution constructed in Lemma 3.2.

LEMMA 3.3. The involution automorphism (3.11) lifts to the minimal resolution

of the curve SE(N)?Z, . constructed in Lemma 3.2.

Proof. We have to prove that we can lift the involution in Equation (3.11) to
local coordinates on the normalization of neighborhoods of the singular points. We
start by constructing the local normalization of a neighborhood of the singular point
(X :Y:Z]=[0:0:1]or (x,y) = (0,0). For e > 0 and § > 0 we consider the
neighborhoods

Ues i={(0,9) € €| |o] <6, Iyl < & f(z.9,1) =0} ,
where the defining polynomial f was given in Equation (3.8) and

Bs = {zo eC

|Z()| < 5%} .

By the local normalization theorem [8, Thm. 1], there is and ¢y > 0 such that for each
0 < € < € there is a § > 0 such that the mapping 7y : Bs — C? with

WO(ZO) _ (Zgr’ )\QT*P Z(I)H*qfr (1 + yo(zgr))
is holomorphic and onto U, ;5. Moreover, the restriction
7o Bs\{0} — U, s\{0}

is biholomorphic with 7y 1(0) = 0. Note that the action zy — —zy on Bj after
projection matches the involution in Equation (3.11) since p + ¢ — r is odd which
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follows from the condition (p 4+ ¢ — r,2r) = 1. Similarly, we proceed for the singular
points at (x,y) = (1,0) and (z,y) = (),0).
For the singular point [X : Y : Z] = [0: 1 : 0], we note that the involution on the

curve SE(X)?", , in projective coordinates is given by

[ XY 2= [-X Y —Z]. (3.12)

The local normalization theorem then provides a local coordinate z., on the normal-
ization and the biholomorphic mapping

X Z
Too(Z00) = (zggp+q (14 200 (2%7), zgé"_p+‘1) =(=,2).
Y'Y
The action z,, — —2zs after projection matches the involution automorphism in
Equation (3.12) since r — p+ ¢ and 3r — p + ¢ are odd. O

Note that Lemma 3.3 does not guarantee that the action of the bigger group
Zor : (,y) — (2, pary) lifts to the minimal resolution for general integers p, ¢, r with
27

par = exp (5;+) as well. However, in the special case ¢ = 7 we can give lift the action

and give a precise description on the resolution curve.

LEMMA 3.4. The action Zo, : [X 1Y : Z] — [X : pb.Y : Z] lifts to the minimal

resolution of the curve SE(N)Z, . constructed in Lemma 3.2.

Proof. Using ¢ = r and (p,2r) = 1, the local coordinates zp, z1, z), and zs
from the proof of Lemma 3.3, and the Puiseux expansions in Table 2, we obtain the
following actions on the local normalizations:

2r—1
Zo > pP2rzo Z1,Zx > Py 21,2

Zoo 7 P2rZco
X = X X o X X = (pr)" "X =pptX
Y = Y Y s ()Y =Y vy oy
Z = Z Z = Z Z = (p)"PZ=pr0Z

This proves that the actions on the local normalizations patch together to give a lift
of the action

(XY : Zl= [X:ph Y:Z]=[pFX:Y : p,l7].
a

REMARK 12. The result of Lemma 3.3 can also be understood from the point
of Galois theory: the involution is an element of the Galois group of the extension
of function fields, and the Galois group automatically has a well defined action on
the integral elements of the field, namely the coordinate ring of the smooth model of
SE(X)?, . The same applies to the result of Lemma 3.4.

DEFINITION 3.5. We call the smooth irreducible curve of genus 2r — 1 that is the
minimal resolution of the algebraic curve SE(/\)%Z?,q a superelliptic curve assuming
that the inequalities (3.4), the divisibility constraints (3.5), and A € C\{0, 1,00} are
satisfied.

REMARK 13. All statements derived so far will also be valid for the smooth
irreducible over C(\) associated with the affine curve of degree 3r + p — ¢ given by

SE(N)2" Yy =2 P (= 1)P (2 — NP (3.13)

rQr—pﬂT—q:
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The affine curve (3.13) is obtained from Equation (3.3) by sending (p, ¢) — (2r—p, 2r—
¢) which leaves the inequalities (3.4) and divisibility constraints (3.5) unchanged.

LEMMA 3.6. The affine curve SE(A?)?2, o, in Equation (53.13) is equivalent
to the affine curve
Y =% (2242 (1 - 2u) x4+ 1)7 (3.14)
with u = %. Moreover, the affine curves SE(\)z, . and SE(A3)Z, o, are
related by a rational transformation with
14+ Ay ’
AL = . 1
= () (315)
Proof. The affine curve
SE(A%)?",T%"fp,erq : 77%7 = 23T*P*q (CQ - 1)p (C? - A%)p (316)
is related to the affine curve in Equation (3.14) by the birational transformation
G 2 (1+Aq2)°
_ G _ - . 3.17
TN VT EEE YT TN (3.17)
2
In turn, the affine curve (3.14) is related to the affine curve
= GG = D (G =M G A (3
by the rational transformation
-1 - 2\ A
(G -1D (G —N) - (¢ ;)77101 I N (3.19)
Cl (17)\1) C12 (1—)\1)5"'?_? A —1
For p = r, the affine curve (3.18) coincides with SE(X1)?, .. Therefore, a rational
transformation between the affine curves SE(A)?%, . and SE(A3)Z 5, is given by
_ (@ -G —M) (1 - Ag)?
CQ - )
4G
3, P _ 4 2 342_ 4 (320)
o (D)ETE T (G - M) (L= AP ey
2 = 93+2—1 2
1

with A\ = (§£42)2. O

Fact 3.7. Forr = p = q = 1, the pencil of curves in Equation (3.14) is the
modular elliptic surface for I'g(4), and the pencil of curves in Equation (3.13) is the
modular elliptic surface for I'(2). Lemma 3.6 then describes the (invertible) action of
the translation by an order-two point, i.e., two-isogeny.

REMARK 14. Given the transformation (3.15) between the parameters, the re-
lation between the affine curves SE(A1)7", . and SE(A3)Z, ,, , is governed by the
following (8r — ¢, 4r — q)-correspondence in ({1, (2):

(=174 (G = 1) (G- M) (¢ - )T

= C%T 227"—(1 (CQ — 1)7" (CQ _A%)r (A2 _ 1)—87"+2q . (321)
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3.2. Periods for superelliptic curves. In this section we will compute all
integrals of the first kind for the curve C constructed in Lemma 3.2 explicitly. Recall
that in Lemma 3.2 we constructed the resolution ¢, : C; — SE()\1)2?" , of the plane

7,0,q
algebraic curve SE(\;)?", , with affine equation F(z,y) = 0 where

F(x,y) = —y* + 2Pt (2 = 1) P (z — NP, (3.22)
The affine coordinates z,y are rational functions on SE (Al)f,},q, and hence give rise
to rational functions on C7; when composed with ;. Likewise, their differentials dz
and dy are meromorphic differentials on C;. We have the following lemma:

LEMMA 3.8. The differential form dx/y is a holomorphic differential one-form
on C1.

