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NOTES ON THE FINE SELMER GROUPS*

MENG FAI LIMT

Abstract. In this paper, we study the fine Selmer group attached to a Galois module defined
over a commutative complete Noetherian ring with finite residue field of characteristic p. Namely,
we are interested in its properties upon taking residual representation and within field extensions.
In particular, we will show that the variation of the fine Selmer group in a cyclotomic Z-extension
is intimately related to the variation of the class groups in the cyclotomic tower.
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1. Introduction. Let F' be a finite extension of Q, p a prime and F°° the
cyclotomic Z,-extension of F. Denote K(F%°) to be the maximal unramified pro-
p extension of FY° at which every prime of F¥° above p splits completely. Set
I' = Gal(F'¥°/F'). Iwaswa has proven that Gal(K (F°)/F%°) is a finitely generated
torsion Zj,[[']-module. He further conjectured that it is in fact a finitely generated
Z,-module (see [Iwl, Iw2]). Conjectures parallel to this conjecture of Iwasawa have
been formulated for the fine Selmer groups attached to elliptic curves by Coates and
Sujatha [CS, Conjecture A], and for the fine Selmer groups attached to modular forms
and Hida families by Sujatha and Jha [JhS, Jh, Conjecture A, Conjecture 1]. Following
their footsteps, we make an analogous conjecture for the fine Selmer groups attached
to a Galois module defined over a commutative complete Noetherian ring with finite
residue field of characteristic p. We then show that this generalized conjecture turns
out to be a consequence of the original conjecture of Iwasawa (see Theorem 3.1 and
3.5). We remark that such an implication has been established for elliptic curves by
Coates and Sujatha (see [CS, Theorem 3.4, Corollary 3.5]) and our approach is mainly
inspired by their work. The proof adopted by them made use of descent technique
and relied on the observation that the extension carved out by all the p-power torsion
points of the elliptic curve in question is a p-adic Lie extension. It is not difficult to
extend their argument to a p-adic representation defined over a ring of integers of some
finite extension of Q,. However, since the Galois modules we considered are general,
the extensions carved out by these modules need not be p-adic Lie extensions, and
so their argument does not carry over. Therefore, our proof takes a different route,
which we will explain in a while.

In the second part of the article, we will investigate the question of pseudo-
nullity of the fine Selmer groups over an admissible p-adic Lie extension of dimension
strictly greater than one. A somewhat related question in this direction was first
considered by Greenberg [Gr|, where he conjectured that the Galois group of the
maximal abelian unramified pro-p-extension of the compositum of all Z,-extensions
F of F is a pseudo-null Z,[Gal(F'/F)[-module. Now if T'is the Tate module of all the
p-power roots of unity, the dual fine Selmer group is precisely Gal(K (Fx)/Fx ), where
we denote K (Fu) to be the maximal unramified pro-p extension of F, at which every
prime of F., above p splits completely. Hachimori and Sharifi [HSh] has constructed
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several classes of admissible p-adic Lie extensions F, of F' of dimension > 1 such that
Gal(K (Fs)/Fx) is not pseudo-null as a Z, [Gal(Fw /F')]-module. On the other hand,
Coates and Sujatha have conjectured that pseudo-nullity for the fine Selmer groups of
elliptic curves should hold for any admissible p-adic extensions of dimension > 1 (see
[CS, Conjecture B]). This was further extrapolated and formulated for fine Selmer
groups of modular forms and Hida families by Jha [Jh, Conjecture B, Conjecture 2].
In this paper, we will establish two results pertaining to the pseudo-nullity property
of the fine Selmer group of a Galois module. The first result (Theorem 5.4) shows
that the pseudo-nullity property can be lifted, namely, if the fine Selmer group of
the residual representation of a given Galois representation is pseudo-null, then so is
the fine Selmer group of the Galois representation itself. Such a result has also been
proved in [Jh, Theorem 10]', and here we give a slightly different proof. The second
result (Theorem 5.7) is concerned on the descent property of the pseudo-nullity of
the fine Selmer groups, where we show that if F/, C F., are two admissible p-adic
Lie extensions of dimension > 2 with Gal(Fu/F.,) being a solvable uniform pro-p
group, then the fine Selmer group over F., is pseudo-null whenever the fine Selmer
group over F/_ is pseudo-null. We note that in this result, the extensions F, and F)_
themselves need not be solvable extensions of F'.

We briefly summarize the approach towards the investigation of the fine Selmer
group in this paper. Namely, we observe that the structure of the dual fine Selmer
group is intimately linked with a certain inverse limit of second cohomology groups.
This latter group turns out to behave well upon taking residual (see Lemma 2.1) and
descent (cf. Lemma 2.2), which is key to our examination of the relationship between
the said fine Selmer groups.

We now give an outline of the paper. In Section 2, we introduce the fine Selmer
groups and discuss some of their basic properties. In Section 3, we will study the
variation of the fine Selmer groups over the cyclotomic Z,-extension as mentioned in
the first paragraph of the introduction. In Section 4, we collect some results on the
ranks of modules over a completed group algebra which will be applied in Section 5
for the discussion of the pseudo-nullity of the fine Selmer groups. In Section 6, we
discuss some numerical examples coming from class groups, and an elliptic curve and
its associated Hida deformation to illustrate the results of the paper. In Section 7, we
will make some complementary remark on the torsionness of the fine Selmer group.
Finally, we will provide proofs to certain results on the structure of the completed
group algebra in the Appendix.
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2. Fine Selmer group. Throughout the paper, p will denote a prime number.
If M is a pro-p group or a discrete p-primary group, we denote the Pontryagin dual of

1Jha’s theorem also deals with the converse direction which we will not address in this paper.
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M by MY = Homes(M, Qp/Zy). Let F be a number field, i.e., a finite extension of Q.
Let S denote a finite set of primes of F' containing the primes above p and the infinite
primes, which we shall fix once and for all. Let Fs denote the maximal algebraic
extension of F' unramified outside S. For any algebraic (possibly infinite) extension
L of F contained in Fg, we write Gg(£) = Gal(Fs/L). Let R be a commutative
complete Noetherian local ring with maximal ideal m and residue field k, where k is
finite of characteristic p. Let T denote a finitely generated R-module. One verifies
easily that T' = @T/miT, and we shall endow T with the m-adic topology. We

3
assume further that 7" has a continuous R-linear G p-action, and is unramified outside
S. This group action on 7" induces a continuous group homomorphism

p:Gs(F) — Autp(T).

We will write W = TV (1), where “(1)” denotes the Tate twist. Let v be a prime in
S. For each finite extension L of F' contained in Fs, we define

Ki{(W/L) =@ H (Lw, W) (i=0,1),
wlv

where w runs over the (finite) set of primes of L above v. If £ is an infinite extension
of F' contained in Fg, we define

K (W/.£) = limg K (W) L),
L

where the direct limit is taken over all finite extensions L of F' contained in £ under
the restriction maps.

For any algebraic (possibly infinite) extension £ of F' contained in Fg, the fine
Selmer group of W over £ (with respect to S) is defined to be

Rs(W/L) = ker (Hl(GS(c), W) — P K;(W/c)).

veES

We shall write Ys(7'/L) for the Pontryagin dual Rg(W/L)Y of the fine Selmer group.
It follows from the Poitou-Tate sequence that we have the following exact sequence

Vv
0 — Ys(T/L) — lim H(Gs (L), T) — (@KS(W/E)) L W(L)Y — 0,
L veSs
where the inverse limit is taken over all finite extensions L of F' contained in £ under

the corestriction maps and W(£) denote WS(Fs/£) - From now on, we shall write
HE(L/F,T) =lim H*(Gs(L),T).
L

Examples: (a) If T = Zy(1), then we have W = Q,/Z,. In this case, one checks
easily that Yg(Z,(1)/F) = Clg(F)[p>], where Clg(F) is the S-class group of F.

(b) If E is an elliptic curve over F, then the fine Selmer group for W = E[p*]
has been studied in [CS] and is related to the classical Selmer group via the following
exact sequence

0 — Rs(E[p™]/F) — Sely~(E/F) — @ H'(F,,, E[p™]).

vlp
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Note that in this instance, the fine Selmer group is independent of the set .S as long
as it contains all the primes above p, the infinite primes and the primes at which E
has bad reduction.

