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SCHUBERT DECOMPOSITIONS FOR IND-VARIETIES OF
GENERALIZED FLAGS∗

LUCAS FRESSE† AND IVAN PENKOV‡

Abstract. Let G be one of the ind-groups GL(∞), O(∞), Sp(∞) and P ⊂ G be a splitting
parabolic ind-subgroup. The ind-variety G/P has been identified with an ind-variety of generalized
flags in [4]. In the present paper we define a Schubert cell on G/P as a B-orbit on G/P, where B is
any Borel ind-subgroup of G which intersects P in a maximal ind-torus. A significant difference with
the finite-dimensional case is that in general B is not conjugate to an ind-subgroup of P, whence
G/P admits many non-conjugate Schubert decompositions. We study the basic properties of the
Schubert cells, proving in particular that they are usual finite-dimensional cells or are isomorphic to
affine ind-spaces.

We then define Schubert ind-varieties as closures of Schubert cells and study the smoothness of
Schubert ind-varieties. Our approach to Schubert ind-varieties differs from an earlier approach by H.
Salmasian [12].
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AMS subject classifications. 14M15, 14M17, 20G99.

1. Introduction. If G is a reductive algebraic group, the flag variety G/B is the
most important geometric object attached to G. If G is a classical ind-group, G =
GL(∞), O(∞), Sp(∞), then there are infinitely many conjugacy classes of splitting
Borel subgroups B (the notion of splitting subgroup is defined in Section 2.2), and
hence there are infinitely many flag ind-varieties G/B. These smooth ind-varieties
have been studied in [3, 4, 5], and in [4] each such ind-variety has been described
explicitly as the ind-variety of certain generalized flags in the natural representation
V of G. A generalized flag is a chain of subspaces of V satisfying two conditions (see
Definition 1), but notably such a chain is rarely ordered by an ordered subset of Z.

In this paper we undertake a next step in the study of the generalized flag ind-
varieties G/B, and more generally any ind-variety of the form G/P where P is a
splitting parabolic subgroup of G. Namely, we define and study the Schubert de-
compositions of the ind-varieties G/P. The classical Schubert decomposition of a
finite-dimensional flag variety is a key to important purely geometric theories such
as Schubert calculus, as well as to geometric representation theory. In particular,
Schubert varieties, i.e. closures of Schubert cells, play a crucial role in the geometric
theory of category O. The challenge to find ind-analogues of those theories motivates
our study of Schubert decompositions of ind-varieties of generalized flags.

We define the Schubert cells on G/P as the B-orbits on G/P for any Borel
ind-subgroup B which contains a common splitting maximal ind-torus with P. The
essential difference with the finite-dimensional case is that B is not necessarily con-
jugate to a Borel subgroup of P. This leads to the existence of many non-conjugate
Schubert decompositions of a given ind-variety of generalized flags G/P. We compute
the dimensions of the cells of all Schubert decompositions of G/P for any splitting
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Borel subgroup B ⊂ G. We also point out the Bruhat decomposition into double
cosets of the ind-group G which results from a Schubert decomposition of G/P.

In the last part of the paper we study the smoothness of Schubert ind-varieties
which we define as closures of Schubert cells. We establish a criterion for smoothness
which allows us to conclude that certain known criteria for smoothness of finite-
dimensional Schubert varieties pass to the limit at infinity.

In his work [12], H. Salmasian introduced Schubert ind-subvarieties of G/B as
arbitrary direct limits of Schubert varieties on finite-dimensional flag subvarieties of
G/B. He showed that such an ind-variety may be singular at all of its points. With
our definition, which takes into account the natural action of G on G/B, a Schubert
ind-variety has always a smooth big cell.

2. Preliminaries. In what follows K is an algebraically closed field of charac-
teristic zero. All varieties and algebraic groups are defined over K. If A is a finite
or infinite set, then |A| denotes its cardinality. If A is a subset of the linear space V ,
then 〈A〉 denotes the linear subspace spanned by A.

2.1. Ind-varieties. An ind-variety is the direct limit X = lim
→

Xn of a chain of

morphisms of algebraic varieties

X1
ϕ1
→ X2

ϕ2
→ · · ·

ϕn−1

→ Xn
ϕn
→ Xn+1

ϕn+1

→ · · · . (1)

Note that the direct limit of the chain (1) does not change if we replace the sequence
{Xn}n≥1 by a subsequence {Xin}n≥1 and the morphisms ϕn by the compositions
ϕ̃in := ϕin+1−1 ◦ · · · ◦ ϕin+1 ◦ ϕin . Let X′ be a second ind-variety obtained as the
direct limit of a chain

X ′
1

ϕ′1→ X ′
2

ϕ′2→ · · ·
ϕ′n−1

→ X ′
n

ϕ′n→ X ′
n+1

ϕ′n+1

→ · · · .

A morphism of ind-varieties f : X′ → X is a map from lim
→

X ′
n to lim

→
Xn induced

by a collection of morphisms of algebraic varieties {fn : X ′
n → Xin}n≥1 such that

ϕ̃in ◦ fn = fn+1 ◦ ϕ′
n for all n ≥ 1. The identity morphism idX is a morphism that

induces the identity as a set-theoretic map X → X. A morphism f : X′ → X is
an isomorphism if there exists a morphism g : X → X′ such that g ◦ f = idX′ and
f ◦ g = idX.

Any ind-variety X is endowed with a topology by declaring a subset U ⊂ X open
if its inverse image by the natural map Xm → lim

→
Xn is open for all m. Clearly, any

open (resp., closed) (resp., locally closed) subset Z of X has a structure of ind-variety
induced by the ind-variety structure on X. We call Z an ind-subvariety of X.

In what follows we only consider chains (1) where the morphisms ϕn are inclusions,
so that we can write X =

⋃
n≥1 Xn. Then the sequence {Xn}n≥1 is called exhaustion

of X.
Let x ∈ X, so that x ∈ Xn for n large enough. Let mn,x ⊂ OXn,x be the maximal

ideal of the localization at x of OXn
. For each k ≥ 1 we have an epimorphism

αn,k : Sk(mn,x/m
2
n,x) → m

k
n,x/m

k+1
n,x . (2)

Note that the point x is smooth in Xn if and only if αn,k is an isomorphism for all k.
By taking the inverse limit, we obtain a map

α̂k := lim
←

αn,k : lim
←

Sk(mn,x/m
2
n,x) → lim

←
m

k
n,x/m

k+1
n,x
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which is an epimorphism for all k. We say that x is a smooth point of X if and only
if α̂k is an isomorphism for all k. We say that x is a singular point otherwise. The
notion of smoothness of a point is independent of the choice of exhaustion {Xn}n≥1

of X. We say that X is smooth if every point x ∈ X is smooth. As general references
on smooth ind-varieties see [8, Chapter 4] and [11].

Example 1. (a) Assume that every variety Xn in the chain (1) is an affine
space, every image ϕn(Xn) is an affine subspace of Xn+1, and lim

n→∞
dimXn = ∞.

Then, up to isomorphism, X = lim
→

Xn is independent of the choice of {Xn, ϕn}n≥1

with these properties. We write X = A∞ and call it the infinite-dimensional affine
space. For instance, A∞ admits the exhaustion A∞ =

⋃
n≥1 A

n where An stands for
the n-dimensional affine space. The infinite-dimensional affine space A∞ is a smooth
ind-variety.
(b) If every variety Xn in the chain (1) is a projective space, every image ϕn(Xn) is a
projective subspace of Xn+1, and lim

n→∞
dimXn = ∞, then X = lim

→
Xn is independent

of the choice of {Xn, ϕn}n≥1 with these properties. We write X = P∞ =
⋃

n≥1 P
n and

call P∞ the infinite-dimensional projective space. The infinite-dimensional projective
space P∞ is also a smooth ind-variety.

A cell decomposition of an ind-variety X is a decomposition X =
⊔

i∈I Xi into lo-
cally closed ind-subvarietiesXi, each being a finite-dimensional or infinite-dimensional
affine space, and such that the closure of each Xi in X is a union of some subsets Xj

(j ∈ I).

2.2. Ind-groups. An ind-group is an ind-variety G endowed with a group struc-
ture such that the multiplication G×G → G, (g, h) 
→ gh, and the inversion G → G,
g 
→ g−1 are morphisms of ind-varieties. A morphism of ind-groups f : G′ → G is by
definition a morphism of groups which is also a morphism of ind-varieties. A closed
ind-subgroup is a subgroup H ⊂ G which is also a closed ind-subvariety.

We only consider locally linear ind-groups, i.e., ind-groups admitting an exhaus-
tion {Gn}n≥1 by linear algebraic groups. Moreover, we focus on the classical ind-
groups GL(∞), O(∞), Sp(∞), which are obtained as subgroups of the group Aut(V )
of linear automorphisms of a countable-dimensional vector space V :

• Let E be a basis of V . Define G(E) as the subgroup of elements g ∈ Aut(V )
such that g(e) = e for all but finitely many basis vectors e ∈ E. Given any
filtration E =

⋃
n≥1 En of the basis E by finite subsets, we have

G(E) =
⋃
n≥1

G(En) (3)

where G(En) stands for GL(〈En〉). Thus G(E) is a locally linear ind-group.
We also write G(E) = GL(∞).

• Assume that the space V is endowed with a nondegenerate symmetric or
skew-symmetric bilinear form ω. A basis E of V is called ω-isotropic if it is
equipped with an involution iE : E → E with at most one fixed point, such
that ω(e, e′) = 0 for any e, e′ ∈ E unless e′ = iE(e). Given an ω-isotropic
basis E of V , define Gω(E) as the subgroup of elements g ∈ G(E) which
preserve the bilinear form ω. If a filtration E =

⋃
n≥1 En of the basis E by

iE-stable finite subsets is fixed, we have

Gω(E) =
⋃
n≥1

Gω(En) (4)
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where Gω(En) stands for the subgroup of elements g ∈ G(En) preserving the
restriction of ω. Thereby Gω(E) has a natural structure of locally linear ind-
group. We also write Gω(E) = Sp(∞) when ω is symplectic, and Gω(E) =
O(∞) when ω is symmetric.

Remark 1. (a) Note that the group G(E) = GL(∞) depends on the choice of
the basis E. For this reason, in what follows, we prefer the notation G(E) instead of
GL(∞).

An alternative construction of GL(∞) is as follows. Note that the dual space V ∗

is uncountable dimensional. Let V∗ ⊂ V ∗ be a countable-dimensional subspace such
that the pairing V∗ × V → K is nondegenerate. Then the group

G(V, V∗) := {g ∈ Aut(V ) : g(V∗) = V∗ and there are finite-codimensional subspaces
of V and V∗ fixed pointwise by g}

is an ind-group isomorphic to GL(∞). Moreover, we have G(V, V∗) = G(E) whenever
V∗ is spanned by the dual family of E.
(b) The form ω induces a countable-dimensional subspace V∗ := {ω(v, ·) : v ∈ V } ⊂
V ∗ of the dual space. Then the group

G(V, ω) := {g ∈ G(V, V∗) : g preserves ω}

is an ind-subgroup of G(V, V∗) isomorphic to Sp(∞) (if ω is symplectic) or O(∞) (if
ω is symmetric). The equality G(V, ω) = Gω(E) holds whenever E is an ω-isotropic
basis.
(c) If ω is symplectic, then the involution iE : E → E has no fixed point; the basis E
is said to be of type C in this case. If ω is symmetric, then the involution iE : E → E
can have one fixed point, in which case the basis E is said to be of type B; if iE has
no fixed point, the basis E is said to be of type D. Bases of both types B and D exist
in V (see [4, Lemma 4.2]).

In the rest of the paper, we fix once and for all a basis E of V and a filtration
E =

⋃
n≥1 En by finite subsets. We assume that the basis E is ω-isotropic and that

the subsets En are iE-stable whenever the bilinear form ω is considered.
Moreover, if the form ω is symmetric, in view of Remark 1 (b)–(c) in what follows

we assume that the basis E is of type B and that every subset En of the filtration
contains the fixed point of the involution iE. This convention ensures that the variety
of isotropic flags of a given type of each finite-dimensional space 〈En〉 is connected
and Gω(En)-homogeneous. Similarly, every iE-stable finite subset of E considered in
the sequel is assumed to contain the fixed point of iE .

By G we denote one of the ind-groups G(E), Gω(E).
Let H be the subgroup of elements g ∈ G which are diagonal in the basis E.

Then H is a closed ind-subgroup of G called splitting Cartan subgroup. A closed
ind-subgroup B ⊂ G which contains H is called splitting Borel subgroup if it is locally
solvable (i.e., every finite-dimensional ind-subgroup B ⊂ B is solvable) and is maxi-
mal with this property. A closed ind-subgroup which contains such a splitting Borel
subgroup B is called splitting parabolic subgroup. Equivalently, a closed ind-subgroup
P of G containing H is a splitting parabolic subgroup of G if and only if P ∩ Gn

is a parabolic subgroup of Gn for all n ≥ 1, where G =
⋃

n≥1 Gn is the natural ex-
haustion of (3) or (4). The quotient G/P =

⋃
n≥1 Gn/(P∩Gn) is a locally projective

ind-variety (i.e., an ind-variety exhausted by projective varieties); note however that
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G/P is in general not a projective ind-variety (i.e., is not isomorphic to a closed ind-
subvariety of the infinite-dimensional projective space P∞): see [4, Proposition 7.2]
and [5, Proposition 15.1].

In [4] it is shown that the ind-variety G/P can be interpreted as an ind-variety
of certain generalized flags. This construction is reviewed in the following section.

3. Ind-varieties of generalized flags. In Section 3.1 we recall from [3, 4] the
notion of generalized flag and the correspondence between splitting parabolic sub-
groups P of G(E) and E-compatible generalized flags F . We also recall from [4] the
construction of the ind-varieties Fl(F , E) of generalized flags and their correspondence
with homogeneous ind-spaces of the form G(E)/P.

