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CURVATURES OF MODULI SPACE OF CURVES AND

APPLICATIONS∗

KEFENG LIU† , XIAOFENG SUN‡ , XIAOKUI YANG§ , AND SHING-TUNG YAU¶

Abstract. In this paper, we investigate the geometry of the moduli space of curves by using
the curvature properties of direct image sheaves of vector bundles. We show that the moduli space
(Mg , ωWP) of curves with genus g > 1 has dual-Nakano negative and semi-Nakano-negative cur-
vature, and in particular, it has non-positive Riemannian curvature operator and also non-positive
complex sectional curvature. We also prove that any submanifold in Mg which is totally geodesic in
Ag with finite volume must be a ball quotient.
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1. Introduction. In this paper, we study the curvature properties of the Weil-
Petersson metric as well as its background Riemannian metric on the moduli space of
curves.

On Riemannian manifolds, there are many curvature terminologies, e.g. curvature
operator, sectional curvature, isotropic curvature and etc.. As it is well-known, the
curvature relations are well understood on Riemannian manifolds (e.g. [3, p.100]). On
the other hand, we also have some classical curvature concepts on Kähler manifolds,
such as the holomorphic bisectional curvature, curvature in the sense of Siu and
curvature in the sense of Nakano. At first, we obtain a list of curvature relations
between a variety of curvature properties of the Kähler metric and its background
Riemannian metric:

Theorem 1.1. On a Kähler manifold (X,ω), the curvatures

(1) semi dual-Nakano-negative;
(2) non-positive Riemannian curvature operator;
(3) strongly non-positive in the sense of siu;
(4) non-positive complex sectional curvature;
(5) non-positive Riemannian sectional curvature;
(6) non-positive holomorphic bisectional curvature;
(7) non-positive isotropic curvature

have the following relations

(1) =⇒ (2) =⇒ (3) ⇐⇒ (4) =⇒ (5) =⇒ (6);

(1) =⇒ (3) ⇐⇒ (4) =⇒ (7).
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Let f : Tg → Mg be the universal curve with genus g ≥ 2. Since it is a canonically
polarized family, and

T ∗Mg
∼= f∗(K

⊗2
Tg/Mg

),

one can compute the curvature of the induced metric on T ∗Mg by using the curvature
formula of direct image sheaves (e.g. [2], [23] and [12]). This induced metric is actually
conjugate dual to the Weil-Petersson metric ωWP on Mg. By adapting the methods
in [11], we show that (Mg, ωWP) has the similar curvature properties as the space
form–the unit disk (B3g−3, ωB) with the invariant Bergman metric ωB, i.e. (Mg, ωWP)
possesses the strongest curvature properties of complex manifolds.

Theorem 1.2. The curvature of Weil-Petersson metric ωWP on the moduli space
Mg of Riemann surfaces of genus g ≥ 2 is dual-Nakano-negative and semi-Nakano-
negative.

As applications of Theorem 1.1 and Theorem 1.2, we obtain a variety of curvature
properties of the moduli space of curves:

Theorem 1.3. The moduli space (Mg, ωWP) has the following curvature proper-
ties:

(1) dual-Nakano-negative and semi Nakano-negative curvature;
(2) non-positive Riemannian curvature operator;
(3) non-positive complex sectional curvature;
(4) strongly-negative curvature in the sense of Siu;
(5) negative Riemannian sectional curvature;
(6) negative holomorphic bisectional curvature;
(7) non-positive isotropic curvature.

Note that, part (2) is firstly obtained in [32] recently.
We describe another application of the curvature properties of (Mg, ωWP). De-

note by Ag the moduli space of principally polarized abelian varieties of dimension g
and denote by

j : Mg → Ag (1.1)

the Torelli map associating to a curve its Jacobian with its natural principal polariza-
tion. We denote by Jacg the image j(Mg) and let Jacg, the so-called Torelli locus,
be the schematic closure of Jacg in Ag. Frans Oort asked in [21, Section 7] whether
there exists any locally symmetric subvariety of Ag which is contained in Jacg and
intersects Jacg, and he conjectured that nontrivial such subvarieties do not exist.
This conjecture is extensively studied in the last decade by using algebraic geome-
try methods. In this paper, we use a differential geometric approach and obtain the
following

Theorem 1.4. Let j : (Mg, ωWP) → (Ag, ωH) be the Torelli map where ωH

is the Hodge metric. Let V be a submanifold in Mg with j(V ) totally geodesic in
(Ag, ωH). If j(V ) has finite volume, then V must be a ball quotient. In particular,
any compact submanifold V in Mg with j(V ) totally geodesic in (Ag, ωH) must be a
ball quotient.

