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LOGARITHMIC VERSION OF THE MILNOR FORMULA*

ENLIN YANGT

Abstract. In this paper, we propose a logarithmic version of the Milnor formula. It is a formula
for the total dimension of vanishing cycles with tamely ramified coefficient sheaves at an isolated
log-singular point. We prove this formula in the geometric case. In the geometric case, it implies that
the total dimension of vanishing cycles with tamely ramified coefficient sheaves can be computed as
an intersection number (in terms of characteristic cycle).
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Introduction. Let S be a regular scheme purely of dimension 1 and s a closed
point of S with perfect residue field %k of characteristic p. Let X be a regular scheme,
f X — S a flat morphism of finite type, and let xy be an isolated singular point
of f such that f(zg) = s. The Milnor formula says that the Milnor number of f
at xo (cf. Definition 1.3) is equal to the total number of vanishing cycles of f at
2. In the geometric case where S is a scheme over k, this conjecture was proved by
P. Deligne in [5]. In [14], F. Orgogozo showed that the conductor formula of Bloch
implies the Milnor formula. In [11], K. Kato and T. Saito showed that the conductor
formula is a consequence of an embedded resolution in a strong sense for the reduced
closed fiber. Hence, the Milnor formula is true if we assume an embedded resolution.
Consequently, the Milnor formula is true if the relative dimension is two. Recently,
using Radon transform, T. Saito proved an analogue formula of the Milnor formula
with coefficient sheaf even for a normal surface in [17].

In this paper, we propose a logarithmic version of the Milnor formula. We prove
this formula in the geometric case. Let (X, D) be a simple normal crossing pair (cf.
section 1.1). If zp is an isolated log-singular point of a morphism f : X — S in
the sense of section 1.1, then similarly we define the logarithmic Milnor number (cf.
Definition 1.3). The relation between Milnor number and its logarithmic version will
be given in Lemma 1.9. Let ¢ # p be a prime number. Let F be a locally constant
and constructible sheaf of Fy-vector spaces on U = X — D such that F is tamely
ramified along D. Then the logarithmic version of the Milnor formula (Conjecture
1.12) says that the total number of vanishing cycles of f for the sheaf F at xg is
equal to rank F times the logarithmic Milnor number of f at xy. In order to prove
this formula in the geometric case, we first prove a logarithmic refinement of Elkik’s
Lemma ([7], Lemme 2). Using this logarithmic refinement of Elkik’s Lemma, we can
deform a morphism to a curve. Then by a suggestion of Professor A. Abbes, we
apply a result of I. Vidal ([20], Corollaire 3.4) by constructing a compactification (cf.
Theorem 3.1). Then we can reduce the proof to the case where F is equal to Fy. At
last, the logarithmic Milnor formula in the geometric case is derived from Deligne’s
result [5] (cf. Proposition 1.13).

The content of each section is as follows. In section 1, we propose the logarithmic
Milnor formula. In section 2, we formulate and prove a logarithmic version of Elkik’s
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Lemma. In section 3, using Elkik’s Lemma and pencils, we construct a compacti-
fication. In section 4, using Vidal’s result and the compactification constructed in
section 4, we prove the logarithmic Milnor formula in the geometric case and give an
interpretation of this formula in terms of characteristic cycle.
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1. Logarithmic Milnor formula.

1.1. Normal crossing pairs with isolated singularity. In this section, let
S be a regular scheme purely of dimension 1 and s a closed point of S with perfect
residue field. A simple normal crossing pair stands for a pair (X, D), where X is a
regular scheme and D is a simple normal crossing divisor on X. Let (X, D) be a simple
normal crossing pair and let f : X — S be a flat morphism of finite type. Let z¢ be
a closed point of X such that f(zg) = s. We say that xq is an isolated log-singular
point of f (with respect to the divisor D), if there exists an open neighborhood U of
wo in X such that f|y_qz0) : U —{wo} — S is smooth and that DN U — {zo} is a
divisor on U — {x} with simple normal crossings relatively to S (cf. [9], Exposé XIII,
2.1). The morphism f is locally a logarithmic hypersurface on an open neighborhood
of zy in the following sense:

1.2. Locally logarithmic hypersurface. We first recall a definition similar to
([11], Definition 3.1.1).

DEFINITION 1.1. Let S be a scheme. Let X be a scheme locally of finite presen-
tation over S. Let D C X be a divisor with simple normal crossings. We say that
(X, D) is locally a logarithmic hypersurface (resp. of virtual relative dimension n — 1)
over S if, for every x € X, there exist an open neighborhood U of x in X, a smooth
scheme P over S (resp. of relative dimension n) , a divisor E on P with simple normal
crossings relatively to S and a regular immersion U — P of codimension 1 over S
such that DNU =FE xp U.

The following lemma is proved in ([12], Lemma 4.1.1).

LEMMA 1.2. Let A be a complete discrete valuation ring and S = SpecA. Let
X be a regular flat scheme of finite type over S and D a divisor on X with simple
normal crossings. Assume that the residue field of A is perfect, then (X, D) is locally
a logarithmic hypersurface over S.

1.3. Logarithmic Milnor number. Let S be a regular scheme purely of di-
mension 1 and s a closed point of S with perfect residue field. Let (X, D) be a simple
normal crossing pair and let f : X — S be a flat morphism of finite type. Assume
that f has a unique isolated log-singularity at a closed point zop € D N X in the
sense of section 1.1, i.e., X — {xo} — S is smooth and that D — {x} is a divisor on
X — {x0} with simple normal crossings relatively to S. Consider the following two
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coherent O x-modules

Tx/s = Eath, (Qﬁ(/s, OX)

TISE ) s = Etly, (Q}X /5(logD), OX) .

