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A NEW COMBINATORIAL CLASS OF 3–MANIFOLD
TRIANGULATIONS∗

FENG LUO† AND STEPHAN TILLMANN‡

Abstract. We define a new combinatorial class of triangulations of closed 3–manifolds, satisfying
a weak version of 0–efficiency combined with a weak version of minimality, and study them using
twisted squares. As an application, we obtain strong restrictions on the topology of a 3–manifold
from the existence of non-smooth maxima of the volume function on the space of circle-valued angle
structures.
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1. Introduction. In computational topology, it is a difficult problem to certify
that a given triangulation of a closed, irreducible, orientable 3–manifold is minimal.
Here, the term triangulation includes semi-simplicial or singular triangulations. The
difficulty mainly stems from the fact that on the one hand, the current computer
generated censuses are limited in size (see [10, 3]), and on the other hand, it is difficult
to find good lower bounds for the minimal number of tetrahedra (see [9, 6]). For many
algorithms using 3–manifold triangulations, the 0–efficient triangulations due to Jaco
and Rubinstein [4] have been established as a suitable platform. However, certifying
that a given triangulation is 0–efficient involves techniques from linear programming.

This paper introduces a new class of triangulations satisfying a weak version of 0–
efficiency combined with a weak version of minimality. The weak version of minimality
(face-pair-reduced) is that certain simplification moves, which can be determined from
the 2–skeleton, are not possible. The weak version of 0–efficiency (face-generic) puts
mild restrictions on the combinatorics of the 2–skeleton. We show that a 0–efficient
or minimal triangulation of a closed, irreducible, orientable 3–manifold is face-generic
unless the underlying manifold is one of S3, IRP 3, L(3, 1), L(4, 1), L(5, 1) or L(5, 2).
Moreover, if a triangulation is not face-generic and face-pair-reduced, then it can
either be simplified to a face-generic, face-pair-reduced triangulation or it is easy to
recognise which of the aforementioned six exceptions is the underlying manifold of
the triangulation (Proposition 13).

The new notions, face-pair-reduced and face-generic, are motivated by key combi-
natorial properties of the 2–skeleton of minimal and 0–efficient triangulations respec-
tively. They are the subject of Section 2. A new tool in the study of triangulations
is introduced in Section 3: the study of (possibly pinched or immersed) surfaces that
have a cell structure consisting of up to two squares, each of which is mapped to a
twisted square in a tetrahedron. Twisted squares are also used to give a classification
of the possible combinatorial types of the (possibly singular) 3–simplices in a face-
pair-reduced, face-generic triangulation. In this paper, as is common usage, we call a
singular 3–simplex in M a tetrahedron.

We give a key application to highlight the utility of our techniques. Previous work
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of the first author [8] defined and studied circle-valued angle structures on orientable,
closed 3–manifolds using a volume function. It was shown that a smooth maximum
of the volume function corresponds to a solution of the generalised Thurston equa-
tion, whilst a non-smooth maximum corresponds to a cluster of three 2–quad type
solutions to Haken’s normal surface equations. Such a cluster consists of three al-
gebraic solutions with at most two non-zero quadrilateral coordinates, such that the
set of their non-zero coordinates includes the three quadrilaterals supported by some
tetrahedron. The present paper shows that (under sufficiently strong hypotheses on
the triangulation), the existence of a non-smooth maximum gives strong information
about the topology of the manifold. The following is a consequence of the more
technical Theorem 23, which is stated and proved in Section 5:

Theorem 1. Suppose M is a closed, orientable 3–manifold with a triangulation
which is either minimal or (face-pair-reduced and face-generic). If there is a cluster
of three 2–quad type solutions to Haken’s normal surface equations, then either

1. M is reducible, or
2. M is toroidal, or
3. M is Seifert fibred, or
4. M contains a non-orientable surface of genus 3.

A discussion of this theorem and its consequences can be found in [7] (§1 and §4.3),
where it was first announced for minimal triangulations. In particular, Thurston’s orb-
ifold theorem implies that if M does not fall in the first three cases and contains a
non-orientable surface of genus 3, then M satisfies Thurston’s Geometrisation Con-
jecture without appeal to Perelman’s Ricci flow techniques. The proof of the theorem
shows that, for a 3–manifold with face-pair-reduced and face-generic triangulation, it
is possible to deduce from the combinatorics of the triangulation which of the (not
mutually exclusive) cases occurs (see Lemma 19, Proposition 20 and Theorem 23).
As pointed out by the referee, it is worth mentioning that the main application of this
paper can be viewed as a step towards realising a variant of Casson’s program to prove
the Geometrisation Theorem for 3–manifolds. Casson’s program originally aimed to
reprove Thurston’s theorem via ideal triangulations in the case of 3–manifolds with
boundary consisting of tori, and this program was later extended to closed 3–manifolds
by the first author.

We have developed the new tools and notions for triangulations with a view to-
wards keeping this paper brief, and the details at bay. They can be modified for the
study of reducible 3–manifolds. Moreover, there is much scope in developing a full
theory of face-pair-reduced and face-generic triangulations of irreducible 3–manifolds
as they share many combinatorial properties with 0–efficient and minimal triangula-
tions. This would, in particular, give new information about minimal triangulations
of closed hyperbolic 3–manifolds. These remain elusive at the time of writing: they
are sparse in the current censuses and no infinite families are known.

Acknowledgements. The first author is partially supported by the USA Na-
tional Science Foundation (project numbers DMS 1105808 and DMS 1222663). The
second author is partially supported under the Australian Research Council’s Dis-
covery funding scheme (project number DP110101104), and thanks the Max Planck
Institute for Mathematics, where parts of this work have been carried out, for its
hospitality. The authors would like to thank the referee for constructive feedback.

2. Faces in triangulations. The properties of triangulations that we will need
are a weak version of 0–efficiency combined with a weak version of minimality. The
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weak version of minimality (face-pair-reduced) is that certain simplification moves,
which can be determined from the 2–skeleton, are not possible. The weak version
of 0–efficiency (face-generic) puts mild restrictions on the combinatorics of the 2–
skeleton.

2.1. Triangulations and normal surfaces. We will assume that the reader
is familiar with standard definitions, facts and notions about triangulations of 3–
manifolds and normal surfaces. Our main references are [4] for triangulations of 3–
manifolds and [12] for normal surface theory. A triangulation of a compact, orientable

3–manifold M consists of a union of pairwise disjoint 3–simplices, Δ̃, a set of face
pairings, Φ, and a natural quotient map p : Δ̃ → Δ̃/Φ = M. Since the quotient map
is injective on the interior of each 3–simplex, we refer to the image of a 3–simplex in
M as a tetrahedron and to its faces, edges and vertices with respect to the pre-image.
Similarly for images of 2– and 1–simplices, which will be referred to as faces and edges
in M.

A triangulation of the closed, orientable, connected 3–manifoldM isminimal ifM
has no other triangulation with fewer tetrahedra. A triangulation of M is 0–efficient
if the only embedded, normal 2–spheres are vertex linking (see [4] or Section 4 for a
definition of normal surface).

2.2. Small triangulations. If the closed, irreducible, orientable 3–manifold M
has a (not necessarily minimal) triangulation with just one or two tetrahedra, then
M is one of the lens spaces S3, IRP 3, L(3, 1), L(4, 1), L(5, 1), L(5, 2), L(7, 2), L(8, 3)
or quaternionic space S3/Q8 (see, for instance, the census in [3]). Given such a small
triangulation, one can recognise M from the combinatorics of the triangulation or (up
to the ambiguity L(5, 1) versus L(5, 2)) from H1(M).