Remark 1.5. By using algebraic methods, Hain ([8, Theorem 1]) and de Jong-
Zhang ([5, Theorem 1.1]) proved similar results under certain conditions. See also
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[17], [13] and [4]. For more progress on Oort’s conjecture, we refer the reader to
survey papers [21, 18].

As a special case, we show that there is no higher rank locally symmetric space in
Mg:

Corollary 1.6. Let Ω be an irreducible bounded symmetric domain and Γ ⊂
Aut(X) be a torsion-free cocompact lattice, X := Ω/Γ. Let h be the canonical metric
on X. If there exists a nonconstant holomorphic mapping f : (X,h) → (Mg, ωWP),
then Ω must be of rank 1, i.e. X must be a ball quotient.

Acknowledgement. The authors would like to thank the anonymous referee for
clarifying many issues of the paper. The third named author would also like to thank
Valentino Tosatti for many helpful suggestions. K.-F. Liu is supported in part by
NSFC 11531012. X.-K. Yang is supported in part by China’s Recruitment Program
and NSFC 11688101.

2. Curvature relations on vector bundles. Let E be a holomorphic vector
bundle over a Kähler manifold X and h a Hermitian metric on E. There exists a
unique connection ∇ which is compatible with the metric h and the complex structure
on E. It is called the Chern connection of (E, h). Let {zi}ni=1 be the local holomorphic
coordinates on X and {eα}rα=1 be a local frame of E. The curvature tensor R∇ ∈
Γ(X,Λ2T ∗X ⊗ E∗ ⊗ E) has the form

R∇ =

√
−1

2π
Rγ

ijα
dzi ∧ dzj ⊗ eα ⊗ eγ (2.1)

where Rγ

ijα
= hγβRijαβ and

Rijαβ = −
∂2hαβ

∂zi∂zj
+ hγδ ∂hαδ

∂zi
∂hγβ

∂zj
. (2.2)

Here and henceforth we adopt the Einstein convention for summation.

Definition 2.1. A Hermitian vector bundle (E, h) is said to be Griffiths-positive,
if for any nonzero vectors u = ui ∂

∂zi and v = vαeα,

∑

i,j,α,β

Rijαβu
iujvαvβ > 0. (2.3)

(E, h) is said to be Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi ⊗ eα,

∑

i,j,α,β

Rijαβu
iαujβ > 0. (2.4)

(E, h) is said to be dual-Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi ⊗ eα,

∑

i,j,α,β

Rijαβu
iβujα > 0. (2.5)

The notions of semi-positivity, negativity and semi-negativity can be defined similarly.
We say E is Nakano-positive (resp. Griffiths-positive, dual-Nakano-positive, · · · ), if it
admits a Nakano-positive(resp. Griffiths-positive, dual-Nakano-positive, · · · ) metric.
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Remark 2.2. It is easy to see that (E, h) is dual-Nakano-positive if and only if
(E∗, h∗) is Nakano-negative.

As models of complex manifolds, one has the following well-known curvature
properties:

Lemma 2.3. Let n > 1.
(1) (TPn, ωFS) is dual-Nakano-positive and semi-Nakano-positive.
(2) Let X be a hyperbolic space form with dimension n. If ωB is the canoni-

cal metric on X, then (TX, ωB) is dual-Nakano-negative and semi-Nakano-
negative.

We shall use the following curvature monotonicity formulas frequently, in partic-
ular the explicit curvature formulas(e.g. (2.8)). Hence we include a detailed proof.

Lemma 2.4. Let (E, h) be a Hermitian holomorphic vector bundle over a complex
manifold X, S be a holomorphic subbudle of E and Q the corresponding quotient
bundle, 0 → S → E → Q → 0.

(1) If E is (semi-)Nakano-negative, then S is also (semi-)Nakano negative.
(2) If E is (semi-)dual-Nakano-positive, then Q is also (semi-)dual-Nakano-

positive.

