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1. Introduction: why elliptic minuscule pairs. The motivation of this arti-
cle was to study the following question (cf. [9], 1.1) through a monodromy approach.

Question 1.1. Let AK be an absolutely simple abelian variety over a number
field K. Does there exist a finite extension L of K such that the base change of AK

to each finite extension of L has simple specializations at a set of places of positive
density?

Let us recall some notions before we formulate this question in more precise terms
and impose a natural hypothesis on AK .

Let t = Spec(K), t a geometric point of t and S a dense open sub-scheme of the
normalization of Spec(Z) in t such that At = AK extends to an abelian scheme A
over S.

We call an arbitrary S-fiber of A a specialization of At. A specialization As =
A×S s at a point s of S is said to be simple if it is a simple object in the category of
s-abelian varieties up to isogenies, that is, if Ends(As)⊗Z Q is a Q-division algebra.
And, a specialization As is absolutely simple if As ×s s is simple for some geometric
point s of s.

Recall that a subset Ξ of S\{t} has (natural) density d ([11], I–7), 0 ≤ d ≤ 1, if
asymptotically in N ∈ R,

Card({s ∈ Ξ,Card(k(s)) ≤ N}) = d
N

log N
+ o(

N

log N
).

As a fundamental example, the set

{s ∈ S\{t}, k(s) is a prime field}

has density 1.
In general, the density of Ξ is taken here to be the supremum of the densities of

its “measurable” subsets.
What we asked above is whether there exists some finite extension L of K such

that for each finite extension K ′ of L, if S′ denotes the normalization of S in t′ =
Spec(K ′), the set

{s′ ∈ S′\{t′}, A×S s′ is simple},
or what amounts to the same, the subset

{s′ ∈ S′\{t′}, k(s′) is a prime field, A×S s′ is simple}
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has positive density.
Note that

Lemma 1.2. The algebra Endt′(At′)⊗Z Q must be a field if At′ has at least one
simple specialization As′ at a point s′ with finite prime residue field.

Proof. For, Ends′(As′) ⊗Z Q is a field at such a point s′ ([14], p. 98, line 1) and
the specialization homomorphism

sp : Endt′(At′) = EndS′(AS′) ↪→ Ends′(As′ )

is injective.

In particular, our question has a negative answer unless

E := Endt(At)⊗Z Q

is a field, as was predicted in [9] and known to J. Achter in a less precise way ([1],
Theorem B).

One can ask if the hypothesis that E = Endt(At)⊗Z Q be a field is sufficient for
the question to have a positive answer.

For this, enlarge if necessary K to a finite extension so that

Endt(At) = Endt(At).

Let � be a prime number and let l be a place of E above �. Replacing S by
its open sub-scheme S[1/�] if necessary, we assume that � is prime to the residue
characteristics of S. Choose for each closed point s ∈ S a geometric point s located
at s and a “chemin” chs connecting s to t (SGA 1, Éxposé V, 7). Let Fs ∈ π1(s, s)
be the geometric Frobenius and F ∗

s the image of Fs under the composition

π1(s, s) → π1(S, s)
chs−→ π1(S, t)

ρ�,t−→ GLE(H
1(At,Q�)),

where ρ�,t is the �-adic monodromy representation associated with the abelian

scheme A. Let M� = Im(ρ�,t) be the monodromy and MZar
� its Zariski closure in

GLE(H
1(At,Q�)). Further enlarging K to a finite extension if necessary, one may

assume that MZar
� is connected.

The group MZar
� is then by Faltings ([6], satz 3) reductive and (loc.cit., satz 4)

Endt(At)⊗Z Q� →̃ EndMZar
�

(H1(At,Q�))
opposite.

If Vl denotes the El-component of H1(At,Q�) and if MZar
l

is the image of MZar
�

in GLEl
(Vl), one has

El = EndMZar
l

(Vl),

which amounts to the absolute irreducibility of Vl as a El-linear representation of
MZar

l
. The image Ml of M� in MZar

l
(El) is an open analytic subgroup by Bogomolov

[3].
At each closed point s of S, the commutant of F ∗

s on Vl is

(Ends(As)⊗Z Q)opposite ⊗E El,
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as by Tate [13]

Ends(As)⊗Z Q� →̃ EndF∗
s
(H1(At,Q�))

opposite.

Recall that if at one point s ∈ S\{t} with prime residue field As is simple, then

Ends(As)⊗Z Q = Q(F ∗
s )

is a field of degree 2g over Q, where g = dim(At). This Frobenius F
∗
s has all distinct

eigenvalues on H1(At,Q�) and F ∗
s lies in a unique maximal torus of MZar

� . So

Lemma 1.3. If At has at least one simple specialization at a point s with fi-
nite prime residue field, then some, hence every, maximal torus of MZar

� acts on
H1(At,Q�) without multiple weights.

This weight multiplicity free condition has the following immediate implication:

Proposition 1.4. Suppose that MZar
� is connected and that the monodromy

representation H1(At,Q�) has no multiple weights. Then in a density 1 set Σ of points
s ∈ S\{t} every positive power of F ∗

s has all distinct eigenvalues on H1(At,Q�). In
particular, the simple factors of each As, s ∈ Σ, are absolutely simple mutually non-
isogenous over s and Ends(As) is commutative. A specialization at a point s ∈ Σ is
thus absolutely simple if it is simple.

Proof. Let s be a point of S\{t}. The Frobenius F ∗
s being semi-simple on

H1(At,Q�) lies in a maximal torus T(s) of MZar
� , as MZar

� is connected. And, F ∗
s

has eigenvalues χi(F
∗
s ), where χi are the weights of H1(At,Q�) relative to T(s).

These eigenvalues generate over Q an extension of degree bounded by a constant,
as the characteristic polynomial of F ∗

s has coefficients in Z (Weil). Thus, if some ratio
χi(F

∗
s )/χj(F

∗
s ) is a root of unity, its order divides an integer N(g) > 1 depending

only on g = dim(At).
The following subset of M�

{u ∈ M�, u
N(g) has all distinct eigenvalues on H1(At,Q�)}

is Zariski open and stable under conjugation. Its volume in the normalized Haar
measure of M� is by Cebotarev’s density theorem ([11], I–8, Corollary 2) the density
of the set

{s ∈ S\{t}, (F ∗
s )

N(g) has all distinct eigenvalues}
or the density of the set

Σ = {s ∈ S\{t}, (F ∗
s )

N has all distinct eigenvalues, ∀ N ≥ 1}.
This volume and this density are 1 because the characters χi are all distinct by

assumption.
Consider an integer N ≥ 1 and a finite extension k′ of k(s) of degree N , where

s ∈ Σ. Put s′ = Spec(k′) and As′ = As ×s s
′. As (F ∗

s )
N has all distinct eigenvalues

on H1(At,Q�), the ring Ends′(As′ ) is commutative, for by Tate

Ends′(As′ )⊗Z Q� →̃ End(F∗
s )N (H

1(At,Q�))
opposite.

Now As is isogenous to a product of simple abelian varieties Ai, i ∈ I. If one
factor appears with multiplicity > 1, or if Ai ×s s

′ is not simple, or if Ai ×s s
′ and
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Aj ×s s
′ are isogenous for i �= j, then Ends′(As′ ) is not commutative. So these factors

Ai of As are absolutely simple mutually non-isogenous over s, ∀ s ∈ Σ.

And, this weight multiplicity free condition means ([7], 4.6.3) that the tensor
components of each Vl, as a El-linear representation of the derived group of MZar

l
,

are
— either minuscule
— or of the types (An, rω1), (An, rωn), (Bn, ω1), (C3, ω3), (G2, ω1) for some

integers n, r > 1.
Recall that a minuscule representation is a highest weight representation all whose

weights have the same length.
To seek a positive answer we now assume that some Vl is minuscule. (The types

(An, rω1), (An, rωn) are not self-dual and thus do not occur in Vl if E is totally real.
The non-minuscule types might after all be ruled out by elementary means.)

We assume that Vl is even elliptic minuscule, namely, that the derived group Gl

of MZar
l

admits at least one maximal torus acting irreducibly on Vl. Such a torus has
a nonempty Zariski open set of El-points acting irreducibly on Vl.

The subset of the compact analytic group Ml consisting of those elements acting
irreducibly on Vl is a union of conjugacy classes and is open by Krasner’s lemma
([10], II, Exercice 2). For elliptic minuscule Vl, this subset is nonempty whose nonzero
volume in the normalized Haar measure of Ml is by Cebotarev’s density theorem the
density of the set

{s ∈ S\{t}, F ∗
s acts irreducibly on Vl},

or equivalently the density of the set

{s ∈ S\{t}, (Ends(As)⊗Z Q)⊗E El is a division algebra},
which is ≤ the density of the set

{s ∈ S\{t},Ends(As)⊗Z Q is a division algebra},
or that of

{s ∈ S\{t}, k(s) is a prime field, As is simple}.
So one has the following partial answer:

Theorem 1.5. Let � be a prime number. Suppose that E := Endt(At) ⊗Z

Q = Endt(At) ⊗Z Q is a field, that MZar
� is connected and that the monodromy

representation H1(At,Q�) admits an elliptic minuscule factor Vl for a place l of E
above �.

Then, for every prime l, H1(At,Ql) has no multiple weights as a representation
of the identity component of MZar

l , and At specializes to absolutely simple abelian
varieties at a set of places of positive density.

To provide substance to this answer, our goal is to classify elliptic minuscule
representations, namely, to solve the problem below:

Question 1.6. Let G be a semi-simple algebraic group over the spectrum η of a
finite extension of Q� and ρV : G → GL(V ) an absolutely irreducible η-linear algebraic
representation with finite kernel. Does G admit some maximal torus acting irreducibly
on V ?
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One can assume G to be simply connected. Let η be a geometric point of η.
Notice that a maximal torus T acts irreducibly on V if and only if the weights of Vη

relative to Tη are permuted transitively by π1(η, η). So if such a torus exists, all the
weights have the same length, that is, Vη is minuscule.

Let Dη be the Dynkin diagram of Gη and ρD : π1(η, η) → Aut(Dη) the index.
Let αi, i = 1, · · · , r, be the π1(η, η)-orbits in Dη consisting of minuscule vertices
corresponding to a minuscule representation V = V1⊗η· · ·⊗ηVr ofG = G1×η · · ·×ηGr,
Gi being the simple factors. Put D = (Dη, ρD), αV =

∑
αi.

Whether or not G has a maximal torus acting irreducibly on V depends in fact
only on (D,αV ) (2.3, 3.1). If G admits such a torus, we call (D,αV ) an elliptic
minuscule pair (2.2). The elliptic minuscule pairs with connected Dynkin diagrams
are enumerated in (3.2).

Remarks 1.7. 1) Suppose that t has values in C, that E = Endt(At) ⊗Z Q is
a field and that the Mumford–Tate group of the Hodge structure on H1(Aan

t
,Q) is

definable by absolute Hodge cycles rational over t ([5], 2.11, 2.9). It is possible that
then At has absolutely simple specializations at a set of places of positive density.

2) (requested by a referee) Since [9], the question (1.1) has been considered by J.
Achter [1], [2] and by D. Zywina [16]. Both relied on the truth of the Mumford–Tate
conjecture for At. Zywina claimed that At has absolutely simple specializations at
a set of places of density 1 when E = Endt(At) ⊗Z Q is a field. His argument is
mistaken at a critical point ([16], Lemma 7.1, p. 20, line 1):

Since Ai is simple, we know by Faltings that V�(Ai) is an irreducible Q�[GalK ]-
module, ...

By Faltings only if End(Ai) ⊗Z Q� is a division algebra, the monodromy repre-
sentation V�(Ai) of a simple abelian variety Ai is irreducible. For a number field Z
such as the center of End(Ai) ⊗Z Q, there may not exist a single prime � such that
Z ⊗Q Q� is a field. This is the case when Z contains a non-solvable Galois extension
of Q.

Achter [2] showed that At has absolutely simple specializations at a set of places
of density 1 when E is a field and when an extra condition is verified. This extra
condition assures the existence of infinitely many places l of E where V ⊗E El, as a
representation of the derived group of MZar

l
, is elliptic minuscule. His initial approach

[1] implicitly assumed that infinitely many primes � satisfy that E⊗QQ� is a field. He
did not make a (necessary) preliminary extension of the base field K in the statements
in both [1], [2].

Acknowledgement. We owe much to M. Aschbacher for answering questions
of Ying Zong. We thank J. Achter for kind correspondences. We thank especially
C. Chai and S. Lu and the referee for their critical reading of the manuscript and
providing comprehensive advice on writings.

2. Elliptic minuscule pairs.

2.1. A Dynkin diagram is a finite set D equipped with the structure of a function
l : D → {1, 2, 3} (“longueurs”) and of a binary relation L (“liaisons”) on D such that
L is disjoint with the diagonal of D ×D.

Every root system has its Dynkin diagram with its connected components labeled
according to types as A,B, · · · , G2 ([4], Chapitre VI, Théorème 3, p. 197).

Let S be a scheme. An S-Dynkin diagram is a sheaf of sets D on S for the étale
topology which is locally constant constructible and is equipped with the structure of
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a morphism l : D → {1, 2, 3}S and of a sheaf of S-relations L ⊂ D ×S D, L locally
constant constructible on S, such that for every geometric point s of S the fibre Ds

with the function ls and the relation Ls is a Dynkin diagram.
For every S-scheme S′, D×SS

′ is an S′-Dynkin diagram and every descent datum
on D relative to S for the étale topology is effective.

The monodromy representation

ρD,s : π1(S, s) → Aut(Ds, ls, Ls)

associated with an S-Dynkin diagram D at a geometric point s → S is said to be the
index of D at s (cf. [15], 2.3).

One defines π0(D) to be the quotient of D by the equivalence relation generated
by L. Notice that D is a π0(D)-Dynkin diagram.

Every reductive S-group scheme has its S-Dynkin diagram which is functorial
with respect to isomorphisms and is compatible with every base change (SGA 3,
Éxposé XXIV, 3.3).

Given an S-Dynkin diagram D, if at every geometric point s of S the components
of the fibre Ds are of the types A,B, · · · , G2, then there is a quasi-épinglé semi-
simple simply connected S-group scheme which has D as its S-Dynkin diagram (SGA
3, Éxposé XXIV, Théorème 3.11).

And, for each semi-simple simply connected S-group scheme G, there exists up
to unique isomorphisms a unique pair (Q, u) which consists of a quasi-épinglé semi-
simple simply connected S-group scheme Q and of an “isomorphisme extérieur” u ∈
Isom.extS(Q,G) (SGA 3, Éxposé XXIV, Corollaire 3.12). The existence of u enables
the identification of the S-Dynkin diagram D of Q with that of G and permits one to
define the S-scheme of “isomorphismes intérieurs”

Isom.intS(Q,G),

which is a left torsor under the adjoint group of G and a right torsor under the adjoint
group of Q.

Let T ⊂ B be the canonical maximal torus and Borel subgroup of Q, U the
unipotent radical of B, N the normalizer of T in Q and W = N/T the Weyl group.
Let

π : X → S

denote the S-scheme Q/B, which is projective smooth with geometrically connected
fibres over S.

Suppose that

ω : T → Gm,S

is a weight of Q with respect to T that is dominant relative to the notion of positivity
defined by B. Let

ωB : B → B/U = T
ω−→ Gm,S

be the composition. This character ωB, when twisted by the BX -torsor

Q → Q/B = X,
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provides a Gm,X -torsor

Q
BX∧ Gm,X

and an invertible OX -module

Lω = Q
BX∧ Gm,X

Gm,X∧ OX .

Recall that Eω = π∗Lω is a representation of Q on a locally free OS-module
of finite rank whose formation is compatible with every base change S′ → S. And
when S is the spectrum of an algebraically closed field of characteristic zero, Eω is
irreducible with highest weight ω.

