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EULER CHARACTERISTIC NUMBERS OF SPACE-LIKE
MANIFOLDS∗

BING-LONG CHEN† AND KUN ZHANG‡

Abstract. In this note, we prove that if a compact even dimensional manifold Mn with negative
sectional curvature is homotopic to some compact space-like manifold Nn, then the Euler character-
istic number of Mn satisfies (−1)

n
2 χ(Mn) > 0. We also show that the minimal volume conjecture

of Gromov is true for all compact even dimensional space-like manifolds.
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1. Introduction. Let Mn be a compact even dimensional Riemannian manifold
with negative sectional curvature. A long-standing conjecture due to H. Hopf [5] in
differential geometry asks whether the Euler characteristic number of Mn satisfies
(−1)

n
2 χ(Mn) > 0. When n = 4, the proof was given by Chern [2] (who attributed the

result to Milnor) by showing that the integrand of Gauss-Bonnet-Chern is positive.
However, when n = 6, some examples show that the integrand does not have a definite
sign in general. On the other hand, Gromov in [4] proved that Hopf conjecture is true
when the manifold is Kähler.

In this note, we will consider the Euler characteristic numbers of a class of
real Riemannian manifolds. These manifolds Nn are locally embeddable in Lorentz-
Minkowski space Rn,1. In [7], such Nn is called space-like. More precisely, we call a
manifold (Nn, g) (see [7]) space-like if there exists a symmetric (0, 2) tensor hij such
that the following two equations are fulfilled

Rijkl = −(hikhjl − hilhjk); (1.1)

∇ihjk = ∇jhik. (1.2)

Here the sign convention for the Riemann curvature tensor Rijkl is made so that Rijij

is positive on sphere. Clearly, a space-like n-dimensional submanifold of Rn,1 satisfies
the above two equations (1.1) and (1.2) if we take the tensor hij to be the second
fundamental form induced from Rn,1. A space-like manifold shares some interesting
properties of manifolds with non-positive sectional curvature. For example, it can be
shown that the universal cover of a complete space-like manifold is diffeomorphic to
the Euclidean space (see Corollary 2.2). One main result of this note is the following
theorem:

Theorem 1.1. Let Mn be a compact even dimensional Riemannian manifold
with negative sectional curvature. Suppose Mn is homotopic to some compact space-
like manifold Nn. Then the Euler characteristic number of Mn satisfies

(−1)
n
2 χ(Mn) > 0.
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Note that in the theorem, we do not assume the curvature of space-like manifold
Nn has a sign. The curvature sign is only imposed on the manifold Mn. The moti-
vation for the proof of Theorem 1.1 is from [7], where the second author studied the
hyperbolization problem of space-like manifolds by using the intrinsic mean curvature
flow. More precisely, it was shown in [7] that if the manifold is compact and hij > 0
in (1.1), then the manifold admits a Riemannian metric of negative constant sectional
curvature.

Theorem 1.1 follows from a more general result on space-like manifolds satisfying
(1.1) and (1.2):

Theorem 1.2. Let Nn be an even dimensional compact space-like manifold, then
the Euler characteristic number satisfies

(−1)
n
2 χ(Nn) ≥ 0.

The equality holds if and only if the minimal volume of Nn is zero.

According to Gromov [3], theminimal volumeminvol(Nn) of amanifoldNn is the
infimum of all volumes vol(Nn, g′), where g′ ranges over all Riemannian metrics with
sectional curvatures satisfying |Kg′ | ≤ 1. The minimal volume conjecture of Gromov
[3] is asking whether there is a number ε(n) depending only on the dimension n
such that minvol(Nn) < ε(n) implies minvol(Nn) = 0. This conjecture was already
verified by X. C. Rong [6] in dimension 4. A byproduct of Theorem 1.2 is

Corollary 1.3. The minimal volume conjecture is true for all compact even
dimensional space-like manifolds.