Then the support of Tl&g D)/S and Tx g are contained in {zo} and both are of finite

length at zp. Using Lemma 1.2, we will give a local expression for T log in Lemma

(X,D)/S
1.7.
DEFINITION 1.3. The Milnor number of X/S at xq is defined to be (see [5])

p = u(X/S,x0) = lengtho, {Sﬂct}ox (Qk/SvOX)}

o

We define the logarithmic Milnor number to be

18 = 8 (X, D)/ S, x0) = lengthy {&ctéx (Q}(/S(logD), OX)}

Zo

For the definition of Q% /5(logD), we refer to [10]. If we give X the logarithmic
structure defined by D and denote this log scheme by XT, then Q% / s(logD) is equal
to Q}W /s where S is considered as a log scheme with the trivial log structure. More
explicitly, the Ox-module Q% / s(logD) is canonically isomorphic to (cf. [10], section
1.7)

(Qk/s ® (Ox ©25.05)) /(da—a®a,1®b:a € Ox Nj.OF,beIm(fOF — Ox)),
where j: U = X — D — X is the open immersion.

ExaMpPLE 1.4. Let S = Spec A be a henselian trait with algebraically closed
residue field. Let G € A[Th1,---,T,] be a polynomial with coefficients in A. Let
X = Spec A[T1,---,T,]/(G) and D the divisor defined by Ty - To---T, = 0. Let
20 = (0,---,0) € X. Assume that the canonical morphism f : X — S has a unique
isolated log-singularity at x¢ with respect to the divisor D. Then by Lemma 1.7 below
we have

(o8 = length A, Dol - 1)
= A .
(Gle%gv"' ;TTg_{[C‘ia a’ja‘ilv"' 7%)

1.4. Localized Chern classes. In this section, we compute the logarithmic
Milnor number using localized Chern classes (cf. [1, 11, 12]). Let S be a henselian
trait with closed point s and generic point 1. Assume that the residue field of S at
s is perfect. Let X be a regular flat scheme of finite type over S. Assume that X is
purely of dimension n+ 1. Let D be a divisor on X with simple normal crossings. Let
Z be a closed subscheme of D, such that the following two conditions are satisfied:

(a) Z is proper over s.

(b) X \ Z is smooth over S and D\ Z is a divisor on X \ Z with simple normal

crossings relatively to S.
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The condition (b) implies that Q}(/S(logD) is locally free outside Z. Hence by ([1],
Chapter 3) we can define a localized Chern class

Coi1.z (Qﬁg/s(logD)) € CH"™(Z — X)),

where CH""(Z — X) is the bivariant Chow group defined in ([8], Chapter 17), see
also ([11], Chapter 2). Then C§+1,Z(Q§(/S (logD))N[X] € CHy(Z) is a zero cycle class
in Z. Since Z is proper over s, we can take the degree map:

DEFINITION 1.5. We define the localized Euler characteristic of (X, D) to be the
following number (cf. [1], Definition 3.3)

%1 (X, D) = deg (C§+1,Z (Qk/s(logD)) n [X]) € Z.

View X as a logarithmic scheme with logarithmic structure defined by Mx =
Ox N j.Op. Take a frame X — [N"] defined by D (See [11], Chapter 4), where r
is the number of irreducible components of D. We also consider S as a logarithmic
scheme with trivial logarithmic structure. Consider the log diagonal (See [12], Chapter
1.3)

X = (X xg X)~ = X x$8, X.

By ([11], Corollary 4.2.8), X — X xlsoﬁw X is an exact immersion with conormal sheaf

NX/XXI;%TX = Q})(/s(logD)

LEMMA 1.6. Let (X, D) be a simple normal crossing pair. Let f: X — S be a
flat morphism of finite type and purely of relative dimension n. Let x € D N X be
a closed point of X. Assume that f has a unique isolated log-singularity at . Put
7Z ={x}. Then we have

i1 (X, D) = @8 (X, D)/ S, ).

Proof. Denote by x(X,-) the following map:
x: Kz(X)~K(Z) %% 7.
By Lemma 1.7 below,
©E((X, D)/S, ) = x(X, Q%) s (log D)) = x(X, LA""'QY ¢ (log D)).
While by ([16], Proposition 4.8(3)),
x(X, LAnHQﬁ(/s(lOg D)) = Cﬁff—l(Xv D).

Combined the two formulas above, we obtain Lemma 1.6. O
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1.5. Local expression of Tl((;gD)/s = Euty (Qﬁ(/s(logD), Ox). Let S be a
henselian trait with perfect residue field. Let X be a regular flat scheme of finite type
over S. Assume that X is purely of relative dimension n over S. Let D be a divisor

on X with simple normal crossings. Let Z be the closed subscheme of X defined
by the annihilator of Q’;/'é(logD). Let e : Z — X denote the canonical embedding.

Then X — Z is smooth over S and D — Z is a simple normal crossing divisor relative
to S (cf. [11], Lemma 3.1.2 and [12], Lemma 4.2.2). By Lemma 1.2, for any point
x € X, there is an open neighborhood U C X of z, a regular immersion i : U — P
of codimension 1 into a smooth scheme P of relative dimension n + 1 over S and a
divisor F on P with simple normal crossings relative to .S such that DNU = ExpU.

Assume that Z # X, then we have an exact sequence which can be viewed as a
locally free resolution of Q%}/S(logD) (See [12], Lemma 4.2.2)

0— Ny/p — Q}D/S(logE) ®op Ov — Qllj/S(logD) =0, (1.1)

where the injectivity of the second arrow comes from that Q}( / s(logD) is locally free

on the (open dense) subscheme X — Z. Applying Hom(—, Oy ) to this exact sequence,
we have

(i*Qp/s(10gE))Y — Nif,p — Extp,, (Qr/5(logD), Oy) — 0. (1.2)

LEMMA 1.7. There exist isomorphisms

Extp, (yys(logD), Ov) =~ Qif5(logD) ®oy, (i*Qp/5(logE))Y ®o, (Nu/p)"
~ Oznv ®oy Nuyp)Y.

Proof. By exact sequence (1.1), we have

Nu/p ®oy i*Qp g (logE) — i*Q’;‘;é(logE) — Qg‘;;(logD) — 0.