We mention certain basic properties on the structure of the dual fine Selmer group.
Let Fo be a p-adic Lie extension of F' contained in Fg. Set G = Gal(F/F). Tt is
known that the ring R[G] is Noetherian (cf. [LSh, Proposition 3.0.1], see also Propo-
sition A.1(a) in this paper). By [LSh, Proposition 4.1.3], we have that H2(Fu/F,T)
is finitely generated over R[G]. Therefore, it follows from the Poitou-Tate sequence
that Ys(T'/F) is finitely generated over R[G]. We end the section with two lemmas
on the behavior of H2(Fu/F,T) under residue and descent.

LEMMA 2.1. Let z be a nonzero and nonunital element of R. Write R=R/zR
and T = T/xT. Suppose that either p is odd or F has no real places. Then one has
an isomorphism

H§(F/F.T)/x = H§(Fsx/F.T)
of R[Gal(Fy,/F)]-modules.

_ Proof. Since we are assuming that either p is odd or F' has no real places, we have
Hi(Fs/F,—) =0 for i > 3. In particular, HZ(F/F,—) is right exact. Therefore,
from the exact sequence

T-5%5T—T-—0,
we obtain
Hi(Fo/F,T) =5 H:(Fo /F,T) — H%(Fs/F,T) — 0.

The required isomorphism is now immediate. O

LEMMA 2.2. Let F!_ be another p-adic extension of F such that F C F' C Fy
Suppose that either p is odd or F has no real places. Then one has an isomorphism

HE(Foo/F,T)Gar(p 1) = HE(FL /F,T)

of R[Gal(F.,/F)]-modules.
Proof. By [LSh, Theorem 3.1.8], there is a spectral sequence

H(Gal(Fo /FL), Hy' (Fos /F,T)) = Hg '~ (F.,/F.T).

The required isomorphism follows from reading off the (0, —2)-term. O

REMARK. If T is free over R, one can deduce Lemmas 2.1 and 2.2 from [FK,
Proposition 1.6.5(iii)].

3. Fine Selmer groups over a cyclotomic Z,-extension. In this section,
we examine the variation of the fine Selmer groups over a cyclotomic Z,-extension.
We retain the notation and assumptions from the previous section. We shall also
always assume that the number field F' has no real primes when p = 2. Denote FY°
to be the cyclotomic Z,-extension of F' and write I' = Gal(F'¥°/F'). As mentioned
in the previous section, the dual fine Selmer group Yg(7'/F<°) is a finitely generated
R[I']-module. In fact, we conjecture that the following stronger statement should
hold.
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CONJECTURE A. For any number field F, Yg(T/F%<°) is a finitely generated
R-module.

We mention several well known cases of the above conjecture. For any extension
L of F¥¢ contained in Fs, we denote K (L) to be the maximal unramified pro-p
extension of £ where every prime of £ above p splits completely. Since F¢ C L,
it follows that every finite prime of £ splits completely in K(L). Therefore, in the
case when T' = Z,(1), the dual of the fine Selmer group Ys(Z,(1)/F®°) is precisely
Gal(K(F%°)/F%°). In this context, this is equivalent to the conjecture made by
Iwasawa [Iwl, Iw2]. We shall call this conjecture the Iwasawa p-invariant conjecture
for F¥¢. Currently, the Iwasawa p-invariant conjecture is only proved in the case
when F is abelian over Q (see [FW, Sin]).

This conjecture has also been considered for an elliptic curve (see [CS, Conjecture
A]), for a Galois representation attached to a cuspidal eigenform which is ordinary at
p (see [Jh, JhS, Conjecture A]) and a Galois representation attached to a Hida family
(see [Jh, Conjecture 1]).

We now state the main theorem of this section which is a natural extension of
[CS, Corollary 3.5].

THEOREM 3.1. Let F be a number field. Suppose the Twasawa p-invariant con-
jecture holds for LY for any finite extension L of F. Then Ys(T/F®°) is a finitely
generated R-module.

As one will see from the proof (see also Theorem 3.5), one only requires that the
Iwasawa p-invariant conjecture holds for a particular extension L of F'. We should
mention that our method of proof does not allow us to deduce the finite generation
of Yg(T'/F¥¢) from the validity of the Iwasawa u-invariant conjecture for F', and one
has to assume that the Iwasawa p-invariant conjecture holds for an extension L of F’
in general. In preparation for the proof of Theorem 3.1, we first prove three lemmas.
Recall that we write W (L) = WGFs/L) for any F C L C Fs. Similarly, for each
ve S, we write W (L) = WGU/L) for any F, C L C F,.

LEMMA 3.2. Let F' be a number field. Suppose that L is a finite extension of F
contained in Fs. If Ys(T /L) is a finitely generated R-module, then Yg(T /F<Y°) is
a finitely generated R-module.

Proof. Let A = Gal(L®%°/F°). Consider the following commutative diagram
with exact rows

0—— Rs(W/FY¢) ——— HYGs(FY), W) ——— D.cs KL (W/F©)

I | )
0 —— Rg(W/LY)2 —— HY(Gs(LY),W)2 —— (@,c5 KLW/LY))"

where the vertical maps are the natural restriction maps. Now ker «v is contained in
HY(A, W(L%)) which can be easily seen to be a cofinitely generated R-module. The
conclusion is now immediate. O

LeMMA 3.3. (Compare with [CS, Lemma 3.8]) Suppose that F' contains p, and
suppose that M is a finite trivial Gg(F°)-module which is killed by p. Then we have
an isomorphism

Ys(M/F?€) = (Gal(K(F™)/FY) [p) ©z, M
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of abelian groups. In  particular, Ys(M/F%) s finite if and only if
Gal(K (FY©)/F<°) is finitely generated over Z,.

Proof. Since pM = 0, we have N := Homgz, (M, pip~) = Homg, (M, 1,). As
the group Gg(F°) acts trivially on M and p, C F, it also acts trivially on N =
Homz, (M, p1p). Therefore, we have

Rs(N/F%°) = Homg, (Gal(K (F'¥°)/F<¢)/p,N),

noting that every finite prime of F¥¢ splits completely in K(F¢). On the other
hand, one has the following adjunction isomorphism

(Gal(K(FCyC) JF) /p @y, M)v = Homy, (Gal(K (F®°)/F¥) /p, N).

(Here we are identifying M with N using the assumption that F(u,) = F and pM =
0.) Combining both equalities and taking dual, we obtain the required isomorphism.
The second assertion is immediate from the first. O

LEMMA 3.4. (Compare with [CS, Lemma 3.2]) Ys(T/FY) is finitely generated
over R if and only if HZ(F°/F,T) is finitely generated over R.

Proof. From the Poitou-Tate sequence, we have the following exact sequence

0 — Ys(T/F) —s HE(FV/F,T) ( AP K W/FCVC))
vES

For each v € S, one has

K)(W/F) = (P W (Fr).

wlv

Since every prime splits finitely in F¥¢/F, the direct sum is a finite sum of cofinitely
generated R-modules, and so it is a cofinitely generated R-module. (Note that the
direct sum needs not be a finite sum if p = 2 and F' has real primes but our standing
assumption is that if p = 2, then F' has no real primes, so this situation will not occur
under our assumption.) The conclusion of the lemma then follows. O

We can now prove our theorem.

Proof of Theorem 3.1. By Lemma 3.2, we may replace F, if necessary, so that
F contains pg, (in particular, F' has no real primes) and that Gs(F') acts trivially
on T/mT. By Lemma 3.4, it then suffices to show that HZ(F¥°/F,T) is finitely
generated over R. Choose a set of generators xy,...,x4 of m such that they form a
basis for m/m?2. By a repeated application of Lemma 2.1, we have an isomorphism
HZ(F¥°/F,T)/m = HZ(F¥°/F,T/mT). By Nakayama lemma, we are reduced to
showing that HZ(F®¢/F,T/mT) is finite. By another application of Lemma 3.4, this
is equivalent to showing that Y ((T/mT)/F°) is finite. This latter assertion is an
immediate consequence of Lemma 3.3 and the validity of the Iwasawa p-conjecture. O

Upon a finer examination of our proof of Theorem 3.1, one actually shows some-
thing more precise. Let p: Gg(F) — Auty(T/mT) be the residual representation of
p. Denote F(pay, T/mT) to be F&?(j1a,). Note that this is a finite Galois extension
of F.
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THEOREM 3.5. Let L be a finite extension of F such that F(uap, T/mT) is
contained in a finite p-extension of L. Then the Twasawa p-invariant conjecture holds
for L if and only if Ys(T /L) is finitely generated over R.

