
ASIAN J. MATH. c© 2017 International Press
Vol. 21, No. 1, pp. 047–126, February 2017 002

WITTEN’S PERTURBATION ON STRATA∗

JESÚS A. ÁLVAREZ LÓPEZ† AND MANUEL CALAZA‡

Abstract. The main result is a version of Morse inequalities for the minimum and maximum
ideal boundary conditions of the de Rham complex on strata of compact Thom-Mather stratifications,
equipped with adapted metrics. An adaptation of the analytic method of Witten is used in the proof,
as well as certain operator related with the Dunkl harmonic oscillator.
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1. Introduction. Let d be the de Rham derivative acting on the space Ω0(M)
of compactly supported differential forms on a Riemannian manifold M . Its closed
extensions to complexes in the Hilbert space of square integrable differential forms
are called ideal boundary conditions (i.b.c.). There is a minimum i.b.c., dmin = d,
and a maximum i.b.c., dmax = δ∗, where δ is the de Rham coderivative acting on
Ω0(M). Each i.b.c. defines a Laplacian in a standard way; in particular, the Lapla-
cian defined by dmin/max is denoted by Δmin/max. It is well known that dmin = dmax

if M is complete, but suppose that M may not be complete. The i.b.c. dmin/max de-
fines the min/max-cohomology Hmin/max(M), min/max-Betti numbers βr

min/max, and

min/max-Euler characteristic χmin/max (if the min/max-Betti numbers are finite);
these are quasi-isometric invariants of M . In particular, Hmax(M) is the L2 cohomol-
ogy of M [11]. If M is orientable, then Δmax corresponds to Δmin by the Hodge star
operator. These concepts can indeed be defined for arbitrary elliptic complexes [8].

From now on, assume that M is a stratum of a compact Thom-Mather stratifica-
tion A [42, 31, 32, 43]. Roughly speaking, on a neighborhood O of each x ∈M , there
is a chart of A with values in a product Rm × c(L), where:

• L is a compact Thom-Mather stratification of lower complexity, and c(L) =
L× [0,∞)/L× {0} (the cone with link L);
• x corresponds to (0, ∗), where ∗ is the vertex of c(L); and
• M ∩O corresponds to Rm ×M ′ for some stratum M ′ of c(L).

We have, either M ′ = N × R+ for some stratum N of L, or M ′ = {∗}; thus x ∈ M
just when M ′ = {∗}. The radial function ρ : c(L)→ [0,∞) is induced by the second
factor projection L× [0,∞)→ [0,∞). This radial function is required to be preserved
by the changes of the above type of charts. If ρ0 denotes the standard norm of Rm,
it is also said that

√
ρ20 + ρ2 is the radial function of Rm × c(L).

Equip M with a Riemannian metric g, which is adapted in the following sense
defined by induction on the depth of M [11, 12]: there is a chart as above around
each x ∈ M � M so that g|M∩O is quasi-isometric to a model metric of the form
g0 + ρ2g̃ + (dρ)2 on Rm ×N ×R+, where g0 is the Euclidean metric on Rm and g̃ an
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adapted metric on N ; this is well defined since depthN < depthM . Note that g may
not be complete. The first main result of the paper is the following.

Theorem 1.1. The following properties hold on any stratum of a compact Thom-
Mather stratification with an adapted metric:

(i) Δmin/max has a discrete spectrum, 0 ≤ λmin/max,0 ≤ λmin/max,1 ≤ · · · , where
each eigenvalue is repeated according to its multiplicity.

(ii) lim infk λmin/max,k k
−θ > 0 for some θ > 0.

Theorem 1.1-(i) is essentially due to J. Cheeger [11, 12]. Theorem 1.1-(ii) is a
weak version on strata of the Weyl’s asymptotic formula (see e.g. [38, Theorem 8.16]);
to the authors’ knowledge, it is a completely new contribution. Other developments
of elliptic theory on strata were made in [9, 24, 23, 40, 15, 2, 1]. In particular, another
proof of Theorem 1.1-(i) was given in [2, 1], as a first step in the study of the signature
operator on strata.

In this paper, the term “relative(ly)” (or simply “rel-”) usually means that some
condition is required in the intersection of M with small neighborhoods of the points
in M . Sometimes, this idea can be simplified because the stratification is compact,
but non-compact stratifications will be also considered in the proofs.

A smooth function f on M is called rel-admissible when the functions |df | and
|Hess f | are bounded. In this case, f may not have any continuous extension to M ,

but it has a continuous extension to the (componentwise) metric completion M̂ of
M , which is another Thom-Mather stratification. Then it makes sense to say that
x ∈ M̂ is a rel-critical point of f when there is a sequence (yk) in M such that

limk yk = x in M̂ and limk |df(yk)| = 0. The set of rel-critical points of f is denoted
by Critrel(f). It will be said that f is a rel-Morse function on M if it is rel-admissible,

and there exists a local model of M̂ centered at every x ∈ Critrel(f) of the form
Rm+ × Rm− × c(L+)× c(L−) so that:

• M corresponds to the stratum Rm+ × Rm− × M+ × M−, where M± is a
stratum of c(L±); and
• f corresponds to a constant plus the model function 1

2 (ρ
2
+ − ρ2−) on Rm+ ×

Rm− ×M+ ×M−, where ρ± is the radial function on Rm± × c(L±).
This local model makes sense because the product of two Thom-Mather stratifications
admits a Thom-Mather structure; in particular, the product of two cones becomes a
cone. There is no canonical choice of a product Thom-Mather structure, but all
of them have the same adapted metrics. The above local condition is used instead
of requiring that Hess f is “rel-non-degenerate” at the rel-critical points because a
“rel-Morse lemma” is missing.

Suppose that f is a rel-Morse function on M . For each r ∈ Z and x ∈ Critrel(f),
the above local data is used to define a natural number νrx,min/max (Definition 4.8);
we omit the precise definition here because it is rather involved. Let νrmin/max =∑

x ν
r
x,min/max with x running in Critrel(f). Our second main result is the following.

Theorem 1.2. For any rel-Morse function on a stratum of a compact Thom-
Mather stratification, equipped with an adapted metric, we have the inequalities

β0
min/max ≤ ν0min/max ,

β1
min/max − β0

min/max ≤ ν1min/max − ν0min/max ,

β2
min/max − β1

min/max + β0
min/max ≤ ν2min/max − ν1min/max + ν0min/max ,
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etc., and the equality

χmin/max =
∑
r

(−1)r νrmin/max .

We also show the existence of rel-Morse functions (Proposition 4.9). For instance,
for any smooth action of a compact Lie group on a closed manifold, any invariant
Morse-Bott function whose critical manifolds are orbits induces a rel-Morse function
on the regular stratum of the orbit space.

We adapt the well known analytic method of E. Witten [47] to prove Theorem 1.2;
specially, as it is described in [38, Chapters 9 and 14]. Since the difference between
Δ and its Witten’s perturbation is bounded, Witten’s method is also used to prove
Theorem 1.1, which becomes a step in the proof of Theorem 1.2. In our setting, Wit-
ten’s method reduces the proof to a rel-local analysis around the rel-critical points.
The rel-local analysis is made for a cone whose link is a compact stratification of
lower complexity, where we consider a model rel-Morse function and a model met-
ric. We use induction on the complexity in this way. For the cone, the Witten’s
complex turns out to be a direct sum of simple elliptic complexes. The Laplacians
of these simple complexes can be studied using the Dunkl harmonic oscillator [3],
obtaining the needed spectral information of their maximum/minimum i.b.c. Follow-
ing Witten’s method, this rel-local analysis gives the “cohomological contribution”
from the rel-critical points. Another step of the method shows the “null cohomolog-
ical contribution” away from the rel-critical points. In this part, some arguments of
[38, Chapter 14] cannot be used by the lack of a Sobolev embedding theorem in this
setting. Then a new argument is applied using Theorem 1.1-(ii). For the reader’s
convenience, an overall idea of the strategy of the proofs is given in Section 2.

The needed proofs about stratifications and Hilbert complexes are confined in
Appendices A and B, so that the readers are quickly guided to the main steps of the
proofs of Theorems 1.1 and 1.2.

Goresky-MacPherson proved a version of the Morse inequalities for complex ana-
lytic varieties with Whitney stratifications [17, Chapter 6, Section 6.12]. They involve
intersection homology with lower middle perversity, which is isomorphic to the L2 co-
homology of the regular stratum with any adapted metric [13]. Our version of Morse
functions, critical points and numbers νrx,min/max are different; thus Theorem 1.2 can
be considered as a complement to their theory. U. Ludwig gave an analytic interpre-
tation of the Morse theory of Goresky-MacPherson for conformally conic manifolds
[26, 27, 28, 29]; in particular, her Morse functions are quite different from ours: con-
trary to our conditions, the differential is bounded away from zero close to the frontier
of the regular stratum, and the Hessian may be unbounded. In [30], she also studied
in a different way the Witten’s deformation for radial Morse functions on stratified
pseudo-manifolds, which overlaps our work. The radial Morse functions are a partic-
ular case of our rel-Morse functions, where only one of the factors c(L±) is considered
in the local charts around the rel-critical points. She also assumes that the stratified
pseudo-manifolds satisfy the so called Witt condition or have isolated singularities.
Then she establishes a spectral gap theorem that gives the Morse inequalities. In
the case of isolated singularities, she also continues with the adaptation of the rest
of Witten’s program on analytic Morse theory, comparing the complex of eigenforms
corresponding to small eigenvalues with a version of the Morse-Thom-Smale com-
plex. Thus her results go further than Theorem 1.2, but under additional restrictive
hypotheses.
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After finishing the paper, R. Mazzeo pointed out to us that the remarks of Sec-
tion 19 were already known by him.