Since i*Q’JLJ/F;(logE) is an invertible sheaf, tensoring the above sequence with

(i*Q;J/“é(logE))V, we get

Nusp @0y (i*Qp s (l0gE))" = Oy — Q’[}J/r;(logD) R0y (i*Q’JZJ/F;(logE))V — 0. (1.3)

Tensor the above sequence with ./\/'[\]/ /P and compared with sequence (1.2), we obtain
Exthy, (QU5(10gD), Ou) ~ QT A(logD) B0y, (i* QU h(0gE))” @0y (Nyyp)¥-

Since by definition of Z, Z N U is defined by the ideal sheaf Im(NU/p Roy
(i*Q}D/S(logE))V — Op). Hence by the exact sequence (1.3), we obtain an isomor-
phism

Oznv = Q7 5(logD) ®oy, (i"Qp/s(logE))",

which finishes the proof. O

Let £ and & be locally free Ox-modules of rank 1 and n respectively on a scheme
X. We say that a morphism £ — & of sheaves is regular if for every point x € X,
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after choosing a suitable basis for £, and &, the Ox ;-linear map £, — &, is defined
by a regular sequence (a1, - ,a,) of length n in Ox ;.

LEMMA 1.8. Let L and & be locally free Ox-modules of rank 1 and n respectively
on a scheme X. Let 0 — L — & — F — 0 be an exact sequence of Ox-modules. If
the map L — & is reqular, then the following Koszul complex

0= L9 5 L8 18 5. . S LAV IE 5 AME - APF =0

15 exact.
Proof. For the version for modules of this lemma, see ([6], Corollary 17.12). O

LEMMA 1.9. Let S be a henselian trait with perfect residue field. Let (X, D) be
a simple normal crossing pair and let f : X — S be a flat morphism of finite type.
Assume that f : X — S has a unique isolated log-singular point xo € D N Xg with
respect to D. Let D;(i € I) be the irreducible components of D. For any subset J C I,
put Dy = NjesD; with Dy = X. We have

(1)

HOE((X, D) [S,w0) = p(X/S.20) + 3 S0 u(D /S, o)

q>1 JCI,|J|=q

= Z /,L(DJ/S, xo).

JCI

(2) Let r = |I] be the number of irreducible components of D, then

w(X/S, xo) < pl°8((X,D)/S, z0) < 2" - w(X/S, x0).

Proof. After shrinking X, we may assume that there is a regular immersion
X — P of codimension 1 into a smooth scheme P of relative dimension n + 1 over S
and a divisor E on P with simple normal crossings relative to S such that D = ExpX.
We have the so-called weight filtration W, on Q}J/ré (logD) such that

Wo (g (logD)) = Q45

Grgv (Q}J/ré (logD)) ~ agq)Q%qu;q, forall 0 < ¢ <,

~ (q) ~
where D, := 11 Dy, L X is the canonical morphism and Dy := X. This
JCI,|J|=q
filtration is constructed in the following way: For any m € N and any integer q € Z,
put

0 if q<0
Wo (% s(logD)) == ¢ Im(Qy, ¢ @ Q% ¢(logD) —"— QO ¢(logD)) if 0<g<m
Q’)’g/s(logD) if m < q

Now we show that Gr}’ QY ¢(logD) ~ d‘?’Q%‘qj . for all t € N. This is trivial for

t = 0. The case ¢t = 1 follows from the following exact sequence([12], Lemma 4.2.2)

0 — Q5 — QX s(logD) = @ Op, — 0.
iel
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By (1.1), we have a locally free resolution of Qﬁ(/s(log D):
0= L:=Nx/p—=E:= Q}D/S(logE) ®op Ox — Q}X/S(logD) — 0.

Since f has an isolated log-singularity at xp and smooth at any other points, the
morphism £ — £ = Q}D/S(logE) ®op Ox is regular. By Lemma 1.8, we get a long
exact sequence

0= L 5 LENQE = 5 LOATTIE 5 NE = Q% g(logD) = 0. (1.4)

Denote by K*® the complex 0 — L& — LOMTIQE — ... — LOAMTIE — AME — 0.
Then K*® can be viewed as a resolution of Q% / s(logD) by locally free sheaves. The
complex K*® has a filtration induced by W. Now we compute the graded quotient
GrlV K*. Applying the construction of the exact sequence (1.4) with X replaced by
l~)q /S, we get a long exact sequence

®@m— (2) 0
0— L 1® as QE/S

= Lo " ' ®0, Ox — al?Q7 L ®0, Ox = agqmg;; —0, (1.5)

®or Ox = L2 @ a0k | ®o, Ox =

~ (q) ~
where F, = 11 E;s . p is the canonical morphism and Fy := P. Since P
JcI,|J|=q

is smooth over S, by ([2], Proposition 3.6), we have GrgV(Q%/S(logE)) ~ al? )Q; 35
q

for ¢« > q. We have an exact sequence

0— LOM1® Gr) (AE) — LY @ Gy (NTT1E) —
W am—1 W am (@) ym—q
= LRGr, (NTE) = Gr, (AE) = ax Qﬁq/s—>0. (1.6)

Thus the complex Grq (K*) is a resolution of al? Qm /‘g Now consider the spectral
sequence P

BV = Pt a(GeW (K®)) = HPTI(K®).