Proof. This lemma is well-known(e.g.[6]). It is obvious that (2) is dual to (1). Let
r be the rank of E and s the rank of S. Without loss of generality, we can assume, at
a fixed point p ∈ X , there exists a local holomorphic frame {e1, · · · , er} of E centered
at point p such that {e1, · · · , es} is a local holomorphic frame of S. Moreover, we can
assume that h(eα, eβ)(p) = δαβ , for 1 ≤ α, β ≤ r. Hence, the curvature tensor of S at
point p is

RS
ijαβ

= −
∂2hαβ

∂zi∂zj
+

s
∑

γ=1

∂hαγ

∂zi
∂hγβ

∂zj
(2.6)

where 1 ≤ α, β ≤ s. The curvature tensor of E at point p is

RE
ijαβ

= −
∂2hαβ

∂zi∂zj
+

r
∑

γ=1

∂hαγ

∂zi
∂hγβ

∂zj
(2.7)

where 1 ≤ α, β ≤ r. By formula (2.4), it is easy to see that

RE |S −RS =

√
−1

2π

∑

i,j

s
∑

α,β=1

(

r
∑

γ=s+1

∂hαγ

∂zi
∂hγβ

∂zj

)

dzi ∧ dzj ⊗ eα ⊗ eβ (2.8)

is semi-Nakano-positive. Hence (1) follows.

3. Curvatures of direct image sheaves and the moduli space Mg.

3.1. Curvature of direct image sheaves. Let X be a Kähler manifold with
dimension d + n and S a Kähler manifold with dimension d. Let f : X → S be a
proper Kähler fibration. Hence, for each s ∈ S,

Xs := f−1({s})



CURVATURES OF MODULI SPACE OF CURVES & APPLICATIONS 845

is a compact Kähler manifold with dimension n. Let (E , hE) → X be a Hermitian
holomorphic vector bundle. Consider the space of holomorphic E-valued (n, 0)-forms
on Xs,

Es := H0(Xs, Es ⊗KXs
) ∼= Hn,0(Xs, Es)

where Es = E|Xs
. It is well-known that, if the vector bundle E is “positive” in certain

sense, by Grauert locally free theorem, there is a natural holomorphic structure on

E =
⋃

s∈S

{s} × Es

such that the vector bundle E is isomorphic to the direct image sheaf f∗(KX/S ⊗ E).
Using the canonical isomorphism KX/S|Xs

∼= KXs
, a local smooth section u of E over

S can be identified as a family of E-valued holomorphic (n, 0) form on Xs. By this
identification, there is a natural metric on E. For any local smooth section u of E,
one can define a Hermitian metric on E by

h(u, u) = cn

∫

Xs

{u, u} (3.1)

where cn = (
√
−1)n

2

. Here, we only use the Hermitian metric of Es on each fiber Xs

and we do not specify background Kähler metrics on the fibers.
In particular, we consider a canonically polarized family f : X → S. We define

the Hodge metric on E = f∗(K
⊗m
X/S) where m is an integer with m ≥ 2. Let Lt be the

restriction of the line bundle L := K
⊗(m−1)
X/S on the fiber Xt. Let U ⊂ S be a small

open neighborhood of t = 0. Let s be a local smooth section of f∗(K
⊗m
X/S), by the very

definition of direct image sheaf f∗(K
⊗m
X/S), for any t ∈ U

s(t) ∈ H0(Xt,K
⊗m
Xt

). (3.2)

By this identification, for any local smooth sections sα, sβ of f∗(K
⊗m
X/S), we define the

Hodge metric on f∗(K
⊗m
X/S) by

h(sα, sβ) = cn

∫

Xt

〈sα, sβ〉dVt (3.3)

where 〈•, •〉 is the pointwise inner product on Γ(Xt,K
⊗m
Xt

). More precisely, if sα =

ϕα ⊗ e and sβ = ϕβ ⊗ e, where e is a local holomorphic basis of K⊗m
Xt

and ϕα, ϕβ are
local smooth functions on Xt, the metric is

h(sα, sβ) = cn

∫

Xt

〈sα, sβ〉dVt = cn

∫

Xt

〈ϕα, ϕβ〉|e|2dVt

where |e|2 is the canonical metric on K⊗m
Xt

. Since the family is canonically polarized,

the metrics on E = f∗(K
⊗m
X/S) defined by (3.1) and (3.3) are the same.

Let (t1, · · · , td) be the local holomorphic coordinates centered at a point p ∈ S
and

ν : TpS → H1(X,TX)
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the Kodaira-Spencer map on the center fiber X = π−1(p) and θi ∈ H0,1(X,T 1,0X)
the harmonic representatives of the images ν( ∂

∂ti ) for i = 1, · · · , d. Let {σα} be a basis

of Hn,0(X,L) where L = K
⊗(m−1)
X/S |X . The following theorem is well-known (e.g. [23,

Theorem IV] with p = n; for similar formulations see also [9, 10, 11, 2, 29, 28, 12].)