Proof. We will first discuss the situation for all points in Equation (3.7) with
Z # 0. The form dx/y has poles, if at all, at the points of SE()\l)EZW with y = 0.
These are precisely the singular points. Let ¢ be the local coordinate on Cj in a
neighborhood of the point which is mapped onto any of the singular points by the
resolution ¢ : C; — SE()\l)EZqu. In terms of the local coordinate ¢ the resolution
is described by the two functions 2 = x(t) and y = y(t) given in Table 2, and the

differential form dz/y equals

de _ 2()dt (3.23)
y o oy(t)
Hence, the one-form has no pole iff the orders of these functions satisfy
(O(z o) —1) —O(yorpr) >0. (3.24)

For the point (x,y) = (0,0), Equation (3.24) is equivalent to 3r > p + ¢. For the
point (z,y) = (1,0) and (z,y) = (A,0), Equation (3.24) is equivalent to p > 0. The
inequalities are satisfied by assumption (3.4). To discuss the point at infinity, we
substitute = X/Z and y = Y/Z. In terms of the local coordinate ¢ the resolution is
described X = X(t), Y =1, and Z = Z(t), and we obtain the differential form

dX XdZ X(t) Z(t)

— = (X{t) - —=—~+ .
y vz — X0 =g )d
Hence, the one-form has no pole iff
(O(X ogpy) —1) >0 (3.25)

or r > p — ¢ which is satisfied by assumption (3.4). O

REMARK 15. Notice that at each smooth point of the algebraic curve SE(A\)?,
with affine equation F(z,y) = 0 of degree d = 3r — p 4+ ¢ we can compute its total

differential. We obtain

4y

P (3.26)

d
F,dx —2r yQT_l dy=0 = ar 2ry2r—2
Y
Because of the inequalities (3.4) we have 0 < 2r — 2 < d — 3. Equation (3.26) then

gives an equivalent form for the holomorphic one-form dx/y that already appeared in
the work of Riemann [29].
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We have proved that for the purpose of a period computation there will be no
danger from using the curve SE()\)%’;W and treating the points in Equation (3.7) as
formal symbols. However, for the multi-valued function y in Lemma 3.2 to be a well-
defined on SE ()\1)3;7(1, we have to introduce branch cuts: we choose as branch cuts
the line segments [e1, es] and [es, e4] where eq,...,e4 are the four branch points in
Equation (3.7). In the previous section, we also explained that the minimal resolution
C1 of SE(N)?", , which does not change the rank of the first homology. Therefore, a
basis of one-cycles for the curve Cy of genus 2r — 1 in Lemma 3.2 can be constructed
by using the curve SE(\;)7", , directly.

First we consider the case r = 1, i.e., the case of an elliptic curve. In this case
a basis of one-cycles is given by the so-called A- and B-cycle. The A-cycle a; is a
closed clockwise cycle around the line segment [eg, e3] (on one of the two y-sheets)
not cutting through the second branch cut. The B-cycle by is the closed cycle that
runs from the first to the second branch cut on the chosen y-sheet and returns on the
adjacent sheet — in this case the (—y)-sheet — in an orientation that gives the positive

intersection number a; o by = 1. The situation is depicted in Figure 1.

ay '

Fic. 1. A- and B-cycle on double-branched cover

For the superelliptic curve SE(/\1)724T,,7Q there are 2r choices for the y-sheet in
the above construction. Therefore, the construction leads to 2r — 1 A-cycles a; and
B-cycles bj for 1 <4,j < 2r — 1 with intersection numbers

aioaj:O, biobj:(), ambj:&i,jféi,jﬂ.

Similar to the elliptic-curve case, there are 2r — 1 and not 2r one-cycles, as the last
choice gives a cycle that is already a linear combination of the cycles already con-
structed. We then have the following lemma computing the periods of the holomor-
phic one-form dz/y for the resolution C; and Cy of SE(A)?, and SE(A)¥, 0.,
respectively:

LEMMA 3.9. Setting f1 = q/(2r) and P2 = p/(2r), we obtain for the periods of
dx/y on Cy

d
N =P 5
— oW L(5 =51 —B2) T(B2) Az=h P 3 —B1—B2,1- 5 A\
o (3 -5) §-h ’
i (3.27)
FipaN =P =
[(Bs)*

(51 + B2 — %, B2
202

1-2) .
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and on Cy
1

(k) 3\ = ok yD(Br+ 82— 3)T(1— Ba) I Br+ B2 — 3, B2 N

fr2r p,2r— q( ) 2r (ﬁ1+7) )\%—ﬂl 241 ﬂ1+% )

0L i i D= B2)” (1= 02 (3.28)
fr2r p.2r— q(A)_( 1) 02 (27262)

3 _ _ _
><2F1(2 612_52221 f2 1—)\)

with C3 = (par — 1)/ ph,. (=1)% = p,., par = exp () fork=1,....2r — 1.

Proof. First, we note that Equations (3.28) can be obtained from Equations (3.27)
by sending (S1,32) — (1 — 1,1 — B2). Therefore, we only have to prove Equa-
tions (3.27). We choose A € R with 0 < A < 1, and e; = 0, e2 = A\, e3 = 1, and
e4 = 00. For x = 01 + 109 with 0 < 1 < 1, we have for y in SE()\) o

I ( ):1, 1 ¥ =0, li ( 2’“):i1.
;lim sig (Re(y™") s Im(y™) =0, lim sig{Im(y™)

We then define a multi-valued function y on a 2r-fold branched domain by writing
y= pB1tB2— (1 — ) 1-B2 (A — $)17/32 )

We reduce the integration over the A-cycle to an integration along the branch cut and
back after inserting the correct phase. We obtain

dz _2mi A dx
(1 —e 2 ) T
a Y o o HBme (1 —g)1-B2 (N —x)1-P2

(1 —e 227‘:.) 1 dF
- / ; ! L : (3.29)
AB1—3 o FP1th2—3 (1 = XE)1=B2 (1 — &)1—F2
).

If a; is replaced by ag, y must be replaced by p’g; 'y with pa, = exp % to account
for the change in y-sheet.

For z = 61 + 10 with 1 < 01 < A and 02 &~ 0, we have for y in SE(\ )rpq that
(—1)2"~PRe(y*") > 0. We recall that the B-cycle b; was chosen as the closed cycle
that runs from the first to the second branch cut on the chosen y-sheet and returns

on the adjacent y-sheet as shown in Figure 1. This implies that

1 ! d
dx <1— ) / z . (3.30)
o Y par) Sy aPrtPai (1 —x)l=B2 (A — z)l-5e

Setting x = 1 — (1 — A\)Z, we obtain

Mw\

) (1-e%) 1@ -5 - 8) () 2P Pl p
P L(3—5) 2=

ygd—x—e—"zu /32>( - 27)/0 =
- 1=N2% f 1-(1- )\)i.)51+[1'2*% F1B2 (1 — 7)1-F2 (3.31)

=™ P2 (1—6—22“3' L(B2)* N F1<’61+5225;%’62 1—,\) .

) I'(262) (1 -
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If by is replaced by by, y must be replaced by pgf y with po, = exp % to account
for the change in y-sheet.

Notice that our choice of branch cuts between e¢; = 0 and e5 = XA and e3 = 1
and ey = oo, respectively, is compatible with the definition in Section 2 that the
complex continuation of the Gauss’ hypergeometric function has a branch cut from 1
to oo on the real A-axis. Therefore, all formulas remain consistent if we allow A to be
complex. 0

2r  we have

REMARK 16. In the above proof we have used that on SE(MN)77,

dx (k) A dx
’pﬁq( ) by Yy 2 1 Yy
I'(52)? r (51 + 82— 1, B
(282) (1 — A)1—28: 271 28,
and on SE()\)?". we have

r,2r—p,2r—q
f(’f) ()\)_yg di_c(k) /'/\da:
r,2r—p,2r—q o y 2r 0o Y
B k) DB+ B2 — ) T(1— Ba) Br+ B2 — 3, Ba
= C2r 1 1_ 31 1
DB +3) A7 i+

(3.32)

— (_1)82 o)
(-1 Cf

1-4).

(3.33)
A> |

REMARK 17. Whenever k = 1, i.e., we are looking at the principal branch, we
will drop the superscript and write f.., 4(A), £/, ,(A), etc.

REMARK 18. For p = ¢ =r =k = 1, the above lemma recovers the well-known
period relations for an elliptic curve

d 114 d 11
Zoomr( 22|0), ¢ Z=2miR( 22
1 b1 y 1

1-— )\) . (3.34)

ap

REMARK 19. We introduce a 7-parameter as ratio of periods over the A- and
B-cycle, i.e.,

/ A (k)7
o drea® _ frpaY) (3.35)

~ frpa) ® )

for k = 1,...,2r — 1. Note that for = 1 and A = A? the above equation is the
well-known relation that express 7 as ratio of complete elliptic integrals in A, i.e.,

2K (A)

2m T = KA

:41nA—81n2+A2+£A4+0(A6), (3.36)

and, by inversion, A as ratio of Jacobi theta-function in ¢ = exp (2mit), i.e.,

A= (gzg)Q =4qi (1 —4q7 +14q+0(q%)) . (3.37)

In physics, this is also known as construction of the mirror map [23].
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4. Generalized Kummer surfaces. In this section, we will construct a gener-
alized Kummer variety as minimal nonsingular model of a product-quotient surface
with only rational double points from a pair of two superelliptic curves, determine its
Hodge diamond, and the explicit defining equations for various superelliptic fibrations
on it.