Replacing Gr"’ (K °) by a* Qm+p /s (p < 0), the above spectral sequence degenerates

Q%) 5(logD) ~ a,! Qz /‘g
Since the length function is additive on exact sequence([8], Appendix A, Lemma
A.1.1), we have

at Fh-terms and we get that Gr

lengthe, Q%L (logD), Zlengthox (G (Q;jg(logD)))

o

- Z lengthp, (Qgr;s q)
a=0 B

=3 Y lengtho, (Qgt}sq)zo. (1.7)

q=0 JClI,|J|=q
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Since by the local expression of T(log

X.D)/S (Lemma 1.7), we have

,ulog((X’ D)/S, xp) = lengthoxywo Q}"/’é(logD)zo,

u(X/S,xo) = lengthe (Q}J/ré)xo ,
1(Dy/S,xo) = lengthy (Qy’;;q)mo = lengthy, (Qg’;}gq)m .
From formula (1.7), we get that

po8((X, D) /S, x0) = w(X/S,x0) + > Y w(Dy/S, o).

q>1JCI,|J|=¢q
d

1.6. Total number of vanishing cycles. Under the hypothesis of 1.1, denote
by 3 the geometric closed point of S. Let S¢5) be the spectrum of strict henselization
of § at s and let X5 be the inverse image of X over S). Let 77 be the spectrum of
an algebraic closure of the fraction field k(n) of S(), let I = Gal(k(7)/k(n)) be the
inertia group. Let ¢ be a prime number different from the residue characteristic of S.
Let F be a locally constant and constructible sheaf of Fy-vector spaceson U = X — D
which is tamely ramified along D, let j : U — X be the open immersion. For the
complex of vanishing cycles R®(ji.F) on X5, we have the following result.

THEOREM 1.10 ([4], Lemme 2.1.11 and Théoréme 2.4.2). The cohomology groups
of the complex of vanishing cycles R®(j1.F) are sheaves of Fy-vector spaces of finite di-
mension and are concentrated at To. Moreover the complex of vector spaces R®z, (j1.F)
is invariant by base change of traits, i.e., if S is a trait and S — S is a morphism
of trait. Let (X', D', j',F") be the object obtained from (X, D,j, F) by base change
S" — S. Then RO(j{F') is also concentrated at xy and we have an isomorphism
ROz, ()1)F) ~ RP5, (j| F').

For any vector space V of finite dimension over F, with a continuous action of
the inertia group I = Gal(k(7)/k(n)), we can define the Swan conductor Sw V of V
and its total dimension

dimtot V := dimp, V 4+ Sw V,

see [5] and [18] for more details.

DEFINITION 1.11. We define the total number of vanishing cycles of (X, D)/S at
To to be the integer

w(j1 F,To) := (—1)"dimtot Rz, (j1.F) := (—1)" Z(—l)idimtot R'®, (1.F),

i>0
where n is the relative dimension of X over S.

CONJECTURE 1.12. [Logarithmic Milnor Formula] Let S be a regular scheme
purely of dimension 1 and s a closed point of S with perfect residue field. Let (X, D)
be a simple normal crossing pair and let f : X — S be a flat morphism of finite type.
Let 29 € D N X be a closed point of X. Assume that xg is the unique isolated log-
singular point of f. Let ¢ be a prime number different from the residue characteristic
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of S at s. Let F be a locally constant and constructible sheaf of Fy-vector spaces on
U =X — D. Assume that F is tamely ramified along D. Let j : U — X be the open
immersion. Then w(jiF,To) is equal to rank(F) times 1'%, i.e.,

w(jiF,To) = rank F - 4% (X, D) /S, o). (L8)
The classical Milnor formula says that

w(Fe,To) = w(X/S, o).

Notice that, since we assume that the residue field of S at s is perfect, the Swan
conductor is defined. The classical Milnor formula is true in the following cases (see
[5, 14]):

e n=20,1,2

e X — S has an ordinary quadratic singularity at x.

e S is of equal-characteristic.
In [14], the classical Milnor formula is shown to follow from the conjecture of Bloch
conductor formula.

ProprOSITION 1.13. Let X be a regular scheme and S be a regular scheme purely
of dimension 1. Let f : X — S be a flat morphism of finite type such that [ has a
unique isolated log-singular point xg € DN X, with respect to a simple normal crossing
divisor D on X. For any subset J C I, put Dj = NjcsD;. When J is empty, we put
Dy = X. Assume that w(F¢.p,,ZTo) = u(Dy/S,x0) for any subset J C I. Then we
have

w(§iFy, To) = 1'% (X, D)/ S, xo) .

Proof. Let f: X — S be a flat morphism of finite type with a unique isolated
log-singular point zy € D N X,. Let D;(i € I) be the irreducible components of D.
Then we have an exact sequence,

Oﬁj!Fe%Fe,X%@_elFe,Di—>"'—> @ Fep, = -+
1
JCI,Card(J)=q

By this exact sequence, we have

w(j[Fg,fo) = w(Fg,fo) + Z Z ’w(Fg)DJ,fo). (1.9)

r>1JCI,|J|=r

Since by assumption,

w(X/S, xp) —|—Z Z w(Dy /S, x0) = w(Fe,To) —I—Z Z w(Fe.p,,To).

r>1JCI,|J|=r r>1JCI,|J|=r

By Lemma 1.9,

po8((X, D)/ S, m0) = w(X/S,x0) + > > u(Ds/S,0).

r>1JCI,|J|=r

Combined with equation (1.9), we obtain w(jiFs, To) = u'°8((X,D)/S,z0), which
finishes the proof. O
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2. Logarithmic version of Elkik’s Lemma. In this section, we formulate and
prove a logarithmic version of Elkik’s Lemma [7].

LEMMA 2.1. Let (A,I) be a henselian pair (cf. [15], Chapters XI), B =
A[Xy, -, XnN]/J be an A-algebra of finite presentation such that J = (f1, -, fq)
with f; € A[X1,---,Xn|. Let M be a non-negative integer such that M < N. Let A

be the ideal of A[X1,- -, XN| generated by order-g-minors of the logarithmic Jacobian
matric
af of of of
Xi axll o Xu axL aXMl+1 T axjv
Afs .. X Of2 Of2 o Of2
Jaclos — Lax, M3Xy X+ XN
.Bf 'Bf 8;‘ 8}'
Xi aqu o X axL aXMq+1 o axjv
For any x = (z1,---,on) € AN, we define a homomorphism

Uyt A[X1, -+, XNn] = A by mapping X; to x;. For any ideal & of A[X1, -+, Xn],
the value £(x) of € at x is defined to be the image Vx(E). It is easy to see that £(x)
is an ideal of A.