Theorem 3.1. If f : X → S is effectively parameterized and m ≥ 2, at point p,
the curvature tensor of the Hodge metric h on f∗(K

⊗m
X/S) is

Rijαβ = (m− 1)
(

(∆ +m− 1)−1 (θiyσα) , θjyσβ

)

+(m− 1)
(

(∆ + 1)−1(〈θi, θj〉) · σα, σβ

)

. (3.4)

Remark 3.2. Note that there are two Green’s operators in formula (3.4) and
they have different geometric meanings. More precisely, (∆+m−1)−1 acts on sections
and (∆ + 1)−1 acts on functions. When m = 2, the curvature formula (3.4) is, in
fact, different from Wolpert’s curvature formula ([31]) since in Wolpert’s formula, two
Green’s operators are the same and both of them act on functions. We will analyze
them carefully in the next subsection.

3.2. Wolpert’s curvature formula. In this subsection, we will derive
Wolpert’s curvature formula of the Weil-Petersson metric on the moduli space Mk of
Riemann surfaces with genus k ≥ 2 from curvature formula (3.4).

Let (X0, ωg) be a Riemann surface with the Poincaré metric ωg. The Weil-
Petersson metric on the moduli space Mk is defined as

(

∂

∂ti
,
∂

∂tj

)

WP

=

∫

X0

θi · θjdV (3.5)

where θi, θj ∈ H0,1(X0, T
1,0X0) are the images of ∂

∂ti
, ∂
∂tj

under the Kodaira-Spencer

map: T0Mk → H0,1(X0, T
1,0X0) respectively. It is known that f∗(K

⊗2
Tk/Mk

) is isomor-

phic to the holomorphic cotangent bundle T ∗1,0Mk. Hence, there are two Hermitian
metrics on this bundle, one is the Weil-Petersson metric and the other one is the
Hodge metric defined in (3.3). In order to discuss the relations between these two
metrics, we can consider the natural isomorphism

T : Ω1,0(X0,KX0
) → Ω0,1(X0, T

1,0X0)

given by

T (ηdz ⊗ dz) = g−1ηdz ⊗ ∂

∂z
. (3.6)

Lemma 3.3.
(1) The operator T is well-defined;
(2) σ ∈ H1,0(X0,KX0

) if and only if T (σ) ∈ H0,1(X0, T
1,0X0).

Let σα ∈ H1,0(X0,KX0
). To simplify notations, T (σα) is denoted by θα. The local

inner product on the space Ω0,1(X0, T
1,0X0) is denoted by 〈•, •〉 and sometimes it is

also denoted by ·. That is, if η, µ ∈ Ω1,0(X0, T
1,0X0), 〈η, µ〉 = η · µ. It is easy to see

that

g · 〈θ, T (σ)〉dz ⊗ dz = θyσ. (3.7)
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Lemma 3.4. The Hodge metric coincides with the Weil-Petersson met-
ric on the moduli space Mk. More precisely, T :

(

H1,0(X0,KX0
), gHodge

)

→
(

H
0,1(X0, T

1,0X0), gWP

)

is a conjugate-isometry.

Proof. Let σα = fαdz ⊗ e, σβ = fβdz ⊗ e, then

〈σα, σβ〉Hodge =
√
−1

∫

X0

g−1fαfβdz ∧ dz =

∫

X0

g−2fαfβdV.

Similarly,

〈T (σβ), T (σα)〉WP =

∫

X0

g−2fαfβdV = 〈T (σα), T (σβ)〉WP.

That is

〈σα, σβ〉Hodge = 〈T (σα), T (σβ)〉WP.

Let ∆ = ∂∂
∗
+ ∂

∗
∂ be the Laplacian operator on the space Ωp,q(X0, L0) and

∆0 = ∂
∗
∂ the Laplacian operator on C∞(X0).

Lemma 3.5. We have the following relation between two different Green’s opera-
tors

(∆ + 1)−1(θiyσα) = g(∆0 + 1)−1(θi · θα)dz ⊗ e. (3.8)

Proof. It is obvious that the right hand side of (3.8) is a well-defined tensor. Hence,
without loss of generality, we can verify formula (3.8) in the normal coordinate of the
Kähler-Einstein metric. Let {z} be the normal coordinate centered at a fixed point
p, i.e.,

g(p) = 1,
∂g

∂z
(p) =

∂g

∂z
(p) = 0.