In Section 3.2 we recall from [3, 4] the notion of ω-isotropic generalized flags
and the construction of the ind-variety Fl(F , ω, E) of ω-isotropic generalized flags,
as well as the correspondence with splitting parabolic subgroups of Gω(E) and the
corresponding homogeneous ind-spaces.

For later use, some technical aspects of the construction of the ind-varieties
Fl(F , E) and Fl(F , ω, E) are emphasized in Section 3.3.

3.1. Ind-variety of generalized flags. By chain of subspaces of V we mean a
set of vector subspaces of V which is totally ordered by inclusion.

Definition 1 ([3, 4]). A generalized flag is a chain F of subspaces of V satisfying
the following additional conditions:

(i) every F ∈ F has an immediate predecessor F ′ in F or an immediate successor
F ′′ in F ;

(ii) for every nonzero vector v ∈ V , there is a pair (F ′, F ′′) of consecutive elements
of F such that v ∈ F ′′ \ F ′.

Let AF denote the set of pairs (F ′, F ′′) of consecutive subspaces F ′, F ′′ ∈ F . The
set AF is totally ordered by the inclusion of pairs. Given a totally ordered set (A,�),
we denote by FlA(V ) the set of generalized flags such that (AF ,⊂) is isomorphic to
(A,�). Equivalently, FlA(V ) is the set of generalized flags F which can be written
in the form

F = {F ′
α, F

′′
α : α ∈ A}, (5)

where F ′
α, F

′′
α are subspaces of V such that⎧⎪⎨

⎪⎩
F ′
α � F ′′

α for all α ∈ A;

F ′′
α ⊂ F ′

β whenever α ≺ β (possibly F ′′
α = F ′

β);

V \ {0} =
⊔

α∈A F ′′
α \ F ′

α.

(6)

Definition 2. Let L be a basis of the space V . A generalized flag F = {F ′
α, F

′′
α :

α ∈ A} ∈ FlA(V ) is said to be compatible with L if there is a (necessarily surjective)
map σ : L → A such that

F ′
α = 〈e ∈ L : σ(e) ≺ α〉, F ′′

α = 〈e ∈ L : σ(e) � α〉

for all α ∈ A.

Every generalized flag admits a compatible basis (see [4, Proposition 4.1]). The
group G(E) acts on generalized flags in a natural way. Let H(E) ⊂ G(E) be the



604 L. FRESSE AND I. PENKOV

splitting Cartan subgroup formed by elements diagonal in E. It is easy to see that a
generalized flag F is compatible with E if and only if it is preserved by H(E). We
denote by PF ⊂ G(E) the subgroup of all elements which preserve F .

Proposition 1 ([3, 4]). (a) If F is a generalized flag compatible with E, then
PF is a splitting parabolic subgroup of G(E) containing H(E).
(b) The map F 
→ PF is a bijection between generalized flags compatible with E and
splitting parabolic subgroups of G(E) containing H(E).
(c) A splitting parabolic subgroup PF is a splitting Borel subgroup if and only if the
generalized flag F is maximal (i.e., dimF ′′/F ′ = 1 for every pair (F ′, F ′′) of consec-
utive elements of F).

Remark 2. Proposition 1 (c) can be interpreted as a version of Lie’s theorem for
the action of any splitting Borel subgroup on the space V . A general version of Lie’s
theorem has been proved by J. Hennig in [6].

Definition 3 ([4]). (a) We say that a generalized flag F is weakly compatible
with E if F is compatible with a basis L of V such that E \ E ∩ L is a finite set
(equivalently codimV 〈E ∩ L〉 is finite).
(b) Two generalized flags F ,G are said to be E-commensurable if both F and G are
weakly compatible with E, and there are an isomorphism of ordered sets φ : F → G
and a finite-dimensional subspace U ⊂ V such that

(i) φ(F ) + U = F + U for all F ∈ F ,
(ii) dimφ(F ) ∩ U = dimF ∩ U for all F ∈ F .

Remark 3. (a) Clearly, if F ,G are E-commensurable with respect to a finite-
dimensional subspace U , then F ,G are E-commensurable with respect to any finite-
dimensional subspace U ′ ⊂ V such that U ′ ⊃ U .
(b) E-commensurability is an equivalence relation on the set of generalized flags
weakly compatible with E.

Let F be a generalized flag compatible with E. We denote by Fl(F , E) the set
of all generalized flags which are E-commensurable with F .

Proposition 2 ([4]). The set Fl(F , E) is endowed with a natural structure of
ind-variety. Moreover, this ind-variety is G(E)-homogeneous and the map g 
→ gF
induces an isomorphism of ind-varieties G(E)/PF

∼= Fl(F , E).

3.2. Ind-variety of isotropic generalized flags. In this section we assume
that the space V is endowed with a nondegenerate symmetric or skew-symmetric
bilinear form ω. We write U⊥ for the orthogonal subspace of the subspace U ⊂ V
with respect to ω. We assume that the basis E is ω-isotropic, i.e., endowed with an
involution iE : E → E with at most one fixed point and such that, for any e, e′ ∈ E,
ω(e, e′) = 0 unless e′ = iE(e).

Definition 4 ([3, 4]). A generalized flag F is said to be ω-isotropic if F⊥ ∈ F
whenever F ∈ F , and if the map F 
→ F⊥ is an involution of F .

For F as in Definition 4, the involution F 
→ F⊥ is an anti-automorphism of the
ordered set (F ,⊂), i.e., it reverses the inclusion relation. Moreover, it induces an
involutive anti-automorphism (F ′

α, F
′′
α ) 
→ ((F ′′

α )
⊥, (F ′

α)
⊥) of the set (AF ,⊂) of pairs

of consecutive subspaces of F . Given a totally ordered set (A,�, iA) equipped with an
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involutive anti-automorphism iA : A → A, we denote by FlωA(V ) the set of generalized
flags F ∈ FlA(V ) (see (5)–(6)) which are ω-isotropic and satisfy the condition

((F ′′
α )

⊥, (F ′
α)

⊥) = (F ′
iA(α), F

′′
iA(α)) for all α ∈ A. (7)

Remark 4. Note that the set A decomposes as

A = A� � A0 � Ar

where A� = {α ∈ A : α ≺ iA(α)}, A0 = {α ∈ A : α = iA(α)} (formed by at most one
element), Ar = {α ∈ A : α � iA(α)}, and the map iA restricts to bijections A� → Ar

and Ar → A�.
Given any F ∈ FlωA(V ), we set T ′ =

⋃
α∈A�

F ′′
α and T ′′ =

⋂
α∈Ar

F ′
α. Clearly,

T ′ ⊂ T ′′, moreover it is easy to see that (T ′)⊥ = T ′′. We have either T ′ = T ′′ or
T ′ � T ′′. In the former case, the anti-automorphism iA has no fixed point, hence
A = A� � Ar. In the latter case, the subspaces T ′, T ′′ necessarily belong to F ,
moreover we have (T ′, T ′′) = (F ′

α0
, F ′′

α0
) where α0 ∈ A is the unique fixed point of iA;

thus A = A� � {α0} � Ar in this case.

The following lemma shows that the notions of compatibility and weak-
compatibility with a basis (Definitions 2–3) translate in a natural way to the context
of ω-isotropic generalized flags and bases.

Lemma 1. Let F ∈ FlωA(V ), with (A,�, iA) as above.
(a) Let L be an ω-isotropic basis with corresponding involution iL : L → L. Assume
that F is compatible with L in the sense of Definition 2, via a surjective map σ : L →
A. Then the map σ satisfies σ ◦ iL = iA ◦ σ.
(b) Assume that F is weakly compatible with E. Then there is an ω-isotropic basis L
such that the set E \ E ∩ L is finite and F is compatible with L.

Proof. (a) For every e ∈ L, we have e ∈ F ′′
σ(e) \ F

′
σ(e). Then iL(e) ∈ (F ′

σ(e))
⊥ \

(F ′′
σ(e))

⊥. The definition of iA yields σ(iL(e)) = iA(σ(e)).

(b) Let L be a basis of V such that E \ E ∩ L is finite and F is compatible with
L. Take a subset E′ ⊂ E stable by the involution iE, such that iE has no fixed
point in E′, E \ E′ is finite, and E′ ⊂ E ∩ L. Then V ′′ := 〈E \ E′〉 is a finite-
dimensional space and the restriction of ω to V ′′ is nondegenerate. The intersections
F|V ′′ := {F ∩V ′′ : F ∈ F} form an isotropic flag of V ′′. Since V ′′ is finite dimensional,
it is routine to find an ω-isotropic basis E′′ of V ′′ such that F|V ′′ is compatible with
E′′. Then E′ ∪ E′′ is an ω-isotropic basis of V , and F is compatible with E′ ∪E′′.

The group Gω(E) acts in a natural way on ω-isotropic generalized flags. Let
Hω(E) ⊂ Gω(E) be the splitting Cartan subgroup formed by elements diagonal in
E. An ω-isotropic generalized flag is compatible with the basis E if and only if it is
preserved by Hω(E). Given an ω-isotropic generalized flag F compatible with E, we
denote by Pω

F ⊂ Gω(E) the subgroup of all elements which preserve F . Moreover,
we denote by Fl(F , ω, E) the set of all ω-isotropic generalized flags which are E-
commensurable with F .

Proposition 3 ([3, 4]). (a) The map F 
→ Pω
F is a bijection between ω-isotropic

generalized flags compatible with E and splitting parabolic subgroups of Gω(E) con-
taining Hω(E).
(b) A splitting parabolic subgroup Pω

F is a splitting Borel subgroup of Gω(E) if and
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only if the generalized flag F is maximal.
(c) The set Fl(F , ω, E) is endowed with a natural structure of ind-variety. This ind-
variety is Gω(E)-homogeneous and the map g 
→ gF induces an isomorphism of
ind-varieties Gω(E)/Pω

F
∼= Fl(F , ω, E).

3.3. Structure of ind-variety on Fl(F , E) and Fl(F , ω, E). In this section
we present the structure of ind-variety on Fl(F , E) and Fl(F , ω, E) mentioned in
Propositions 2–3.

We assume that F is a generalized flag compatible with the basis E. Let (A,�)
be a totally ordered set such that F ∈ FlA(V ). Hence we can write F = {F ′

α, F
′′
α :

α ∈ A}. Let σ : E → A be the surjective map corresponding to F in the sense of
Definition 2.

Let I ⊂ E be a finite subset. The generalized flag F gives rise to a (finite) flag
F|I of the finite-dimensional vector space 〈I〉 by letting

F|I := {F ∩ 〈I〉 : F ∈ F} = {F ′
α ∩ 〈I〉, F ′′

α ∩ 〈I〉 : α ∈ A}.

Let

d
′
α := dimF

′
α ∩ 〈I〉 = |{e ∈ I : σ(e) ≺ α}| and d

′′
α := dimF

′′
α ∩ 〈I〉 = |{e ∈ I : σ(e) � α}|.

We denote by Fl(F , I) the projective variety of flags in the space 〈I〉 of the form
{M ′

α,M
′′
α : α ∈ A} where M ′

α,M
′′
α ⊂ 〈I〉 are linear subspaces such that

dimM
′
α = d

′
α, dimM

′′
α = d

′′
α, M

′
α ⊂ M

′′
α for all α ∈ A, and M

′′
α ⊂ M

′
β whenever α ≺ β.

If J ⊂ E is another finite subset such that I ⊂ J , we define an embedding ιI,J :
Fl(F , I) ↪→ Fl(F , J), {M ′

α,M
′′
α : α ∈ A} 
→ {N ′

α, N
′′
α : α ∈ A} by letting

N
′
α = M

′
α ⊕ 〈e ∈ J \ I : σ(e) ≺ α〉 and N

′′
α = M

′′
α ⊕ 〈e ∈ J \ I : σ(e) � α〉 for all α ∈ A.

If we consider a filtration E =
⋃

n≥1 En of the basis E by finite subsets, then we
obtain a chain of morphisms of projective varieties

Fl(F , E1)
ι1
↪→ Fl(F , E2)

ι2
↪→ · · ·

ιn−1

↪→ Fl(F , En)
ιn
↪→ Fl(F , En+1)

ιn+1

↪→ · · · (8)

where ιn := ιEn,En+1
.

Proposition 4 ([4]). The set Fl(F , E) is the direct limit of the chain of mor-
phisms (8). Hence Fl(F , E) is endowed with a structure of ind-variety. Moreover,
this structure is independent of the filtration {En}n≥1 of the basis E.

We assume next that the space V is endowed with a nondegenerate symmetric
or skew-symmetric bilinear form ω, that the basis E is ω-isotropic with correspond-
ing involution iE : E → E, that the ordered set (A,�) is equipped with an anti-
automorphism iA : A → A, and that the surjection σ : E → A satisfies σ ◦ iE = iA ◦σ
so that F is an ω-isotropic generalized flag.

Consider an iE-stable finite subset I ⊂ E. Then the restriction of ω to the space
〈I〉 is nondegenerate. Let Fl(F , ω, I) ⊂ Fl(F , I) be the (closed) subvariety formed by
flags {M ′

α,M
′′
α : α ∈ A} such that

((M ′′
α)

⊥I , (M ′
α)

⊥I ) = (M ′
iA(α),M

′′
iA(α)) for all α ∈ A,

where the notation ⊥I stands for orthogonal subspace in the space (〈I〉, ω). If J ⊂ E
is another iE-stable finite subset, then the embedding ιI,J restricts to an embedding
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ιωI,J : Fl(F , ω, I) ↪→ Fl(F , ω, J). Consequently, for a filtration E =
⋃

n≥1 En by
iE-stable finite subsets, we obtain a chain of morphisms of projective varieties

Fl(F , ω, E1)
ιω1
↪→ Fl(F , ω, E2)

ιω2
↪→ · · ·

ιωn−1

↪→ Fl(F , ω, En)
ιωn
↪→ Fl(F , ω, En+1)

ιωn+1

↪→ · · · (9)

where ιωn := ιωEn,En+1
.

Proposition 5 ([4]). The set Fl(F , ω, E) is the direct limit of the chain of
morphisms (9). Hence Fl(F , ω, E) is endowed with a structure of ind-variety, inde-
pendent of the filtration {En}n≥1. Moreover, Fl(F , ω, E) is a closed ind-subvariety of
Fl(F , E).