A subset of the above list of manifolds of small complexity turns out to play a
special role in the analysis of the combinatorics of the 2–skeleton of a triangulation.
For simplicity, we will write L(p) for a lens space with fundamental group ZZp; this
mainly saves some space that would be taken up with distinguishing L(5, 1) from
L(5, 2).

(a) triangle (b) cone (c) Möbius (d) 3–fold (e) dunce

Fig. 1. Types of faces. The Möbius, 3–fold and dunce faces have only got one vertex due to
the edge identifications. A cone face may have one or two vertices and a triangle face may have up
to 3 vertices.

2.3. Faces in triangulations. There are eight types of faces in a triangulation,
depending on how vertices or edges are identified (see Figure 1 in [4]). Ignoring
possible identification of vertices, this reduces to the following five types based on the
edge identifications only (see Figure 1 below). A face with no edge-identifications is
termed a triangle face; it is a 2–simplex with some or all vertices identified. If a pair
of edges is identified, the face is either a cone (possibly with the tip identified with
a point on the boundary) and called a cone face or it is a Möbius band and called a
Möbius face. In a Möbius face, we distinguish the boundary edge and the core edge.
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If all three edges are identified, the face is either a 3–fold or a dunce hat, and called
a 3-fold face or dunce face respectively.

The following results concerning minimal, 0–efficient or arbitrary triangulations
are well-known:

Theorem 2 ([4], Theorem 6.1). A minimal triangulation of the closed, irre-
ducible, orientable 3–manifold M is 0–efficient unless M = IRP 3 or L(3, 1).

Proposition 3. Suppose M is a closed, orientable 3–manifold with a 0–efficient
triangulation.

1. M irreducible and not IRP 3. ([4] Proposition 5.1)
2. The triangulation has one vertex or M = S3 and there are precisely 2 vertices.

([4] Proposition 5.1)
3. If an edge bounds an embedded disc, then M = S3. ([4], Proposition 5.3)
4. No face is a cone unless M = S3. ([4], Corollary 5.4)

Proposition 4. Suppose M is a closed, orientable, irreducible 3–manifold with
an arbitrary triangulation. If a face in the triangulation is a 3–fold, then M = L(3).

Proof. Let N be a regular neighbourhood of the 3–fold F in M. Then 2 =
2 χ(F ) = 2 χ(N) = χ(∂N). If ∂N is connected, then it is a sphere and the result
follows since M is irreducible and the 3–fold is then a spine for M. To see that ∂N
must be connected, equip the interior of the triangle that makes up the 3-fold with
a transverse orientation. The single edge in the boundary of the 3–fold is a simple
closed curve γ in M. Let p ∈ γ and Bp be a small regular neighbourhood of p. Then
F ∩ Bp looks like the shape of a Y times an interval, and there must be at least one
component of Bp \ (F ∩Bp) with the property that the transverse orientation points
both into the component and out of it. But this implies that F cannot separate N,
whence N has connected boundary.

The starting point for our study of triangulations is the following:

Lemma 5. Suppose M is a closed, orientable, irreducible 3–manifold with an
arbitrary triangulation, and σ a tetrahedron in M. Suppose three faces of σ are Möbius
faces, and the remaining face is either a Möbius face or a triangle face. Then M =
L(4) or L(5).

Proof. Suppose there are three Möbius faces and one triangle face in σ. First
suppose that each edge of the triangle face is the core edge of a Möbius face. Then
there is (up to symmetry) only one possibility, and one sees that the vertex link cannot
be a sphere. Hence some edge of the triangle face is the boundary edge of a Möbius
face. If the core edge of this Möbius face is not identified with one of the other edges
of the triangle face, then not both of the remaining faces can be Möbius faces. Hence
it is identified with one of the other edges of the triangle face. Up to symmetry, there
is again only one possibility and one finds a spine for L(5) made up of one twisted
square (see §3.1 for a definition) and one face.

Hence suppose there are four Möbius faces in σ. Given two Möbius faces, they
meet along some edge e simply as a result of being faces of σ. Suppose e is a boundary
edge of both Möbius faces. Then the condition that the other two faces are also
Möbius forces the core edges to be identified such that a square is a spine for L(4).
Enumerating the remaining cases, one finds only one possibility up to symmetry, and
this gives a spine for L(5).
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The following result follows from [4] (Proposition 5.3 and Corollary 5.4) and [5]
(Lemma 7); see also the proof of Proposition 13 below.

Lemma 6. Suppose M is a closed, orientable, irreducible 3–manifold with an
arbitrary triangulation. If a face in the triangulation is a cone or a dunce hat, then
the triangulation can be simplified to have fewer tetrahedra or M is homeomorphic
with one of S3, IRP 3, or L(3).

The above observations lead us to the following definition:

Definition 7 (face-generic). Suppose M is a closed, orientable 3–manifold. We
say that a triangulation of M is face-generic if all faces are triangles or Möbius bands
and each tetrahedron has at most two Möbius faces.

Remark 8. We have the following immediate consequences:
1. A face-generic triangulation may have more than one vertex. Examples are

simplicial triangulations of any manifold, or the natural 2–vertex triangula-
tions of lens spaces.

2. A face-generic triangulation has no edge of degree one, since such an edge can
only be obtained from folding two faces of a tetrahedron together and hence
creating at least one face that is a cone or dunce hat.

3. A 0–efficient triangulation of M is face-generic unless M is homeomorphic
with one of S3, L(3), L(4) or L(5).

4. A minimal triangulation of the closed, orientable, irreducible 3–manifold M
is face-generic unless M is one of S3, IRP 3, L(3), L(4) or L(5).

Whilst it is easy to recognise whether or not a triangulation is face-generic, the
class of face-generic triangulations is too large for many purposes. We now turn to
pairs of faces to further restrict the class of triangulations we wish to consider.

2.4. Pairs of faces in triangulations. A combinatorial map will mean a con-
tinuous map between pseudo-manifolds N → M sending cells to cells and which
restricted to the interior of each (possibly singular) simplex of each dimension is a
homeomorphism onto its image. In particular, dimN ≤ dimM. An example is the
map Δ̃ → M.

The following lemma follows from results by Burton [1, 2].

Lemma 9 (Disc subcomplexes). Let M be a closed, orientable, irreducible 3–
manifold with a face-generic triangulation having at least 3 tetrahedra. Let D be a disc
triangulated with 2 triangles meeting along two edges, and suppose that f : D → M is
a combinatorial map with the property that the images of the two triangles in D are
distinct faces in M.

1. If the two interior edges of D are mapped to distinct edges, then the triangu-
lation can be modified to a triangulation of M having fewer tetrahedra.

2. If the two interior edges of D are mapped to the same edge, then the triangles
in D are mapped to Möbius faces with distinct boundary edges, or the two
faces form a spine for L(4, 1) and hence M = L(4, 1), or the triangulation
can be modified to a triangulation of M having fewer tetrahedra.

Proof. The first part follows directly from Lemma 2.7 and Corollary 2.10 in [1],
and Lemma 3.6 and Corollary 3.8 in [2].

For the second part, observe that if the two interior edges are identified, then,
because we cannot get cones, dunce hats or 3-folds, the images are Möbius faces
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(a) D2 (b) S2 (c) P 2

(d) D2 (e) D2 (f) S2/T 2

Fig. 2. Identifications of two distinct faces along at least two edges: Picture (c) does not occur,
and all other pictures allow an explicit modification of the triangulation making it smaller. The
captions indicate which closed surfaces (if any) the map factors through.

sharing at least the core edges. Suppose the two boundary edges are identified. There
are two cases, depending on the orientation of the edges. One case gives a spine for
L(4, 1). In the other case, the map has image equivalent to Figure 2(f) and hence
there is a map f ′ : D → M as in part (1).