In particular, to each section α ∈ D(S) of the S-Dynkin diagram D, there corre-
sponds a fundamental representation Eα of Q of fundamental weight ωα.

We say that a section α ∈ D(S) is minuscule if the Weyl orbit

Wωα ⊂ HomS(T,Gm,S)

is the sheaf of weights of Eα relative to T .
More generally, α =

∑r
i=1 αi, αi ∈ D(S), is said to be minuscule if each αi is

minuscule and if, for every geometric point s of S, αi,s lie in distinct components of
Ds. Let Wωα := Wωα1 ×S · · · ×S Wωαr

.

Definition 2.2. Suppose that S is connected and that α =
∑r

i=1 αi is minuscule.
The pair (D,α) is said to be an elliptic minuscule pair or simply elliptic if there exists
a W -torsor x on S such that

x
W∧ Wωα

is a connected object in the Galois category of locally constant constructible sheaves on
S, that is, if at some geometric point s of S the image of the monodromy representation

ρx,s : π1(S, s) → Aut((x
W∧ Wωα)s)

acts transitively on the fibre (x
W∧ Wωα)s. Every such W -torsor x is said to be elliptic

for (D,α).

One has the following result:

Theorem 2.3. Let η be the spectrum of a complete discretely valued field of
characteristic zero with finite residue field. Let G be a semi-simple algebraic group
over η with Dynkin diagram D and let ρV : G → GL(V ) be an absolutely irreducible
η-linear algebraic representation with finite kernel.

Then there exists a maximal torus of G acting irreducibly on V if and only if V
is minuscule and (D,α) is elliptic, α being the minuscule section corresponding to V .

For its proof, we may and do assume G to be simply connected.
Observe that if G admits a maximal torus T which acts irreducibly on V , then

the weights of Vη relative to Tη are permuted transitively by π1(η, η). A priori, all
these weights have the same length, and so V is minuscule ([4], Chapitre VIII, §7,
Proposition 6, p. 127).
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In the following we suppose that V is minuscule. Let α =
∑

αi denote its
corresponding minuscule section of D.

Lemma 2.4. For each anisotropic maximal torus T of G, if Tad denotes its image
in the adjoint group Gad, the canonical map

H1(η,Tad) → H1(η,Gad)

is surjective and H2(η,T) = 0.

Proof. Notice that H1(η,G) = 0, as G is by assumption simply connected
(Kneser). Let Z be the center of G. The central extension

1 → Z → G → Gad → 1

induces the cohomology sequence

H1(η,G) → H1(η,Gad)
∂−→ H2(η, Z)

from which it follows that

∂ : H1(η,Gad) → H2(η, Z)

is injective. To show that

H1(η,Tad) → H1(η,Gad)

is surjective, it suffices to show that the composition

δ : H1(η,Tad) → H1(η,Gad)
∂
↪→ H2(η, Z)

is surjective. The map

δ : H1(η,Tad) → H2(η, Z)

is a coboundary map induced by the central extension

1 → Z → T → Tad → 1

and the cohomology sequence

H1(η,Tad)
δ−→ H2(η, Z) → H2(η,T)

implies that

δ : H1(η,Tad) → H2(η, Z)

is surjective if H2(η,T) = 0.

So it remains to show that H2(η,T) = 0. Since the Yoneda pairing

Homη(T,Gm)×H2(η,T) → H2(η,Gm) = Br(η) →̃ Q/Z

is non-degenerate (Nakayama–Tate), it suffices to show that

Homη(T,Gm) = 0.
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But this latter is precisely the condition that T is anisotropic.

Let the quasi-épinglé semi-simple simply connected η-group scheme Q, the “iso-
morphisme extérieur” u ∈ Isom.extη(Q,G) and the bitorsor Isom.intη(Q,G) be as in
(2.1).

Let T ⊂ B be the canonical maximal torus and Borel subgroup of Q, N the
normalizer of T in Q, W = N/T , C the center of Q and T ad (resp. Nad) the image
of T (resp. N) in the adjoint group Qad.

Let Eα = ⊗Eαi
be the minuscule representation of Q of fundamental weight ωα.

Lemma 2.5. 1) The Qad(η)-conjugacy classes of maximal tori of Q are in bijective
correspondence with the elements of H1(η,N).

2) The map H1(η,N) → H1(η,W ) is injective whose image contains those iso-

morphism classes of W -torsors x on η such that x
W∧ T is anisotropic.

Proof. 1) The set (Q/N)(η) classifies the maximal tori of Q because locally on η
for the étale topology they are all conjugate to T by sections of Q.

The exact sequence of pointed sets

Qad(η) → (Q/N)(η) → H1(η,Nad) → H1(η,Qad)

shows that the Qad(η)-orbits in (Q/N)(η) are in one-to-one correspondence with the
elements of the kernel of the map

H1(η,Nad) → H1(η,Qad).

Observe that in the cohomology sequence

H1(η,Q) → H1(η,Qad)
∂−→ H2(η, C)

induced by the central extension

1 → C → Q → Qad → 1,

the map

∂ : H1(η,Qad) → H2(η, C)

is injective since

H1(η,Q) = 0,

Q being simply connected.
Hence, the kernel of the map

H1(η,Nad) → H1(η,Qad)

is equal to the kernel of the composition

δ : H1(η,Nad) → H1(η,Qad)
∂
↪→ H2(η, C).

This

δ : H1(η,Nad) → H2(η, C)
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is a coboundary map induced by the central extension

1 → C → N → Nad → 1.

From the exact sequence

H1(η, C) → H1(η,N) → H1(η,Nad)
δ−→ H2(η, C),

one finds that H1(η,N) is mapped onto Ker(δ) by

H1(η,N) → H1(η,Nad).

To conclude that H1(η,N) is isomorphic to this image, it suffices to show that
the map

H1(η, C) → H1(η,N)

is 0 or, by the factorization

H1(η, C) → H1(η, T ) → H1(η,N),

that

H1(η, T ) = 0.

This latter vanishing follows from the identity

H1(η, T ) = H1(D,Gm)

(SGA 3, Éxposé XXIV, Corollaire 3.14) and by Satz 90:

H1(D,Gm) = 0,

the Dynkin diagram D being representable by a finite étale η-scheme.

2) That

H1(η,N) → H1(η,W )

is injective results from the cohomology sequence

H1(η, T ) → H1(η,N) → H1(η,W )

and by H1(η, T ) = 0.
The class of a W -torsor x on η lies in the image of the map

H1(η,N) → H1(η,W )

if and only if an obstruction

o(x) ∈ H2(η, x
W∧ T )

vanishes.

When x
W∧ T is anisotropic, one has in fact H2(η, x

W∧ T ) = 0 (2.4).
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Lemma 2.6. If a torus of G acts irreducibly on V , it is anisotropic.

Proof. A torus is anisotropic if and only if it has no diagonalizable sub-torus other
than 1.

Recall that the kernel of the representation

ρV : G → GL(V )

is finite. And det(ρV ) = 1, as G is semi-simple.
Suppose that a certain torus of G acts irreducibly on V . If a Gm were in this

torus, it would act on V by a character z �→ zn for some integer n and thus on det(V )
by the character z �→ znd, where d = dim(V ). So nd = 0, i.e., n = 0 and Gm was
contained in Ker(ρV ).

Lemma 2.7. The group G has a maximal torus acting irreducibly on V if and
only if the group Q has a maximal torus acting irreducibly on Eα.

Proof. Suppose that a maximal torus T of G acts irreducibly on V . By (2.6), T
is anisotropic. And by (2.4), the map

H1(η,Tad) → H1(η,Gad)

is surjective. The Gad-torsor

Isom.intη(Q,G)

is in particular the image of a Tad-torsor, which means (SGA 3, Éxposé XXIV, Propo-
sition 2.11) that T imbeds into Q as a maximal torus and the scheme

I = Isom.intη(Q,G; Id on T)

of “isomorphismes intérieurs” from Q to G that induce the identity automorphism on
T is nonempty.

Let η be a geometric point of η. The choice of a section ι ∈ I(η) identifies the
sheaves of weights of V and of Eα relative to T. So Eα is isomorphic to V as a
T-module. So T acts irreducibly on Eα.

The other direction is proven similarly.

2.8. Proof of Theorem 2.3. By (2.7) it suffices to show that (D,α) is elliptic if
and only if Q has some maximal torus acting irreducibly on Eα.

Suppose first that Q admits a maximal torus acting irreducibly on Eα.

This torus has then the form z
N∧ T for an N -torsor z (2.5). Relative to this torus

the sheaf of weights of Eα is

z
N∧ Wωα ⊂ z

N∧ Homη(T,Gm).

The condition that z
N∧ T acts irreducibly on Eα is equivalent to the condition that

z
N∧ Wωα is a connected object in the Galois category of locally constant constructible

sheaves on η. So z
N∧ W is a W -torsor elliptic for (D,α).

Suppose next that (D,α) is elliptic and that x is a W -torsor elliptic for (D,α).
Let ρ : Q → GL(Eα) denote the minuscule representation corresponding to α and

let ρT be its restriction to T .
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One has that Ker(ρT ) is finite and that det(ρT ) = 1. The torsor x twists ρT to a

representation of x
W∧ T ,

ρx,T : x
W∧ T → GL(Eα),

which has x
W∧ Wωα as its sheaf of weights. In particular, ρx,T is irreducible. More-

over, being a twist of ρT , ρx,T has finite kernel and determinant 1. As in (2.6), x
W∧ T

is anisotropic. Thus it can be imbedded into Q (2.5). So x
W∧ T is a sought-after

maximal torus of Q acting irreducibly on Eα.

3. Simple elliptic pairs. Let S be a scheme. Recall that an S-Dynkin diagram
D is also a π0(D)-Dynkin diagram, where π0(D) is the finite étale S-scheme, the
quotient of D by the S-equivalence relation generated by the S-binary relation L
(“liaisons”) (2.1). The fiber D ×π0(D) z is a connected Dynkin diagram for every
geometric point z of π0(D).

Suppose that S is connected. Let (D,α) be as in (2.2). Suppose that π0(D) = S.
Then in the notations of Bourbaki–Tits ([4], Chapitre VI, Planches I–IX, p. 250–275,
and [15], p. 54–61), if D is non-constant, (D,α) can only be (2An, αn+1

2
), n odd ≥ 3,

or (2Dn, α1), n ≥ 5, or (2D4, αi), i = 1, 3, 4.
Let s be a geometric point of S. We write down the condition that (D,α) be

elliptic.

Lemma 3.1. 1) (An, αr), r ∈ [1, n], is elliptic if and only if there is a monodromy
representation in the symmetric group of n+ 1 letters

ρ : π1(S, s) → Sn+1

whose image permutes transitively the subsets of {1, · · · , n+ 1} of cardinality r.
2) (Bn, αn) is elliptic if and only if there is a representation

ρ : π1(S, s) → GLn(Z)

whose image lies in the group generated by the diagonal matrices and monomial ma-
trices and acts transitively on the set

{±e1 ± · · · ± en},

where e1, · · · , en denote the standard basis of Zn.
3) (Cn, α1) is elliptic if and only if there is a representation

ρ : π1(S, s) → GLn(Z)

whose image lies in the group generated by the diagonal matrices and monomial ma-
trices and acts transitively on the set

{e1, · · · , en,−e1, · · · ,−en},

where e1, · · · , en denote the standard basis of Zn.
4) (Dn, α1) is elliptic if and only if there is a representation

ρ : π1(S, s) → GLn(Z)
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whose image lies in the group generated by the diagonal matrices of determinant 1
and monomial matrices and acts transitively on the set

{e1, · · · , en,−e1, · · · ,−en},
where e1, · · · , en denote the standard basis of Zn.

5) (Dn, αn−1) (resp. (Dn, αn)) is elliptic if and only if there is a representation

ρ : π1(S, s) → GLn(Z)

whose image lies in the group generated by the diagonal matrices of determinant 1
and monomial matrices and permutes transitively the vectors

s1e1 + · · ·+ snen,

where si ∈ {1,−1}, s1 · · · sn = −1 (resp. s1 · · · sn = 1) and e1, · · · , en denote the
standard basis of Zn.

6) (E6, αi), i = 1, 6, are elliptic if and only if there is a representation

ρ : π1(S, s) → O(F6
2, q)

whose image permutes transitively the nonzero q-singular vectors in F6
2, where q is

the quadratic form such that

q(ei) = q(fj) = 1, q(ei + ej) = q(fi + fj) = 0, q(ei + fj) = δij ,

where ei, fj, 1 ≤ i, j ≤ 3, are a basis of F6
2 and where δij = 1, if i = j, and δij = 0,

if i �= j.
7) (E7, α7) is elliptic if and only if there is a representation

ρ : π1(S, s) → {1,−1} × Sp6(F2)

whose image acts transitively on {1,−1}×(Sp6(F2)/O(q)), q being the quadratic form
on F6

2 such that

q(ei) = q(fj) = 1, q(ei + ej) = q(fi + fj) = 0, q(ei + fj) = δij ,

where ei, fj are the standard symplectic base of F6
2 and where δij = 1, if i = j, and

δij = 0, if i �= j.
8) (2An, αn+1

2
), n odd ≥ 3, is elliptic if and only if there is a representation

ρ = (ρ1, ρ2) : π1(S, s) → {1,−1} ×Sn+1

whose image permutes transitively the subsets of {1, · · · , n+1} of cardinality (n+1)/2
and whose component ρ1 is the index of 2An. Here −1 : Y �→ {1, · · · , n + 1}\Y , for
any Y ⊂ {1, · · · , n+ 1} of cardinality (n+ 1)/2.

9) (2Dn, α1), n ≥ 5, or (2Dn, αi), n = 4, i = 1, 3, 4, are elliptic if and only if
there is a representation

ρ : π1(S, s) → GLn(Z)

whose image lies in the group W generated by the diagonal matrices and monomial
matrices and acts transitively on the set {±e1, · · · ,±en} and which when composed
with the projection W → W/W1 = {1,−1} induces the index of 2Dn:

ρ2Dn
: π1(S, s)

ρ−→ W → W/W1 = {1,−1},
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where W1 is the subgroup of W generated by the diagonal matrices of determinant 1
and monomial matrices and where e1, · · · , en denote the standard basis of Zn.

Proof. Let Q be a quasi-épinglé semi-simple simply connected S-group scheme
which has D as its S-Dynkin diagram (2.1). Let T be the canonical maximal torus
of Q. Let R (resp. W ) be the root system (resp. Weyl group) of Q relative to T .
One has the following canonical exact sequence of sheaves of S-groups for the étale
topology:

1 → W → AutS(R) → AutS(D) → 1.

This exact sequence induces the cohomology sequence:

H1(S,W ) → H1(S,AutS(R)) → H1(S,AutS(D)),

by which one concludes that

An S-form of R, R1, is isomorphic to x
W∧ R for some W -torsor x if and only if

R1 has its Dynkin diagram isomorphic to D.

When a geometric point s of the connected scheme S is given, the following two
conditions are equivalent:

— R1 has D as its S-Dynkin diagram.

— the composition

π1(S, s)
ρR1,s−→ Aut(Rs) → Aut(Ds)

is the index of D at s, where ρR1,s denotes the monodromy representation associated
with R1 at s.

Let x be a W -torsor and Rx := x
W∧ R. Observe that the monodromy Im(ρRx,s)

at s associated with every such form Rx normalizes the weights Wsωα. The following
two conditions are equivalent:

— x
W∧ Wωα is a connected object in the Galois category of locally constant

constructible sheaves on S.
— the monodromy Im(ρRx,s) acts transitively on the weights Wsωα.

In brief, (D,α) is elliptic if and only if

There is a representation

ρ : π1(S, s) → Aut(Rs)

which satisfies the following two properties :
— When composed with the projection Aut(Rs) → Aut(Ds) it induces the index

of D at s:

ρD : π1(S, s)
ρ−→ Aut(Rs) → Aut(Ds).