4. Schubert decomposition of Fl(F , E) and Fl(F , ω, E). LetG be one of the
groups G(E) or Gω(E). Let P and B be respectively a splitting parabolic subgroup
and a splitting Borel subgroup of G, both containing the splitting Cartan subgroup
H = H(E) or Hω(E). From the previous section we know that the homogeneous
space G/P can be viewed as an ind-variety of generalized flags of the form Fl(F , E)
or Fl(F , ω, E). In this section we describe the decomposition of G/P into B-orbits.
The main results are stated in Theorem 1 in the case of G = G(E) and in Theorem
2 in the case of G = Gω(E). In both cases it is shown that the B-orbits form
a cell decomposition of G/P, and their dimensions and closures are expressed in
combinatorial terms. In Section 4.3 we derive the decomposition of the ind-group
G into double cosets. Unlike the case of Kac–Moody groups, the B-orbits of G/P
can be infinite dimensional. The cases where all orbits are finite dimensional (resp.,
infinite dimensional) are characterized in Section 4.4. In Section 4.5 we focus on the
situation where G/P is an ind-grassmannian.

In this section the results are stated without proofs. The proofs are given in
Section 5.

4.1. Decomposition of Fl(F , E). Let G = G(E), H = H(E), and P, B be as
above. By Propositions 1–2 there is a generalized flag F compatible with E such that
P = PF is the subgroup of elements g ∈ G(E) preserving F , and the homogenenous
space G(E)/P is isomorphic to the ind-variety of generalized flags Fl(F , E). The
precise description of the decomposition of Fl(F , E) into B-orbits is the object of this
section. It requires some preliminaries and notation.

We denote by W(E) the group of permutations w : E → E such that w(e) = e
for all but finitely many e ∈ E. In particular, W(E) is isomorphic to the infinite
symmetric group S∞. Note that we have

W(E) =
⋃
n≥1

W (En)

where W (En) is the Weyl group of G(En).
Let (A,�A) := (AF ,⊂) be the set of pairs of consecutive elements of F , so that

F ∈ FlA(V ) and in fact Fl(F , E) ⊂ FlA(V ). Let S(E,A) be the set of surjective
maps σ : E → A. For σ ∈ S(E,A), we denote by Fσ the generalized flag Fσ =
{F ′

σ,α, F
′′
σ,α : α ∈ A} given by

F ′
σ,α = 〈e ∈ E : σ(e) ≺A α〉 and F ′′

σ,α = 〈e ∈ E : σ(e) �A α〉. (10)

Thus {Fσ : σ ∈ S(E,A)} are exactly the generalized flags of FlA(V ) compatible with
the basis E (see Definition 2). Let σ0 : E → A be the surjective map such that
F = Fσ0

.
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Remark 5. The totally ordered set (A,�A) and the surjective map σ0 : E → A
give rise to a partial order �P on E, defined by letting e ≺P e′ if σ0(e) ≺A σ0(e

′).
Note that the partial order �P has the property

the relation “e is not comparable with e′” (i.e., neither e ≺P e′ nor e′ ≺P e) is
an equivalence relation.

(11)

In fact, fixing a splitting parabolic subgroup P ⊂ G(E) containing H(E) is equivalent
to fixing a partial order �P on E satisfying property (11). Moreover, P is a splitting
Borel subgroup if and only if the order �P is total.

The group W(E) acts on the set S(E,A), hence on E-compatible generalized
flags of FlA(V ), by the procedure (w, σ) 
→ σ ◦ w−1. Let WP(E) ⊂ W(E) be the
subgroup of permutations such that σ0 ◦ w−1 = σ0. Equivalently, WP(E) is the
subgroup of permutations w ∈ W(E) which preserve the fibers σ−1

0 (α) (α ∈ A) of the
map σ0.

Lemma 2. The map w 
→ Fσ0◦w−1 induces a bijection between the quo-
tient W(E)/WP(E) and the set of E-compatible generalized flags of the ind-variety
Fl(F , E).

Let W(E) · σ0 = {σ0 ◦ w−1 : w ∈ W(E)} denote the W(E)-orbit of σ0.
The splitting Borel subgroup B is the subgroup B = PF0

of elements g ∈ G(E)
preserving a maximal generalized flag F0 compatible with E (see Proposition 1).
Equivalently B corresponds to a total order �B on the basis E (see Remark 5). Then,
the generalized flag F0 = {F ′

0,e, F
′′
0,e : e ∈ E} is given by F ′

0,e = 〈e′ ∈ E : e′ ≺B e〉
and F ′′

0,e = 〈e′ ∈ E : e′ �B e〉 for all e ∈ E.
Relying on the total order �B, we define a notion of inversion number and an

analogue of the Bruhat order on the set S(E,A).
Number of inversions ninv(σ). We say that a pair (e, e′) ∈ E × E is an inversion

of σ ∈ S(E,A) if e ≺B e′ and σ(e) �A σ(e′). Then

ninv(σ) := |{(e, e′) ∈ E × E : (e, e′) is an inversion of σ}|

is the inversion number of σ. Note that the inversion number ninv(σ) may be infinite.
Partial order ≤ on S(E,A). We now define a partial order on the set S(E,A),

analogous to the Bruhat order. For (e, e′) ∈ E×E with e �= e′, we denote by te,e′ the
element of W(E) which exchanges e with e′ and fixes every other element e′′ ∈ E. Let
σ, τ ∈ S(E,A). We set σ<̂τ if τ = σ ◦ te,e′ for a pair (e, e′) ∈ E×E satisfying e ≺B e′

and σ(e) ≺A σ(e′). We set σ < τ if there is a chain τ0 = σ<̂τ1<̂τ2<̂ . . . <̂τk = τ of
elements of S(E,A) (with k ≥ 1).

Element σG ∈ S(E,A). Given a generalized flag G = {G′
α, G

′′
α : α ∈ A} ∈ FlA(V )

weakly compatible with E, we define an element σG ∈ S(E,A) which measures the
relative position of G to the maximal generalized flag F0. Set

σG(e) = min{α ∈ A : G′′
α ∩ F ′′

0,e �= G′′
α ∩ F ′

0,e} for all e ∈ E. (12)

[It can be checked directly that the so obtained map σG : E → A is indeed surjective,
hence an element of S(E,A). This fact is also shown in Section 5.2 in the proof of
Theorem 2.]

We are now in position to formulate the statement which describes the decompo-
sition of Fl(F , E) into B-orbits.
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Theorem 1. Let PF be the splitting parabolic subgroup of G(E) containing
H(E), and corresponding to a generalized flag F = Fσ0

∈ FlA(V ) (with σ0 ∈ S(E,A))
compatible with E. Let B be any splitting Borel subgroup of G(E) containing H(E).
(a) We have the decomposition

G(E)/PF = Fl(F , E) =
⊔

σ∈W(E)·σ0

BFσ =
⊔

w∈W(E)/WP(E)

BFσ0◦w−1 .

(b) A generalized flag G ∈ Fl(F , E) belongs to the B-orbit BFσ (σ ∈ W(E) · σ0) if
and only if σG = σ.
(c) The orbit BFσ (σ ∈ W(E) · σ0) is a locally closed ind-subvariety of Fl(F , E)
isomorphic to the affine space Aninv(σ) (which is infinite dimensional if ninv(σ) is
infinite).
(d) For σ, τ ∈ W(E) · σ0, the inclusion BFσ ⊂ BFτ holds if and only if σ ≤ τ .

Remark 6. If σ ∈ W(E) ·σ0, say σ = σ0 ◦w with w ∈ W(E), then the inversion
number of σ is also given by the formula

ninv(σ) = |{(e, e′) ∈ E × E : e ≺B e′ and w(e) �P w(e′)}|

(see Remark 5). Note that the inversion number ninv(σ) cannot be directly interpreted
as a Bruhat length because we do not assume B to be conjugate to a subgroup of P.

4.2. Decomposition of Fl(F , ω, E). In this section the basis E is ω-isotropic
with corresponding involution iE : E → E (see Section 3.2). Let P ⊂ Gω(E) be
a splitting parabolic subgroup containing Hω(E), or equivalently let F be an ω-
isotropic generalized flag compatible with E (see Proposition 3). Let B ⊂ Gω(E)
be a splitting Borel subgroup containing Hω(E). We study the decomposition of the
ind-variety Gω(E)/P ∼= Fl(F , ω, E) into B-orbits.

Let (A,�A, iA) be a totally ordered set with involutive anti-automorphism iA,
such that F ∈ FlωA(V ). We denote by S

ω(E,A) the set of surjective maps σ : E → A
such that σ(iE(e)) = iA(σ(e)) for all e ∈ E. By Lemma 1, {Fσ : σ ∈ S

ω(E,A)} are
exactly the elements of FlωA(V ) compatible with E (the notation Fσ is introduced in
(10)). Let σ0 ∈ S

ω(E,A) be such that F = Fσ0
.

The group Wω(E) is defined as the group of permutations w : E → E such that
w(e) = e for all but finitely many e ∈ E and w(iE(e)) = iE(w(e)) for all e ∈ E.
Note that Wω(E) acts on the set Sω(E,A) by the procedure (w, σ) 
→ σ ◦ w−1. Let
Wω

P
(E) be the subgroup of elements w ∈ Wω(E) such that σ0 ◦ w−1 = σ0 and let

Wω(E) · σ0 := {σ0 ◦ w
−1 : w ∈ Wω(E)} be the Wω(E)-orbit of σ0.

Lemma 3. The map w 
→ Fσ0◦w−1 induces a bijection between Wω(E)/Wω
P
(E)

and the set of E-compatible elements of Fl(F , ω, E).

The splitting Borel subgroup B is the subgroup B = Pω
F0

of elements preserving
some maximal ω-isotropic generalized flag F0 compatible with E. We can write
F0 = {F ′

0,e, F
′′
0,e : e ∈ E} with F ′

0,e = 〈e′ ∈ E : e′ ≺B e〉 and F ′′
0,e = 〈e′ ∈ E : e′ �B e〉,

where �B is a total order on E. Moreover, the fact that F0 is ω-isotropic implies that
the involution iE : E → E is an anti-automorphism of the ordered set (E,�B).

Number of inversions nω
inv(σ). Let σ ∈ S

ω(E,A). We define an ω-isotropic
inversion of σ as a pair (e, e′) ∈ E × E such that

e ≺B e′, e ≺B iE(e), e′ �= iE(e
′), and σ(e) �A σ(e′).
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Let

nω
inv(σ) = |{(e, e′) ∈ E × E : (e, e′) is an ω-isotropic inversion of σ}|.

Partial order ≤ω on S
ω(E,A). Given (e, e′) ∈ E × E with e �= e′, iE(e) �= e,

iE(e
′) �= e′, we set

tωe,e′ = te,e′ ◦ tiE(e),iE(e′) if e
′ �= iE(e), tωe,e′ = te,e′ if e

′ = iE(e).

Thus tωe,e′ ∈ Wω(E). Let σ, τ ∈ S
ω(E,A). We set σ<̂ωτ if τ = σ ◦ tωe,e′ for a pair

(e, e′) satisfying e ≺B e′ and σ(e) ≺A σ(e′). Finally we set σ <ω τ if there is a chain
τ0 = σ<̂ωτ1<̂ωτ2<̂ω . . . <̂ωτk = τ of elements of Sω(E,A).

Theorem 2. Let Pω
F be the splitting parabolic subgroup of Gω(E) containing

Hω(E), and corresponding to an E-compatible generalized flag F = Fσ0
∈ FlωA(V )

(with σ0 ∈ S
ω(E,A)). Let B be any splitting Borel subgroup of Gω(E) containing

Hω(E).
(a) We have the decomposition

Gω(E)/Pω
F = Fl(F , ω, E) =

⊔
σ∈Wω(E)·σ0

BFσ =
⊔

w∈Wω(E)/Wω
P
(E)

BFσ0◦w−1 .

(b) For G ∈ Fl(F , ω, E) the map σG : E → A (see (12)) belongs to Wω(E) · σ0.
Moreover, G belongs to BFσ (σ ∈ Wω(E) · σ0) if and only if σG = σ.
(c) The orbit BFσ (σ ∈ Wω(E) · σ0) is a locally closed ind-subvariety of Fl(F , ω, E)
isomorphic to the affine space Anω

inv(σ) (possibly infinite-dimensional).
(d) For σ, τ ∈ Wω(E) · σ0, the inclusion BFσ ⊂ BFτ holds if and only if σ ≤ω τ .

4.3. Bruhat decomposition of the ind-group G = G(E) or Gω(E). Let
H = H(E) or Hω(E), and let W = W(E) or Wω(E). If W = W(E), the linear
extension of w ∈ W is an element ŵ ∈ G(E). If W = Wω(E), we can find scalars
λe ∈ K∗ (e ∈ E) such that the map e 
→ λew(e) linearly extends to an element
ŵ ∈ Gω(E). In both situations it is easy to deduce that W is isomorphic to the
quotient NG(H)/H.

Given a splitting parabolic subgroup P ⊂ G containing H, we denote by WP the
corresponding subgroup of W. The following statement describes the decomposition
of the ind-group G into double cosets. It is a consequence of Theorems 1–2.

Corollary 1. Let G be one of the ind-groups G(E) or Gω(E), and let P and
B be respectively a splitting parabolic and a splitting Borel subgroup of G containing
H. Then we have a decomposition

G =
⊔

w∈W/WP

BŵP.

Remark 7. (a) Note that the unique assumption on the splitting parabolic and
Borel subgroups P and B in Corollary 1 is that they contain a common splitting
Cartan subgroup, in particular it is not required that B be conjugate to a subgroup
of P.
(b) The ind-group G admits a natural exhaustionG =

⋃
n≥1 Gn by finite-dimensional

subgroups of the form Gn = G(En) or Gn = Gω(En) (see Section 2.2). Moreover, the
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intersections Pn := P ∩Gn and Bn := B ∩Gn are respectively a parabolic subgroup
and a Borel subgroup of Gn, containing a common Cartan subgroup. Then the decom-
position of Corollary 1 can be retrieved by considering usual Bruhat decompositions
of the groups Gn into double cosets for Pn and Bn.