The proof of above Theorems 1.1 and 1.2 is an elementary application of the mean
curvature flow. The detail will be given in the following two sections.

2. Mean curvature flow. In this section, we assume that (Nn, g) is a space-like
manifold, i.e., there is a tensor hij such that equations (1.1) and (1.2) hold. In [7],
the second author studied the following flow:

∂gij
∂t

= −2Rij + 2hikhjlg
kl,

∂hij

∂t
= �hij −Rimhnjg

mn −Rjmhnig
mn

+ 2himhjnhklg
mkgln − hmnhklg

mkgnlhij .

(2.1)

It was shown in [7], when (Nn, g) is compact, equation (2.1) admits a smooth solution
for any initial data (g0, h0). Moreover, if equations (1.1) and (1.2) hold at time t = 0,
then they also continue to hold for time t > 0. That is to say, (Nn, g(t), h(t)) will
remain to be a space-like manifold under the deformation (2.1). In this case, equation
(2.1) may be simplified:

∂gij
∂t

= 2Hhij

∂hij

∂t
= �hij + 2Hhimhjng

mn − |A|2hij

(2.2)

where H = gijhij , |A|2 = gijgklhikhjl.
We may call equation (2.1) an intrinsic mean curvature flow. Equations (1.1) and

(1.2) may be called Gauss and Codazzi equations respectively.
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Another approach to solve equations (2.1) or (2.2) is to embed the universal cover
(Ñ , g̃) into Rn,1 as a space-like submanifold Σ in the usual sense, and deform Σ in
Rn,1 by mean curvature flow and prove that the mean curvature flow is invariant
under the deck transformation.

Proposition 2.1. Let Nn be a complete space-like manifold satisfying (1.1) and
(1.2). Then its universal cover Ñn admits an isometric embedding into Rn,1 as a
space-like submanifold whose second fundamental form is given by the tensor hij in
(1.1) and (1.2).

Proof. By a monodromy argument, there is a smooth isometric immersion ϕ :
(Ñn, g̃) → Rn,1 with hij as the second fundamental form. Let π : Rn,1 → Rn be

the projection to an n-coordinate plane, and ψ = π ◦ ϕ : Ñn → Rn. Let g0 be the
Euclidean metric in Rn, then it is not hard to see g̃ ≤ ψ∗g0. This implies ψ is proper,
hence a covering map to Rn. From this, we know ϕ is an embedding.

Corollary 2.2. The universal cover Ñn of Proposition 2.1 is diffeomorphic to
the Euclidean space.

Now let (Nn, g) be a compact space-like manifold, we deform (g, h) by (2.1) or
(2.2).

From (2.2), it is not hard to show

∂H

∂t
= �H −H |A|2

∂|A|2

∂t
= �|A|2 − 2|∇A|2 − 2|A|4

(2.3)

where |∇A|2 = gijgklgpq∇ihkp∇jhlq.
From (2.3) and maximum principle, it can be shown that the solution (g(t), h(t))

of equation (2.1) (or (2.2)) always exists for all time 0 ≤ t < ∞, and hij satisfies the
estimate

0 ≤ |A|2 ≤
1

2t+ 1/|A|2max(0)
. (2.4)

First, we derive two monotonicity formulas for the intrinsic mean curvature flow.
We have to mention that all the quantities in the following propositions involving the
norm and the volume element dv are computed with respect to the evolving metric
g(t).

Proposition 2.3.

d

dt

∫
Nn

|H |ndv = −n(n− 1)

∫
Nn

|∇H |2|H |n−2dv − n

∫
Nn

|H |n|hij −
H

n
gij |

2dv ≤ 0,

and

d

dt

∫
Nn

|A|ndv =− (
n

2
− 1)

n

2

∫
Nn

|A|(n−4)|∇|A|2|2dv − n

∫
Nn

|A|n−2|∇A|2dv

− n

∫
Nn

|A|n|hij −
H

n
gij |

2dv ≤ 0.