As we mentioned in the introduction, Ernst Kummer was the first to study irre-
ducible nodal surfaces of degree four in P? with a maximal possible number of sixteen
double points [21]. Each such surface is the quotient of a principally polarized Abelian
surface T — the Jacobian Jac(C) of a smooth hyperelliptic curve C' of genus two —
by an involution automorphism. The involution has sixteen fixed points, namely the
sixteen two-torsion points of the Jacobian. These, it turns out, are exactly the sixteen
singular points on the Kummer surface. Resolving these sixteen rational double point
singularities gives a K3 surface with sixteen disjoint rational curves.

Kummer surfaces have a rich symmetry, the so-called 16¢-configuration [17].
There are two sets of sixteen (—2)-curves® which we will label {Z; ;} and {o; ;} with
i, € {1,...,4} such that Z; ; and oy ; intersect if and only if ¢ = k and j = [ but not
both. The 16 curves {Z; ;} are the exceptional divisors corresponding to blow-up of
the 16 two-torsion points of the Jacobian, while {c; ;} arise from embedding C' into
Jac(C) as symmetric theta divisors (cf. [26]). Using curves in the 16g-configuration,
one can define various elliptic fibrations on the Kummer surface, since all irreducible
components of a reducible fiber in an elliptic fibration are (—2)-curves [18].

If we specialize to the case where the Abelian surface T'= F; x Ej is the product
of two non-isogenous elliptic curves, we obtain from the minimal nonsingular model
of the quotient of T' by the involution automorphism a K3 surface of Picard-rank 18.
Now, there is a configuration of twenty-four (—2)-curves, called the double Kummer
pencil. It consists of the 16 aforementioned exceptional curves {E; ;}, plus 8 curves
obtained as the images of {S; x Ea} or {E; x S%}. Here, {S;} and {S}} denote the
two-torsion points on E7 and Fs, respectively. Oguiso classified all eleven inequiva-
lent elliptic fibrations arising on such K3 surfaces [27]. The simplest of such elliptic
fibrations are the ones induced by the projection of 7" onto its first or second factor
and are called the first or second Kummer pencil.

4.1. Generalized Kummer surfaces. In Lemma 3.2 we constructed two
smooth irreducible curves C'; and C5 of genus 2r — 1 as minimal resolutions of the

two curves SE(M )2, , and SE(X2)2, 5, where
SEMDY, g0 ni" =T (G- DT (G- AT (4.1)
SE(Ag)g,gr—p,Qr—q : n%r = Sr_p_q (CQ - 1)[1 (C? - A%)p :
We now consider the action of the group Go = Zy on the product SE(\)Z , x
SE(X2)?, 0,4 given by the involution automorphism
v (G, Gyme) = (G =, Gy —12) - (4.2)

Using Lemma 3.3 on both factors, it follows that the action (4.2) lifts to the product
surface T' = C7 x Cy. In the special case ¢ = r, we will also consider the action of the
group G = Zg, on SE(M\)Z, . x SE(X\2)?,, _, . generated by

rp,r
(Ch i, <27 772) = (Clv pgrnlv §2a /J';rpn?) . (43)

5A (—2)-curve is a smooth rational curve whose self-intersection number is -2.
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Using Lemma 3.4 on both factors, it follows that the action (4.3) lifts to the product
surface T = C; x Cy as well. The action of Gy (and G in the special case ¢ = r)
on T is diagonal, but not free. The group Gy (and G in the special case ¢ = r) has
16 fixed points that are obtained by combining the pre-images of the singular points
on SE(A\)?,  and SE(X2)2, 0, , in Equation (3.7). We will now consider the
product-quotient surface Vy = T/Gy (and V = T/G in the special case ¢ = r). The
singularities of Vj and V are by construction finite cyclic quotient singularities, which
are rational singularities. We have the following lemma:

LEMMA 4.1. The 16 cyclic quotient singularities on Vi are ordinary double points.
Among the 16 cyclic quotient singularities on V are 8 rational double points of type
As._1 and 8 cyclic quotient singularities of L‘ype —(1,1).

Proof. Consider a singular point on either V; or V. Then, a neighborhood of the
singular point is equivalent to the quotient of C? by the action of a linear diagonal
automorphism with eigenvalues {exp (2%¢), exp(Z”Tib)} with (a,n) = (b,n) = 1 and
n =2rorn =2if pis on V or Vy, respectively. In the case of V{, the proof of
Lemma 3.3 shows that the action of Gy on the local coordinates of the normalization
of SE(A\)?, , is given by

20, 215 25 Zoo FF =20, =21, —ZX, —Zoo - (4.4)

As pointed out in Remark 13, the second affine model SE(X\2)7%, _, 5., is obtained
by sending (p,q) — (2r — p,2r — q). It is easy to check that action of Gy on the
local coordinates of the normalization of SE()\Q)T 9r—p,2r—q 15 the same as the one in
Equation (4.4). Therefore, we have only rational double points of type A; on V.
In the case of V, the proof of Lemma 3.4 shows that the action of G = Zs, on
SE(M)?F, . given by
(X:Y: Z|= [ X:phY:Z]=[p XY : pl 7], (4.5)
can be lifted to an action on its normalization. In the local coordinates it is given by

2r—1 —1 2r—1 —1
20, 21, x5 Zoo FF P2r205 Por 21 = Pap 215 o AN = Pap Zxs P2rZoco - (4.6)

The second affine model SE()\Q)T 2r—p,p 18 Obtained by sending p — 2r —p, but at the
same time we are also considering the lift of the different action

(XY Z] = [X 2y, 2 Z) = [05, X Y p, 7] (4.7)

because the actions in Equations (4.5) and (4.7) combine to give the action (4.3).
One then checks that action of G on the local coordinates of the normalization of
SE(X2)?%,_, p is the same as the one in Equation (4.6). It follows that a neighborhood
of each smgular point is equivalent to the quotient of C? by the action of a linear
diagonal automorphism with eigenvalues {exp (%5:¢), exp (2;“’)} with a,b € {—1,1}.
If a # b the singularity is a rational double point of type As,._1. O

We will now consider the minimal resolution Sy — V) of the rational singularities
of the product-quotient surface Vy = (Cy x C3)/Go where C; and C5 are the smooth
irreducible curves of genus 2r—1 and the diagonal action with fixed points of the group
Gy = Zs. In the special case ¢ = r, we will also consider the minimal resolution S — V'
of the rational singularities of the product-quotient surface V= (Cy x Cs)/G where
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the diagonal action with fixed points of the group G = Zs,. is given by Equation (4.3).

REMARK 20. More details on product-quotient surfaces and a summary on how
cyclic quotient singularities can be resolved by so-called Hirzebruch-Jung strings can
be found in [5, Sec. 2].

Following [5, Remark 2.5.(2)] we denote by Ky, the divisor class of the canonical
Weil divisor on the normal surface corresponding to the inclusion of the smooth locus
of V. The intersection product for Weil divisors on a normal surface generally takes
values in Q. We obtain for the self-intersection

8(g(C1) —1) (9(C2) — 1)

= T — 2. .
Gl =16(r—1) (4.8)

2 _
KVO_

We have the following lemma:
LEMMA 4.2. The surface Sy has the invariants:
K3 =16(r—1)* e(Sy) =24+8(r—1)7

X(Os,) =2+2(r—1)%, 7(Sp) = —16. (4.9)

Proof. The singular surface Vj has only rational double point singularities. There-
fore, K¢, is an integer and agrees with Kg [28]. Using [5, Cor. 2.7] it follows that

Kz 3
Sp)=—+-k
() = 5" +3
where k = 16 is the number of ordinary double points. The holomorphic Euler char-
acteristic x(Qg,) is then obtained by Noether’s formula. The signature is computed
by the Thom-Hirzebruch signature index

K_%’O — 26(50)

=—-k=-16.
3

7(So) =

O

REMARK 21. The same computation cannot be used to obtain the self-
intersection of the canonical divisor on the surface S as not all of the singularities
of the product-quotient surface V' are rational double point singularities. In fact, we
have that

8(9(C1) —1)(g9(C2) 1) _16(r—1)?