4.4. On the existence of cells of finite or infinite dimension. In Theorems
1–2 it appears that the decomposition of an ind-variety of generalized flags into B-
orbits may comprise orbits of infinite dimension. The following result determines
precisely the situations in which infinite-dimensional orbits arise.

Theorem 3. Let G be one of the groups G(E) or Gω(E). Let P,B ⊂ G be
splitting parabolic and Borel subgroups containing the splitting Cartan subgroup H of
G.
(a) The following conditions are equivalent:

(i) B is conjugate (under G) to a subgroup of P;
(ii) At least one B-orbit of G/P is finite dimensional;
(iii) One B-orbit of G/P is a single point (and this orbit is necessarily unique).

(b) Let �B be the total order on the basis E induced by B. Assume that P �= G. The
following conditions are equivalent:

(i) B is conjugate (under G) to a subgroup of P, and the ordered set (E,�B) is
isomorphic (as ordered set) to a subset of (Z,≤);

(ii) Every B-orbit of G/P is finite dimensional.

Remark 8. (a) Theorem 3 provides in particular a criterion for a given splitting
Borel subgroup to be conjugate to a subgroup of a given splitting parabolic subgroup.
This criterion is applied in the next section.
(b) Following [4], we call a generalized flag G a flag if the chain (G,⊂) is isomorphic as
ordered set to a subset of (Z,≤). Then the second part of condition (b) (i) in Theorem
3 can be rephrased by saying that the maximal generalized flag F0 is a flag. Another
characterization of flags is provided by [4, Proposition 7.2] which says that the ind-
variety of generalized flags Fl(G, E) (resp., Fl(G, ω, E)) is projective (i.e., isomorphic
as ind-variety to a closed ind-subvariety of the infinite-dimensional projective space
P∞) if and only if G is a flag.

4.5. Decomposition of ind-grassmannians. A minimal (nontrivial) general-
ized flag F = {0, F, V } of the space V is determined by the proper nonzero subspace
F ⊂ V . If F is compatible with the basis E, then the surjective map σ0 : E → {1, 2}
such that F = 〈e ∈ E : σ0(e) = 1〉 can be simply viewed as the subset σ0 ⊂ E such
that F = 〈σ0〉.

In this case the ind-variety Fl(F , E) is an ind-grassmannian and we denote it by
Gr(F,E).

• If k := dimF is finite, a subspace F1 ⊂ V is E-commensurable with F if and
only if dimF1 = k. Thus the ind-variety Gr(F,E) only depends on k, and
we write Gr(k) = Gr(F,E) in this case.

• If k := codimV F is finite, the ind-variety Gr(F,E) depends on E and k
(but not on F ). It is also isomorphic to Gr(k). Indeed, the basis E ⊂ V
gives rise to a dual family E∗ ⊂ V ∗. The linear space V∗ := 〈E∗〉 is then
countable dimensional. Let U# := {φ ∈ V∗ : φ(u) = 0 ∀u ∈ U} be the
orthogonal subspace in V∗ of a subspace U ⊂ V . The map U 
→ U# realizes
an isomorphism of ind-varieties between Gr(F,E) and {F ′ ⊂ V∗ : dimF ′ =
k} ∼= Gr(k).
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• If F is both infinite dimensional and infinite codimensional, the ind-variety
Gr(F,E) depends on (F,E), although all ind-varieties of this type are iso-
morphic; their isomorphism class is denoted Gr(∞). Moreover, Gr(∞) and
Gr(k) are not isomorphic as ind-varieties (see [10]).

Let S(E) be the set of subsets σ ⊂ E. The group W(E) acts on S(E) in a
natural way. The W(E)-orbit of σ0 is the subset W(E) · σ0 = {σ ∈ S(E) : |σ0 \ σ| =
|σ \ σ0| < +∞}. We write Fσ = 〈σ〉 (for σ ∈ S(E)).

The following statement describes the decomposition of the ind-grassmannian
Gr(F,E) into B-orbits. It is a direct consequence of Theorem 1.

Proposition 6. Let B ⊂ G(E) be a splitting Borel subgroup containing H(E).
(a) We have the decomposition

Gr(F,E) =
⊔

σ∈W(E)·σ0

BFσ.

(b) For F ′ ∈ Gr(F,E), we have F ′ ∈ BFσ if and only if

σ = σF ′ := {e ∈ E : F ′ ∩ 〈e′ ∈ E : e′ ≺B e〉 �= F ′ ∩ 〈e′ ∈ E : e′ �B e〉}.

(c) For σ ∈ W(E) · σ0, the orbit BFσ is a locally closed ind-subvariety of Gr(F,E)
isomorphic to an affine space Adσ of (possibly infinite) dimension

dσ = ninv(σ) := |{(e, e′) ∈ E × E : e ≺B e′, e /∈ σ, e′ ∈ σ}|.

(d) For σ, τ ∈ W(E) · σ0, the inclusion BFσ ⊂ BFτ holds if and only if σ ≤ τ , where
the relation σ ≤ τ means that, if e1 ≺B e2 ≺B . . . ≺B e� are the elements of σ \ τ and
f1 ≺B f2 ≺B . . . ≺B f� are the elements of τ \ σ, then ei ≺B fi for all i ∈ {1, . . . , �}.

Example 2 (Case of the ind-grassmannian Gr(k)). Let Sk(E) be the set of
subsets σ ⊂ E of cardinality k. Given σ0 ∈ Sk(E), set F = 〈σ0〉, and consider the
splitting parabolic subgroup PF = {g ∈ G(E) : g(F ) = F} and the ind-grassmannian
Gr(k) = Gr(F,E) = G(E)/PF . By Proposition 6 (a), we have the decomposition

Gr(k) =
⊔

σ∈Sk(E)

BFσ.

By Proposition 6 (c), the cell BFσ is finite dimensional if and only if σ is contained in
a finite ideal of the ordered set (E,�B), i.e., there is a finite subset σ ⊂ E satisfying
(e ∈ σ and e′ �B e ⇒ e′ ∈ σ) and containing σ. It easily follows that there are
finite-dimensional B-orbits in Gr(k) if and only if the maximal generalized flag F0

corresponding to B contains a subspace M of dimension k. By Theorem 3, B is
conjugate to a subgroup of the splitting parabolic subgroup PF exactly in this case.
By Theorem 3 (or directly), we note that all cells BFσ ⊂ Gr(k) are finite dimensional
if and only if (E,�B) is isomorphic to (N,≤) as an ordered set, in other words F0 is
a flag of the form

F0 = (F0,0 ⊂ F0,1 ⊂ F0,2 ⊂ . . .) with dimF0,i = i for all i ≥ 0. (13)

By Proposition 6 (d), given σ = {e1 ≺B e2 ≺B . . . ≺B ek} and τ = {f1 ≺B f2 ≺B

. . . ≺B fk}, we have BFσ ⊂ BFτ if and only if ei �B fi for all i ∈ {1, . . . , k}.
Now let τ0 ⊂ E be an infinite subset whose complement E \ τ0 is finite of car-

dinality k. Let M = 〈τ0〉 be the corresponding subspace of V of codimension k and
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let PM ⊂ G(E) be the corresponding splitting parabolic subgroup. We consider the
ind-grassmannian Gr(M,E) = G(E)/PM which is isomorphic to Gr(k) = G(E)/PF

as mentioned at the beginning of Section 4.5. If F0 is as in (13) and B is the corre-
sponding splitting Borel subgroup, then it follows from Proposition 6 (c) that every
B-orbit of Gr(M,E) is infinite dimensional. By Theorem 3, this shows in particular
that the splitting parabolic subgroups PF and PM are not conjugate under G(E).

Example 3 (Case of the infinite-dimensional projective space). Assume that
k = dimF = 1. In this case Gr(k) is the infinite-dimensional projective space P∞

(see Example 1). The decomposition becomes

P∞ =
⊔
e∈E

Ce

where Ce = B〈e〉 = {L line : L ⊂ 〈e′ ∈ E : e′ �B e〉, L �⊂ 〈e′ ∈ E : e′ ≺B e〉} for all
e ∈ E. The cell Ce is isomorphic to an affine space of dimension dimCe = |{e′ ∈ E :
e′ ≺B e}|. Moreover, Ce ⊂ Cf if and only if e �B f .

In this case the maximal generalized flag F0 = {F ′
0,e, F

′′
0,e : e ∈ E} corresponding

to B can be retrieved from the cell decomposition:

F ′′
0,e =

∑
L∈Ce

L and F ′
0,e =

∑
L∈Ce\Ce

L for all e ∈ E.

More generally, let (A,�) be a totally ordered set and let P∞ =
⊔

α∈ACα be a

linear cell decomposition such that Cα ⊂ Cβ whenever α � β. By “linear” we mean
that each Cα is a projective subspace of P∞, i.e., we can find a subspace F ′′

α ⊂ V
such that Cα = P(F ′′

α ). Setting F ′
α =

∑
β≺α F ′′

β , we get a generalized flag F0 :=
{F ′

α, F
′′
α : α ∈ A} such that P(F ′′

α ) \ P(F
′
α) is a (possibly infinite-dimensional) affine

space for all α. The last property ensures that dimF ′′
α/F

′
α = 1, i.e., F0 is a maximal

generalized flag. In this way we obtain a correspondence between maximal generalized
flags (not necessarily compatible with a given basis) and linear cell decompositions of
the infinite-dimensional projective space P∞.

Example 4 (Case of the ind-grassmannian Gr(∞)). Assume that the basis E
is parametrized by Z, in other words let E = {ei}i∈Z. We consider the splitting Borel
subgroup B corresponding to the natural order ≤ on Z.

Let F = 〈ei : i ≤ 0〉. Then the ind-variety Gr(F,E) is isomorphic to Gr(∞).
We have B ⊂ PF . It follows from Theorem 3 that every B-orbit of Gr(F,E) is finite
dimensional.

Let F ′ = 〈ei : i ∈ 2Z〉. Again the ind-variety Gr(F ′, E) is isomorphic to Gr(∞).
However in this case we see from Proposition 6 (c) that every B-orbit of Gr(F ′, E) is
infinite dimensional.

We now suppose that the space V is endowed with a nondegenerate symmetric
or skew-symmetric bilinear form ω and the basis E is ω-isotropic with corresponding
involution iE : E → E. Then a minimal ω-isotropic generalized flag is of the form
F = (0 ⊂ F ⊂ F⊥ ⊂ V ) with F ⊂ V proper and nontrivial, possibly F = F⊥.
Assuming that F is compatible with the basis E, there is a subset σ0 ⊂ E such that
F = 〈σ0〉 and iE(σ0) ∩ σ0 = ∅ as the generalized flag is ω-isotropic. The ind-variety
Fl(F , ω, E) is also denoted Gr(F, ω,E) and called isotropic ind-grassmannian.
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• If dimF = k is finite, the ind-variety Gr(F, ω,E) is the set of all k-
dimensional subspaces M ⊂ V such that M ⊂ M⊥. This ind-variety does
not depend on (F,E) and we denote it also by Grω(k).

• If dimF is infinite, the isomorphism class of the ind-variety Gr(F, ω,E) also
depends on the dimension of the quotient F⊥/F . A special situation is when
dimF⊥/F ∈ {0, 1}, in which case Gr(F, ω,E) is formed by maximal isotropic
subspaces.

We denote by S
ω(E) the set of subsets σ ⊂ E such that iE(σ) ∩ σ = ∅. The group

Wω(E) acts on S
ω(E) in a natural way. The orbit Wω(E) · σ0 is the set of subsets

σ ∈ S
ω(E) such that |σ \ σ0| = |σ0 \ σ| < +∞. From Theorem 2 we obtain the

following description of the B-orbits of Gr(F, ω,E).

Proposition 7. Let B be a splitting Borel subgroup of Gω(E) corresponding to
a total order �B on E. Recall that iE is an anti-automorphism of the ordered set
(E,�B).
(a) We have the decomposition

Gr(F, ω,E) =
⊔

σ∈Wω(E)·σ0

BFσ

where as before Fσ = 〈σ〉.
(b) For F ′ ∈ Gr(F, ω,E) we have σF ′ ∈ Wω(E) ·σ0 (see Proposition 6 (b)), moreover
F ′ ∈ BFσ if and only if σ = σF ′ .
(c) For σ ∈ Wω(E)·σ0, the orbit BFσ is a locally closed ind-subvariety of Gr(F, ω,E)
isomorphic to an affine space of (possibly infinite) dimension

nω
inv(σ) :=|{(e, e′) ∈ E × E : e ≺B e′ �= iE(e

′), e ≺B iE(e),
(
(e /∈ σ,

e′ ∈ σ) or (iE(e) ∈ σ, iE(e
′) /∈ σ)

)
}|.

(d) For σ, τ ∈ Wω(E) ·σ0, the inclusion BFσ ⊂ BFτ holds if and only if σ ≤ τ , where
the relation σ ≤ τ is defined as in Proposition 6 (d).

Example 5 (Case of the isotropic ind-grassmannian Grω(k)). In this case the
cells BFσ are parametrized by the set Sω

k (E) of finite subsets σ ⊂ E of cardinality k
such that iE(σ)∩σ = ∅. The cell BFσ is finite dimensional if and only if σ is contained
in a finite ideal σ of the ordered set (E,�B). Thereby the ind-variety Grω(k) has
finite-dimensional B-orbits if and only if the ordered set (E,�B) has a finite ideal
with k elements. Equivalently, the maximal generalized flag F0 corresponding to B
has a subspace M ∈ F0 of dimension k. Since F0 is maximal and ω-isotropic, it is of
the form

F0 = {0 = F0,0 ⊂ F0,1 ⊂ . . . ⊂ F0,k ⊂ (. . .) ⊂ F⊥
0,k ⊂ . . . ⊂ F⊥

0,1 ⊂ F⊥
0,0 = V }

with infinitely many terms between F0,k and F⊥
0,k. Hence the ordered set (F0,⊂) is

not isomorphic to a subset of (Z,≤). By Theorem 3, this implies that Grω(k) admits
infinite-dimensional B-orbits. Therefore, contrary to the case of the ind-grassmannian
Gr(k) (see Example 2), there is no splitting Borel subgroup B ⊂ Gω(E) for which
all B-orbits of the isotropic ind-grassmannian Grω(k) are finite dimensional.