It would be interesting to extend our results in the following ways: for “rel-Morse-
Bott functions”, whose rel-critical point set consists of Thom-Mather substratifica-
tions, and for more general adapted metrics [34, 35, 6], obtaining Morse inequalities
for intersection homology with arbitrary perversity. With this generality, it would be
also interesting to develop the rest of Witten’s program on analytic Morse theory.

Acknowledgment. We thank F. Alcalde for pointing out a mistake in a previous
version for orbit spaces [10], Y.A. Kordyukov and M. Saralegui for helpful conversa-
tions on topics of this paper, R. Sjamaar for indirectly helping us (via M. Saralegui),
R. Israel and another anonymous MathOverflow user for answering questions con-
cerning parts of this work, and Carlos Franco Sanmart́ın for correcting some errors.
We also thank the referee for helpful remarks correcting and improving the paper.

2. An overall idea of the proofs of the main theorems. With the notation
of Section 1, consider the Witten’s complex ds = e−sf d esf (s > 0) defined by any
rel-Morse function f on M , and the corresponding Witten’s Laplacian Δs. We get
the i.b.c. ds,min/max = e−sf dmin/max e

sf , with Laplacian Δs,min/max. Since ds,min/max

is conjugated to dmin/max, it also defines the min/max-Betti numbers βr
min/max.

2.1. The rel-local analysis around rel-critical points. (Sections 8 and 10–
12.) Via stratification charts, this rel-local analysis is made on Rm+×Rm−×M+×M−,
with the model functions 1

2 (ρ
2
+ − ρ2−). Up to quasi-isometries, we can also consider

a model metric. By the version of the Künneth formula for Hilbert complexes [8],
this study can be reduced to the case of the functions ± 1

2ρ
2 on N × R+, where

ρ is the radial function of c(L). By induction on the complexity, it is assumed that
Theorem 1.1 holds for (N, g̃). Then the discrete spectral decomposition for (N, g̃) and
the factor dρ are used to split the Witten’s complex ds on N ×R+ into a direct sum
of simple elliptic complexes of two types, with length one and two. The Laplacians of
these simple elliptic complexes are given by a version of the Dunkl harmonic oscillator
on R+ [3], whose spectrum is well known (Section 7). Using this knowledge, we get a
description of the maximum/minimum i.b.c. of these simple elliptic complexes, and of
the spectra of the corresponding Laplacians (Sections 8, 11 and 12). Combining this
information in the direct sum, we obtain a description of ds,min/max and the spectrum
of Δs,min/max on N × R+ (Proposition 12.12 and Corollary 12.13); in particular, we
have a rel-local version of Theorem 1.1 for ds,min/max.

2.2. Specific arguments of the proof of Theorem 1.1. (Sections 14 and 15.)
In the rel-local analysis of Section 2.1, we modify the model function around the vertex
so that it vanishes on some rel-neighborhood of the vertex. In this way, the new Wit-
ten’s complex corresponds to d via stratification charts. Since the difference between
the above two rel-local Witten’s Laplacians is bounded, it follows from the min-max
principle that the new Witten’s complex also satisfies a version of Theorem 1.1. Then
a simple globalization result (Proposition 14.2) gives the spectral discreteness for
dmin/max on M . A much more involved result (Proposition 14.3) also globalizes the
weak Weyl’s asymptotic formula for dmin/max on M .

2.3. Specific arguments of the proof of Theorem 1.2. (Sections 16–18.)
Using Theorem 1.1-(ii), it follows that φ(Δs,min/max) is of trace class for any rapidly
decreasing function φ on R. As usual, this operator can be given by a Schwartz kernel
Ks, and the trace of φ(Δs,min/max) is given by the integral of the pointwise trace ofKs
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on the diagonal. But it is unknown if Ks is uniformly bounded because a version of
the Sobolev embedding theorem is missing—the usual way to prove it fails because the
version of Sobolev spaces defined by Δs,min/max depend on the choice of the adapted
metric (Section 19). By this problem, some parts of the proof are different from the
usual arguments, depending more on Theorem 1.1-(ii).

Consider the waive operator exp(itDs,min/max), where Ds,min/max = ds,min/max +
d∗s,min/max. Another ingredient needed in the proof is that exp(itDs,min/max) prop-

agates supports towards/from the rel-critical points with finite speed (Proposi-
tion 17.2). With the ideas explained in Section 1.1, the proof of this property can
be reduced to the case of the simple complexes, where it follows adapting standard
arguments (Proposition 8.7).

Suppose that moreover φ(0) = 1. For each degree r, let μr
s,min/max be the trace

of φ(Δs,min/max) on r-forms. Using μr
s,min/max instead of each νrmin/max in the Morse

inequalities, we get the so called analytic inequalities (Proposition 18.1), whose proof
is formally the same as in the case of closed manifolds. Thus the Morse inequalities
follow by showing that μr

s,min/max → νrmin/max as s → ∞ for all degree r. This limit

can be expressed as sum of two terms: the limit of the trace of φ(Δs,min/max) on r-
forms supported on some small rel-neighborhood of Critrel(f) (the contribution from
Critrel(f)), and the limit of the trace of φ(Δs,min/max) on r-forms supported on the
complement of this rel-neighborhood (the contribution away from Critrel(f)).

We prove that the contribution away from Critrel(f) is null in the follow-
ing way. Using the expression of Δs = Δ + sHessf + s2 |df |2, where Hessf
is an endomeorphism defined by the Hessian of f , we get some C > 0 so that
Δs,min/max ≥ Δmin/max + Cs2 away from Critrel(f) for s large enough. Let h be
a cut-off function equal to 1 near Critrel(f) and vanishing away from Critrel(f).
Then Ts,min/max = Δs,min/max + hCs2 is a self-adjoint operator with a discrete spec-
trum satisfying Ts,min/max ≥ Δmin/max + Cs2 for s large enough. By the min-
max principle, this means that the eigenvalues λs,min/max,k of Ts,min/max satisfy
λs,min/max,k ≥ λmin/max,k + Cs2. On the other hand, like in the case of closed
manifolds, if moreover φ is an even Schwartz function whose Fourier transform is
supported near 0, then the finite propagation speed of the waive operator gives
φ(Δs,min/max) = φ(Ts,min/max) on r-forms supported in the complement of a slightly
smaller rel-neighborhood of Critrel(f). Furthermore we can assume that φ ≥ 0, and
that φ is monotone on [0,∞). Combining all of the above properties, we get that the
contribution away from Critrel(f) is

≤ lim
s

∑
k

φ(λs,min/max,k) ≤ lim
s

∑
k

φ(λmin/max,k + Cs2) = 0 ,

for each degree r. This argument differs from the usual one: in the case of closed
manifolds, the Sobolev embedding theorem is used to prove that, away from the
critical points, Ks → 0 uniformly, but that kind of theorem is not available here.

Like in the case of closed manifolds, it is shown that the contribution from
Critrel(f) is νrmin/max: using the finite propagation speed of the waive operator, we
can pass to the case of cones with model functions and model metrics, and then the
spectral analysis indicated in Section 2.1 gives the desired limit.

3. Preliminaries on Thom-Mather stratifications. This section mainly re-
calls the needed concepts, notation and results about Thom-Mather stratifications
and adapted metrics on their strata. Some new, concepts, remarks and results are
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also given, specially concerning products and metric completion of strata. The proofs
of the non-elementary new results are given in Appendix A (Lemmas 3.8 and 3.11,
and Proposition 3.20).

3.1. Thom-Mather stratifications. The concepts recalled here were intro-
duced by R. Thom [42] and J. Mather [31]. We mainly follow [43].

3.1.1. Thom-Mather stratifications and their morphisms. Let A be a
Hausdorff, locally compact and second countable topological space. Let X ⊂ A be a
locally closed subset. Two subsets Y, Z ⊂ A are said to be equal near X (or Y = Z
near X) if Y ∩U = Z∩U for some neighborhood U of X in A. It is also said that two
maps, f : Y → B and g : Z → B, are equal near X (or f = g near X) when there is
some neighborhood U of X in A such that Y ∩ U = Z ∩ U , and the restrictions of f
and g to Y ∩ U are equal.

Consider triples (T, π, ρ), where T is an open neighborhood of X in A, π : T → X
is a continuous retraction, and ρ : T → [0,∞) is a continuous function such that
ρ−1(0) = X . Two such triples, (T, π, ρ) and (T ′, π′, ρ′), are said to be equal near X
when T = T ′, π = π′ and ρ = ρ′ near X . This defines an equivalence relation whose
equivalence classes are called tubes of X in A. The notation [T, π, ρ] is used for the
tube represented by (T, π, ρ). If X is open in A, then [X, idX , 0] is its unique tube
(the trivial tube).

