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LOGARITHMIC VERSION OF THE MILNOR FORMULA∗

ENLIN YANG†

Abstract. In this paper, we propose a logarithmic version of the Milnor formula. It is a formula
for the total dimension of vanishing cycles with tamely ramified coefficient sheaves at an isolated
log-singular point. We prove this formula in the geometric case. In the geometric case, it implies that
the total dimension of vanishing cycles with tamely ramified coefficient sheaves can be computed as
an intersection number (in terms of characteristic cycle).
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Introduction. Let S be a regular scheme purely of dimension 1 and s a closed
point of S with perfect residue field k of characteristic p. Let X be a regular scheme,
f : X → S a flat morphism of finite type, and let x0 be an isolated singular point
of f such that f(x0) = s. The Milnor formula says that the Milnor number of f
at x0 (cf. Definition 1.3) is equal to the total number of vanishing cycles of f at
x0. In the geometric case where S is a scheme over k, this conjecture was proved by
P. Deligne in [5]. In [14], F. Orgogozo showed that the conductor formula of Bloch
implies the Milnor formula. In [11], K. Kato and T. Saito showed that the conductor
formula is a consequence of an embedded resolution in a strong sense for the reduced
closed fiber. Hence, the Milnor formula is true if we assume an embedded resolution.
Consequently, the Milnor formula is true if the relative dimension is two. Recently,
using Radon transform, T. Saito proved an analogue formula of the Milnor formula
with coefficient sheaf even for a normal surface in [17].

In this paper, we propose a logarithmic version of the Milnor formula. We prove
this formula in the geometric case. Let (X,D) be a simple normal crossing pair (cf.
section 1.1). If x0 is an isolated log-singular point of a morphism f : X → S in
the sense of section 1.1, then similarly we define the logarithmic Milnor number (cf.
Definition 1.3). The relation between Milnor number and its logarithmic version will
be given in Lemma 1.9. Let � �= p be a prime number. Let F be a locally constant
and constructible sheaf of F�-vector spaces on U = X − D such that F is tamely
ramified along D. Then the logarithmic version of the Milnor formula (Conjecture
1.12) says that the total number of vanishing cycles of f for the sheaf F at x0 is
equal to rank F times the logarithmic Milnor number of f at x0. In order to prove
this formula in the geometric case, we first prove a logarithmic refinement of Elkik’s
Lemma ([7], Lemme 2). Using this logarithmic refinement of Elkik’s Lemma, we can
deform a morphism to a curve. Then by a suggestion of Professor A. Abbes, we
apply a result of I. Vidal ([20], Corollaire 3.4) by constructing a compactification (cf.
Theorem 3.1). Then we can reduce the proof to the case where F is equal to F�. At
last, the logarithmic Milnor formula in the geometric case is derived from Deligne’s
result [5] (cf. Proposition 1.13).

The content of each section is as follows. In section 1, we propose the logarithmic
Milnor formula. In section 2, we formulate and prove a logarithmic version of Elkik’s
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572 E. YANG

Lemma. In section 3, using Elkik’s Lemma and pencils, we construct a compacti-
fication. In section 4, using Vidal’s result and the compactification constructed in
section 4, we prove the logarithmic Milnor formula in the geometric case and give an
interpretation of this formula in terms of characteristic cycle.
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1. Logarithmic Milnor formula.

1.1. Normal crossing pairs with isolated singularity. In this section, let
S be a regular scheme purely of dimension 1 and s a closed point of S with perfect
residue field. A simple normal crossing pair stands for a pair (X,D), where X is a
regular scheme and D is a simple normal crossing divisor onX . Let (X,D) be a simple
normal crossing pair and let f : X → S be a flat morphism of finite type. Let x0 be
a closed point of X such that f(x0) = s. We say that x0 is an isolated log-singular
point of f (with respect to the divisor D), if there exists an open neighborhood U of
x0 in X such that f |U−{x0} : U − {x0} → S is smooth and that D ∩ U − {x0} is a
divisor on U −{x0} with simple normal crossings relatively to S (cf. [9], Exposé XIII,
2.1). The morphism f is locally a logarithmic hypersurface on an open neighborhood
of x0 in the following sense:

1.2. Locally logarithmic hypersurface. We first recall a definition similar to
([11], Definition 3.1.1).

Definition 1.1. Let S be a scheme. Let X be a scheme locally of finite presen-
tation over S. Let D ⊂ X be a divisor with simple normal crossings. We say that
(X,D) is locally a logarithmic hypersurface (resp. of virtual relative dimension n− 1)
over S if, for every x ∈ X , there exist an open neighborhood U of x in X , a smooth
scheme P over S (resp. of relative dimension n) , a divisor E on P with simple normal
crossings relatively to S and a regular immersion U → P of codimension 1 over S
such that D ∩ U = E ×P U .

The following lemma is proved in ([12], Lemma 4.1.1).

Lemma 1.2. Let A be a complete discrete valuation ring and S = SpecA. Let
X be a regular flat scheme of finite type over S and D a divisor on X with simple
normal crossings. Assume that the residue field of A is perfect, then (X,D) is locally
a logarithmic hypersurface over S.

1.3. Logarithmic Milnor number. Let S be a regular scheme purely of di-
mension 1 and s a closed point of S with perfect residue field. Let (X,D) be a simple
normal crossing pair and let f : X → S be a flat morphism of finite type. Assume
that f has a unique isolated log-singularity at a closed point x0 ∈ D ∩ Xs in the
sense of section 1.1, i.e., X − {x0} → S is smooth and that D − {x0} is a divisor on
X − {x0} with simple normal crossings relatively to S. Consider the following two
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coherent OX -modules

TX/S = Ext1OX

(
Ω1X/S ,OX

)
Tlog(X,D)/S = Ext1OX

(
Ω1X/S(logD),OX

)
.

Then the support of Tlog(X,D)/S and TX/S are contained in {x0} and both are of finite

length at x0. Using Lemma 1.2, we will give a local expression for Tlog(X,D)/S in Lemma
1.7.

Definition 1.3. The Milnor number of X/S at x0 is defined to be (see [5])

μ = μ(X/S, x0) = lengthOX,x0

{
Ext1OX

(
Ω1X/S ,OX

)}
x0

.

We define the logarithmic Milnor number to be

μlog = μlog((X,D)/S, x0) = lengthOX,x0

{
Ext1OX

(
Ω1X/S(logD),OX

)}
x0

.

For the definition of Ω1X/S(logD), we refer to [10]. If we give X the logarithmic

structure defined by D and denote this log scheme by X†, then Ω1X/S(logD) is equal

to Ω1X†/S , where S is considered as a log scheme with the trivial log structure. More

explicitly, the OX -module Ω1X/S(logD) is canonically isomorphic to (cf. [10], section

1.7)(
Ω1

X/S ⊕ (OX ⊗Z j∗O
×
U )
) /(

da− a⊗ a, 1⊗ b : a ∈ OX ∩ j∗O
×
U , b ∈ Im(f−1

O
×
S → OX)

)
,

where j : U = X −D → X is the open immersion.