Proof. Let L' be a finite p-extension of L that contains F'(ug,, T/mT). The
proof of Theorem 3.1 essentially proved the equivalence over L’. To establish the
equivalence for L, we need to show that the finite generation property is preserved in
a finite p-extension. By [Iwl, Theorem 3], the Iwasawa p-invariant conjecture holds
for L®¥¢ if and only if the Iwasawa p-invariant conjecture holds for L'¥¢. It remains
to show the same for the case of Yg(T/L%°). It is not difficult, by making use of the
commutative diagram in Lemma 3.2, to show that the map

Ys(T/L'Y) p — Ys(T/L¥°)

has kernel and cokernel which are finitely generated over R. Here A = Gal(L'/L). It
follows from this observation that Ys(7/L°) is finitely generated over R if and only
if Yo(T'/L'¥°) A is finitely generated over R. Since A is a p-group, R[A] is local with
a unique maximal (two-sided) ideal 9 = mR[A] + I, where I is the augmentation
ideal (see [NSW, Proposition 5.2.16(iii)]). It is easy to see from this that

YS(T/L’CYC)/S)’JT >~ Yy (T/L/CYC)A/mYS(T/L/CyC)A.

Therefore, Nakayama’s lemma for R-modules tells us that Ys(7'/Lg,.)a is finitely
generated over R if and only if Yg(T/L'°)/9 is finite. On the other hand,
Nakayama’s lemma for R[A]-modules tells us that Yg(7'/L'°¥¢)/9M is finite if and
only if Yg(T'/L'°¥°) is finitely generated over R[A]. But since A is finite, the latter
is equivalent to saying that Yg(7T'/L'¥°) is finitely generated over R. Hence we con-
clude that Yg(T'/LY°) is finitely generated over R if and only if Yg(7T'/L'Y) is finitely
generated over R. The proof of the theorem is now completed. O

One expects that the conjecture is invariant under isogeny. However, at present,
we can only establish this partially in the following proposition. We will state this
proposition in a more general context. Suppose that R’ is another commutative
Noetherian local ring with maximal ideal m’ and finite residue field of characteristic
p, and suppose that 7" is a finitely generated R’-module with a continuous R-linear
Gg(F)-action. We then have the following proposition.

PROPOSITION 3.6. Suppose that F(T/mT,T'/m'T’, uay) is a finite p-extension of
F. Then Ys(T/F°) is finitely generated over R if and only if Ys(T'/F°) is finitely

generated over R'.

Proof. As seen in the proof of Theorem 3.5, the finite generation property is pre-
served in a finite p-extension. Therefore, one is reduced to showing that Yg(7'/L%°) is
finitely generated over R if and only if Yg(7”/L%°) is finitely generated over R’, where
L := F(T/mT,T"/m'T, psyp). Since L is clearly a finite p-extension of F'(T/mT, pap)
(vesp., F(T"/m'T, p2p)), Theorem 3.5 applies to imply the assertion that the Iwasawa
p-invariant conjecture holds for L if and only if Yg(7'/F¥°) is finitely generated over
R (resp., Ys(T"/F%°) is finitely generated over R'). The proposition then follows. O

We end the section with the following remarks.

REMARKS. (a) In the case when T is the Tate module of an elliptic curve and
the prime p is odd, the field extension F'(us,, T/mT) is precisely F(E[p]). One can
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easily see that Theorem 3.5 recovers [CS, Theorem 3.4] and Proposition 3.6 recovers
the observation made after [CS, Lemma 3.8].

(b) One can give alternative proofs to [Jh, Theorem 3] and [JhS, Theorem 8] by
appealing to Lemma 3.4 and Lemma 2.1.

(c) The results here can be extended easily to the case when the ring R is a commu-
tative Noetherian semi-local ring, complete with respect to its Jacobson radical J(R),
and that R/J(R) is a finite ring of order a power of p. In this case, the ring R has
finitely many maximal ideals my,...,m, and is isomorphic to

Ry, X+ X Ry,

where each Ry, is commutative complete Noetherian local with finite residue field
of characteristic p (see [M, Theorem 8.15]. Of course, there is still some work to be
done after applying the said theorem, namely, one still needs to show that each Ry,
is m;-adic complete but this can be easily verified). Now every R[Gg(F)]-module T
decomposes canonically as

Ty X o X Ty,

and it is easy to see that the decomposition is compatible with the Galois action. The
results in this section can then be applied to each Ry,-module Th,,.

4. Ranks of Iwasawa modules. In this section, we establish some algebraic
preliminaries to facilitate further discussion of the fine Selmer groups. We will prove
certain formulas on the rank of modules over a completed group ring. Much of the
materials considered here originates from [BHo, HO, Ho|. As a start, we shall prove
a general lemma. Let A be a (not neccessarily commutative) Noetherian ring which
has no zero divisors. Then it admits a skew field of fractions K (A) which is flat over
A (see [GW, Chapters 6 and 10] or [Lam, Chapter 4, §9 and §10]). If M is a finitely
generated A-module, we define the A-rank of M to be

ranky M = dimgp) K(A) @4 M.

Clearly, one has ranky M = 0 if and only if K(A) ®x M = 0. The following lemma
will be useful in the discussion in this section.

LEMMA 4.1. Let A be a Noetherian ring which has no zero divisors. Suppose € is
a quotient of A such that it is also a Noetherian ring which has no zero divisors. Let
M be a finitely generated A-module which has a finite free resolution of finite length.
Then we have

ranky M = Z(—l)i rankq Tor? (Q, M).
i>0

Proof. (Compare with proof of [Ho, Theorem 1.1]) Let
00— A" — ... — A" — M

be a resolution of M which exists by the assumptions of the lemma. Then the groups
Torf-\ (Q, M) can be computed by the homology of the complex

Qrd —s o — Q70
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This in turn implies that each Tor?(Q, M) is finitely generated over  and the sum
on the right hand side is a finite sum whose value coincides with

d
> (=1)ni.
i=0
But this latter quantity is precisely ranky M. O
We record another lemma. Write M+ = Homy (M, A).

LEMMA 4.2. Let A be a Auslander regular ring (see [V1, Definition 3.3]) with
no zero divisors. Let M be a finitely generated A-module. Then the following are
equivalent.

(a) The canonical map ¢ : M — M+ is zero.
(b) K(A) ®x M =0, where K(A) is the skew field of A.
(¢) Homy (M, A) = 0.

Proof. The equivalence of (a) and (c) follows from [V1, Remark 3.7]. Suppose that
K(A) @AM =0. Let f € Homa (M, A) and @ € M. Then since K(A)®x M = 0, there
exists A € A\ {0} such that Az = 0. This in turn implies that Af(z) = f(Az) = 0.
Since A has no zero divisor, we have f(z) = 0. This shows that Homy (M,A) = 0
and the implication (b)=(c). Conversely, suppose that Homp (M, A) = 0. By [V1,
Proposition 2.5] and the Auslander condition, the canonical map ¢ : M — M+ has
kernel and cokernel which are R[H]-torsion. Therefore, ¢ induces an isomorphism

K(A) ®AML)K(A) ®AM++.

Now if ¢ = 0, then it will follow immediately that K(A) ®x M = 0. This establishes
(a)=(b). O

We now apply the above discussion to the context of a completed group ring. Let
R be a complete regular local ring with finite residue field of characteristic p, where
p is a prime. Let H be a compact pro-p p-adic Lie group without p-torsion. It is
well known that R[H] is a Auslander regular ring (see [V1], see also Theorem A.1).
In particular, the ring R[H] is Noetherian local and has finite projective dimension.
Therefore, it follows that every finitely generated R[H]-module admits a finite free
resolution of finite length. In the case that either the ring R has characteristic zero
or H is a uniform pro-p group, the ring R[H] has no zero divisors (see Theorem A.1
and remarks after it), and therefore admits a skew field which enable one to define
the notion of a rank as above. Now suppose that R has characteristic p and H is a
compact pro-p p-adic Lie group without p-torsion. We then define the R[H]-rank of

a finitely generated R[H]-module M by
rankgrg.1 M
rankR[[H]] M = ﬁ,

where H( is an open normal uniform pro-p subgroup of H. We will see below that
this is integral and independent of the choice of Hy.

LEMMA 4.3. Let H be a compact pro-p p-adic Lie group without p-torsion. Let
M be a finitely generated R[H]-module. Then H;(H,M) is finitely generated over R
for each i and we have the equality

rankppgy M = Z(—l)i rankp H;(H, M)
i>0
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In particular, the definition of R[H]|-rank is well-defined and integral.

