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BETTI NUMBERS OF RANDOM NODAL SETS OF ELLIPTIC
PSEUDO-DIFFERENTIAL OPERATORS*

DAMIEN GAYET! AND JEAN-YVES WELSCHINGER?

Abstract. Given an elliptic self-adjoint pseudo-differential operator P bounded from below,
acting on the sections of a Riemannian line bundle over a smooth closed manifold M equipped with
some Lebesgue measure, we estimate from above, as L grows to infinity, the Betti numbers of the
vanishing locus of a random section taken in the direct sum of the eigenspaces of P with eigenvalues
below L. These upper estimates follow from some equidistribution of the critical points of the
restriction of a fixed Morse function to this vanishing locus. We then consider the examples of the
Laplace-Beltrami and the Dirichlet-to-Neumann operators associated to some Riemannian metric on
M.
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Introduction. Let M be a smooth closed manifold of positive dimension n, by
which we mean a smooth compact n-dimensional manifold without boundary. Let
|dy| be a Lebesgue measure on M, that is locally the absolute value of some volume
form. Let E be a real line bundle over M equipped with some Riemannian metric
hg. The space T'(M, E) of smooth global sections of E inherits from |dy| and hg the
L?-scalar product

(s,t) € T(M, E)? = (s,t) = /M he(s(y),t(y))|dy| € R. (0.1)
Let then P : T'(M, E) — I'(M, E) be an elliptic pseudo-differential operator of order
m > 0 which is self-adjoint with respect to (0.1) and bounded from below, see §5.2.
For every L € R, we denote by

UL = @ ker(P — AId) (0.2)
A<L

and by Ny, its dimension. It is equipped with the restriction (, )z of (0.1) and thus
with the associated Gaussian measure py, whose density with respect to the Lebesgue
measure |ds| of Uy, reads at every s € Uy,

dpr(s) = e (59 |ds|.

1
N

What is the expected topology of the vanishing locus s=1(0) C M of a section s
taken at random in (Ur, uz)? When P is the Laplace-Beltrami operator associated
to a Riemannian metric on M, the expected value for this number of connected
components for pure harmonics on the round two-sphere has been estimated by F.
Nazarov and M. Sodin [19], a work partially extended in several directions (see [18],
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[21], [20], [23] ). We studied a similar question in real algebraic geometry, where M is
replaced by a real projective manifold X and Uy, by the space RH?(X, E® L%) of real
holomorphic sections of the tensor product of some holomorphic vector bundle E with
some ample real line bundle L over X (see [9], [12], [8], [10]). We there could estimate
from above and below the expected value of each Betti number of s71(0). Our aim
now is, likewise, to estimate from above the mathematical expectations of all Betti
numbers of s71(0) for a random section s € Uy, as L grows to infinity, see Corollary
0.2 (see [11] for lower estimates). This turns out to involve asymptotic estimates of
the derivatives of the Schwartz kernel associated to the orthogonal projection onto Up,
which we establish in Appendix 5.3, see Theorem 2.3. The asymptotic value of this
kernel has been computed by L. Hormander in [14], after Carleman [3] and Gérding
[7] and for some derivatives, it is given by Safarov and Vassiliev in [22], but we could
not find a general result for all derivatives in the literature.

Let us now formulate our main result. When n > 2, we choose a Morse function
p: M — R and set

Ar = {s € U |s does not vanish transversally or pj,-1() is not Morse}.

Then, for every s € Uy, \ Ay, and every i € {0,--- ,n — 1}, we introduce the empirical

measure
vi(s) = > O,

wECriti(p‘S,1(0))\Crit(p)

where Crit(p) denotes the critical locus of p, Crit;(pjs-1(p)) the set of critical points
of index i of ps-1(gy and J, the Dirac measure at z. When n = 1, we set

vo(s) = > da
z€s—1(0)

The mathematical expectation of v; is defined as
E(v;) = / vi(s)dur(s).
Ur\AL

Recall that the pseudo-differential operator P has a (homogenized) principal sym-
bol op : T*M — R which is homogeneous of degree m, see Definition 5.6, and we
set

K={{eT"M|op(§) <1}. (0.3)
The volume of K for the Lebesgue measure |d¢| induced on the fibres of T*M by |dy|

is encoded by the function

co:x €M |d¢| € Ry. (0.4)

5 .
@m)™ Jrar:m
It turns out that K together with |d¢| induce a Riemannian metric on M, namely

1
i) €T o o [ el (05)

and we denote by |dvolp| the associated Lebesgue measure of M.
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THEOREM 0.1. Let M be a smooth closed manifold of dimension n equipped with
a Morse function p and a Lebesgue measure |dy|. Let (E,hg) be a Riemannian real
line bundle over M and P : T'(M,E) — T'(M, E) be an elliptic self-ajdoint pseudo-
differential operator of order m > 0 which is bounded from below. Then, for every
1€{0,---,n—1},

1

1
E(VJ — 7n+1
Leo /" Ve

= E(i, ker dp)|dvolp]|. (0.6)

The convergence given by (0.6) is the weak convergence on the whole M. Also, in
Theorem 0.1, E(i, ker dp) denotes, for every point z € M, the expected determinant
of random symmetric operators of signature (i,n —1 — i) on kerd|,p when n > 1,
see (0.8), while it equals 1 when n = 1. Namely, P together with |dy| induce a

Riemannian metric ( ,)p on the space Sym?(T'M) of symmetric bilinear forms on
T*M, which reads for every (b1, bs) € Sym?*(TM)?,

1 1 , ,

bl = g ([ @@~ T [ m@m@iaetae), o)
where in the right-hand side of (0.7) the quadratic forms associated to by and by are
also denoted by b; and b, by abuse of notation. The first term in the right-hand
side of (0.7) already defines a natural Riemannian metric on Sym?(TM), see §2.2,
but the one playing a role in Theorem 0.1 is indeed (0.7), where the second term
induces some correlations similar to the ones already observed by L. Nicolaescu in
[21]. By duality and restriction to (kerdp)*, (0.7) induces a Riemannian metric on
Sym?((ker dp)*) see §2.3.1, with Gaussian measure pp. Let Sym?((kerdp)*) be the
open cone of non-degenerate symmetric bilinear forms of index ¢ on ker dp. We set

B(i,ker dp) = [ |det Bldur (5), (0.8)
Sym? ((ker dp)*)

where det 8 is computed with respect to the metric gp restricted to ker dp and given
by (0.5).

From Theorem 0.1 we thus know that the critical points of index i of pjs-1(q)
equidistribute in the manifold M with respect to gp, with a density involving random
symmetric endomorphisms of kerdp C TM. Let us mention two consequences of
Theorem 0.1. First, for every s € Ur \ A, we denote by m;(s) the i-th Morse number
of s71(0), that is

m;(s) = inf )#Cm’ti(f)

f Morse on s—1(0

and set
E(m;) = /UL\AL m;(s)dpur(s). (0.9)

From Morse theory we know that these Morse numbers bound from above all i-th
Betti numbers b; of s71(0), whatever the coefficient rings are.

COROLLARY 0.2. Under the hypotheses of Theorem 0.1, when n > 2,

1 1 1
limsup —E(m;) < inf —E(i, ker dp)|dvol p|,
L—o00 Lm ( ) ﬁnJrl p Morse function on M | s \/EO ( )l |
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while when n = 1, we have the convergence

L%]E(bo — W/ \/_0|dvolp|

Theorem 0.1 also specializes to the case of the Laplace-Beltrami operator A,
associated to some Riemannian metric g on M. In this case, we denote by |dvoly| the
Lebesgue measure associated to g and by Voly(M) its total volume [, |dvoly|.

COROLLARY 0.3. Let (M, g) be a closed Riemannian manifold of positive dimen-
sion n equipped with a Morse function p : M — R. Then, when n > 2, for every
i€{0,---,n—1},

R E(i,n—1—1)
\/ZnE( ¥ e VA 2)(n + 4)n T

where the convergence is weak on M. In particular,

|dvol,],

E(i,n —1— 1)
lim sup — < Vol,(M).
L—oo \/_ E(m:) \/En+l\/(n+2)(n+4)"—1 s(M)
When n =1, \/_IE( ) T %ﬁ|dvolg| so that %E(bo) o %\/gVolg(M).

The case n = 1 in Corollary 0.3 turns out also to follow from the volume compu-
tations carried out by P. Bérard in [1]. Note that in Corollary 0.3, E(v;) is defined
using P = A, as a differential operator, so that m = 2 with the notations of Theorem
0.1. Moreover,

E(i,n—l—i):/ | det Aldu(A), (0.10)
Sym(i,n—1—1,R)

where Sym/(i,n—1—i,R) denotes the open cone of non-degenerate symmetric matrices
of index 14, size (n — 1) x (n — 1) and real coefficients, while y denotes the Gaussian
measure on Sym(n — 1,R) associated to the scalar product

+ LAy B) R, (0.11)

mJﬂeswmn—Lw2H%TwAm 5

see §3.1. This measure differs from the standard GOE measure on Sym(n — 1,R).
When M is a surface for example, Corollary 0.3 implies that for ¢ € {0, 1},

1 1
li —E(m;) < —=Vol,(M).
imsup FE(m;) < o5 Voly (M)

For large values of the dimension n, we observe some exponential decrease of
the upper estimates given by Corollary 0.3 away from the mid-dimensional Betti
numbers. This exponential decrease given by Proposition 0.4 is similar to the one
given by Theorem 1.6 of [8].