Example 1.4. Let S = Spec A be a henselian trait with algebraically closed
residue field. Let G ∈ A[T1, · · · , Tn] be a polynomial with coefficients in A. Let
X = Spec A[T1, · · · , Tn]/(G) and D the divisor defined by T1 · T2 · · ·Tr = 0. Let
x0 = (0, · · · , 0) ∈ X . Assume that the canonical morphism f : X → S has a unique
isolated log-singularity at x0 with respect to the divisor D. Then by Lemma 1.7 below
we have

μlog = lengthA
A[T1, · · · , Tn](T1,··· ,Tn)

(G, T1
∂G
∂T1

, · · · , Tr
∂G
∂Tr

, ∂G
∂Tr+1

, · · · , ∂G
∂Tn

)
.

1.4. Localized Chern classes. In this section, we compute the logarithmic
Milnor number using localized Chern classes (cf. [1, 11, 12]). Let S be a henselian
trait with closed point s and generic point η. Assume that the residue field of S at
s is perfect. Let X be a regular flat scheme of finite type over S. Assume that X is
purely of dimension n+1. Let D be a divisor on X with simple normal crossings. Let
Z be a closed subscheme of Ds such that the following two conditions are satisfied:

(a) Z is proper over s.
(b) X \ Z is smooth over S and D \ Z is a divisor on X \ Z with simple normal

crossings relatively to S.
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The condition (b) implies that Ω1X/S(logD) is locally free outside Z. Hence by ([1],

Chapter 3) we can define a localized Chern class

cXn+1,Z

(
Ω1X/S(logD)

)
∈ CHn+1(Z → X),

where CHn+1(Z → X) is the bivariant Chow group defined in ([8], Chapter 17), see
also ([11], Chapter 2). Then cXn+1,Z(Ω

1
X/S (logD))∩ [X ] ∈ CH0(Z) is a zero cycle class

in Z. Since Z is proper over s, we can take the degree map:

Definition 1.5. We define the localized Euler characteristic of (X,D) to be the
following number (cf. [1], Definition 3.3)

clocn+1(X,D) = deg
(
cXn+1,Z

(
Ω1X/S(logD)

)
∩ [X ]

)
∈ Z.

View X as a logarithmic scheme with logarithmic structure defined by MX =
OX ∩ j∗O

×
U . Take a frame X → [Nr] defined by D (See [11], Chapter 4), where r

is the number of irreducible components of D. We also consider S as a logarithmic
scheme with trivial logarithmic structure. Consider the log diagonal (See [12], Chapter
1.3)

X → (X ×S X)∼ := X ×log
S,Nr X.

By ([11], Corollary 4.2.8), X → X×log
S,Nr X is an exact immersion with conormal sheaf

NX/X×log
S,Nr

X = Ω1X/S(logD).

Lemma 1.6. Let (X,D) be a simple normal crossing pair. Let f : X → S be a
flat morphism of finite type and purely of relative dimension n. Let x ∈ D ∩ Xs be
a closed point of X. Assume that f has a unique isolated log-singularity at x. Put
Z = {x}. Then we have

clocn+1(X,D) = μlog ((X,D)/S, x) .

Proof. Denote by χ(X, ·) the following map:

χ : KZ(X) � K(Z)
deg
−−→ Z.

By Lemma 1.7 below,

μlog((X,D)/S, x) = χ(X,Ωn+1
X/S(logD)) = χ(X,LΛn+1Ω1X/S(logD)).

While by ([16], Proposition 4.8(3)),

χ(X,LΛn+1Ω1X/S(logD)) = clocn+1(X,D).

Combined the two formulas above, we obtain Lemma 1.6.
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1.5. Local expression of Tlog(X,D)/S = Ext1OX
(Ω1X/S(logD),OX). Let S be a

henselian trait with perfect residue field. Let X be a regular flat scheme of finite type
over S. Assume that X is purely of relative dimension n over S. Let D be a divisor
on X with simple normal crossings. Let Z be the closed subscheme of X defined
by the annihilator of Ωn+1

X/S(logD). Let e : Z → X denote the canonical embedding.

Then X − Z is smooth over S and D−Z is a simple normal crossing divisor relative
to S (cf. [11], Lemma 3.1.2 and [12], Lemma 4.2.2). By Lemma 1.2, for any point
x ∈ X , there is an open neighborhood U ⊂ X of x, a regular immersion i : U → P
of codimension 1 into a smooth scheme P of relative dimension n + 1 over S and a
divisor E on P with simple normal crossings relative to S such that D∩U = E×P U .

Assume that Z �= X , then we have an exact sequence which can be viewed as a
locally free resolution of Ω1U/S(logD) (See [12], Lemma 4.2.2)

0 → NU/P → Ω1P/S(logE)⊗OP OU → Ω1U/S(logD) → 0, (1.1)

where the injectivity of the second arrow comes from that Ω1X/S(logD) is locally free

on the (open dense) subscheme X−Z. Applying Hom(−,OU ) to this exact sequence,
we have

(i∗Ω1P/S(logE))∨ → N∨
U/P → Ext1OU

(Ω1U/S(logD),OU ) → 0. (1.2)

Lemma 1.7. There exist isomorphisms

Ext1OU
(Ω1U/S(logD),OU ) � Ωn+1

U/S(logD)⊗OU (i∗Ωn+1
P/S(logE))∨ ⊗OU (NU/P )

∨

� OZ∩U ⊗OU (NU/P )
∨.

Proof. By exact sequence (1.1), we have

NU/P ⊗OU i∗Ωn
P/S(logE) → i∗Ωn+1

P/S(logE) → Ωn+1
U/S(logD) → 0.

Since i∗Ωn+1
P/S(logE) is an invertible sheaf, tensoring the above sequence with

(i∗Ωn+1
P/S(logE))∨, we get

NU/P ⊗OU (i∗Ω1P/S(logE))∨ → OU → Ωn+1
U/S(logD)⊗OU (i∗Ωn+1

P/S(logE))∨ → 0. (1.3)

Tensor the above sequence with N∨
U/P and compared with sequence (1.2), we obtain

Ext1OU
(Ω1U/S(logD),OU ) � Ωn+1

U/S(logD)⊗OU (i∗Ωn+1
P/S(logE))∨ ⊗OU (NU/P )

∨.

Since by definition of Z, Z ∩ U is defined by the ideal sheaf Im(NU/P ⊗OU

(i∗Ω1P/S(logE))∨ → OU ). Hence by the exact sequence (1.3), we obtain an isomor-
phism

OZ∩U � Ωn+1
U/S(logD)⊗OU (i∗Ωn+1

P/S(logE))∨,

which finishes the proof.

Let L and E be locally free OX -modules of rank 1 and n respectively on a scheme
X . We say that a morphism L → E of sheaves is regular if for every point x ∈ X ,
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after choosing a suitable basis for Lx and Ex, the OX,x-linear map Lx → Ex is defined
by a regular sequence (a1, · · · , an) of length n in OX,x.