Proof. The proof is direct calculations by using equations (2.3).
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Proposition 2.4. There are constant C0 > 0 and a sequence of times tk → ∞
such that

0 ≤

∫
Nn

|A|ndv < C0, (2.5)

for all time t ≥ 0, and

tk ·

∫
Nn

|A|n|hij −
H

n
gij |

2dv |t=tk→ 0 as k → ∞. (2.6)

Proof. (2.5) follows from the second formula of Proposition 2.3. Integrating the
formula, we have ∫ ∞

0

∫
Nn

|A|n|hij −
H

n
gij |

2dv ≤ C0. (2.7)

If (2.6) does not hold, there are constants C > 0 and δ > 0 such that for all t > C,
we have ∫

Nn

|A|n|hij −
H

n
gij |

2dv >
δ

t
,

which is a contradiction with (2.7).

Since

d

dt
vol(Nn, t) =

∫
Nn

H2dv ≤
(∫

Nn

|H |ndv
) 2

n

(vol(Nn, t))1−
2
n ,

we have

d

dt
vol(Nn, t)

2
n ≤

2

n
(

∫
Nn

|H |ndv)
2
n . (2.8)

Proposition 2.5. There is a constant C1 > 0 such that for all t > 0, we have

vol(Nn, t) ≤ C1(t+ 1)
n
2 , (2.9)

1

1 + t

∫
Nn

|A|n−2dv ≤ C1. (2.10)

Moreover

lim sup
t→∞

vol(Nn, t)

(1 + t)
n
2

≤ (
2

n
)

n
2 lim

t→∞

∫
Nn

|H |ndv. (2.11)

Proof. From (2.8) we have

vol(Nn, t)
2
n − vol(Nn, 0)

2
n

t+ 1
≤

2

n

∫ t

0 (
∫
Nn |H |ndv)

2
n dt

t+ 1
.

Since
∫
Nn |H |ndv is monotonically decreasing from Proposition 2.3, we know

lim sup
t→∞

vol(Nn, t)
2
n

1 + t
≤

2

n
lim
t→∞

(

∫
Nn

|H |ndv)
2
n ,

which gives (2.11) and (2.9). Now (2.10) follows from (2.5)(2.9),∫
Nn

|A|n−2dv ≤ (

∫
Nn

|A|ndv)1−
2
n vol(Nn, t)

2
n ≤ C(1 + t).
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3. Proof of the main theorem. To prove Theorem 1.2, we may assume Nn

is orientable. Since the dimension n is even, it is well-known that by Gauss-Bonnet-
Chern theorem, the Euler Characteristic number χ(Nn) may be expressed as a cur-
vature integral (see Chern [1]): ∫

Nn

Ω = χ(Nn) (3.1)

where

Ω =
1

2nπ
n
2 (n2 )!

∑
εi1,i2,··· ,inΩi1i2 ∧ · · ·Ωin−1in ,

and Ωi1i2 is the curvature form. From equation (1.1) and direct calculations, it follows

Ω = (−1)
n
2
Γ(n+12 )

π
n+1
2

det(h)

det(g)
dv = (−1)

n
2

2

vol(Sn)

det(h)

det(g)
dv, (3.2)

and

χ(Nn) = (−1)
n
2

2

vol(Sn)

∫
Nn

det(h)

det(g)
dv. (3.3)

We remark that equation (3.3) holds for any t > 0, since equation (1.1) holds for
any time t > 0.

For any fixed p ∈ Nn, choose an orthonormal frame ei, i = 1, 2, · · · , n, such that
hij is diagonalied in this frame, i.e., hij = λiδij . Then we have

|
det(h)

det(g)
− (

H

n
)n| = |λ1 · · ·λn − (

H

n
)n| ≤ n|A|n−1|hij −

H

n
gij |.

Hence ∫
Nn

|
det(h)

det(g)
− (

H

n
)n|dv

≤ n

∫
Nn

|A|n−1|hij −
H

n
gij |dv

≤ n(

∫
Nn

|A|n|hij −
H

n
gij |

2dv)
1
2 · (

∫
Nn

|A|n−2dv)
1
2 .