Definition 3.1 (See [43, 1.2.1]). A Thom-Mather stratification1 is a triple
(A,S, τ), where:

(i) A is a Hausdorff, locally compact and second countable space,
(ii) S is a partition of A into locally closed subspaces with the additional structure

of smooth (C∞) manifolds, called strata, and
(iii) τ is the assignment of a tube τX of each X ∈ S in A,

such that the following conditions are satisfied with some choice of (TX , πX , ρX) ∈ τX
for each X ∈ S:

(iv) For all X,Y ∈ S, if X ∩ Y 
= ∅, then X ⊂ Y . The notation X ≤ Y is used
in this case, and this defines a partial order relation on S. As usual, X < Y
means that X ≤ Y but X 
= Y .

(v) If Y 
= X in S and TX∩Y 
= ∅, then X < Y and (πX , ρX) : TX∩Y → X×R+

is a smooth submersion; in particular, dimX < dim Y .
(vi) If X < Y in S, then πY (TX ∩ TY ) ⊂ TX , and πX πY = πX and ρX πY = ρX

on TX ∩ TY .
It may be also said that (S, τ) is a Thom-Mather stratification of A.

Remark 1.

(i) A is paracompact and normal.
(ii) By the normality of A, we can also assume that, if X,Y ∈ S and TX∩TY 
= ∅,

then X ≤ Y or Y ≤ X .
(iii) The frontier of a stratum X equals the union of the strata Y < X .
(iv) The connected components of each stratum may have different dimensions.
(v) The connected components of the strata, with the restrictions of the tubes,

define an induced Thom-Mather stratification Acon ≡ (A,Scon, τcon).

Remark 2. The following are some variants of Definition 3.1 and related notions:

1The term Thom-Mather stratified space is also used. It is called abstract prestratification in [31]
and abstract stratification in [43].
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(i) A weak Thom-Mather stratification is defined by removing the condition
ρX πY = ρX from Definition 3.1-(vi).

(ii) A stratification is a pair (A,S) satisfying Definition 3.1-(i),(ii),(iv); it is also
said that S is a stratification of A. Definition 3.1-(iv) is called the frontier
condition. If moreover τ satisfies the other conditions of Definition 3.1, then
it is called Thom-Mather structure on (A,S).

(iii) If A is a subspace of a smooth manifold M , then a stratification S of A is
usually required to consist of regular submanifolds of M ; the term stratified
subspace of M is used in this case. In [16], a weaker version of this notion is
defined by requiring local finiteness of S instead of the frontier condition.

(iv) A Whitney stratification of a subspace (or Whitney stratified subspace) of a
smooth manifold M is a stratified subspace of M satisfying the condition (B)
of H. Whitney [45, 46]2.

Example 3.2.

(i) Any smooth manifold is a Thom-Mather stratification with one stratum and
the trivial tube.

(ii) Any smooth manifold with boundary is a stratification with two strata, the
interior and the boundary. It can be equipped with a Thom-Mather structure
by using a collar of the boundary.

(iii) Any subanalytic subset of Rm has primary and secondary stratifications; the
secondary one satisfies condition (B) [25, 32, 19, 18, 20].

(iv) J. Mather [31] has proved that any Whitney stratified subspace of a smooth
manifold admits a Thom-Mather structure (see also [16, Proposition 2.6 and
Corollary 2.7]).

For a stratification A ≡ (A,S), the depth of any X ∈ S, denoted by depthX , is
the supremum of the naturals n such that there exist strataX0 < X1 < · · · < Xn = X .
Notice that depthX ≤ dimX . Moreover depthX = 0 if and only if X is closed in A.
The complexity and dimension of A are the supremum of the depths and dimensions
of its strata, denoted by comA and dimA, respectively. The dimension of A equals
its topological dimension, which may be infinite. The complexity of A is zero if and
only if all strata are open and closed.

Let A ≡ (A,S, τ) be a Thom-Mather stratification. Let B ⊂ A be a locally closed
subset. Suppose that, for all X ∈ S, X ∩ B is a smooth submanifold of X , and
B ∩ π−1

X (X ∩ B), equipped with the restrictions of πX and ρX , defines a tube τX∩B

of X ∩ B in B. Then let S|B = {X ∩ B | X ∈ S }, and let τ |B be defined by the
assignment of τX∩B to each X ∩B ∈ S|B. If (B,S|B , τ |B) satisfies the conditions of a
stratification, it is said that the stratification A (or (S, τ)) can be restricted to B, and
B ≡ (B,S|B , τ |B) (respectively, (S|B , τ |B)) is called a restriction of A (respectively,
(S, τ)); it may be also said that B is a Thom-Mather substratification of A. For
instance, A can be restricted to any open subset and to any locally closed union of
strata. A restriction of a restriction of A is a restriction of A.

For a stratum X of A, we can consider the restriction of A to X. In this way, to
study X , we can assume that X is dense in A and dimX = dimA if desirable.

A locally closed subset B ⊂ A is said to be saturated if the stratification A can
be restricted to B and, for every X ∈ S, there is a representative (TX , πX , ρX) of τX
such that π−1

X (X ∩B) = TX ∩B.

2Certain condition (A) was also introduced by H. Whitney in [45, 46], but J. Mather [31] has
observed that it follows from condition (B).
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Let A′ ≡ (A′,S ′, τ ′) be another Thom-Mather stratification. A continuous map
f : A → A′ is called a morphism if, for any X ∈ S, there is some X ′ ∈ S ′ such that
f(X) ⊂ X ′, the restriction f : X → X ′ is smooth, and there are (TX , πX , ρX) ∈ τX
and (T ′

X′ , π
′
X′ , ρ

′
X′) ∈ τ ′X′ such that f(TX) ⊂ T ′

X′ , fπX = π′
X′f and ρX = ρ′X′f . No-

tice that the continuity of a morphism follows from the other conditions. Morphisms
between stratifications form a category with the operation of composition; in partic-
ular, we have the corresponding concepts of isomorphism and automorphism. The
set of morphisms A→ A′ is denoted by Mor(A,A′), and the group of automorphisms
of A is denoted by Aut(A). The other variants of the concept “stratification” given
in Remark 2 also have obvious corresponding versions of morphisms, isomorphisms
and automorphisms; in particular, we get the concept of weak morphism between
weak Thom-Mather stratifications. A (weak) morphism is called submersive when it
restricts to smooth submersions between the strata.

Example 3.3. Let G be a compact Lie group acting smoothly on a closed
manifold M . Consider the orbit type stratifications of M and G\M [7]. It is well
known that G\M admits a Thom-Mather structure [43, Introduction], which can be
seen as follows. G\M is locally isomorphic to a semi-algebraic subset of an Euclidean
space whose primary and secondary stratifications are equal [4]. By using an invariant
smooth partition of unity of M , like in the Whitney’s embedding theorem, it follows
that G\M is isomorphic to a Whitney stratified subspace of some Euclidean space, and
therefore it admits a Thom-Mather structure. This can also be seen by observing that
the stratification of M satisfies condition (B), and the proof of [16, Proposition 2.6]
can be adapted to produce an invariant3 Thom-Mather structure onM , which induces
a Thom-Mather structure on G\M .

The following two lemmas are easy to prove.

Lemma 3.4. Let A be a Hausdorff, locally compact and second countable space,
{Ui} an open covering of A, and (Si, τi) a Thom-Mather stratification of each Ui.

(i) If (Si, τi) and (Sj , τj) have the same restrictions to Uij := Ui ∩ Uj for all i
and j, then there is a unique Thom-Mather stratification (S, τ) on A whose
restriction to each Ui is (Si, τi).

(ii) If ((Si|Uij )con, (τi|Uij )con) = ((Sj |Uij )con, (τj |Uij )con) for all i and j, then there
is a unique Thom-Mather stratification (S, τ) on A with connected strata such
that ((S|Ui )con, (τ |Ui)con) = (Si,con, τi,con).

Lemma 3.5. Let (A′,S ′, τ ′) be another Thom-Mather stratification.
(i) With the notation of Lemma 3.4-(i), let fi : (Ui,Si, τi) → (A′,S ′, τ ′) be a

morphism for each i. If fi|Uij = fj |Uij for all i and j, then the combination
of the maps fi is a morphism f : (A,S, τ)→ (A′,S ′, τ ′).

(ii) With the notation of Lemma 3.4-(ii), let fi : (Ui,Si,con, τi,con)→ (A′,S ′, τ ′) be
a morphism for each i. If fi|Uij = fj|Uij for all i and j, then the combination
of the maps fi is a morphism f : (A,S, τ)→ (A′,S ′, τ ′).

Remark 3. As a particular case of Lemma 3.4, given a countable family of
Thom-Mather stratifications, {Ai ≡ (Ai,Si, τi)}, there is a unique Thom-Mather
stratification (S, τ) on the topological sum

⊔
i Ai whose restriction to each Ai is

(Si, τi); this (S, τ) will be called the sum of the Thom-Mather stratifications (Si, τi).

3G acts by automorphisms.
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3.1.2. Products. The product of two weak Thom-Mather stratifications, A and
A′, is a weak Thom-Mather stratification A × A′ ≡ (A × A′,S ′′, τ ′′) with S ′′ =
{X ×X ′ | X ∈ S, X ′ ∈ S ′ } and τ ′′X×X′ = [T ′′

X×X′ , π
′′
X×X′ , ρ

′′
X×X′ ], where T ′′

X×X′ =
TX × T ′

X′ , π
′′
X×X′ = πX × π′

X′ and ρ′′X×X′(x, x
′) = ρX(x) + ρ′X′(x

′).
If A and A′ are Thom-Mather stratifications and the complexity of at least one of

them is zero, then A×A′ is a Thom-Mather stratification, but this is not true when
the complexities of A and A′ are positive [43, Section 1.2.9, pp. 5–6]. This can be
seen in the following simple example.