Lemma 1.8. Let L and E be locally free OX-modules of rank 1 and n respectively
on a scheme X. Let 0 → L → E → F → 0 be an exact sequence of OX-modules. If
the map L → E is regular, then the following Koszul complex

0 → L⊗n → L⊗n−1 ⊗ E → · · · → L⊗ Λn−1E → ΛnE → ΛnF → 0

is exact.

Proof. For the version for modules of this lemma, see ([6], Corollary 17.12).

Lemma 1.9. Let S be a henselian trait with perfect residue field. Let (X,D) be
a simple normal crossing pair and let f : X → S be a flat morphism of finite type.
Assume that f : X → S has a unique isolated log-singular point x0 ∈ D ∩ Xs with
respect to D. Let Di(i ∈ I) be the irreducible components of D. For any subset J ⊂ I,
put DJ = ∩j∈JDj with D∅ = X. We have

(1)

μlog((X,D)/S, x0) = μ(X/S, x0) +
∑
q≥1

∑
J⊂I,|J|=q

μ(DJ/S, x0)

=
∑
J⊂I

μ(DJ/S, x0).

(2) Let r = |I| be the number of irreducible components of D, then

μ(X/S, x0) ≤ μlog((X,D)/S, x0) ≤ 2r · μ(X/S, x0).

Proof. After shrinking X , we may assume that there is a regular immersion
X → P of codimension 1 into a smooth scheme P of relative dimension n+ 1 over S
and a divisor E on P with simple normal crossings relative to S such thatD = E×PX .

We have the so-called weight filtration W• on Ωn+1
X/S(logD) such that

W0(Ω
n+1
X/S(logD)) = Ωn+1

X/S

GrWq (Ωn+1
X/S(logD)) � a

(q)
∗ Ωn+1−q

D̃q/S
, for all 0 ≤ q ≤ r,

where D̃q :=
∐

J⊂I,|J|=q

DJ
a(q)

−−−−→ X is the canonical morphism and D̃0 := X . This

filtration is constructed in the following way: For any m ∈ N and any integer q ∈ Z,
put

Wq(Ω
m
X/S(logD)) :=

⎧⎪⎨⎪⎩
0 if q < 0

Im(Ωm−q
X/S ⊗ Ωq

X/S(logD)
∧

−−−→ Ωm
X/S(logD)) if 0 ≤ q ≤ m

Ωm
X/S(logD) if m < q

Now we show that GrWq Ωt
X/S(logD) � a

(q)
∗ Ωt−q

D̃q/S
for all t ∈ N. This is trivial for

t = 0. The case t = 1 follows from the following exact sequence([12], Lemma 4.2.2)

0 → Ω1X/S → Ω1X/S(logD) →
⊕
i∈I

ODi → 0.
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By (1.1), we have a locally free resolution of Ω1X/S(log D):

0 → L := NX/P → E := Ω1P/S(logE)⊗OP OX → Ω1X/S(logD) → 0.

Since f has an isolated log-singularity at x0 and smooth at any other points, the
morphism L → E = Ω1P/S(logE) ⊗OP OX is regular. By Lemma 1.8, we get a long
exact sequence

0 → L⊗m → L⊗m−1 ⊗ E → · · · → L ⊗ ∧m−1E → ∧mE → Ωm
X/S(logD) → 0. (1.4)

Denote by K• the complex 0 → L⊗m → L⊗m−1⊗E → · · · → L⊗∧m−1E → ∧mE → 0.
Then K• can be viewed as a resolution of Ωm

X/S(logD) by locally free sheaves. The
complex K• has a filtration induced by W . Now we compute the graded quotient
GrW• K•. Applying the construction of the exact sequence (1.4) with X replaced by

D̃q/S, we get a long exact sequence

0→ L⊗m−q ⊗ a
(q)
∗ Ω0

Ẽq/S
⊗OP OX → L⊗m−q−1 ⊗ a

(q)
∗ Ω1

Ẽq/S
⊗OP OX →

· · · → L ⊗ a
(q)
∗ Ωm−q−1

Ẽq/S
⊗OP OX → a

(q)
∗ Ωm−q

Ẽq/S
⊗OP OX → a

(q)
∗ Ωm−q

D̃q/S
→ 0, (1.5)

where Ẽq :=
∐

J⊂I,|J|=q

EJ
a(q)

−−−−→ P is the canonical morphism and Ẽ0 := P . Since P

is smooth over S, by ([2], Proposition 3.6), we have GrWq (Ωi
P/S(logE)) � a

(q)
∗ Ωi−q

Ẽq/S

for i ≥ q. We have an exact sequence

0 → L⊗m−q ⊗GrWq (∧qE) → L⊗m−q−1 ⊗GrWq (∧q+1E) →

· · · → L⊗GrWq (∧m−1E) → GrWq (∧mE) → a
(q)
∗ Ωm−q

D̃q/S
→ 0. (1.6)

Thus the complex GrWq (K•) is a resolution of a
(q)
∗ Ωm−q

D̃q/S
. Now consider the spectral

sequence

Ep,q
1 = Hp+q(GrW−p(K

•)) ⇒ Hp+q(K•).

Replacing GrW−p(K
•) by a

(−p)
∗ Ωm+p

D̃−p/S
(p ≤ 0), the above spectral sequence degenerates

at E1-terms and we get that GrWq Ωm
X/S(logD) � a

(q)
∗ Ωm−q

D̃q/S
.

Since the length function is additive on exact sequence([8], Appendix A, Lemma
A.1.1), we have

lengthOX,x0
Ωn+1

X/S(logD)x0 =

r∑
q=0

lengthOX,x0

(
GrWq (Ωn+1

X/S(logD))
)
x0

=

r∑
q=0

lengthOX,x0

(
Ωn+1−q

D̃q/S

)
x0

=

r∑
q=0

∑
J⊂I,|J|=q

lengthOX,x0

(
Ωn+1−q

DJ/S

)
x0

. (1.7)
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Since by the local expression of T log(X,D)/S (Lemma 1.7), we have

μlog((X,D)/S, x0) = lengthOX,x0
Ωn+1

X/S(logD)x0 ,

μ(X/S, x0) = lengthOX,x0

(
Ωn+1

X/S

)
x0

,

μ(DJ/S, x0) = lengthOX,x0
(Ωn+1−q

DJ/S
)x0 = lengthODJ,x0

(
Ωn+1−q

DJ/S

)
x0

.

From formula (1.7), we get that

μlog((X,D)/S, x0) = μ(X/S, x0) +
∑
q≥1

∑
J⊂I,|J|=q

μ(DJ/S, x0).

1.6. Total number of vanishing cycles. Under the hypothesis of 1.1, denote
by s the geometric closed point of S. Let S(s) be the spectrum of strict henselization
of S at s and let Xs be the inverse image of X over S(s). Let η be the spectrum of
an algebraic closure of the fraction field k(η) of S(s), let I = Gal(k(η)/k(η)) be the
inertia group. Let � be a prime number different from the residue characteristic of S.
Let F be a locally constant and constructible sheaf of F�-vector spaces on U = X−D
which is tamely ramified along D, let j : U → X be the open immersion. For the
complex of vanishing cycles RΦ(j!F) on Xs, we have the following result.