The Kähler-Einstein condition is equivalent to

∆0g = −1 (3.9)

at the fixed point p. Let s = fdz ⊗ e ∈ Ω0,1(X0,KX0
), at p, we have

∆s = ∂∂
∗
s = ∂

(

(

∂
∗
(fdz)

)

⊗ e+ g−1f
∂ log g

∂z
⊗ e

)

= (∆0f)dz ⊗ e+ fdz ⊗ e

= ((∆0 + 1)f) dz ⊗ e

where we use the Kähler-Einstein condition (3.9). Hence, at point p,

∆
(

g(∆0 + 1)−1(θi · θα)dz ⊗ e
)

=
(

(∆0 + 1)
(

g(∆0 + 1)−1(θi · θα)
))

dz ⊗ e

= g(θi · θα)dz ⊗ e+ (∆0g)
(

(∆0 + 1)−1(θi · θα)dz ⊗ e
)

= g(θi · θα)dz ⊗ e−
(

(∆0 + 1)−1(θi · θα)dz ⊗ e
)

= θiyσα − g
(

(∆0 + 1)−1(θi · θα)dz ⊗ e
)
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where we use (3.7) and g(p) = 1 in the last step. That is, at the fixed point p, (3.8)
holds.

Now we obtain the well-known Wolpert formula:

Theorem 3.6 ([31]). The curvature tensor of the Weil-Petersson metric on the
cotangent bundle of the moduli space is:

Rijαβ =

∫

(∆0+1)−1
(

θi · θα
) (

θj · θβ
)

dV +

∫

(∆0+1)−1(θi ·θj)
(

θα · θβ
)

dV. (3.10)

Proof. If we set m = 2 in formula (3.4), (3.10) follows from formulas (3.4), (3.8)
and (3.7).

Theorem 3.7. The Weil-Petersson metric is dual-Nakano-negative and semi-
Nakano-negative.

Proof. By duality (e.g. Remark 2.2), we only need to prove the curvature tensor
(3.10) is Nakano-positive and semi-dual-Nakano-positive. At first, we prove the semi-
dual-Nakano positive part. That is, for any nonzero matrix u = (uiα), it suffices to
show

Rijαβu
iβujα ≥ 0 (3.11)

Here we use similar ideas of [11, Section 4]. Let G(z, w) be the kernel function of
the integral operator (∆0 +1)−1. It is well-known that G is strictly positive and in a
neighborhood of the diagonal, G(z, w) + 1

2π log |z − w| is continuous. So we obtain

Rijαβu
iβujα =

∫

X0

∫

X0

G(z, w)θi(w)θα(w)θj(z)θβ(z)u
iβujαdVwdVz

+

∫

X0

∫

X0

G(z, w)θi(w)θj(w)θα(z)θβ(z)u
iβujαdVwdVz .

If we set H(w, z) = θi(w)θβ(z)u
iβ,

Rijαβu
iβujα =

∫

X0

∫

X0

G(z, w)H(w, z)H(z, w)dVwdVz

+

∫

X0

∫

X0

G(z, w)H(w, z)H(w, z)dVwdVz .

Since the Green’s function is symmetric, i.e., G(z, w) = G(w, z),

Rijαβu
iβujα =

1

2

∫

X0

∫

X0

G(z, w) (H(w, z) +H(z, w)) (H(w, z) +H(z, w))dVwdVz

which is non-negative. Hence we get (3.11).
For the Nakano-positivity, we can use the same method. It is easy to see that we

can get strict Nakano-positivity since the Kodaira-Spencer map is injective.

Remark 3.8. In virtue of Lemma 2.3, the moduli space Mk has the same
curvature property as the unit disk with the invariant Bergman metric. It is optimal
in the sense that the curvature can not be Nakano-negative at any point. In fact, it
follows from the L2-vanishing theorems on Mk (e.g. [20]).
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4. Curvature properties of the moduli space of curves. In this section,
we investigate the curvature properties of the Weil-Petersson metric as well as its
background Riemannian metric on the moduli space of curves, based on very general
curvature relations on Kähler manifolds.