Assume that ω is skew symmetric and k = 1. Then Grω(k) coincides with the
entire infinite-dimensional projective space P∞. The above discussion shows that, for
every splitting Borel subgroup B of Gω(E), there are infinite-dimensional B-orbits in
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the projective space P∞. We know however from Examples 2–3 that, for a well-chosen
splitting Borel subgroup ofG(E), the infinite-dimensional projective space P∞ admits
a decomposition into finite-dimensional orbits. Therefore the realizations of P∞ as
Gr(1) and Grω(1) yield different sets of cell decompositions on P∞.

Example 6 (An isotropic ind-grassmannian with decomposition into finite-
dimensional cells). Let E = {ei : i ∈ 2Z + 1} be an ω-isotropic basis of V such
that ω(ei, ej) = 0 unless i + j = 0. For k ≥ 1, we let F = 〈ei : i ≤ −k〉 and
consider the ind-grassmannian Gr(F, ω,E). Let B be the splitting Borel subgroup
of Gω(E) corresponding to the natural total order ≤ on 2Z + 1. We then have
B ⊂ Pω

F := {g ∈ Gω(E) : g(F ) = F}, hence by Theorem 3 (b) all the B-orbits of the
ind-grassmannian Gr(F, ω,E) are finite dimensional.

5. Proof of the results stated in Section 4. Throughout this section let
G = G(E) or Gω(E), and W is the corresponding group W(E) or Wω(E) (see
Sections 4.1–4.2). The proofs of the results stated in Section 4 are given in Sections
5.3–5.5. They rely on preliminary facts presented in Section 5.1 (which is concerned
with the combinatorics of the group W) and Section 5.2 (where we review some
standard facts on Schubert decomposition of finite-dimensional flag varieties).

5.1. Combinatorial properties of the group W. We first recall certain fea-
tures of the group W:

• W ∼= NG(H)/H where H ⊂ G is the splitting Cartan subgroup of elements
diagonal in the basis E; specifically, to an element w ∈ W, we can associate
an explicit representative ŵ ∈ NG(H) (see Section 4.3).

• We have a natural exhaustion

W =
⋃
n≥1

Wn

whereWn = W (En) (resp. Wn = Wω(En)) is the Weyl group of Gn = G(En)
(resp. Gn = Gω(En)).

• Let E′ = E if G = G(E) and E′ = {e ∈ E : iE(e) �= e} if G = Gω(E), and
let

Ê = {(e, e′) ∈ E′ × E′ : e �= e′}.

For (e, e′) ∈ Ê, set se,e′ = te,e′ if G = G(E) and se,e′ = tωe,e′ if G = Gω(E)

(see Sections 4.1–4.2). In both cases for each pair (e, e′) ∈ Ê, we get an
element se,e′ ∈ W. Clearly {se,e′ : (e, e′) ∈ Ê} is a system of generators of
W.

5.1.1. Analogue of Bruhat length. As seen in Sections 4.1–4.2, fixing a split-
ting Borel subgroupB ofG with B ⊃ H is equivalent to fixing a total order �B on the
basis E (resp., such that the involution iE : E → E becomes an anti-automorphism
of ordered set, in the case where G = Gω(E)). This total order allows us to define a
system of simple transpositions for W by letting

SB = {se,e′ : e, e′ are consecutive elements of (E′,�B)}.

Note however that in general SB does not generate the group W. For instance, in
the extreme case where (E,�B) = (Q,≤) we have SB = ∅.
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For w ∈ W, we define

�B(w) = min{m ≥ 0 : w = s1 · · · sm for some s1, . . . , sm ∈ SB}

if the set on the right-hand side is nonempty, and

�B(w) = +∞

otherwise.
For every n ≥ 1, the order �B induces a total order on the finite sub-

set En ⊂ E, and thus a system of simple reflections SB,n := {se,e′ :
e, e′ are consecutive elements of (En ∩ E′,�B)} of the Weyl group Wn. Let �B,n(w)
be the usual Bruhat length of w ∈ Wn with respect to SB,n.

Proposition 8. Let w ∈ W. Then
(a) �B(w) = limn→∞ �B,n(w);

(b) �B(w) =

{
|{(e, e′) ∈ Ê : e ≺B e′ and w(e) 
B w(e′)}| if G = G(E),

|{(e, e′) ∈ Ê : e ≺B e′, e ≺B iE(e) and w(e) 
B w(e′)}| if G = G
ω(E);

(c) �B(w) = +∞ if and only if there is e ∈ E such that the set {e′ ∈ E : e ≺B e′ ≺B

w(e)} is infinite.

Proof. Denote by mB(w) the quantity in the right-hand side of (b). Then

�B(w) ≥ lim
n→∞

�B,n(w) = mB(w) (14)

(the inequality is a consequence of the definitions of �B(w) and �B,n(w) while the
equality follows from properties of (finite) Weyl groups).

Let Ie(w) = {e′ ∈ E : e ≺B e′ ≺B w(e)}. We claim that

mB(w) = +∞ ⇔ ∃e ∈ E such that |Ie(w)| = +∞. (15)

We first check the implication ⇒ in (15). The assumption yields an infinite
sequence {(ei, e′i)}i∈N such that ei ≺B e′i and w(ei) �B w(e′i). Since w fixes all but
finitely many elements of E, one of the sequences {ei}i∈N and {e′i}i∈N has a stationary
subsequence, and thus along a relabeled subsequence {(ei, e′i)}i∈N we have ei = e for
all i ∈ N and some e ∈ E, or e′i = e′ for all i ∈ N and some e′ ∈ E. In the former
case, the set {e′i : w(e

′
i) = e′i} is infinite and contained in Ie(w). In the latter case,

we similarly obtain that the set {f ∈ E : w(e′) ≺B f ≺B e′} is infinite, and since w
has finite order, this implies that Iwr(e′)(w) is infinite for some r ≥ 1.

Next we check the implication ⇐ in (15). We assume that |Ie(w)| = +∞ for some
e ∈ E. (Then, necessarily, w(e) �= e, hence e �= iE(e) in the case where G = Gω(E).)
Since w fixes all but finitely many elements of E, the set {e′ ∈ Ie(w) : w(e′) = e′}
is infinite. Therefore, there are infinitely many couples (e, e′) ∈ Ê such that e ≺B e′

and w(e) �B w(e′). Moreover, in the case where G = Gω(E), up to replacing (e, e′)
by (iE(e

′), iE(e)), we get infinitely many such couples satisfying e ≺B iE(e). This
implies mB(w) = +∞, and (15) is proved.

In view of (14) and (15), to complete the proof of the proposition, it remains to
show the relation �B(w) ≤ mB(w). We argue by induction on mB(w).

If mB(e) = 0, we get w = id, and thus �B(w) = 0. Now let w ∈ W such that
0 < mB(w) < +∞ and assume that �B(w

′) ≤ mB(w
′) holds for all w′ ∈ W such that

mB(w
′) < mB(w). Let e ∈ E′ be minimal such that there is e′ ∈ E′ with e ≺B e′ and

w(e) �B w(e′). Choose e′ maximal for this property. We claim that

the set {i ∈ E : w(e) �B i �B w(e′)} is finite. (16)
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Assume the contrary. Since w fixes all but finitely many elements of E, there are
infinitely many i ∈ E such that w(e) �B i = w(i) �B w(e′). Note that we have
e ≺B i by the minimality of e. Thus there are infinitely many elements in the set
Ie(w). In view of (15), this is impossible, and (16) is established.

By (16) we can find i ∈ E′ such that w(e′) ≺B i and w(e′), i are consecutive in E′.
Choose e′′ ∈ E′ such that i = w(e′′). By the maximality of e′, we have e′′ ≺B e′. In
the case where G = Gω(E), up to replacing (e′′, e′) by (iE(e

′), iE(e
′′)) if necessary, we

may assume that e′′ ≺B iE(e
′′). Hence we have found e′′, e′ ∈ E′ with the following

properties:

e′′ ≺B e′; w(e′) ≺B w(e′′) are consecutive in E′;

e′′ ≺B iE(e
′′) (in the case where G = Gω(E)).

It is straightforward to deduce that mB(sw(e′),w(e′′)w) = mB(w) − 1. Using the
induction hypothesis, we derive: �B(w) ≤ �B(sw(e′),w(e′′)w)+1 ≤ mB(sw(e′),w(e′′)w)+
1 = mB(w). The proof is now complete.

Corollary 2. The following conditions are equivalent.
(i) SB generates W;
(ii) �B(w) < +∞ for all w ∈ W;
(iii) (E,�B) is isomorphic as an ordered set to a subset of (Z,≤).

Proof. The equivalence (i)⇔(ii) is immediate. Note that condition (iii) is equiva-
lent to requiring that, for all e, e′ ∈ E, the interval {e′′ ∈ E : e ≺B e′′ ≺B e′} is finite.
Thus the implication (iii)⇒(ii) is guaranteed by Proposition 8 (c). Conversely, if (ii)
holds true, then we get �B(se,e′) < +∞ for all (e, e′) ∈ Ê, whence (by Proposition
8 (c)) the set {e′′ ∈ E : e ≺B e′′ ≺B e′} is finite. This implies (iii).

5.1.2. Relation with parabolic subgroups. In addition to the splitting Borel
subgroup B, we consider a splitting parabolic subgroup P ⊂ G containing H. Recall
that the subgroup P gives rise (in fact, is equivalent) to each of the following data:

• an E-compatible generalized flag F (which is ω-isotropic in the case of G =
Gω(E)) such that P = {g ∈ G : g(F) = F};

• a totally ordered set (A,�A) and a surjective map σ0 : E → A such that
F = Fσ0

(which is equipped with an anti-automorphism iA : A → A satisfying
σ0 ◦ iE = iA ◦ σ0 in the case of G = Gω(E));

• a partial order �P on E satisfying property (11), such that e ≺P e′ if and
only if σ0(e) ≺A σ0(e

′).
Moreover, P gives rise to a subgroup of W:

WP = {w ∈ W : σ0 ◦ w
−1 = σ0} = {w ∈ W : e �≺P w(e) and w(e) �≺P e, ∀e ∈ E}.

Note that we do not assume that B is contained in P.

Lemma 4. The following conditions are equivalent:
(i) B ⊂ P;
(ii) for all e, e′ ∈ E, e ≺P e′ ⇒ e ≺B e′, i.e., the total order �B refines the

partial order �P;
(iii) for all e, e′ ∈ E, e �B e′ ⇒ σ0(e) �A σ0(e

′), i.e., the map σ0 is nondecreas-
ing.

Proof. By the definition of the generalized flag Fσ0
, conditions (i) and (iii) are

equivalent. Since the relation e ≺P e′ is equivalent to σ0(e
′) ��A σ0(e), we obtain that

(ii) and (iii) are equivalent.
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For all w ∈ W, we let

mP

B
(w) =

{
|{(e, e′) ∈ Ê : e ≺B e′, w(e) �P w(e′)}| if G = G(E)

|{(e, e′) ∈ Ê : e ≺B e′, e ≺B iE(e), w(e) �P w(e′)}| if G = Gω(E).

Note that

mP

B
(w) =

{
ninv(σ0 ◦ w) if G = G(E)
nω
inv(σ0 ◦ w) if G = Gω(E)

(17)

(see Sections 4.1–4.2). We also know that mB

B
(w) = �B(w) (see Proposition 8 (b)).

In the following proposition, we characterize the property that B is conjugate to a
subgroup of P in terms of mP

B
(w).

Proposition 9. For w ∈ W, recall that ŵ ∈ G is a representative of w in
NG(H).

(a) We have B ⊂ ŵPŵ−1 if and only if mP

B
(w−1) = 0.

(b) The following conditions are equivalent:
(i) there is w ∈ W such that B ⊂ ŵPŵ−1;
(ii) there is w ∈ W such that mP

B
(w) < +∞.

Proof. Note that ŵPŵ−1 ⊂ G is the isotropy subgroup of the generalized flag
Fσ0◦w−1 . Thus part (a) follows from Lemma 4 and the definition of mP

B
(w−1).

(b) The implication (i)⇒(ii) follows from part (a). Now assume that (ii) holds. Choose
w ∈ W such that mP

B
(w) is minimal. By (a), it suffices to show that mP

B
(w) = 0.

Assume, to the contrary, that mP

B
(w) > 0. Hence there is a couple (e, e′) ∈ Ê

satisfying e ≺B e′, w(e) �P w(e′). We can assume that e is minimal such that there
is e′ with this property, and that e′ is maximal possible. We claim that

the set {i ∈ E′ : w(e) �P i �P w(e′)} is finite. (18)

Otherwise, there are infinitely many i ∈ E for which w(e) �P i = w(i) �P w(e′). By
the minimality of e, we have e ≺B i. Whence there are infinitely many couples (e, i) ∈
Ê with e ≺B i and w(e) �P w(i) (in the case of G = Gω(E), up to replacing (e, i) by
(iE(i), iE(e)), we may also assume that e ≺B iE(e)). Consequently, m

P

B
(w) = +∞, a

contradiction. This establishes (18).
By (18) we can find i ∈ E′ minimal (with respect to the order �P) such that

w(e) �P i �P w(e′). Let e′′ ∈ E with w(e′′) = i. The maximality of e′ forces
e′′ ≺B e′. Altogether, we have found a couple (e′′, e′) ∈ Ê such that e′′ ≺B e′,
w(e′′) �P w(e′), and w(e′′) is minimal (with respect to the order �P). For f ∈ E,
let CP(f) denote the class of f for the equivalence relation defined in (11). We may
assume that e′′ and e′ are respectively a minimal element of w−1(CP(w(e

′′))) and a
maximal element of w−1(CP(w(e

′))) (with respect to the order �B). Moreover, in
the case of G = Gω(E), up to replacing (e′′, e′) by (iE(e

′), iE(e
′′)), we may assume

that e′′ ≺B iE(e
′′). Then it is straightforward to check that

{(f, f ′) ∈ Ê : f ≺B f ′, sw(e′),w(e′′)w(f) �P sw(e′),w(e′′)w(f
′)}

⊂ {(f, f ′) ∈ Ê : f ≺B f ′, w(f) �P w(f ′)} \ {(e′′, e′)}.