K2 = = 4.1
\% |G0| r ( O)

is an integer only for r =1 if r is odd.
We have the following lemma:
LEMMA 4.3. It follows that
Fl(So):ﬂl(%), 7T1(S):7T1(V). (4.11)

In particular, the surfaces So and S have irreqularities q(So) = 4(r — 1) and q(S) =0,
respectively.
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Proof. Since the minimal resolution Sy — Vj) and S — V of the singularities of Vj
and V, respectively, replaces each singular point by a tree of smooth rational curves,
the claim about the fundamental group then follows by van Kampen’s theorem. Notice
that by construction we have C;/G = C3/G = P! in the special case ¢ = r. By [11,
Prop. 3.15] it follows that the surface S falls into the D-case, hence g(S) = 0.

Let us now compute the irregularity ¢(Sp). We obtained Sy from the singular
quotient variety Vo = T/Gy by blowing up 16 ordinary double point singularities
where T = Cy x Cy and the action of Gy was given in Equation (4.2) and could
be lifted to T. Alternatively, we can blow up the 16 fixed points of Gy on T first
to construct a surface T whose projection 7 onto T/GO is Sp. The latter point of
view makes it easier to construct a rational basis of the first homology of Sy as the
dimension of the first homology does not change during the process of blowing-up. We
denote the two bases for the first homology of the singular plane curves SE(\;)2"

P,q
and SE(X2)?, 9, Tespectively, constructed in Section 3.2 by
2r—1
(a(-k), b(-k)) for k=1and k = 2.
K 7 Jig=1

These cycles lift to 49 = 4(2r — 1) non-trivial one-cycles (’ym)iﬁrfl) on T. The
involution (4.2) identifies the non-trivial one-cycles

agl) x oo and oo x al(?)

with the one-cycles

) 2
a; ., x 0o and oo Xa;,

respectively, for ¢ = 1,...,r — 1. An analogue statement holds for the B-cycles.
Moreover, the one-cycles

aﬁl) x oo and oo X aﬂz)

become homotopic to zero on Sy when the y-sheet is identified with the (—y)-sheet.
Therefore, the 4(r — 1) one-cycles obtained from the projections of the remaining
one-cycles

Ty (al(-l) X oo), Ty (oo X al(z)), T (bl(-l) X oo), Ty (oo X 552))
fori=1,...,r — 1 form a basis of the first homology of Sy over Q. O

We can now compute the Hodge-diamond of the surface Sp.

COROLLARY 4.4. The Hodge-diamond of the surface Sy is given by

1
q(So) q(So)
Pg(So) h1(So) Pg(So)
q(So) q(So)
1

with q(So) = 4(r — 1), pg(So) =1+ 2(r* — 1), and h»1(Sp) =20+ 2 (r? — 1).
Proof. Lemmas 4.2 and 4.3 imply that

2+2(T— 1)2 = X(OSU) =1- q(So) —|—pg(50) =1 —4(7’— 1) +pg(80) s
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hence p,(Sy) = 142 (r? —1). The Hodge index theorem implies that the intersection
form on HY'(Sy) N H2(Sp, R) has one positive eigenvalue and h'1(Sy) — 1 negative
eigenvalues. Therefore, we have

—16 = 7(Sp) = 2py(So) + 1 — (h"'(Sp) —1) =4 +2(r* = 1) — B"(So) ,

hence h''1(Sp) =20 +2(r? —1). O

DEFINITION 4.5. We call the minimal resolution p : Sg — Vi of the 16 ratio-
nal double point singularities on the product-quotient surface Vo = (Cy x C2)/Go a
generalized Kummer surface where Cv and Cs are the smooth irreducible curves of
genus 2r — 1 obtained as minimal resolution of the two singular curves SE()\l)Tp q
and SE(X2)}7,_por_q» and the diagonal action with fized points of Go = Zy is given
by Equation (4.2). We will always assume that the modular parameters Ay and Az
are generic, i.e., not equal to 0,1,00 and that the integers p,q,r satisfy the inequali-
ties (3.4) and divisibility constraints (3.5).

REMARK 22. If it is necessary we will also write SJ"7%(A1,)s) and
‘/})(T””Q)()\l7 A2). Note that Vo(r’p’q) = VO(T’QT_p’QT_q) and S(g””q’ = S(ST’ZT’"’*Q”“‘) since
mapping (p,q) — (2r — p,2r — q) amounts to interchanging the roles of (¢1,71, A1)
with ((2,m2,A2), but leaves the total space invariant.

In the proof of Lemma 4.3 we constructed a rational basis of 49 = 4(2r — 1)
non-trivial one-cycles ( m)4(2r D on T where T was obtained by blowing up the
16 fixed points on Cy x C, first such that Sy is obtained as projection 7 : T —
Sy = T/Gy. We now look at the second homology of Sp. We find (1) two-cycles
from the exceptional divisors generated during the blow-up constructing Sy, and (2)

4(2r—1)

two-cycles (0 n)m ey’ With m # n from the projection of two-cycles on T, ie.,

Om,n = Tx (me X 'Yn)-
Using Lemma 3.8 the two-form d¢; /n K d(z/n2 defines a holomorphic differential
two-form on T' = Cy x Cs, hence on T, that induces a unique holomorphic two-form

w on Sér’p’Q) such that
# w = // dﬁ %2 (4.12)
Om,n m X Vn 2

We have the following lemma:

LEMMA 4.6. The periods of w over the two-cycles oy, on S(()T’p’q)()\l,/\g) are
given by

l
FEIO = b o= 1800 a0,
e (s xa®)
F(’];lq)()\h)\Q)Q:# ((1) b(z)) _f(mq()‘l)f or—p2r—q(A2)
Tela, ~ X
s (4.13)

(’l;lq)(/\17)\2)3_# (b<1) <2)) f(vl;)ﬂlz( )f 27 —p, 27— 11()‘2)7
me (b)) Xay

l
A= Doy = IO T 00,
T Ok i
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where 1 <k, <r —1, and frpq(N) and f] , (\) were computed in Lemma 3.9. The
periods in Equations (4.13) satisfy the quadratic relation
EED(ALA2)1 FED (A, A2)a — FED (A, Ag)2 ERD(A, A2)3 =0

P9 P9 P9 P9

REMARK 23. Whenever k£ = 1, i.e., we are looking at the principal branch, we
will drop the superscript and write F.;, (A1), Fy., (A1), ete.

Proof. First, we observe that on Sé”” D the two-cycles oy, ,, are transcendental
only if they are among the 4(r — 1)? two-cycles used in Equations (4.13). The lemma
and Equations (4.13) then follow from Lemma 3.9. The quadratic period relation is
obvious from Equations (4.13). O

REMARK 24. As special functions in the moduli Ay, A2, the periods F, , ;(A1, A2);
for I = 1,...,4 satisfy (up to an overall renormalizing function in A1, A2) the rank-
four system described in Proposition 2.4 that is the (outer) tensor product of two
hypergeometric functions.