Let n and h be two integers such that n > 2h and a = (a1,--- ,an) € AN such
that

J@)cI" and I"C A(a),
where the ideal J(a) = (fi(a), -, fg(a)) C I (resp. A(a)) is the value of J (resp. A)

at a. Then there exists an element b = (by,--- ,by) € AN such that the ideal J(b)
(value of J at b) is zero and

by = ay(1+¢€,), =0 mod I"™" forv=1,2,--- M (2.1
bs=as mod I"" fors=M+1,M+2,---,N. (2.2
Proof. Let (t1,--- ,t,) be a system of generators of I". Since t; € I" C A(a), we
can find a NV x g-matrix F; such that
Jac'(a)E; =t - Idyx, forall j=1,--- r.

By the assumption J(a) C I" = ["~2" . [h . [h we can write

fi(a) €ij,1 €ij,1

Lo =D =D ti-Jad*s(a) ) E;

fa(@) " €ijq ' g €ijq

with e;; 5 € I"=2h Foranyi=1,---,r, we only need to find u’ = (u?, - - - ,uly) € AN

verifying u’ € I"~?" for all j = 1,--- , N such that

-
fx <a+2tiﬁi> =0, where o' = (a1u§7--- 7aMu§\/[7u§V[+17--- 7u§\7)7 forallk=1,--- q.
i=1
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Then by Taylor expansion, we have

fila+ S, ta) fi(a) A SRR o
: =| | f T tQuy
fala+320, tiu') fa(a) = g)f(‘i ce aa){: I
fi(a) .
— + Z t: - Jac'®® (a)ui + Z tit; Qi 5
fa(a) =t E
€ij,1
= ti-Jac*®(a){ > Ej : +u'+ ) EiQi,
' ! €ijq !

where @; ; is a column-vector whose components are polynomial in a and u’ such
that the minimal degree in u® is at least 2. Therefore we reduce the problem to the
following equation (in variables u%)
uy €ij.1
+ Z Ei | Qi+ =0.
J

i
Cij.q

Un
After modulo I"2" 0 is a solution of this system of equations, and the jacobian of
this system is congruent to the identity matrix. Since (A,T) is a henselian pair, we
can lift this solution (mod I™~2") to a real solution which finished the proof. O

LEMMA 2.2. Let S = Spec R be an affine noetherian scheme. Let [ : X =
Spec Q@ — S be a morphism of finite type. Assume X is reqular and D C X is a
divisor on X with simple normal crossings. Let Z C X be a closed subscheme of X
defined by an ideal I C Q. Assume that Z = {x} contains only one closed point x of
X, X — Z is smooth over S and D —ZND =D xx (X — Z) is a divisor on X — Z
with simple normal crossings relatively to S. Let X be the henselization of X along
Z (cf. [15], Chapitres XI).

Then there exist integers h > 1 andn > 2h such that for any morphism g : X — S
satisfying g = f mod _I", there exists an isomorphism p : X — X inducing an
isomorphism on D X x X such that the following diagram is cartesian

DXX)? L) DXX)A(:

| |

X L5 X (2.3)
d /|
§ —— S

Moreover, p is congruent to the identilty modulo I”_hO;(.

Proof. For a scheme T over X, let T denote T regarded as a scheme over S with
respect to the composition with f : X — S and similarly for 7, for any morphism
g: X — 5. For an integer » > 1 and for a scheme T over X, let T, C T" denote the
closed subscheme T' x x Spec Q/I".
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After replacing X, by an étale neighborhood of Z = {z} , we can choose a
presentation of @

Q:R[Xla 7XN]/J7 J = (fla"' 7fq)7

such that D C X, is the pullback of the divisor D' = V(X7 ---Xy) C X' =
Spec R[X1,---,Xn] by the map X — X'. Let A’ be the ideal of R[Xy, -, Xn]
defined by the logarithmic Jacobian matrix as in Lemma 2.1 for the canonical mor-
phism f' : X’ — S and the divisor D’. Let Ay be the ideal of @ defined by the
image of A’f. For any morphism ¢ : ¥ — .5, let f be the base change X xgY — Y
of f by q:Y — S. Then the ideal Af defined by ]7 and the divisor D xg Y is
equal to the pull back of A¢. Since, by assumption, Xy — Z is smooth over S and
D—-ZND=Dxx (X —Z)is adivisor on Xy — Z with simple normal crossings
relatively to S, there exists an integer h > 1 such that I" C Ay. Let n be any integer
such that n > 2h. _

Now, let g : X — S be a morphism satisfying g = f mod I". Let X = Spec A
and D = X x xD. Let Spec B be the fiber product X, ><st and Dp the fiber product
(Spec B) xx, D. Since g = f mod I" Xrg —er(: )andDTg _Drf( D )
for all » < n and we have a cartesian dlagram

D, —— X,

I

Dp — Spec B (2.4)

l lprz

Df —_— Xf,

where X, dig, Spec B = X x g Xy is defined by the closed immersion X, — X
and the composition X,, < Xf — Xy.

We apply Lemma 2.1 to the henselian pair (A, IA) and B. The morphism X, —
Spec B corresponds to an A-homomorphism B ~ A[X, -+, Xy]/J — A/I"A. The
latter map is defined by an element a = (a1, ,an) € AV such that the condition
J(a) C I"A in Lemma 2.1 is satisfied. Here we still use J to denote the image of J €
R[Xy, -, Xn]in A[X7, -, Xn]. Let A be the ideal of B defined by the morphism
pry : Spec B — )qu and the divisor Dp. Notice that since pr; : Spec B — )N(g is the
base change of f : X — S by the morphism )N(g — S, A is equal to the pull back of
Ay. Now the condition /" A C A(a) in Lemma 2.1 is also satisfied by our choice of
h. By Lemma 2.1, we can find an element b € AV satisfying the congruences (2.1)
in Lemma 2.1 such that J(b) = 0, i.e., we have a morphism )?q = Spec A — Spec B
such that the following diagram is commutative