Remark 10. The techniques of the lemma also apply to reducible manifolds.
In this case, the modification procedure either results in a triangulation of M having
fewer tetrahedra, or M = M1#M2, and one obtains triangulations of M1 and M2,
each having fewer tetrahedra.

The above lemma leads us to the following definition (see also Figure 3):

Definition 11 (face-pair-reduced). Let D be a disc triangulated with 2 trian-
gles meeting along two edges. We will call a triangulation face-pair-reduced if every
combinatorial map f : D → M, which maps the two triangles in D to distinct faces
in M, has the property that the two interior edges of D are mapped to the same edge,
and the triangles in D are mapped to Möbius faces with distinct boundary edges.

Remark 12. We have the following immediate consequences:
1. A tautological, but most useful, consequence of the definition is that case (1)

in Lemma 9 cannot occur in a face-generic, face-pair-reduced triangulation.
Thus, each face is uniquely characterised by two consecutive distinct, oriented
edges in its boundary.

2. A face-pair-reduced triangulation may have more than one vertex. Exam-
ples are simplicial triangulations of any manifold, and the natural 2–vertex
triangulations of lens spaces.

3. A face-pair-reduced triangulation has no cone faces (see Burton [1], Lemma
2.8).

4. A minimal triangulation of a closed, orientable, irreducible 3–manifold with
at least 3 tetrahedra is face-pair-reduced.
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Fig. 3. Face-pair-reduced. If F1 �= F2, then a = b and c �= d.

5. A 0–efficient and face-generic triangulation may not be face-pair-reduced. An
example is given by the 4 tetrahedron triangulation of S3 defined by the fol-
lowing face pairings:

Tetrahedron Face 012 Face 013 Face 023 Face 123
0 2 (231) 1 (321) 0 (312) 0 (230)
1 3 (231) 3 (023) 2 (032) 0 (310)
2 3 (013) 3 (120) 1 (032) 0 (201)
3 2 (301) 2 (012) 1 (013) 1 (201)

This triangulation can be simplified to a 1–tetrahedron triangulation of S3 via
a sequence of three Pachner moves.

2.5. Obtaining small face-pair-reduced, face-generic triangulations.
Every simplicial triangulation is face-pair-reduced and face-generic. In particular,
one can convert any triangulation to a face-pair-reduced, face-generic triangulation
by performing at most two barycentric subdivisions. However, this increases the
number of tetrahedra.

Proposition 13. There is an algorithm which takes as input any triangulation of
a closed, orientable, irreducible 3–manifold M, and either outputs a face-pair-reduced,
face-generic triangulation of M having at most the same number of tetrahedra and
precisely one vertex, or concludes that M is S3, IRP 3, L(3), L(4) or L(5).

Proof. For the purpose of this paper, we are merely interested in the existence of
an algorithm, not in producing an efficient algorithm.

(0) First run the 3–sphere recognition algorithm to decide whether M is S3. If
yes, output M is S3. Else go to step (1).

(1) If the triangulation has only one vertex, go to (2). Otherwise the given
triangulation has more than one vertex, and one converts it to a 1–vertex
triangulation, thereby reducing the number of tetrahedra (see the proofs of
Theorem 5.5 and Proposition 5.1 in [4]). Then go to (2).

(2) If there are at most 2 tetrahedra, one recognises the manifold and if one
exists, outputs a face-pair-reduced, face-generic, 1–vertex triangulation of M,
or outputs the homeomorphism type of M. Otherwise go to step (3).

(3) If a face is a 3–fold, then output M is L(3); else if some tetrahedron has
more than 2 Möbius faces, then M = L(4) or L(5), and the conclusion can
be obtained either from the combinatorics of the 2–skeleton, or by computing
H1(M) from the 2–skeleton; else go to step (4).
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(4) Check if the triangulation is face-pair-reduced (recall that existence of cone
or dunce faces implies not face-pair-reduced). If “Yes,” then the triangulation
is face-pair-reduced and face-generic, and output the triangulation. If “No,”
then apply the explicit operation from the proof of Lemma 2.7 in [1]. This
either gives a triangulation of M having the same number of tetrahedra but
more vertices, or it gives triangulations of M and S3, each having fewer
tetrahedra. In the second case, one needs to run the 3–sphere recognition
algorithm to determine which triangulation corresponds to M. In either case,
one feeds the new triangulation of M back to (1).

In steps (2) and (3), the number of tetrahedra is not affected, so if the algorithm does
not terminate in these steps, one arrives at (4) with the same number of tetrahedra.
In step (4), the number of tetrahedra either decreases and one goes back to (1), or the
number of tetrahedra remains the same, but subsequently decreases in step (1). In
particular, if the algorithm does not terminate in steps (2), (3) or (4), then the loop
(4) → (1) → (2) → (3) → (4) decreases the number of tetrahedra. It follows that the
algorithm will terminate.

Remark 14. For a reducible 3–manifold, M, the above algorithm can be adapted
to produce face-pair-reduced, face-generic triangulations of (not necessarily prime)
summands of M.

3. Squares and tetrahedra in face-generic triangulations. The previous
section focussed on the study of triangulations using faces and certain pairs of faces.
We will now take the combinatorial study of triangulations further by examining
twisted squares and pairs of twisted squares. This leads to a classification of the
possible types of tetrahedra in a face-pair-reduced, face-generic triangulation.

3.1. Squares in triangulations. Let σ be an oriented tetrahedron in Δ̃. A
twisted square in σ is a properly embedded disc in σ such that the boundary of the
disc is the union of two pairs of opposite edges of σ; see Figure 4. Twisted squares
first appeared in work of Thurston [11]. Notice that each of the three quadrilateral
types in σ naturally corresponds to the twisted square, which the quadrilateral meets
in its corners. The adjective twisted will often be omitted.

Fig. 4. Twisted square. On the left is a twisted square as realised by a fundamental piece of
Schwarz’s minimal surface, on the right is a quadrilateral disc and the boundary of its dual square.

A twisted square has the following geometric realisation. Identify σ with a regular
Euclidean tetrahedron. Then the minimal disk spanning the union of two pairs of
opposite edges of σ is a twisted square. This is a fundamental piece of Schwarz’s
minimal surface. We will work with twisted squares combinatorially, but alternative
arguments using the Gauß–Bonnet formula can be given because this realisation of a
twisted square is isometric with an equilateral hyperbolic polygon with all dihedral
angles π/3.
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Under the map Δ̃ → M, the edges of a square may become identified; the image
may have 4, 3, 2 or 1 distinct edges inM. Labelling the boundary of a square by letters
indicating the unoriented edges in M , we obtain the following basic partition-types of
squares:

[A] abcd [B] abac [C] aabc [D] abab [E] aaab [F ] aabb [G] aaaa,

where different letters correspond to distinct (unoriented) edges in M .

(a) A (b) B (c) C (d) D

(e) E (f) F (g) G

Fig. 5. The partition types of squares (edges of the same colour are identified; edges of distinct
colours are distinct)

It will be useful to have names for certain types of squares, as we did for triangles.
We will only need names indicating the topology. A square of typeB can be an annulus
square or a Möbius square. A square of type C is a Möbius square, a square of type
D is a torus square or Klein square or projective square, a square of type F is a Klein
square. See Figure 6.