— The image of ρ acts transitively on Wsωα.

If D is constant, then W and R are constant and the class of a W -torsor “is” a
W -conjugacy class of monodromy representations in W . This criterion simplifies then
to
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There is a representation

ρ : π1(S, s) → W

whose image acts transitively on the weights Wωα.

For type (An, αr), this says that

There is a representation

ρ : π1(S, s) → Sn+1

whose image permutes transitively the subsets of {1, · · · , n+ 1} of cardinality r.

Indeed, in this case,
— the Weyl group “is” the symmetric group Sn+1 of n+ 1 letters.
— the Weyl orbit Wωr of the minuscule weight ωr “is” the collection of subsets

of {1, · · · , n+ 1} of cardinality r equipped with its canonical permutation action by
Sn+1.

One proceeds similarly for other types provided given a description of Aut(R), of
the Weyl group W , of the minuscule vertex α and of the weights Wωα.

These for (Bn, αn), (Cn, α1), (Dn, αi), i = 1, n − 1, n, (E6, αi), i = 1, 6,
(2An, αn+1

2
), (2Dn, α1), (

2D4, αi), i = 1, 3, 4 follow from Bourbaki [4], Chapitre VI,

Planches and Chapitre VI, no4, Exercice 2.
For (E7, α7), one can almost quote Bourbaki [4], Chapitre VI, no4, Exercices 3+2:

Let Q(E7) be the root lattice and P (E7) the weight lattice of a root system of type
E7. Then 2P (E7) ⊂ Q(E7) and the quotient E = Q(E7)/2P (E7) is a 6-dimensional
F2-vector space on which the Killing form (, ) induces a symplectic form. The Weyl
group W (E7) acts on E preserving (, ) and it maps onto Sp(E) with kernel {1,−1}
of order 2, loc.cit. The central extension

1 → {1,−1} → W (E7) → Sp(E) → 1

splits. Let {α1, · · · , α7} be a base of E7 so that {α1, · · · , α6} generates a root system
of type E6. Observe that the roots of this sub-system

e1 = α1 + α2 + 2α3 + 2α4 + α5 + α6,

e2 = α1 + α2 + α3 + α4 + α5,

e3 = α2 + α4,

f1 = α1 + α3 + α4,

f2 = α4 + α5 + α6,

f3 = α3 + α4 + α5

satisfy the orthogonality relations

(ei, ej) = 2δij , (fi, fj) = 2δij , (ei, fj) = δij
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and that their images in E form a symplectic base. In particular,

F = Q(E6)/2Q(E6) →̃ Q(E7)/2P (E7) = E

is a bijection, where Q(E6) denotes the root lattice of E6.

When F is equipped with the quadratic form q = 1
2 (, ), W (E6) is identified with

O(q) (loc.cit.). Hence,

W (E7)ω7 = W (E7)/W (E6) = {1,−1} × (Sp(E)/O(q)).

It is evident that ellipticity is a nonempty condition only when the base scheme
has a rather “small” fundamental group.

Theorem 3.2. Let S be the spectra of a complete discrete valuation ring, η (resp.
s) its generic (resp. closed) point and η a geometric generic point. Suppose that k(η)
is of characteristic zero and that k(s) is finite of characteristic �.

Then the elliptic minuscule pairs (D,α) over η such that Dη is a connected Dynkin
diagram are enumerated in the following list :

A) (An, α1), (An, αn), n ≥ 1, every prime �,
(A�d−1, α2), (A�d−1, α�d−2), d an integer ≥ 1, every prime �,
(Ap−1, α2), (Ap−1, αp−2), p prime, p ≡ 1 mod 4, Card(k(s)) mod p generates F×

p ,
(Ap−1, α2), (Ap−1, αp−2), p prime, p ≡ 3 mod 4, Card(k(s)) mod p generates a

subgroup of F×
p of index ≤ 2,

(A7, α3), (A7, α5), � = 2,
(A31, α3), (A31, α29), � = 2, 5 � [s : F2];

2A) (2A3, α2), every prime �,
(2A5, α3), � = 5,
(2A5, α3),

2A5 ramified over S, Card(k(s)) mod 5 generates F×
5 ;

B) (B3, α3), (B4, α4), every prime �,
(Bn, αn), n ≥ 5, � = 2;

C) (Cn, α1), n ≥ 2, every prime �;
D) (Dn, α1), n odd ≥ 5, � = 2,

(Dn, α1), n even ≥ 4, every prime �,
(D5, α4), (D5, α5), every prime �,
(Dn, αn−1), (Dn, αn), n ≥ 6, � = 2;

2D) (2Dn, α1), n ≥ 5, every prime �;
E6) (E6, α1), (E6, α6), � = 3,

(E6, α1), (E6, α6), Card(k(s)) ≡ ±2,±4 mod 9;
E7) (E7, α7), � = 2.

This list is justified in the remaining sections.

4. Two lemmas. Let S be the spectra of a complete discrete valuation ring and
η (resp. s) its generic (resp. closed) point. Suppose that k(η) is of characteristic
zero and that k(s) is finite of characteristic �. Let η (resp. s) be the spectrum of an
algebraic closure of k(η) (resp. k(s)).

As S is complete along s, the inclusion s ↪→ S induces a bijection

π1(s, s) →̃ π1(S, s).
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The group π1(s, s) is isomorphic to Ẑ with the Frobenius Fs as its canonical
generator. For each integer N ≥ 1 there is thus up to isomorphisms a unique spectra
SN of a discrete valuation ring such that SN is finite étale Galois over S with cyclic
Galois group of order N .

Let S(s) be the strict localization of S at s and ηhs the generic point of S(s). The
open immersion η ↪→ S induces a surjection

π1(η, η) → π1(S, η)  π1(S, s),

whose kernel, the inertia subgroup of π1(η, η), is isomorphic to π1(η
hs, η). This inertia

subgroup admits a canonical surjection

π1(η
hs, η) →

∏
p�=�

Zp(1),

which corresponds by Galois theory to the subextension of k(η)/k(ηhs) obtained by
joining to k(ηhs) all N -th roots of a uniformizer of S(s) for all integers N prime to �.
The kernel of this surjection, the wild inertia subgroup of π1(η, η), is a pro-�-group
and normal in π1(η, η).

In particular, the group π1(η, η) is pro-solvable.
The quotient of π1(η, η) by its wild inertia subgroup is denoted by πt

1(η, η), which
as a profinite group admits 2 generators F, T and 1 single relation:

FTF−1 = T q,

where q = Card(k(s)).
A monodromy representation π1(η, η) → G is said to be unramified (resp. tamely

ramified) over S if its kernel contains the inertia (resp. wild inertia) subgroup. A
quotient G of π1(η, η) is said to be unramified (resp. tamely ramified) over S if the
quotient homomorphism π1(η, η) → G is.

We will apply the following two simple lemmas a few times.

Lemma 4.1. Let N be an integer ≥ 1. Let ζ ∈ GLN (F�) be such that

ζ : e1 �→ e2, e2 �→ e3, · · · , eN �→ e1,

where e1, · · · , eN denote the standard basis of FN
� .

Then the semi-direct product 〈ζ〉FN
� is a quotient of π1(η, η). If (�,N) = 1 and if

V is an irreducible F�-linear representation of 〈ζ〉, then 〈ζ〉V is a quotient of π1(η, η).

Proof. Let π ∈ Γ(S,OS) be a uniformizer. Let S′ be the spectra of a discrete valu-
ation ring such that S′ is finite étale Galois over S with cyclic Galois group of order N .
Let η′ (resp. s′) be the generic (resp. closed) point of S′, ζ a generator of Gal(S′/S)
and let u′ ∈ Γ(S′,OS′)× be a unit such that the images of u′, ζ(u′), · · · , ζN−1(u′) in
k(s′) form a normal base over k(s). Then

η′[x1, · · · , xN ]/(x�
1 − x1 − ζ(u′)π−1, · · · , x�

N − xN − ζN (u′)π−1)

is connected and Galois over η with Galois group 〈ζ〉FN
� . If (�,N) = 1, 〈ζ〉V is a

quotient of 〈ζ〉FN
� and hence is a quotient of π1(η, η).

Lemma 4.2. Let p be a prime number different from �.
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1) If the underlying group of an Fp-vector space V is a normal subgroup of a
finite quotient G of π1(η, η) such that G acts irreducibly on V by conjugation, then
dim V = 1.

2) There is a unique group of affine linear transformations of Fp which contains
all translations and which is a quotient of π1(η, η) ramified over S. This group has
cardinality pN , where N is the order of the element Card(k(s)) mod p in F×

p .

Proof. 1) Let I (resp. P ) be the image in G of the inertia (resp. wild inertia)
subgroup of π1(η, η). Notice that V ∩ P = 1. The intersection V ∩ I being normal in
G is a sub-G-module of V . As V is by assumption an irreducible G-module, one has
V ∩ I = 1 or V .

If V ∩ I = 1, then V is isomorphic to a subgroup of G/I and thus is cyclic.
If V ∩ I = V , then V is isomorphic to a subgroup of I/P and thus is again cyclic.
2) Let q = Card(k(s)). Let t : x �→ x + 1, ∀ x ∈ Fp. For every a ∈ F×

p , let
la : x �→ ax, ∀ x ∈ Fp. The following relation holds:

latl
−1
a = ta : x �→ x+ a, ∀ x ∈ Fp.

In particular, writing N for the order of q mod p as an element of F×
p , the group

generated by {lq, t} has order pN and it is a quotient of π1(η, η) tamely ramified over
S:

πt
1(η, η) → 〈lq, t〉, F �→ lq, T �→ t.

Suppose that another representation of π1(η, η) in the group of affine linear trans-
formations of Fp is ramified over S and has t in its image G. Let I (resp. P ) be the
image in G of the inertia (resp. wild inertia) subgroup of π1(η, η).

In the group of affine linear transformations of Fp, the subgroup of translations
is its own centralizer and it intersects P in 1. So P = 1. So I = I/P is cyclic and
�= 1. Either I contains t or it intersects the group of translations in 1. In both cases,
t commutes with all elements of I. Hence I is the group of all translations.

In brief, the quotient homomorphism π1(η, η) → G factors through πt
1(η, η) =

〈F, T 〉 and it maps T to a non-zero translation.
Let the image of F (resp. T ) in G be lat

b (resp. tc), where a, c ∈ F×
p , b ∈ Fp.

The identity

(lat
b)tc(lat

b)−1 = (tc)q

says that ac = qc, namely, that a = q mod p. So G = 〈lqtb, tc〉 = 〈lq, t〉.
5. Type A. Let (S, η, s), char(s) = �, be as in §4.
Proposition 5.1. For every integer n ≥ 1, (An, α1) and (An, αn) are elliptic

over η.

Proof. The subgroup of Sn+1 generated by the cycle (12 · · ·n+1) acts transitively
on {1, · · · , n+1} and permutes transitively the subsets of {1, · · · , n+1} of cardinality
n. As 〈(12 · · ·n + 1)〉 = Z/(n + 1)Z is a quotient of π1(η, η) (§4), both (An, α1) and
(An, αn) are elliptic over η (3.1), 1).

Lemma 5.2. Let X be a finite set of cardinality q ≥ 4. Let r be an integer
such that 2 ≤ r ≤ q/2. Suppose that the subsets of X of cardinality r are permuted
transitively by a solvable subgroup G of Aut(X). Then r < 4. Moreover,
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1) If r = 2, G acts 2-transitively on X unless :

— X = Fq, q ≡ 3 mod 4 and, for some subfield k of Fq, G consists of all
transformations of the form:

x �→ a2ϕ(x) + b, ∀ x ∈ Fq

where a ∈ F×
q , b ∈ Fq, ϕ ∈ Gal(Fq/k).

2) If r = 3, then X = F32 or F8. When X = F32, G consists of all affine semi-
linear transformations of X. When X = F8, G consists of either all affine semi-linear
transformations or only of the affine linear transformations of X.

Proof. That r < 4 as well as 2) is extracted from [8], p. 402–403.

Suppose that r = 2 and that G does not act 2-transitively on X . By loc.cit.,
then X = Fpd , p prime ≡ 3 mod 4, d is odd and G = LT, where L ≤ GLd(Fp)
has odd order and where T is the group of all translations of X . Observe that −1
then normalizes G and that {1,−1}G acts 2-transitively on X , where −1 : x �→ −x,
∀ x ∈ X . Now 1) follows by the classification of 2-transitive solvable permutation
groups.

Corollary 5.3. If 4 ≤ r ≤ (n + 1)/2, then (An, αr) and (An, αn+1−r) are not
elliptic over η. The pairs (An, α3) and (An, αn−2) are elliptic over η only if n = 7 or
31. The pairs (An, α2) and (An, αn−1) are elliptic over η only if n = pd − 1, p prime,
d ≥ 1.

Proof. This is immediate from (5.2)+(3.1), 1). Recall that the group π1(η, η) is
pro-solvable (§4).

Proposition 5.4. Let p be a prime number and d an integer ≥ 1. The pairs
(Apd−1, α2) and (Apd−1, αpd−2) are elliptic over η if p = � and only if p = � when
d ≥ 2.

Proof. If a solvable subgroup of Spd permutes transitively the 2-point subsets of
Fd

p = V , then it is of the form G = LT, where L is a certain subgroup of GL(V )
acting irreducibly on V and where T is the group of all translations of V (5.2), 1).

If p �= � and if d ≥ 2, π1(η, η) has no such quotient as G (4.2), 1) and hence
(Apd−1, α2) and (Apd−1, αpd−2) are not elliptic over η (3.1), 1).

Suppose that p = �. On F�d the group G of all affine linear transformations
acts 2-transitively. And by (4.1) G is a quotient of π1(η, η). So (A�d−1, α2) and
(A�d−1, α�d−2) are elliptic over η (3.1), 1).

Proposition 5.5. Let p be an odd prime different from �.

— Case p ≡ 1 mod 4: Then (Ap−1, α2) and (Ap−1, αp−2) are elliptic over η if
and only if Card(k(s)) mod p generates F×

p .

— Case p ≡ 3 mod 4: Then (Ap−1, α2) and (Ap−1, αp−2) are elliptic over η if
and only if Card(k(s)) mod p generates a subgroup of F×

p of index ≤ 2.

Proof. By (3.1), 1) the pairs (Ap−1, α2) and (Ap−1, αp−2) are elliptic over η if and
only if there is a representation π1(η, η) → Sp whose image G permutes transitively
the 2-point subsets of Fp.

By (5.2), 1) and by the classification of 2-transitive solvable permutation groups
of degree p, such G can only be

— (Case p ≡ 1 mod 4) the group of all affine linear transformations of Fp.
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— (Case p ≡ 3 mod 4) either the group of all affine linear transformations of Fp

or the subgroup consisting of all transformations of the form x �→ a2x+ b, ∀ x ∈ Fp,
where a ∈ F×

p , b ∈ Fp.
Now by (4.2), 2) the lemma follows.

Proposition 5.6. The pairs (A7, α3) and (A7, α5) are elliptic over η if and only
if k(s) is of characteristic 2.

Proof. In (5.2), 2) either of the two solvable subgroups of S8 that permute
transitively the 3-point subsets of F8 contains all translations of F8. So (A7, α3) and
(A7, α5) are elliptic over η only if k(s) is of characteristic � = 2 (3.1), 1)+(4.2), 1).

If � = 2, the group of all affine linear transformations of F8 is a quotient of π1(η, η)
(4.1) and hence (A7, α3) and (A7, α5) are elliptic over η (3.1), 1)+(5.2), 2).

Proposition 5.7. The pairs (A31, α3) and (A31, α29) are elliptic over η if and
only if � = 2, 5 � [s : F2].

Proof. The pairs (A31, α3) and (A31, α29) are elliptic over η if and only if π1(η, η)
has as quotient the group G of all affine semi-linear transformations of F32 (3.1), 1),
(5.2), 2).