Theorem 1.10 ([4], Lemme 2.1.11 and Théorème 2.4.2). The cohomology groups
of the complex of vanishing cycles RΦ(j!F) are sheaves of F�-vector spaces of finite di-
mension and are concentrated at x0. Moreover the complex of vector spaces RΦx0

(j!F)
is invariant by base change of traits, i.e., if S is a trait and S′ → S is a morphism
of trait. Let (X ′, D′, j′,F ′) be the object obtained from (X,D, j,F) by base change
S′ → S. Then RΦ(j′!F

′) is also concentrated at x0 and we have an isomorphism
RΦx0

(j!F) � RΦx0
(j′!F

′).

For any vector space V of finite dimension over F� with a continuous action of
the inertia group I = Gal(k(η)/k(η)), we can define the Swan conductor Sw V of V
and its total dimension

dimtot V := dimF

V + Sw V,

see [5] and [18] for more details.

Definition 1.11. We define the total number of vanishing cycles of (X,D)/S at
x0 to be the integer

w(j!F , x0) := (−1)ndimtot RΦx0
(j!F) := (−1)n

∑
i≥0

(−1)idimtot RiΦx0
(j!F),

where n is the relative dimension of X over S.

Conjecture 1.12. [Logarithmic Milnor Formula] Let S be a regular scheme
purely of dimension 1 and s a closed point of S with perfect residue field. Let (X,D)
be a simple normal crossing pair and let f : X → S be a flat morphism of finite type.
Let x0 ∈ D ∩Xs be a closed point of X . Assume that x0 is the unique isolated log-
singular point of f . Let � be a prime number different from the residue characteristic
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of S at s. Let F be a locally constant and constructible sheaf of F�-vector spaces on
U = X −D. Assume that F is tamely ramified along D. Let j : U → X be the open
immersion. Then w(j!F , x0) is equal to rank(F) times μlog, i.e.,

w(j!F , x0) = rank F · μlog ((X,D)/S, x0) . (1.8)

The classical Milnor formula says that

w(F�, x0) = μ(X/S, x0).

Notice that, since we assume that the residue field of S at s is perfect, the Swan
conductor is defined. The classical Milnor formula is true in the following cases (see
[5, 14]):

• n = 0, 1, 2
• X → S has an ordinary quadratic singularity at x.
• S is of equal-characteristic.

In [14], the classical Milnor formula is shown to follow from the conjecture of Bloch
conductor formula.

Proposition 1.13. Let X be a regular scheme and S be a regular scheme purely
of dimension 1. Let f : X → S be a flat morphism of finite type such that f has a
unique isolated log-singular point x0 ∈ D∩Xs with respect to a simple normal crossing
divisor D on X. For any subset J ⊂ I, put DJ = ∩j∈JDj. When J is empty, we put
DJ = X. Assume that w(F�,DJ , x0) = μ(DJ/S, x0) for any subset J ⊂ I. Then we
have

w(j!F�, x0) = μlog ((X,D)/S, x0) .

Proof. Let f : X → S be a flat morphism of finite type with a unique isolated
log-singular point x0 ∈ D ∩ Xs. Let Di(i ∈ I) be the irreducible components of D.
Then we have an exact sequence,

0 → j!F� → F�,X →
⊕

i∈I
F�,Di → · · · →

⊕
J⊂I,Card(J)=q

F�,DJ → · · · .

By this exact sequence, we have

w(j!F�, x0) = w(F�, x0) +
∑
r≥1

∑
J⊂I,|J|=r

w(F�,DJ , x0). (1.9)

Since by assumption,

μ(X/S, x0) +
∑
r≥1

∑
J⊂I,|J|=r

μ(DJ/S, x0) = w(F�, x0) +
∑
r≥1

∑
J⊂I,|J|=r

w(F�,DJ , x0).

By Lemma 1.9,

μlog((X,D)/S, x0) = μ(X/S, x0) +
∑
r≥1

∑
J⊂I,|J|=r

μ(DJ/S, x0).

Combined with equation (1.9), we obtain w(j!F�, x0) = μlog((X,D)/S, x0), which
finishes the proof.
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2. Logarithmic version of Elkik’s Lemma. In this section, we formulate and
prove a logarithmic version of Elkik’s Lemma [7].

Lemma 2.1. Let (A, I) be a henselian pair (cf. [15], Chapters XI), B =
A[X1, · · · , XN ]/J be an A-algebra of finite presentation such that J = (f1, · · · , fq)
with fi ∈ A[X1, · · · , XN ]. Let M be a non-negative integer such that M ≤ N . Let Δ
be the ideal of A[X1, · · · , XN ] generated by order-q-minors of the logarithmic Jacobian
matrix

Jaclog =

⎛⎜⎜⎜⎜⎝
X1

∂f1
∂X1

· · · XM
∂f1
∂XM

∂f1
∂XM+1

· · · ∂f1
∂XN

X1
∂f2
∂X1

· · · XM
∂f2
∂XM

∂f2
∂XM+1

· · · ∂f2
∂XN

...
...

...
...

X1
∂fq
∂X1

· · · XM
∂fq
∂XM

∂fq
∂XM+1

· · ·
∂fq
∂XN

⎞⎟⎟⎟⎟⎠ .

For any x = (x1, · · · , xN ) ∈ AN , we define a homomorphism
ψx : A[X1, · · · , XN ] → A by mapping Xi to xi. For any ideal E of A[X1, · · · , XN ],
the value E(x) of E at x is defined to be the image ψx(E). It is easy to see that E(x)
is an ideal of A.

Let n and h be two integers such that n > 2h and a = (a1, · · · , aN) ∈ AN such
that

J(a) ⊂ In and Ih ⊂ Δ(a),

where the ideal J(a) = (f1(a), · · · , fq(a)) ⊂ I (resp. Δ(a)) is the value of J (resp. Δ)
at a. Then there exists an element b = (b1, · · · , bN ) ∈ AN such that the ideal J(b)
(value of J at b) is zero and

bv = av(1 + εv), εv ≡ 0 mod In−h, for v = 1, 2, · · · ,M (2.1)

bs ≡ as mod In−h, for s = M + 1,M + 2, · · · , N. (2.2)

Proof. Let (t1, · · · , tr) be a system of generators of Ih. Since tj ∈ Ih ⊂ Δ(a), we
can find a N × q-matrix Ej such that

Jaclog(a)Ej = tj · Idq×q for all j = 1, · · · , r.