(a) Annulus (b) Möbius (c) Möbius (d) Klein

(e) Klein (f) Torus (g) Projective

Fig. 6. Some topological types of squares in a face generic triangulation

We now define what we mean by a pinched surface (see also Figure 7). Suppose
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S is a compact surface and partition S into finite subsets with the property that all
but finitely many of these sets are singletons. Then the quotient space is a pinched
surface. Equivalently, consider a finite collection of pairwise disjoint subsets Vk of S.
Then identifying all points in Vk to one point for each k gives a pinched surface.

Fig. 7. A pinched surface

Lemma 15. Suppose M is closed, orientable and has a face-generic triangulation.
1. No square is of type G.
2. If there is a square of type F, then M contains an embedded Klein bottle.
3. If there is a square of type D, and this square is not an embedded torus in M,

then M either contains an embedded projective plane or an embedded Klein
bottle.

4. If the triangulation is also face-pair-reduced, then no square of type D is a
projective square.

Proof. Since the triangulation is face-generic, no face is a cone, 3–fold or dunce
hat. If two consecutive edges of a square are identified, then the face containing
them is a Möbius face. So if some square is of type G, then some tetrahedron has
four Möbius faces. This completes the first case. The second also follows from the
induced orientations of the edges. The third follows from the observation that the
possible orientations on the edges of a square of type D either give an embedded torus,
and embedded Klein bottle or a pinched projective plane. Intersecting the pinched
projective plane with the boundary of a small neighbourhood of the vertex gives two
disjoint simple closed curves, and capping these off with disjoint discs in the vertex
neighbourhood gives an embedded projective plane in M.

The fourth claim follows by drawing in the remaining edges of a tetrahedron
containing a square of type D. The two faces are forced to be identified due to Defini-
tion 11. However, the induced face pairing will be orientation preserving, contradicting
the hypothesis that M is orientable.

3.2. Pinched, capped and surgery 2–square surfaces. In this section, we
describe certain unions of two twisted squares in distinct tetrahedra which allow us
to draw conclusions about the topology of a triangulated 3–manifold.

Lemma 16. Let M be a closed, orientable, triangulated 3–manifold, and S be a
closed, connected surface which has a CW decomposition, whose set of 2–cells consists
of at most two squares. Then −1 ≤ χ(S) ≤ 2. Suppose further that f : S → M is a
combinatorial map that takes the squares to twisted squares in distinct tetrahedra, and
distinct edges in S to distinct edges in M. Then there is an embedding g : S → M.

Proof. Since there are four edges, two faces and at least one vertex, we have
−1 ≤ χ(S) ≤ 2. In fact, S can be viewed as obtained from a hexagon by identifying
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(a) P#P#P, (C,C) (b) P#P, (C,C), L(4) (c) P, (C,C), L(2)

(d) P#P, (C,C) (e) P#P#P, (C,E) (f) P#P, (C,E)

(g) P, (B,B), L(2) (h) P#P#P, (B,B) (i) P#P, (B,B)

(j) P, (B,B), L(2) (k) P, (B,B), L(2) (l) P#P, (B,B)

(m) P#P#P, (E,E), L(6)

Fig. 8. Pairs of squares in distinct tetrahedra detecting non-orientable surfaces or lens spaces
(or lens space summands in case the manifold is reducible). Edges of distinct colours are distinct.
The Klein bottles in 8(d) and 8(i) consist of an annulus in the edge neighbourhood and the annulus
on the squares. Notice that some of these pictures are equivalent once one deletes the green diagonal
from the hexagon.

boundary edges in pairs. Now f : S → M is a combinatorial map that takes the
squares to squares in distinct tetrahedra, and distinct edges to distinct edges. Then
f(S) is a (possibly) pinched surface in M. We can replace f(S) by an embedded
surface homeomorphic with S as follows. The surface f(S) is embedded outside the
vertex neighbourhoods. The intersection with sufficiently small vertex linking spheres
consists of a finite number of simple closed loops, which we may cap off using discs
(starting from innermost circles) to obtain an embedded surface homeomorphic with
S. This surgery of f gives the desired embedding g : S → M.

We call the map f : S → M in the statement of Lemma 16 a pinched 2–square
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surface in M, and the embedding g : S → M of the proof a capped 2–square surface.

Now we take this analysis further in order to detect interesting surfaces in M
even if there are more edge identifications amongst two twisted squares. We are not
trying to get a complete list, but rather list the situations that arise in this paper,
and call the resulting surfaces surgery 2–square surfaces. The basic fact we use is that
if a simple closed curve on the boundary of a solid torus runs along the longitude 2n
times, then it bounds a properly embedded surface of non-orientable genus n with
one boundary component in the solid torus. For instance, if n = 2 then the surface
is (P#P ) \ disc. We call such a curve a 2n–curve on the solid torus, and we include
the case n = 0 to give a (boundary parallel or meridian) disc.

To illustrate the basic technique, suppose a square of type G in M has its bound-
ary edge oriented coherently. Then the edge is a loop in M, and intersecting the
square with a regular tubular neighbourhood of that edge in M gives a 4–curve on
the neighbourhood, and hence bounds a (P#P )\(disc) in the tubular neighbourhood.
Moreover, we can cap this off with the complement in the square of the neighbourhood
and hence get an embedded Klein bottle in M. One can view the square of type G as
the image of an immersion of a 1–square Klein bottle, and the surgery procedure has
recovered an embedding. In practice, reference to a domain is not required, as the
object given to us is the union of two twisted squares in M.

Some constructions with two squares are shown in Figure 8, and they should be
interpreted as follows. Let N denote a small regular neighbourhood of the red edge.
Suppose X ⊂ M is the union of two twisted squares contained in distinct tetrahedra.
Then X meets ∂N in the shown black curve(s). The intersection N ∩X is replaced
by an embedded surface in N, which has the same boundary curve(s). In almost all
cases, X ∩ ∂N is connected, and (after choosing an orientation) its class in H1(N)
can be read off from the picture, taking orientations into account. In some cases,
X ∩ ∂N has one component which is zero in H1(N) (and is hence capped off with a
disc) and another which may or may not be trivial. In Figures 8(d) and 8(i), one has
two parallel non-trivial curves and these are connected by an annulus in N. In this
case, an annulus on X gives an orientation reversing isotopy between these curves;
whence the surface is a Klein bottle. We will call a surface that arises as described
above a surgery 2–square surface in M.

3.3. Recognising projective planes using three squares. We continue the
analysis of the previous section with three situations that arise at the end of this
paper. Suppose there are three pairwise distinct tetrahedra σk containing squares
Sk < σk such that the edges are identified as shown in Figure 9. In the left-most
picture, the subcomplex X formed by these squares has an edge e of degree 6 (shown
in red). The intersection of the boundary of a small regular neighbourhood N of e
with X results in a curve, which is embedded in ∂N and is null-homotopic in N.
It hence bounds a disc in N. This curve also bounds a Möbius band in X, whence
M contains an embedded projective plane. A similar surgery argument results in a
projective plane in the middle picture, whilst in the last picture, merely capping is
required to yield such a surface.

3.4. Partition-types of tetrahedra. We now describe the combinatorics of a
tetrahedron in a face-generic 1–vertex triangulation using the three squares contained
in it. The tetrahedron σ in M is said to be of partition-type XYZ if the three squares
supported by it are of partition-types X, Y and Z respectively. The labels are ordered
lexicographically.
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(a) Surgery (b) Surgery (c) Capped

Fig. 9. Three squares contained in three pairwise distinct tetrahedra giving a projective plane

Lemma 17. Suppose M is closed, orientable and has a face-generic triangulation.
Suppose σ is a tetrahedron in M , and let n be the number of pairwise distinct edges
of σ. Then either

1. n = 6 and σ is of partition-type AAA; or
2. n = 5 and σ is of partition-type AAC or ABB; or
3. n = 4 and σ is of partition-type AAF, ABE, ACC, BBC or BBD; or
4. n = 3 and σ is of partition-type BBF, BDE or DDD.