By (4.2), 1) G is a quotient of π1(η, η) only if k(s) is of characteristic � = 2.
Suppose that � = 2.

Suppose that π1(η, η) has G as a quotient. Then 5 � [s : F2].

Let I (resp. P ) be the image in G of the inertia (resp. wild inertia) subgroup of
π1(η, η). It is immediate that P (resp. I) must consist of all translations (resp. all
affine linear transformations) of F32. The subgroup of G generated by the Frobenius
F : x �→ x2 and the scalar multiplications la : x �→ ax is isomorphic to G/P . By (4.2),
2) one concludes that the element Card(k(s)) mod 31 must be of order 5 in F×

31. That
is, 5 � [s : F2], since 2 mod 31 is of order 5 in F×

31.

Suppose that 5 � [s : F2]. Then G is a quotient of π1(η, η).

Let S′ be the spectra of a discrete valuation ring such that S′ is finite étale Galois
over S with cyclic Galois group of order 5 (§4). Let η′ (resp. s′) be the generic (resp.
closed) point of S′, ζ ∈ Gal(S′/S) a generator, π ∈ Γ(S,OS) a uniformizer and let
u′ ∈ Γ(S′,OS′)× be a unit such that the images of u′, ζ(u′), · · · , ζ4(u′) in k(s′) form
a normal base over k(s). Then

η′[z, x1, · · · , x5]/(z
31 − π, x2

1 − 1− zζ(u′), · · · , x2
5 − 1− zζ5(u′))

is connected and Galois over η with Galois group G.

6. Type 2A.

Proposition 6.1. Let X be a finite set of even cardinality 2d. Let G be a solvable
subgroup of Aut(X) which permutes the subsets of X of cardinality d in 2 orbits.

The following list enumerates such (X,G) up to equivalence:
1) X = {o, 1}, G = 1.
2) X = {o, 1, 2, 3}, G fixes o and on {1, 2, 3} it is either S3 or A3.
3) X = {o} ∪F5, G fixes o and on F5 it is the group of all affine linear transfor-

mations.
4) X = Z/4Z, G consists of either all transformations

x �→ ax+ b, ∀ x ∈ Z/4Z
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where a ∈ (Z/4Z)×, b ∈ Z/4Z or only of the translations

x �→ x+ b, ∀ x ∈ Z/4Z

where b ∈ Z/4Z.
5) X = {1, · · · , 6}, either G is the normalizer N in Aut(X) of a partition X =

{a, b, c}∪{a′, b′, c′} or it is the subgroup of N generated by Alt({a, b, c})Alt({a′, b′, c′})
and one of the following subgroups :

— 〈(aa′)(bb′)(cc′)〉
— 〈(aa′bb′)(cc′)〉
— 〈(aa′)(bb′)(cc′), (ab)(a′b′)〉
6) X = {1, · · · , 6}, either G is the normalizer N in Aut(X) of a par-

tition X = {a, a′} ∪ {b, b′} ∪ {c, c′} or it is the subgroup of N generated by
{(aa′), (bb′), (cc′), (abc)(a′b′c′)}.

7) X = F8, G consists of either all affine semi-linear transformations

x �→ ax2c + b, ∀ x ∈ F8

where a ∈ F×
8 , b ∈ F8, c ∈ Z/3Z or only of the affine linear transformations

x �→ ax+ b, ∀ x ∈ F8

where a ∈ F×
8 , b ∈ F8.

The proof is divided into several parts: (6.2), (6.4), (6.5), (6.6).

Lemma 6.2. With the notations and assumptions of (6.1), suppose furthermore
that G does not act transitively on X.

The following list enumerates all such (X,G) up to equivalence:
1) X = {o, 1}, G = 1.
2) X = {o, 1, 2, 3}, G fixes o and on {1, 2, 3} it is either S3 or A3.
3) X = {o} ∪F5, G fixes o and on F5 it is the group of affine linear transforma-

tions.

Proof. Choose o ∈ X such that O = Go has cardinality ≤ d = Card(X)/2. Such
a point exists since by assumption G does not act transitively on X .

Choose a subset Y (resp. Z) of X with d elements such that Y (resp. Z) contains
(resp. is disjoint with) O. One has gY ⊃ O and gZ ∩ O = ∅, ∀ g ∈ G. So GY and
GZ are these two G-orbits in the collection of d-point subsets of X .

Choose a point z ∈ Z. The set {o} ∪Z\{z} has d elements and it intersects O in
{o}. So O = {o}.

Now X\{o} has 2d − 1 elements and its subsets of cardinality d form a single
G-orbit GZ. The following lemma applies.

Lemma 6.3. Let X be a finite set of odd cardinality 2d− 1. Let G be a solvable
subgroup of Aut(X) which permutes transitively the subsets of X of cardinality d.

The following list enumerates such (X,G) up to equivalence:
1) X = 1, G = 1.
2) X = {1, 2, 3}, G = S3 or A3.
3) X = F5, G consists of all affine linear transformations

x �→ ax+ b, ∀ x ∈ F5
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where a ∈ F×
5 , b ∈ F5.

Proof. If d = 1, then X = 1 and G = 1, hence 1).
Suppose d > 1. Notice that

— The group G acts transitively on X :

Otherwise, some G-orbit in X , say O, has < d elements. Choose a subset Y
of X with d elements so that Y contains O. For all g ∈ G, O ⊂ gY . Namely, O
is contained in every subset of X of cardinality d. The complement of O in X has
> (2d− 1)− d = d− 1 elements. Hence X\O contains at least one set of cardinality
d. A contradiction.

Fix a point o ∈ X . Then

— The stabilizer Go of o in G is a maximal subgroup of G:

Assume Go < H < G for a group H. Then 1 < (G : H), (H : Go) < d, because

(G : H)(H : Go) = (G : Go) = Card(G.o) = Card(X) = 2d− 1.

As H.o  H/Go, X\(H.o) has cardinality> (2d−1)−d = d−1. Pick a set Y ⊂ X\(H.o)
with d elements. Then gY ∩ gH.o = ∅, ∀ g ∈ G. Therefore, each subset of X of
cardinality d is disjoint with at least one translate gH.o of H.o. Let R be a set of
representatives for G/H, which has cardinality (G : H) < d. So R.o is contained in
some set of cardinality d in X , say Z. But Z intersects every gH.o, ∀ g ∈ G. A
contradiction.

— The group Go contains no normal subgroups of G other than 1:

Let N be a subgroup of Go such that N is normal in G. Then Ng.o = gN.o = g.o,
∀ g ∈ G. That is, N fixes every element of G.o = X . So N = 1.

Let U be the last term > 1 in the derived series of G. Then [U,U] = 1, as G is
solvable. So U is abelian on which G acts by conjugation. Let V ⊂ U be a simple
sub-G-module ; it is an Fp-vector space for some prime number p. Let f = dim V .

— One has VGo = G and V ∩Go = 1:

The maximal subgroup Go does not contain V , as V is normal in G. So VGo

contains Go properly and so VGo = G. The intersection V ∩Go is normalized by Go

and by V , V being abelian, and thus by VGo = G. So V ∩Go is a sub-G-module of
V distinct from V . So V ∩Go = 1.

— The map V → X, v �→ v.o, is a bijection:

It is surjective because X = G.o = VGo.o = V.o. It is injective because if
v.o = v′.o, then v−1v′ ∈ V ∩Go = 1 and v = v′.

Now pf = Card(V ) = Card(X) = 2d− 1. So p > 2.

— The representation Go → GL(V ), g �→ Int(g), is faithful :

Let g ∈ Go be such that Int(g) = 1 on V . Then gv.o = gvg−1.o = Int(g)(v).o =
v.o, ∀ v ∈ V . So g fixes each point of V.o = X .

Pick a prime p′ such that d < p′ < 2d (Bertrand’s postulate).

— Then p′ = p:

Suppose p′ �= p. By its choice, p′ divides N :=
(
2d−1

d

)
. Notice that X has

N subsets of cardinality d. These N subsets are permuted transitively by G. And
G = GoV imbeds into GL(V )V by the faithful representation Int : Go ↪→ GL(V ). So
p′ divides the order of GL(V )V . So p′ divides pi−1 for some i ∈ {1, · · · , f}, as p′ �= p.
But this is absurd. For, p′ is odd, pi−1 is even and pi−1 ≤ pf −1 = 2d−2 < 2p′−2.
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— Then f = 1:

For, pf = 2d− 1 < 2p′ − 1 = 2p− 1.

— One has d ≤ 3:

This is immediate from the division:(
2d− 1

d

)
| Card(GL(V )V ) = p(p− 1) = (2d− 1)(2d− 2).

— Case d = 2. Then G = S3 or A3 on X = {1, 2, 3}:
The set X has 2d−1 = 3 elements. The transitivity of the G-action on the 2-point

subsets of X is equivalent to the transitivity of the G-action on X . So G is either S3

or A3.

— Case d = 3. Then G consists of all affine linear transformations of F5 = X :

The set X as well as V has 2d− 1 = 5 elements. So V = F5. And GL(V )V is the
group of all affine linear transformations of F5 which acts 2-transitively on F5. Indeed,
if a, b are two distinct points of F5, the affine linear transformation x �→ (a− b)x+ b
maps 0 to b and maps 1 to a. In particular, GL(V )V permutes transitively the 2-point
subsets, or what amounts to the same, the 3-point subsets, of F5.

The unique index 2 subgroup H of GL(V )V consists of all transformations of the
form:

x �→ a2x+ b, ∀ x ∈ F5

where a ∈ F×
5 , b ∈ F5. The 2-point subsets {u, v} of F5 are divided into 2 H-orbits

according to whether or not u − v is a square in F×
5 . Notice that −1 is a square in

F×
5 . The assertion evidently follows.

Lemma 6.4. With the notations and assumptions of (6.1), let o ∈ X be a point
and Go its stabilizer in G. Suppose furthermore that G acts transitively on X and
that the following condition holds :

— There is a subgroup H of even index in G such that H contains Go properly.

Then the following list enumerates such (X,G) up to equivalence:
1) X = Z/4Z, G consists of either all transformations

x �→ ax+ b, ∀ x ∈ Z/4Z

where a ∈ (Z/4Z)×, b ∈ Z/4Z or only of the translations

x �→ x+ b, ∀ x ∈ Z/4Z

where b ∈ Z/4Z.
2) X = {1, · · · , 6}, G is either the normalizer N in Aut(X) of a partition X =

{a, b, c}∪{a′, b′, c′} or it is the subgroup of N generated by Alt({a, b, c})Alt({a′, b′, c′})
and one of the following subgroups:

— 〈(aa′)(bb′)(cc′)〉
— 〈(aa′bb′)(cc′)〉
— 〈(aa′)(bb′)(cc′), (ab)(a′b′)〉
Proof. Let (G : H) = 2r and let R = {g1, · · · , g2r} be a set of representatives for

G/H. Notice that

d =
Card(X)

2
=

(G : H)

2
(H : Go) = r Card(H.o) ≥ 2r.
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In particular, if I is a subset of R of cardinality r, then

Z = IH.o

has d elements.
As Card(R.o) ≤ Card(R) = 2r ≤ d, there is some set Z ′ in X with d elements

which contains R.o. By its choice Z ′ intersects every gH.o, ∀ g ∈ G.
Since G permutes the d-point subsets of X in 2 orbits, each of these sets satisfies

one or the other of the following conditions:

i) It is equal to IH.o for a subset I of R, where I has r elements.
ii) It intersects every translate gH.o, ∀ g ∈ G.

— Then r = 1:

Assume r > 1. Then the set

E := {g1, · · · , gr}H.o ∪ {gr+1.o}\{g1.o}

has d elements and is disjoint with g2rH.o. But E is not of the form IH.o for any
subset I of R.

So R = {g1, g2}, Card(H.o) = d, X = H.o ∪ τH.o, where τ := g−1
1 g2, and the

d-point subsets of X distinct from H.o and τH.o are permuted transitively by G.

— Then d ≤ 3:

Suppose d > 3. Choose a point o′ ∈ H.o\{o}. Both sets

Y = {o} ∪ τH.o\{τ.o} , Y ′ = {o, o′} ∪ τH.o\{τ.o, τ.o′}

have d elements. Both are distinct from H.o and τH.o. But Y �= gY ′, ∀ g ∈ G. For,
Y ∩ H.o consists of 1 element, while gY ′ ∩ H.o = g(Y ′ ∩ g−1H.o) consists of either 2
or d− 2 elements, ∀ g ∈ G.

— Case d = 2:

The set X has 2d = 4 elements. Both H.o and τH.o have 2 elements. As H is a
subgroup of Aut(H.o)×Aut(τH.o), it has 2 or 4 elements.

Suppose first that H has 2 elements. Then Go = 1, |G| = 4 and G acts simply
transitively on X .

Notice that the translation action on itself of Z/4Z permutes the 2-point subsets
{u, v} of Z/4Z in 2 orbits according to whether or not u− v belongs to the subgroup
H = 2Z/4Z. And, the translation action on itself of Z/2Z×Z/2Z permutes its 2-point
subsets {u, v} in 3 orbits according to which subgroup u− v generates.

Suppose next that H has 4 elements. Then G is a 2-Sylow subgroup of Aut(X).
It is isomorphic to the group of all transformations:

x �→ ax+ b, ∀ x ∈ Z/4Z

where a ∈ (Z/4Z)×, b ∈ Z/4Z. The group G permutes the 2-point subsets {u, v} of
Z/4Z in 2 orbits according to whether or not u− v lies in 2Z/4Z.

— Case d = 3:

The set X has 2d = 6 elements. Both H.o and τH.o have 3 elements. Let N

denote the normalizer in Aut(X) of the partition

X = H.o ∪ τH.o.
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The group N has 72 elements. Besides H.o and τH.o, there are 18 subsets in X of
cardinality 3. These 18 sets are permuted transitively by G. So G is of index 1, 2 or
4 in N.

We write H.o = {1, 2, 3} and τH.o = {4, 5, 6}.
Let P := Alt({1, 2, 3}) × Alt({4, 5, 6}). It is the unique 3-Sylow subgroup of N

and of G. Let Q be a 2-Sylow subgroup of G. Thus G = PQ and Q is of order 2, 4
or 8.

i) Case Card(Q) = 2:

Let Q = {1, α}, where α transforms {1, 2, 3} to {4, 5, 6}. If say
α : 1 �→ 4, 2 �→ 5, 3 �→ 6

then α = (14)(25)(36).

ii) Case Card(Q) = 4, Q cyclic:

Let α be a generator of Q which then transforms {1, 2, 3} to {4, 5, 6}. So α2

normalizes {1, 2, 3} and, being of order 2, α2 fixes a point, say 3, in {1, 2, 3}. If say
α : 1 �→ 4, 2 �→ 5, 3 �→ 6

then α = (1425)(36).

iii) Case Card(Q) = 4, Q non cyclic:

Let Q = {1, α, β, γ}. Suppose that α and β (resp. γ) transform {1, 2, 3} to
{4, 5, 6} (resp. normalizes {1, 2, 3}). Then γ fixes a point, say 3, in {1, 2, 3}. If say

α : 1 �→ 4, 2 �→ 5, 3 �→ 6

then α = (14)(25)(36), γ = (12)(45), β = (15)(24)(36).

iv) Case Card(Q) = 8:

Then G = N.

It remains to verify that in all these cases G permutes transitively the 3-point
subsets Y of X other than {1, 2, 3} and {4, 5, 6}.

Given such a subset Y of X , notice that there is an element p ∈ P such that pY
is either {1, 2, 6} or {3, 4, 5}. Then, in the notations of i)–iii), α transforms {1, 2, 6}
to {3, 4, 5}.