Example 3.6. Let A = A′ = [0,∞), with the strata X = {0} < Y = (0,∞),
taking TX = [0,∞), TY = Y , πX(x) = 0, πY (y) = y, ρX(x) = x and ρY (y) = 0. Then
the second equality of Definition 3.1-(vi) fails for the strata X×X < X×Y of A×A′:

ρ′′X×X π′′
X×Y (x, x

′) = ρ′′X×X(0, x′) = x′ 
= x+ x′ = ρ′′X×X(x, x′)

for all (x, x′) ∈ (0,∞)2, which is an open dense subset of T ′′
X×X ∩ T ′′

X×Y = T ′′
X×Y =

[0,∞)× (0,∞), contradicting the second equality of Definition 3.1-(vi).

Thus another choice of ρ′′X×X′ is needed to get the second equality of Defini-
tion 3.1-(vi). For instance, ρ′′X×X′ = max{ρX , ρ′X′} satisfies that condition, but it
is not smooth on the intersection of the strata with T ′′

X×X′ . To solve this problem,
pick up a function h : [0,∞)2 → [0,∞) that is continuous, homogeneous of degree
one, smooth on R2

+, with h−1(0) = {(0, 0)}, and such that, for some C > 1, we have
h(r, s) = max{r, s} if Cmin{r, s} < max{r, s}. Then A×A′ becomes a Thom-Mather
stratification by setting ρ′′X×X′(x, x

′) = h(ρX(x), ρ′X′(x
′)); it will be called a product

of A and A′.

3.1.3. Cones. Recall that the cone with link a non-empty topological space L
is the quotient space c(L) = L× [0,∞)/L× {0}. The class ∗ = L× {0} is called the
vertex or summit of c(L). The element of c(L) represented by each (x, ρ) ∈ L× [0,∞)
will be denoted by [x, ρ]. The function on c(L) induced by the second factor projection
L× [0,∞)→ [0,∞) will be called its radial function, and will be usually denoted by
ρ. Notice that c(L) is locally compact if and only if L is compact. It is also declared
that c(∅) = {∗}.

Now, suppose that L is a compact Thom-Mather stratification. Then c(L) has
a canonical Thom-Mather stratification so that {∗} is a stratum, its restriction to
c(L)� {∗} = L×R+ is the product Thom-Mather stratification, and the tube of {∗}
is [c(L), π, ρ], where ρ is the radial function and π is the unique map c(L)→ {∗}. If
L 
= ∅, then com c(L) = comL + 1 and dim c(L) = dimL + 1. For any ε > 0, let
cε(L) = ρ−1([0, ε)).

Let L′ be another compact Thom-Mather stratification, and let ∗′ denote the
vertex of c(L′). If L 
= ∅, the cone of any morphism f : L → L′ is the morphism
c(f) : c(L) → c(L′) induced by f × id : L × [0,∞) → L′ × [0,∞). If L = ∅,
c(f) is defined by ∗ 
→ ∗′. Reciprocally, it is easy to check that, for any morphism
h : c(L) → c(L′), there is some morphism f : L → L′ such that h = c(f) near ∗; in
particular, h(∗) = ∗′. Let c(Aut(L)) = { c(f) | f ∈ Aut(L) } ⊂ Aut(c(L)).

Example 3.7. For each integer m ≥ 1, there is a canonical homeomorphism
can : c(Sm−1)→ Rm defined by can([x, ρ]) = ρx. Of course, this is not an isomorphism
of Thom-Mather stratifications, but it restricts to a diffeomorphism of the stratum
Sm−1 ×R+ of c(Sm−1) to Rm � {0}. Via can : c(Sm−1)→ Rm, the radial function of
c(Sm−1) corresponds to the function ρ0(x) = |x| on Rm, which will be also called the
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radial function on Rm for the scope of this paper. If ρ1 is the radial function on c(L)
for some compact Thom-Mather stratification L, then the function ρ =

√
ρ20 + ρ21 will

be called the radial function on Rm × c(L).

Lemma 3.8. A product of two cones is isomorphic to a cone.

3.1.4. Conic bundles. Let X be a smooth manifold, L a compact Thom-
Mather stratification, and π : T → X a fiber bundle whose typical fiber is c(L)
and whose structural group can be reduced to c(Aut(L)). Thus there is a fam-
ily of local trivializations of π, {(Ui, φi)}, such that the corresponding transition
functions define a cocycle with values in c(Aut(L)); i.e., for all i and j, there is
a map hij : Uij := Ui ∩ Uj → c(Aut(L)) such that φjφ

−1
i (x, y) = (x, hij(x)(y))

for every x ∈ Uij and y ∈ c(L). Thus we get another cocycle consisting of maps
gij : Uij → Aut(L) so that hij(x) = c(gij(x)) for all x ∈ Uij . Consider the Thom-
Mather stratification on each open subset π−1(Ui) ⊂ T that corresponds by φi to the
product Thom-Mather stratification on Ui × c(L). For each connected open V ⊂ Uij

and every stratum N0 of L, there is an stratum N1 of L such that gij(x)(N0) = N1

for all x ∈ V , and suppose also that, in this case, the map V × N0 → N1,
(x, y) 
→ gij(x)(y), is smooth. Then each mapping (x, y) 
→ (x, gij(x)(y)) defines an
automorphism of Uij ×L. This means that the induced Thom-Mather stratifications
on π−1(Ui) and π−1(Uj) have the same restriction to π−1(Uij). By Lemma 3.4-(i),
we get a unique Thom-Mather stratification on T with the above restriction to each
π−1(Ui). Moreover there is a canonical section of π, called the vertex (or summit)
section, which is well defined by x 
→ ∗x = φ−1

i (x, ∗) if x ∈ Ui, where ∗ is the vertex of
c(L); each ∗x can be called the vertex of π−1(x). The set { ∗x | x ∈ X } is a stratum
of T , called the vertex (or summit) stratum, which is diffeomorphic to X .

If π : T → X is equipped with a maximal family Φ of trivializations satisfying
the above conditions, it will be called a conic bundle, and the corresponding Thom-
Mather stratification on T is called its conic bundle Thom-Mather stratification. It
will be also said that Φ is the conic bundle structure of π.

Let ρ : c(L) → [0,∞) be the radial function. Its lift to each Ui × c(L) is also
denoted by ρ. The functions φ∗

i ρ on the sets π−1(Ui) can be combined to define a
function ρ : T → [0,∞). The tubular neighborhood of X in T is [T, π, ρ], and (T, π, ρ)
is called its canonical representative.

Let π′ : T ′ → X ′ be another conic bundle, whose structure is given by a family
Φ′ of trivializations as above. Let F : T → T ′ be a fiber bundle morphism over a map
f : X → X ′. Then we can choose {(Ui, φi)} as above and a family {(U ′

i , φ
′
i)} ⊂ Φ′

such that f(Ui) ⊂ U ′
i for all i, and therefore F (π−1(Ui)) ⊂ π′−1

(U ′
i). Let h′

ij =
c(g′ij) : U ′

ij := U ′
i ∩ U ′

j → c(Aut(L′)) be the maps defined by the transition maps

φ′
j φ

′
i
−1

as above. Suppose that there are maps κi : Ui → Mor(L,L′) such that
κj(x) gij(x) = g′ij(f(x))κi(x) for all x ∈ Uij . For each connected open V ⊂ Ui

and every stratum N of L, there is an stratum N ′ of L′ such that κi(x)(N) ⊂ N ′

for all x ∈ V , and assume also that, in this case, the map V × N → N ′, (x, y) 
→
κi(x)(y), is smooth. Then F is called a morphism of conic bundles . In this case, each
mapping (x, y) 
→ (f(x), κi(x)(y)) defines a morphism Ui×c(L)→ U ′

i×c(L′). So each

restriction F : π−1(Ui)→ π′−1(U ′
i) is a morphism of Thom-Mather stratifications, and

therefore F : T → T ′ is a morphism of Thom-Mather stratifications by Lemma 3.5-
(i). According to Section 3.1.3, any morphism of Thom-Mather stratifications between
conic bundles, preserving the vertex stratum, equals a conic bundle morphism near
the vertex stratum.
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The case of conic bundles is specially important because, as pointed out in [5,
Chapitre A, Remarque 3], the proof of [43, Theorem 2.6, pp. 16–17] can be easily
adapted to get the following.

Proposition 3.9. Let A ≡ (A,S, τ) be a Thom-Mather stratification with con-
nected strata. Then, for any X ∈ S, there is some (T, π, ρ) ∈ τX such that π : T → X
admits a structure Φ of conic bundle so that the corresponding conic bundle Thom-
Mather stratification is (S|T , τ |T ).

Remark 4.

(i) The notation TX , πX , ρX , LX and ΦX will be used when a reference to the
stratum X is desired.

(ii) We can choose ρ so that (T, π, ρ) is the canonical representative of the tube
around X in T with its conic bundle Thom-Mather stratification.