By the assumption J(a) ⊂ In = In−2h · Ih · Ih, we can write⎛⎜⎝ f1(a)
...

fq(a)

⎞⎟⎠ =
∑
i,j

titj

⎛⎜⎝ eij,1
...

eij,q

⎞⎟⎠ =
∑
i

ti · Jac
log(a)

∑
j

Ej

⎛⎜⎝ eij,1
...

eij,q

⎞⎟⎠
with eij,k ∈ In−2h. For any i = 1, · · · , r, we only need to find ui = (ui

1, · · · , u
i
N) ∈ AN

verifying ui
j ∈ In−2h for all j = 1, · · · , N such that

fk

(
a+

r∑
i=1

tiũ
i

)
= 0, where ũ

i = (a1u
i
1, · · · , aMui

M , ui
M+1, · · · , u

i
N ), for all k = 1, · · · , q.
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Then by Taylor expansion, we have⎛⎜⎝ f1(a+
∑r

i=1 tiũ
i)

...
fq(a+

∑r

i=1 tiũ
i)

⎞⎟⎠ =

⎛⎜⎝ f1(a)
...

fq(a)

⎞⎟⎠+
r∑

i=1

ti

⎛⎜⎜⎝
∂f1
∂X1

· · ·
∂f1
∂XN

... · · ·
...

∂fq
∂X1

· · ·
∂fq
∂XN

⎞⎟⎟⎠ ũ
i +

∑
i,j

titjQi,j

=

⎛⎜⎝ f1(a)
...

fq(a)

⎞⎟⎠+
r∑

i=1

ti · Jac
log(a)ui +

∑
i,j

titjQi,j

=
∑
i

ti · Jac
log(a)

⎧⎪⎨⎪⎩
∑
j

Ej

⎛⎜⎝ eij,1
...

eij,q

⎞⎟⎠+ u
i +

∑
j

EjQi,j

⎫⎪⎬⎪⎭
where Qi,j is a column-vector whose components are polynomial in a and ui such
that the minimal degree in ui is at least 2. Therefore we reduce the problem to the
following equation (in variables ui

j)⎛⎜⎝ ui
1
...

ui
N

⎞⎟⎠+
∑
j

Ej

⎛⎜⎝Qi,j +

⎛⎜⎝ eij,1
...

eij,q

⎞⎟⎠
⎞⎟⎠ = 0.

After modulo In−2h, 0 is a solution of this system of equations, and the jacobian of
this system is congruent to the identity matrix. Since (A, I) is a henselian pair, we
can lift this solution (mod In−2h) to a real solution which finished the proof.

Lemma 2.2. Let S = Spec R be an affine noetherian scheme. Let f : X =
Spec Q → S be a morphism of finite type. Assume X is regular and D ⊂ X is a
divisor on X with simple normal crossings. Let Z ⊂ X be a closed subscheme of X
defined by an ideal I ⊂ Q. Assume that Z = {x} contains only one closed point x of
X, X − Z is smooth over S and D − Z ∩D = D ×X (X − Z) is a divisor on X − Z

with simple normal crossings relatively to S. Let X̃ be the henselization of X along
Z (cf. [15], Chapitres XI).

Then there exist integers h ≥ 1 and n > 2h such that for any morphism g : X → S
satisfying g ≡ f mod In, there exists an isomorphism p : X̃ → X̃ inducing an
isomorphism on D ×X X̃ such that the following diagram is cartesian

D ×X X̃
p

−−−−→ D ×X X̃⏐⏐� ⏐⏐�
X̃

p
−−−−→ X̃

g

⏐⏐� f

⏐⏐�
S S

(2.3)

Moreover, p is congruent to the identity modulo In−hOX̃ .

Proof. For a scheme T over X , let Tf denote T regarded as a scheme over S with
respect to the composition with f : X → S and similarly for Tg for any morphism
g : X → S. For an integer r ≥ 1 and for a scheme T over X , let Tr ⊂ T denote the
closed subscheme T ×X Spec Q/Ir.



582 E. YANG

After replacing Xf by an étale neighborhood of Z = {x} , we can choose a
presentation of Q

Q � R[X1, · · · , XN ]/J, J = (f1, · · · , fq),

such that D ⊂ Xf is the pullback of the divisor D′ = V (X1 · · ·XM ) ⊂ X ′ =
Spec R[X1, · · · , XN ] by the map X → X ′. Let Δ′f be the ideal of R[X1, · · · , XN ]
defined by the logarithmic Jacobian matrix as in Lemma 2.1 for the canonical mor-
phism f ′ : X ′ → S and the divisor D′. Let Δf be the ideal of Q defined by the

image of Δ′f . For any morphism q : Y → S, let f̃ be the base change X ×S Y → Y

of f by q : Y → S. Then the ideal Δf̃ defined by f̃ and the divisor D ×S Y is
equal to the pull back of Δf . Since, by assumption, Xf − Z is smooth over S and
D − Z ∩ D = D ×X (X − Z) is a divisor on Xf − Z with simple normal crossings
relatively to S, there exists an integer h ≥ 1 such that Ih ⊂ Δf . Let n be any integer
such that n > 2h.

Now, let g : X → S be a morphism satisfying g ≡ f mod In. Let X̃ = Spec A
and D̃ = X̃×XD. Let Spec B be the fiber product X̃g×SXf andDB the fiber product

(Spec B)×Xf
D. Since g ≡ f mod In, X̃r,g = X̃r,f (=: X̃r) and D̃r,g = D̃r,f (=: D̃r)

for all r ≤ n and we have a cartesian diagram

D̃n −−−−→ X̃n⏐⏐� ⏐⏐�diag
DB −−−−→ Spec B⏐⏐� ⏐⏐�pr2
Df −−−−→ Xf ,

(2.4)

where X̃n
diag
−−−→ Spec B = X̃g ×S Xf is defined by the closed immersion X̃n ↪→ X̃g

and the composition X̃n ↪→ X̃f → Xf .

We apply Lemma 2.1 to the henselian pair (A, IA) and B. The morphism X̃n →
Spec B corresponds to an A-homomorphism B � A[X1, · · · , XN ]/J → A/InA. The
latter map is defined by an element a = (a1, · · · , aN ) ∈ AN such that the condition
J(a) ⊂ InA in Lemma 2.1 is satisfied. Here we still use J to denote the image of J ∈
R[X1, · · · , XN ] in A[X1, · · · , XN ]. Let Δ be the ideal of B defined by the morphism

pr1 : Spec B → X̃g and the divisor DB. Notice that since pr1 : Spec B → X̃g is the

base change of f : X → S by the morphism X̃g → S, Δ is equal to the pull back of
Δf . Now the condition IhA ⊂ Δ(a) in Lemma 2.1 is also satisfied by our choice of
h. By Lemma 2.1, we can find an element b ∈ AN satisfying the congruences (2.1)

in Lemma 2.1 such that J(b) = 0, i.e., we have a morphism X̃g = Spec A → Spec B
such that the following diagram is commutative

X̃n−h
⊂ > X̃g < ⊃ D̃g

X̃n

∨

∩

diag
> Spec B

∨
< ⊃ DB

∨
(2.5)

The right square in (2.5) is cartesian by the congruences (2.1) and 1+εr ∈ 1+IA ⊂ A×

for all r. Let p′ be the composition X̃g → SpecB → Xf . Since (A, IA) is a henselian
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pair, the morphism p′ : X̃g → Xf factors through a morphism p : X̃g → X̃f such that
the following diagram commutes