4.2. Fibration structures. Kuwata and Shioda determined explicit formulas
determining the elliptic parameter denoted by U and the elliptic fiber coordinates X, Y
for each inequivalent Jacobian elliptic fibration labeled (J;)11; in [22] on the Kummer
surface Sy that is the minimal nonsingular model for the quotient of a product of two
non-isogenous elliptic curves by the involution automorphism. That is, the Kummer
surface is a Jacobian elliptic K3 surface of Picard-rank 18 with function field

C(Sp) =C(U,X,Y)

with one relation between U, X, Y given in form of a Weierstrass equation. We checked
that for all of their 11 elliptic fibrations (J;)}L, we have

« dX d¢r _, d¢o
dUN — | = ==K == 4.14
" ( Y ) nmo N (4.14)

where 7 is a projection map analogous to the one used in the proof of Lemma 4.3, and
(C1,m) and (C2,7m2) are the variables used to define two elliptic curves in Legendre
normal form. In this article, we have replaced the elliptic curves in the classical
Kummer construction by the two superelliptic curves in Equations (4.1) of genus 2r—1.
For general values for r, p, g, we still consider {; and (s as independent variables, and
11 and 79 as variables dependent on 7,p,q and (; or (3, respectively, by means of
Equations (4.1). Thus, the definition for the functions U and X given in [22] then
cannot change as we vary , p, ¢ if we want to maintain the differential relation (4.14).
However, we can read off from [22, Table 1] that only for the cases (J;)L, are the
variables U, X contained in C((1,(2). Among those, only the five remaining cases
(3:)%_, have a two-torsion section contained in their Mordell-Weil group which is
necessary to determine a superelliptic fibration in the sense of Definition 3.5. We will
now derive the equations generalizing fibrations (J;)5_, on V5. As we will see, for
fibrations J5 and Js we have to specialize to the case ¢ = 3r — p (cf. Remark 11).
The construction for the generalized Kummer variety is slightly more compli-
cated than in the classical case: we started with two singular curves SE())2"  and

P,q

SE(X2)?,, ) orq with affine coordinates (C1,71) and (C2,72), respectively. We con-
structed their minimal resolutions C; and C5 with normalization maps ¥, and 19, re-

spectively, by Lemma 3.3 and lifted the involution automorphism (4.2) to T = C; x C.
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The coordinates {1, 71, (2, 72} when composed with 1, and 19 then are rational func-
tions on T, hence on the space T obtained by blowing up the fixed points of Go.
Therefore, expressions in these coordinates invariant under the involution descend to
rational functions on Sy, and the fibrations (J;)%_, become algebraic relations between
these rational functions.

REMARK 25. Note that we will be using the square roots A; and As of the
modular parameters A; and Ao for the two superelliptic curves in Equations (4.1).
We have already seen in Theorem 2.5 that this allows us to find rational relations to
the variables A, B that will appear as variables in Appell’s hypergeometric series F.

4.2.1. Generalization of fibration J;. Weset Y =nym and U = (1, X = (2
or U = (2, X = (3. We have the following lemma:

LEMMA 4.7. The functions U, X, Y or U,X,Y descend to rational functions on
the generalized Kummer variety Sénpﬂ) (A2, A3) satisfying the relation

y?r — yrta-r (U - 1)2”’1’ U - A%)z’”’p X3r—r—a (X -1)P (X — A%)p (4.15)
or the relation
Y =P (U - 1)P (U — A2)P XPTI7 (X — 1)27P (X — A2)2~P | (4.16)

respectively, and

w*(dU/\dX>:dC1®d<2, o (o p ) = % g 42 (4.17)
Y moon Y mo N2

REMARK 26. For r = p = ¢ = 1, Equations (4.15) and (4.16) coincide with
the Jacobian elliptic fibration J4 on a Kummer surface of two non-isogenous elliptic
curves established in [22]. Equations (4.15) and (4.16) then describe the so-called first
and second Kummer pencil.

4.2.2. Generalization of fibration J5. We define the fibration parameter

(G — ) (A3G+ (AF —1)¢ —ATA))

v= (A3¢ —G) (G + (AT —1)G—AT) (4.18)
and the coordinates
¥ — R (G —¢) (G —A9)
GG+ -1)¢G—-A)’
v _ RAT (1-A3) (U—-1)G (G —C)mn (4.10)

G (A3G1—G) (G + (AT —1) G — A
R=A} (A3—1) (U-1) (U-1+A7(1-A3)
x ((A3A3— A2~ AB)U +A3) .

We have the following lemma:
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LEMMA 4.8. The functions U, X, Y defined in Equations (4.22) and (4.23) de-
scend to rational functions on Sér’p’q:‘wﬂp) (A2, A3) satisfying the relation

VI = AT (1= AT (1= 497 U - ) X
(X+A2(A2 —1)(U-1) (AJA3—1)U — A +1)
x ((A2A3 - A —AHU+A3))” (4.20)
x (X + A7 ( A2—1) (U—-1) (U—=14AF(1-A3))
x (L=A}) AU + AT - A3))°
and

dX d¢y _, do
AdUN — | = =K —==. 4.21
( Y ) Uit 2 ( )

Proof. By direct computation using formulas (4.18) and (4.19). O

REMARK 27. For r = p = ¢ = 1, Equation (4.20) coincides with the Jaco-
bian elliptic fibration J5 on a Kummer surface of two non-isogenous elliptic curves
established in [22].

4.2.3. Generalization of fibration Js. We define the fibration parameter

U= % (4.22)
and the coordinates
¥ — G (G =A3) (G- C) (ARG - G)
G (G—1) 7 (4.23)
v _ (A3 =1) G (G —C) (A3G — &) mne . ’
G (G -1)?°

We have the following lemma:

LEMMA 4.9. The functions U, X, Y defined in Equations (4.22) and (4.23) de-
scend to rational functions on S(()T’p’q) (A2, A2) satisfying the relation

Y7 = (1-A3)27 gt x2rop

(4.24)
X (X =UU—=A) AU -1)" (X -UU-1)(A3U - A])"
and
AX\ _ dé g d6
o (n ) g e (125

Proof. By direct computation using formulas (4.22) and (4.23). O

REMARK 28. For r = p = ¢ = 1, Equation (4.24) coincides with the Jaco-
bian elliptic fibration Js on a Kummer surface of two non-isogenous elliptic curves
established in [22].
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4.2.4. Generalization of fibration J;. We define the fibration parameter

(G2 =A%) (G — C2)

V=G nRa-a) (4:26)
and the coordinates
o MM -GG (G- D (G - A9 (G - G6)
(G—1)3(A3¢ — ()3 ’ (4.27)
vy MU (G -G (G -A) (G -G mue '

(A3 —C)* (G2 —1)°
We have the following lemma:

LEMMA 4.10. The functions U, X,Y defined in Equations (4.26) and (4.27)
descend to rational functions on Sér’p’q)(A%, A3) satisfying the relation

YQT = Ag(riq) (A% — 1)2(p_r) UQP*Q*T (U _ I)Q(qu) Xerq,T

x (XZ—U(U—1)((A§A§+1)U—A?-A%)X (4.28)
2r—
+ATASUP (U - 1Y)
and
. (dU A dX) - Lrg (4.20)
Y m 72

Proof. By direct computation using formulas (4.26) and (4.27). O

REMARK 29. For r = p = ¢ = 1, Equation (4.28) coincides with the Jaco-
bian elliptic fibration J7 on a Kummer surface of two non-isogenous elliptic curves
established in [22].

4.2.5. Generalization of fibration Js. We define the fibration parameter

(¢ —¢2) (C2—A3)

v= MM -DGaG-1” (4.30)
and the coordinates
UM -D(M3-DU-1) -1 (BG-&)
B-DGG-1 .
MU (DD 1) (MG - mow

GG —1) (G- A
We have the following lemma:

LEMMA 4.11. The functions U, X,Y defined in Equations (4.30) and (4.31)
descend to rational functions on S((JT’p’q:&I_Qp)(A%,A%) satisfying the relation

y2r — A;l(pfr) (1- A%)Q(Z’*T) Uie—r) xp

x (X2-U ((2ATA3 - AT —A3+2)U-2) X (4.32)
2r—

~UP(U - 1) (ATASU - 1) (AT =) (A3 - U —1))""
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and

N dX d¢y d(s
dUN — | = ==K == . 4.33
" ( Y> mo M (4.33)

Proof. By direct computation using formulas (4.30) and (4.31). O

REMARK 30. For r = p = ¢ = 1, Equation (4.32) coincides with the Jaco-
bian elliptic fibration Jg on a Kummer surface of two non-isogenous elliptic curves
established in [22].

4.3. Fibrations by twists and base transformations. We now investigate
the generalizations of fibrations J4, Js, and J7 given by Equations (4.15), (4.16),
(4.24), and (4.28) in more detail. First, we will establish in what sense Equa-
tions (4.15), (4.16) and (4.28) define actual fibrations with fibers of genus 2r — 1
on the generalized Kummer variety Sj.