Definition 3.10 (See [6, 1.2]). A chart or distinguished neighborhood of A is a
pair (O, ξ), where O is open in A and, for some X ∈ S and ε > 0, with the notation
and conditions of Proposition 3.9, ξ is an isomorphism O → B × cε(L) defined by
some (U, φ) ∈ Φ and some chart (U, ζ) of X with ζ(U) = B, where B is an open
subset of Rm for m = dimX . It is said that (O, ξ) is centered at x ∈ X if B is an
open ball centered at 0 and ξ(x) = (0, ∗), where ∗ is the vertex of c(L). A collection
of charts that cover A is called an atlas of A.

Remark 5. Definition 3.10 also includes the case where some factor of the
product Rm × c(L) is missing by taking m = 0 or L = ∅.

Remark 6. By using charts and induction on the complexity, we get the follow-
ing:

(i) In any Thom-Mather stratification, there is at most one dense stratum, which
is open.

(ii) Any stratum with compact closure has a finite number of connected compo-
nents.

3.1.5. Uniqueness of Thom-Mather stratifications.

Lemma 3.11. Let A be a Hausdorff, locally compact and second countable space,
let (A′,S ′, τ ′) be a Thom-Mather stratification with connected strata, and let f : A→
A′ be a continuous map. Then there is at most one Thom-Mather stratification (S, τ)
on A with connected strata so that f : (A,S, τ) → (A′,S ′, τ ′) is a morphism that
restricts to local diffeomorphisms between corresponding strata.

3.1.6. Relatively local properties on strata. The following kind of termi-
nology will be used for a stratum X of a Thom-Mather stratification A. Let P be a
property that may hold on open subsets U ⊂ X ; for the sake of simplicity, let us say
that “U is P” when P holds on U . It is said that X is relatively locally (or rel-locally)
P at some x ∈ X if there is a base U of open neighborhoods of x in A such that
U ∩ X is P for all U ∈ U . If X is rel-locally P at all points of X, then X is said
to be relatively locally (or rel-locally) P . Similarly, P is said to be a relatively local
(or rel-local) property when X is P if and only if it is rel-locally P . For instance,
on X , we will consider functions that are rel-locally bounded or rel-locally bounded
away from zero, rel-locally finite open coverings, and rel-local connectedness at points
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of X. Any locally finite covering of X by open subsets of A restricts to a rel-locally
finite open covering of X ; thus there exist rel-locally finite open coverings of X by the
paracompactness of A (Remark 1-(i)). Observe that X is compact if and only if any
rel-locally finite open covering of X is finite.

3.2. Adapted metrics on strata. The definition of adapted metrics was given
for the regular stratum of any Thom-Mather stratification that is a pseudomanifold
[11, 12, 34, 35]. But its definition has an obvious version for any stratum of a Thom-
Mather stratification. In this paper, we will consider only the simplest type of adapted
metrics, whose definition is recalled.

3.2.1. Adapted metrics on strata and local quasi-isometries between

Thom-Mather stratifications. Let A be a Thom-Mather stratification. The
adapted metrics on its strata are combinations of the adapted metrics on their con-
nected components, using Acon (Remark 1-(v)). Thus we can assume that the strata
of A are connected to define adapted metrics. This definition is given by induction
on the depth.

Definition 3.12 (See [6, 2.1]). Let M be a stratum of A. If depthM = 0, then
any Riemannian metric on M is called adapted . If depthM > 0 and adapted metrics
are defined for strata of lower depth, then an adapted metric on M is a Riemannian
metric g such that, for any point x ∈M �M , there is some chart (O, ξ) of A centered
at x, with ξ(O) = B× cε(L) and ξ(O∩M) = B×N × (0, ε) for some stratum N of L,
so that g is quasi-isometric to ξ∗(g0+ρ2g̃+(dρ)2) on O∩M , where g0 is the standard
Riemannian metric on Rm (m is the dimension of the stratum that contains x), ρ is
the standard coordinate of R+, and g̃ is some adapted metric on N .

Remark 7. By taking charts and using induction on the depth, we get the
following:

(i) Any pair of adapted metrics on M , g and g′, are rel-locally quasi-isometric;
in particular, if M is compact, then g and g′ are quasi-isometric.

(ii) Any point in M has a countable base {Om | m ∈ N } of open neighbor-
hoods such that, with respect to any adapted metric, vol(M ∩Om)→ 0 and
max{ diamP | P ∈ π0(M ∩ Om) } → 0 as m → ∞. Thus, if M is compact,
then volM <∞ and diamP <∞ for all P ∈ π0(M).

(iii) Any morphism of Thom-Mather stratifications restricts to rel-locally uni-
formly continuous maps between corresponding strata with respect to arbi-
trary adapted metrics.

(iv) If g and g′ are adapted metrics on strata M and M ′ of Thom-Mather strat-
ifications A and A′, respectively, then g + g′ is an adapted metric on the
stratum M ×M ′ of any product Thom-Mather stratification on A×A′.

In [6, Appendix], it was proved that there exist adapted metrics on the regular
stratum of any Thom-Mather stratification that is a pseudomanifold. It can be eas-
ily checked that the same argument proves the existence of adapted metrics on any
stratum M of every Thom-Mather stratification A.

Example 3.13. The proof given in [6, Appendix] also shows the following:

(i) With the notation of Definition 3.12, the metric g = g0 + ρ2g̃ + (dρ)2 is
adapted on the stratum M = Rm ×N ×R+ of Rm × c(L); it will be called a
model adapted metric.
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(ii) Let {(Oa, ξa)} be a locally finite atlas of M , let {λa} be a smooth partition
of unity of M subordinated to the open covering {M ∩Oa}, and let ga be an
adapted metric on each M ∩Oa. Then the metric

∑
a λaga is adapted on M .

Example 3.14. For an integer m ≥ 1, let g̃0 be the restriction to Sm−1 of the
standard metric g0 of Rm. Then, via can : c(Sm−1)→ Rm (Example 3.7), the model
adapted metric g1 = ρ2g̃0 + (dρ)2 on the stratum Sm−1 ×R+ of c(Sm−1) corresponds
to g0 on Rm � {0}.

Example 3.15. With the notation of Example 3.3, for any invariant Riemannian
metric g on M , consider the Riemannian metric ḡ on the strata of G\M so that
the canonical projection of the strata of M to the strata of G\M are Riemannian
submersions. The proof of [16, Proposition 2.6] can be easily adapted to produce an
invariant Thom-Mather structure on M so that the restriction of g to any stratum is
adapted. Hence ḡ is adapted for the induced Thom-Mather structure of G\M .

A weak isomorphism between Thom-Mather stratifications is called a local quasi-
isometry if it restricts to rel-local quasi-isometries between their strata with respect to
adapted metrics; this is independent of the choice of adapted metrics by Remark 7-(i).
In particular, a local quasi-isometry between compact Thom-Mather stratifications re-
stricts to quasi-isometries between their strata; thus a local quasi-isometry between
compact Thom-Mather stratifications will be called a quasi-isometry. The condition
of being locally quasi-isometric defines an equivalence relation on the family of Thom-
Mather stratifications on any Hausdorff, locally compact and second countable space;
each equivalence class will be called a local quasi-isometry type of Thom-Mather strat-
ifications. By Remark 7-(iv), the product of Thom-Mather stratifications is unique
up to local quasi-isometries.

Definition 3.16. Let d be the distance function defined by an adapted metric
on a connected stratum M of a Thom-Mather stratification A. For each x ∈ M and
ρ > 0, the relative ball (or rel-ball) of radius ρ and center x is the set consisting of
the points y ∈M such that there is a sequence (zk) in M with limk zk = x in M and
lim supk d(y, zk) < ρ. The term ρ-rel-neighborhood of x will be also used.

Example 3.17.

(i) The rel-balls centered at points of M are the usual balls.
(ii) In the case of a model adapted metric on a stratum of c(L) of the form

M = N × R+, the ρ-rel-neighborhood of the vertex ∗ is N × (0, ρ).

3.2.2. Relatively local completion. Let M be a stratum of a Thom-Mather
stratification A, and fix an adapted metric g on M .

Definition 3.18. Assume first that M is connected, and consider the distance
function d onM induced by g. The relatively local completion (or rel-local completion)

is the subspace M̂ of the metric completion of M whose points can be represented by
Cauchy sequences in M that converge in A; the limits in M of those sequences define
a canonical continuous map lim : M̂ → M . The canonical dense injection of M into
its metric completion restricts to a canonical dense injection ι : M → M̂ satisfying
lim ι = idM . The notation limM and ιM may be also used.

If M is not connected, then M̂ is defined as the disjoint union of the rel-local
completions of its connected components.
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Remark 8.

(i) By Remark 7-(i), M̂ is independent of the choice of the adapted metric.

(ii) For any open O ⊂ A, considered as a substratification, M̂ ∩O can be canon-

ically identified with the open subspace lim−1(M ∩O) ⊂ M̂ .

Example 3.19. Let L be a compact Thom-Mather stratification and M a stra-
tum of c(L). With the notation of Section 3.1.3, if M = {∗}, then M̂ = M , obviously.
Now, suppose that M = N × R+ for some stratum N of L. Consider the model
adapted metric g = ρ2g̃+(dρ)2 for some adapted metric g̃ on N , and the correspond-

ing rel-local completion M̂ . By Remark 6-(ii), π0(N) is finite. For each P ∈ π0(N),

let P̂ denote the rel-local completion of P with respect to Lcon, which is independent
of the choice of g̃. Then it is easy to check that

M ≡ ⊔
P P × R+

⊔
P ιP×id−−−−−−→ ⊔

P P̂ × R+ ↪→ ⊔
P c(P̂ )

extends to a homeomorphism M̂ → ⊔
P∈π0(N) c(P̂ ).