X, © X, > D,

R

X, dl%SpecBé‘JDB

The right square in (2.5) is cartesian by the congruences (2.1) and 1+¢€, € 1+TA C A%
for all . Let p’ be the composition X, — SpecB — X;. Since (A4,TA) is a henselian
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pair, the morphism p’ : X g — X factors through a morphism p : X g — X ¢ such that
the following diagram commutes

D, —> X,

i i \ (2.6)

Dj%Xf%Xf

Now we show that p : X - X ¢ is an isomorphism. Let W be an etale neigh-
borhood of X1 — X4 such that the morphlsm p’ is induced by W — X;. Since
D X - X ¢ induces the identity on X2 C Xn hs the endomorphlsms induced by
W — X on the completions of the local rings of X and Xf at all points of X, are
surjections and hence automorphisms. Thus the endomorphlsms induced by W — Xy
on the henselizations of the local rings of Xg and X ¢ at all points of X, are also au-
tomorphisms and the morphism W — X is etale on a neighborhood W’ C X of X 1-
Hence, by replacing W by W', we may assume that W — X itself is etale Since
(X X1) is a henselian pair, the morphism p : X - X ¢ is an isomorphism. O

3. Compactification and Pencils of desired Jet.

THEOREM 3.1. Let S be a smooth curve over an algebraic closed field k of char-
acteristic p > 0. Let £ be a prime number distinct from p. Let (X, D) be a simple
normal crossing pair. Let f: X — S be a flat morphism of finite type. Assume that f
is purely of relative dimension n and has a unique isolated log-singular point x € D.
Let F be a locally constant and constructible sheaf of Fe-vector spaces on X \ D such
that F is tamely ramified along D. Then there exist a projective variety Y over k,
purely of dimension n+ 1, a morphism g:Y — Py, a divisor Dy CY and a closed
point y € Dy of Y such that

(1) g(y) =0 € P} is the origin.

(2) there exists an open neighborhood U C ]P’,lC of the origin 0 € IE",IC such that the
base change of g by U gives a morphism with a unique isolated log-singular
point, i.e., the morphism g :Y Xp1 U — U has a unique isolated log-singular
point y with respect to the divisor Dy Xp1 U.

(3) If hy : Speck][t]] — P} (resp hs : Speck|[[t]] — S) is the canonical isomorphism
between Speck|[t] and the completion of the strict henselization of P} (resp.
S) at 0 (resp. s = f(x)), there exists an Speck|[[t]]-isomorphism h between
the strict henselization of h3X at x and the strict henselization of hYY at y
such that D is the pullback of Dy under this isomorphism.

(4) there exists a locally constant and constructible sheaf G of Fy-vector spaces on
Y\ Dy such that G is tamely ramified along Dy and h induces an isomorphism
between the pullbacks of F and G to the strict henselizations.

In order to prove this theorem, we briefly recall the definition of dual varieties and
pencils. For more details, see [13]. Denote by PY the projective space of dimension
N over k, let PN be the dual projective space of PV. The points in PV are considered
as hyperplanes in PV. Consider the Grassmann variety Gr(1,P") whose points are
considered as lines in PV, A point L € Gr(1, PN ) is called a hyperplane pencil in PV.
Considering L as a line in PV, we write L = {H¢}ter, where H; is the hyperplane of
PV defined by t € L.

Let P be a proper smooth and irreducible closed subscheme of PV, let Z be the
ideal sheaf of Op~ which defines P in PY. Then the conormal sheaf N' = T/Z? is



584 E. YANG

locally free on P. Consider the projective bundle P(N) over P formed by lines in the
dual N. The bundle P(N) can be identified with the sub-variety of P x PV formed by
pairs (z, H) such that the hyperplane H is tangent to P at z. Let ¢ : P(N) — PV be

the composition P(NV) < P x PN 22, PN Then the dual variety P of P is defined
to be the image of ¢. The dual variety P is the set of hyperplanes which do not meet
P transversally.

Let Q@ C PV be a smooth quasi-projective variety over k. Recall that we say
another irreducible smooth subscheme Z C PV meets @ transversally, if the scheme-
theoretic intersection @ - Z = @ Xp~ Z is smooth and of pure codimension codimpn Z
in @. Then the Bertini theorem says that for infinite field k, there exists an k-rational
hyperplane H C PV which meets @ transversally. As pointed out by a referee, the
Bertini theorem is an immediate consequence of the fact that the dual variety of
Q C PV is not dense in PV,

Proof of Theorem 3.1. Put m = n + 1. By taking an etale morphism S — P}
on a neighborhood of s = f(x), we may assume that S = P} and s = f(z) = (1:0)
is the origin of S. Since X is smooth over a perfect field £ and D is a divisor
with simple normal crossings, by shrinking X, we may assume there is an etale map
e: X — X' := A" = Speck[T1,---,T,] such that D is the pull-back of the divisor
D’ defined by T ---T,. Moreover, we may assume 2’ := e(z) = (0) is the origin of
X' = A}, By ([9], Expose XIII, Corollaire 5.3), we have an isomorphism between
tame fundamental groups 7{(X(,) xx (X \ D)) =~ [],,Z; ~ #{(X"\ D’) which
is compatible with numbering of the irreducible components of D and D’. By the
isomorphism, we find a locally constant constructible sheaf F’ of Fy-vector spaces on
X"\ D" such that 7' is tamely ramified along D" and F|x ,, ~ F'|x,,-

Let P = P™ be the projective space of dimension m with coordinates (Tp : T :

: Tm),kt X’ < P be the open immersion given by (21, - - ,:Em)_>—> (Tiag:---:
Ty,). Let D be the closure of D" in P with irreducible components D;(i = 1,---,7).
For any subset I C {1,---,r}, put Dy = NjerD; and Dy =P. Let y = (1:0:---:0)

be the origin of P. Consider a Segre imbedding of degree d with d large enough:
P— E:=PV,

where N = (m;{d) — 1. In the following, d will be taken such that the map J, below
(cf. (3.1)) is surjective for all z € P\ {y}. We need to find a hyperplane pencil
L = (Hy)ier € Gr(1, E) such that

(a) The axis of L does not contain y and meets P transversally. Let ¢y € L
be the image of y, then H;, meets D; \ {y} transversally for all subset I of
{1, ,r}

(b) There exists an open neighborhood U C L of ¢y such that for all ¢t € U\ {¢o},
the hyperplane H; meets Dy transversally for all subset I of {1,---,7}.