Moreover, in case DDD, all three squares in σ are embedded Klein bottles in M, unless
one square gives a pinched projective plane and hence and embedded projective plane
in M.

Proof. Recall that face-generic implies that all faces are Möbius faces or triangles,
and σ has at most two Möbius faces. In particular, no square can be of type G.

Next suppose that some square is of type F. Since no face is a cone, the two
remaining edges of σ are distinct from the edges of the square. If these two edges are
identified, we have type BBF and n = 3, and if they are distinct, we have type AAF
and n = 4.

Hence suppose that no square is of type F or G. We enumerate the remaining
cases depending on n. First suppose n = 6. Then each square must be of partition
type A.

Suppose n = 5. It follows that either a pair of opposite edges is identified, giving
case ABB, or a pair of edges incident with a face is identified, giving AAC.

Suppose n = 4. First assume that three edges are identified. Three given edges
are either incident with one vertex, or contained in a unique face or in a unique square.
The three edges cannot be incident with one vertex, since then there would be a cone
face. Also, the three edges of a face cannot be identified since otherwise there would
be a 3–fold face or a dunce face. Hence one of the squares is of type E. Since this
square contains exactly two edges of the triangulation of M, the remaining two edges
must be distinct and distinct from the edges in E, giving ABE. Next assume that two
pairs of edges are identified. If two pairs of opposite edges are identified, we obtain
BBD. If one pair of opposite edges is identified and one pair of adjacent edges, the we
obtain BBC. If no pair of opposite edges is identified (and hence two pairs of adjacent
edges), we obtain ACC.

Suppose n = 3. No square can be of type A. Suppose there is a square of type B.
Then it contains the three distinct edges of σ. Enumerating the possible identifications
of the remaining two edges with the three edges of the B–square gives BDE, BBF,
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(a) AAA (b) AAC (c) ABB (d) AAF

(e) ABE (f) ACC (g) BBC (h) BBD

(i) BBF (j) BDE (k) DDD

Fig. 10. The partition types of tetrahedra (edges of the same colour are identified; edges of
distinct colours are distinct; faces may or may not be identified)

BBG, BCE. We have already assume that no square is of type F or G, and in case
BCE, there would be 3 Möbius faces. Hence the only possibility is BDE. Now then
suppose no square is of type B, but there is a square of type C. In each possible case,
one finds three or four Möbius faces. Hence suppose no squares are of type B or C.
If there is a square of type D, then one of the remaining edges must be different, and
since we don’t have a type B square, the remaining edges are identified. This gives
DDD. Now one of the squares gives a projective plane unless all three squares are
Klein bottles. Last, suppose all squares are of type E. This is not possible.

Suppose n = 2. In this case, we can only have squares of type D or E. The only
possibility is DEE, which gives four Möbius faces.

Corollary 18. Suppose M is closed, orientable and has a face-generic triangu-
lation without Klein or projective squares. Then each tetrahedron is combinatorially
equivalent to one of eight possibilities; one each falling into the partition types AAA,
AAC, ABB, ABE, ACC, BBC, sBBD, sBDE as shown in Figure 11. In the first six
cases, this is just the generic type (up to combinatorial equivalence), but in the latter
two, there are prescribed edge identifications.

If, in addition, the triangulation is face-pair-reduced, then
1. case BBC does not occur, and
2. the two Möbius faces of every tetrahedron of type sBDE in M are identi-

fied (i.e. such a tetrahedron is a so-called 1-tetrahedron layered solid torus
LST(3, 2, 1)).



A NEW COMBINATORIAL CLASS OF 3–MANIFOLD TRIANGULATIONS 557

(a) AAA (b) AAC (c) ABB (d) ABE

(e) ACC (f) BBC (g) sBBD (h) sBDE

Fig. 11. The remaining possibilities for tetrahedra up to combinatorial equivalence (edges of
the same colour are identified; edges of distinct colours are distinct)

Proof. Refer to the types listed in Lemma 17. In each of the cases AAF, BBF,
and DDD, there is a Klein or projective square, and hence they cannot occur.

Since we assume there are no Klein or projective squares, the squares of type D
in BBD and BDE give tori. This determines sBBD, and also, together with the
hypothesis that there are no cone faces, determines sBDE.

4. Extremal rays with support in one tetrahedron. There is an algebraic
approach to normal surface theory due to Haken (see [4]), which arises from the fact
that the normal discs in the cell structure of a normal surface match up across faces in
the triangulation. Another algebraic approach (which goes back to Thurston and Jaco
and can be found in Tollefson [13]), relies on the key observation that each normal
surface is uniquely determined (up to normal isotopy) by the quadrilateral discs in
its cell structure, and that the normal surface meets a small neighbourhood of each
edge of the triangulation in a disjoint union of discs. Intuitively, these equations arise
from the fact that as one circumnavigates the earth, one crosses the equator from
north to south as often as one crosses it from south to north. In terms of the abstract
neighbourhood of an edge, one picks an orientation of the edge (so that north and
south are defined) and observes that triangles meeting the edge remain in one of the
hemispheres, whilst quadrilaterals either cross from north to south (in which case the
corner of the quadrilateral at e is given sign −1) or from south to north (in which
case the corner of the quadrilateral at e is given sign +1). See Figure 12.

Given the edge e and a quadrilateral type q, the total weight wte(q) of q at e is
the sum of signs over all corners of q at e (where the empty sum has value 0). For
the quadrilateral type q introduce the variable x(q). The Q–matching equation at e
is then defined as 0 =

∑
q wte(q)x(q), where the sum is taken over all quadrilateral

types. For instance, placing a quadrilateral of each type in a fixed tetrahedron σ
gives a so-called tetrahedral solution to these equations: this has x(q) = 1 for each
quadrilateral type q supported by σ and x(q) = 0 for all others. See [13, 12] for more
details.

We call a solution to the matching orQ–matching equations a 1–quad type solution
if it has exactly one non-zero quadrilateral coordinate, and a 2–quad type solution if
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e

(a) The abstract neighbour-
hood

(b) Positive slope +1 (c) Negative slope −1

Fig. 12. Slopes of quadrilaterals

it has exactly two non-zero quadrilateral coordinates. The non-zero quadrilateral
coordinates need not have the same sign. If x is any solution to the matching or
Q–matching equations with support in exactly one tetrahedron, then one may add a
multiple of a tetrahedral solution to x so that the result has at most two quadrilateral
coordinates that are non-zero and so that both are non-negative.
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Fig. 13. The signs of corners of quadrilateral discs shown with the dual twisted squares (edges
of the same colour are identified; edges of distinct colours are distinct)

Lemma 19. Let M be a closed, orientable 3–manifold with an arbitrary triangu-
lation. The tetrahedron σ in M supports a 1–quad type solution if and only if at least
one square in σ is of type F or G.
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If the triangulation is face-generic, then M supports a 1–quad type solution if and
only if it contains a Klein square.

If the triangulation is 0–efficient and no face is a cone, then M supports a 1–quad
type solution if and only if it either contains a Klein square or a square is a spine for
L(4, 1).

Proof. In an orientable 3–manifold, the signs at the corners of a quadrilateral disc
in a tetrahedron are the same at opposite corners and opposite at adjacent corners
(see [12]). A quadrilateral disc has its four corners on the boundary of a twisted
square; see Figure 13. There is a 1–quad type solution if and only if the signs of the
square at each edge sum to zero. It can now be deduced from the figure that there is
a 1–quad type solution if and only if there is a twisted square of type F or G. This
proves the first assertion.