PROPOSITION 0.4. For every € > 0, there exist 6 > 0 and C > 0 such that for
every smooth closed Riemannian manifold M of positive dimension n,

1
lim sup — E(m;) < C exp(—dn?).
o 5 B < oo

‘ 2
n =
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In particular,

1
lim sup —E(by) —n—oo 0.
L—oo L

Again, in Proposition 0.4, E(m;) is defined using P = A, as a differential operator.
This proposition may be compared with Courant’s Theorem which bounds by Ny, the
number of nodal domains of any eigenfunction s € Uy, see [4].

As a second example, Theorem 0.1 specializes to the case of the Dirichlet-to-
Neumann operator on the boundary M of some compact Riemannian manifold (W, g),
see §3.2. We then obtain

COROLLARY 0.5. Let (W,g) be a smooth compact Riemannian manifold of pos-
itive dimension n + 1 with boundary M, Ay, be the Dirichlet-to-Neumann operator
on M, and p : M — R be a fired Morse function. Then, when n > 2, for every
1€{0,---,n—1},

R E(i,n—1—1i)
LnE( l) Ljoo ﬁn+l\/(n+2)(n+4)n7

- |dvol,],

where the convergence is weak on M and |dvoly| is the volume form on M induced by
g. In particular,

- E(i,n —1—1)
T VAT 2+ 4T

When n =1, $E(v) L %\/g|dv0lg| so that +E(bo) LT %ﬁVOZg(M).

1
lim sup —E(m;)

Vol,(M).
L—oo L~ g( )

In the first section we study the general case of an ample finite dimensional
subspace U of T'(M, E) equipped with any scalar product, see Definition 1.1. In this
case, we prove that the expected empirical measures E(1;) turn out to be densities on
M. Thanks to the coarea formula and a natural change of variables, we express these
densities as integrals over the sum of the space of symmetric bilinear forms of signature
(i,m—1—1) on the kernel of dp,, and the space of linear forms vanishing on this kernel,
see Theorem 1.10. Here, the integrands are functions of the 2-jet of the Schwartz kernel
associated to U. In the case of a family (Uyp) LeRr; whose elements rescale naturally
with respect to L, see Definition 1.14, we give an asymptotic equivalent of E(v;) in
terms of a power of L as L grows to infinity, see Corollary 1.15. These results are
applied in the second section to prove our main theorems, namely Theorem 0.1 and
Corollary 0.2, which correspond to the special case where U = U}, for some elliptic
self-adjoint pseudo-differential operator bounded from below, see (0.2). We check that
the latter family U, indeed rescales with respect to L in the sense of Definition 1.14,
see Theorem 2.3. The third section is devoted to the examples of the Laplace-Beltrami
and Dirichlet-to-Neumann operators. The principal symbols of these operators are
powers of the norm, making it possible to prove the explicit computations given by
Corollary 0.3, Proposition 0.4, and Corollary 0.5. In the last section we discuss some
related problems which we plan to consider in a separated paper. We finally give in
Appendix 5 several auxiliary results, in particular the proof of Theorem 2.3, which
provides estimates of the derivatives of the Schwartz kernel associated to Uyp.
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1. Morse numbers of the vanishing locus of random sections. Let M
be a smooth manifold of positive dimension n, £ — M be a real line bundle and
p: M — R be a Morse function. We denote by H the singular foliation by level sets
of p and for every x € M \ Crit(p) we set

H, =T,H = kerd,p.

1.1. Ample linear subspaces and incidence varieties. For every [ > 0, we
denote by J!(E) the fibre bundle of I-jets of sections of E and for every m > 1 > 0,
we denote by 7! : J™(E) — J'(E) the tautological projections which restricts the
m-jets to [-jets. The jet maps are denoted by

jt:s e (M, E) — jl(s) e D(M, T E)).

Recall that the kernel of #!*1! is canonically isomorphic to the bundle
Sym!*HT*M) ® E of symmetric (I + 1)-linear forms on TM with values in E. In
particular, any Riemannian metric on J'(E) induces an isomorphism

JUE) = S{T*M)® E,

where SY(T*M) = @2:0 Sym*(T*M).
Let U C T'(M, E) be a linear subspace of positive dimension N and U = M x U be
the associated rank N trivial bundle over M. The maps j' define bundle morphisms

i (z,s) € U (2,5'(s)1) € TH(E).

DEFINITION 1.1 (compare Def. 2.1 of [21]). The vector subspace U of T'(M, E)
is said to be l-ample if and only if the morphism j' : U — JY(E) is onto. It is said
to be ample if and only if it is 1-ample.

We also need a relative version of this ampleness property. For every [ > 0, we
denote by J'(Ej3;) — M \ Crit(p) the fibre bundle of I-jets of restrictions of sections
of E to the leaves of H. If z € M \ Crit(p) and H, = p~(p(z)), then the fibre of
Jl(E‘H) over x is the space of [-jets at x of sections of the restriction Ej3,, . These
bundles are likewise equipped with projections

™ T (Ep) = T (B,
m > 1> 0 and with jet maps
jly s € DM, E) v jby(s) € D(M \ Crit(p), T (Ej).
These jet maps induce bundle morphisms

T+ (2,5) € Upnporitg) — (€, 53(5)12) € T (Bp)- (1.1)



BETTI NUMBERS OF RANDOM NODAL SETS 817

DEFINITION 1.2. The linear subspace U of T'(M, E) is said to be relatively l-ample
if and only if the bundle morphism jb, : Uinncrivp) — JYE) is onto. It is said
to be relatively ample if and only if it is relatively 1-ample. The kernel of j%{ is then
called the I-th incidence variety and denoted by I'.

The incidence varieties given by Definition 1.2 are equipped with projections

mar :(x,8) € I 2 € M \ Crit(p) and
my i(x,8) € I s € U,

see 5.1 for further properties. We set

Ag = {s € U| s does not vanish transversally} and if n > 2,
Ay =AogU{sec U\ Ag | ps-1() is not Morse.} (1.2)

Then, for every i € {0,---,n — 1}, we set
I} = {(z,5) € (M \ Crit(p)) x (U\ A1) | s(x) = 0 and 2 € Criti(ps-1(0))},

where Crit;(pjs-1(0)) denotes the set of critical points of index 4 of the restriction of
p to s71(0). The disjoint union Z3 U--- UZ}_,; provides a partition of Z* \ 7' (A1),
see Appendix 5.1.

These incidence varieties equip Uy ¢yr(p) With some filtration whose first graded
maps read

gr¥ : (x,50) € UJI° = sp(z) € E
and
gr' : (z,50,51) €U/I°®I°/T' + (s0(z),Vsym,) € E® (H* ® E).

Finally, we set

H° = {\&T*M |\ =0} and

ji(z,s) €T = (2,Vs,Visy,) € (H® @ Sym*(H*)) ® E

when n > 2, while we set

jo: (z,8) €I (2,Vs) e T"M ® E

when n = 1. Note that det(gr') = det(j},) : det(U/Z') — det(H*) ® (det E)™ and
that for every (x,s) € Z', j(x,s) induces the morphisms

j(z,s) : T,M/H, ®H, — E, ® (H, ® E;) and

det(j(x,s)) : det(T, M) — det(H™) ® (det E)™.

1.2. The induced Riemannian metrics.

LEMMA 1.3. Let F', G be two finite dimensional real vector spaces and A : F — G
be an onto linear map. Let (,)r be a scalar product on F and # : F* — F be
the associated isomorphism. Then, the composition (A#A*)~t : G — G* defines a
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scalar product (, Yo on G. Moreover, if up (resp. pc) denotes the Gaussian measure
associated to {, )p (resp. {,)a), then ug = Axpur.

Let |df]| (resp. |dg|) be the Lebesgue measure associated to (, ) (resp. (, )a)-
Then

1 2
——— |df|

- e
\/EdlmF

and duc(g) = \/;dlimce"‘g”zld% where || f[|2 = (f, f)r and [|g]|*> = (g, 9)c-

Proof. Let g7, g5 € G*. Then (g7, g5)c~ = g5(A#A"(g7)) = A*(93)(#A"(97)) =
(#A%(95), #A*(97)) r- Since A* is injective, we deduce that (, )g« is a scalar product
on G* and hence that (, )¢ is a scalar product on G. Moreover, #A4* : G* — (ker A)*
is an isometry, so that A : (ker A)* — G is an isometry. Since y is a product measure,
we deduce that ug = Aspp. O

dpr(f) =

DEFINITION 1.4. Under the hypotheses of Lemma 1.3, {, Yo (resp. ug ) is called
the push-forward of (, Y (resp. pur) under A.

DEFINITION 1.5. Let U C I'(M, E) be an ample finite dimensional linear sub-
space, which is equipped with a scalar product { ,). The latter induces a Riemannian
metric on the trivial bundle U which restricts to a metric on I', | € N. We denote by
uri the associated Gaussian measure and by

e g' the push-forward on E® (H* ® E) of ( ,) under grt,
o ht the push-forward on J'(Ej3) of ( ,) under ji, and
e 1 the push-forward on Im(j) C (H®° & Sym?(H*)) ® E of ( ,) under j,
see §1.1 and Lemma 1.5.
When n =1, we denote by
o ¢° the push-forward on E of () under gr°,
e hg the push-forward on Im(jo) CT*M @ E of {,) under jo.

DEFINITION 1.6. The Schwartz kernel of (U,(,)) is the section e of U ® FE
satisfying for every s € U and x € M, s(x) = (ey, s).