(c) Theline L in E is defined by two sections F, G € T'(P, Op(d)) (viewed as linear
forms in T'(E, Og/(1))) such that F(y) # 0 and e*(£) = f mod m*, where m
is the maximal ideal of Ox , and A is an integer given in the following way:
By Lemma 2.2, there exists an integer N’ such that if A > N’; the condition
(¢) implies the condition (3). Now we choose any integer A such that A > N'.

Let H = {(x, H)|x € H} C E x E be the universal hyperplane. If such L exists,

let Y/ = P xgH C P x E be the incidence subscheme and put Y =Y” x z L and let
Dy C Y be the inverse image of D by the first projection pry : Y =Y’ x; L — P.
Choose an isomorphism L ~ P! such that tq maps to the origin point of P'. Put
g :=prs: Y — L~ P! By the choice of ), the condition (c) implies the condition (3)
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above. Let G be the pullback of 7' to Y\ Dy, then G satisfies the condition (4). Since
(b) implies the condition (2), the morphism g : Y — P! will satisfy our requirement.

Now we first choose a linear form F' € T'(E,Og(1)) such that the hyperplane
Hp € E defined by F does not meet the origin y and this hyperplane meets D
transversally for all subset I of {1,---,r}. We can apply Bertini theorem to find
such F. If one can choose a linear form G satisfying conditions (a) and (¢) above, we
let Hg € E be the hyperplane of E define by G. Then the line L C E through the
points Hr and Hg will satisfying our requirement. Indeed by assumption on G, the
hyperplane Hg meets D; \ {y} transversally for all subset I of {1,---,7}. Hence the
condition (a) is satisfied if we put to € L corresponds to Hg. Because Hp meets D
transversally for all subset I of {1,---,r}, the line L is not contained in the union

of dual varieties U;D;. Since U;D; is of codimension 1 in E, there exists an open
neighborhood U C L of tg in L such that the condition (b) is satisfied.

We show that such G exists when d is large enough. Let I' := T'(P, Op(d)) and
L = Op,(d) where I is a subset of {1,---,r}. When the set I is empty, we put

Dy = P. For any point z € Dy \ {y}, consider the following map
J.:T = Opy/my) x L./m2L.. (3.1)
G+~ (G/F mod mg, G mod m3L.)

By ([17], Lemma 3.3(2)), there exists an integer M > 0 such that for any d > M and
any integer A > N’, the canonical map

I' = Opy(d)/m) x Op4(d)/m?
G+~ (G mod m;‘, G mod m?)
is surjective for all z € P\ {y}. Now we choose an integer d > M and an integer

A > N’. This implies that the map J. is also surjective for all z € P\ {y}. Put
I"={Gel:G/F=f modm)} and for any z € D; \ {y} put

I'p(z) ={Gel":G=0 modm?L. ®Op, _}.
Then for any G € I'}(2), the hyperplane H¢ defined by G satisfies that z is a singular
point of Hg N Dy. Since J, is surjective, I';(z) is of codimension dimy, £,/m2L, =
1+ dim D; in I, hence the union I'} := U T%(2) is of codimension (1 +

zeDr\{y}
dim D;) —dim D; =1 in I'". Moreover the union | I'} is of codimension 1 in I'. For
1

any G1 € I\ UI'}, Hg, N Dy is smooth outside y for all subset I.
I
For any z € PN Hp (y ¢ PN Hp), put
[e(z) = {G €el:G=0 modm?L, ® OpmHF_’Z}.

Then the union Iz ;== |J I"#(2) is of codimension 1 in I”. For any G3 € IV \ I,
zeEPNHp

let L C E be the line through the points Hp and Heg,, then the axis Ay of the line
L meets P transversally.

Now we choose any G € I\ {UI"I Ul"}?} Let L C E be the line through the
T

points Hr and Hg. Then Hg N Dy is smooth outside y for all subset I and the axis
Ap of L meets P transversally. Hence the pencil L will satisfy our conditions (a), (b)
and (c¢). We finished the proof. O
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4. Main theorem: geometric case.

THEOREM 4.1. Let S be a henselian trait of equal characteristic p > 0 and perfect
residue field , let s be the closed point of S. Let (X, D) be a simple normal crossing
pair. Let f: X — S be a flat morphism of finite type and purely of relative dimension
n. Assume that a closed point © € D is the unique isolated log-singular point of f and
f(x) =s. Let £ # p be a prime number. Let F be a locally constant and constructible
sheaf of Fy-vector spaces on U = X \ D such that F is tamely ramified along D, let
j:U — X be the open immersion. Then w(jiF) is equal to rank F times ' i.e.,

w(jF,T) = rank F - u'°((X, D)/S, x).

Proof. Let S’ be the strict hensenlian of S, and put X’ = X xg S’ and D', F’
be the pullback of D and F respectively. By Theorem 1.10, the assertion 4.1 for
(X,D) — S and F is equivalent to 4.1 for (X', D') — S" and F'. Hence we may
assume the residue field of S is separably closed. But the residue field is perfect by
assumption, hence the residue field of S is algebraically closed.

For such S, we let S” be the completion of S. By the same reason as above, we may
assume S is also complete, hence S is isomorphic to Spec k[[t]] with k algebraically
closed.

By Theorem 3.1, there exists a projective and flat S-scheme Y with a simple
normal crossing divisor E such that

1. g: Y — S is a morphism purely of relative dimension n such that y € ENY;
is the unique isolated log-singular point of g with respect to the divisor E.