4.1. Curvatures on Riemannian manifold. Let (M, g) be a Riemannian
manifold with Levi-Civita connection ∇. The curvature tensor is defined as

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z (4.1)

for any X,Y, Z ∈ Γ(M,TM). In the local coordinates {xi} of M , we adopt the
convention:

R(X,Y, Z,W ) = g(R(X,Y )Z,W ) = RijkℓX
iY jZkW ℓ. (4.2)

The curvature operator is

R : Γ(M,Λ2TM) → Γ(M,Λ2TM) and

g(R(X ∧ Y ), Z ∧W ) = R(X,Y,W,Z).
(4.3)

Note here, we change the orders of Z,W in the full curvature tensor. For Riemannian
sectional curvature, we use

K(X,Y ) =
R(X,Y, Y,X)

|X |2g|Y |2g − 〈X,Y 〉2g
(4.4)

for any linearly independent vectors X and Y .
Let (M, g) be a Riemannian manifold. TCM := TM ⊗ C is the complexification

of the real vector bundle TM . We can extend the metric g and ∇ to TCM in the
C-linear way and still denote them by g and ∇ respectively.

Definition 4.1. Let (M, g) be a Riemannian manifold and R be the complexified
Riemmanian curvature operator. We say (X, g) has non-positive (resp. non-negative)
complex sectional curvature, if

R(Z,W,W,Z) ≤ 0 (resp. ≥ 0) (4.5)

for any Z,W ∈ TCM .

Definition 4.2. A vector v ∈ TCM is called isotropic if g(v, v) = 0. A subspace
is called isotropic if every vector in it is isotropic. (M, g) is called to have non-positive
(resp. non-negative) isotropic curvature if

g (R(v ∧ w), v ∧ w) ≤ 0 (resp. ≥ 0), (4.6)

for every pair of vectors v, w ∈ TCM which span an isotropic 2-plane.

4.2. Curvature relations on Kähler manifolds. In [25], Siu introduced the
following terminology:

Definition 4.3. Let (X, g) be a compact Kähler manifold. (X, g) has strongly
negative curvature(resp. strongly positive) if

Rijkℓ

(

AiB
j − CiD

j
)(

AℓB
k − CℓD

k
)

≤ 0 (resp. ≥ 0) (4.7)
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for any A = Ai ∂
∂zi , B = Bj ∂

∂zj , C = Ci ∂
∂zi , D = Dj ∂

∂zj and the identity in the above

inequality holds if and only if AiB
j − CiD

j
= 0 for any i, j.

Theorem 4.4. Let (X, g) be a Kähler manifold. Then g is a metric with strongly
non-negative curvature (resp. strongly non-positive curvature) in the sense of Siu if
and only if the complex sectional curvature is non-negative (resp. non-positive).

Proof. Let Z,W ∈ TCX . In local holomorphic coordinates {zi} of X , one can

write Z = ai
∂

∂zi
+ bi

∂

∂zi
, W = cj

∂

∂zj
+ dj

∂

∂zj
. We can compute

R(Z,W,W,Z)

= R

(

ai
∂

∂zi
+ bi

∂

∂zi
, cj

∂

∂zj
+ dj

∂

∂zj
, ck

∂

∂zk
+ dk

∂

∂zk
, aℓ

∂

∂zℓ
+ bℓ

∂

∂zℓ

)

. (4.8)

It has sixteen terms, but it is well-known that on a Kähler manifold Rijkℓ = 0, Rijkℓ =
Rijkℓ = Rijkℓ = Rijkℓ = 0, and their conjugates are also zero, i.e. Rijkℓ = 0, Rijkℓ =
Rijkℓ = Rijkℓ = Rijkℓ = 0. Since g is Kähler, by Bianchi identity, we see Rijkℓ =
−Rjkiℓ − Rkijℓ = −Rjkiℓ + Rikjℓ = 0. Similarly, we have Rijkℓ = 0. Hence (4.8)
contains four nonzero terms, i.e.,

R(Z,W,W,Z) = Rijkℓ · ai · cj · ck · aℓ +Rijkℓ · ai · cj · dk · bℓ

+Rijkℓ · bi · dj · dk · bℓ +Rijkℓ · bi · dj · ck · aℓ

= Rijkℓ · ai · cj · ck · aℓ −Rijℓk · ai · cj · dk · bℓ

+Rjiℓk · bi · dj · dk · bℓ −Rjikℓ · bi · dj · ck · aℓ

= Rijkℓ · ai · cj · ck · aℓ −Rijkℓ · ai · cj · dℓ · bk

+Rijkℓ · bj · di · dℓ · bk −Rijkℓ · bj · di · ck · aℓ

= Rijkℓ

(

ai · cj · ck · aℓ − ai · cj · dℓ · bk

+bj · di · dℓ · bk − bj · di · ck · aℓ
)

= Rijkℓ

(

ai · cj − bj · di
)(

ck · aℓ − dℓ · bk
)

= Rijkℓ

(

ai · cj − bj · di
)(

aℓ · ck − bk · dℓ
)

.