PROPOSITION 4.12. On Sér’p’q) there are two isotrivial fibrations f{ : Sy — C}
and f} : Sog — C% where Cf and C4 are smooth irreducible curves of genus r — 1 and
the fibers are isomorphic to the curves Cy and C1, respectively, of genus 2r — 1.

REMARK 31. As pointed out in [11, Rem. 2.5], in the context of isotrivial fibra-
tions — like the ones in Lemma 4.12 — a converse to Arakelov’s theorem does not need
to hold, i.e., we have

ngo # 8 (g(ﬁber) - 1) (g( base) — 1) =32r(r—1).

In fact a small deformation of a constant moduli fibration does not need to be again
a constant moduli fibration.

Proof. We first prove a lemma construction the quotient curve C;/Gy. In
Lemma 3.2 we constructed the non-singular irreducible curve C; of genus 2r — 1
as minimal resolution of the singular curve SE(A?)? = which we denoted by ¢ :

Cy — SE(A?)?" ., and also the degree-2r map [X : Y : Z] = [X : Z] denoted by

™Dp,q’

o1 : SE(A%)%SW — PL. Furthermore, in Lemma 3.3 we proved that the involution au-

tomorphism (3.11) of the action of Gy = Zy on SE(A3)?Z,  lifts to an automorphism

on the minimal resolution C7. We first prove the following lemma:

LEMMA 4.13. The quotient curve Cy /Gy is isomorphic to the minimal resolution
C} of the singular curve SE(A})" ie.,

P,q’?

Ch/Go = L s SE(A2)T (4.34)

™p.q
and is a smooth irreducible curve of genus r — 1.

We first observe that on the curve SE(X)?" . the quotient by Gy = Zy can be

constructed by using the rational transformation

X=X, YZ=Y? 7Z=2Z (4.35)
in the equation
SEN), 0 Y ZrPta = X (X = 2P (X = NZ)TTP (4.36)
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We obtain the equation

SE(\)"

™p,q "

P gzt _ etaer (X Z)e (RS AZ)PP . (4.37)

Using Lemma 3.2 we can construct the minimal resolution C of genus r — 1 for the
singular curve SE(\) ¢ denoted by A C' — SE(N);., 4> and the ramified degree r
map [X : Y : Z] — [X : Z] denoted by ¢, : SE(\)" 7p.q — P! with four totally ramified
points. The Puiseux expansions about all singular points of SE(X)" defining the
local normalization maps are given in Table 3.

P9

[X:Y:2 0:0:1] [1:0:1] A:0:1] [0:1:0]
multiplicity pta—r 2r—p 2r—p r—=p+q
Puiseux b Y 3r — % —p+
cooffiatonts (rpt+q—r) (r,2r —p) (r,2r —p) (Br—p+a.2r—p+q)

X=z X=1+7 X=X+ 3 ¥ 52—t (1 4 g (57
Puiseux - L C NPT G D)EE e (1 (o X = 207050 (1 + e (35)
expandon | ¥ = AEE TIERE) | T=0-NEETT0nE) | V= (AA=1) 7 TP (L+a(20) ve1 o »

Z=1 Z=1 Z-1 7 = z3r-rta

Table 3: Puiseux expansions around singular points

We observe that the Puiseux expansion in Table 2 for SE(X)Z, . coincide with
the Puiseux expansion in Table 3 for SE(A);. , , when using Equations (4.35) together

with the transformation between the local normalization parameters given by
Fo=22, E =22, EN=23, Feo=2. (4.38)

Notice that by construction from the defining equations for SE(X)?", , and SE(X);.,

we have (1-+90(t))? = 1+ fo(t), (1+y1(1)? = 1+ 1 (t), and (1 ya()? = 1+
7a(t). In Lemma 3.3 we proved that the involution automorphism (3.11) of the action
Gy = Zso defined on SE(A2)qu lifts to the minimal resolution as zg, 21, 2x, Zeo H>
—20, —21, —Zx, —Zco- As Equation (4.38) is invariant under this action, the minimal

resolution of SE(A);, , is the quotient curve C1/Gg. O

Proof. The generalized Kummer surface Sy is the minimal resolution of Vo = T'/G
with T = C7 x Cy and Gy = Zs obtained by blowing up 16 ordinary double point
singularities (cf. Lemma 4.1). V; is the singular double cover of C;/Gy x Co/Gq
whose branch curve is a union of vertical and horizontal curves. By blowing up the
branch locus we obtain Sy still having a map to C;/Gy. This establishes the isotrivial
fibration f] : Sy — C1/Gp. The other isotrivial fibration is obtained in an analogous
manner. The composition

¥ @1
CI/GOZCi __1_) SE(AQ)rpq = Pl
maps every point on the base curve C7 of f] to a point in P! with affine coordinate
U. For each fiber away from the ramification points, i.e., U ¢ {0,1, A}, 00}, the fiber
coordinates when composed with the normalization map ¢2 Cy — SE (AQ)
then satisfy Equation (4.16). O

r,2r—p,2r—q

Similarly, we have the following lemma describing the non-isotrivial fibration on
a generalized Kummer variety:

PROPOSITION 4.14. Assume that r > 2. On the generalized Kummer variety So
there is a fibration f : So — C' such that the genus of the fibres equals 2r — 1 and C' is
a smooth irreducible curve of genus r — 1. The base curve C admits a meromorphic
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map to P' such that the general fiber is the superelliptic curve associated with the
singular curve

Y =(u— AP (u—B) PP (2P 4 2(1-2u)z +1)7 (4.39)

where the affine coordinate on the base curve is u € P, and the moduli are related by

(A1 + Ap)? (A Ay +1)2
4A1 A2 ’ 4A1 A2 ( )
It follows that
3 D q 1 D q
d 922 p\5=3r 3 ATt g d
. (du A x) = i =2 & g dz (4.41)
Y (A2 — 1)+ mon2

In particular, du A dz/y is a holomorphic differential two-form on Sp.

Proof. The automorphism of V4 given by Equations (4.26) and (4.27) lifts to a
diffeomorphism ® of Sy. Since the isotrivial fibration in Proposition 4.12 is a genus
r — 1 pencil with » — 1 > 2, then the Isotropic Subspace Theorem [10, Thm. 1.10]
implies that ® f] determines a genus r— 1 pencil as well. Then it follows from Seiberg-
Witten theory by [11, Thm. 2.9] that the genus of the fibres of f] and f are equal. The
necessary condition of ® being orientation preserving follows from Equation (4.29).

The projection map in Equation (4.26) from a point on T'= C; x Co to U € P! —
where (; and (o are understood to be composed with their respective normalization
maps 1 : C1 — SE(A})Z , and ¢y : Cy — SE(A3)25, 5., for their minimal
resolutions — descends to a surjective map Sy — P! such that X,Y and U defined in
Equation (4.27) and Equation (4.26), respectively, are rational functions on the fiber
and base curve, respectively. The transformation

X (A-B)> 2 A Y

= ) = - P _ 4 P ’ (442)
MATO -2 VT T A F % (1 - A 20 (U — 1)

X

is an isomorphism on each fiber for v ¢ {0,1, A, B,oo}. Together with Equa-
tions (4.40) and
B-A

w=B+ 5. (4.43)
they relate Equation (4.39) to Equation (4.28). Therefore, using Lemma 3.6 any fiber
over u & {0,1, A, B,00} is a (rescaled) superelliptic curve SE(A%)?,, o with
u = (1+A)?/(4A) whose minimal resolution is a smooth irreducible curve of genus
2r — 1. Equation (4.41) then follows from Equation (4.29) and the transformations
in Equations (4.42) and (4.43). Moreover, Equation (4.41) proves that up to a non-
vanishing scalar that only depends on the moduli the two-form du A dx/y equals the
holomorphic two-form w already constructed in Section 4.1. O

REMARK 32. For r = p = ¢ = 1, Equation (4.39) defines the Jacobian elliptic
fibration J7 on a Kummer surface of two non-isogenous elliptic curves with singular
fibers of Kodaira-type Ij over u = A, B, and of type I; and I} over u = 0,1 and
u = oo. It is the quadratic twist of the extremal Jacobian elliptic rational surface
that is the modular elliptic surface for I'g(4) (cf. Remark 3.7).
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We can also start with the twisted Legendre pencil of superelliptic curves given by
Y= (u— A" (u— B> P (= 1) P (z — )P (4.44)