Lemma 6.5. With the notations and assumptions of (6.1), let o ∈ X be a point
and Go its stabilizer in G. Suppose furthermore that Go acts transitively on X and
that the following condition holds :

— There is a subgroup H of odd index > 1 in G such that H contains Go properly.
Then X = {1, · · · , 6}, G is either the normalizer N in Aut(X) of a par-

tition X = {a, a′} ∪ {b, b′} ∪ {c, c′} or it is the subgroup of N generated by
{(aa′), (bb′), (cc′), (abc)(a′b′c′)}.

Proof. Let r be an integer ≥ 1 such that (G : H) = 2r+1. LetR = {g1, · · · , g2r+1}
be a set of representatives for G/H.

The identity

d =
Card(X)

2
=

(G : H)

2
(H : Go) = (r +

1

2
) Card(H.o),

implies in particular that H.o has even, say 2f , elements.
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Choose a subset B ⊂ gr+1H.o\{gr+1.o} of cardinality f . Then

Y = {g1, · · · , gr}H.o ∪B

has d elements.
As Card(R) ≤ d, R.o is contained in some set Y ′ with d elements. This Y ′

intersects every gH.o, ∀ g ∈ G.
By assumption G has 2 orbits in the collection of d-point subsets of X . Each of

these sets satisfies thus one or the other of the following two conditions:

— It is equal to IH.o∪B′ for some subset I of R of cardinality r and some subset
B′ of zH.o of cardinality f , where z is an element of R\I.

— It intersects every gH.o, ∀ g ∈ G.

Notice that every such set IH.o ∪B′ intersects precisely r + 1 members among

g1H.o, · · · , g2r+1H.o.

— Then f = 1:

Assume f > 1. Then the set

E := {g1, · · · , gr−1}H.o ∪ (grH.o\{gr.o}) ∪ (B ∪ {gr+1.o})

has d elements and is disjoint with g2r+1H.o. But E is not of the form IH.o ∪B′ for
any I ⊂ R of cardinality r, any z ∈ R\I and any B′ ⊂ zH.o of cardinality f .

It follows that B consists of f = 1 element and that d = 2r + 1.

— Then r = 1:

Suppose r > 1. Then the set

F := {g1, · · · , gr−1}H.o ∪ (grH.o\{gr.o}) ∪ {gr+1.o} ∪ {g2r+1.o}

has d elements and is disjoint with gr+2H.o. But F intersects r+2, rather than r+1,
members among

g1H.o, · · · , g2r+1H.o.

Hence, d = 2r+1 = 3, R = {g1, g2, g3}, the set H.o has 2 elements and the set X
has 6 elements.

In X there are 20 subsets of cardinality 3. Among these, 8 members intersect all
three cosets gH, ∀ g ∈ {g1, g2, g3}. So |G| is divisible by 8 and by 20− 8 = 12. That
is, |G| is a multiple of 24.

So G is either the normalizer N in Aut(X) of the partition

X = g1H.o ∪ g2H.o ∪ g3H.o = {a, a′} ∪ {b, b′} ∪ {c, c′}

or it is the index 2 subgroup M of N generated by

(aa′), (bb′), (cc′), (abc)(a′b′c′).

It remains to verify that M as well as N has 2 orbits in the collection of 3-point
subsets of X :

Let Z be a subset of X of cardinality 3. Then
i) either Z intersects all three: {a, a′}, {b, b′}, {c, c′}
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ii) or Z is disjoint with exactly one among {a, a′}, {b, b′}, {c, c′}.
In the first case, there is an element g ∈ 〈(aa′), (bb′), (cc′)〉 such that gZ = {a, b, c}.

In the latter, there is an element g ∈ 〈(abc)(a′b′c′)〉 such that gZ is either {a, a′, b} or
{a, a′, b′}. Then note that the cycle (bb′) transforms {a, a′, b} to {a, a′, b′}.

Lemma 6.6. With the notations and assumptions of (6.1), let o ∈ X be a point
and Go its stabilizer in G. Suppose furthermore that G acts transitively on X and
that Go is a maximal subgroup of G.

Then X = F8, G consists of either all affine semi-linear transformations

x �→ ax2c + b, ∀ x ∈ F8

where a ∈ F×
8 , b ∈ F8, c ∈ Z/3Z or only of the affine linear transformations

x �→ ax+ b, ∀ x ∈ F8

where a ∈ F×
8 , b ∈ F8.

Proof. As in (6.3) one argues that there exists a normal subgroup V of G which
has the following properties:

— G = VGo, V ∩Go = 1.

— V acts simply transitively on X.

— V is an Fp-vector space for some prime p, and Go acts faithfully and irreducibly
on V .

We identify V with X by the bijection v �→ v.o.
Let f = dim V . Then pf = Card(V ) = Card(X) = 2d. So p = 2 and d = 2f−1.

Clearly, f > 1.

— Then f > 2:

Suppose f = 2. As Go acts irreducibly on V , it cannot be a 2-group. So |Go|
is divisible by 3. So G is Aut(X) = S4 or A4. But both permute transitively the
2-point subsets of X rather than have 2 orbits.

One has now d = 2f−1 ≥ 4.

Notice that every hyperplane of V has 2f−1 = d elements. If H1, H2 are two
distinct hyperplanes, the intersection H1 ∩ H2 has dimension f − 2 and cardinality
2f−2 = d/2. And H2\H1 has d/2 elements. Given every g ∈ G, either gH or V \gH
is a hyperplane. Hence gH\H has 0, d or d/2 elements.

Fix a point v ∈ V \H . The set

Y = {v} ∪H\{0}
has d elements. As Y \H consists only of one point, neither Y nor its complement is
a hyperplane.

Therefore, GH and GY are these 2 orbits of G in the collection of d-point subsets
of X .

— Then f = 3:

Assume f > 3. Choose a point u ∈ H\{0}. The set

Z = {v, u+ v} ∪H\{0, u}
has d elements. But Z is not a member of GH or GY . For, if g is an element of G,
then
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— the set gH\H has 0, d or d/2 elements,

— the set gY \H = g(Y \g−1H) has 1, d− 1, d/2, (d/2)+ 1 or (d/2)− 1 elements,

— while the set Z\H has 2 elements.

Note that 2 /∈ {0, 1, d, d− 1, d/2, (d/2) + 1, (d/2)− 1}, as d ≥ 8.

So f = 3, and P(V ) = P2 is a projective plane over F2 which has 7 F2-rational
points. That is, V has 7 hyperplanes. These hyperplanes are permuted transitively
by G. So 7 divides |G| and |Go|.

If one identifies V with the underlying group of a finite field F8, a 7-Sylow sub-
group of Go consists of all scalar multiplications

la : x �→ ax, ∀ x ∈ F8

where a ∈ F×
8 .

— The normalizer N of the group {la, a ∈ F×
8 } in GL(V ) consists of all trans-

formations of the form:

x �→ aF c(x), ∀ x ∈ F×
8

where a ∈ F×
8 , c ∈ Z/3Z and F : x �→ x2, ∀ x ∈ F8, is the Frobenius.

Suppose that an element g ∈ GL(V ) normalizes {la}. The characteristic polyno-
mial of glag

−1 on V factors as:

det(T − glag
−1, V ) = det(T − la, V ) = (T − a)(T − a2)(T − a4).

There is thus an element c ∈ Z/3Z such that

glag
−1 = lF c(a) = F claF

−c.

So F−cg commutes with all elements of the cyclic group {la}. So F−cg belongs to
{la}. That is to say, g is of the form

x �→ aF c(x), ∀ x ∈ F8

for some a ∈ F×
8 and c ∈ Z/3Z. In particular, N has 21 elements.

— The group Go is of odd order :

As Go is solvable, it has a Hall subgroup H which is generated by {la} and a
2-Sylow subgroup Q of Go. Assume that H is not of odd order. Thus H is not a
subgroup of N. That is, {la} is not normal in H. So Q is not of order 2 or 4. As
GL(V ) is of order 23.3.7, Q is of order 8 and thus is normal in H. As Q is 2-Sylow
in GL(V ), the center Z of Q is of order 2, which is normalized by {la} and thus is
centralized by {la} and thus is contained in N. This is absurd.

Now |Go| = 7 or 21. In particular, {la} is normal in Go. Hence, Go is contained
in N. So Go is either N or {la}. So G is either VN, the group of all affine semi-linear
transformations

x �→ ax2c + b, ∀ x ∈ F8

where a ∈ F×
8 , b ∈ F8, c ∈ Z/3Z or it is V {la} which consists of all affine linear

transformations

x �→ ax+ b, ∀ x ∈ F8
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where a ∈ F×
8 , b ∈ F8.

It remains to verify that V {la} as well as VN has 2 orbits in the collection of
4-point subsets of F8:

There are 70 these subsets. Among them, the 7 hyperplanes and their comple-
ments, 14 in number, form 1 orbit under V {la}. For, if E is one such set, then
by a translation if necessary, one can transform E to a hyperplane H . Now all 7
hyperplanes are of the form aH , for a ∈ F×

8 .
Let Y be a member in the rest 70− 14 = 56 sets of cardinality 4. Let S denotes

the normalizer of Y in V {la}. Thus S is also a subgroup of Aut(Y ) × Aut(X\Y ) =
S4 ×S4, whose order is not a multiple of 7. So S consists only of translations. So
S = 1 by the choice of Y . Therefore, these 56 subsets are permuted simply transitively
by V {la}.

Lemma 6.7. Let X a finite nonempty set of even cardinality 2d. Let G be a
solvable subgroup of Aut(X) which permutes transitively the subsets of X of cardinality
d.

Then up to equivalence (X,G) is one of the following:
1) X = {1, 2}, G = S2.
2) X = {1, 2, 3, 4}, G = S4 or A4.

Proof. Let o ∈ X be a point and Go its stabilizer in G. As in (6.3) there exists a
normal subgroup V of G which has the following properties:

— G = VGo, V ∩Go = 1.

— V acts simply transitively on X.

— V is an Fp-vector space for some prime p, and Go acts faithfully and irreducibly
on V .

We identify V with X by the bijection v �→ v.o. Let f = dim V .
Then pf = Card(V ) = Card(X) = 2d. So p = 2 and d = 2f−1.

— Then f ≤ 2:

Fix a hyperplane H in V and let v be a vector in the complement of H . By
assumption each subset of V of cardinality d is a transform of H by an element of G.
These subsets are thus hyperplanes or complements of hyperplanes. But if f > 2, the
set

Y = {v} ∪H\{0}

is neither a hyperplane nor the complement of a hyperplane.

— Case f = 1:

The set X has 2f = 2 elements. And G permutes the subsets of X of cardinality
d = 1 transitively. Hence, G = Aut(X).

— Case f = 2:

The set X as well as V has 2f = 4 elements. On V the group Go acts irreducibly.
So Go cannot be a 2-group. So G = VGo is either Aut(X) or Alt(X). Both do
permute transitively the 2-point subsets of X .

Proposition 6.8. Let X a finite set of even cardinality 2d ≥ 4. Let G be a
solvable subgroup of {1,−1} × Aut(X) which permutes transitively the subsets of X
of cardinality d, where −1 transforms every subset Y of X of cardinality d to X\Y .
Suppose furthermore that G is not a subgroup of Aut(X).
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The following list enumerates such (X,G) up to equivalence:
1) X = {1, 2, 3, 4}, G = {1,−1} ×S4.
2) X = {1, 2, 3, 4}, G = {1,−1} × A4.
3) X = {1, 2, 3, 4}, G consists of A4 and of all elements of the form −1.α, where

α is an odd permutation of X.
4) X = {o, 1, 2, 3}, G = {1,−1} ×Aut({1, 2, 3}).
5) X = {o, 1, 2, 3}, G = {1,−1} × Alt({1, 2, 3}).
6) X = {o, 1, 2, 3}, G consists of Alt({1, 2, 3}) and of all elements of the form

−1.α where α is an odd permutation of {1, 2, 3}.
7) X = {o} ∪F5, G = {1,−1}×H where H is the group of affine linear transfor-

mations of F5.

Proof. Let H = G ∩Aut(X), which is of index 2 in G, as by assumption G is not
contained in Aut(X). It follows that

The collection of d-point subsets of X are permuted by H either transitively or in
2 orbits of the same cardinality.

— Case where H permutes transitively :

By (6.7) the set X has 4 elements and H = Aut(X) or Alt(X).
i) If H = Aut(X), then G = {1,−1} ×Aut(X).
ii) If H = Alt(X), then either G is {1,−1} × Alt(X) or it consists of Alt(X) and

of all elements of the form −1.α, where α is an odd permutation of X .

— Case where H permutes with 2 orbits of the same cardinality:

By the proof of (6.1) precisely the following two occur:

— X = {o, 1, 2, 3}, H fixes o and on {1, 2, 3} it is S3 or A3.

— X = {o} ∪F5, H fixes o and on F5 it is the group of affine linear transforma-
tions.

Let N denote the normalizer of H in {1,−1} ×Aut(X).
Suppose first that X = {o, 1, 2, 3}.
ThenN = {1,−1}×Aut({1, 2, 3}) for both groups Aut({1, 2, 3}) and Alt({1, 2, 3}).

For, in Aut(X), the subgroup Aut({1, 2, 3}) is maximal and not normal.
Suppose next that X = {o} ∪ F5.
Then N = {1,−1} × H. Indeed, if g ∈ N ∩ Aut(X), then Hg.o = gH.o = g.o. So

g.o = o and g normalizes the subset F5. As H acts 2-transitively on F5, there is an
element h ∈ H such that hg fixes at least 2 points of F5. In particular, hg is of order
1, 2 or 3. In H the subgroup T consisting of all translations is the unique 5-Sylow
subgroup. So T is normalized and thus is centralized by hg. It follows that hg fixes
all points of F5. So hg = 1 and g = h−1 ∈ H.

The pair (X,G) appears hence in the following list:
iii) X = {o, 1, 2, 3}, G = {1,−1} ×Aut({1, 2, 3}).
iv) X = {o, 1, 2, 3}, G = {1,−1} × Alt({1, 2, 3}).
v) X = {o, 1, 2, 3}, G consists of Alt({1, 2, 3}) and of all elements of the form

−1.α, where α is an odd permutation of {1, 2, 3}.
vi) X = {o} ∪F5, G = {1,−1}×H where H is the group of affine linear transfor-

mations of F5.
One inspects in each of the cases iii)–vi) that G permutes the d-point subsets of

X transitively.

Proposition 6.9. Let (S, η, s) be as in §4. Then every (2A3, α2) over η is elliptic.
If n > 5, then (2An, αn+1

2
) is not elliptic over η.
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Proof. By (3.1), 8) and (6.8), (2An, αn+1
2
) is not elliptic over η if n > 5. Suppose

n = 3 and suppose given a (2A3, α2) over η. Let

ρ1 : π1(η, η) → {1,−1}

denote the index of 2A3. Let

ρ2 : π1(η, η) → π1(S, η) → Alt({1, 2, 3})

be a surjective homomorphism (§4). Then

ρ = (ρ1, ρ2) : π1(η, η) → {1,−1} × Alt({1, 2, 3})

is surjective. Thus, by (6.8), 5)+(3.1), 8), it follows that (2A3, α2) is elliptic over η.

Proposition 6.10. Let (S, η, s), char(s) = �, be as in §4. If � = 5, then every
(2A5, α3) over η is elliptic. When (�, 5) = 1, a (2A5, α3) over η is elliptic if and only
if 2A5 is ramified over S and Card(k(s)) mod 5 generates F×

5 .

Proof. Suppose given a (2A5, α3) over η. Let

ρ1 : π1(η, η) → {1,−1}

denote its index. By (3.1), 8)+(6.8), 2) this (2A5, α3) is elliptic if and only if there is
a surjective homomorphism:

ρ = (ρ1, ρ2) : π1(η, η) → {1,−1} × H =: G

where H consists of all affine linear transformations of F5.
Notice that H is a quotient of π1(η, η) if and only if one of the following two holds:
— � = 5 (4.1).