The second assertion follows as in the proof of Lemma 15.
Hence assume that the triangulation is 0–efficient and no face is a cone. Then a

square of type F is a Klein square and a square of type G is a spine for L(4, 1).

The lemma implies that the existence of a 1–quad type solution is easy to deduce
from the combinatorics of a triangulation.

Proposition 20. Suppose a triangulation of the closed, orientable 3–manifold
M supports no 1–quad type solution.

If the triangulation is face-generic, then there is no 2–quad type solution supported
by precisely one tetrahedron σ.

If the triangulation is 0–efficient and there is a 2–quad type solution supported
by precisely one tetrahedron σ, then either a face of σ is a cone (in which case M is
homeomorphic with S3) or σ is of type DEE (in which case M is homeomorphic with
L(5)).

Proof. Suppose the 2–quad type solution x does not vanish on the two quadrilat-
eral coordinates p, q < σ. If x(p) = x(q), then one can adjust by a tetrahedral solution
to obtain a 1–quad type solution which does not vanish precisely on the remaining
quadrilateral coordinate supported by σ, contradicting the assumption that there is
no 1–quad type solution.

After possibly adjusting by a tetrahedral solution and relabelling, we may assume
that x(p) > x(q) > 0. Let α = x(p) and β = x(q). Since the space of all solutions to
the Q–matching equations is a rational polyhedral cone and there is no 1–quad type
solution, it follows that α and β are linearly dependent over Q. This fact, however, is
irrelevant.

Up to orientation, we may assume that the weights on the six edges of σ are
α, α, β − α, β − α,−β,−β. Since there are precisely two positive weights, and we
assume that there is no 1–quad type solution, it follows that the two edges of σ with
weight α are distinct in M. Since α �= β, is follows that each edge of positive weight
is identified with at least two edges of negative weight. Whence with precisely two
edges of negative weight. Up to symmetry and ignoring orientation of edges, this gives
precisely two possible patterns for the identification of the edges of σ. In one case,
there are three edges incident with a vertex of σ, which must be identified. But then
a face is a cone, giving a contradiction when the triangulation is face-generic, and the
conclusion that M is S3 when the triangulation is 0–efficient.

In the other case, σ is of type DEE and a square and a face of σ form a spine for
L(5). However, there is no tetrahedron of type DEE in a face-generic triangulation
according to Corollary 18.
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Corollary 21. If there is a 1–quad type or 2–quad type solution supported by a
single tetrahedron in a 0–efficient triangulation, then the underlying manifold is S3,
L(5) or contains an embedded Klein bottle. Moreover, a face-generic triangulation
without Klein squares does not admit such a solution.

As an example, the Seifert fibered space S2( (2, 1), (2, 1), (3,−1) ) has a minimal
4–tetrahedron triangulations with a 1-quad type solution; this is triangulation #1 of
this manifold in Burton’s closed, orientable manifold census [3]. This triangulation is
0–efficient, face-generic and contains a Klein square.

Corollary 22. Let M be a closed, orientable 3–manifold with face-generic
triangulation T . If there are no Klein squares, then each tetrahedral solution lies on
an extremal ray in Q(T ), the polyhedral cone of all non-negative solutions to the Q–
matching equations.

5. Clusters of three 2–quad type solutions. We are now in a position to
state, and prove, the main application of our study of face-pair-reduced, face-generic
triangulations:

Theorem 23. Suppose M is a closed, orientable 3–manifold with face-pair-
reduced, face-generic triangulation such that

1. there are no Klein squares,
2. no two squares are identified as shown in Figure 8,
3. no three squares are identified as shown in Figure 9,
4. no capped 2–square surface is a non-separating torus,
5. no capped 2–square surface is non-orientable.

Then there is no cluster of three 2–quad type solutions.

Remark 24. The two minimal triangulations of IRP 3 have clusters of three 2–
quad type solutions. However, one of these triangulations is face-generic and not
face-pair-reduced, and the other is not face-generic.

Proof of Theorem 1 using Theorem 23. Let M be a closed, orientable 3–manifold.
We may suppose that M is irreducible and atoroidal (since otherwise we are in the
first or second case) and that we are given a minimal triangulation. According to
§§2.3–2.4, either the triangulation is face-pair-reduced and face-generic or M is a
Seifert fibered space (which yields the third case). Hence assume that the minimal
triangulation is face-pair-reduced, face-generic and that we have a cluster of three
2-quad type solutions. Then one of the five hypotheses in Theorem 23 does not hold.

The negation of (1) implies that M is toroidal or a Seifert fibered space.
The negation of (2) or (5) implies that M contains an embedded non-orientable

surface of Euler characteristic −1, 0 or 1. In the first case, there is an embedded
non-orientable surface of genus 3, in the second M is toroidal or Seifert fibered and
in the third M is real projective 3–space and hence Seifert fibered.

The negation of (3) implies that M is real projective 3–space.
The negation of (4) is that M contains a non-separating torus. This is homolog-

ically non-trivial. Since M is irreducible, every sphere is homologically trivial, and
hence the torus must be incompressible, and hence M is toroidal. This concludes the
proof of Theorem 1.

Proof of Theorem 23. For the remainder of this section, suppose the hypotheses
of Theorem 23 are satisfied and that the triangulation has at least 3 tetrahedra, but
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that there is a cluster of three 2–quad type solutions. Suppose that M is oriented
and that all tetrahedra are oriented coherently. Denote the solutions x1, x2, x3 and
suppose σ0 is a tetrahedron in their common support. We denote the pairwise distinct
quadrilateral types q1, q2, q3 < σ0 such that xi(qi) �= 0. For each solution xi, there
also is tetrahedron σi and quadrilateral pi < σi such that xi(pi) �= 0. The tetrahedra
σ1, σ2, σ3 are not necessarily pairwise distinct. However, since the triangulation is
face-generic and has no Klein squares, it follows from Corollary 21 that σ1, σ2 and σ3
are distinct from σ0.

Outline: A classification of the possible types of tetrahedra in a face-pair-reduced,
face-generic triangulation was given in Corollary 18. We will first focus on one 2–quad
type solution x supported on quadrilateral types q and p and determine the possible
partition-types for the squares associated with the quadrilateral types. With this
information, we then show that σ0 has no square of type B. We finally show that
σ0 has no square of type A, hence contradicting the classification of tetrahedra in
Corollary 18.

Orientation: In some arguments, we will only analyse certain situations up to
combinatorial equivalence or up to orientation in order to limit the number of cases
to be considered. However, this has to be taken into account when more than one of
these situations are put together into a common framework since M is oriented and
all tetrahedra are oriented coherently.

Partition-types of quadrilaterals: The Q–matching equations and signs of corners
of quadrilateral discs have been reviewed in §4. Let σ be an oriented tetrahedron in
M, containing the quadrilateral disc q. Then q has signs +1,+1,−1,−1 at the edges
of a twisted square in σ. In M, these signs could be at 4, 3, 2 or 1 distinct edges as
shown in Figure 13. We list these cases according to the partition type of the square
containing the corners of the quadrilateral, and refer to this as the partition type of
the quadrilateral.