Proof. Suppose first that either the ring R has characteristic zero or H is a
uniform pro-p group. Then the conclusion follows from applying Lemma 4.1 (taking
A = R[H] and Q = R) and observing that H;(H, M) = Torf[[Hﬂ (R, M) for all i.
Now suppose that R has characteristic p and H is a compact pro-p p-adic Lie group
without p-torsion. Fix a finite free R[H ]-resolution

0 — R[H]"* — --- — R[H]™ — M

of M. Then the groups H;(H, M) = TorlR[[H]] (R, M) can be computed by the homol-
ogy of the complex

R™ —% ... — R".

This in turn implies that

d d

> (=1) rankp H;(H, M) = > (~1)'n;.

i=0 1=0
Let Hy be any open normal uniform pro-p subgroup of H. The above free R[H]-
resolution is also a free R[Hy]-resolution for M. Therefore, the groups H;(Hy, M) =
Torf [Ho] (R, M) can be computed by the homology of the complex

RIH:H()I’Ild e RIH:H()I’IL()

which gives

d

d
> (=1)'rankg H;(Ho, M) = [H : Ho| Y (—1)"n;.
1=0 1=0

On the other hand, the sum on the left is precisely rankgjz,j M by an application of
Lemma 4.1 (taking A = R[Hy] and Q = R). Hence, we have

rankR[[Hoﬂ M d .
—_— Y = -1 1ni.

The sum on the right is clearly integral and independent of Hy. Therefore, we have
proved the proposition. O

We may now define the notion of torsion modules over R[H] via the following
lemma.

LEMMA 4.4. Let R be a regular local ring with finite residue field of characteristic
p. Let H be a compact pro-p p-adic Lie group without p-torsion. Let M be a finitely
generated R[H]-module. Then rankgigy M = 0 if and only if Hompggy (M, R[H]) =
0.

Proof. If the regular local ring R has characteristic zero or H is a uniform pro-p
group, then this lemma follows from lemma 4.2. For the exceptional case, we let Hy
be an open uniform normal subgroup of H. By the R-analog of [NSW, Proposition
5.4.17], we have

Hompgy (M, R[H]) = Hompgpa,) (N, R[Ho]).
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Therefore, it follows that Hompgpyy(M,R[H]) = 0 if and only if
Hompgyp, (M, R[Ho]) = 0. On the other hand, it is clear from the definition
that rankgpyy M = 0 if and only if rankgjy,; M = 0. Thus, we may then apply the
above discussion to obtain the required equivalence. O

In view of the above lemma, we will say that a finitely generated R[H]-module
M is torsion if either of the two equivalent statements hold. The following lemma is
a relative version of Lemma 4.3.

LEMMA 4.5. Let H be a compact pro-p p-adic Lie group without p-torsion. Let U
be a closed normal subgroup of H such that H/U is also a compact pro-p p-adic Lie
group without p-torsion. Let M be a finitely generated R[H]-module. Then H;(U, M)
is finitely generated over R[H /U] for each i and we have the equality

rankpppy M = Z(—l)irankR[[H/U]] H;(U M)
i>0

= rankgy,u) Mu + Z(—l)i rank [/ u] H;(U M).

i>1

Proof. If the ring R has characteristic zero or H is a uniform pro-p group, the
conclusion follows from applying Lemma 4.1 (taking A = R[H] and Q = R[H/U]J)

and observing that H;(U, M) = Torf[[H]] (R[H/U], M) for all i. In general, one has
the equality

rankgpgy M = Z(—l)irankR H;(H,M)

i>0

= > (1) rankg H;(H/U, H;(U,M))
7,70

- Z(—UJ rank ppr /0y Hi(U, M),
j=0

where the first and third equalities follow from Lemma 4.3 and the second equality is
a consequence of the spectral sequence

HZ(H/U,HJ(U,M)) - HlJrJ(H,M)

[

It is immediate from the equality in Lemma 4.5 that if

rankgpgy M = Z(—l)i rankgg /o) Hi(U, M) = 0,

i>1

then rank gz /p) My = 0. The converse is true if we assume further that U is solvable,
and this is the content of the next theorem.

THEOREM 4.6. Let H be a compact pro-p p-adic Lie group without p-torsion. Let
U be a closed normal subgroup of H such that U is solvable and H/U is a compact
pro-p p-adic Lie group without p-torsion. Let M be a finitely generated R[H]-module.
Then My is a torsion R[H/U]-module if and only if M is a torsion R[H]-module
and Z(—l)i rankgg /0y Hi(U, M) = 0.

i>1
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Proof. The above discussion already establishes one direction. Now suppose that
My is a torsion R[H/U]-module. The required conclusion will follow once we show
that M is a torsion R[H]-module. This will follow from the next lemma which is a
slight refinement of the final theorem in [BHo|] and [HO, Lemma 2.6]. O

LEMMA 4.7. Let H be a compact p-adic Lie group without p-torsion. Suppose
that N is a closed normal subgroup of H with the property that N is a solvable uniform
pro-p group and H/N has no p-torsion. Let M be a finitely generated R[H]-module.
If My is a torsion R[H/N]-module, then M is a torsion R[H]-module.

To prove this lemma, we need two more lemmas.

LEMMA 4.8. Let H be a uniform pro-p group, and let N be a closed normal
subgroup of H with the property that N is a solvable uniform pro-p group and H/N
has no p-torsion. Then there exists a closed normal subgroup Ny of H satisfying all
the following properties.

(i) No = Zj, for some r > 0.
(14) H/Ny is uniform with dim H/Ny < dim H..
(ii) No C N.

Proof. If N is abelian, then one may take Ny = N. Now if N is not abelian, we
write N0 = N and N1 = [N() N(]. Then N+ =0 but N™) #£ 0 for some
m > 1. Note that N(™) is abelian. Set

No:={heH | R € N™ for some it

The proof of statement (3) of the first proposition in [BHo, §4] shows that Ny satisfies
(i) and (ii). To see that Ny satisfies (iii), one applies a similar argument as in the last
paragraph of the proof of [HO, Lemma 2.6]. O

LEMMA 4.9. Let H be a uniform pro-p group, and let N be a closed normal
subgroup of H with the property that N = Z; and H/N has no p-torsion. Let M be
a finitely generated R[H]-module. If My is a torsion R[H/N]-module, then M is a
torsion R[H]-module.

Proof. We prove this lemma by the method of contradiction, following the argu-
ment given in the last theorem in [BHo]. Suppose that M is a finitely generated R[H]-
module with R[H]-rank s > 0. Recall that R[H] is Auslander regular and has no
zero-divisors (cf. Theorem A.1). We shall first show that there is map M — R[H]*
with R[H]-torsion kernel and cokernel. Let K(H) denote the skew field of R[H].
Write M+ = Hompggy(M, R[H]). Then by [V1, Proposition 2.5], there is a map
M — Mt with R[H]-torsion kernel and cokernel (the torsionness comes from the
definition of Auslander regularity). Choose f1,..., fs € M™T such that they form a
basis for K(H) ® gpgy M*. Then these elements give rise to a map R[H]* — M™
which clearly has R[H]-torsion kernel and cokernel. Taking R[H]-dual, we obtain a
map M+t — R[H]*® with R[H]-torsion kernel and cokernel. Combining this with
the above canonical map, we obtain the required map.

Projecting onto any (fixed) factor of R[H]*, we obtain a R[H]-homomorphism
¢ : M — R[H]. Tt is not difficult to see that ¢ is nontrivial. Denote I(N) to
be augmentation ideal of the ring R[N], and denote J to be the two-sided ideal
I(N)R[H] = R[H]I(N). Since J is a closed ideal of R[H], we have Np>oJ" = 0.
Therefore, we can find an m such that ¢(M) C J™ and ¢(M) ¢ J™F . Then
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M' = (¢(M) + JmH1)/JmF is a nontrivial submodule of J™/J™ 1. We also note
that N acts trivially on M’ and J™/J™*1. Hence we have M’ = (M')x being
a quotient of My. On the other hand, by a similar argument to that in the last
paragraph of [BHo|, we have that J™/J™1 is a free R[H/N]-module with positive
R[H/NJ]-rank. Since M’ is a nontrivial submodule of a free R[H/N]-module, M’
must also have positive R[H/N]-rank which in turn implies that My has positive
R[H/N]-rank and this contradicts the hypothesis of the lemma. O

We can now prove Lemma 4.7.