— (�, 5) = 1 and Card(k(s)) mod 5 generates F×
5 (4.2), 2).

Note also that

If (�, 5) = 1 and if ρ1 is unramified over S, then (2A5, α3) is not elliptic over η.

Otherwise, the image of the inertia subgroup of π1(η, η) in G would be the sub-
group T of all translations of F5. But G/T is not cyclic.

— Case � = 5, ρ1 unramified over S:

Let π ∈ Γ(S,OS) be a uniformizer. Then

η[z, x]/(z4 − π, x5 − x− z−1)

is connected, totally ramified over S and Galois over η with Galois group H. If its
corresponding monodromy representation is

ρ2 : π1(η, η) → H,

then

ρ = (ρ1, ρ2) : π1(η, η) → G

is surjective.

— Case � = 5, ρ1 ramified over S:
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Let π ∈ Γ(S,OS) be a uniformizer. Let S′ be the spectra of a discrete valuation
ring such that S′ is finite étale Galois over S with cyclic Galois group of order 4, η′

(resp. s′) the generic (resp. closed) point of S′, ζ ∈ Gal(S′/S) a generator and let
u′ ∈ Γ(S′,OS′)× a unit such that the images of u′, · · · , ζ3(u′) in k(s′) form a normal
base over k(s). Then

η′[x1, · · · , x4]/(x
5
1 − x1 − ζ(u′)π−1, · · · , x5

4 − x4 − ζ4(u′)π−1)

is connected and Galois over η with Galois group H. If its corresponding monodromy
representation is

ρ2 : π1(η, η) → H,

then

ρ = (ρ1, ρ2) : π1(η, η) → G

is surjective.

— Case (�, 5) = 1, Card(k(s)) mod 5 generates F×
5 , ρ1 ramified over S:

By (4.2), 2) H is realizable as a tame quotient of π1(η, η), say

ρ2 : π1(η, η) → H.

Now

ρ = (ρ1, ρ2) : π1(η, η) → G

is surjective.

7. Type B. Let S, η, s, char(s) = �, be as in §4.
Let n be an integer ≥ 3. Let e1, · · · , en be the standard basis of Zn. We denote

the group of diagonal (resp. monomial) matrices in GLn(Z) by D (resp. M). Let
W = DM.

Proposition 7.1. Suppose that k(s) is of characteristic � = 2. Then (Bn, αn) is
elliptic over η.

Proof. Let ζ ∈ GLn(Z) be such that

ζ : e1 �→ e2, e2 �→ e3, · · · , en �→ e1.

Let G be the subgroup of W generated by ζ and all diagonal matrices. The group G

permutes the vectors

±e1 ± · · · ± en

transitively. Moreover, G is a quotient of π1(η, η) (4.1). So (Bn, αn) is elliptic over η
(3.1), 2).

Proposition 7.2. The pair (B3, α3) is elliptic over η.

Proof. The following two elements of GL3(Z)

a : e1 �→ e1, e2 �→ e3, e3 �→ −e2
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b : e1 �→ −e1, e2 �→ e2, e3 �→ e3

satisfy the relations

a4 = b2 = 1, ab = ba.

The group G they generate is isomorphic to Z/4Z × Z/2Z. One verifies that G

permutes the vectors

±e1 ± e2 ± e3

simply transitively. Moreover, G is a quotient of π1(η, η). Indeed, let

ρ1 : π1(η, η) → π1(S, η) → Z/4Z

be a surjective homomorphism (§4) and let

ρ2 : π1(η, η) → Z/2Z

be the monodromy representation corresponding to the quadratic extension

k(η)[x]/(x2 − π)

of k(η), where π ∈ Γ(S,OS) is a uniformizer. Then

ρ = (ρ1, ρ2) : π1(η, η) → Z/4Z× Z/2Z

is surjective. By (3.1), 2) (B3, α3) is thus elliptic over η.

Proposition 7.3. The pair (B4, α4) is elliptic over η.

Proof. By (7.1) one can suppose � > 2.
The following elements of GL4(Z)

a : e1 �→ e2, e2 �→ −e1, e3 �→ e3, e4 �→ e4

b : e1 �→ e1, e2 �→ e2, e3 �→ e4, e4 �→ −e3

c : e1 �→ e2, e2 �→ e3, e3 �→ e4, e4 �→ −e1

d : e1 �→ e3, e2 �→ −e4, e3 �→ −e1, e4 �→ e2

satisfy the relations

a4 = b4 = 1, ab = ba.

c8 = d4 = 1, cdc−1 = d−1.

The group G1 generated by {a, b} is isomorphic to Z/4Z× Z/4Z. The group G2

generated by {c, d} is quaternion of order 16. Both permute simply transitively the
vectors

±e1 ± e2 ± e3 ± e4.
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If Card(k(s)) ≡ 1 mod 4 (resp. Card(k(s)) ≡ −1 mod 4), then G1 (resp. G2) is
a quotient of πt

1(η, η) (§4). So (B4, α4) is elliptic over η (3.1), 2).

Proposition 7.4. Suppose � > 2, n > 4. Then (Bn, αn) is not elliptic over η.

Proof. By (3.1), 2) (Bn, αn) is elliptic if and only if there is a representation

ρ : π1(η, η) → W

whose image permutes transitively the vectors

±e1 ± · · · ± en.

Suppose that such a representation exists. Let G be its image and I (resp. P )
the image of the inertia (resp. wild inertia) subgroup. Let

X = {±e1 ± · · · ± en}.
Observe that if an element g of W fixes all points of X , then g = 1.

— One has P = 1:

For, P being normal in G, the P -orbits in X all have the same cardinality, say r,
which divides both 2n and Card(P ). So r = 1. So P = 1.

Thus I = I/P is cyclic.

— The cyclic group I is a 2-group:

The maximal odd order subgroup of I, I ′, is normal in G. Thus the I ′-orbits in
X all have the same cardinality, say r′, which divides both 2n and Card(I ′). That is,
r′ = 1. So I ′ = 1.

Now, as G/I is cyclic, G has a unique 2-Sylow subgroup.

— The unique 2-Sylow subgroup H of G acts transitively on X :

As H is normal in G, the H-orbits in X all have the same cardinality. These
orbits, which form a set of cardinality dividing 2n, are permuted transitively by the
quotient G/H. So there is only one orbit.

To H there corresponds a subextension k(η′)/k(η) of k(η)/k(η) so that H is the
image of the composition

π1(η
′, η) → π1(η, η)

ρ−→ G.

Replacing η by η′ if necessary, one can assume that G = H is a 2-group.
Consider the exact sequence

1 → I ∩D → G ∩D → G/I.

Notice that

— the group I ∩D has ≤ 2 elements. For, I ∩D is both cyclic and an elementary
2-group.

— the image Q of G∩D in G/I has ≤ 2 elements. For, being a subgroup of G/I,
Q is cyclic. And being a quotient of G ∩D, Q is an elementary 2-group.

Therefore, G ∩D is of order 1, 2 or 4.
The quotient G/(G ∩ D) is isomorphic to a group of monomial matrices. Thus

this 2-group is of order 2e for an integer e ≤ ord2(n!). One has ord2(n!) ≤ n − 1,
where the equality holds if and only if n is a power of 2.
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As G acts transitively on X , one of the following three holds:
1) G ∩D has 4 elements, G/(G ∩ D) has 2n−2 elements and is 2-Sylow in M, n

is not a power of 2.
2) G ∩D has 2 elements, G/(G ∩ D) has 2n−1 elements and is 2-Sylow in M, n

is a power of 2.
3) G ∩ D has 4 elements, G/(G ∩D) has 2n−2 or 2n−1 elements and is of index

≤ 2 in a 2-Sylow subgroup of M, n is a power of 2.
Next, from the exact sequence

1 → I/(I ∩D) → G/(G ∩D) → G/I(G ∩D) → 1

one deduces that G/(G∩D) does not have elementary 2-subgroups of 2-rank ≥ 3. So
— n ≤ 5 in case 1)

— n ≤ 4 in case 2)

— n ≤ 4 in case 3)

It remains to consider the case n = 5:
By 1) then |G ∩D| = 4, |I ∩D| = 2, |G| = 32.
The groupG/(G∩D) has 8 elements and is 2-Sylow inM = S5 and is an extension

of the cyclic group G/I(G ∩D) by the cyclic group I/(I ∩ D). So I/(I ∩ D) has 4
elements. So I has 8 elements and G/I has 4 elements.

Let t be a generator of I. Choose an element f of G such that its image in G/I
is a generator. Then ftf−1 = tq for an odd integer q. So f2 commutes with t, for
f2tf−2 = tq

2

= t, as q2 ≡ 1 mod 8.
Observe that G normalizes the set

Y = {e1, · · · , e5,−e1, · · · ,−e5}

in which one and only one I-orbit O = −O has 8 elements. Let O′ = Y \O, which
consists of two eigenvectors of t.

Now f normalizes O as well as O′. On O′, f2 acts as the identity. On O, f2 acts
as tr for an even integer r since it commutes with t. So f2 = tr ∈ I. So G/I has ≤ 2
elements. A contradiction.

8. Type C. Let (S, η, s) be as in §4.
Proposition 8.1. For every integer n ≥ 1, (Cn, α1) is elliptic over η.

Proof. Let ζ, τ ∈ GLn(Z) be such that

ζ : e1 �→ e2, e2 �→ e3, · · · , en �→ e1

τ : e1 �→ −e1, ei �→ ei, ∀ i > 1

where e1, · · · , en denote the standard basis of Zn.
The cyclic group 〈τζ〉 generated by τζ permutes the vectors

e1, · · · , en,−e1, · · · ,−en

simply transitively. And, 〈τζ〉 is a quotient of π1(η, η) (§4). So (Cn, α1) is elliptic
over η (3.1), 3).
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9. Type D. Let S, η, s, char(s) = �, be as in §4.
Let n be an integer ≥ 4. Let e1, · · · , en be the standard basis of Zn. We denote

the group of diagonal (resp. monomial) matrices in GLn(Z) by D (resp. M). Let D1

be the subgroup of D consisting of all diagonal matrices of determinant 1.
Let W = DM and W1 = D1M.

Proposition 9.1. Suppose that n is even. Then (Dn, α1) is elliptic over η.

Proof. As n is even, the diagonal matrix −1 ∈ GLn(Z) has determinant 1. Let
ζ ∈ GLn(Z) be such that

ζ : e1 �→ e2, · · · , en �→ e1.

The subgroup G of W1 generated by {ζ,−1} permutes the vectors

e1, · · · , en,−e1, · · · ,−en

simply transitively. And G, which is isomorphic to Z/nZ × Z/2Z, is a quotient of
π1(η, η). Indeed, let

ρ1 : π1(η, η) → π1(S, η) → Z/nZ

be a surjective homomorphism (§4) and let

ρ2 : π1(η, η) → Z/2Z

be the monodromy representation corresponding to the quadratic extension

k(η)[x]/(x2 − π)

of k(η), where π ∈ Γ(S,OS) is a uniformizer. Then

ρ = (ρ1, ρ2) : π1(η, η) → Z/nZ× Z/2Z

is surjective. So (Dn, α1) is elliptic over η (3.1), 4).

Proposition 9.2. Suppose � = 2. Then (Dn, α1) is elliptic over η.

Proof. Let ζ ∈ GLn(Z) be such that

ζ : e1 �→ e2, · · · , en �→ e1.

The subgroup G of W1 generated by ζ and all diagonal matrices of determinant 1
permutes transitively the vectors

e1, · · · , en,−e1, · · · ,−en.

Moreover, G is a quotient of π1(η, η) (4.1). So (Dn, α1) is elliptic over η (3.1), 4).

Lemma 9.3. Every odd order subgroup of W1 is conjugate to a subgroup of M.

Proof. Let H be an odd order subgroup of W1. Consider the split exact sequence

1 → D1 → W1 → M → 1

and let H′ be the image of H in M. Then D1H = D1H
′ =: G. As H1(H′,D1) = 0,

every two splittings of the exact sequence

1 → D1 → G → H′ → 1,
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especially the ones corresponding to H and to H′, are conjugate to each other by an
element of G.

Proposition 9.4. Suppose � > 2 and that n is odd ≥ 3. Then (Dn, α1) is not
elliptic over η.

Proof. This conclusion holds when n = 3 by (5.3)+(5.4), as (D3, α1) = (A3, α2).
Suppose n ≥ 5.
By (3.1), 4) (Dn, α1) is elliptic if and only if there is a representation

ρ : π1(η, η) → W1

whose image acts transitively on the set

X = {e1, · · · , en,−e1, · · · ,−en}.

Suppose that n is the smallest odd integer ≥ 5 for a representation ρ as such
exists. Let G be its image and I (resp. P ) the image of the inertia (resp. wild inertia)
subgroup of π1(η, η). By (9.3) one may assume P to be a subgroup of monomial
matrices. Thus, P normalizes

X+ = {e1, · · · , en}.

Notice that, P being normal in G, the P -orbits in X all have the same cardinality,
say r, which divides both Card(P ) and n. Let d = n/r. Let E1, · · · , Ed be the P -
orbits in X+; the other P -orbits are −E1, · · · ,−Ed. These P -orbits are permuted
transitively by G.

Let g = δp be an element of G, where δ ∈ D1, p ∈ M. Let E be a P -orbit in
X+. Suppose that g(E) = χE′, where χ ∈ {1,−1}, E′ ⊂ X+. Then p(E) = χδ(E′).
Namely, p(E) = E′, δ|E′ = χ.

It follows that when E1, · · · , Ed is considered as a base of a free Z-module Zd the
permutation action of G on

{E1, · · · , Ed,−E1, · · · ,−Ed}

induces a representation of G in GLd(Z) whose image lies in the group generated by
the diagonal matrices of determinant 1 and monomial matrices.

Thus, in view of the choice of n, one has d = n. So r = 1, P = 1.
So I = I/P is cyclic. The maximal odd order subgroup of I, which is normal in

G, is 1 by the same argument as for P . That is, I is a cyclic 2-group.
As I is normal in G and is commutative, the I-orbits in X all have the same

cardinality |I|, which divides 2n. So |I| = 1 or 2. So G is commutative of order 2n.
The unique index 2 subgroup of G is again 1 by the same argument as for P . So
n = 1. A contradiction.

Proposition 9.5. The pairs (Dn, αn−1) and (Dn, αn) are elliptic over η if n = 4
or 5.

Proof. By comparing (3.1), 5) with (3.1), 2), it is evident that (Dn, αn−1) and
(Dn, αn) are elliptic if (Bn−1, αn−1) is elliptic. One now applies (7.2)+(7.3).

Proposition 9.6. Suppose � = 2. Then (Dn, αn−1) and (Dn, αn) are elliptic
over η.
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Proof. Let ζ ∈ GLn(Z) be such that

ζ : e1 �→ e2, · · · , en �→ e1.

Let G be the subgroup of W1 generated by ζ and D1. The group G acts transitively
on

{s1e1 + · · ·+ snen, si ∈ {1,−1}, s1 · · · sn = −1}

and on

{s1e1 + · · ·+ snen, si ∈ {1,−1}, s1 · · · sn = 1}.

Moreover, G is a quotient of π1(η, η). Indeed, let S′ be the spectra of a discrete
valuation ring such that S′ is finite étale Galois over S with cyclic Galois group of order
n (§4), η′ (resp. s′) the generic (resp. closed) point of S′, π ∈ Γ(S,OS) a uniformizer
and let u′ ∈ Γ(S′,OS′)× be a unit such that the images of u′, ζ(u′), · · · , ζn−1(u′) in
k(s′) form a normal basis over k(s). Put b′ := 1 + u′π. Then

η′[z1, · · · , zn]/(z21 −
ζ(b′)

b′
, · · · , z2n − ζn(b′)

ζn−1(b′)
, 1− z1 · · · zn)

is connected and Galois over η with Galois group G. So (Dn, αn−1) and (Dn, αn) are
elliptic (3.1), 4), 5).