Remark 9. The following properties follow easily by using charts, induction on
the depth of the strata, Example 3.19 and Remark 7-(ii):

(i) lim : M̂ →M is surjective with finite fibers.

(ii) M is rel-locally connected with respect to M̂ .

(iii) If M is compact, then M̂ is compact, and therefore its connected components
are the metric completions of the connected components of M , as indicated
in Section 1.

Proposition 3.20.

(i) M̂ has a unique Thom-Mather stratification with connected strata such that

lim : M̂ → M is a morphism that restricts to local diffeomorphisms between
corresponding strata. In particular, the connected components of M can be
considered as strata of M̂ via ιM .

(ii) The restriction of g to the connected components of M are adapted metrics

with respect to M̂ .
(iii) Let M ′ be a connected stratum of another Thom-Mather stratification A′

equipped with an adapted metric. Then, for any morphism f : A → A′ with
f(M) ⊂M ′, the restriction f : M →M ′ extends to a morphism f̂ : M̂ → M̂ ′.
Moreover f̂ is an isomorphism if f is an isomorphism.

4. Relatively Morse functions. The concept of rel-Morse function on strata is
introduced and studied in this section; specially, their numerical contribution νrmin/max
for each degree r is described using the rel-critical points. As a first step, we also
introduce rel-admissible functions. A construction of rel-admissible functions from
rel-local data is given (Lemma 4.4 and Proposition 4.5), and the existence of rel-
Morse functions is shown (Proposition 4.9); their proofs are given in Appendix A.

Let M be a stratum of a Thom-Mather stratification A, and fix an adapted
metric g on M . Identify M with its image by the canonical dense open embedding
ι : M → M̂ . Let f ∈ C∞(M). Recall that the Hessian of f , with respect to g, is the
smooth symmetric section of TM∗ ⊗ TM∗ defined by Hess f = ∇df .
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Definition 4.1.

(i) It is said that f is relatively admissible (or rel-admissible) with respect to g
if f , |df | and |Hess f | are rel-locally bounded.

(ii) A point x ∈ M̂ is called relatively critical (or rel-critical) if lim inf |df(y)| = 0

as y → x in M̂ with y ∈ M . The set of rel-critical points of f is denoted by
Critrel(f).

Remark 10.

(i) The rel-local boundedness of |df | is invariant by rel-local quasi-isometries by
Remark 7-(i), and therefore it is independent of g. Similarly, the definition
of rel-critical point is also independent of g by Remarks 7-(i) and 8-(i). But
the rel-local boundedness of |Hess f | depends on the choice of g. However it
follows from Lemma 4.4 and Proposition 4.5 below that the existence of g so
that f is rel-admissible with respect to g is a rel-local property.

(ii) If depthM = 0, then any smooth function is admissible, and its rel-critical
points are its critical points.

(iii) A rel-admissible function on M may not have any continuous extension to

M , but it has a continuous extension to M̂ by the rel-local boundedness of
|df |. Thus it becomes natural to define its rel-critical points in M̂ .

(iv) In Definition 4.1-(ii), if f is rel-admissible, the condition lim inf |df(y)| = 0 is
equivalent to lim |df(y)| = 0 by the rel-local boundedness of |∇df |.

Example 4.2. With the notation of Example 3.13-(i), for any h ∈ C∞(R+) with
h′ ∈ C∞

0 (R+), the function h(ρ) is rel-admissible on the stratum Rm × N × R+ of
Rm × c(L) with respect to any model adapted metric.

Example 4.3. With the notation of Examples 3.3 and 3.15, for any G-invariant
smooth function f onM , let f̄ denote the induced function on G\M , whose restriction
to each stratum is smooth, and df is the pull-back of df̄ on corresponding strata of M
and G\M . Fix any invariant metric on M and consider the induced adapted metric
on the strata of G\M . The restriction of Hess f to horizontal tangent vectors on the
strata of M corresponds via the canonical projection to Hess f̄ on the strata of G\M
by [36, Lemma 1]. It easily follows that f̄ is rel-admissible on the strata of G\M .

Lemma 4.4. For any locally finite covering {Oa | a ∈ A} of M by open subsets
of A, there is a smooth partition of unity {λa} on M subordinated to {M ∩Oa} such
that, for any adapted metric on M , each function |dλa| is rel-locally bounded.

Proposition 4.5. Let {Oa | a ∈ A} be a locally finite covering of M by open
subsets of A, let {λa} be a partition of unity on M subordinated to the open covering
{M ∩Oa} satisfying the conditions of Lemma 4.4, and let f ∈ C∞(M) such that each
f |M∩Oa is rel-admissible with respect to some adapted metric ga on M ∩Oa. Then f
is rel-admissible with respect to the adapted metric g =

∑
a λaga on M .

We would like to define relatively Morse functions onM as rel-admissible functions
whose rel-critical points are “rel-non-degenerate” in an obvious sense. However an
appropriate version of the Morse lemma [33, Lemma 2.2] is missing, and thus the
“rel-local models” around the rel-critical points are used to define them.

Definition 4.6. It is said that f ∈ C∞(M) is a relatively Morse function (or
rel-Morse function) if it is rel-admissible with respect to some adapted metric and,
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for every x ∈ Critrel(f), there exists a chart (O, ξ) of M̂ centered at x, with ξ(O) =
B×cε(L), such that, for some m± ∈ N and compact Thom-Mather stratifications L±,
there exists a pointed diffeomorphism θ0 : (Rm, 0)→ (Rm+ ×Rm− , (0, 0)), and a local
quasi-isometry θ1 : c(L) → c(L+) × c(L−) so that f |M∩O corresponds to a constant
plus 1

2 (ρ
2
+ − ρ2−) via (θ0 × θ1) ξ, where ρ± is the radial function on Rm± × c(L±)

(Example 3.7).

Example 4.7. With the notation of Examples 3.3, 3.15 and 4.3, the invariant
Morse-Bott functions on M whose critical submanifolds are orbits form a dense subset
of the space of invariant smooth functions [44, Lemma 4.8]. They induce rel-Morse
functions on every orbit type stratum of G\M .

Definition 4.8. Let f be a rel-Morse function on M . For each x ∈ Critrel(f),
with the notation of Definition 4.6, let M± be the strata of c(L±) so that (θ0 × θ1) ξ
defines an open embedding of M ∩ O into Rm+ × Rm− × M+ ×M−, where either
M± is the vertex stratum {∗±} of c(L±), or M± = N± × R+ for some stratum N±
of L±. Let n± = dimM±. For every r ∈ Z, define νrx,min/max = νrx,min/max(f) in the
following way:

• If M+ = N+ × R+ and M− = N− × R+, let

νrx,min/max =
∑
r+,r−

β
r+
min/max(N+)β

r−
min/max(N−) ,

where (r+, r−) runs in the subset of Z2 determined by the conditions:

r = m− + r+ + r− + 1 , (1)

r+ ≤

⎧⎪⎨⎪⎩
n+

2 − 1 if n+ is even
n+−3

2 if n+ is odd, in the minimum i.b.c. case
n+−1

2 if n+ is odd, in the maximum i.b.c. case ,

(2)

r− ≥

⎧⎪⎨⎪⎩
n−
2 if n− is even
n+−1

2 if n− is odd, in the minimum i.b.c. case
n−+1

2 if n− is odd, in the maximum i.b.c. case ,

(3)

• If M+ = {∗+} and M− = N− × R+, let νrx,min/max =
∑

r−
β
r−
min/max(N−),

where r− runs in the set of integers satisfying r = m− + r− + 1 and (3).
• If M+ = N+ × R+ and M− = {∗−}, let νrx,min/max =

∑
r+

β
r+
min/max(N+),

where r+ runs in the set of integers satisfying r = m− + r+ and (2).
• If M+ = {∗+} and M− = {∗−}, let νrx,min/max = δr,m− .

Finally, let νrmin/max =
∑

x ν
r
x,min/max, where x runs in the Critrel(f).

Remark 11.

(i) The rel-critical points of rel-Morse functions are isolated.
(ii) The function 1

2 (ρ
2
+ − ρ2−) on Rm+ × Rm− ×M+ ×M− is rel-Morse, and will

be called a model rel-Morse function.

The existence, and indeed certain abundance, of rel-Morse functions is guaranteed
by the following result.

Proposition 4.9. Let F ⊂ C∞(M) denote the subset of functions with contin-
uous extensions to M that restrict to rel-Morse functions on all strata ≤M . Then F
is dense in C∞(M) with the weak C∞ topology.
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Remark 12. A “(weak/strong) rel-C∞ topology” can be easily defined on the set
of rel-admissible functions on M . Then a much better density result of the rel-Morse
functions should be true in this topology. Its proof would take us too far from the
main goals of the paper.

5. Preliminaries on Hilbert complexes. Here, we recall from [8] some basic
definitions and needed results about Hilbert and elliptic complexes. Some elementary
remarks are also made.