D̃g
⊂ > X̃g

D̃f

∨
⊂ > X̃f

p
∨

> Xf .

p′

>
(2.6)

Now we show that p : X̃g → X̃f is an isomorphism. Let W be an etale neigh-

borhood of X̃1 → Xg such that the morphism p′ is induced by W → Xf . Since

p : X̃g → X̃f induces the identity on X̃2 ⊂ X̃n−h, the endomorphisms induced by

W → Xf on the completions of the local rings of X̃g and X̃f at all points of X̃1 are
surjections and hence automorphisms. Thus the endomorphisms induced by W → Xf

on the henselizations of the local rings of X̃g and X̃f at all points of X̃1 are also au-

tomorphisms and the morphismW → Xf is etale on a neighborhood W ′ ⊂ X̃g of X̃1.
Hence, by replacing W by W ′, we may assume that W → Xf itself is etale. Since

(X̃, X̃1) is a henselian pair, the morphism p : X̃g → X̃f is an isomorphism.

3. Compactification and Pencils of desired Jet.

Theorem 3.1. Let S be a smooth curve over an algebraic closed field k of char-
acteristic p > 0. Let � be a prime number distinct from p. Let (X,D) be a simple
normal crossing pair. Let f : X → S be a flat morphism of finite type. Assume that f
is purely of relative dimension n and has a unique isolated log-singular point x ∈ D.
Let F be a locally constant and constructible sheaf of F�-vector spaces on X \D such
that F is tamely ramified along D. Then there exist a projective variety Y over k,
purely of dimension n+ 1, a morphism g : Y → P1k , a divisor DY ⊂ Y and a closed
point y ∈ DY of Y such that

(1) g(y) = 0 ∈ P1k is the origin.
(2) there exists an open neighborhood U ⊂ P1k of the origin 0 ∈ P1k such that the

base change of g by U gives a morphism with a unique isolated log-singular
point, i.e., the morphism g : Y ×P1

k
U → U has a unique isolated log-singular

point y with respect to the divisor DY ×P1
k
U .

(3) If h1 : Speck[[t]] → P1k (resp h2 : Speck[[t]] → S) is the canonical isomorphism
between Speck[[t]] and the completion of the strict henselization of P1k (resp.
S) at 0 (resp. s = f(x)), there exists an Speck[[t]]-isomorphism h between
the strict henselization of h∗2X at x and the strict henselization of h∗1Y at y
such that D is the pullback of DY under this isomorphism.

(4) there exists a locally constant and constructible sheaf G of F�-vector spaces on
Y \DY such that G is tamely ramified along DY and h induces an isomorphism
between the pullbacks of F and G to the strict henselizations.

In order to prove this theorem, we briefly recall the definition of dual varieties and
pencils. For more details, see [13]. Denote by PN the projective space of dimension
N over k, let P̌N be the dual projective space of PN . The points in P̌N are considered
as hyperplanes in PN . Consider the Grassmann variety Gr(1, P̌N ) whose points are
considered as lines in P̌N . A point L ∈ Gr(1, P̌N ) is called a hyperplane pencil in PN .
Considering L as a line in P̌N , we write L = {Ht}t∈L where Ht is the hyperplane of
PN defined by t ∈ L.

Let P be a proper smooth and irreducible closed subscheme of PN , let I be the
ideal sheaf of OPN which defines P in PN . Then the conormal sheaf N = I/I2 is
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locally free on P . Consider the projective bundle P(N ) over P formed by lines in the
dual Ň . The bundle P(N ) can be identified with the sub-variety of P × P̌N formed by
pairs (x,H) such that the hyperplane H is tangent to P at x. Let φ : P(N ) → P̌N be

the composition P(N ) ↪→ P × P̌N pr2−−→ P̌N . Then the dual variety P̌ of P is defined
to be the image of φ. The dual variety P̌ is the set of hyperplanes which do not meet
P transversally.

Let Q ⊂ PN be a smooth quasi-projective variety over k. Recall that we say
another irreducible smooth subscheme Z ⊂ PN meets Q transversally, if the scheme-
theoretic intersection Q ·Z = Q×PN Z is smooth and of pure codimension codimPNZ
in Q. Then the Bertini theorem says that for infinite field k, there exists an k-rational
hyperplane H ⊂ PN which meets Q transversally. As pointed out by a referee, the
Bertini theorem is an immediate consequence of the fact that the dual variety of
Q ⊂ PN is not dense in P̌N .

Proof of Theorem 3.1. Put m = n + 1. By taking an etale morphism S → P1k
on a neighborhood of s = f(x), we may assume that S = P1k and s = f(x) = (1 : 0)
is the origin of S. Since X is smooth over a perfect field k and D is a divisor
with simple normal crossings, by shrinking X , we may assume there is an etale map
e : X → X ′ := Am

k = Speck[T1, · · · , Tm] such that D is the pull-back of the divisor
D′ defined by T1 · · ·Tr. Moreover, we may assume x′ := e(x) = (0) is the origin of
X ′ = Am

k . By ([9], Expose XIII, Corollaire 5.3), we have an isomorphism between
tame fundamental groups πt

1(X(x) ×X (X \ D)) �
∏

η �=p Z
r
η � πt

1(X
′ \ D′) which

is compatible with numbering of the irreducible components of D and D′. By the
isomorphism, we find a locally constant constructible sheaf F ′ of F�-vector spaces on
X ′ \D′ such that F ′ is tamely ramified along D′ and F|X(x)

� F ′|X(x)
.

Let P = Pm be the projective space of dimension m with coordinates (T0 : T1 :
· · · : Tm), let X ′ ↪→ P be the open immersion given by (x1, · · · , xm) �→ (1 : x1 : · · · :
xm). Let D be the closure of D′ in P with irreducible components Di(i = 1, · · · , r).
For any subset I ⊂ {1, · · · , r}, put DI = ∩i∈IDi and D∅ = P . Let y = (1 : 0 : · · · : 0)
be the origin of P . Consider a Segre imbedding of degree d with d large enough:

P ↪→ E := PN ,

where N =
(
m+d
d

)
− 1. In the following, d will be taken such that the map Jz below

(cf. (3.1)) is surjective for all z ∈ P \ {y}. We need to find a hyperplane pencil
L = (Ht)t∈L ∈ Gr(1, Ě) such that

(a) The axis of L does not contain y and meets P transversally. Let t0 ∈ L
be the image of y, then Ht0 meets DI \ {y} transversally for all subset I of
{1, · · · , r}.

(b) There exists an open neighborhood U ⊂ L of t0 such that for all t ∈ U \ {t0},
the hyperplane Ht meets DI transversally for all subset I of {1, · · · , r}.

(c) The line L in Ě is defined by two sections F,G ∈ Γ(P,OP (d)) (viewed as linear
forms in Γ(E,OE(1))) such that F (y) �= 0 and e∗(GF ) ≡ f mod mλ, where m
is the maximal ideal of OX,x and λ is an integer given in the following way:
By Lemma 2.2, there exists an integer N ′ such that if λ ≥ N ′, the condition
(c) implies the condition (3). Now we choose any integer λ such that λ ≥ N ′.