Proposition 9.7. Suppose � > 2, n > 5. Then (Dn, αn−1) and (Dn, αn) are not
elliptic over η.

Proof. It suffices to consider (Dn, αn) only. The same argument applies for
(Dn, αn−1). By (3.1), 5) (Dn, αn) is elliptic if and only if there is a representation

ρ : π1(η, η) → W1

whose image acts transitively on the set

X = {s1e1 + · · ·+ snen, si ∈ {1,−1}, s1 · · · sn = 1}.

Suppose that such a representation ρ exists. Let G be its image and I (resp. P )
the image in G of the inertia (resp. wild inertia) subgroup of π1(η, η).

As in (7.4), extending if necessary k(η) to a finite extension k(η′) which is un-
ramified over S and of odd degree over k(η), one can assume that G is a 2-group. In
particular, P = 1 and I is cyclic.

Consider the exact sequence

1 → I ∩D1 → G ∩D1 → G/I.

As both I ∩D1 and G/I are cyclic, the elementary 2-group G∩D1 is of order 1, 2
or 4. The quotient G/(G∩D1), which is isomorphic to a group of monomial matrices,
is of order 2e for an integer e ≤ ord2(n!). Notice that ord2(n!) ≤ n − 1, where the
equality holds if and only if n is a power of 2.

As G acts transitively on X , one of the following five holds:
1) |G ∩ D1| = 2 or 4, G/(G ∩ D1) has 2n−2 elements and is 2-Sylow in M, n is

not a power of 2.
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2) |G ∩D1| = 4, G/(G ∩D1) has 2
n−3 elements and is of index ≤ 2 in a 2-Sylow

subgroup of M, n is not a power of 2.
3) |G ∩D1| = 1, 2 or 4, G/(G ∩D1) has 2

n−1 elements and is 2-Sylow in M, n is
a power of 2.

4) |G ∩ D1| = 2 or 4, G/(G ∩ D1) has 2n−2 elements and is of index ≤ 2 in a
2-Sylow subgroup of M, n is a power of 2.

5) |G ∩ D1| = 4, G/(G ∩ D1) has 2n−3 elements and is of index 1, 2 or 4 in a
2-Sylow subgroup of M, n is a power of 2.

Next, the exact sequence

1 → I/(I ∩D1) → G/(G ∩D1) → G/I(G ∩D1) → 1

implies that G/(G ∩D1) does not contain elementary 2-groups of 2-rank ≥ 3. So
— n ≤ 5 in case 1)

— n ≤ 6 in case 2)

— n ≤ 4 in case 3)

— n ≤ 4 in case 4)

— n ≤ 8 in case 5)

Now as P = 1, G is a quotient of πt
1(η, η) = 〈F, T 〉. Let t ∈ I (resp. f) be the

image of T (resp. F ). Then ftf−1 = tq where q = Card(k(s)) is a power of �.
Notice that W1 does not have elements of order 16 for n ≤ 8. So t8 = f8 = 1 and

|G| divides 64. This rules out the possibility n = 8, as 64 < 27.
It remains to consider the case n = 6.
By 2), |G∩D1| = 4, |G/(G ∩D1)| = 8, |G| = 32. Note that f2 commutes with t.

For, f2tf−2 = tq
2

= t, as q2 ≡ 1 mod 8.
Let

Y = {e1, · · · , e6,−e1, · · · ,−e6}

which is normalized by G.
— Then |I| �= 4:

Assume |I| = 4. Then f is of order 8. Either f commutes with t or ftf−1 = t−1.
As I is cyclic, one at least I-orbit in Y has 4 elements.

i) Case where exactly 1 I-orbit in Y has 4 elements :

This I-orbit, say O, is normalized by f , and f acts simply transitively on Y \O =:
O′. On O′, as t and t−1 coincide, t commutes with f and thus acts as f4 or 1. If
say O′ = {e1, · · · , e4,−e1, · · · ,−e4}, then {±e1 ± · · · ± e4} is not acted transitively
by 〈f, t〉 = G and thus

X = {s1e1 + · · ·+ s6e6, si ∈ {1,−1}, s1 · · · s6 = 1}

is not acted transitively by G either.

ii) Case where exactly 2 I-orbits in Y have 4 elements :

These two, say O1, O2, are exchanged by f . So f2 normalizes and acts as t or t−1

on each, since f2 commutes with t. Both f4 and t2 act as the identity on Y \(O1∪O2).
So f4 = t2. But then |G| divides 16.

iii) Case where exactly 3 I-orbits in Y have 4 elements :

This contradicts the assumption that t ∈ W1.
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So |I| = 8. Let O be the unique I-orbit of cardinality 8 in Y , say

O = {e1, · · · , e4,−e1, · · · ,−e4}.

Let O′ := Y \O. Then f normalizes O as well as O′. As G acts transitively on X , it
acts transitively on {±e1 ± · · · ± e4}. That is, for each choice of s1, · · · , s4 ∈ {1,−1},
there are integers i, j such that

s1e1 + · · ·+ s4e4 = f itj(1 + t+ t2 + t3)e1.

In particular, there are i, j ∈ Z such that

(1− t+ t2 + t3)e1 = f itj(1 + t+ t2 + t3)e1.

Write f(e1) = tμe1 for an integer μ. Then f2 = t(q+1)μ on O.

— One has q �≡ ±1 mod 8:

For, if q ≡ 1 mod 8, then

f(1 + t+ t2 + t3)e1 = (1 + t+ t2 + t3)f(e1) = tμ(1 + t+ t2 + t3)e1.

If q ≡ −1 mod 8, then

f(1 + t+ t2 + t3)e1 = (1 + t−1 + t−2 + t−3)f(e1) = tμ−3(1 + t+ t2 + t3)e1.

— The group I acts transitively on O′:

Assume that O′ consists of at least 2 I-orbits. Choose x′
1, x

′
2 ∈ O′ such that

(1 + t+ t2 + t3)e1 + x′
1 + x′

2 ∈ X . Now, t is not 1 or −1 on O′, since

t(1 + t+ t2 + t3)e1 + tx′
1 + tx′

2 ∈ X.

One may assume tx′
1 = x′

1, tx
′
2 = −x′

2. Then f normalizes {x′
1,−x′

1} as well as
{x′

2,−x′
2}. So f2 is the identity on O′. So f2 = t(q+1)μ. But then |G| divides 16.

As now I acts transitively on O′, there exists x′ ∈ O′ such that (1 + t + t2 +
t3)e1+(1+ t)x′ ∈ X . One has f2(x′) �= t(q+1)μx′. For otherwise f2 = t(q+1)μ and |G|
divides 16.

— Then q �≡ 3 mod 8:

Assume q ≡ 3 mod 8. As f2(x′) �= t(q+1)μx′ = x′, f is of order 4 on O′. So f = t
or t−1 on O′. This contradicts the equation ftf−1 = tq = t3.

— Then q �≡ 5 mod 8:

Assume q ≡ 5 mod 8. Then f commutes with t on O′ and so f = tν on O′ for
an integer ν. The condition f2(x′) �= t(q+1)μx′ says that ν − μ is an odd integer. But
ν − μ should also be an even integer. For, the condition that f normalizes X implies
that

t−μf((1 + t+ t2 + t3)e1 + (1 + t)x′) ∈ X,

which is

(1− t+ t2 − t3)e1 + (1 + t)tν−μx′ ∈ X.
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10. Type 2D. Let (S, η, s), char(s) = �, be as in §4.
Suppose given a (2Dn, α1) over η, where n is an integer ≥ 4. Let

ρ2Dn
: π1(η, η) → {1,−1}

be the index of 2Dn. One says that 2Dn is unramified (resp. ramified) over S if its
index is unramified (resp. ramified) over S (§4).

Write n = 2gr, for an integer g ≥ 0 and an odd integer r ≥ 1.
Let Zn be identified with Z2g ⊗Z Zr in such a way that the standard basis

e1, · · · , en of Zn is identified with e′1 ⊗ e′′1 , · · · , e′2g ⊗ e′′r , where e′1, · · · , e′2g (resp.
e′′1 , · · · , e′′r ) denote the standard basis of Z2g (resp. Zr).

We denote the group of diagonal (resp. monomial) matrices of GLn(Z) byD (resp.
M). Let D1 be the subgroup of D consisting of all diagonal matrices of determinant
1.

Let W = DM and W1 = D1M.

Proposition 10.1. Suppose that 2Dn is unramified over S. Then (2Dn, α1) is
elliptic.

Proof. Let ζ, τ ∈ W be such that

ζ : e1 �→ e2, · · · , en �→ e1.

τ : e1 �→ −e1, ei �→ ei, ∀ i > 1.

The cyclic group G generated by τζ acts simply transitively on

{e1, · · · , en,−e1, · · · ,−en}.

Choose a surjective homomorphism (§4):

ρ : π1(η, η) → π1(S, η) → Z/2nZ = G.

The composition

π1(η, η)
ρ−→ G ↪→ W → W/W1 = {1,−1}

is the index of 2Dn, as
2Dn is unramified over S. So (2Dn, α1) is elliptic (3.1), 9).

Proposition 10.2. Suppose � > 2 and that 2Dn is ramified over S. Then
(2Dn, α1) is elliptic.

Proof. As � > 2, the index of 2Dn is tamely ramified over S:

ρ2Dn
: π1(η, η) → πt

1(η, η) = 〈F, T 〉 ρ−→ {1,−1}, ρ : T �→ −1.

Let q = Card(k(s)). Let τ ′, σ′ ∈ GL2g (Z) be such that

τ ′ : e′1 �→ e′2, · · · , e′2g−1 �→ e′2g , e′2g �→ −e′1,

σ′τ ′ = τ ′
qr
σ′, σ′ : e′1 �→ e′1.
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Let τ ∈ GLn(Z) be such that

τ : e′i ⊗ e′′j �→ τ ′
qj−1

(e′i)⊗ e′′j , ∀ j = 1, · · · , r, ∀ i = 1, · · · , 2g.

And let σ ∈ GLn(Z) be such that

σ : e′i ⊗ e′′1 �→ e′i ⊗ e′′2 , · · · , e′i ⊗ e′′r−1 �→ e′i ⊗ e′′r , e′i ⊗ e′′r �→ σ′(e′i)⊗ e′′1

∀ i = 1, · · · , 2g. Then τ is of order 2g+1, σr = σ′ ⊗ 1 and στσ−1 = τq.
The subgroup G of W generated by {σ, τ} acts transitively on

{e1, · · · , en,−e1, · · · ,−en}.

Let

ρ : πt
1(η, η) → G, T �→ τ

which maps F to:
— σ, if σ ∈ W1, ρ : F �→ 1.

— στ , if σ ∈ W1, ρ : F �→ −1.

— στ , if σ /∈ W1, ρ : F �→ 1.

Then the composition

π1(η, η)
ρ−→ G ↪→ W → W/W1 = {1,−1}

is the index of 2Dn. So (2Dn, α1) is elliptic (3.1), 9).

Let d (resp. f) be an integer ≥ 1 (resp. > 1). Let pro-2-groups F1, F2, F3, F4 be
defined by generators and relations as:

F1 = 〈x1, · · · , xd+2| x2f

1 [x1, x2][x3, x4] · · · [xd+1, xd+2] = 1, d even〉,

F2 = 〈x1, · · · , xd+2| x2
1x

4
2[x2, x3] · · · [xd+1, xd+2] = 1, d odd〉,

F3 = 〈x1, · · · , xd+2| x2+2f

1 [x1, x2][x3, x4] · · · [xd+1, xd+2] = 1, d even〉,

F4 = 〈x1, · · · , xd+2| x2
1[x1, x2]x

2f

3 [x3, x4] · · · [xd+1, xd+2] = 1, d even〉,

where

x, y �→ [x, y] = x−1y−1xy

denotes the commutator.
When � = 2, π1(η, η) has one of the groups F1, F2, F3, F4 as the maximal pro-2-

quotient, for d = [η : Q2] and for a certain integer f ([12], p. 107–108).

Proposition 10.3. Suppose � = 2. Then (2Dn, α1) is elliptic.

Proof. Let a′, b′ ∈ GL2g (Z) be such that

a′ : e′1 �→ −e′1, e′i �→ e′i, ∀ i > 1,
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b′ : e′1 �→ e′2, · · · , e′2g−1 �→ e′2g , e′2g �→ e′1.

Let c′′ ∈ GLr(Z) be such that

c′′ : e′′1 �→ e′′2 , · · · , e′′r−1 �→ e′′r , e′′r �→ e′′1 .

Let a = a′ ⊗ 1, b = b′ ⊗ 1, c = 1⊗ c′′ ∈ W.
Notice that a (resp. b, resp. c) has image −1 (resp. 1, resp. 1) by

W → W/W1 = {1,−1}.

The group 〈ab〉 × 〈c〉 acts simply transitive on

{e1, · · · , en,−e1, · · · ,−en}.

By (3.1), 9) it suffices to show that either 〈ab〉 × 〈c〉 or 〈a, b〉 × 〈c〉 is realizable as
a quotient of π1(η, η) lifting the index of 2Dn. Now, this index factors through the
maximal pro-2-quotient F of π1(η, η):

π1(η, η) → F
χ−→ {1,−1}.

And, the odd order cyclic subgroup 〈c〉 of W1 is realizable as an unramified quotient
of π1(η, η). So it suffices to show that every surjective homomorphism

χ : F → {1,−1}

is a composition of the form

F
ρ−→ 〈a, b〉 ↪→ W → W/W1 = {1,−1}

for some representation

ρ : F → 〈a, b〉

whose image is 〈ab〉 or 〈a, b〉.
Given the explicit structure of F as above, the verification is straightforward.

Consider for example the case where

F = 〈x, y, z|x2y4[y, z] = 1〉

and where g ≥ 2. According to the values of χ on (x, y, z), one defines ρ : F → 〈a, b〉
as follows:

1) (−1, 1, 1). Let ρ : (x, y, z) �→ (a, 1, b).
2) (1,−1, 1). Let ρ : (x, y, z) �→ ((ab)−2, ab, 1).
3) (1, 1,−1). Let ρ : (x, y, z) �→ (1, 1, ab).
4) (−1, 1,−1). Let ρ : (x, y, z) �→ (a, 1, ab).
5) (1,−1,−1). Let ρ : (x, y, z) �→ ((ab)−2, ab, ab).
6) (−1,−1, 1). Let ρ : (x, y, z) �→ (a, ab, ab2ab−2), if g = 2, and let ρ : (x, y, z) �→

(ab2, ab−1, ab3ab−3), if g > 2.
7) (−1,−1,−1). Let ρ : (x, y, z) �→ (ab2, ab, ab−1), if g = 2, and let ρ : (x, y, z) �→

(b−1ab2aba, ab−1, ab), if g > 2.
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11. Type E6. Let E be a 6-dimensional F2-vector space. Let ei, fj , 1 ≤ i, j ≤ 3,
be a basis of E and let q be the quadratic form on E such that

q(ei) = q(fj) = 1, q(ei + ej) = q(fi + fj) = 0, q(ei + fj) = δij ,

where δij = 1, if i = j, and δij = 0, if i �= j, ∀ i, j ∈ {1, 2, 3}.
Let

X = {v ∈ E\{0}, q(v) = 0}
be the q-singular vectors of E\{0}.

Let Vi = F2ei+F2fi, i = 1, 2, 3. The elements of X are of the form vi+vj , where
vi ∈ Vi, vj ∈ Vj , 1 ≤ i, j ≤ 3, i �= j, vi, vj �= 0. The set X consists of 27 vectors which
are permuted transitively by the orthogonal group O(q). The group O(q) has 27.34.5
elements.