We want to determine under what circumstances the generalized fibration Jg from
Section 4.2.3 is the pull-back of the twisted Legendre pencil of superelliptic curves via
a morphism P! — P!, i.e., a fiber product Sy xp1 P*. If we apply the transformation

1
u =
1—a’
1
T = —
1—2
7 (4.45)
Yy = 1

we obtain the family
G2 = (a—1) 7P (- A2 (- B)? T #2P (3 - )P (3 —a)P T L (4.46)
We now assume that @ is given by a base change via the degree-two map

N )
- (U-a)(U -5

UecP i eP, (4.47)
such that the pre-images of @ = 0,1, 00 are given by (1,a?3?), (0,00), and (a?, 5?),
respectively. The branching points, i.e., points where dyt = 0, are U = +a/3, and the
corresponding ramification points are B (af—1)2/(a—p)? and A = (af+1)?/(a+
)2, respectively. Both have ramification index 2. Hence, by the Riemann-Hurwitz
formula the map in Equation (4.47) is indeed a morphism from P! — P!. Therefore,
if we set

(U —-1)(U - a?8?%)

R (7)) (7
i = g2 X

S UU-a?)(U-p%)° (4.48)
g: +g,1(a 71)( 62))**%*27« (U27042[32)Y ’

(
U U —a2)3 (U — p2)3 (a2 — B2)> 7 :
)

T (aB+1)? (aB—1)?
(4.8)= (m+ﬁV’m—6P>’

and let («, 8) = (A1, 1/A3), we obtain

= (=AY ue (U AT (U )"
x (AZU2 = A2)*07D Xop (X U (U = A2 (AZU — 1)"TTT (4.49)
x (X —UU-1) (AU — A}

Thus, we have proved the following lemma:
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LEMMA 4.15. Equation (4.24) on S(()T’p’qzr)(A%, A32) is the pull-back of the twisted
Legendre pencil of superelliptic curves given by

v =(u— A (u—B)" 2P (x - 1)"P (x —u)?, (4.50)
via the degree-two base change g : P — P!, U — u given by

1 (U-1)U- a?p?)
I—u_ (U—a?)U-5) 50

with (o, ) = (A1,1/As). The moduli of the Legendre pencil are related to the moduli
of Sér’p’q:” (A2,A3) by the rational maps

(A Ay 1) b (A1)
S M) (A1) T (AT - (A

(4.52)

REMARK 33. The family
X2 = X2V (1 X)) XTI - Xa) U (1 3 Xy — 5 Xa)PHOT (459)
becomes isomorphic to family (4.44), i.e.,
Y = (u— A" (u— BT P (p — 1)2P (2 — )P T (4.54)
by setting X; = x and
1 B

(21722) = (271 - Z) )
_uv-4 (4.55)
=5y
iy=X3 AT (A-B)*7.

Lemma (4.15) then shows that Equation (4.53) coincides with Equation (4.24) describ-
ing the generalized fibration Jg if and only if ¢ = r. On the other hand, interchanging
the roles X7 <» X5 and 27 <+ zo, we obtain the family

Y = (u— A)Q’"_p (u— B)?" =P g?r—4 (x — 1)27"_’1 (x —u)Pte ", (4.56)
The transformation

2 +2(1-2u)z+1

T = 1z +u,
a1 4.57
(24 1)2~7 (x2+2(172u)x+1)2qr 2y (4.57)
v o3BT 5t

maps family (4.56) to Equation (4.39) describing the generalized fibration J7. The
transformation (4.57) is rational if and only if ¢ = r. Note that in the process of
relating Equations (4.24) and (4.39) we have thus interchanged the roles of affine base
and fiber coordinates and simultaneously the roles of the superelliptic curves C; and
C5, and applied fiberwise the rational transformation from Lemma 3.6.
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REMARK 34. For r = p = ¢ = 1, Equation (4.50) defines a Jacobian elliptic
fibration, called Jg in [22], on a Kummer surface of two non-isogenous elliptic curves
with 2 singular fibers of Kodaira-type I5 and 4 singular fibers of type I5. This Jacobian
elliptic K3 surface is obtained by the base transformation in Equation (4.51) from the
modular elliptic surface for I'(2) (cf. Remark 3.7). In fact, if we denote by g : P! — P!
the degree-two map in Equation (4.51), then the pull-back of the Jacobian rational
elliptic surface S that is the modular elliptic surface for I'(2) is the Jacobian elliptic
fibration Js. On X, we have the deck transformation ¢ interchanging the pre-images
and the fiberwise elliptic involution ¢ : (u, z,y) — (u,x, —y). The composition 3 =10¢
is a Nikulin involution leaving du A dz/y invariant, and the minimal resolution of the
quotient X/j is the Jacobian elliptic K3 surface X’ — P! in Equation (4.44) with

= ¢ =r = 1. The K3 surface X’ is the quadratic twist of the modular elliptic
surface S for I'(2) and thus has fibers of Kodaira-type I over the two ramification
points of f. The situation is summarized in Figure 2. Comparing elliptic surfaces
obtained by either a quadratic twist or a degree-two base transformation was also the
basis for the iterative procedure in [14] that produced families of elliptically fibered
Calabi-Yau n-folds with section from families of elliptic Calabi-Yau varieties of one
dimension lower. It also played a key role in relating Yukawa couplings and Seiberg-
Witten prepotential in [24].

X

I
PN

!/
P! P!

F1G. 2. Relation between twist and elliptic K3 surface J¢

5. Period computations on a generalized Kummer surface. Equa-

tion (4.39) in Lemma 4.14 defines a non-isotrivial fibration on the generalized Kummer

surface S\ P29 (A2 A2) given by

y¥ = (u— AP (u— B) PP (22 2 (1 - 2u)a +1)° (5.1)

where u is the affine coordinate on a base P!. We now construct a cover by pulling-
back Equation (4.39) via the degree-two base change

(1+2)*

§:Pt P! Zu=
4z

We have the following lemma:

LEMMA 5.1. The pencil of superelliptic curves over P! given by

y2r — ,pta-r ((Z _ a) (z — %) (Z — b) (Z — 2)) : (5.2)
x 2% X3rorma (X — 1) (X - 22)",
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is the pull-back of Equation (4.39) on Sér’%*p’%*q) (A2,A3) via the degree-two base
change G : P! — P!, 2+ u with the following relations between the affine coordinates
on the base and moduli:

C(142)? _ (1+4a)?  (1+0b)?
U=, A= e B= 0 (5.3)
We also have
dz dX
G dun—)=4:z2=1)dzN — . 5.4
7 (0un ) a2 - nan S 6.4

Proof. By direct computation using z = )N(/z7 Y= f//(16 2%). 0

REMARK 35. The comparison of Equations (5.3) with Equations (4.40) shows
that a = Ag/Al or a = Al/AQ and b = A1 AQ orb= 1/(A1 AQ)

The family of superelliptic curves over P! defined by Equation (5.2) enables us
to define a family of closed two-cycles ng’l) with 1 < k,l < 2r — 1 on its total space
as follows: first, define a closed one-cycle in each fiber over z ¢ {0, 1,a™!, b1 0o} of
the total space as a clockwise one-cycle around the line segment [0, 2] in the X-plane
on a chosen Y-sheet. However, as we move around in the z-plane (which represents
moving along the base curve) the overall complex factor in Equation (5.2) changes.
Thus, for the multi-valued function ¥ to become well-defined we have to introduce
branch cuts in the z-plane as well. We define a multi-valued function Y by writing

V — 9462 Pi+P2—3 H (Z — 20)17% X5-B1—P2 (1 _ X)B2 (22 7)2)52 (5.5)

zo€{aTl bt1}

with 81 = q/(2r), f2 = p/(2r). We choose one branch cut in the z-plane connecting
the points z = a and z = b while not intersecting any other branch points and cuts.
We then define the closed two-cycle Z(Zk’l) given two integers 1 < k,l < 2r — 1 on the
total space as the closed one-cycle that runs suitably close in clockwise orientation
around the line segment [a,b] on the k*" branch of the z-plane for the multi-valued
function

Z51+B2*% H (Z . Z0)17527
zo€{a*l b1}

lth

while taking a clockwise one-cycle around the line segment [0, 22] on the I branch of

the X-plane for the multi-valued function
Xi-m-P (1-X)" (2= %)™

We then set E&k’l) = g*zé’“” for 1 < k,l < 2r — 1. We have the following lemma:

LEMMA 5.2. The period of the holomorphic two-form duidx/y over the two-cycle
2ED on S((,T’%*p’%*q) (A2,A3) equals

de g k) A0 L (@) T (1= Bo) D(B2)?
#é(kl)du/\ Y —( 1) 027" CQT 4°‘F(ﬂ1—|—%) F(252)

1 (&N 51752 1 B
F —1-=
X Aa(A_ B)i-2p 2(251,252 A’ A)

(5.6)
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where CéT) (p2r — 1)/ 05, (=1)P2 = ph . por = exp (), and 1 < k,1 < 2r—1, and
the relation between A, B and A1, As is given in Equations (4.40).