5.1. Hilbert complexes. For each r ∈ N, let Hr be a separable (real or com-
plex) Hilbert space such that, for some N ∈ N, we have Hr = 0 for all r > N . They
give rise to the graded Hilbert space H =

⊕
r Hr, where the terms Hr are mutually

orthogonal. For each degree r, let dr be a densely defined closed operator of Hr to
Hr+1. Let Dr = D(dr) (its domain) and Rr = dr(Dr) for each r, and let D =

⊕
rDr

and d =
⊕

r dr. Assume that Rr ⊂ Dr+1 and dr+1dr = 0 for all r. Then the complex

0 −−−−→ D0
d0−−−−→ D1

d1−−−−→ · · · dN−1−−−−→ DN −−−−→ 0

is called a Hilbert complex ; its notation is abbreviated as (D,d), or simply as d.
Assuming that D0 
= 0, the maximum N ∈ N such that DN 
= 0 will be called the
length of (D,d). We may also consider Hilbert complexes with spaces of negative
degree or with homogeneous operators of degree −1 without any essential change.

For the adjoint operator d∗
r of each dr, let D∗

r = D(d∗
r) ⊂ Hr+1 and R∗

r =
d∗
r(D∗

r ) ⊂ Hr, and set D∗ =
⊕

r D∗
r and d∗ =

⊕
r d

∗
r . Then we get a Hilbert complex

0 ←−−−− D∗
−1

d
∗
0←−−−− D∗

0

d
∗
1←−−−− · · · d

∗
N−1←−−−− D∗

N−1 ←−−−− 0 ,

denoted by (D∗,d∗) (or simply d∗), which is called dual or adjoint of (D,d).
If (D′,d′) is another Hilbert complex in the graded Hilbert space H′ =

⊕
r H

′
r,

a homomorphism of complexes, ζ =
⊕

r ζr : (D,d) → (D′,d′), is called a map of
Hilbert complexes if it is the restriction of a bounded map ζ : H→ H′. If moreover ζ
is an isomorphism of complexes and ζ−1 is a Hilbert complex map, then ζ is called an
isomorphism of Hilbert complexes . If ζ : (D,d) → (D̃′,d′) is an isomorphism, where

D̃′
r = D′

r+r0 for all r and some fixed r0 
= 0, then it will be said that ζ : (D,d) →
(D′,d′) is an isomorphism up to a shift of degree.

Let

Hev =
⊕
r

H2r , Hodd =
⊕
r

H2r+1 ,

Dev =
⊕
r

D2r , D∗
odd =

⊕
r

D∗
2r−1 ,

dev =
⊕
r

d2r , d∗
odd =

⊕
r

d∗
2r−1 .

Note that D∗
odd ⊂ Hev. The operator Dev = dev+d∗

odd, with domain Dev ∩D∗
odd, is a

densely defined closed operator of Hev to Hodd, whose adjoint is Dodd = dodd + d∗
ev.

Thus

D =

(
0 Dodd

Dev 0

)
= d+ d∗
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is a self-adjoint operator in H = Hev ⊕ Hodd with D(D) = D ∩D∗, and

Δ = D2 = DoddDev ⊕DevDodd = d∗d+ dd∗

is a self-adjoint non-negative operator, which can be called the Laplacian of (D,d).
Observe that (D,d) and (D∗,d∗) define the same Laplacian. The Hilbert complex
(D,d) can be reconstructed from Dev [8, Lemma 2.3]. The restriction of Δ to each
space Dr will be denoted by Δr. Notice that kerΔr = kerdr ∩ kerd∗

r−1 for all r.
Moreover we have a weak Hodge decomposition [8, Lemma 2.1]

Hr = kerΔr ⊕Rr−1 ⊕R∗
r .

If T is a self-adjoint operator in a Hilbert space, then D∞(T ) =
⋂

k≥1D(T k)

is a core4 for T , which is called its smooth core. In the case of the Laplacian Δ

of a Hilbert complex (D,d) in a graded Hilbert space H, the smooth core D∞(Δ),
also denoted by D∞(d) or D∞, is a subcomplex of (D,d), and (D∞,d) ↪→ (D,d)
induces an isomorphism in homology [8, Theorem 2.12]. It will be also said that D∞

(respectively, D∞
r ) is the smooth core of d (respectively, dr); notice that it is a core

of d (respectively, dr). Let R∞
r = dr(D∞

r ) and R∗∞
r = d∗

r(D∞
r ), which are dense

subspaces of Rr and R∗
r .

The following properties are equivalent [8, Theorem 2.4]:
• The homology of (D,d) is of finite dimension and R is closed in H.
• The homology of (D,d) is of finite dimension.
• Dev is a Fredholm operator.
• 0 
∈ specess(Δ) (the essential spectrum of Δ).

In this case, (D,d) is called a Fredholm complex and satisfies the following:
• R and R∗ are closed in H [8, Corollary 2.5], obtaining the stronger Hodge
decompositions

Hr = kerΔr ⊕Rr−1 ⊕R∗
r , D∞

r = kerΔr ⊕R∞
r−1 ⊕R∗∞

r .

• dr : R∗∞
r →R∞

r and d∗
r : R∞

r →R∗∞
r are isomorphisms.

• kerΔr is isomorphic to the homology of degree r of (D,d).
It is said that (D,d) is discrete when Δ has a discrete spectrum (specess(Δ) = ∅).

The following properties hold when (D,d) is discrete:
• For each λ ∈ spec(Δ|R∞r ), we get isomorphisms

dr : Eλ(Δ|R∗∞r )→ Eλ(Δ|R∞r ) , d∗
r : Eλ(Δ|R∞r )→ Eλ(Δ|R∗∞r )

between the corresponding eigenspaces. Thus spec(Δ|R∞r ) = spec(Δ|R∗∞r ).
• We have

spec(dr|R∗∞r ⊕ d∗
r |R∞r ) = {±

√
λ | λ ∈ spec(Δ|R∞r ) } ,

and, for each λ ∈ spec(Δ|R∞r ), E±
√
λ(dr|R∗∞r ⊕ d∗

r |R∞r ) consists of the ele-
ments of the form u ± v with u ∈ Eλ(Δ|R∞r ) and v ∈ Eλ(Δ|R∗∞r ) satisfying

d∗u =
√
λ v and dv =

√
λ u. Moreover the mapping u+ v 
→ u− v, for u and

v as above, defines an isomorphism

E√
λ(dr|R∗∞r ⊕ d∗

r |R∞r )→ E−√
λ(dr|R∗∞r ⊕ d∗

r |R∞r ) .

4Recall that a core of a closed densely defined operator T between Hilbert spaces is any subspace
of its domain D(T ) which is dense with the graph norm.
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• Any Hilbert complex (D′,d′) isomorphic to (D,d) is also discrete, and, if
spec(Δr) and spec(Δ′

r) consist of the eigenvalues 0 ≤ λ0 ≤ λ1 ≤ · · · and
0 ≤ λ′

0 ≤ λ′
1 ≤ · · · , respectively, then there is some C ≥ 1 such that C−1λk ≤

λ′
k ≤ Cλk for all k ∈ N [8, Lemma 2.17].

Consider Hilbert complexes, (D′,d′) and (D′′,d′′), in respective graded Hilbert
spaces, H′ and H′′. The Hilbert space tensor product5, H = H′⊗̂H′′, has a canonical
grading (Hr =

⊕
p+q=r H

′
p⊗̂H′′

q ), and

D̃ = (D′ ⊗ H′′) ∩ (H′ ⊗D′′) ⊂ H

is a dense graded subspace. Let d̃ = d′⊗1+w⊗d′′ with domain D̃, where w denotes

the degree involution on H′, and let d = d̃, whose domain is denoted by D. Then
(D,d) is a Hilbert complex in H called the tensor product of (D′,d′) and (D′′,d′′). If
Δ′, Δ′′ and Δ denote the Laplacians of (D′,d′), (D′′,d′′) and (D,d), respectively,
then Δ = Δ′ ⊗ 1 + 1⊗Δ′′ on D̃. The following result is elementary.

Lemma 5.1. If (D′,d′) and (D′′,d′′) are discrete, then (D,d) is discrete. More
precisely, given complete orthonormal systems of H′ and H′′ consisting of eigenvec-
tors e′k and e′′k (k ∈ N) of Δ′ and Δ′′, with corresponding eigenvalues λ′

k and λ′′
k ,

respectively, we get a complete orthonormal system of H consisting of the eigenvectors
e′k ⊗ e′′� ∈ D̃ of Δ with corresponding eigenvalues λ′

k + λ′′
� .

Let (E , d) be a densely defined complex in a graded separable Hilbert space H

(E is a dense graded linear subspace of H). Consider the family of Hilbert complexes
(D,d) in H extending (E , d) ((E , d) is a subcomplex of (D,d)) equipped with the
order relation defined by “being a subcomplex”. We will be interested in its mini-
mum/maximum elements. Notice that, if (E , d) has some Hilbert complex extension,
then d is the minimum Hilbert complex extension of (E , d). Another complex of the
form (E , δ), with δr : Er+1 → Er for each degree r, will be called a formal adjoint of
(E , d) if 〈du, v〉 = 〈u, δv〉 for all u, v ∈ E ; there is at most one formal adjoint by the
density of E in H. In this case, if (E , δ) has some Hilbert complex extension, then the
adjoint of the minimum Hilbert complex extension of (E , δ) is the maximum Hilbert
complex extension of (E , d).