Proof of Lemma 4.7. We proceed by induction on the dimension of H. When
dim H = 1, the assertion of the lemma can be deduced from the classical result of
Iwasawa. Now suppose dim H > 1. If N = Z, then we are done by Lemma 4.9. Else
by Lemma 4.8, we can find a closed normal subgroup Ny of H such that (i) No = Z;
for some r > 0, (ii) H/Np is uniform with dim H/Ny < dim H and (iii) Ny € N.
Viewing My = (Mn,)n/n,, We may apply our induction hypothesis to deduce that
My, is a torsion R[H/Ny]-module. Now applying Lemma 4.9 again, we obtain the
required conclusion. O

The following is an immediate corollary of the above. Alternatively, one can prove
this directly by the rank calculation.

COROLLARY 4.10. Let H be a compact pro-p p-adic Lie group without p-torsion.
Let U be a closed normal subgroup of H such that U = Z,, and H/U is a compact
pro-p p-adic Lie group without p-torsion. Let M be a finitely generated R[H]-module.
Then My is a torsion R[H/U]-module if and only if M is a torsion R[H]-module
and Hy(U, M) is a torsion R[H/U]-module.

We mention another corollary of Lemma 4.7 which can be proved via a similar
argument as in [HO, Lemma 2.5].

COROLLARY 4.11. Let H be a compact p-adic Lie group without p-torsion. Sup-
pose that N is a closed normal subgroup of H with the property that N is a solvable
uniform pro-p group and H/N has no p-torsion. Let M be a finitely generated R[H]-
module. Then we have

rankR[[G]] M < rankR[[H/N]] MN.

We now mention another variant of Howson’s result which can be viewed as a
slight generalization of [Ho, Corollary 1.10] (see also [Jh, Lemma 5]).

PROPOSITION 4.12. Let H be a compact p-adic Lie group without p-torsion, and
let x € R be a nonzero element such that R := R/xR is also a complete reqular local
ring. Let M be a finitely generated R[H]-module. Then

rank gy M/xM = rankgpgy M[z] + rankgpgy M,

where M[x] is the submodule of M killed by x.

Proof. Using the free resolution of R[G]

0 — R[G] = R[G] — R[G] — 0,
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one can calculate that

M/zM if i =0,
Torppgy (RIH], M) = M[z]  ifi=1,

0 otherwise.

The conclusion is now immediate from the above calculations and Lemma 4.1. O

COROLLARY 4.13. Retaining the above assumptions. Let M be a finitely gener-
ated R[H]-module. Then M/xM is a torsion R[H]-module if and only if M|z] is a
torsion R[H]-module and M is a torsion R[H]-module.

5. On the pseudo-nullity of fine Selmer groups. In this section, we will
investigate certain properties of the fine Selmer groups over p-adic Lie extensions of
dimension strictly larger than one. As in the previous section, we shall assume that
our ring R is a complete regular local ring with finite residue field of characteristic
p. Let G be a compact pro-p p-adic Lie group without p-torsion. Then R[G] is
a Auslander regular ring. We say that a finitely generated torsion R[G]-module is
pseudo-null if EXt}%[G]] (M, R[G]) = 0. The following fundamental lemma will be
crucial in our discussion.

LEMMA 5.1. Let R be a complete reqular local ring with finite residue field of
characteristic p and let G be a compact pro-p p-adic Lie group without p-torsion.
Suppose that H is a closed normal subgroup of G with G/H = Z,. Let M be a
compact R[G]-module which is finitely generated over R[H]. Then M is a pseudo-
null R[G]-module if and only if M is a torsion R[H]-module.

Proof. This essentially follows from [V2], which we shall explain (see also [HSh,
Lemma 3.1]). By the standard theory of compact p-adic Lie groups (for instances, see
[DSMS]), one can find open subgroups Hy of H and Gy of G such that Hy and Gy
are uniform pro-p groups and Go/Hy = Z,. By [NSW, Proposition 5.4.17] (the same
conclusion with a similar proof holds if we replace Z, by R), we have

Exthop(N, R[G]) = Extipe,; (N, R[Go])

for any R[G]-module N and all 4, and a similar statement holds for H and Hy.
Therefore, we are reduced to showing the lemma under the assumptions that G and
H are uniform pro-p groups.

We now write I' = G/H. There is a natural group homomorphism ¢ : I' —
Aut(H). Suppose that

im¢ C {f € Aut(H) | f(h)h~' € H? for all h € H}. (%)

Then the conclusion of the lemma follows from an R-analog of [V2, Example 2.3]
and [V2, Proposition 5.4] in this instance. In general, since H is a uniform pro-p
group by our assumption, H? is an open characteristic subgroup of H. Therefore,
the map ¢ induces a continuous group homomorphism ¢ : I' — Aut(H/HP). Since
H/HP is finite, we have I'y := ker ¢ = Z,. Let G be the open normal subgroup of G
containing H such that G;/H = T'y. By another application of the R-analog of [NSW,
Proposition 5.4.17], we are reduced to showing that M is a pseudo-null R[G;]-module
if and only if M is a torsion R[H]-module. However, in this case, the natural map
¢1: Ty — Aut(H) clearly satisfies () by our choice of 'y, and so [V2, Example 2.3,
Proposition 5.4] can be applied. O
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REMARK. In the case when H = Z,,, the lemma follows directly from the R-analog
of [V2, Example 2.3] and [V2, Proposition 5.4].

We return to arithmetic. As before, p will denote a prime. For the remainder of
the paper, we shall assume further that the number field F' has no real primes when
p = 2. Following [CS], we say that F., is a S-admissible p-adic extension of F' if
(i) Gal(F /F) is compact pro-p p-adic Lie group without p-torsion, (ii) Fu contains
Feove and (iii) Fi is contained in Fg. Write G = Gal(Fo./F) and H = Gal(Foo /F¥°).
From now on, we shall assume that our Galois module 7T is a free R-module of finite
rank with a continuous R-linear G g(F)-action. The following lemma is also considered
in [CS, Lemma 3.2].

LEMMA 5.2. Let Foo be a S-admissible p-adic Lie extension of F. Then the
following statements are equivalent.

(a) Ys(T/F<°) is a finitely generated R-module.

(b) HEZ(F¢/F,T) is a finitely generated R-module.
(¢) Ys(T/Fw) is a finitely generated R[H]-module.
(d) H(Fsx/F,T) is a finitely generated R[H]-module.

Proof. The equivalence of (a) and (b) is shown in Lemma 3.4. The equivalence
of (¢) and (d) can be shown by a similar argument. The equivalence of (b) and (d)
follows from Lemma 2.2 and Nakayama lemma. O

The following question has been studied by many before.

QUESTION B. Let F, be a S-admissible p-adic Lie extension of F' of dimension
> 1, and suppose that Ys(7T'/F.) is a finitely generated R[H]-module. Is Ys(T/Fx)
a pseudo-null R[G]-module, or equivalently a torsion R[H]-module?

This is precisely [CS, Conjecture B] when T is the Tate module of an elliptic
curve. In this context, the conjecture has also been studied and verified for some
elliptic curves in [Bh] and [Oc]. When T is the R(1)-dual of the Galois representation
attached to a normalized eigenform ordinary at p, this is [Jh, Conjecture B]. In the
case when T is the R(1)-dual of the Galois representation coming from a A-adic form,
this is [Jh, Conjecture 2]. We note that in the case when 7" is the Tate module of all
the p-power roots of unity, the dual fine Selmer group is precisely Gal(K (Fx)/Fuo),
where K (F) is the maximal unramified pro-p extension of F, at which every prime
of F, above p splits completely, as defined in Section 3. In this case, Hachimori
and Sharifi [HSh] has constructed a class of admissible p-adic Lie extension Fu, of
F of dimension > 1 such that Gal(K(Fx)/Fs) is not pseudo-null. Despite so, they
have speculated that the pseudo-nullity condition should hold for admissible p-adic
extensions “coming from algebraic geometry” (see [HSh, Question 1.3] for details, and
see also [Shl, Conjecture 7.6] for a related assertion and [Sh2] for positive results in
this direction).

Before continuing our discussion, we introduce the following hypothesis on our
admissible extension Fi..

(Dimg): For each v € S, the decomposition group of G at v, denoted by G,, has
dimension > 2.