Let Aij = ai · cj − bj · di. We obtain

R(Z,W,W,Z) = RijkℓA
ij ·Aℓk = RijkℓA

iℓ ·Ajk. (4.9)

Therefore, the curvature is strongly non-negative in the sense of Siu if and only if
the complex sectional curvature is non-negative. The proof for the equivalent on
non-positivity is similar.

Theorem 4.5. If (X, g) is a Kähler manifold with semi dual-Nakano-positive
curvature (resp. semi dual-Nakano-negative curvature ), then its background Riem-
manian curvature operator is non-negative (resp. non-positive).
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Proof. Let zi = xi +
√
−1yi be the local holomorphic coordinates centered

at a given point. Then from the relation
∂

∂zi
=

1

2

(

∂

∂xi
−
√
−1

∂

∂yi

)

,
∂

∂zi
=

1

2

(

∂

∂xi
+
√
−1

∂

∂yi

)

one obtains
∂

∂xi
=

∂

∂zi
+

∂

∂zi
,

∂

∂yi
=

√
−1

(

∂

∂zi
− ∂

∂zi

)

.

On the background Riemannian manifold, any vector V in Λ2TRX can be written as

V = aij
∂

∂xi
∧ ∂

∂xj
+ bpq

∂

∂xp
∧ ∂

∂yq
+ cmn ∂

∂ym
∧ ∂

∂yn
. (4.10)

In the coordinates {zi, zi}, we have

V = aij
(

∂

∂zi
+

∂

∂zi

)(

∂

∂zj
+

∂

∂zj

)

+
√
−1bpq

(

∂

∂zp
+

∂

∂zp

)(

∂

∂zq
− ∂

∂zq

)

−cmn

(

∂

∂zm
− ∂

∂zm

)(

∂

∂zn
− ∂

∂zn

)

= aij
(

∂

∂zi
∧ ∂

∂zj
+

∂

∂zi
∧ ∂

∂zj
+

∂

∂zi
∧ ∂

∂zj
+

∂

∂zi
∧ ∂

∂zj

)

+
√
−1bpq

(

∂

∂zp
∧ ∂

∂zq
+

∂

∂zp
∧ ∂

∂zq
− ∂

∂zp
∧ ∂

∂zq
− ∂

∂zp
∧ ∂

∂zq

)

−cmn

(

∂

∂zm
∧ ∂

∂zm
− ∂

∂zm
∧ ∂

∂zn
− ∂

∂zm
∧ ∂

∂zn
+

∂

∂zm
∧ ∂

∂zn

)

= Aij ∂

∂zi
∧ ∂

∂zj
+Bij ∂

∂zi
∧ ∂

∂zj
+ Cij ∂

∂zi
∧ ∂

∂zj

where

Aij := aij +
√
−1bij − cij , Cij := aij −

√
−1bij − cij

and

Bij := aij −
√
−1bij + cij − aji −

√
−1bji − cji.

By the elementary facts that

Rijℓk = R

(

∂

∂zi
∧ ∂

∂zj
,

∂

∂zk
∧ ∂

∂zℓ

)

= 0;

Rijℓk = R

(

∂

∂zi
∧ ∂

∂zj
,

∂

∂zk
∧ ∂

∂zℓ

)

= 0;

Rijℓk = R

(

∂

∂zi
∧ ∂

∂zj
,

∂

∂zk
∧ ∂

∂zℓ

)

= 0;

and also their conjugates are all zero, we obtain

R(V, V ) = R

(

Bij ∂

∂zi
∧ ∂

∂zj
, Bkℓ ∂

∂zk
∧ ∂

∂zℓ

)

= RijℓkB
ijBkℓ = −RijkℓB

ijBkℓ.
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Let Eij := aij + cij −aji− cji, F ij := −bij − bji, then Bij = Eij +
√
−1F ij . Note that

the matrix (Eij) is real and skew-symmetric; the matrix (F ij) is real and symmetric.
Hence, by the curvature property

R(V, V ) = −RijkℓB
ijBkℓ

= −RijkℓE
ijEkℓ −

√
−1Rijkℓ(E

ijF kℓ + EkℓF ij) +RijkℓF
ijF kℓ.

On the other hand Rijkℓ is skew-symmetric in the pairs (i, j) and (k, ℓ), we obtain

√
−1Rijkℓ(E

ijF kℓ + EkℓF ij) = RijkℓF
ijF kℓ = 0

since (Eij) is real and skew-symmetric and (F ij) is real and symmetric. Therefore,

R(V, V ) = −RijkℓE
ijEkℓ = −RijkℓE

iℓEkj = RijkℓE
iℓEjk

where in the last step we use again the fact that Ekj is real and skew-symmetric, i.e.