Let H = {(x,H)|x ∈ H} ⊂ E × Ě be the universal hyperplane. If such L exists,
let Y ′ = P ×E H ⊂ P × Ě be the incidence subscheme and put Y = Y ′ ×Ě L and let
DY ⊂ Y be the inverse image of D by the first projection pr1 : Y = Y ′ ×Ě L → P .
Choose an isomorphism L � P1 such that t0 maps to the origin point of P1. Put
g := pr2 : Y → L � P1. By the choice of λ, the condition (c) implies the condition (3)
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above. Let G be the pullback of F ′ to Y \DY , then G satisfies the condition (4). Since
(b) implies the condition (2), the morphism g : Y → P1 will satisfy our requirement.

Now we first choose a linear form F ∈ Γ(E,OE(1)) such that the hyperplane
HF ∈ Ě defined by F does not meet the origin y and this hyperplane meets DI

transversally for all subset I of {1, · · · , r}. We can apply Bertini theorem to find
such F . If one can choose a linear form G satisfying conditions (a) and (c) above, we
let HG ∈ Ě be the hyperplane of E define by G. Then the line L ⊂ Ě through the
points HF and HG will satisfying our requirement. Indeed by assumption on G, the
hyperplane HG meets DI \ {y} transversally for all subset I of {1, · · · , r}. Hence the
condition (a) is satisfied if we put t0 ∈ L corresponds to HG. Because HF meets DI

transversally for all subset I of {1, · · · , r}, the line L is not contained in the union

of dual varieties ∪IĎI . Since ∪IĎI is of codimension 1 in Ě, there exists an open
neighborhood U ⊂ L of t0 in L such that the condition (b) is satisfied.

We show that such G exists when d is large enough. Let Γ := Γ(P,OP (d)) and
L = ODI

(d) where I is a subset of {1, · · · , r}. When the set I is empty, we put

DI = P . For any point z ∈ DI \ {y}, consider the following map

Jz : Γ → OP,y/m
λ
y × Lz/m

2
zLz. (3.1)

G �→ (G/F mod mλ
y , G mod m2

zLz)

By ([17], Lemma 3.3(2)), there exists an integer M ≥ 0 such that for any d ≥ M and
any integer λ ≥ N ′, the canonical map

Γ → OP,y(d)/m
λ
y ×OP,x(d)/m

2
z

G �→ (G mod mλ
y , G mod m2

z)

is surjective for all z ∈ P \ {y}. Now we choose an integer d ≥ M and an integer
λ ≥ N ′. This implies that the map Jz is also surjective for all z ∈ P \ {y}. Put
Γ′ = {G ∈ Γ : G/F ≡ f mod mλ

y} and for any z ∈ DI \ {y} put

Γ′I(z) = {G ∈ Γ′ : G ≡ 0 mod m2
zLz ⊗ODI ,z

}.

Then for any G ∈ Γ′I(z), the hyperplane HG defined by G satisfies that z is a singular
point of HG ∩ DI . Since Jz is surjective, Γ′I(z) is of codimension dimk Lz/m

2
zLz =

1 + dim DI in Γ′, hence the union Γ′I :=
⋃

z∈DI\{y}

Γ′I(z) is of codimension (1 +

dim DI)− dim DI = 1 in Γ′. Moreover the union
⋃
I

Γ′I is of codimension 1 in Γ′. For

any G1 ∈ Γ′ \
⋃
I

Γ′I , HG1 ∩DI is smooth outside y for all subset I.

For any z ∈ P ∩HF (y /∈ P ∩HF ), put

Γ′F (z) =
{
G ∈ Γ′ : G ≡ 0 mod m2

zLz ⊗OP∩HF ,z

}
.

Then the union Γ′F :=
⋃

z∈P∩HF

Γ′F (z) is of codimension 1 in Γ′. For any G2 ∈ Γ′ \Γ′F ,

let L ⊂ Ě be the line through the points HF and HG2 , then the axis AL of the line
L meets P transversally.

Now we choose any G ∈ Γ′ \

{⋃
I

Γ′I
⋃
Γ′F

}
. Let L ⊂ Ě be the line through the

points HF and HG. Then HG ∩DI is smooth outside y for all subset I and the axis
AL of L meets P transversally. Hence the pencil L will satisfy our conditions (a), (b)
and (c). We finished the proof.
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4. Main theorem: geometric case.

Theorem 4.1. Let S be a henselian trait of equal characteristic p > 0 and perfect
residue field , let s be the closed point of S. Let (X,D) be a simple normal crossing
pair. Let f : X → S be a flat morphism of finite type and purely of relative dimension
n. Assume that a closed point x ∈ D is the unique isolated log-singular point of f and
f(x) = s. Let � �= p be a prime number. Let F be a locally constant and constructible
sheaf of F�-vector spaces on U = X \D such that F is tamely ramified along D, let
j : U → X be the open immersion. Then w(j!F) is equal to rank F times μlog,i.e.,

w(j!F , x) = rank F · μlog((X,D)/S, x).

Proof. Let S′ be the strict hensenlian of S, and put X ′ = X ×S S′ and D′,F ′

be the pullback of D and F respectively. By Theorem 1.10, the assertion 4.1 for
(X,D) → S and F is equivalent to 4.1 for (X ′, D′) → S′ and F ′. Hence we may
assume the residue field of S is separably closed. But the residue field is perfect by
assumption, hence the residue field of S is algebraically closed.

For such S, we let S′ be the completion of S. By the same reason as above, wemay
assume S is also complete, hence S is isomorphic to Spec k[[t]] with k algebraically
closed.

By Theorem 3.1, there exists a projective and flat S-scheme Y with a simple
normal crossing divisor E such that

1. g : Y → S is a morphism purely of relative dimension n such that y ∈ E ∩ Ys

is the unique isolated log-singular point of g with respect to the divisor E.
2. There exists an S-isomorphism between strict henselizations X(x) and Y(y)

such that the following diagram

D ×X X(x)

∼=
−−−−→ E ×Y Y(y)⏐⏐� ⏐⏐�

X(x)

∼=
−−−−→ Y(y)

is cartesian.
3. There exists a locally constant and constructible sheaf F ′ of F�-vector spaces

on Y \ E such that F ′ is tamely ramified along E and the pullback of F ′ by
the isomorphism X(x)

∼= Y(y) is equal to F|X(x)
.

Let j′ : Y \ E → Y be the open immersion. Then we have

dimtot RΦx(j!F , f) = dimtot RΦy(j
′
!F
′, g).

Let η be an algebraic closure of the fraction field of S. Now y ∈ Y is the unique
isolated non smooth point of (Y, j′!F

′). Hence by ([4], 2.4.6.3), we have the following
exact sequence

· · · → (Rqg∗j
′
!F
′)s → (Rqg∗j

′
!F
′)η → RqΦy(j

′
!F
′, g) → · · · .