Note that if (s1,-- - , sn) denotes an orthonormal basis of U, then for every x € M,
€y = sz\il 5i(r)s;. The metrics g', h! and h given by Definition 1.5 can be computed
in terms of the Schwartz kernel e, as follows from Lemma 1.7 and 1.8, compare [5],
[21]

LEMMA 1.7. Let E be a real line bundle over a smooth manifold M equipped with
a Morse function. Let U be a finite dimensional linear subspace of T'(M, E) which is
relatively l-ample for 1 € N* and equipped with a scalar product. Let e be its Schwartz

kernel. Then, the metrics h' and g' are given by the restriction to the diagonal of
1

(G5.75€) " and (grigrie)=.

Note that e is a section of E X E over M x M, so that ji jie (resp. grigrle),
which applies j%, (resp. gr!) on each variable of e, is a section of jl(Em)m (resp.
(E @ (H* @ E))®?). Its restriction to the diagonal thus defines a symmetric bilinear
form on J'(Ejy)* (resp. (E& (H* @ E))*).

Proof. Let 6 € J'(Ej)* and s € U. Then, s = (e,s) and (j560%)(s) =

(0*(jL,e),s). Consequently, #(j},)*0* = 6*(ji,e) and j,#(j},)* = jijle. Likewise,
griftgr'* = grigrie. O
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LEMMA 1.8 (Compare appendix A of [21]). Let A : F — G be a linear map
between two real finite dimensional vector spaces. Let Kp (resp. Kg) be a subspace
of F (resp. G) such that A(Kr) C K¢ and a : Kp — K¢ be the restriction of A. Let
(,Yr be a scalar product on F and let Kr be equipped with its restriction. Let L¢ be
a complement subspace of Ko in G and b : Ki& — Kg (resp. c: Kﬁ: — L¢) be such
that

A= [8 ﬂ Kp®Kp — Ko ® Le.

Then

7

a#a* + b#Hb*  b#c*

ApA” = [ c#b* cHct |

a
REMARK 1.9. Since a#ta* = (a#ta* + b#b*) — b#c* (c#c*) ~Le#tb*, we deduce

from Lemma 1.8 that the scalar product (a#ta*)™1 can be computed from (A#A*)~L.
Applying Lemma 1.8 to

r = Qv

G = JYUE)xy J*E,H),

Kr = T' and

Ke¢ = Im(j)C (H°® Sym*(H*))® E,

we deduce that the metric h can be computed in terms of the Schwartz kernel e of U
and the jet maps j' and j%.
1.3. Distribution of critical points.

1.3.1. The main result. Let U C T'(M, E) be a relatively l-ample linear sub-
space of finite dimension N, see Definition 1.2. We equip U with a scalar product (, )
and denote by up the associated Gaussian measure, so that at every point s € U its
density against the Lebesgue measure |ds| on U equals ﬁe*“@. Then, for every

1€{0,---n—1} and every s € U \ Ay, where Ay is given by (1.2) we set

vi(s) = > 8z

mECriti(p‘S,1(0))\Crit(p)

B) = [ wils)dus)
U\A,
when n > 2, while when n = 1, we set

vo(s) = Z Oy

z€s—1(0)

E(vo) = / o, N (5)

Note that we have no control a priori on the number of critical points of the restriction
of p to s71(0), so that E(r;) may not be well defined.
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THEOREM 1.10. Let E be a real line bundle over a smooth n-dimensional manifold
M equipped with a Morse function. Let U C T'(M, E) be a finite dimensional relatively
ample linear subspace equipped with a scalar product. Then, when n > 2, for every

7:6{0,"',”—1},

1 « .
E(i) = —n / / (@, B)* dvolys [judpzs (0, ). (13)
VT S Hewsym2 ()0 E

Moreover, this measure has no atom and its density with respect to any Lebesgue
measure lies in C°(M \ Crit(p)). If in addition at every point x € Crit(p) the jet
map j* : U — J'(E)|, is onto, then this density lies in L}, (M), so that E(v;) defines
a measure on the whole M. Whenn =1,

1 . )
E(v) = NG . |a™dvol yo |jo., dpizo (cv).

Theorem 1.10 describes the expected distribution of critical points of the restric-
tion pjs—1(g). Every pair (o, 3) € (H° ® Sym?(H*)) ® E defines a morphism

(,8): (TM/H)®oH - E® (H*®E),

while the bundle £ @ (H* @ E) is equipped with the metric g' and its associated
volume form dvol 1, see Definition 1.5. Tt follows that (T'M/H)@®H inherits the n-form
(o, B)*dvol 1. The latter induces a n-form on 7'M, also denoted by («, 3)*dvol, , since
det(TM) is canonically isomorphic to det((TM/H) & H). Finally, we have denoted
by Sym?2(H*) the open cone of non-degenerate symmetric bilinear forms of index i on
H. Recall that the index of a symmetric bilinear form is the maximal dimension of a
subspace on which the form restricts to a negative definite one. Note that the form
(o, B)*dvolg depends polynomially on («, ), so that it is integrable with respect
to the Gaussian measure j,puz1. Note finally that from Lemma 1.7 and Remark 1.9,
both g! and j.duz1 can be computed in terms of the Schwartz kernel of (U, (, )), see
Definition 1.6.

Proof. By definition, E(v;) = (my71).7f;dpy since the measure of Ay vanishes
by Lemma 5.1. From the coarea formula, see Theorem 3.2.3 of [6] or Theorem 1 of
[24], we get

. 1
(WM\I})*T"Ud.UU = W /I1 |dwl((dﬂModﬂgl)#(deodwgl)*)—l|dﬂllv (1.4)

Note indeed that Z' has codimension n in U, so that the normalization in duz: and
dpy differs by a factor 1/y/7". For every (z,s) € T*,

see (5.2), so that dj 7y © djesymy = —(V(j4(s))) " o ji,. The operator
V7 (j1,(s)) is invertible since s € Uy \ Aj, see Remark 5.2. It follows that the
determinant of the morphism U/Z* — T'M induced by d|(a,)TM od|(x75)7r,}1 coincides
with the one of

—j(s) ogrt U/ ®I°/)T" - TM/H® H
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via the canonical isomorphisms det(U/Z') = det(U/Z° @ Z°/Z') and det(TM) =
det(TM/H & H). We deduce that

dvoz((deodﬂ-al)#(dﬂ-Modwal)*)*l = dvol((j(s)—log,_l)#(j(s)71og7_1)*)f1 = j(s)*dvolgl.

Using the substitution («, 8) = j(s), we conclude that

E(v;) = (@, )" dvolg:|jupz: (e, B).

1
\/En (Ho®Sym?2(H*))®E

Note that g' is a smooth metric on E @ (H* ® E) since uz1 is a smooth family of
Gaussian measures on Z' and j a smooth morphism. We deduce that E(v;) has no
atom and that its density with respect to any Lebesgue measure on M belongs to
C>(M \ Crit(p)).

Now, let us assume in addition that at every critical point = of p, the jet map
j' U — JYE), is onto and let us prove that this density then also belongs to
Li,.(M), so that E(v;) extends to a measure without atom on the whole M. We
denote by 7 : P(T*M) — M the projectivization of the cotangent bundle and by
T C m(T*M) the tautological line bundle over P(T*M). From the inclusion 7 ®
7 E — 7 (T*M ® E) we deduce the short exact sequence

077 E - 1" JYE) - " J(E)/T@71*FE — 0.

With a slight abuse of notation, we denote by H C 7*(T'M) the codimension one
subbundle given by the kernels of the elements of 7\ {0} and by J'(E, H) the quotient
bundle 7* 7Y(E)/T @ m*(E). Let V be a compact neighbourhood of Crit(p) such that
the restriction of the morphism j* : Uy — Jl(E)W is onto. We deduce a morphism
gt mU — 7 J(E) over P(T*M))y which is onto and by composition with the
onto map 7*J*(E) — J'(E, H), an onto morphism 7*U — J'(E, H). We denote,
with an abuse of notation, by Z the kernel of the latter and by ¢! the metric that
this morphism induces by push-forward on J*(E, H) over P(T*M )jv, see Lemma
1.3. Now, let V be a torsion-free connection on M and let V¥ be a connection on E.
They define a bundle morphism

J s €T (Vsig,V(VEs) g2) € (& Sym*(H*)) @ m*E.

We then set
1
Qz—n/Js*dvol1duIs
= || () ldvoly dz (s

1 .
\/En /7—®7|—*E/Sym2(H*)®7r*E(a7ﬁ) |dUOlgl|(j*dMZ)(a7ﬁ)7

where p7 denotes the fiberwise Gaussian measure associated to the restriction of
the metric of 7*U to Z. Consequently, ) provides a section of the fibre bundle
7* det (T M) over the compact P(T*M)y. Let w be a volume form on V. It trivializes
det(T*M) over V and 7* det(T* M) over P(T*M)y. We deduce that there exists
a positive constant ¢ > 0 such that [Q| < clw| over P(T*M)y,. However, from
Lemma, 5.3, the jet map j on Z' factors as j = T o J, where T denotes the trigonal
endomorphism of (H° & Sym?(H*)) @ E defined by

1

(o) = (@, § = (- V(dp)2)a)
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and where Z' is identified with the pull-back [dp]*Z by the section [dp] of
P(T*M)|ap\crit(p) defined by the differential of p. Finally,

1
E(vi) = — // |T* (e, B)*dvol g1 | Tudpir
ﬁ ( O@Syﬂl%(H*))@ﬂ'*E g

C
< Gl / / | det T(a, B)| Tudpiz.
™ (Ho@Sym?2(H*))®@m*E

Since the differential dp vanishes transversally on Crit(p), the function det T'(«v, 8) is
polynomial in a, § and his coefficients are smooth functions on M \ Crit(p) with poles
of order at most n—1 at M\ Crit(p). After integration against the Gaussian measure
J«duz1, we deduce that the function

[ |det T(a, B)| T dpizs
‘RE Sym?(H*)@ﬂ'*E

is smooth over M \ Crit(p) with poles of order at most n — 1 on Crit(p) (compare
Remark 3.3.3 of [10]). Since dim M = n, we deduce that this function belongs to
L}, . (M), so that E(v;) extends to a measure without atom over the whole M.