LEMMA 5.3. Let Fy, be a S-admissible p-adic Lie extension of F and assume
that Ys(T/F) is a finitely generated R[H]-module. Then the following statements
hold.
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(a) If H3(Fs/F,T) is a pseudo-null R[G]-module, so is Ys(T/Fx).
(b) Suppose that Fo, satisfies (Dimg). Then if Ys(T/Fx) is a pseudo-null R[G]-
module, so is H3(Fso /F,T).

Proof. From the Poitou-Tate sequence, we have the following exact sequence

0 — Yo(T/F) — H3(Fs/F,T) —> (@ KS(W/FOO))V.
vES

Statement (a) is then immediate. It remains to show that statement (b) holds. For
each v € S, fix a prime w of F, above v. By abuse of notation, we denote the prime
of F¢ below w by w. Write H,, to be the decomposition group of H at w. Then
one sees that K?(W/F.,)V is isomorphic to a finite sum of terms of the form

R[[H]] ®R[Hw]] W(Foo,w)v

which is clearly finitely generated over R[H]. The assertion of statement (b) will
follow once we show that the above term is a torsion R[H]-module. By the assumption
(Dimyg), the group H,, has dimension > 1. It is then easy to see that W (Fx )" is a
finitely generated torsion R[H,]-module. The required conclusion then follows from
observing that

HOIHR[[H]] (R[[Hﬂ ®R[[Hw]] W(Fooyw)v, R[[H]D
= R[H] @y, Homppm,] (W (Fso,w)", R[Huw])
=0.
N

We can now state the first main result of this section which is a slight refinement
of the implication (3) = (1) in [Jh, Theorem 10].

THEOREM 5.4. Let F, be a S-admissible p-adic Lie extension of F' and assume
that Ys(T/Fwo) is a finitely generated R[H]-module. Suppose that there exists a prime
ideal p of R such that the ring R/p is also regular local. Suppose also that Fu, satisfies
(Dimg). If Ys((T'/pT)/Fx) is a pseudo-null R/p[G]-module, then Ys(T/Fux) is a
pseudo-null R[G]-module.

Before proving the theorem, we first prove the following lemma.

LEMMA 5.5. Let Fs be a S-admissible p-adic Lie extension of F. Suppose that
Ys(T/Fx) is a finitely generated R[H]-module. Let x be a nonzero and nonunital
element of R, and suppose that R := R/xzR is also regular local. Write T = T/xT.
Then H:(Fs/F,T) is a pseudo-null R[G]-module if and only if H2(Fx/F,T) is a
pseudo-null R[G]-module and H%(Fs /F,T)[x] is a pseudo-null R[G]-module.

Proof. By Lemma 2.1, we have an isomorphism
H(Foo/F,T)/z = H(Fso /F,T)
of R[G]-modules. The lemma is now immediate from Lemma 5.1 and Corollary 4.13. 0

We now give the proof of Theorem 5.4.

Proof of Theorem 5.4. By Lemma 5.3(a), it suffices to show that HZ(Fx/F,T) is
a pseudo-null R[G]-module. By the theory of regular local rings (for instances, see [M,
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§14]), one can find a set of generators w1, ..., x, of p such that each intermediate ring
R/(x1,...,x;) is also regular local for i = 1,..,7. By a repeated application of Lemma
5.5, we are reduced to showing that HZ(Fx /F,T/pT) is a pseudo-null R/p[G]-module
which will follow from the hypothesis of the theorem and Lemma 5.3(b). O

We record an immediate corollary of Theorem 5.4.

COROLLARY 5.6. Let F, be a S-admissible p-adic Lie extension of F' and assume
that Ys(T'/ Fso) is a finitely generated R[H]-module. Suppose that (Dimg) is satisfied.
If Ys((T/mT)/Fy) is a pseudo-null k[G]-module, then Ys(T/Fs) is a pseudo-null
R[G]-module.

We now prove the following descent result for pseudo-nullity.

THEOREM 5.7. Let F be a S-admissible p-adic Lie extension of F' and assume
that Ys(T/F°) is a finitely generated R-module. Suppose that F._ is another S-
admissible p-adic Lie extension of F which satisfies the following properties.

(i) F., is contained in Fu.

(19) F._ satisfies (Dimg).

(i7i) The group N := Gal(Fs/FL) is a solvable uniform pro-p group and H/N
has no p-torsion.

Then Ys(T/FL,) is a pseudo-null R|Gal(F.,/F)]-module if and only if Ys(T/Fx)
is a pseudo-null R[G]-module and Z(—l)i rank gz Ny Hi (N, H(Fs /F,T)) = 0.

i>1

REMARK. Note that we do not require F’, and F to be solvable extensions of

F.

Proof. By Lemmas 2.2, 5.1 and 5.3, it is equivalent to showing that H2(F. /F,T)
is a torsion R[Gal(F.,/F“°)]-module if and only if H2(F/F,T) is a torsion R[H]-
module and

Z(—l)i rank gy /ny Hi (N, H3(Foo /F, T)) = 0.

i>1
But this is immediate from Theorem 4.6. O
We end the section with the following remark.

REMARK. The results here can be extended to the case when the ring R is a
commutative Noetherian local domain which is finite flat over a regular local ring Ry.
In this case, for a compact pro-p p-adic Lie group without p-torsion, the notion of
torsion and pseudo-nullity over R[G] is defined similarly as in the regular case. It
then follows from the flatness condition of R that one has the following isomorphisms

R ®p, Extiy 161 (M, Ro[G]) = Extiigy (R @r, M, R[G]) = Extiyqy (MY, R[G]),
where d is the Ry-rank of R, and a R-free module T is clearly still Ry-free. Therefore,

the question of pseudo-nullity over R[G] is reduced to pseudo-nullity over Ry[G], and
the results in this section apply.
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6. Some examples. In this section, we will discuss some numerical examples
of pseudo-nullity.

(a) The first example we consider is the case T' = Z,(1). Take F' = Q(pp). Let S
be the set of prime(s) of F' above p. By the theorem of Ferrero-Washington, the group
Gal(K (F°)/F%°) is finitely generated over Z,. Now if p < 1000, it follows from
[Sh2, Theorem 1.4] that Gal(K (Fw)/Fso) is a finitely generated Z,[Gal(Fx /F.)]-
module (and hence a pseudo-null Z,[Gal(Fx /F)]-module) for every S-admissible p-
adic extension Fo, of F' which contains F/_ := Q(upe-, p~P7). Note that Q(ppoe pP7)
(and hence any F, containing it) satisfies (Dimg) by [HV, Lemma 3.9]. Write
N = Gal(F/F.,). It follows that Gal(K(F)/Fx) is finitely generated over Z,[N]
if and only if HZ(Fx/F,Zy(1)) is finitely generated over Z,[N]. Therefore in this

case, we have
ranky, 1r/n) Hi (N, H3(Foo / F, Z,(1))) =0

for all i and the equation of Lemma 4.5 is vacuous here. We mention in passing
that if p is a regular prime, it will follow from an application of a classical result of
Iwasawa that Gal(K (Fu)/Fso) = 0 for every S-admissible p-adic extension Fo, of F
(for instance, see [Oc, Section 4]).

(b) The next example comes from [Bh, Example 23] which is also considered in
[CS, Example 4.8]. Let E be the elliptic curve 150A1 of Cremona’s table which is
given by

v +ay =2 — 3z — 3,

Take p =5 and F = Q(us). Let S be the set of primes of F lying above 2,3,5 and
oo. The elliptic curve E has good ordinary reduction at the unique prime of F' above
5 and split multiplicative reduction at the unique primes of F' above 2 and 3. It was
shown in [Bh, Example 23] that Y (T5E/Fw) is a pseudo-null Z5[Gal(Fw /F')]-module
for the S-admissible 5-adic extension Fa, = Q(E[5%],3° ). Since Q(E[5>]) satisfies
(Dimg) (cf. [C, Lemma 2.8]), so does Q(E[5°°],3° ). Applying Theorem 5.7, we
have that Y(T5E/L) is a pseudo-null Z5[Gal(L/F)]-module when £ is one of the
following S-admissible 5-adic extensions:

oo oo — o0

QE[B®],2° 7,3° ), QE[B™],3 .50 ), QEB™),2° 3 7,5 ),

Loo(E[5%°],2°77,3% ), Loo(E[5°],3° ~,5° ), Loo(E[5*],2° ~,3° ~,5° ),

where Lo, is any Zg-extension of F' for 1 <r < 3.
Write K, = Q(E[5°]). Applying Theorem 5.7 in this direction, we have

rankZ5 [Gal(K oo /Feve)] Y(T5E/KOO)
= rankz, [Gal(Kk .. /Feve)] H1 (Gal(Foo/Koo), H3 (Foo /F, T5E)).