Ekℓ = −Ejk = −Ejk . Now, we see that if (X, g) is semi- dual-Nakano-positive (resp.
semi dual-Nakano-negative), then the Riemannian curvature operator is non-negative
(resp. non-positive).

Remark 4.6. (P2, ωFS) is dual-Nakano-positive, but the Riemannian curvature
operator of the background Riemannian metric is only non-negative. In fact, on
any compact Kähler manifold, there does not exist a Riemannian metric with quasi-
positive Riemannian curvature operator since it has nonzero second Betti number
(e.g. [22, p.212]).

The Proof of Theorem 1.1. (1) =⇒ (2) follows from Theorem 4.5, and (3) ⇐⇒ (4)
follows from Theorem 4.4. (2) =⇒ (4): let Z,W ∈ TCM . Let Z ∧W = V + iU , where
V and U are real tensors. Then

R(Z,W,W,Z) = R(Z ∧W,Z ∧W )

= R(V + iU, V − iU)

= R(V, V ) +R(U,U)

where the last step follows since our curvature operator is extended to TCM in the
C-linear way and R(U, V ) = R(V, U). The other relations follow from similar com-
putations.

Remark 4.7.
(1) Exactly the same relations hold for semi-positivity.
(2) There is another notion called “weakly 1

4 -pinched negative Riemannian sec-
tional curvature”. If (X,ω) is a compact Kähler manifold with weakly 1

4 -
pinched negative Riemannian sectional curvature, then (X,ω) is semi dual-
Nakano-negative. Indeed, Yau-Zheng proved in [34](see also [7]) that any
compact Kähler manifold with weakly 1

4 -pinched negative Riemannian sec-
tional curvature must be a ball quotient. However, Mostow-Siu surfaces ([19])
have dual-Nakano-negative curvature tensors, but they are not covered by a
2-ball.

The Proof of Theorem 1.3. It follows from Theorem 1.1 and Theorem 1.2.
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5. Totally geodesic submanifolds in Torelli locus. In this section, we study
the existence of certain locally symmetric submanifold in moduli space Mk of curves
with genus k ≥ 2 by using the curvature properties we obtained. As an application
of Theorem 1.3 and Lemma 2.4, we derive

Corollary 5.1. Let S be any submanifold of (Mk, ωWP) with the induced met-
ric, then S has

(1) semi Nakano-negative curvature;
(2) strictly negative holomorphic bisectional curvature.

We need the following rigidity result by W-K. To:

Theorem 5.2 ([30]). Let (X, g) be a locally symmetric Hermitian manifold of
finite volume uniformized by an irreducible bounded symmetric domain of rank ≥ 2.
Suppose h is Hermitian metric on X such that (X,h) carries non-positive holomorphic
bisectional curvature. Then h = cg for some constant c > 0.

The Proof of Theorem 1.4. It is well-known that any totally geodesic submanifold
of Ak is also locally symmetric. Suppose j(V ) has rank> 1. Then by Siu’s compu-
tation in [24, Appendix, Theorem 4], the holomorphic bisectional curvatures of the
canonical metrics on irreducible bounded symmetric domains of rank> 1 are non-
positive but not strictly negative. Let h be the metric on j(V ) induced by the Hodge
metric on Ak. Hence, (j(V ), h) has non-positive holomorphic bisectional curvature
by formula (2.8). Let g be the Hermitian metric on V induced by the Weil-Petersson
metric on Mk. By Corollary 5.1, (V, g) has strictly negative holomorphic bisectional
curvature. Since the Torelli map j is holomorphic and injective, by Theorem 5.2,
h = cg for some positive constant c which is a contradiction. Hence, j(V ) is of rank
1, i.e. a ball quotient.

The Proof of Corollary 1.6. Suppose Ω has rank > 1. Then by a result of Mok
( [16, Theorem 4] or [14]), we see X must be totally geodesic in (Mk, ωWP). That
is, the second fundamental form of the immersion must be zero. Since (Mk, ωWP) is
dual-Nakano-negative, we see (X,h) is also dual-Nakano-negative, and in particular,
(X,h) has strictly negative curvature in the sense of Siu which is a contradiction([24,
Appendix, Theorem 4]). Hence Ω must be of rank 1, i.e. X must be a ball quotient.
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