Observe that an element of GL(E) belongs to O(q) if and only if it normalizes X .
Note that, for each i ∈ {1, 2, 3}, one has O(q|Vi) = GL(Vi), because q(ei) =

q(fi) = q(ei + fi) = 1. The subgroup GL(V1)×GL(V2)×GL(V3) of O(q) consists of
all elements g such that g(V1) = V1, g(V2) = V2, g(V3) = V3.

Let N be the subgroup of O(q) consisting of all elements g such that g(Vi) ∈
{V1, V2, V3}, ∀ i = 1, 2, 3. One has a split exact sequence

1 →
3∏
1

GL(Vi) → N → Aut({V1, V2, V3}) → 1.

The unique 3-Sylow subgroup M of
∏

i GL(Vi) is the unique abelian subgroup of
order 27 of N.

Lemma 11.1. Suppose that a solvable subgroup G of O(q) acts transitively on X.
Then 5 � |G|.

Proof. Let H be a Hall subgroup of G which is a product of a 3-Sylow subgroup
and a 5-Sylow subgroup of G. Then H also acts transitively on X .

— Case 34 does not divide |H|:
Then H has a unique 5-Sylow subgroup, say Q. The Q-orbits in X all have the

same cardinality, say r, which divides both 5 and Card(X) = 27. So r = 1. So Q = 1.
For, if an element g ∈ GL(E) restricts to the identity on X , then g = 1.

— Case 34 divides |H|:
Then H has a unique 3-Sylow subgroup P which one may, by conjugating H in

O(q), assume to be in N. In particular, P contains M. Let Q be a 5-Sylow subgroup
of H. Then Q normalizes and thus centralizes M. Notice that M has 3-orbits in X
each of which consists of 3 elements. The group Q normalizes each of these 3-orbits
and so it fixes every point of X . So Q = 1.

Lemma 11.2. Suppose that a solvable subgroup G of O(q) acts transitively on X.
Let A be an abelian normal subgroup of G. Then A is a 3-group.

Proof. Let Q be the unique 2-Sylow subgroup of A. The group Q is normal in G.
So the Q-orbits in X all have the same cardinality, say r, which divides both |Q| and
27 = Card(X). So r = 1. So Q = 1. By (11.1), the lemma follows.

Proposition 11.3. Let H be a cyclic subgroup of order 9 of O(q). Let h be a
generator of H.
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Then the commutant of H on E is a field of cardinality 64. And H has 3 orbits on
X each of which consists of 9 points. Let x, y ∈ X be in distinct H-orbits. Then there
exists a unique element g ∈ O(q) of order 6 which satisfies the following properties:

ghg−1 = h2, g(x) = y.

The group G generated by {h, g} acts transitively on X and G is of order 54.

Proof. Notice that [Q(μ9) : Q] = 6 and that 2 is inert in Q(μ9). So H acts
irreducibly on E and the commutant C of H on E is a field of cardinality 64. In
particular, neither h nor h3 fixes a nonzero vector in E, as E is a 1-dimensional
C-vector space. Every H-orbit in X consists of 9 points.

Let F : C → C, c �→ c2, be the Frobenius automorphism of C. An element
g ∈ GL(E) satisfying ghg−1 = h2 is simply an F -linear automorphism of the 1-
dimensional C-vector space E. Let g be an F -linear automorphism of E and let
x ∈ E be a nonzero vector. For every integer n, gn is Fn-linear. So g is of order a
multiple of 6. Write g(x) = c.x for an element c ∈ C×. As g6 is C-linear and as

g6(x) = F 5(c) · · ·F (c)c.x = c63.x = x,

g is of order 6.
Note finally that g lies in O(q) if and only if it normalizes X . From here, the

claimed existence and uniqueness of g as well as the last assertion immediately follow.

Proposition 11.4. Suppose that a solvable subgroup G of O(q) acts transitively
on X. Suppose furthermore that G has a cyclic normal subgroup H of generator h of
order 9. Then |G| = 27 or 54.

— Case |G| = 27. Then G is generated by {h, g} where the element g is of order
3 and satisfies ghg−1 = h4.

— Case |G| = 54. Then G is generated by {h, g} where the element g is of order
6 and satisfies ghg−1 = h2.

Proof. Let C be the commutant of H on E. By (11.3), C is a field of cardinality 64
and E is a 1-dimensional C-vector space. The centralizer of H in G is the intersection
G ∩C×, that is, H. Now, the exact sequence

1 → H → G
g �→Int(g)|H−→ Aut(H)

shows that G is of order 27 or 54, as Aut(H) is cyclic of order 6. Choose g ∈ G

such that Int(g)|H generates Int(G)|H. The automorphism Int(g)|H extends to an
automorphism of the field C.

— Case where |G| = 27:

Replacing if necessary g by its inverse, one may assume ghg−1 = h4. As GL(E)
has no element of order 27, one has g3 = h3n for some integer n. The group G is
generated by {h, gh−n} and

(gh−n)3 = (gh−ng−1)(g2h−ng−2)(g3h−ng−3)g3 = h−4nh−16nh−64ng3 = 1.

— Case where |G| = 54:

Replacing if necessary g by its inverse, one may assume ghg−1 = h2. As in (11.3),
g is of order 6. And G is generated by {h, g}.
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Proposition 11.5. Let (S, η, s), char(k(s)) = �, be as in §4. Suppose that � = 3.
Then (E6, α1) and (E6, α6) are elliptic over η.

Proof. The orthogonal group O(q) has a subgroup G of order 27 which acts
transitively on X and which is generated by 2 elements h, g, where h (resp. g) is of
order 9 (resp. 3) and ghg−1 = h4.

— Case where μ3(k(η)) = 1:

In this case, the maximal pro-3-quotient of π1(η, η) is free of rank ≥ 2 as a pro-3-
group. In particular, G is realizable as a quotient of π1(η, η). So (E6, α1) and (E6, α6)
are elliptic over η (3.1), 6).

— Case where μ3(k(η)) = μ3(k(η)):

The maximal pro-3-quotient of π1(η, η) has then the presentation:

F = 〈x1, · · · , xd+2 | xq
1[x1, x2][x3, x4] · · · [xd+1, xd+2] = 1〉

where d = [k(η) : Q3], where q is the maximal power of 3 such that μq(k(η)) =
μq(k(η)) and where (x, y) �→ [x, y] = x−1y−1xy is the commutator. The homomor-
phism χ : F → G such that

χ : x1 �→ 1, x2 �→ h, x3 �→ g, xi �→ 1, ∀ i > 3

is surjective. So again (E6, α1) and (E6, α6) are elliptic over η (3.1), 6).

Proposition 11.6. Let (S, η, s), char(k(s)) = �, be as in §4. Suppose � �= 3.
Then (E6, α1) and (E6, α6) are elliptic over η if and only if Card(k(s)) ≡ ±2,±4 mod
9.

Proof. By (3.1), 6), the pairs (E6, α1) and (E6, α6) are elliptic over η if and only
if there is a representation

ρ : π1(η, η) → O(q)

whose image acts transitively on X . Suppose that such a representation exists. Let
G be its image. Let I (resp. P ) be the image in G of the inertia (resp. wild inertia)
subgroup of π1(η, η).

As P is normal in G, the P -orbits in X all have the same cardinality, say r, which
divides both 27 and |P |. That is, r = 1 and P = 1.

So I = I/P is cyclic of order a power of 3 (11.2) and so G has a unique 3-Sylow
subgroup, say H. As H/I is cyclic, the group I is cyclic of order 9 and H/I is of order
3. The quotient G/H is a cyclic 2-group (11.1). So |G| = 27 or 54 (11.4). Write ρ as
a composition

π1(η, η) → πt
1(η, η)

χ−→ G,

where πt
1(η, η) = 〈F, T 〉 (§4). The image t of T in G generates I. Let f be the image

of F in G.

— Case where |G| = 54:

Then f is of order 6. One has ftf−1 = t2 or t32 = t−4.

— Case where |G| = 27:

Then f is of order 3 or 9. One has ftf−1 = t4 or t16 = t−2.

Such groups do exist in O(q) (11.3)
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12. Type E7. Let E be a 6-dimensional F2-vector space equipped with a sym-
plectic form (, ). Let ei, fj , 1 ≤ i, j ≤ 3, be a sympletic base of E. Let q be the
quadratic form on E satisfying

q(ei) = q(fj) = 1, q(ei + ej) = q(fi + fj) = 0, q(ei + fj) = δij

where δij = 1, if i = j, and δij = 0, if i �= j, ∀ i, j ∈ {1, 2, 3}.
Observe that the orthogonal group O(q) is a subgroup of the symplectic group

Sp(E).
The group Sp(E) is of order 29.34.5.7, the subgroup O(q) is of order 27.34.5 and

the homogenous space

X = Sp(E)/O(q)

consists of 28 elements.
We shall determine up to conjugation all solvable subgroups G of Sp(E) that act

transitively on X .
Each such group G contains a 7-Sylow subgroup of Sp(E). By conjugation in

Sp(E), one may suppose that G contains ζ ∈ Sp(E), where

ζ :

{
e1 �→ e2, e2 �→ e3, e3 �→ e1 + e2
f1 �→ f1 + f2, f2 �→ f3, f3 �→ f1

Let V = F2e1 + F2e2 + F2e3, V
∨ = F2f1 + F2f2 + F2f3. Then

det(T − ζ, V ) = T 3 + T + 1 , det(T − ζ, V ∨) = T 3 + T 2 + 1

and

det(T − ζ, E) = (T 3 + T + 1)(T 3 + T 2 + 1) = (T 7 − 1)/(T − 1).

As ζ-modules, V, V ∨ are irreducible mutually non-isomorphic. The subspaces
0, V, V ∨, E are the only sub-ζ-modules of E.

The commutant Endζ(E) is equal to F2[ζ|V ]× F2[ζ|V ∨]. And

GLζ(E) ∩ Sp(E) = F2[ζ]
× = 〈ζ〉.

That is, 〈ζ〉 is its own centralizer in Sp(E).
The normalizer of 〈ζ〉 in Sp(E) admits 2 generators ζ, σ, where

σ :

{
e1 �→ f1, e2 �→ f2, e3 �→ f2 + f3
f1 �→ e1, f2 �→ e2 + e3, f3 �→ e3

And σ, ζ satisfy the relations:

σ6 = 1, σζσ−1 = ζ−2.

Notice that |〈ζ, σ〉| = 42.
LetS be the subgroup of Sp(E) consisting of all elements which act as the identity

on V . By g �→ (g − 1)|V ∨, S can be identified with an F2-vector space of dimension
6 which consists of all linear transformations A : V ∨ → V such that the bilinear form

u′, v′ �→ (u′, Av′)
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is symmetric in u′, v′ ∈ V ∨.
For all g ∈ S, the function v′ �→ (v′, (g − 1)v′) is linear on V ∨. Thus there is a

unique vector vg ∈ V satisfying

(v′, (g − 1)v′) = (vg, v
′), ∀ v′ ∈ V ∨.

The function S → V , g �→ vg, is linear whose kernel S
1 consists of all those g ∈ S

such that the form

u′, v′ �→ (u′, (g − 1)v′)

is alternating, i.e., that

(u′, (g − 1)v′) = (u′ ∧ v′, ωg)

for a uniquely determined 2-form ωg ∈ ∧2V .
The map g �→ ωg establishes a canonical bijection between S1 and ∧2V . The

exact sequence

0 → S1 → S
g �→vg−→ V → 0

is uniquely split as ζ-modules. For, ∧2V = S1 and V are non-isomorphic ζ-modules.
Let S2 denote this complement of S1 in S. So S = S1 ⊕S2.

In terms of matrices, every element g ∈ S is of the form

g :

{
ei �→ ei , i = 1, 2, 3
fi �→ fi +

∑
j=1,2,3 Ajiej

where Aij is a symmetric matrix with coefficients in F2.
The element g belongs to S1 if and only if A11 = A22 = A33 = 0. The ζ-module

S1 is generated by g1, where

g1 :

{
ei �→ ei, i = 1, 2, 3
f1 �→ f1 + e2 + e3, f2 �→ f2 + e1 + e3, f3 �→ f3 + e1 + e2

The ζ-module S2 is generated by g2, where

g2 :

{
ei �→ ei, i = 1, 2, 3
f1 �→ f1 + e2 + e3, f2 �→ f2 + e1 + e3, f3 �→ f3 + e1 + e2 + e3

The element g ∈ S preserves the quadratic form q if and only if A12 = A23 = A13.
One has S1 ∩O(q) = {1, g1} and S2 ∩O(q) = {1, g2}.

Proposition 12.1. Up to conjugation all solvable subgroups of Sp(E) that act
transitively on X are enumerated as follows :

— 〈ζ〉S.

— 〈ζ, σ2〉S.

— 〈ζ〉S1, 〈ζ〉S2.

— 〈ζ, σ2〉S1, 〈ζ, σ2〉S2.

Proof. Suppose that G is a solvable subgroup of Sp(E) which acts transitively on
X . Up to conjugation in Sp(E) one may assume that ζ ∈ G. Recall that |Sp(E)| =
29.34.5.7, |O(q)| = 27.34.5.
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— Then 5 � |G|:
Otherwise, as it is solvable, G has a Hall subgroup of order 35, say Q, which is

cyclic. But Z/35Z admits no faithful 6-dimensional representations over F2.
Thus |G| = 2a.3b.7, for an integer a ≥ 2 and an integer 0 ≤ b ≤ 4.
Let L be a Hall subgroup of G which is a product of 〈ζ〉 and a 3-Sylow subgroup

of G. As b ≤ 4, 〈ζ〉 is normal in L. So L is a subgroup of 〈ζ, σ〉. So L = 〈ζ〉 or 〈ζ, σ2〉.
In particular, b = 0 or 1.

Let H be a Hall subgroup of G which is a product of 〈ζ〉 and a 2-Sylow subgroup
of G. As a ≥ 2, H is not a subgroup of 〈ζ, σ〉. That is to say, 〈ζ〉 is not normal in H.
Let A be a maximal abelian normal subgroup of the solvable group H.

— The group A is a 2-group:

For otherwise the unique 7-Sylow subgroup of A would be normal in H.

— The group A is the unique 2-Sylow subgroup of H:

As A is a 2-group, the subspace EA of E consisting of all vectors fixed by A is a
non-zero H-module. So EA is either V or V ∨. Replacing G by σGσ−1 if necessary,
we suppose EA = V . Thus A is a subgroup of S. Notice that σ3 does not normalize
V . So H ∩ 〈ζ, σ〉 = 〈ζ〉 and so H has 2a = |H/〈ζ〉| 7-Sylow subgroups. Then H has a
unique 2-Sylow subgroup, say a, because 2a.7−2a(7−1) = 2a. Then Ea is a non-zero
sub-H-module of EA = V . So Ea = V . So a ≤ S. Thus a is abelian. One concludes
that A = a.

In particular, H ≤ 〈ζ〉S and G = LH ≤ 〈ζ, σ2〉S.
To finish, it suffices to show that both 〈ζ〉S1 and 〈ζ〉S2 act transitively on X .

Both have 56 elements. And it is immediate to verify that each intersects O(q) in two
elements.

Proposition 12.2. Let (S, η, s), char(s) = �, be as in §4. Then (E7, α7) is
elliptic over η if and only if � = 2.

Proof. By (12.1) all solvable subgroup of {1,−1}×Sp(E) that act transitively on

{1,−1} × (Sp(E)/O(q)) = {1,−1} ×X

contain elementary 2-groups of 2-rank ≥ 3. So (E7, α7) is not elliptic if � > 2 (3.1),
7).

Suppose � = 2. Then G := {1,−1} × 〈ζ〉S is a quotient of π1(η, η) by (4.1) and
because 〈ζ〉S has no index 2 subgroups. Moreover, G acts transitively on {1,−1}×X
(12.1). So (E7, α7) is elliptic when � = 2 (3.1), 7).
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