Unfortunately, we do not know how to show that this latter quantity is zero which
will then verify the pseudo-nullity for Y (T5E/Ls). What we do know at present is
that this quantity is either zero or two (cf. [CS, Example 4.8]).

(c¢) We now discuss our final numerical example which has also been considered
in [Jh, p. 362]. Let E be the elliptic curve 79A1 of Cremona’s table which is given by

v 4oy +y=ad+ 2% - 2.
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Take p = 3 and F = Q(u3). Let S be the set of primes of F lying above 3,79
and oco. The elliptic curve E has good ordinary reduction at the unique prime of F
above 3 and non split multiplicative reduction at the two primes of F' above 79. It was
shown in [Jh, p. 362] that Y (T3E/F) is a pseudo-null Z3[Gal(Fw /F)]-module when
F = Q(uz~,797%7). Again noting that Q(usz~,797>" ) satisfies (Dimg) (cf. [HV,
Lemma 3.9]), one can apply Theorem 5.7 to conclude that Y (T5F /L) is a pseudo-null
Zs3[Gal(L/F)]-module when L is one of the following S-admissible 3-adic extensions:

Q3,337,797 Loo(797%7), Loo(37%7,79737).

Here L is the unique Z3-extension of F'.

Now the residual representation on the Tate module of the elliptic curve 79A1 is
irreducible for p = 3. Hence there exists a complete Noetherian local domain R which
is finite flat over A = Z3[X] and a free R-module T of rank 2 with a continuous
Gal(Q/Q)-action which is the R-dual of the Galois representation attached to the
Hida family associated to the weight 2 newform corresponding to F (cf. [Hi], also
see [SS, Section 1 and Remarks at the end of Section 6] for details on R and T
note that our 7 here is the R(1)-dual of the representation considered there). As
mentioned above, the S-admissible 3-adic extension Q (3, 7972 ) satisfies (Dimg),
and therefore any S-admissible 3-adic extension containing Q(use~, 793" ) will also
satisfy (Dimg). Applying Theorem 5.4 (and noting the remarks made at the end of
Section 5), we have that Y (T'/L) is a pseudo-null R[Gal(L/F')]-module when L is one
of the following S-admissible 3-adic extensions:

Q(us=,797°7),  Qus=,3727,797%7), Loo(797°7), Lo(3727,797%7).

(Alternatively, one can deduce this by combining Jha’s observation and Theorem 5.7.)

7. Complement: On torsionness of fine Selmer group. As before, p will
denote a prime. Let F' be a number field, where we assume that it has no real primes
when p = 2. We also assume that our Galois module 7" is a free R-module of finite
rank with a continuous R-linear Gg(F)-action, where R is a complete regular local
ring with finite residue field of characteristic p. The following is a weaker version of
the conjecture made in Section 3.

CONJECTURE A’. For any number field F' and a S-admissible p-adic Lie extension
Fy of F, Ys(T/Fx) is a finitely generated torsion R[G]-module.

It is clear that Conjecture A’ will follow from Conjecture A and Lemma 5.2.
In particular, by Theorem 3.1, Conjecture A’ is a consequence of the Iwasawa -
conjecture. We now record the following lemma (compare with [CS, Lemma 3.1]).
We write A =T @ RV.

LeEMMA 7.1. Let F be a S-admissible p-adic Lie extension of F. Then the
following statements are equivalent.

(a) H3(Fs/F,T) is a torsion R[G]-module.

(b) Ys(T/Fw) is a torsion R[G]-module.

() H*(Gs(Fx),A) = 0.

REMARK. In view of Statement (c), Conjecture A’ is also sometimes called the
“weak Leopoldt conjecture for A” (over Fi).
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Proof. The equivalence of (a) and (b) follows from a similar argument as in
Lemma 3.4. We will now establish the equivalence of (a) and (¢). Consider the
following general version of the spectral sequence of Jannsen [Ja, Theorem 1]

E;j = Eth‘%[[G]] (HJ(GS(FOO)v A)V7 R[[G]]) = Hj;_j (FOO/F’ T)

(One can obtain this spectral sequence by combining the middle two derived isomor-
phisms in [FK, 1.6.12(4)].) Since the spectral sequence is bounded (as R[G] has
finite projective dimension), it follows that E:* must stabilize for large enough m. In
particular, we have that E%J is a subquotient of E3’. By the Auslander regularity
of R[G], the terms E47, and hence E%J, are torsion R[G]-modules for i # 0. Since
HZ(Fx/F,T) has a finite filtration with factors E42~ for i = 0,1, 2, this in turn yields
rank g H3(Foo /F. T) = rankpgey E%?. On the other hand, one sees easily that the

edge map E%? — Eg 2 s injective and has cokernel isomorphic to a subquotient of
Exthpe)(H' (G, A)Y, R[G]) ® Extiyq(HY(G, A)Y, R[G]).
As observed above, these are torsion over R[G]. Therefore, we may conclude that
rank gy Hs(Fo /F,T) = rankpgjey Hompjep (H*(Gs(Fx), A)Y, R[G]).

Therefore, it follows that H2(F./F,T) is a torsion R[G]-module if and only if
Hompgep (H*(Gs(Fx),A)Y,R[G]) is a torsion R[G]-module. Since
H?(Gs(Fx),A)Y is reflexive by [SS, Proposition 3.5(ii)] and [V1, Proposition
3.11(i)], the latter statement holds if and only if H?(Gs(Fx),A) =0. O

Combining the preceding lemma with Theorem 4.6 and Corollary 4.13, we have
the following results for the torsion property of the dual fine Selmer groups which are
analogous to the pseudo-nullity results obtained in Section 5.

PROPOSITION 7.2. Let Fy, be a S-admissible p-adic Lie extension of F. Suppose
that F!_ is another S-admissible p-adic Lie extension of F which satisfies the following
properties.

(i) F! is contained in Fy.

(i7) The group N := Gal(Fx/F.,) is a solvable uniform pro-p group and G/N
has no p-torsion.

Then Ys(T/EL,) is a torsion R|Gal(F., /F)]-module if and only if Ys(T/Fx) is
a torsion R[G]-module and Z(—l)irankR[[G/N]] H;(N,H%(Fs/F,T)) = 0.

i>1

PROPOSITION 7.3. Let Fiy be a S-admissible p-adic Lie extension of F'. Let x be
a nonzero and nonunital element of R, and suppose that R := R/xR is also reqular
local. Write T = T/xT. Then Ys(T/Fx) is a torsion R[G]-module if and only if
Ys(T/Fx) is a torsion R[G]-module and H2(Fs /F,T)[x] is a torsion R[G]-module.

REMARK. Proposition 7.2 can be viewed as a somewhat analogous statement for
Selmer groups as in [HV, Theorem 2.8] and [HO, Theorem 2.3].

We end by briefly mentioning some known cases of Conjecture A’. In the case
when T = Z,(1) and F, = F°, this follows from a classical theorem of Iwasawa [Iw1,
Theorem 5]. For a general admissible extension F,, one can deduce the conjecture
from the cyclotomic case using a limit argument with statement (¢) of Lemma 7.1
(see [OcV, Theorem 6.1] for details).
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When T is the Tate module of an elliptic curve F which does not have potentially
supersingular reduction at any primes above p, it is in fact conjectured that the
Pontryagin dual of the classical Selmer group is a torsion Z,[G]-module (see [HO,
Maz, Sch]). Conjecture A’ is then a consequence of this more general conjecture.

In the case when F is an elliptic curve defined over Q with good ordinary reduction
at p and F' is an abelian extension of @, it follows from a deep theorem of Kato [K] that
the dual Selmer group over F¥° is a torsion Z,[I']-module. In particular, conjecture
A’ holds in this case. Note that one cannot apply a limit argument as in [OcV,
Theorem 6.1] in this situation to the case of a general admissible p-adic Lie extension
F, since in general a finite extension L of F' contained in F,, need not be abelian
over Q and therefore, Kato’s theorem does not apply. However, one may still apply
Proposition 7.2 to obtain cases of Conjecture A’ over solvable admissible p-adic Lie
extension of F.

On the other hand, one can deduce conjecture A’ for elliptic curve over a S-
admissible p-adic Lie extension of F' containing F(E[p>]) via [CS, Lemma 2.4]. Here
one does not need any reduction hypothesis on E nor assumption on F.