In the case n =1,

so that d|(; )T © (2.5 = —(jo(s)) " 0 gr’. We deduce that
dUOl((dﬂModﬂ'a1)#(d7rMod7r{11)*)*1 = dvol((jo(s)~1ogro)# (jo(s)~togro)*) 1 = Jo(s)"dvolyo.

Using the substitution a = jy(s), we conclude that

1
E(v)= — |a*dvol o |jo, pzo ().
VT JrmeE !

|

1.3.2. Mean Morse numbers. Under the hypotheses of Theorem 1.10, assume
in addition that M is compact without boundary. Then, for every s € U \ Ay, s71(0)
is a smooth compact hypersurface of M and for every i € {0,--- ,n — 1}, we set

E(m;) = /U\A1 m;(s)dpu (s),

see (0.9).

COROLLARY 1.11. Under the hypotheses of Theorem 1.10, we assume in addition
that M is closed. Then, for every i € {0,--- ,n—1} and every volume form w on M,

1 y )
E(m;) < —n/ // |(a, B)*dvol g1 |jdpg: (e, ).
Vi Ju S e esym: (a)en

Proof. Corollary 1.11 is a consequence of Theorem 1.10 after integration of the
constant function 1. O
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1.3.3. An asymptotic result. Let now (UL)LeR’; be a family of finite dimen-
sional linear subspaces of I'(M, E) which are ample for L large enough. We want to
estimate the asymptotic of the measure E(v;) computed by Theorem 1.10 as L grows
to infinity. In order to do so, we need to assume that the family (Uy,) LeRr? is tamed in
some sense and from Remark 1.9, we know that it is sufficient to tame the Schwartz
kernel (er,) LeRr , see Definition 1.6. However, we found it convenient to tame directly
the induced metrics given by Definition 1.5, see Definition 1.14.

DEFINITION 1.12. Let p,q be two positive integers. A one-parameter (p, q)-group
of endomorphisms of jet bundles is a one-parameter group (aL)LeRi of diagonalizable

endomorphisms on the jet bundles J'(E), | € N such that
1. For every 0 < 1 < m, the projection m™! : J™(E) — J'(E) is ar,-equivariant.
2. For every |l € N, the restriction of ar, to ker m'+1! = Sym!* Y (TM*)® E is a
homothetic transformation of ratio L~—P~(+1a,

Any such one-parameter (p, ¢)-group of endomorphisms is obtained in the follow-
ing way. We choose, for every [ € N, a complement subspace K; 1 to ker /™! in
J1(E) and then we require that ay, preserves K; 1 for every | € N, L € R%. The
two conditions of Definition 1.12 then determine (ay,) Ler; in a unique way. Note that
any metric on J'*!(E) provides such a complement K;y; to ker 7'T1! namely its or-
thogonal complement and induces then an isomorphism J'*(E) = S"HYT*M @ E).

LEMMA 1.13. Let E be a real fibre bundle over a smooth manifold M. Let
(aL)LeRi and (bL)LeRi be two one-parameter (p,q)-groups of jet bundle endomor-
phisms, p,q > 0. Then, for every | € N, the composition

apob; ' JHUE) — JYE)
converges to the identity as L grows to oo.

Proof. We proceed by induction on [ € N. When [ = 0, ar, and by, are homothetic
transformations of ratio L=7 on J°(E), so that ar, o bzl equals the identity for every
L € R%. Let us now assume that Lemma 1.13 holds true up to [ € N and prove it
for [ + 1. The endomorphisms ay, and by, are diagonalizable and hence leave invariant
some complement subspaces K¢ and K¢ of ker 7!*4! in J'+1(E). These complement
subspaces do not depend on L € R since ar and ars (resp. by and br/) commute for
all L, L' € R% . We deduce that in a diagonalization basis of ar,, where the eigenvalues
are ordered in the decreasing way, L~P, L=P=9 [~P=2¢ ... [~p=(+1a there exists
a lower unipotent endomorphism T such that by, = T o ay o T—'. It follows that
arob;' = (apoToa;")oT ™! is a product of unipotent endomorphisms (az, 0T oa; ")
and T—!. The coefficients of ay o T o azl converge outside the diagonal to 0 and the
same holds for those of the product ar o T o azl oT~h. O

Note that every one-parameter (p,q)-group of endomorphisms (ay,) LeRr? of jet

bundle J!(E), | € N, induces a one-parameter group of endomorphisms of the bundle
J'(Ej) denoted by (ar)rers too.

Now, let (U)Ler= be a family of finite dimensional subspaces of I'(M, £) which
are asymptotically ample, meaning ample for L large enough. We equip them with
scalar products ( , ) Ler; For L large enough the latter induces after push-forward
by gr’ and gr' respectively, a sequence of Riemannian metrics ¢%, g} on E and
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E & (H* ® F) respectively, see Definition 1.5. It also induces the sequence of push-
forwarded measures jo«pzo and j.uz1 on (H° @ Sym?(H)) ® E.

DEFINITION 1.14. The family (UL,  ,)r)rers is said to be (p,q)-tamed if and
only if there exists a one-parameter (p,q)-group of endomorphisms (GL)LeRj; of jet
bundles such that

o Whenn >2, (ar) gl converges to a metric goo on E® (H* ® E) and for
every i € {0,---,n —1}, (G/L)*j*/,bzil converges to a measure b .

o When n =1, (a}) g% converges to a metric goo on E and (ar).jospzo
converges to a measure fhso-

COROLLARY 1.15. Let E be a real line bundle over a smooth manifold equipped
with a Morse function. Let (Ur,(, )r)rers be a family of asymptotically ample finite
dimensional linear subspaces of T'(M, E), which are (p,q)-tamed for some p,q > 0.
Then, for everyi € {0,--- ,n—1},

1

Tan (e, B)*dvoly,. |dpzs (ax, B)

1
L—o0 ﬁ (Ho®Sym?(H))QFE

weakly on M whenn > 2. Whenn =1, 2E(v) — ﬁ Jrnisr 1 dvoly|dpiso ().

L—oo

Proof. From Theorem 1.10, for every L € R7,

1
E(l/l) = —F=n // |(0¢,B)*dvol 1|j*p, 1(04,6).
VT (Ho®Sym?(H))®E g L

Let (ar) Lery, be the one-parameter (p, q)-group of endomorphisms of jet bundles such

that (a;')*g} converges to go as L grows to infinity and (ar,).j.pz: converges to ul .
Then,

1 = azl*dvolgi = Lp"'("_l)(p"'q)dvolgi,

dvolaZugL

so that dvol -1« 1 ~ L’p’(”*l)(“‘l)dvolgoo. We perform the substitution ara = &
L 9L Loeo

and arB = 3, so that

E(v;) ~ L7Pp~(=D@to) pprat(=Dp+20)

L—o0
1 - ) N
S / / (@ B)*dvol,_ |y (G, B)
VT S (e wsym2 (1)) E

since (ar, © j)a«piz1 P pt.. The proof in the case n = 1 is similar. O
* L—o0

2. Random eigensections of a self-adjoint elliptic operator. The aim of
this section is to prove Theorem 0.1 and Corollary 0.2, see §2.3.2. We first recall in
§2.1 the asymptotic estimates of the derivatives of the spectral function along the
diagonal, which are needed to get these results from Remark 1.9. A proof of these
estimates is given in Appendix 5.3 while several basic definitions on pseudo-differential
operators are recalled in Appendix 5.2.
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2.1. Asymptotic derivatives of the spectral function along the diagonal.
Under the hypotheses of Theorem 0.1, we assume P to be positive, see Remark 5.9
and for every L € R%, we denote by e € I'(M x M, EX E) the spectral function of
Up, so that

Vs e U, Vo € M, s(z) = /M he(er(z,y),s(y))|dyl,

compare Definition 1.6. In particular, if (s1,--- , sy, ) denotes an orthonormal basis
of Ur, then for every z,y € M,er(z,y) = jV:Ll si(2)si(y). The metric hg induces
an isomorphism between the restriction of £ X E to the diagonal of M x M and the
trivial line bundle over M and under this isomorphism, for every x € M, e (x,2) =
ZjV:Ll hi(si(z),si(x)) > 0. The dimension Ny, of Uz, then reads N = [}, er(y,y)|dy|.
The asymptotic behaviour of the spectral function e;, along the diagonal is given by
Theorem 2.1, due to Carleman [3] when m = 2 and to Garding [7] in general.