Whence mP

B
(sw(e′),w(e′′)w) < mP

B
(w), which contradicts the minimality of mP

B
(w).

Finally, the following proposition points out the relation between mP

B
(w) and

�B(w).
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Proposition 10. Assume that there is w0 ∈ W such that mP

B
(w−1

0 ) = 0. Then,
for all w ∈ W, we have

mP

B(w) = inf{�B(w0w
′w) : w′ ∈ WP}.

Proof. Note that, for all e, e′ ∈ E′, we have e ≺P e′ if and only if w0(e) ≺ŵ0Pŵ0
−1

w0(e
′). This yields mP

B
(w) = mŵ0Pŵ0

−1

B
(w0w) and w0WPw

−1
0 = Wŵ0Pŵ0

−1 . Thus,

invoking also Proposition 9 (a), up to replacing P by ŵ0Pŵ0
−1, we may suppose that

B ⊂ P and w0 = id.
By the definition of WP, Lemma 4, and Proposition 8 (b), for every w′ ∈ WP we

obtain

mP

B
(w) = |{(e, e′) ∈ ÊB : σ0(w(e)) �A σ0(w(e

′))}|

= |{(e, e′) ∈ ÊB : σ0(w
′w(e)) �A σ0(w

′w(e))}|

≤ |{(e, e′) ∈ ÊB : w′w(e) �B w′w(e′)}| = �B(w
′w),

where ÊB = {(e, e′) ∈ Ê : e ≺B e′} if G = G(E), and ÊB = {(e, e′) ∈ Ê : e ≺B

e′, e ≺B iE(e)} if G = Gω(E). If mP

B
(w) = +∞, the result is established. So we

assume next that mP

B
(w) < +∞.

Claim 1. There is w′ ∈ WP such that the set I(w′w) := {e ∈ E : σ0(e) =
σ0(w

′w(e)) and w′w(e) �= e} is empty.
For any w′ ∈ WP, the set I(w′w) is finite. Let w′ ∈ WP such that |I(w′w)| is

minimal. We claim that I(w′w) = ∅. For otherwise, assume that there is e ∈ I(w′w).
Thus σ0(w

′w(e)) = e. Either σ0((w
′w)�(e)) = σ0(e) for all � ∈ Z, or there is � ∈ Z such

that σ0((w
′w)�−1(e)) �= σ0((w

′w)�(e)) = σ0((w
′w)�+1(e)). In the former case we set

w′′ = s(w′w)m−2(e),(w′w)m−1(e) · · · s(w′w)(e),(w′w)2(e)se,(w′w)(e), where m ≥ 2 is minimal
such that (w′w)m(e) = e. In the latter case we set w′′ = s(w′w)�(e),(w′w)�+1(e). In
both cases one has w′′ ∈ WP, and it easy to check that I(w′′w′w) � I(w′w), a
contradiction. Hence Claim 1 holds.

Note that mP

B
(w′w) = mP

B
(w). Up to dealing with w′w instead of w, we may

assume that I(w) = ∅. For α ∈ A, let Iα(w) = {e ∈ σ−1
0 (α) : w(e) �= e}. Since

I(w) = ∅, one has Iα(w) = I+α (w) � I−α (w) with

I
+
α (w) = {e ∈ σ

−1
0 (α) : σ0(w

−1(e)) 
A α} and I
−
α (w) = {e ∈ σ

−1
0 (α) : σ0(w

−1(e)) ≺A α}.

Claim 2. There is w′ ∈ WP with w′(e) = e whenever w(e) = e, and satisfying
the following property: for every α ∈ A, the set {e′ ∈ σ−1

0 (α) : w′(e) ≺B e′} is finite
whenever e ∈ I+α (w), and the set {e′ ∈ σ−1

0 (α) : w′(e) �B e′} is finite whenever
e ∈ I−α (w).

Let e ∈ I+α (w). There is �(e) ≥ 2 minimal such that σ0(w
−�(e)(e)) �A α. Since

mP

B
(w) < +∞, the set {e′ ∈ σ−1

0 (α) : w−�(e)(e) ≺B e′} is finite. Set w′(e) = w−�(e)(e).
Similarly, given e ∈ I−α (w), there is m(e) ≥ 2 minimal such that σ0(w

−m(e)(e)) �A α,
and the set {e′ ∈ σ−1

0 (α) : w−m(e)(e) �B e′} is finite; we set w′(e) = w−m(e)(e) in this
case. If e ∈ σ−1

0 (α) \ Iα(w), we set w′(e) = e. It is readily seen that the so-obtained
map w′ : σ−1

0 (α) → σ−1
0 (α) is bijective. Collecting these maps for all α ∈ A, we

obtain an element w′ ∈ WP satisfying the desired properties. This shows Claim 2.

Set ŵ = w′w with w′ ∈ WP as in Claim 2. For every α ∈ A, the set

Jα(ŵ) ={e ∈ σ−1
0 (α) : (∃e′ ∈ σ−1

0 (α) with e′ �B e and σ0(ŵ
−1(e′)) �A α)

or (∃e′ ∈ σ−1
0 (α) with e′ �B e and σ0(ŵ

−1(e′)) ≺A α)}
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is finite (by Claim 2). We write Jα(ŵ) = {eαi }
kα

i=1 so that ŵ−1(eα1 ) ≺B . . . ≺B

ŵ−1(eαkα
). There is w′′ ∈ WP with w′′(e) = e whenever e /∈

⋃
α∈A Jα(ŵ) and such

that

w′′(Jα(ŵ)) = Jα(ŵ) and w′′(eα1 ) ≺B . . . ≺B w′′(eαkα
) for all α ∈ A.

Taking the construction of w′′ into account, one can check that there is no couple
(e, e′) ∈ Ê with e ≺B e′, w′′ŵ(e) �B w′′ŵ(e′), and σ0(w

′′ŵ(e)) = σ0(w
′′ŵ(e′)).

Therefore, mP

B
(w) = �B(w

′′ŵ) = �B((w
′′w′)w) with w′′w′ ∈ WP. The proof is

complete.

5.2. Review of (finite-dimensional) flag varieties. We consider an E-
compatible generalized flag F = Fσ0

corresponding to a surjection σ0 : E → A.
Let I ⊂ E be a finite subset (resp., iE-stable, if the form ω is considered). In this
section we recall standard properties of the Schubert decomposition of the flag vari-
eties Fl(F , I) and Fl(F , ω, I) (see Section 3.3). We refer to [1, §3.2–3.5], [2, §1.2], [9,
§10.8] for more details.

Proposition 11. Let G = G(E). Let B be a splitting Borel subgroup of G
containing H and let B(I) := G(I) ∩ B be the corresponding Borel subgroup of the
group G(I). Let H(I) = G(I) ∩H. Let W (I) ⊂ W be the Weyl group of G(I).
(a) We have the decomposition

Fl(F , I) =
⋃

w∈W (I)

B(I)Fσ0◦w−1 .

Moreover, Fσ0◦w−1 is the unique element of B(I)Fσ0◦w−1 fixed by the maximal torus
H(I).
(b) Each subset B(I)Fσ0◦w−1 , for w ∈ W (I), is a locally closed subvariety isomorphic
to an affine space of dimension |{(e, e′) ∈ I×I : e ≺B e′, σ0◦w−1(e′) ≺A σ0◦w−1(e)}|.
(c) Given w,w′ ∈ W (I), the inclusion B(I)Fσ0◦w−1 ⊂ B(I)Fσ0◦w′−1 holds if and only
if σ0 ◦ w−1 ≤ σ0 ◦ w′−1 for the order ≤ defined in Section 4.1.
(d) Let J ⊂ E be another finite subset such that I ⊂ J . Let ιI,J : Fl(F , I) ↪→ Fl(F , J)
be the embedding constructed in Section 3.3. Then, for all w ∈ W (I), the image of
the Schubert cell B(I)Fσ0◦w−1 by the map ιI,J is an affine subspace of B(J)Fσ0◦w−1 .

Proposition 12. Let G = Gω(E). Let B be a splitting Borel subgroup of G
containing H and let Bω(I) := Gω(I) ∩B be the corresponding Borel subgroup of the
group Gω(I). Let Hω(I) = Gω(I)∩H. Let Wω(I) ⊂ W be the Weyl group of Gω(I).
(a) We have the decomposition

Fl(F , ω, I) =
⋃

w∈Wω(I)

Bω(I)Fσ0◦w−1 .

Moreover, Fσ0◦w−1 is the unique element of Bω(I)Fσ0◦w−1 fixed by the maximal torus
Hω(I).
(b) Each subset Bω(I)Fσ0◦w−1 , for w ∈ Wω(I), is a locally closed subvariety isomor-
phic to an affine space of dimension |{(e, e′) ∈ I × I : e ≺B e′, e ≺B iE(e), e′ �=
iE(e

′), σ0 ◦ w−1(e′) ≺A σ0 ◦ w−1(e)}|.
(c) Given w,w′ ∈ Wω(I), the inclusion Bω(I)Fσ0◦w−1 ⊂ Bω(I)Fσ0◦w′−1 holds if and
only if σ0 ◦ w−1 ≤ω σ0 ◦ w′−1, for the order ≤ω defined in Section 4.2.
(d) Let J ⊂ E be another iE-stable finite subset such that I ⊂ J . Let ιωI,J :
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Fl(F , ω, I) ↪→ Fl(F , ω, J) be the embedding constructed in Section 3.3. Then, for
all w ∈ Wω(I), the image of the Schubert cell Bω(I)Fσ0◦w−1 by the map ιωI,J is an
affine subspace of Bω(J)Fσ0◦w−1 .

5.3. Proof of Lemmas 2 and 3. We consider the map

φ : W(E) → FlA(V ), w 
→ Fσ0◦w−1

and, in the proof of Lemma 3, we also consider its restriction φω : Wω(E) → FlωA(V ).

Proof of Lemma 2. Let Fl′(F , E) ⊂ Fl(F , E) denote the subset of E-compatible
generalized flags. By definition the generalized flag φ(w) is E-compatible for all
w ∈ W(E). Moreover, it is easily seen that φ(w) = ŵ(Fσ0

) where ŵ ∈ G(E) is the
element for which ŵ(e) = w(e) for all e ∈ E. Thus φ(w) is E-commensurable with
F = Fσ0

(see Proposition 2). Consequently, φ(w) ∈ Fl′(F , E) for all w ∈ W(E).
Conversely, let G ∈ Fl′(F , E). Choosing n such that G ∈ Fl(F , En), we have that

G is fixed by the maximal torus H(En) ⊂ G(En). Using Proposition 11 (a), we find
w ∈ W (En) ⊂ W(E) such that G = Fσ0◦w−1 = φ(w).

Finally, for w,w′ ∈ W(E), we have φ(w) = φ(w′) if and only if σ0 ◦ w−1 =
σ0 ◦w′−1, and the latter condition reads as w′−1w ∈ WP(E). Therefore, φ induces a
bijection W(E)/WP(E) → Fl′(F , E).

Proof of Lemma 3. Let Fl′(F , ω, E) = Fl′(F , E) ∩ Fl(F , ω, E). From Lemma 2
we know that φω(w) is E-compatible and E-commensurable with F = Fσ0

, whence
φω(w) ∈ Fl′(F , ω, E) for all w ∈ Wω(E).

Let G ∈ Fl′(F , ω, E). Choosing n such that G ∈ Fl(F , ω, En), we have that G is a
fixed point of the maximal torus Hω(En) ⊂ Gω(En), hence we can find w ∈ Wω(En)
such that G = Fσ0◦w−1 = φω(w).

As in the proof of Lemma 2 it is easy to conclude that φω induces a bijection
Wω(E)/Wω

P
(E) → Fl′(F , ω, E).

5.4. Proof of Theorems 1 and 2.

Proof of Theorem 1. Recall the exhaustions (3) and (8) of the ind-group G(E)
and the ind-variety Fl(F , E). For all n ≥ 1, the subgroups H(En) := G(En)∩H(E),
Bn := G(En) ∩ B, and Pn := G(En) ∩ P are respectively a maximal torus, a Borel
subgroup, and a parabolic subgroup of G(En).

(a) Let G ∈ Fl(F , E). By Proposition 11 (a), for any n ≥ 1 large enough so that
G ∈ Fl(F , En), the Bn-orbit of G contains a unique element of the form Fσ0◦w−1 with
w ∈ W (En). Therefore, every element G ∈ Fl(F , E) lies in the B-orbit of Fσ for a
unique σ ∈ W(E) · σ0.

(b) Let G = {G′
α, G

′′
α : α ∈ A} ∈ Fl(F , E). According to part (a) of the proof,

there is a unique σ ∈ W(E) · σ0 such that G ∈ BFσ, say G = b(Fσ), where b ∈ B.
Thus

G′′
α ∩ F ′

0,e = b(F ′′
σ,α ∩ F ′

0,e) and G′′
α ∩ F ′′

0,e = b(F ′′
σ,α ∩ F ′′

0,e)

(because F ′
0,e, F

′′
0,e are b-stable). This clearly implies that σG = σFσ

. Moreover, from
the definition of Fσ we see that F ′′

σ,α ∩ F ′′
0,e �= F ′′

σ,α ∩ F ′
0,e if and only if σ(e) �A α.