Proof. We start by transforming the double integral into an iterated integral with
each contour reduced to an integration along a branch cut (analogous to the approach
in the proof of Lemma 3.9). We obtain

1 dXx
s # 42— 1) dan %
02T C?r Eng) Y

1 # Jun dz
un &
“ ) Mo y

_/B du / dzx (5.7)
A (u—A)P(u—B)=F2 Jo g5=bi=B2 (22 4 2(1 —2u) x4+ 1)

wifs /B du
= —€
a4 (A—u)l=P2 (u— B)1=F

i dx
X - 3
0o 22 AP (22421 —2u)w + 1)

Using the relations in Equation (5.3) and the branch of y compatible with Equa-
tion (5.5), the inner integral evaluates to

/Z dx
0 x3 AP (224 2(1—2u)z+1)7

/z dx
0 x3—Pi—B: (z—x)ﬁ2 (% —x)ﬁrz
1 ~
— Bi1t+B2 dz
=z ~3_8,-8 ~\ B2 2 ~\B2
o x2 AP (1—-7)7 (1—22%)
_ BB} LB+ B2—3) T (1—B2) T Br+Ba— 1, Be
F(ﬁ1+%) 51—!—%

Note that the quadratic identity [1, Eq. (15.3.17)] is equivalent to the following identity
for the Gauss’ hypergeometric function

i) (5.9)

with z and u related by Equation (5.3). Applying this identity to Equation (5.8) we
obtain

B1+ P2 — 3, P
2B1+2p2—1
(14 2)*F o Fy < > 28,

51-&-*

) 2F1<ﬂ1+ﬂ2%’61

/Z dx
0 z3 PP (324 2(1—2u)z +1)7

T (Bi+pB2—3) D (1—p2) (1)ﬁ1+62§ P (51 +B:— 3%, B
F(51+%) du o 23

(5.10)

)
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Combining this result with Equation (2.9) of Corollary 2.2, we obtain

dX
# 4(22=1)dz A —
Egk,l) Y

d
= # du N\ a
(k0 Y

_ _cw e (@) T -5
— 027‘ 027‘ 4(11"(614_%) -
Xeﬂ'iﬁz/B du r 61+62_%761 l ( )
4 (A—w)i=F2 (u— B)l-Faye 2! 26 u
_ omisa o0 L (@) T (1= B2) T'(B2)?
49T (B + ) T(252)
1 ;) ﬂ17ﬂ2 1 B
* A (A B)i-2 F2(2,61,252 A’1A> :
O

We now relate the periods over the two-cycles D defined naturally from the

point of view of the generalized fibration J7 — to the periods over the two-cycles o; ;
— defined naturally from the point of view of the generalized Kummer construction in
Section 4.1. We have the following lemma:

LEMMA 5.3. On the generalized Kummer surface SéT’QT_p’ZT_Q)(A%,Ag), the pe-
riods of the holomorphic two-form w over the two-cycles o; ; (defined in Section 4.1)
are related to the periods of the holomorphic two-form dU A dX]Y over two-cycles

y(i+k—1,j+r+1-k) by
dXx

# Y= # U A = (5.12)
o, s (ith=1,j+r+1-k) Y

with 1 <1i,j <r—1and for all k with 1 <k <r—1.

Proof. We will use the variables U and X from Equations (4.26) and (4.27), i.e.,

(G2 = A3) (G — C2)
(G—1)(A3¢ —G)
S MAUU-1)?2 MG

U=
(5.13)

T

Note that because of Equation (4.43) the limits w = A and u = B are equivalent to
U =0 and U = oo, respectively. Solving Equations (5.13) for ({1, (2), we obtain

Mz (A AUz — Ay Mgz — U+ A2)
LT TN AU A AU A,
Ay (A AUz — Ay Ay — U + A3)
2= MAZUz — Az — AU+ Ay

(5.14)

Thus, the line with U = 0 and x unrestricted corresponds to the line with ¢, = A3 and
(1 = A} A3z, ie., (; unrestricted. Similarly, the line with U = co and = unrestricted
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corresponds to the line with (; = 1 and (; = A}z, i.e., (; unrestricted. On the other
hand, the line with x = 0 and U unrestricted corresponds to the line with {7 = 0
and (o unrestricted. Similarly, the line with * = z and U unrestricted corresponds to
the line with ¢; = A? and ¢, unrestricted. Combining these results with Lemma 5.3,
Lemma 4.14, and Remark 16, we obtain

# au A X ,C(j)/ dce o8 / ldCl % dca ygdﬁ (5.15)
Bkt =k Y r AZ 72 b, a; 7

C (j+r+1—k) C(erkfl) _

where we have used — Céi Céf, . The lemma follows from

# // S &:# G 5 dC2
ixy; T 2 aixb; M 72

REMARK 36. Equation (5.12) simply states that the periods of a fixed holo-
morphic two-form on the generalized Kummer surface must be the same when eval-
uated using either the fibration from Section 4.2.4 or the isotrivial fibration from
Section 4.2.1.

d

We have arrived at the following theorem:

THEOREM 5.4. The Multivariate Clausen Identity (2.26) is equivalent to Equa-
tion (5.12).

Proof. The generalized Kummer surface Sér’zrfp 2r=a)
two curves

SE (A2)72”T2r —p2r—q - 771 = 57‘ P (Cl - 1)1) (Cl - A?)p
SEA3), ¢ m5 = C§+q_T (G2 — 1)2T_p (G2 — A3

Tp,q -
Af) . (5.17)

1-— Ag) . (5.18)

was constructed from the

(5.16)

With 8y = ¢/(2r), B2 = p/(2r) and a = 81 + B2 — 5, we found

I (51+3) 1 /Afdcl_ Bi+Ba—1, B
F(a)r(l—@)/\?ﬂl*l o M B+ 3

—2

Similarly, using (; =1 — (1 — A3) o we derived
[ (282) (=1)'7% bdg Br+B2— 3, Be
2 2B5—1 —= =2l
L(B2)” (1—A3)"7" " Jaz m2 22
Moreover, when written out explicitly Equation (5.12) is equivalent to
(—1)=Pe U (81 +3) T(25)

YR ol T () T'(1 = B2) T'(B2)?

x (A— B)'=2F dun®
Egiﬁ»k—l,jﬁ»rﬁ»l—k) Yy

B of T(B+3) 1 A de

L [L@B) (-t /ldCz
T(B2)” (1= A2 " Jaz m2 )

(5.19)
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where we have used Equation (4.41) and

22—7" A%‘Z‘% A2 =t
1 A
(AT -1t (5.20)
(Ar A )a 1 1
= 1432

T

We simplify the left hand side using the result of Lemma 5.2 and the right hand side
using Equations (5.18) and (5.19). We obtain

1 F<O‘;ﬂlaﬂ2 l 1B)
(4A) "2\ 281, 28, | A A
B+ B2 — %7 B2 B1+ P2 — %, B2 (5:21)

= (A1A2)a 2 I A3 2F1(

_ A2
o )

This is Equation (2.27) which is equivalent to the Multivariate Clausen Identity (2.26)
and thus implies Theorem 2.5. O

51-1—%
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