THEOREM 2.1 ([3], [7]). Let P be an elliptic pseudo-differential operator of order
m > 0, which is self-adjoint and bounded from below, acting on a real Riemannian
line bundle over a smooth closed manifold (M, |dy|) of positive dimension n. Let op
be the principal symbol of P and ey, be its spectral function, L € Ry.. Then, for every
reM,

er(z,x) ! /K |dg|,

L5 (2m)n
where |d¢| denotes the measure on T M induced by |dy| and

Kp={€eT"M|op(¢) < L}. (2.1)

Note that K7 = K, see (0.3). In particular, the asymptotic given by Theorem 2.1
neither depends on the Riemannian metric of E, nor on the global geometry of M, it
only depends on the measure |dy| of M at 2 and on the symbol of P.

REMARK 2.2. Recall that Theorem 2.1 recovers Weyl’s theorem, which computes
the dimension

1
=V [ awdl,

see (0.4). For example, when P stands for the Laplace-Beltrami operator associated
to some Riemannian metric on M, this formula reads

1 1
— Ny, —
VI F 5 2m)n

where Vol(B,,) denotes the volume of the unit ball in R™, see §3.1.

Vol(B,)Vol,M,

In order to apply the results of §1, we have to know in addition the asymptotic
of the partial derivatives of the spectral function e; along the diagonal. This is the
subject of Theorem 2.3.

THEOREM 2.3. Under the hypotheses of Theorem 2.1, let Q1 and Q2 be two
differential operators on E with principal symbols og, and og,, of order |og,| and
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log,|, acting on the first and second variables of ey, respectively. Then, for every
reM,

Q1Q2¢r)(n0) = ﬁ /K oo, (€)oo, GOl + 0L 25 27), (2.2)

see (2.1).

Theorem 2.3 is proved by L. Hormander in [14] when @Q; and Qs are trivial,
providing the order of the error term in Theorem 2.1. It is written in [22] when
@1 and Q2 are of the same order, see Theorem 1.8.5 of [22], but we did not find a
reference for the general case, which we need here. In the particular case where P is
the Laplace-Beltrami operator, Theorem 2.3 is proved in [2], see also [21]. We give
in Appendix 5.3 a proof of Theorem 2.3 which follows closely [14]. Note that when
log,| and |og,| are not of the same parity, the main term of the right-hand side of
(2.2) vanishes since for every £ € T*M, op(—£) = op(£) while the principal symbols
00, and og, are homogeneous. When |og, | = |og,| mod(2), (2.2) reads

1 129, 1717g, | _
Q1Q26L\(z,z) L:;OO (271')” (_1) 2 /[(L Q. (g)UQQ (§)|d§|

2.2. Metrics on symmetric tensor algebras. Let V' be a real vector space
and V* be its dual. For every k € N, we denote by Sym”* (V) the space of symmetric
k-linear forms on V*. For every ¢ € Sym”*(V) and every & € V*, we set q(¢) =
q(&,--- &) and q(i€) = i*q(€). For every | € N, we set

(V)= @ Sym*(V),

0<k<l
SLV) ={q € ' (V) | 4(6) = a(=&)},
SLV) ={a € S' (V) | a(§) = —a(=O)}.

LEMMA 2.4. Let V be a real vector space and | € N. Let K C V* and p be a
positive finite measure on K such that
1. —id preserves K and
2. The support of u is not included in any degree | algebraic hypersurface of V.
Then, the bilinear form

kb SY VY x SY(V) = C

(a1,02) > ﬁ /K 41 (€)@ (E)du(€) € C

associated to (K,u) only takes real values and defines a scalar product on S'(V).
Moreover, Si (V) and S' (V') are orthogonal to each other with respect to x'.

Proof. The form «! is bilinear and the change of variables ¢ € K + —¢ € K yields
that S (V) and S' (V) are orthogonal to each other. Moreover, the restrictions of &'
to 5% (V) and S' (V) are real and symmetric, so that «! itself is symmetric and takes
only real values. Lastly, if ¢ = ZJLZSJ qj € SL.(V), where for every j € {0,---,[1/2]},
q; € Sym* (V!), then

. 27
= /K (3 (—1)745(6))2du(©),

J=0

K'(q. q) =
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so that the restriction of x! to S’i(V) is non negative and the second hypothesis
implies that it is positive definite. The same conclusion holds for the restriction of !
to S' (V), hence the result. 0

REMARK 2.5.

1. Under the hypotheses of Lemma 2.4, the restriction of k' to Sym*(V) =V
defines a scalar product on V.

2. If the measure 1 can be chosen to be the absolute value of an alternated
dim V -linear form on V, then the scalar products ' given by Lemma 2.4 do
not depend on the choice of this form and only depend on K. This is the case
when K is bounded and has a non-empty interior.

2.3. Proof of Theorem 0.1 and Corollary 0.2.

2.3.1. Induced metric on the symmetric tensor bundle. Since P is real
and self-adjoint, the set K = {£& € T*M |op(§) < L} is invariant under —Id and
induces thus a Riemannian metric on M and even on all symmetric tensor powers
SYTM), | € N, see Lemma 2.4 and Remark 2.5.

DEFINITION 2.6. For every L € R andl € N, we denote by KlL the Riemannian
metrics induced by Kr, on S (TM), see Lemma 2.4.

Together with the metric hpg, KlL induces a metric on S'(TM)® E* and by duality
a metric on SY(T*M) @ E, still denoted by & .

PROPOSITION 2.7. Under the hypotheses of Theorem 2.1, for every |l € N and
every large enough L € R, (UL, (, )1) is l-ample and (5%, L)-tamed. Moreover, the
push-forward of (, )1 under j' : U, — JYE) satisfies

-l n l
.7*<7>L ~ LmCOKJIﬂ
L—oo

see §1.3.5.

Proof. From Lemma 1.7, the push-forward hz, of (, ) under j! induces on J'(E)*
the metric j'jler. Let us fix a torsion-free connection V on TM and a connection
VE on E. They induce a decomposition J'(E) = SY(T*M) ® E which equips J'(E)*
with the metric AZL. From Theorem 2.3 follows that the metrics hlL and L conlL are
equivalent as L grows to infinity. In particular the asymptotic value of the induced
metric L cokl, on J'(E)* does not depend on the chosen decomposition J'(F) =
SHT*M) ® E, see Lemma 1.13. Now, s} is (p,q)-tamed with p = n/(2m) and
g = 1/m. Indeed, the one-parameter (p, ¢)-group of fibre bundles endomorphisms

! !
ar, @Symk(T*M) ®FE — @Symk(T*M) ®FE
k=0 k=0

_n _k
(@) reqo, 3 = (L7277 W q)peqo,.. 13-

is such that L"/™a k!, converges to the metric associated to (K, d¢) given by Lemma
2.4.0

COROLLARY 2.8. Under the hypotheses of Theorem 0.1, the push-forward of {, ),
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under j gets equivalent, as L grows to infinity and when n > 2, to
((H* x Sym*(H*)) ® E*)* - R

1
((a1,01), (az,b2)) = W(/KL he(ai(€),az2(§)) + he(b1(§),b2(8))[dE| — - -

m// hie (b (€),b2(€))|d||d€)).
Kr K7

When n = 1, the push-forward of { , )1 under jo gets equivalent, as L grows to
infinity, to (a1,az) € (T*M ® E*)* = 5= [, hi(ai(§), az(€))|d€|.

In Corollary 2.8, H* denotes the orthogonal of H with respect to the Riemannian
metric of M associated to Ky, given by Definition 2.6. The distribution H is defined
in §1 and 7 in §1.1.

Proof. From Proposition 2.7, the metric j2#(j2)* of J?(E)* gets equivalent to
Lwcok3 as L grows to infinity. By restriction to the fibre product (J*(E) X 71(Ep)
J? (E‘H))*, we deduce that the metric induced on this space gets equivalent to

(ReTM @ Sym?(H)) ® E*)* - R
1
((er,a1,0), (ea,aa, b)) o> oo [ e ea)(©) = he(er,ba)(e) — -

(2m) Kr,

- hp(bi, 2)(§) + he (b, b2)(€) + he(ar, az)(8)|dE].
We apply then Lemma 1.8 and Remark 1.9 to F' = Uy, G = (J'E) X715,
J*(Ey))*, Kp = I" and K¢ = (H+ ® Sym?(H)) ® E*, where the middle term
TM splits as H @ H. We deduce that the factors H+ ® E* and Sym?(H) ® E*

get asymptotically orthogonal, that the metric induced on H+ ® E* is asymptotically

¢i99)
(2m)n

Sym?(H) ® E* is equivalent to
1 1 , )
(b1 b2) > W(/KL hﬂh&ﬂ(&ﬂdﬂ—m//me B (01 (6), ba(€)) e €.