Whence σ(e) = min{α ∈ A : F ′′
σ,α ∩ F ′′

0,e �= F ′′
σ,α ∩ F ′

0,e} = σFσ
(e) for all e ∈ E. Thus

σG = σ. Note that the last equality guarantees in particular that σG ∈ S(E,A).
(c) follows from Proposition 11 (b) and (d).
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(d) We consider σ, τ ∈ W(E) · σ0 and let n ≥ 1 be such that Fσ,Fτ ∈ Fl(F , En).
Assume that σ<̂τ , i.e., τ = σ ◦ te,e′ for a pair (e, e′) ∈ E × E with e ≺B e′ and
σ(e) �A σ(e′). Up to choosing n larger if necessary, we may assume that e, e′ ∈ En.
Then, by Proposition 11 (c), we get BnFσ ⊂ BnFτ . Whence BFσ ⊂ BFτ . This
argument also shows that the latter inclusion holds whenever σ ≤ τ . Conversely,
assume that Fσ ∈ BFτ . Hence Fσ ∈ BnFτ for n ≥ 1 large enough. Once again, by
Proposition 11 (c), this yields σ ≤ τ . The proof of Theorem 1 is complete.

Proof of Theorem 2. The proof of Theorem 2 follows exactly the same scheme as
the proof of Theorem 1, relying this time on Proposition 12 instead of Proposition 11.
We skip the details.

5.5. Proof of Theorem 3.

Proof of Theorem 3. (a) Condition (i) means that there is g ∈ G such that
B ⊂ gPg−1. This equivalently means that the element gP ∈ G/P is fixed by B,
i.e., that G/P comprises a B-orbit reduced to a single point. We have shown the
equivalence (i)⇔(iii). The implication (iii)⇒(ii) is immediate, while the implication
(ii)⇒(i) follows from Proposition 9, relation (17), and Theorems 1(c)–2 (c).
(b) The implication (i)⇒(ii) is a consequence of part (a), Corollary 2, Proposition 10,
relation (17), and Theorems 1 (c)–2 (c). Assume that (ii) holds. From part (a), there
is g ∈ G such that B ⊂ gPg−1. Up to dealing with gPg−1 instead of P, we may
assume that B ⊂ P. Arguing by contradiction, say that (E,�B) is not isomorphic
to a subset of (Z,≤). Thus there are e, e′ ∈ E such that the set {e′′ ∈ E : e ≺B

e′′ ≺B e′} is infinite. Since the surjective map σ0 : E → A, corresponding to P, is
nondecreasing (by Lemma 4) and nonconstant (because P �= G), we find ê, ê′ with
ê �B e ≺B e′ �B ê′ such that σ0(ê) ≺A σ0(ê

′). Then, dimBFσ0◦sê,ê′ = +∞ (by
Theorems 1 (c)–2 (c)), a contradiction.

6. Smoothness of Schubert ind-varieties. In this section G is one of the
ind-groups G(E) or Gω(E) and B is a splitting Borel subgroup of G which contains
the splitting Cartan subgroup H = H(E) or Hω(E). We consider the Schubert ind-
varieties defined as the closures of the Schubert cells BFσ in the ind-varieties of
generalized flags Fl(F , E) or Fl(F , ω, E). Specifically, we study the smoothness of
Schubert ind-varieties. The general principle (Theorem 4) is straightforward: the ind-
variety BFσ is smooth if and only if its intersections with suitable finite-dimensional
flag subvarieties of Fl(F , E) or Fl(F , ω, E) are smooth. Note however that this fact
is not immediate: see Remark 9 below. As an example, in Section 6.3 we give a
combinatorial interpretation of this result in the case of ind-varieties of maximal
generalized flags and in the case of ind-grassmannians.

6.1. General facts on the smoothness of ind-varieties. The notion of
smooth point of an ind-variety is defined in Section 2.1. We refer to [8, Chapter
4] or [11] for more details. In this section, for later use, we present some general facts
regarding the smoothness of ind-varieties.

We start with the following simple smoothness criterion (see [8]).

Lemma 5. Let X be an ind-variety with an exhaustion X =
⋃

n≥1 Xn. Let x ∈ X.
Suppose that there is a subsequence {Xnk

}k≥1 such that x is a smooth point of Xnk

for all k ≥ 1. Then x is a smooth point of X. In particular, if X admits an exhaustion
by smooth varieties, then X is smooth.

Example 7. It easily follows from Lemma 5 that the infinite-dimensional affine
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space A∞ and the infinite-dimensional projective space P∞ are smooth. More gener-
ally, it follows from Propositions 4–5 and Lemma 5 that the ind-varieties of the form
Fl(F , E) and Fl(F , ω, E) are smooth.

Remark 9. The converse of Lemma 5 is clearly false. Consider for instance
X = A∞ =

⋃
n≥1 A

n and let x ∈ A1. For each n ≥ 1, let X ′
n ⊂ An+1 be an n-

dimensional affine subspace containing x and distinct of An, and set Xn = An ∪X ′
n.

The subvarieties Xn exhaust A∞. Clearly x is a singular point of every Xn. However
x is a smooth point of A∞ (which is a smooth ind-variety).

The following partial converse of Lemma 5 is used in Section 6.2 for studying the
smoothness of Schubert ind-varieties.

Lemma 6. Let X be an ind-variety and let X =
⋃

n≥1 Xn be an exhaustion
by algebraic varieties. Assume that each inclusion Xn ⊂ Xn+1 has a left inverse
rn : Xn+1 → Xn in the category of algebraic varieties. Then, if x ∈ X is a singular
point of Xn0

for some n0 ≥ 1, x is a singular point of X.

Proof. We start with a preliminary fact. Let Y be an algebraic variety and
Z ⊂ Y be a subvariety such that there is a retraction r : Y → Z, i.e., a left inverse
of the inclusion map i : Z ↪→ Y . Let x ∈ Z. We consider the local rings OZ,x,
OY,x and their maximal ideals mZ,x, mY,x. The map r induces a ring homomorphism
r
 : OZ,x → OY,x such that r
(mk

Z,x) ⊂ m
k
Y,x for all k ≥ 1. Thus r
 induces maps

r
k : Sk(mZ,x/m
2
Z,x) → Sk(mY,x/m

2
Y,x) and r̃
k : mk

Z,x/m
k+1
Z,x → m

k
Y,x/m

k+1
Y,x ,

which are respective right inverses of the maps i
k : Sk(mY,x/m
2
Y,x) → Sk(mZ,x/m

2
Z,x)

and ĩ
k : mk
Y,x/m

k+1
Y,x → m

k
Z,x/m

k+1
Z,x induced by the inclusion i : Z ↪→ Y . Moreover the

diagrams

Sk(mZ,x/m
2
Z,x)

αZ,k
−→ m

k
Z,x/m

k+1
Z,x

r�
k
↓ ↓ r̃�

k

Sk(mY,x/m
2
Y,x)

αY,k
−→ m

k
Y,x/m

k+1
Y,x

and

Sk(mY,x/m
2
Y,x)

αY,k
−→ m

k
Y,x/m

k+1
Y,x

i�
k
↓ ↓ ĩ�

k

Sk(mZ,x/m
2
Z,x)

αZ,k
−→ m

k
Z,x/m

k+1
Z,x

are commutative, where αZ,k and αY,k are defined in a natural way.
In the setting of the lemma, for every n ≥ 1, we denote mn,x := mXn,x. The re-

traction rn : Xn+1 → Xn induces maps (rn)


k : Sk(mn,x/m

2
n,x) → Sk(mn+1,x/m

2
n+1,x)

and (r̃n)


k : mk

n,x/m
k+1
n,x → m

k
n+1,x/m

k+1
n+1,x, which are respective right inverses of the

maps (in)


k : Sk(mn+1,x/m

2
n+1,x) → Sk(mn,x/m

2
n,x) and (̃in)



k : m

k
n+1,x/m

k+1
n+1,x →

m
k
n,x/m

k+1
n,x induced by the inclusion Xn ⊂ Xn+1. Moreover the diagrams

Sk(mn,x/m
2
n,x)

αn,k
−→ m

k
n,x/m

k+1
n,x

(rn)
�
k
↓ ↓ (r̃n)

�
k

Sk(mn+1,x/m
2
n+1,x)

αn+1,k
−→ m

k
n+1,x/m

k+1
n+1,x

and

Sk(mn+1,x/m
2
n+1,x)

αn+1,k
−→ m

k
n+1,x/m

k+1
n+1,x

(in)
�

k
↓ ↓ (̃in)

�

k

Sk(mn,x/m
2
n,x)

αn,k
−→ m

k
n,x/m

k+1
n,x

commute, where αn,k = αXn,k (see also (2)).
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Since x ∈ Xn0
is singular, there is k ≥ 2 such that the map αn0,k :

Sk(mn0,x/m
2
n0,x) → m

k
n0,x/m

k+1
n0,x is not injective, i.e., there is an0

∈ kerαn0,k \ {0}.
We define the sequence {an} by letting

an =

{
(in)



k ◦ · · · ◦ (in0−2)



k ◦ (in0−1)



k(an0

) if 1 ≤ n ≤ n0

(rn−1)


k ◦ · · · ◦ (rn0+1)



k ◦ (rn0

)
k(an0
) if n ≥ n0.

Then an ∈ Sk(mn,x/m
2
n,x) and (in)



k(an+1) = an for all n ≥ 1. Thus the sequence

a := {an} is an element of the inverse limit lim
←

Sk(mn,x/m
2
n,x). Moreover, we have

a ∈ ker α̂k \ {0}, where α̂k := lim
←

αn,k. Therefore α̂k is not injective, and so x is a

singular point of X.

6.2. Smoothness criterion for Schubert ind-varieties. Let G = G(E)
(resp., G = Gω(E)).

Let (A,�A) be a totally ordered set (resp., equipped with an anti-automorphism
iA). A surjective map σ : E → A (resp., such that iA ◦ σ = σ ◦ iE) gives rise to an E-
compatible generalized flag Fσ = {F ′

σ,α, F
′′
σ,α}α∈A (see (10)) and to the corresponding

ind-variety X = Fl(Fσ, E) (resp., X = Fl(Fσ, ω, E)) (see Section 3). We consider
the Schubert cell BFσ ⊂ X. We denote its closure in X by Xσ (resp., Xω

σ) and call
it Schubert ind-variety. Note that Xσ and Xω

σ depend on the choice of the splitting
Borel subgroup B ⊂ G.

By Theorems 1 (c), (d) and 2 (c), (d), the Schubert ind-variety Xσ (resp., Xω
σ)

admits a cell decomposition into Schubert cells BFτ for τ ≤ σ (resp., τ ≤ω σ).
If I ⊂ E is a finite subset, then the (finite-dimensional) flag variety Fl(Fσ, I)

(defined in Section 3.3) embeds in a natural way in the ind-variety Fl(Fσ, E). The
intersectionXσ,I := Xσ∩Fl(Fσ, I) is a Schubert variety in the usual sense. In the case
of G = Gω(E), if the subset I ⊂ E is iE-stable, the flag variety Fl(Fσ, ω, I) embeds
in the ind-variety Fl(Fσ, ω, E). Again, the intersection Xω

σ,I := Xω
σ ∩Fl(Fσ, ω, I) is a

Schubert variety in the usual sense.
Note that the Schubert ind-variety Xσ depends on the generalized flag Fσ and on

the splitting Borel subgroupB. Recall thatB is the stabilizer of a maximal generalized
flag F0 (see Propositions 1, 3). Our singularity criterion (Theorem 4 below) requires
a technical assumption on B and Fσ:

(H) At least one of the following conditions holds:
(i) F0 is a flag (i.e., (F0,⊂) is isomorphic as ordered set to a subset of

(Z,≤));
(ii) Fσ is a flag, and dimF ′′

σ,α/F
′
σ,α is finite whenever 0 �= F ′

σ,α ⊂ F ′′
σ,α �= V .

By Sing(X) we denote the set of singular points of a variety or an ind-variety X .

Theorem 4. Let G = G(E) (resp., G = Gω(E)). Let σ,Xσ,X
ω
σ , Xσ,I , X

ω
σ,I be

as above. Assume that hypothesis (H) holds. The following alternative holds: either
(i) the variety Xσ,I (resp., Xω

σ,I) is smooth for all (resp., iE-stable) finite subsets
I ⊂ E; then the ind-variety Xσ (resp., Xω

σ ) is smooth;
or

(ii) there is a finite subset I0 ⊂ E such that, for every (resp., iE-stable) finite
subset I ⊂ E with I ⊃ I0, the variety Xσ,I (resp., Xω

σ,I) is singular; then Xσ

(resp., Xω
σ) is singular and

Sing(Xσ) =
⋃
I⊃I0

Sing(Xσ,I) (resp., Sing(Xω
σ ) =

⋃
I⊃I0, iE-stable

Sing(Xω
σ,I)).
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Proof. We provide the proof only for the case G = G(E) (the proof in the case
of G = Gω(E) follows the same scheme).

We need preliminary constructions and notation. For a finite subset I ⊂ E and
an element τ ∈ W (I) · σ, we define closed subgroups of G(I) and B(I) by letting

Gτ (I) := {g ∈ G(I) : g(e)− e ∈ 〈e′ ∈ I : τ(e′) �A τ(e)〉 ∀e ∈ E} and

Bτ (I) := {g ∈ G(I) : g(e)− e ∈ 〈e′ ∈ I : e′ ≺B e, τ(e′) �A τ(e)〉 ∀e ∈ E}

= B(I) ∩Gτ (I).

It is well known that the set

Uτ (I) := {gFτ : g ∈ Gτ (I)}

is an open subvariety of Fl(Fσ, I), and the maps

Φτ : Gτ (I) → Uτ (I), g 
→ gFτ and Φ′
τ = Φτ |Bτ (I) : Bτ (I) → B(I)Fτ

are isomorphisms of algebraic varieties. Thus, for every τ ∈ W(E) · σ, we obtain an
open ind-subvariety of Fl(Fσ, E) by letting

Uτ :=
⋃
I

Uτ (I),

where the union is taken over finite subsets I ⊂ E such that τ ∈ W (I) · σ. Clearly
BFτ ⊂ Uτ , hence by Theorem 1 (a) the open subsets Uτ (for τ ∈ W(E) · σ) cover
the ind-variety Fl(Fσ, E).