The notation we use is explained with an example. The partition (1,−1 | 1 | −1)
indicates that the signs are at three distinct edges in M and the respective weights
are 1 and −1 at one edge, 1 at the second edge and −1 at the third edge. Lemma 19
implies that no square is of type F or G since the triangulation is face generic and
has no Klein square, so we have the following cases:

A (1 | 1 | −1 | −1)
B (1, 1 | −1 | −1) or (−1,−1 | 1 | 1)
C (1,−1 | 1 | −1)
D (−1,−1 | 1, 1)
E (1, 1,−1 | −1) or (−1,−1, 1 | 1)

Let x be a 2–quad type solution to the Q–matching equations with support in two
distinct tetrahedra, σa and σb. After possibly scaling and relabelling the tetrahedra,
we may assume that x(q) = 1 and x(p) = t, where q < σa, p < σb and 0 < |t| ≤ 1. To
simplify notation, we let s = |t|. Note that according to Lemma 19 and Proposition 20,
neither σa nor σb supports a 1–quad type or 2–quad type solution, and q < σa and
p < σb are of partition-type A, B, C, D or E. If q is of partition-type X and p is of
partition-type Y, we will say that x is a partition-type (X,Y ) solution. We will now
determine the possible partition-types (X,Y ), as well as the corresponding weights
(1, s).

We first consider the possible weights on the edges of σb. It follows from the
Q–matching equations, that the sum of all weights at each edge has to equal zero.
Since the partition type takes the number of pairwise distinct edges and their weights
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into account, in order to determine which types can possibly balance other types, one
needs to determine how many edges have non-zero weight. This is given by the reduced
partition types of quadrilaterals, where only non-zero weight sums are counted:

A′ (1 | 1 | −1 | −1)
B′ (2 | −1 | −1) or (−2 | 1 | 1)
C ′ (1 | −1)
D′ (−2 | 2)
E′ (1 | −1)

Since no further identifications are allowed between the edges of a given square, it
follows that the only potential partition-types (X,Y ) for the solution x are

(X,X), where X ∈ {A,B,C,D,E}, or
(X,Y ), where X,Y ∈ {C,D,E} and X �= Y.

We now narrow down the profile of some of the partition-types using the five
hypotheses of Theorem 23. Our strategy is to consider the twisted squares Sq ⊂ σa

and Sp ⊂ σb dual to q < σa and p < σb respectively.
Claim 0: For each of the partition types (A,A), (B,B), (C,C), (C,D), (D,C)

there is (up to combinatorial equivalence) a unique identification between the edges of
Sq and Sp as shown in Figure 14. Moreover, the type (C,E) does not occur.

(a) (A, A) (b) (B, B)

(c) (C, C) (d) (C, D)

Fig. 14. Shown tetrahedra are coherently oriented in each pair (but not necessarily between
different pairs); edges of distinct colours are distinct; except the black edges could be any colour
(restrictions apply) and do not need to be of the same colour; the shaded faces are identified.

We will prove the claim one partition type at a time:
(A,A): Each of the squares Sq and Sp has four pairwise distinct edges in M.

The signs of the corners of q and p sum to zero at each edge in M, and hence each
edge in Sq is identified with a unique edge of Sp and the signs at these edges are
opposite. In particular, the union of Sq and Sp gives a capped 2-square surface S.
Due to hypothesis (5), S must be orientable. Lemma 16 states that −1 ≤ χ(S) ≤ 2,
and hence S is a torus or sphere. Since the signs of corners of p and q cancel in pairs
and alternate around the squares, there are only two possible pictures, a hexagonal
torus and a sphere. The hexagonal torus is shown in Figure 14(a), and we will now
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show that the case of a sphere does not occur.
In this case, the identifications of the edges of the squares are as shown in Fig-

ure 15. We may assume that σa is the left-hand tetrahedron in each of Figure 15(a)
and 15(b) and oriented as shown, and there are two possibilities for the orientation
of σb. Definition 11 implies that the two faces shaded in Figure 15(a) must be iden-
tified, which is not possible in an oriented 3–manifold. Applying Definition 11 to
Figure 15(b) using the red and green edges forces the two shaded faces to be iden-
tified. The remaining ”back faces” are similarly identified using the blue and yellow
edges. The same reasoning applies to the front faces. Thus, the triangulation of M
consists of exactly two tetrahedra (it is in fact a triangulation of S3 with 4 vertices
and 6 edges), contradicting the fact that we have at least 3 tetrahedra.

(a) (b)

Fig. 15. Shown tetrahedra for (A,A) are coherently oriented in each pair; edges of distinct
colours are distinct, except the black edges could be any colour (restrictions apply) and do not need
to be of the same colour.

(B,B): If each of the squares Sq and Sp is of type B, then their reduced partition
types must be (2 | −1 | −1) and (−2 | 1 | 1), with the edges of weights 2 and −2
identified. A square of type B is either an annulus or a Möbius square. This gives
three main cases.

Suppose that one square is a Möbius square and the other is an annulus square.
Up to combinatorial equivalence, this gives two possibilities, shown in Figures 8(k)
and 8(l).

Next, suppose that both squares are Möbius squares. Up to combinatorial equiva-
lence, this gives three possibilities. Two of these possibilities are shown in Figures 8(i)
and 8(j). The remaining is shown in Figure 16(a). One now argues as in case (A,A):
there are two possible cases depending on the orientations of σa and σb. Definition 11
again implies that one of these cannot occur due to the orientability of M, and the
other forces the four faces of σa and σb to be identified, giving a two tetrahedron
triangulation. We already have the desired contradiction, but would like to point out
that the four face pairings imply that all squares in the identification space are of
type A, contradicting the fact that Sq and Sp are of type B. So this situation cannot
occur in a face-generic, face-pair reduced, orientable 3–manifold triangulation.

Last, suppose both squares are annulus squares. Up to combinatorial equivalence,
this gives four possibilities. Two of these possibilities are shown in Figures 8(g) and
8(h). The third is shown in Figure 16(b) and, exactly as above, ruled out with
Definition 11. This only leaves the one possibility shown in Figure 14(b).

(C,C): Each square of type C is topologically a Möbius band, possibly with some
vertices identified. Since a square of type C has reduced partition type (1 | −1), each
of the edges of degree one in one square is identified with a degree one edge of opposite
sign of the other square. If this is the only identification between edges of the squares,
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(a) Two Möbius squares (b) Two annulus squares

Fig. 16. Shown are the squares for the remaining possibilities for (B,B), which cannot occur
in a face-generic, face-pair reduced, orientable 3–manifold triangulation.

then the union of Sq and Sp is a non-orientable pinched 2-square surface (either a
Klein bottle or P 2#P 2#P 2). We therefore have a non-orientable capped 2-square
surface in M, contradicting hypothesis (5).

The only other possibility is that, in addition, the degree two edges in Sq and Sp

are also identified, so the 2-complex made up of Sq and Sp has one degree 4 edge and
two degree 2 edges. Up to combinatorial equivalence, there are six possibilities. Four
of these are shown in Figures 8(a)–8(d). The fifth possibility is shown in Figure 17,
and, as above, Definition 11 implies that this is not possible. The last possibility is
shown in Figure 14(c).

Fig. 17. Shown are the squares for the fifth possibility for (C,C), which cannot occur in a
face-generic, face-pair reduced, orientable 3–manifold triangulation.

(C,D) or (D,C): Lemma 15 and hypothesis (1) imply that the square of type D
is a torus square. So up to combinatorial equivalence, there is only one possibility for
the identification of the two squares. Moreover, Definition 11 implies that two faces
of σa and σb are identified and thus, up to orientation, there is only one possibility,
shown in Figure 14(d). The face identification yields an identification of two diagonals.
Definition 11 also implies that this diagonal cannot be identified with any of the edges
in the square of type D, and face-generic implies that it can also not be identified
with the core edge of the Möbius square of type C.