2. There exists an S-isomorphism between strict henselizations X(,) and Y,
such that the following diagram

D X x X(m) —)g E Xy }/(y)

l |

o

Xay — Yy

is cartesian.
3. There exists a locally constant and constructible sheaf F’ of F-vector spaces
on Y\ E such that F’ is tamely ramified along E and the pullback of F’ by
the isomorphism X (,) = Y(,) is equal to Flx,, .
Let 7/ : Y\ E — Y be the open immersion. Then we have

dimtot R®z(j1F, f) = dimtot R®5(j|F', g).

Let 77 be an algebraic closure of the fraction field of S. Now y € Y is the unique
isolated non smooth point of (Y, j|F’). Hence by ([4], 2.4.6.3), we have the following
exact sequence

= (R i F')s = (Rguj| F' g = RI®H(5F', g) — - -

Denote the restriction Y \ E — S also by g, then by definition, Rg\F’ = Rg.ji F .
The exact sequence above shows that

dimtot R®5(j|F', g) = dimtot (RgiF' ).
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Since F’ and IF?“kf have the same rank and both are tamely ramified along F, by
Vidal’s result ([20], Corollaire 3.4), we have

dimtot (Rg:F')7 = rank F - dimtot (RgiF).
Hence we have

dimtot R®z(j1F, f) = dimtot (RgiF')5
=rank F - dimtot (RgiFy)5
= rank F - dimtot R®(j{Fy, g)5
= rank F - dimtot R®z(jiFy, f).

That is to say w(jF,T) = rankF - w(jiFy, 7). Since the geometric case of Milnor
formula is true [5], by Proposition 1.13, we have

w(jiFe, ) = (X, D)/ S, ).
Finally we get that
w(j!]:a E) =rank F - ‘ulog((X, D)/Sv 'r)
a

Now we give an interpretation of the main result in terms of characteristic cycle.
Let k£ be an algebraically closed field of characteristic p > 0. Let S be a smooth
curve over k and (X, D) a simple normal crossing pair over k. Let f : X — S be a
flat morphism of finite type such that the closed point xg € D is the unique isolated
log-singular point of f. Let T*S (resp. T*X) be the cotangent bundle of S (resp.
X). We have an induced morphism 7%S xg X — T*X on vector bundles. We choose
a local coordinate ¢ of S on an open neighborhood S’ of s = f(xg). When replacing
S (resp. X) by S’ (resp. X’ = X xg5’), the values on both sides of (1.8) do not
change. We may therefore assume that the local coordinate ¢ is defined on S. Let
S — T*S be the section of T*S — S defined by dt. By base change, we obtain a
section dt: X — T*S xg X. Let df: X — T*S xg X — T*X be the composition of
the section dt: X — T*S xg X with T*"S xg X — T*X.

For a regular immersion X — P of schemes, the conormal bundle T P is the
vector bundle over X defined by the symmetric algebra S*® (N X/ p)Y where N- x/p =
IX/Ig( is the conformal sheaf and ZTx C Op is the ideal sheaf of X in P. Let
Dy, , D, be the irreducible components of D. For any subset I C {1,---,r}, let
D; = NierD; with Dy = X. We define TBIX C T*X to be the conormal bundle
associated to the regular immersion Dy — X.

Let ¢ be a prime number distinct from p. Let F be a locally constant and con-
structible sheaf of Fy-modules on U = X \ D. Assume that F is tamely ramified along
D. Denote by j : U — X the open immersion. The characteristic cycle Char(jF) is
defined by (see [17])

Char(jiF) = (—1)™- > rankF - [T} X],
Ic{1,-,r}
where m = dim(X).
COROLLARY 4.2. Under the conditions above, we have

—dimtot Rz, (1F) = (Char(j1.F), [df (X)]) - x 4, -
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Proof. By Theorem 4.1, we only need to show that

WX, D)/S,wo) = [ D [Th,X], [df(X))

IC{I)"'7T} T*X,I()

However, by Lemma 1.9, we have

ﬂlog((XvD)/vaO): Z N(DJ/Sv‘TO)'
JC{1,--,r}

Hence we only need to show that for any subset I C {1,---,r}
pu(D1/S, o) = ([T, X1, [df (X)]) g x ., -

If I'is empty, we show that p(X/S,2z0) = ([TxX], [df (X)) x ., Let (zi)i<i<m
be a system of local coordinates of X at xg. Then Qﬁ(/k has a basis {dz;}. We
also choose a local coordinate t : S — A} at s = f(zo). Denote still by f

the composition t o f. Let T = (a —ci ) C Orx = Ox |32, , 52 }

oz’ 0T ’ 0%

be the ideal sheaf defining the zero section X = T{X — T7X, let J =
(8’9—51 — %8%1, RPC) ii) C Op«x be the ideal sheaf defining the closed

) Oz 0T OTm
immersion df (X) — T*X. Since dim T%X Ndf(X) = dim OX/(g—i, - ’8(1—{”) =0,
we have dim T%X + dim df (X) = dim T*X + dim T%X Ndf(X). Hence, the closed
subschemes T%X and df (X) intersect properly and we can use Serre’s tor-formula to
caleulate ([T%X], [df (X)]) g x 4, Since X = T4 X — T*X is a regular immersion
and Op-x /J is Cohen-Macaulay at every point of T%X Ndf(X), by ([19], Chapter V,

Theorem 4), we have Tory ™™ X (Orp.x /T, Op+x/J) = 0 for all i > 0. Thus we have

3 (-1 [TOT?T*X (Op-x /T, Op-x /J)} = [Or-x/T @0, Or-x/J]

i>0
B of of
- [OX/(axl"”’axm”'

Hence ([T X1, [df (X)]) . x o, = length ((’)X@O / (aan o ai{n)) — u(X/S, x0).
When the subset I C {1,---,r} is not empty. By the following two cartesian
diagram,

D] — X

| L

THh X —— T"X xx D —— 17X

l l

D] —_— T*D]

using projection formula, we have

(T3, X1, [dF (X)) . = (L5, Dil. [ (DD]) gy, -
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By the result we proved in the case I = (), we get that

[18]
[19]
[20]

([T5, X1, [df (X)) g x o, = D1/ S, 20).

[
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