Indeed, with the notations of Lemma 1.8, Lg = (R® H) ® E* gets a metric c#c* for
which the factors R® EF* and H ® E* are asymptotically orthogonal to each other and
the metric on R® E* is ﬁu(KL)hE. Moreover, the correlation b#c* only involves
the factors R®@ E* and Sym?(H) ® E* and reads

1
(e1,b2) € B (Sym*(H) £ B) >~ [ ster, b 1]
@m)™ Jk,
Finally a#ta* + b#b* is a metric on (H+ @ Sym?(H)) @ E* for which both factors
are asymptotically orthogonal, the metric induced on H+ ® E* is asymptotically
equivalent to 4 (K1) times the one induced by K1, and the one induced on Sym?(H)®

(2m)n
E* is

equivalent to times the one induced by K, and finally that the one induced on

(b1.bs) € Sym?(H) © E* (2;" /K RECHSIGIS

We deduce now that the correlation term b#c* (c#tc*)~Le#b* just reads

S L e bl
Ky, LXKL

Hence the result. O
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2.3.2. Proof of Theorem 0.1 and Corollary 0.2. We know from Proposition
2.7 that U, = @, ker(P — AId) equipped with the L*-scalar product (, )z gets

ample for L large enough and (5%, -L)-tamed, see Definition 1.14. From Corollary

2m’ m
1.15, we deduce that LLIE(W) weakly converges on the whole M to the measure

n
m

1 ,
— |/ (@ 8)"dvol, . |dyie a1 ). 3)
VT S xsym2 () 0B '

where the metric g, and the measure pu’_ are given by Definition 1.14. From Propo-
sition 2.7 and Corollary 2.8, the factors £ and H* ® E are orthogonal to each other
with respect to goo, and g restricts to cohp on E and to the metric gp ® hp on
H* ® E, see (0.5). Likewise, from Corollary 2.8 the measure p’_ is a product of the
measure on H°® E induced by gp and hg, and the measure on Sym?(H)® E induced

by (0.7) and hg. We deduce that dvol,, = f%dvolh,ﬂ and that (2.3) becomes
0

1
= Elikerdp)( [ faldup (@) dvols.
VTV HiQE
We conclude thanks to the equality
> da 1
aldup(a :/ ale”™ — = —.
/HL®E| ldup () ]R| | vTooT

When n =1, LL E(v) weakly converges to the measure

1 1

— a*dvol o |dps () = 7/ aldp g (a)|dvol p

VT T*M®E| o | (@) Ve T*M®E| | (@)l |
1

T/ Cq

|dvolp|. O

Proof of Corollary 0.2. 1t is a consequence of Theorem 0.1 after integration of
the constant function 1, compare Corollary 1.11. O

3. Examples. We investigate in this third section two examples, the Laplace-
Beltrami operator in §3.1, where we prove Corollary 0.3 and Proposition 0.4, and the
Dirichlet-to-Neumann operator in §3.2, where we prove Corollary 0.5.

3.1. The Laplace-Beltrami operator.

3.1.1. Proof of Corollary 0.3. The principal symbol of the Laplace-Beltrami
operator Ay reads oa, : £ € T*M — g(&,£) € R, so that the compact K defined by
(0.3) reads

K={¢eT"M|[g(§¢) <1}

The Riemannian metric ga, induced on M by the pair (K, [d¢]) reads at every point
r €M, (u,v) € T,M? — (2+)n S E(w)€(v)|d€] by (0.5), so that

dng = €19 (3'1)

and

[dvola, | = v/er"|de], (3.2)
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where
— 1 2
G /€l (33)

Let us choose an orthonormal basis (0/0y, -+ ,0/0;,) of TyM such that
(0/04y,-+ ,0/0x, ) spans H, and let us denote by (&1, -+ ,&,) its dual basis. They
induce isomorphisms Sym?(H) = Sym(n — 1,R) and Sym?(H)* = Sym(n — 1,R)*.
From Corollary 2.8, when n > 2 the metric induced by (K, |d¢]) on Sym(n — 1,R)*
then reads

V(A, B) = ((aij)i<ij<n—1, (bij)1<ij<n—1) € (Sym*(n — 1,R))?,

d A(g)ld B(¢)|d
el ~ g [ A [ B

(A, B)a

where

/K ekl = /Za”g 20 agby)

1<i<j<n—1

: (Z bii& + 2 Z bij&i&;)|d€]
i=1

1<i<j<n—1
and
n—1
| Al [ B = [ Cegtvr ¥ asel-
K =1 1<i<j<n—1
n—1
NSRS SRS
K i1 1<i<j<n—1
so that
2 n—1 C%
(A,B)k = (ca — — Zaubu + (c2 — a) Z aiibjj + 4co Z a;bij
i=1 1<i#j<n—1 1<i<j<n-—1
= 2c2 Tr(AB) + (2——)(TYA)( B),
where
€4 = 271')” fK§1|d§|
C2 = 271')" fK§1§2|d§| and
Co = 271' n fK |d§|

This indeed follows from the relation ¢4 = 3¢z, see [2], [21] and from the fact that
[5 €6€4]d€| = 0 whenever k or [ is odd. Note that

€2 - (n+4§[()n+2) ’
€1 = nc~ﬁ2 and (3 4)
A 2

02_5 - n+2
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see [2] and [21]. Hence, the scalar product induced by (K, |d¢]) on Sym(n — 1,R)* is
given, with the notations of the appendix B of [21], by the symmetric endomorphism

s _ n+1 . —1 o .
2¢2Q(a, b, ¢) with a = 5. b= =5 and c = 1. As a consequence, the induced scalar
1

product on Sym(n — 1,R) is given by the symmetric endomorphism EQ(Q/’ b, )

with o’ = 3, = % and ¢/ = 1, see [21]. Hence, for every (A4, B) € Sym(n—1,R)?,

1 1
(A,B)a, = Z—CQ(TF(AB) + g(TfA)(TfB))-
Finally,
E(i, ker dp) — / | det Bldjua, ()
Sym2 (H)
= L/ | det B|eiﬁ(Tr(Bz)+%(TrB)2)dMA (B)
c’f_l Sym(i,;n—1—i,R) ’
n—1
= \/?71 E(Z,n—l—l),
=l

see (0.10), since from (3.1), |det B| = ¢}~ !| det 8| under the substitution B = 5. We
deduce from Theorem 0.1 and (3.2) the weak convergence on M

1 1 \/an—l v

—=E(v;) — — i,n—1—1)y/cV|dvol,|.
TEW) 2 = B )/ |dvol,|

The result follows now from (3.4) and Corollary 0.2. The proof goes along the same
lines when 1 < n < 2 and the result remains true in these cases. [

EXAMPLE 3.1. When n = 2, E(0,1) = E(1,0) = fOJrOO ae~ 3 dp(a) = %, 50
that from Corollary 0.3, for every j € {0,1},

1

E]E(VJ) Ljoo W|dv019| (35)
. 1 1
and h?lj;p EE(mj) < WVOZQ(M). (3.6)

3.1.2. Proof of Proposition 0.4. By Corollary 0.3 and Weyl’s Theorem, see
Remark 2.2, it is enough to prove that there exist C' > 0 and § > 0 such that

Vn € N, Z E(i,n — i) < Cexp(—dn?),
I+ —5|>e

since log Vol(B") ~p 00 —%5 logn. Now, if ducor denotes the Gaussian probability
measure on Sym(n,R) associated to the scalar product (A, B) = Tr(AB), then the
Gaussian probability measure p associated to (0.11) satisfies the bound p < eppucor
with ¢, = O(n). Indeed, 3 Tr A%+ 1(TrA)? > § Tr A%, whereas the ratio between the
determinants of these scalar product is a O(n), see (B.6) in [21]. Now, Theorem 1.6
of [12] provides the result.
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3.2. The Dirichlet-to-Neumann operator. Let (W, g) be a smooth compact
Riemannian manifold with boundary and A, be its Laplace-Beltrami operator. Let
us denote by M the boundary of W and for every smooth function f : M — R, we
denote by u € C°°(M,R) the solution of the Dirichlet problem

{Agu =0

We then denote by 0,u : M — R the outward normal derivative of u along M. Then,
the Dirichlet-to-Neuman operator A, reads

Ay : C=(M,R) — C%(M,R)
f = Onu.

THEOREM 3.2 ([17]). Let (W, g) be a smooth compact Riemannian manifold with
boundary M. The Dirichlet-to-Neumann operator Ay is an elliptic pseudo-differential
operator of order one on M. Its principal symbol equals & € T*M — ||€]|4-

Proof. | of Corollary 0.5] The compact K defined by (0.3) coincides with Ka,
where K, is the compact associated to the Laplace-Beltrami operator on M induced
by the restriction of g to M. The proof of Corollary 0.5 thus goes along the same
lines as the one of Corollary 0.3. O

4. Some related problems. Let us mention several related problems which we
plan to discuss in a separate paper. First, we may consider, as our probability space,
the span of eigensections with eigenvalues belonging to a window [a(L)L, L] instead
of [0, L], where a is some function of L, compare [18], [23]. That is, we may set

Up= @ ker(P-Ald).
A€la(L)L,L]

When limy,_, o a(L) = 7y € [0, 1], Theorem 0.1 still holds true, with the following mod-
ifications: K given by (0.3) should be replaced by the annulus K7 = {{ € T M |y <
op(€) <1} and when v = 1, we should assume that L~ = o(1 — a(L)) and replace
|d¢| by some Lebesgue measure on the sphere K. In the latter case for example, when
P stands for the Laplace-Beltrami operator associated to some Riemannian metric g
on the closed n-dimensional manifold M, we get the weak convergence

1
vL"

where Eg(i,n—1—1

1 1
N n+1 — ES(
l=oo /7 \/n(n 4 2)nL

)R | det A|dps(A), and pg is the Gaussian measure

E(v;)

i,n—1—1)|dvoly|,

) = fSym(i,nflfi
on Sym(n — 1,R) associated to the scalar product

(A, B) € Sym(n — 1,R)? %Tr(AB) + %(ﬂ A)(Tr B) € R. (4.1)

Finally, a manifold of special interest is the round unit sphere, where we may
consider the space of pure harmonics U} = ker(P — LId) as a probability space,
compare [19], [18]. Recall that the spectrum of the Laplace-Beltrami operator on the
round unit n-dimensional sphere is the set {{(I+n—1) |l € N} and that the eigenspace
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associated to the eigenvalue \; = I(I + n — 1) has dimension (":l) - ("tlfz). This
case of pure spherical harmonics is unfortunately not a special case of the previous
one, because v = 1 but L™'/™ cannot be a o(1 — a(L)). However, the result remains

valid and we also get the weak convergence
1 Es(i,n—1—1
nE(Vi) - niglan Z)
VL l=oo /T /n(n 4 2)—1

on the whole M. In the case n = 2, this provides the upper estimate

|dvoly|

1 1
limsup =E(by) < —,
l—)oopL ( 0)_ 7T\/§

for the expected number by of connected component of pure spherical harmonics,
compare relation (2.41) of [21].