Let tk be the time sequence chosen in Proposition 2.4, it follows from (2.6) and (2.10)
that at t = tk : ∫

Nn

|A|n|hij −
H

n
gij |

2dv ·

∫
Nn

|A|n−2dv |t=tk→ 0 (3.4)

as k → ∞. This implies

lim
k→∞

∫
Nn

|
det(h)

det(g)
− (

H

n
)n|dv |t=tk= 0. (3.5)

Combining (3.3) and (3.5), we have

(−1)
n
2 χ(Nn) = lim

k→∞

2

vol(Sn)

∫
Nn

(
H

n
)ndv |t=tk . (3.6)
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Because n is even, we know (−1)
n
2 χ(Nn) ≥ 0. This finishes the main part of Theorem

1.2.
Clearly, if the minimal volume of Nn is zero, then the Euler characteristic number

χ(Nn) is zero. This follows directly from the Gauss-Bonnet-Chern formula (3.1). To
see the converse, let χ(Nn) = 0, from (3.6) we have

lim
k→∞

∫
Nn

|H |ndv |t=tk= 0. (3.7)

Combining (2.11), it implies

lim sup
k→∞

vol(Nn, tk)

(1 + tk)
n
2

= 0. (3.8)

Note that (2.4) and (1.1) implies |Rm|(gtk) ≤ Ct−1k . So {Ct−1k gtk} is a sequence
of Riemannian metrics with sectional curvatures satisfying |K| ≤ 1 but their volumes
converge to zero as k → ∞. This shows the minimal volume of Nn is zero. The proof
of Theorem 1.2 is completed.

To prove Theorem 1.1, we recall a result of Gromov [3]: the simplicial volume of
a compact manifold Xn with negative sectional curvature is positive. In our case, we
have the simplicial volume of Mn is positive, so is Nn by the homotopic invariance
of simplicial volume. In paper [3], Gromov proved that the minimal volume is always
bounded from below by the simplicial volume multiplied by a constant depending only
on the dimension. Theorem 1.1 follows from this result and Theorem 1.2. Finally, we
mention one corollary:

Corollary 3.1. Let (Nn, g, h) be an even-dimensional compact space-like man-
ifold. Then

1

vol(Sn)

∫
Nn

|H |ndv ≥ (−1)
n
2
nn

2
χ(Nn). (3.9)

Equality holds if and only if either (Nn, g, h) is hyperbolic or flat.

Proof. By (3.6) and the first formula of Proposition 2.3, we know (3.9) holds.
Suppose the equality in (3.9) holds, we know∫

Nn

|∇H |2|H |n−2dv = 0

and ∫
Nn

|H |n|hij −
H

n
gij |

2dv = 0

hold for all t ≥ 0. The first equation implies H = const.. If H �= 0, the second equality
implies that (Nn, g, h) is hyperbolic. Suppose now H ≡ 0 for all t, from (2.2), we

know
∂gij
∂t = 0, and R = |A|2. Since ∂R

∂t = 0 and |A|2 ≤ Ct−1, we know R = |A|2 ≡ 0,
which implies that (Nn, g, h) is flat.

Remark 3.2. It is desirable to generalize Theorem 1.2 to higher codimensional
case. Namely, we may consider the manifold (Nn, g) which is locally embeddable as a
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space-like higher codimensional submanifold of Rn,m. In this case, a formula similar
to the first one in Proposition 2.3 can still hold:

d

dt

∫
Nn

|H |n+dv ≤ 0, (3.10)

where H is the (time-like) mean curvature vector and |H |+ =
√
−〈H,H〉. This in

particular implies

lim sup
t→∞

vol(Nn, t)
2
n

1 + t
≤

2

n
lim
t→∞

(

∫
Nn

|H |n+dv)
2
n < ∞. (3.11)
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