Finally, we observe that under appropriate modification as noted in the Remark
at the end of Section 5, we can extend [SS, Corollary 6.17] to a solvable admissible
p-adic Lie extension.

Appendix A. On the structure of R[G]. The purpose of this appendix is
to prove certain results on the structure of the completed group algebra R[G]. We
believe results of such are well-known among experts, although they do not seem to
have been written down properly anywhere except for the case R = Z,. Since these
results are basic for the discussion in this paper, we have included their proofs here.
The following is the main result of the appendix.

THEOREM A.1. (a) If R is a commutative Noetherian local ring with finite residue
field of characteristic p and G is a compact p-adic Lie group, then R[G] is Noetherian.

() If R is a commutative Noetherian local domain with finite residue field of
characteristic p and G is a uniform pro-p group, then R[G] has no zero divisor.

(¢) If R be a commutative complete reqular local ring with finite residue field of
characteristic p and G is a compact p-adic Lie group without p-torsion, then R[G] is
an Auslander regular ring.

Statement (a) and (b) are well-known theorems of Lazard [Laz] when R = Z,
or R is a finite field of order p. (see also [DSMS, Corollary 7.25, Corollary 7.26]).
Statement (a) in this generality has been established in [Wil, Theorem 8.7.8] and [LSh,
Proposition 3.0.1]. Neumann [Neu] has shown statement (b) when G is a pro-p p-adic
Lie group without p-torsion and R = Z, by a different approach. His method can
be easily extended to the case when R is a regular local ring with characteristic zero.
However, his method does not seem to apply to the case when R has characteristic p.
Statement (c) is the theorem of Venjakob when R = Z,, or R is a finite field of order
p [V1, Theorems 3.26, 3.30(b)]. In this appendix, we will give a uniform? approach
to prove all three statements simultaneously.

We first review some facts which can be found in [DSMS]. For a finitely generated
pro-p group G, we write GP" = (¢g*'| g € G), that is, the group generated by the pth-
powers of elements in G. The pro-p group G is said to be powerful if G/GP is abelian
for odd p, or if G/@ is abelian for p = 2. We define the lower p-series by P;(G) = G,

2literally and figuratively
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and

Pi+1(G) = PZ(G)p[PZ(G),G], for 4 Z 1.

It follows from [DSMS, Thm. 3.6] that if G is a powerful pro-p group, then GP" =
P,41(G). This in turn implies that a finitely generated pro-p group G is powerful
if and only if [G,G] C GP*. Tt follows from the same theorem that for a finitely
generated powerful pro-p group G, the p-power map

Pi(G)/Pis1(G) = Pit1(G)/ Pir2(G)

is surjective for each ¢ > 1. If the p-power maps are isomorphisms for all i > 1, we
say that G is uniformly powerful (abrev. uniform). Note that in this case, we have an
equality |G : Po(G)| = |P;(G) : Piy1(G)| for every i > 1. We now recall the following
characterization of compact p-adic Lie groups due to Lazard [Laz] (see also [DSMS,
Cor. 8.34]): a topological group G is a compact p-adic Lie group if and only if G
contains a open normal uniform pro-p subgroup.

For the remainder of the appendix, G will always be a uniform pro-p group,
unless otherwise stated. For n > 0, we shall write G,, = P, (G). Denote I,, to be the
augmentation kernel of the map R[G] — R[G/G,] which is a closed two-sided ideal
of R[G]. Since the subgroups G, form a basis of neighbourhood of 1 in G, we have
R[G] = T&nR[[G]}/Im Fix a minimal set of topological generators ay, as, ..., aq of G.

Write b; = a; — 1 for each i. For a = (a,...,q) € N (here, IN is the set of natural
numbers including 0) and any d-tuple v = (vy, ...,vq4) € A%, we write

(0% «
(@) =1+ +ag, v¥=07" v

In particular, we write b® = b7" ---b3?. We now examine the structure of R[G] as
an R-module. For n > 1, we define

T, ={aecN|a; <p" ! fori=1,..d}.

LEMMA A.2. If G is uniform, then we have a direct sum decomposition

R[G] =TI, ® @ Rb”

acTy,

of R-modules. Furthermore, we have Rb* = R for each o and

In = In+1 S¥ @ Rb“
@€l 1\Th

Proof. (Compare with [DSMS, Lemma 7.9]) Denote ¢ to be the canonical quotient
R[G] - R[G/Gy]. By [DSMS, Theorem 3.6], every element of G/G,, can written as
aft--a$G, with a; < p"~!. Hence {¢(a”)| a € T,} generates R[G/G,] as an
R-module. Since G is uniform, we have |G/G,| = p»~D4, and so ¢(R[G]) is a free
R-module of rank p»~Y?. On the other hand, we have |T},| = p(®~ Y9, Therefore,
the generating set {¢(b%)| a € T,,} is actually a free R-basis for this module. The
assertions in the lemma are now immediate from this. O
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The next lemma is the key ingredient to the proof of our theorem. We write
grys, 3 RG] for the graded ring €, 5 In/In+1 whose multiplication is given by

(b + Ly 1)(BP + Lny1) = b7 + L1,

where v; = «; + ;. To see that this multiplication is well-defined, we note that by
an induction argument, it suffices to show that b;b; — b;b; € I>. Now observe that

bibj — b]bl = a;a; — a;a; = ([ai, aj] — 1)ajai

Since G is powerful, we have that [a;,a;] € G2. This implies that [a;,a;] — 1 € I,
which in turn implies that b;b; —b;b; € I2, as required. We may now prove our lemma.

LEMMA A.3. Let R be a complete Noetherian local ring with finite residue field
of characteristic p. Let G be a uniform pro-p group. Then we have an R-algebra
isomorphism given by

P R[Xl, ...,Xd] — gr{ln}R[[Gﬂ
Xj — bj —+ IQ.

Proof. The above argument shows that the assignment X; — b; + I give a well-
defined R-algebra homomorphism. Surjectivity of ® is an immediate consequence of
Lemma A.2. It remains to show that & is injective. Let A,, be the R-submodule of
R[X1, ..., X4] generated by monomials of the form X" --- XJ¢, where a; < p"~*! for
i=1,...,d. Then one has

®(A,) =P L/ L = P RbY,
j=1

acTy,

where the second equality comes from Lemma A.2. Now A,, and ®(A4,,) are both free
R-modules of rank m := |T,,| = p(»~ 14, Choose R-isomorphisms f : R™ = A,
and g : R™ — ®(A,). Then g~! o ® o f is a surjective endomorphism of R™. By
[M, Theorem 2.4], it follows that g~ o ® o f is an automorphism. In particular, this
implies that ker ®| 4, = 0. Therefore, we have ker ® = U,, ker ®|4, = 0, hence proving
the lemma. O

We can now give a proof of Theorem A.1.

Proof of Theorem A.1. Statement (b) is an immediate consequence of Lemma
A.3 and [DSMS, Proposition 7.27(i)]. Now let U be an open normal uniform pro-p
subgroup of G. Since U is a subgroup of G with finite index, it follows that R[G] is
Noetherian if R[U] is so. The latter is then an immediate consequence of Lemma A.3
and [DSMS, Proposition 7.27(ii)].

It remains to show statement (c¢). By (a), the ring R[G] is Noetherian. Therefore,
the global dimension of R[G] coincides with its topological projective dimension. Let
U be an open normal uniform pro-p subgroup of G. Since G has no p-torsion, we
may apply a result of Serre (cf. [Se, Corollaire 1]) to conclude that cd,(G) = c¢d,(U).
It then follows from [Bru, Theorem 4.1] that R[G] has finite global dimension. It
remains to verify the Auslander condition. By [NSW, Proposition 5.4.17], we have
an isomorphism Ext%[[cﬂ (M, R[G]) = Extzk[[Uﬂ (M, R[U]) of R[U]-modules for any
R[G]-module M. Therefore, we are reduced to showing that R[U] is Auslander
regular. By Lemma A.3, we have that the associated graded ring of gry In}RﬂUﬂ is a
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commutative regular local ring, since it is a polynomial ring over a regular local ring.
The conclusion will follow from an application of the theorem of Bjork (see Remarks
after [Bjo, Theorem 3.9] or [V1, Theorem 3.21]). (One still needs to verify the closure
condition in the cited theorem but this follows immediately from the observation that
the I,,’s are two-sided closed ideals of R[U]). O
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