Denote the restriction Y \ E → S also by g, then by definition, Rg!F
′ = Rg∗j

′
!F
′.

The exact sequence above shows that

dimtot RΦy(j
′
!F
′, g) = dimtot (Rg!F

′)η.
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Since F ′ and FrankF� have the same rank and both are tamely ramified along E, by
Vidal’s result ([20], Corollaire 3.4), we have

dimtot (Rg!F
′)η = rank F · dimtot (Rg!F�)η.

Hence we have

dimtot RΦx(j!F , f) = dimtot (Rg!F
′)η

= rank F · dimtot (Rg!F�)η

= rank F · dimtot RΦ(j′!F�, g)y

= rank F · dimtot RΦx(j!F�, f).

That is to say w(j!F , x) = rankF · w(j!F�, x). Since the geometric case of Milnor
formula is true [5], by Proposition 1.13, we have

w(j!F�, x) = μlog((X,D)/S, x).

Finally we get that

w(j!F , x) = rank F · μlog((X,D)/S, x).

Now we give an interpretation of the main result in terms of characteristic cycle.
Let k be an algebraically closed field of characteristic p > 0. Let S be a smooth
curve over k and (X,D) a simple normal crossing pair over k. Let f : X → S be a
flat morphism of finite type such that the closed point x0 ∈ D is the unique isolated
log-singular point of f . Let T ∗S (resp. T ∗X) be the cotangent bundle of S (resp.
X). We have an induced morphism T ∗S×S X → T ∗X on vector bundles. We choose
a local coordinate t of S on an open neighborhood S′ of s = f(x0). When replacing
S (resp. X) by S′ (resp. X ′ = X ×S S′), the values on both sides of (1.8) do not
change. We may therefore assume that the local coordinate t is defined on S. Let
S → T ∗S be the section of T ∗S → S defined by dt. By base change, we obtain a
section dt : X → T ∗S ×S X . Let df : X → T ∗S ×S X → T ∗X be the composition of
the section dt : X → T ∗S ×S X with T ∗S ×S X → T ∗X .

For a regular immersion X → P of schemes, the conormal bundle T ∗XP is the
vector bundle over X defined by the symmetric algebra S•(NX/P )

∨ where NX/P =
IX/I2X is the conformal sheaf and IX ⊂ OP is the ideal sheaf of X in P . Let
D1, · · · , Dr be the irreducible components of D. For any subset I ⊂ {1, · · · , r}, let
DI = ∩i∈IDi with D∅ = X . We define T ∗DI

X ⊂ T ∗X to be the conormal bundle
associated to the regular immersion DI ↪→ X .

Let � be a prime number distinct from p. Let F be a locally constant and con-
structible sheaf of F�-modules on U = X \D. Assume that F is tamely ramified along
D. Denote by j : U → X the open immersion. The characteristic cycle Char(j!F) is
defined by (see [17])

Char(j!F) = (−1)m ·
∑

I⊂{1,··· ,r}

rankF · [T ∗DI
X ],

where m = dim(X).

Corollary 4.2. Under the conditions above, we have

−dimtot RΦx0
(j!F) = (Char(j!F), [df(X)])T∗X,x0

.
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Proof. By Theorem 4.1, we only need to show that

μlog((X,D)/S, x0) =

⎛⎝ ∑
I⊂{1,··· ,r}

[T ∗DI
X ], [df(X)]

⎞⎠
T∗X,x0

.

However, by Lemma 1.9, we have

μlog((X,D)/S, x0) =
∑

J⊂{1,··· ,r}

μ(DJ/S, x0).

Hence we only need to show that for any subset I ⊂ {1, · · · , r}

μ(DI/S, x0) =
(
[T ∗DI

X ], [df(X)]
)
T∗X,x0

.

If I is empty, we show that μ(X/S, x0) = ([T ∗XX ], [df(X)])T∗X,x0
. Let (xi)1≤i≤m

be a system of local coordinates of X at x0. Then Ω1X/k has a basis {dxi}. We

also choose a local coordinate t : S → A1k at s = f(x0). Denote still by f

the composition t ◦ f . Let I =
(

∂
∂x1

, · · · , ∂
∂xm

)
⊂ OT∗X = OX

[
∂

∂x1
, · · · , ∂

∂xm

]
be the ideal sheaf defining the zero section X = T ∗XX → T ∗X , let J =(

∂f
∂x1

− ∂f
∂x1

∂
∂x1

, · · · , ∂f
∂xm

− ∂f
∂xm

∂
∂xm

)
⊂ OT∗X be the ideal sheaf defining the closed

immersion df(X) → T ∗X . Since dim T ∗XX ∩ df(X) = dim OX/( ∂f
∂x1

, · · · , ∂f
∂xm

) = 0,
we have dim T ∗XX + dim df(X) = dim T ∗X + dim T ∗XX ∩ df(X). Hence, the closed
subschemes T ∗XX and df(X) intersect properly and we can use Serre’s tor-formula to
calculate ([T ∗XX ], [df(X)])T∗X,x0

. Since X = T ∗XX → T ∗X is a regular immersion

and OT∗X/J is Cohen-Macaulay at every point of T ∗XX∩df(X), by ([19], Chapter V,

Theorem 4), we have T orOT∗X
i (OT∗X/I,OT∗X/J ) = 0 for all i > 0. Thus we have∑

i≥0

(−1)i
[
T orOT∗X

i (OT∗X/I,OT∗X/J )
]
= [OT∗X/I ⊗OT∗X

OT∗X/J ]

=

[
OX

/(
∂f

∂x1
, · · · ,

∂f

∂xm

)]
.

Hence ([T ∗XX ], [df(X)])T∗X,x0
= length

(
OX,x0

/(
∂f
∂x1

, · · · , ∂f
∂xm

))
= μ(X/S, x0).

When the subset I ⊂ {1, · · · , r} is not empty. By the following two cartesian
diagram,

DI −−−−→ X⏐⏐� ⏐⏐�df

T ∗DI
X −−−−→ T ∗X ×X DI −−−−→ T ∗X⏐⏐� ⏐⏐�

DI −−−−→ T ∗DI

using projection formula, we have(
[T ∗DI

X ], [df(X)]
)
T∗X,x0

=
(
[T ∗DI

DI ], [df(DI)]
)
T∗DI ,x0

.
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By the result we proved in the case I = ∅, we get that(
[T ∗DI

X ], [df(X)]
)
T∗X,x0

= μ(DI/S, x0).
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nombres de Bordeaux, (2004), pp. 403–421.
[17] T. Saito, Characteristic cycle and the Euler number of a constructible sheaf on a surface,

Kodaira Centennial issue of the Journal of Mathematical Sciences, the University of Tokyo,
22 (2015), pp. 387-442.

[18] J.-P. Serre, Corps Locaux, Hermann, Paris, Deuxieme edition, 1968.
[19] J.-P. Serre, Local Algebra, Springer Monographs in Mathematics, 2000.
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