(C,E): This case does not occur: the only two possibilities are shown in Fig-
ures 8(e) and 8(f), giving either a Klein bottle or P 2#P 2#P 2.

Claim 1: The tetrahedron σ0 is of type AAA, AAC or ACC.
To prove the claim, suppose that at least one of the 2–quad type solutions is of

type B in σ0. According to Claim 0, the only possibility for a companion for a type
B solution is type B and as shown in Figure 16(a). In particular, the squares of type
B must be annuli. Now we assume that there are three 2–quad type solutions, and
their types are given by the type of σ0. Refer to the types of tetrahedra in Figure 11.
In ABB, BBC, sBBD, sBDE, one square of type B is a Möbius square. Hence σ0 is
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of type ABE.

We know that a companion for a square of type A (respectively B) is also of type
A (respectively B). Suppose that the companion square of type A is supported by
σ1, and the companion square of type B is supported by σ2.

If σ1 �= σ2, then (using the classification from Claim 0 ), the square of type A
in σ1, the square of type B in σ2 and the square of type E in σ0 form a 2–complex
that is combinatorially equivalent to the one shown in Figure 9(a), contradicting the
hypothesis of Theorem 23.

(a) Shown are σ0, σ1 and part of the vertex link for one possible orientation of σ1.

(b) The same as above for the other possible orientation of σ1.

Fig. 18. (ABE) The two possible orientations for the companion of a tetrahedron of type ABE.
In each case, the indicated normal arcs form two simple closed curves that meet transversely in one
point on the vertex link (the shaded triangles in the link are viewed from the vertex).

Hence σ1 = σ2. Without loss of generality, we may assume that the tetrahedron
σ0 of type ABE is oriented as in Figure 11. Since σ1 contains squares of type A and
B, this tetrahedron is either of type ABE or of type ABB, due to the classification
in Figure 11. However, if σ1 is of type ABB, then the two squares of type B in σ1
meet in a single edge e in M, and this edge is not contained in the square of type A
in σ1. However, in σ0 this edge is in the intersection of the squares of types A and B.
Whence σ1 is of type ABE.

We need to distinguish two cases, depending on whether σ1 is oriented as in
Figure 11 or whether it is oppositely oriented. These cases are shown in Figure 18
(a) and (b) respectively. Examining the normal curves indicated in Figure 18 shows
that the dashed arcs form a simple closed loop on the vertex link, and so do the solid
arcs, but these two loops meet transversely in a single point. This contradicts the
fact that the vertex link is a sphere. It follows that none of the 2–quad type solutions
is of type B in σ0, leaving only the three stated possibilities for the type of σ0.

Claim 2: The tetrahedron σ0 is not of type ACC.
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Suppose σ0 is of type ACC; we may assume that it is oriented as shown in
Figure 11(e). We know that a companion for a square of type A is again of type A.
Supposing that the companion square of type A is supported by σ1, there are two
possible orientations for σ1. In either case, a Möbius face of σ0 has two distinct edges
in common with a face of σ1. Since the triangulation is face-pair reduced, the faces
must be identified. Since face pairings are orientation reversing, this only leaves one
of the two possible orientations of σ1. Again applying the fact that the triangulation
is face-pair reduced, one finds another pair of faces that is be identified. Examining
the resulting vertex link shows that it cannot be a sphere; refer to Figure 19.

Fig. 19. Shown is the only possibility for the companion of a tetrahedron of type ACC. The
indicated normal arcs form two simple closed curves that meet transversely in one point on the
vertex link. This can be seen by viewing the shaded triangles from the vertex; as the two remaining
normal arcs do not intersect in the vertex link, the latter cannot be a sphere.

Claim 3: The tetrahedron σ0 is not of type AAC.

Suppose σ0 is of type AAC; we may assume that it is oriented as shown in
Figure 11(b). We know that a companion for a square of type C is of type C or D.

First suppose that the companion square is also of type C and supported by σ1.
Also suppose that one of the squares of type A has companion square supported by
σ1. For either of the two choices of the square of type A, this forces σ1 to be of type
AAC also. Moreover, σ0 and σ1 then have Möbius faces with the same core and
boundary edges, and so these faces must be identified. This forces the orientation of
σ1. Examining the signs of quadrilaterals, it follows that we may also suppose that
the companion of the other square of type A is supported by σ1. The result of this
discussion is shown in Figure 20. Examining the vertex linking triangles contradicts
the fact that the vertex link is a sphere.

Fig. 20. Shown is the first possibility in case AAC. The indicated normal arcs form two simple
closed curves that meet transversely in one point on the vertex link. The shaded triangles are viewed
from the vertex; as the two additional normal arcs do not intersect in the vertex link, the latter
cannot be a sphere.
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Hence if the square of type C has a companion square of type C, then one of
the squares of type A has companion square supported by σ2 �= σ1, and the other
by σ3 �= σ1. If σ2 �= σ3, then the three companion squares are identified as shown
in Figure 9(b), contradicting our hypothesis. Hence σ2 = σ3. The union of the two
squares of type A in σ0 is incident with exactly five pairwise distinct edges in M and
hence cannot have the same companion square in σ2. Moreover, by Claim 1, σ2 must
be of type AAC. Examining the signs of quadrilaterals, it follows that we may replace
the solution x1 by a solution x′

1 which is supported by squares of type C in σ0 and
σ2. But this is again the same situation of the previous paragraph, where all three
solutions are supported in two tetrahedra.

It follows that the companion square for C is of type D. This in particular implies
that σ2 �= σ1 and σ3 �= σ1, since a tetrahedron containing a square of type D has no
square of type A. If σ2 = σ3, then as above, there is a solution x′

1 which is supported
by squares of type C in σ0 and σ2, hence putting us into the above case. Whence
σ2 �= σ3. The fact that the triangulation is face-pair reduced yields identifications
between pairs of faces of the tetrahedra in such a way that not all of them can be
orientation reversing; contradicting our hypothesis that the triangulation is oriented
(see Figure 21). So AAC cannot happen.

Fig. 21. Shown are σ0 in the middle, with σ1 on the right, σ3 on the left and σ2 below.
The edge identifications force identifications of faces, and hence orientations of the tetrahedra. For
instance, given an orientation of σ0, starting with the pair of faces labelled with a circle determines
the orientation of σ3. The pair of faces labelled with a triangle determined the orientation of σ1.
Then the faces labelled with hexagons determine the orientation of σ2. But then the faces labelled
with a circular arc cannot be identified by an orientation reversing face pairing.

Claim 4: The tetrahedron σ0 is not of type AAA.
First notice that again we may assume that either σ1 = σ2 = σ3, or else the three

tetrahedra may be assumed to be pairwise distinct. In case they are pairwise distinct,
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the three companion squares give the capped projective plane shown in Figure 9(c).

Hence σ1 = σ2 = σ3. There are two cases to distinguish depending on the orien-
tation. The first case cannot occur as the vertex link is a sphere; see Figure 22. In the
other case, two squares can be surgered to give a non-separating torus; see Figure 23.

Fig. 22. Shown is one possible orientation for the companion of a tetrahedron of type AAA.
The indicated normal arcs form two simple closed curves that meet transversely in one point on the
vertex link. The transverse intersection can be seen by viewing the shaded triangles from the vertex
link.

Fig. 23. Shown is the other possible orientation for the companion of a tetrahedron of type
AAA. The capped 2–square torus can be viewed as made up of two octagons and two discs on a
vertex link. The shown black arc meets the torus transversely and its endpoints can be joined on the
vertex link by a path disjoint from the torus; thus certifying that the torus is non-separating.

The four contradictory claims complete the proof of Theorem 23.
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