(4.2)

5. Appendix.
5.1. The incidence varieties. We recall that for every subspace U of I'(M, E),

Ag = {s € U| s does not vanish transversally} and
Ay =A0ogU{s €U\ Ag | pjs—1(0 is not Morse, }

see §1.1 (1.2).

LEMMA 5.1 (compare Proposition 2.8 of [8]). Let E be a real line bundle over
a smooth manifold M equipped with a Morse function p : M — R and let U be a
relatively l-ample linear subspace of T'(M,E), | € {0,1}. Then, T! is a submanifold
of Upnncrity = (M \ Crit(p)) x U of codimension rank(J' (E)). Moreover, Ag
coincides with the critical locus of my : I° — U, whereas Ay \ Ag coincides with the
critical locus of the restriction TU|(z\n5 " (A0)) e \Wal(Ao) —U.

From Lemma 5.1 and Sard’s Lemma, when U is relatively l-ample, [ € {0,1}, A,
has measure zero.
Proof. Let us first assume that [ = 0 and let (z,s) € Z°. We fix some connection
VE on E. Then, the differential of j° at (x, s) reads
d\(z,s)jo : T(I,S)Q — T(z,O)E
(&,8) = (&, $(z) + VEs).

Since j° is onto, d|(x,s) 49 is onto as well and it follows from the implicit function
theorem that Z° is a codimension one submanifold of U |M\Crit(p) With tangent space

TiwZ° = {(2,3) € T U | $(z) + VEs =0} (5.1)

Moreover, the differential d|, o7v @ (4,8) € T(I_VS)IO — ¢ € T,U = U is onto if and
only if Vs is, since j° is onto. Hence, A coincides with the locus of the singular
values of myy : 0 — U.

Now, assume that [ = 1 and let (z,s) € Z'. The differential of j}, at (z,s) reads

d2.5)3 * Tie,)U = Tiw0) T (Epn)
(i, 3) = (&,73(3) + VT (G3(5))s
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where VY denotes a connection on the bundle J* (Ej3). Since j}_[ is onto, d‘(zﬁs)j}{ is
onto as well and it follows from the implicit function theorem that Z' is a submanifold
of U ap\crit(p) Of codimension rank(J ' (E)) = n, with tangent space

Tl I' = {(#,3) € Tiw)U | j3u(3) + VY (3 (5)) = 0} (5.2)

Let us assume that s ¢ Ag and let (&,5) € kerd|(, 7y. Then s = 0, which implies
that Vs = 0, so that & € ker Vs, = H,. Then, 0 = V¥ (j};(s)) = j3/(&,-), so
that @ € kerj3,(s). We deduce that the kernel of d|(, o7y is reduced to {0} if and
only if j% is non-degenerate. From Lemma 5.3, j%(s) is non-degenerate if and only if
S ¢ Al. |

REMARK 5.2. It follows from the proof of Lemma 5.1 that for every s € T'\ Ay,
the operator V7 (j1,(s)) which appears in (5.2) is invertible.

LEMMA 5.3. (compare Lemma 2.9 of [8]) Let E be a real fibre bundle over a
smooth manifold M equipped with a Morse function p: M — R. Let s be a section of
E which vanishes transversally and x € M\ Crit(p) be a critical point of pjs—1(oy. Let
A € B} such that o VES‘JC = d|yp. Then,

Ao VP(VFs130,) e = Ao V(VESs), — V(dp) = =V (dp|s-1(0))-

In Lemma 5.3, V¥, VP, V* and V denote connections on, respectively, the fibre
bundles E, H, T(s~1(0)) and T M. These connections induce connections on, respec-
tively, H* ® E, T*(s71(0)) ® E and T*M ® E, denoted in the same way by V7, V*
and V. Note that VZs, V?(V¥s)3,) and V*(dp|s-1(0))|» do not depend on the choices
of VE VP V* whereas V(V¥s) and Vdp depend on the choice of V.

Proof. Let v,w be two vector fields on s~1(0) defined in the neighbourhood of z.
Then,

0= V,UE(VE}S)M = V(VES)(U,w) + ngws

and likewise V*(dp)|, (v, w) = d),(dp(w))(v) = V(dp)(v,w) + djzp(V,w). We deduce
the relation V|, (dpjs-1(0))(v,w) = V(dp);(v,w) — Ao V(VF¥s)(v,w). Likewise, if v/
and w’ are two vector fields of H, defined in the neighbourhood of z, we have

0 = dj;(dp(w))(v') = V(dp)(v',w") + dp(Vruw')
and VP(VEs)(v/,w') = VE(VE,s) = V(VFs) (v, w') + V%U,w,s. Finally,
Ao VP(VFs), = Ao V(VFs), — V(dp). = =V (dps-1(0))-

|

5.2. Pseudo-differential operators. Let M be a smooth manifold of positive
dimension n and E be a real line bundle over M. We denote by I'(M, E) the space
of smooth global sections of E.

DEFINITION 5.4 (compare Definition 18.1.32 of [16]). A linear operator P :
I'(M,E) = T'(M, E) is called pseudo-differential of order m € R if and only if there
exist an atlas (U;)icr of M and local trivializations ®; : By, — Vi xR, where V;
denotes a bounded open subset of R™, such that
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1. Vi € I, there exist smooth kernels k; € T'(M x M, E*K E) such that for every
s; € (M, E) with support in U; and every x € M \ U;,

Psi)(x) = /M iz, )i (v) |y,

where |dy| denotes a Lebesque measure on M.
2. Vi € I, there exist smooth symbols p; : V; x R™ =2 T* My, — C such that for
every s; € T'(M, E) with support in U; and every x € V;,

B(PE)@ = [ e ) s,

where dydf si the standard Lebesque measure on V; x R™.
3. For every compact subset K; C V; and every o, 8 € N, there exist positive
constants cx, o3 such that

o 0 e
¥(w,€) € Ki X RY, |55 meepi(2, O] < exal 1)1

Now, let hp be a Riemannian metric on E and |dy| be a Lebesgue measure on
M, which we assume to be compact and without boundary. Then, I'(M, E) inherits
the L%-scalar product (0.1).

DEFINITION 5.5. The adjoint of the pseudo-differential operator P is the operator
tP satisfying for every s,t € T'(M,E),(P(s),t) = (s,'P(t)). When 'P = P, the
operator is said to be self-adjoint.

DEFINITION 5.6. (see [13], [14], [15]) A self-adjoint pseudo-differential operator
of order m € R given by Definitions 5.4, 5.5 is said to be elliptic if and only if for
every i € I and every (x,&) € T* My, such that & # 0, the limit

. 1
t_ligloo ZmPi (&)

Up(,’E,f) =

exists and is positive. This limit then does not depend on the choice of i € I and
defines a positive homogeneous function o, : T*M — R of order m and class C*°.

The function op given by Definition 5.6 will be called the homogenized principal
symbol of P. Tt is symmetric in the sense that for every (z,&) € T*M, op(x,—§) =

Up(w,f).

EXAMPLE 5.7. Recall that if in a local trivialization of E the differential operator
Q of order m reads f € C°(R™,R) — Q(0/0x1,---,0/0x,)(f) € C(R",R), where

Q e C®[R™)[Xy,---, Xyu], and if Qu, is the homogeneous part of order m of Q, then
the principal symbol of @ is the homogeneous function of order m og : (R")* — C

satisfying og(&rdxy + -+ - + Epday) = Qm(lfl, i)

DEFINITION 5.8.  An elliptic self-adjoint pseudo-differential operator P on
(M, E) is said to be bounded from below if and only if there exists a constant ¢ € R
such that for every s € T'(M, E),(P(s),s) > c(s,s). It is said to be positive when
c>0.



836 D. GAYET AND J.-Y. WELSCHINGER

REMARK 5.9. The transformation P — P — clId turns any elliptic self-adjoint
pseudo-differential operator bounded from below into a positive one. Since our results
are not sensitive to this transformation, they hold for any operator bounded from below
even if we sometimes assume it to be positive for simplicity. Recall finally that these
operators have discrete spectrum with finite dimensional eigenspaces.

5.3. Proof of Theorem 2.3 . Set L = \"" and é) = er. The strategy followed
by Hérmander is the following. The derivative of €, with respect to A is a distribution
whose support is the set of eigenvalues of P. Its Fourier transform with respect to A
is the kernel of the hyperbolic equation dyu + iP'/™ = 0, where P'/™ stands for the
operator with the same eigenfunctions as P and whose eigenvalues are the m-th root
of the corresponding ones of P. Hormander proves that in a neighbourhood V' of the
diagonal of M x M and for small values of the time ¢, this kernel takes the form of
a Fourier integral operator, modulo an operator with smooth kernel. Consequently,
if p: R — R is a non negative function in the Schwartz space such that its Fourier
transform p satisfies p(0) = 1 and Supp(p) C [—¢, €], then for every z,y € V|

+o0 _
/ p(A — N)a,ué,u(xv y)du — / y R(xz, A — pTy(f/), Y, f)ew(x’y’g)df
is a rapidly decreasing function as A\ — +o0o0, where

o Y(x,y,6) = (v —y,&) + O]z — y|?|¢]) when x — y, for a scalar product (, )
in a chart of M that contains x and y.