Let I, J ⊂ E be finite subsets such that I ⊂ J . Let Fl(Fσ, I), Fl(Fσ, J) be
corresponding finite-dimensional flag varieties, and let ιI,J : Fl(Fσ, I) → Fl(Fσ, J)
be the embedding defined in Section 3.3. As noted in Proposition 11, we have
ιI,J(B(I)Fσ) ⊂ B(J)Fσ, hence ιI,J (Xσ,I) ⊂ Xσ,J .

Let τ ∈ W (I) · σ. The inclusion Gτ (I) ⊂ Gτ (J) holds. Moreover, using that
g(e) = e for all g ∈ Gτ (I), all e ∈ J \ I, in view of the definition of the map ιI,J , we
have ιI,J (gFτ ) = gFτ ∈ Uτ (J) for all g ∈ Gτ (I). Hence the map ιI,J restricts to an
embedding ι′I,J : Uτ (I) ∩Xσ,I → Uτ (J) ∩Xσ,J .

Claim 1. Let I, J ⊂ E be finite subsets such that I ⊂ J and let τ ∈ W (I) · σ.
Then, ι′I,J restricts to an embedding Uτ (I) ∩ Sing(Xσ,I) → Uτ (J) ∩ Sing(Xσ,J).

Let H ⊂ G(J) be the torus formed by the elements h ∈ G(J) such that h(e) = e
for all e ∈ I and h(e) ∈ K∗e for all e ∈ J \ I. The torus H acts on Xσ,J . From
[7], it follows that Sing((Xσ,J )

H) ⊂ Sing(Xσ,J), where (Xσ,J)
H ⊂ Xσ,J stands for

the subset of H-fixed points. On the other hand, it is easy to see that the equality
ι′I,J(Uτ (I) ∩Xσ,I) = Uτ (J) ∩ (Xσ,J)

H holds. Thereby,

ι′I,J(Uτ (I) ∩ Sing(Xσ,I)) = Uτ (J) ∩ Sing((Xσ,J )
H) ⊂ Sing(Xσ,J).

This shows Claim 1.

Claim 2. Let I, J ⊂ E be finite subsets such that J = I∪{eJ} and let τ ∈ W (I)·σ.
Assume that at least one of the following conditions holds:

(i) eJ ≺B e for all e ∈ I;
(ii) eJ �B e for all e ∈ I;
(iii) τ(eJ ) �A τ(e) for all e ∈ I;
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(iv) τ(eJ ) �A τ(e) for all e ∈ I.
Then the map ι′I,J : Uτ (I)∩Xσ,I → Uτ (J)∩Xσ,J admits a left inverse r′I,J : Uτ (J)∩
Xσ,J → Uτ (I) ∩Xσ,I .

We write an element g ∈ G(E) as a matrix (ge′,e)e′,e∈E such that g(e) =∑
e′∈E ge′,ee

′. Let Gτ (J) → Gτ (J), g 
→ g′ and RI,J : Gτ (J) → Gτ (I), g 
→ g̃
be the maps defined by

g′e′,e =

{
0 if e �= e′ = eJ
ge′,e otherwise,

and g̃e′,e =

{
0 if e �= e′ and eJ ∈ {e, e′}
ge′,e otherwise.

(19)
The map RI,J induces a morphism of algebraic varieties rI,J : Uτ (J) → Uτ (I), gFτ 
→
g̃Fτ . It is clear that g̃ = g whenever g ∈ Gτ (I), hence rI,J(ιI,J (G)) = G whenever
G ∈ Uτ (I).

We claim that

G ∈ Uτ (J) ∩Xσ ⇒ rI,J (G) ∈ Xσ. (20)

Let G = gFτ with g ∈ Gτ (J). Assume that G ∈ Xσ. We first check that

G′ := g′Fτ ∈ Xσ (21)

with g′ as in (19). We distinguish four cases depending on the conditions (i)–(iv) of
Claim 2.

• Assume that condition (i) holds. Let F0 = {F ′
0,e, F

′′
0,e : e ∈ E} be the

maximal generalized flag corresponding to B, i.e., F ′
0,e = 〈e′ : e′ ≺B e〉 and

F ′′
0,e = 〈e′ : e′ �B e〉 (see Section 4.1). In view of condition (i) and the

definition of the map g 
→ g′, for any F ∈ F0 and any linear combination∑
e∈J λee ∈ 〈J〉, we have

∑
e∈J

λeg(e) ∈ F ⇒
∑
e∈J

λeg
′(e) ∈ F.

This implication yields dim g′(M) ∩ 〈J〉 ∩ F ≥ dim g(M) ∩ 〈J〉 ∩ F for all
M ∈ Fτ , all F ∈ F0. It is well known that this property implies g′Fτ ∈
B(J)gFτ ⊂ Xσ (see, e.g., [1, §3.2.9]).

• Assume that condition (ii) holds. Then every F = {F ′
α, F

′′
α}α∈A ∈ B(J)Fσ

satisfies F ′′
α ⊂ 〈E \ {eJ}〉 whenever α ≺A σ(eJ). The same property holds

whenever F ∈ B(J)Fσ = Fl(Fσ, J) ∩ Xσ. Applying this observation to
F = gFτ (and noting that τ(eJ ) = σ(eJ) because τ ∈ W (I) · σ), we deduce
that geJ ,e = 0 for all e �= eJ , whence g′ = g. This clearly yields (21) in this
case.

• Assume that condition (iii) holds. Then the definition of Gτ (J) yields geJ ,e =
0 for all e ∈ I, whence g′ = g. This implies (21).

• Finally, assume that condition (iv) holds. Then the definition of Gτ (J) im-
plies that g(eJ) = eJ . For t ∈ K∗, let h̃t ∈ H(E) be defined by

h̃t(e) =

{
e if e �= eJ
teJ if e = eJ

for all e ∈ E. (22)

We have g′Fτ = limt→0 h̃tgFτ . Since h̃tgFτ ∈ Xσ for all t ∈ K∗, we get
g′Fτ ∈ Xσ, whence (21).
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Therefore (21) holds true in all the cases. Moreover, we have

g̃Fτ = lim
t→∞

h̃tg
′Fτ

with h̃t as in (22). Since g′Fτ ∈ Xσ (by (21)) and h̃t stabilizes Xσ, we conclude that
rI,J(G) = g̃Fτ ∈ Xσ. Whence (20).

By (20), the map r′I,J : Uτ (J) ∩Xσ,J → Uτ (I) ∩Xσ,I obtained by restriction of
rI,J is well defined and fulfills the conditions of Claim 2.

Relying on Claims 1 and 2, the proof of the theorem is carried out as follows. If
Xσ,I is smooth for all finite subsets I ⊂ E, then Lemma 5 guarantees that Xσ is a
smooth ind-variety. We now assume that there is a finite subset I0 ⊂ E such that
Xσ,I0 is singular. In this case Lemma 5 yields an inclusion

Sing(Xσ) ⊂
⋃
I⊃I0

Sing(Xσ,I)

where the union is taken over all finite subsets I ⊂ E such that I ⊃ I0. For completing
the proof it is sufficient to prove that

Sing(Xσ,I) ⊂ Sing(Xσ) (23)

for each finite subset I ⊂ E with I ⊃ I0. To show this, let G ∈ Sing(Xσ,I). There is
τ ∈ W (I) · σ such that G ∈ Uτ (I). We consider the two cases involved in assumption
(H).

• If (H) (i) holds, then let e0 = min I and e1 = max I (for the order �B), and
set I ′ = {e ∈ E : e0 �B e �B e1}. The set I ′ is finite (by (H) (i)). Moreover,
again relying on (H) (i), we can find a filtration E =

⋃
n≥1 En with E1 = I ′

and En = En−1 ∪ {en} for all n ≥ 2, where en is either the minimum or the
maximum of (En,�B).

• If (H) (ii) holds, then let α0 = min{τ(e) : e ∈ I} and α1 = max{τ(e) : e ∈ I}
(for the order �A), and set I ′ = I ∪ {e ∈ E : α0 ≺A τ(e) ≺A α1}. The first
part of (H) (ii) ensures that there are at most finitely many α ∈ A such that
α0 ≺A α ≺A α1, while the second part of (H) (ii) (together with the fact that
τ ∈ W(E) · σ) implies that τ−1(α) is finite for each such α, hence the set I ′

is finite. Again relying on (H) (ii), we can construct a filtration E =
⋃

n≥1 En

with E1 = I ′ and En = En−1 ∪ {en} for all n ≥ 2, where en satisfies either
τ(en) �A τ(e) for all e ∈ En−1 or τ(en) �A τ(e) for all e ∈ En−1.

In both cases, we get a filtration {En}n≥1 of E by finite subsets such that I ⊂ E1

and, for every n ≥ 2, the pair (En−1, En) satisfies one of the conditions (i)–(iv) of
Claim 2. We obtain an exhaustion of the open subset Uτ ∩ Xσ of Xσ given by the
chain

Uσ,τ,1
ι1
↪→ Uσ,τ,2

ι2
↪→ Uσ,τ,3 ↪→ . . . ↪→ Uσ,τ,n

ιn
↪→ . . .

where Uσ,τ,n = Uτ (En) ∩ Xσ,En
and ιn = ι′En,En+1

. Claim 1 implies that G is a
singular point of Uσ,τ,1. By Claim 2, we can apply Lemma 6 which implies that G is
a singular point of Uτ ∩Xσ, hence of Xσ. Therefore the inclusion (23) holds. The
proof is complete.

Remark 10. (a) Note that hypothesis (H) is valid in the case where Fl(Fσ, E)
is an ind-grassmannian.
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(b) Hypothesis (H) is needed in the proof of Theorem 4 for showing Claim 2 which is
necessary for applying Lemma 6. We have no indication whatsoever that Theorem 4
is not valid in general (without hypothesis (H)).

Remark 11. The Schubert ind-varieties Xσ considered in this paper form a
narrower class than the ones considered by H. Salmasian [12]. Indeed, a closed ind-
subvariety X ⊂ Fl(F , E) such that X ∩ Fl(F , I) is a Schubert variety for all finite
subsets I ⊂ E is a Schubert ind-variety in the sense of [12], and it may happen that
X has no open B-orbit and admits no smooth point in this case (see [12, Section 2]).
On the other hand, the ind-variety Xσ defined in Section 6.2 always contains the open
B-orbit BFσ, and the points of BFσ are smooth in Xσ.

6.3. Examples. A consequence of Theorem 4 is that the smoothness criteria for
Schubert varieties of (finite-dimensional) flag varieties that are expressed in terms of
pattern avoidance, may pass to the limit at infinity.

For example, let us apply Theorem 4 to the ind-variety Fl(F , E) for an E-
compatible maximal generalized flag F . In this case we have two total orders
on the basis E: the first one �B corresponds to the splitting Borel subgroup
B, and the second order �F corresponds to the maximal generalized flag F , i.e.,
F = {F ′

e, F
′′
e : e ∈ E} is given by

F ′
e = 〈e′ ∈ E : e′ ≺F e〉, F ′′

e = 〈e′ ∈ E : e′ �F e〉.

By Theorem 1, the Schubert ind-varieties Xσ of Fl(F , E) are parametrized by the
permutations σ ∈ W(E), and we have

dimXσ = ninv(σ) = |{(e, e′) ∈ E × E : e ≺B e′, σ(e′) ≺F σ(e)}|.

From Theorem 4 and the known characterization of smooth Schubert varieties of
full flag varieties in terms of pattern avoidance (see [1, §8]) we obtain the following
criterion.

Corollary 3. Assume that F or F0 is a flag, so that hypothesis (H) is satisfied.
Let σ ∈ W(E). Then the Schubert ind-variety Xσ is singular if and only if there exist
e1, e2, e3, e4 ∈ E such that e1 ≺B e2 ≺B e3 ≺B e4 and (σ(e3) ≺F σ(e4) ≺F σ(e1) ≺F

σ(e2) or σ(e4) ≺F σ(e2) ≺F σ(e3) ≺F σ(e1)).

Remark 12. (a) Corollary 3 shows in particular that, if the basis E comprises
infinitely many pairwise disjoint quadruples (e1, e2, e3, e4) such that e1 ≺B e2 ≺B

e3 ≺B e4 and, say, e3 ≺F e4 ≺F e1 ≺F e2, then for every permutation σ ∈ W(E),
the Schubert ind-variety Xσ is singular. Thus, there exist pairs (B,F) such that all
Schubert ind-varieties of the ind-variety Fl(F , E) are singular.
(b) In the case where the ind-variety Fl(F , E) has finite-dimensional Schubert cells,
it has one cell equal to a single point (see Theorem 3), hence has at least one smooth
Schubert ind-variety. Note that Fl(F , E) may have smooth Schubert ind-varieties
although all its Schubert cells are infinite dimensional. Take for instance E = {ei}i∈Z,
let the order �B be the natural order on Z, and let the order �F be the inverse order,
i.e., i �F j if and only if i ≥ j. Then every Schubert cell of Fl(F , E) is infinite
dimensional, but the permutation σ = idE ∈ W(E) avoids the two forbidden patterns
of Corollary 3, hence Xσ is smooth.
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As a second example, we apply Theorem 4 to the case of the ind-grassmannian
Gr(2). In this case, for a splitting Borel subgroup B, the Schubert ind-varieties
Xσ are parametrized by the surjective maps E → {1, 2} such that |σ−1(1)| = 2, or
equivalently by the pairs of elements σ = {σ1, σ2} ⊂ E. From Theorem 4 and [1,
§9.3.3] we have:

Corollary 4. Let σ = {σ1, σ2} ⊂ E with σ1 ≺B σ2. The Schubert ind-variety
Xσ is smooth if and only if σ1 is the smallest element of the ordered set (E,�B) or
σ1, σ2 are two consecutive elements of (E,�B).
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182. Birkhäuser Boston, Inc., Boston, MA, 2000.

[2] M. Brion, Lectures on the geometry of flag varieties, in: Topics in cohomological studies of
algebraic varieties, pp. 33–85, Trends Math., Birkhäuser, Basel, 2005.
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