° P(§) = O’P(é)l/m + 0( )

o R(x,\y,8) = 5 [ p(t)a(z, t,y,&)e dt with q(z,0,y,&) = (57)" +O(1/[¢)),
see Lemma 4.1 of [14]

This function R is rapidly decreasing as A grows to infinity. After differentiation we
deduce likewise that

+o0 )
/ pA= )0 @1Qeéu(w, y)dp— [ Q1Qa(R(z, A—p|, (), y,£)eV "V 9)d¢ (5.3)

—00 TJM

is a rapidly decreasing function as A grows to infinity.

LEMMA 5.10. (Compare Lemma 4.3 of [14]) Under the hypotheses of Theorem
2.3, there exists a constant C' > 0 such that for every (x,y) in a neighbourhood V' of
the diagonal of M x M, for every A > 0 and every 0 < p <1,

[Q1Q2Ex14(2,y) — Q1Q2Ex(2,y)||np < C(L+ [A) I HIo@Floes],

Proof. Let us assume first that Q1 = Q2 and x = y. We proceed as in the proof
of Lemma 4.3 of [14]. The function

0uQ1Q1é,(x, ) thE Q151 (), Qusi(2))

is positive, where s, is an eigenfunction with eigenvalue A\}". We deduce the existence
of a constant C'; > 0 such that

1Q1Q1éxtn(z,y) — Q1Quex(z, y)||hy < Ch /}Rp(A — 11)0,Q1Q1 €, (x, x)dp.
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From (5.3), it is enough to bound from above the integral

Q1 (R, A = p'(6),y, e ¥ 9) de.
T:M
From the ellipticity of P we deduce the existence of Co > 0 such that
V§ € T;Mu |Q1Q1¢($, y7§)|\(z,z) = |0'Q1 (§)|2 < 02(1 +p/(§))2|oql\'

Following [14, p 210], we deduce that
| /T | Q1@ (Bl A =p(€).y, £))e' v de|

<oy / (14 A= o] ™N)(1 + [o])?72: ldim(y, o)
R

< ON™) + Ca(1 + [~ HH2loanl,

where C3, Cy are positive constants, N denotes a large enough integer and

m(x,o) :/ de.
{¢eTr M| op(§)<c}

We deduce the result when @1 = Q2 and = = y, then likewise when (z,y) lies in a
neighbourhood V' of the diagonal, see Lemma 3.1 of [14]. The general case is now a
consequence of the Cauchy-Schwarz inequality and there exists a positive constant ¢
such that Vz,y € N,VA > 0,Vu € [0,1],

1Q1Qe8rsu(wy) = Qu@een(z.W)lne =1l D Qulsk(2))Q2(sk(v))]

k| AL <A +p

<Y lQusk@))?)

k| ASA<A+p

SO Qs

k| AS S
< (|@1Q1)(@w)ersn — Q1Qujar|H)/? -
- (Q2Qa () Ertps — Q2Qaj(yErl|H)*?
< C(1 + | A tleal+oe, |,
O

Proof of Theorem 2.5. We proceed as in [14], p. 211. We deduce from Lemma
5.10 that Vz,y € U,VA > 0,Vu > 0,

1Q1Q28rsu(@,y) = QuQa8r(x,) |y < C(L+ A+ p)" ol Hlmal (1 4 po).
Thus, there exists C’ > 0 such that

[ / P — )Q1Q28,(z,y)du — Q1Q28x(z,y)||n, < C'(1+ )\)"_1+|UQ1|‘H<TQ2|'
R

However, by integration of (5.10) over the interval | — 0o, A], we deduce the existence
of C" > 0 such that

A
[Q1Q28x+u(z,y) — / / Q1Q2(R(z,0 —pfy,y,f)ew(w’y’g))dfdaﬂh}; <C".
TyM J—oo
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Moreover, by  definition of ¢ and R, [, fj‘oo Q1Q2(R(z,0 —
Y

P, (€), 3, e @89 dédo equals

1

(2m)" /{EGT;MP’(EKA}

- / Q1Qs(Ra (A — pl, (€),9, €)™ =9 ),
T;M

(1+ O(1/[€])Q1Qae™ ¥ 9)dE + -

where

R — fzoo R(z,0,y,&)do if 7 <0
b f_TOO R(‘Ivavyag)dg_q(xaovyag) ifr>0

is a function which decreases faster than any polynomial, see [14, p. 211]. Thus, there
exists a constant C"” > 0 such that

[ Q1Qa(R(z, 0 — pl, (&), y, &)™) dedo — - --

Ty Mx]—o0,)]
1

- / 0, (€)0Q, (§)de| < C”(1+ )"~ HHlearltloasl,
2m)" Jeer: M1 p(€)<r}

From the triangle inequality, we finally deduce that there exists C"”” > 0 such that
for every (z,y) € V,

1
Q1Qz2er(x,y) — o /
2m)" Jigersnm| op(e)<Ly

S C////(l 4 A)n71+|UQ1‘+|UQ2‘.

Q. (g)UQQ (§)d§”

Hence the result. O

REFERENCES

[1] P. BERARD, Volume des ensembles nodaux des fonctions propres du laplacien, Bony-Sjdstrand-
Meyer seminar, 1984-1985, Ecole Polytech., Palaiseau, 1985, pp. Exp. No. 14 , 10.

[2] X. BIN, Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed
Riemannian manifold, Ann. Global Anal. Geom., 26:3 (2004), pp. 231-252.

[3] T. CARLEMAN, Propriétés asymptotiques des fonctions fondamentales des membranes wvi-
brantes, C. R. 8eme Congr. des Math. Scand. Stockholm, 1934 (1935), pp. 34-44.

[4] R. COURANT AND D. HILBERT, Methods of mathematical physics. Vol. I, Wiley Classics Library,
John Wiley & Sons, Inc., New York, 1989, Partial differential equations, Reprint of the
1962 original, A Wiley-Interscience Publication.

[5] M. R. DoucGLAS, B. SHIFFMAN, AND S. ZELDITCH, Critical points and supersymmetric vacua.
I, Comm. Math. Phys., 252 (2004), no. 1-3, pp. 325-358.

[6] H. FEDERER, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften,
Band 153, Springer-Verlag New York Inc., New York, 1969.

[7] L. GARDING, On the asymptotic distribution of the eigenvalues and eigenfunctions of elliptic
differential operators, Math. Scand., 1 (1953), pp. 237-255.

[8] D. GAYET AND J.-Y. WELSCHINGER, Lower estimates for the expected Betti numbers of random
real hypersurfaces, J. Lond. Math. Soc. (2), 90:1 (2014), pp. 105-120.

9] , What is the total Betti number of a random real hypersurface?, J. Reine Angew. Math.,
689 (2014), pp. 137-168.
(10] , Expected topology of random real algebraic submanifolds., J. Inst. Math. Jussieu, 14:4

(2015), pp. 673-702.



21]

22]

23]

[24]

BETTI NUMBERS OF RANDOM NODAL SETS 839

, Universal components of random mnodal sets, Comm. Math. Phys., 347:3 (2016),

pp. 777-797.

, Betti numbers of random real hypersurfaces and determinants of random symmetric
matrices, J. Eur. Math. Soc., 18 (2016), pp. 733-772.

L. HORMANDER, Pseudo-differential operators, Comm. Pure Appl. Math., 18 (1965), pp. 501—
517.

, The spectral function of an elliptic operator, Acta Math., 121 (1968), pp. 193-218.

, Fourier integral operators. I, Acta Math., 127 (1971), no. 1-2, pp. 79-183.

, The analysis of linear partial differential operators. III, Classics in Mathematics,
Springer, Berlin, 2007, Pseudo-differential operators, Reprint of the 1994 edition.

J. M. LEE AND G. UHLMANN, Determining anisotropic real-analytic conductivities by boundary
measurements, Comm. Pure Appl. Math., 42:8 (1989), pp. 1097-1112.

A. LERARIO AND E. LUNDBERG, Statistics on Hilbert’s 16th problem., Int. Math. Res. Not.,
2015:12 (2015), pp. 4293-4321.

F. NAZAROV AND M. SODIN, On the number of nodal domains of random spherical harmonics,
Amer. J. Math., 131:5 (2009), pp. 1337-1357.

, Asymptotic laws for the spatial distribution and the number of connected components
of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal., 12:3 (2016), pp. 205-278.

L. 1. NicoLagscu, Critical sets of random smooth functions on compact manifolds., Asian J.
Math., 19:3 (2015), pp. 391-432.

YU. SAFAROV AND D. VASSILIEV, The asymptotic distribution of eigenvalues of partial differen-
tial operators, Translations of Mathematical Monographs, vol. 155, American Mathematical
Society, Providence, RI, 1997.

P. SARNAK AND I. WIGMAN, Topologies of nodal sets of random band limited functions, Ad-
vances in the theory of automorphic forms and their L-functions, pp. 351-365, Contemp.
Math., 664, Amer. Math. Soc., Providence, RI, 2016.

M. SHUB AND S. SMALE, Complexity of Bezout’s theorem. II. Volumes and probabilities, Com-
putational algebraic geometry (Nice, 1992), Progr. Math., vol. 109, Birkhduser Boston,
1993, pp. 267-285.




840 D. GAYET AND J.-Y. WELSCHINGER