Now, consider a countable family of densely defined complexes (Ea, da) in separa-
ble graded Hilbert spaces Ha (a ∈ N), let (Da,da) be a Hilbert complex extension of
each (Ea, da) in Ha, and let Δa denote the corresponding Laplacian. Suppose that the
Hilbert complexes (Da,da) are of uniformly finite length (there is some N ∈ N such
that Da

r = 0 for all r ≥ N and all a). Let (E , d) be the complex defined by E =
⊕

a Ea
and d =

⊕
a d

a. The Hilbert space direct sum6, H =
⊕̂

aH
a, has an induced grading

(Hr =
⊕̂

aH
a
r). Let d =

⊕̂
ad

a (the graph of d is the Hilbert space direct sum of the
graphs of the maps da). The domain D of d consists of the points (ua) ∈ H such that
ua ∈ Da for all a and (daua) ∈ H. Moreover d is defined by (ua) 
→ (daua). Clearly,

5Recall that this is the Hilbert space completion of the algebraic tensor product H′ ⊗ H′′ with
respect to the scalar product defined by 〈u′⊗u′′, v′⊗v′′〉 = 〈u′, v′〉′ 〈u′′, v′′〉′′, where 〈 , 〉′ and 〈 , 〉′′

are the scalar products of H′ and H′′, respectively.
6Recall that this is the Hilbert space completion of the algebraic direct sum,

⊕
a Ha, with respect

to the scalar product 〈(ua), (va)〉 =
∑

a〈u
a, va〉a, where each 〈 , 〉a is the scalar product of Ha. We

have H =
⊕

a Ha if the number of terms Ha is finite.



66 J. A. ÁLVAREZ LÓPEZ AND M. CALAZA

(D,d) is a Hilbert complex extension of (E , d) in H with

D∞(d) =

{
(ua) ∈

⊕̂
a

D∞(da)

∣∣∣∣∣ ((1 +Δa)kua) ∈
⊕̂
a

D∞(da) ∀k ∈ N

}
, (4)

d∗ =
⊕̂
a

da∗ . (5)

The following lemma will be proved in Appendix B.

Lemma 5.2.

(i) If each (Da,da) is a minimum Hilbert complex extension of (Ea, da) in Ha,
then (D,d) is a minimum Hilbert complex extension of (E , d) in H.

(ii) If each (Ea, da) has a formal adjoint (Ea, δa) with some Hilbert complex exten-
sion, and each (Da,da) is a maximum Hilbert complex extension of (Ea, da)
in Ha, then (D,d) is a maximum Hilbert complex extension of (E , d) in H.

5.2. Elliptic complexes. Let M be a possibly non-complete Riemannian mani-
fold, and let E =

⊕
r Er be a graded Riemannian or Hermitian vector bundle over M ,

with Er = 0 if r < 0 or r > N for some N ∈ N. The space of smooth sections of each
Er will be denoted by C∞(Er), its subspace of compactly supported smooth sections
will be denoted by C∞

0 (Er), and the Hilbert space of square integrable sections of
Er will be denoted by L2(Er); then C∞(E) =

⊕
r C

∞(Er), C
∞
0 (E) =

⊕
r C

∞
0 (Er)

and L2(E) =
⊕

r L
2(Er). For each r, let dr : C∞(Er) → C∞(Er+1) be a first order

differential operator, and set d =
⊕

r dr. Suppose that (C∞(E), d) is an elliptic com-
plex7; however, ellipticity is not needed for several elementary properties stated in
this section. The simpler notation (E, d) (or even d) will be preferred. Elliptic com-
plexes with non-zero terms of negative degrees or homogeneous differential operators
of degree −1 may be also considered without any essential change.

Consider the formal adjoint δr = tdr : C∞(Er+1) → C∞(Er) for each r, and
set δ =

⊕
r δr. Then (E, δ) is another elliptic complex that will be called the formal

adjoint of (E, d), and its subcomplex (C∞
0 (E), δ) is formal adjoint of (C∞

0 (E), d)
in L2(E) in the sense of Section 5.1. Let D = d + δ and Δ = D2 = dδ + δd on
C∞(E). This Δ can be called the Laplacian defined by (E, d), and its components
are Δr = dr−1δr−1 + δrdr.

Any Hilbert complex extension of (C∞
0 (E), d) in L2(E) is called an ideal boundary

condition (shortly, i.b.c.) of (E, d). There always exist a minimum and maximum
i.b.c., dmin = d and dmax = δ∗min [8, Lemma 3.1]. The complex dmin/max defines the
operator Dmin/max = dmin/max + δmax/min and the Laplacian Δmin/max = D2

min/max,

which extend D and Δ on C∞
0 (E). The homogeneous components of Δmin/max are

Δmin/max,r = δmax/min,r dmin/max,r + dmin/max,r−1 δmax/min,r−1 . (6)

The notation dr,min/max and δr,max/min also makes sense for dmin/max,r and δmax/min,r

by considering dr and δr as differential complexes of length one (ellipticity is not
needed here); similarly, any first order differential operator can be considered as a
differential complex of length one and denote its minimum/maximum i.b.c. with the
subindex “min/max”, regardless of ellipticity.

7Recall that this means that it is a complex and the sequence of principal symbols of the operators
dr is exact in the fiber over each non-zero cotangent vector
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For any i.b.c. (D,d) of (E, d), the map of complexes, (D ∩ C∞(E), d) ↪→ (D,d),
induces an isomorphism in homology [8, Theorem 3.5]. We have D∞ ⊂ D ∩ C∞(E)
by elliptic regularity.

Let (E′, d′) be another elliptic complex over another Riemannian manifold M ′.
Consider a vector bundle isomorphism ζ : E → E′ over a quasi-isometric diffeomor-
phism ξ : M → M ′ such that the restrictions of ζ to the fibers are quasi-isometries.
It induces a map ζ : C∞(E) → C∞(E′) defined by (ζu)(x′) = ζ(u(ξ−1(x′)) for
u ∈ C∞(E) and x′ ∈ M ′. If moreover ζ : (C∞(E′), d′)→ (C∞(E), d) is a homomor-
phism of complexes, then it will be called a quasi-isometric isomorphism of elliptic
complexes, and the simpler notation ζ : (E′, d′) → (E, d) will be preferred. In this
case, ζ induces a quasi-isometric isomorphism ζ : L2(E′)→ L2(E), which restricts to
the isomorphism ζ : (C∞

0 (E′), d′) → (C∞
0 (E), d). Moreover, for any i.b.c. (D′,d′) of

(E′, d′), there is a unique i.b.c. (D,d) of (E, d) so that ζ : L2(E′)→ L2(E) restricts to
a Hilbert complex isomorphism ζ : (D′,d′)→ (D,d). In particular, ζ induces Hilbert
complex isomorphisms between the corresponding minimum/maximum i.b.c. If ξ is
isometric and the restrictions to the fibers of ζ are isometries, then ζ : (E′, d′)→ (E, d)
is called an isometric isomorphism of elliptic complexes.

Now, let (E′, d′) and (E′′, d′′) be elliptic complexes on Riemannian manifolds
M ′ and M ′′, respectively, and consider the exterior tensor product E = E′

� E′′ on
M = M ′ ×M ′′ with its canonical grading (Er =

⊕
p+q=r E

′
p � E′′

q ). With the weak
C∞ topology, C∞(E′)⊗ C∞(E′′) can be canonically realized as a dense subspace of
C∞(E). Then d = d′ ⊗ 1 +w ⊗ d′′ on C∞(E′) ⊗ C∞(E′′) has a unique continuous
extension to C∞(E), also denoted by d. It turns out that (E, d) is an elliptic complex.
Moreover the minimum/maximum i.b.c. of (E, d) is the tensor product, in the sense of
Section 5.1, of the minimum/maximum i.b.c. of (E′, d′) and (E′′, d′′) [8, Lemma 3.6].

Example 5.3. A particular case of elliptic complex on M is its de Rham com-
plex (Ω(M), d). In this case, δ is the de Rham coderivative, the subcomplex of com-
pactly supported differential forms is denoted by Ω0(M), and the Hilbert space of
L2 differential forms is denoted by L2Ω(M). Let Hmin/max(M) denote the coho-
mology of the minimum/maximum i.b.c., dmin/max, of (Ω0(M), d), which is a quasi-
isometric invariant of M . Hmax(M) is the L2-cohomology H(2)(M) [11]; (a gen-
eralization to arbitrary elliptic complexes is given in [8, Theorem 3.5]). The dimen-
sions βr

min/max(M) = dimHr
min/max(M) can be called min/max-Betti numbers ; if they

are finite, then χmin/max(M) =
∑

r(−1)r βr
min/max(M) is defined and can be called

min/max-Euler characteristic; the simpler notation βr
min/max and χmin/max may be

used. If M is orientable, then Δmax corresponds to Δmin by the Hodge star opera-
tor. It is known that dmin/max satisfies the following properties for special classes of
Riemannian manifolds:

• If M is complete, then dmin = dmax (a particular case of [8, Lemma 3.8]).
• If M is the interior of a compact manifold with boundary, then dmin/max is
given by the relative/absolute boundary conditions [8, Theorem 4.1].

• Suppose that M = M̃ � Σ, where M̃ is a closed Riemannian manifold of
dimension > 2 and Σ is a closed finite union of submanifolds with codimension
≥ 2. Then dmin = dmax [8, Theorem 4.4].
• Let A be a compact Thom-Mather stratification that is a pseudomanifold.
If M is the regular stratum of A equipped with an adapted metric, then
H(2)(M) is isomorphic to the intersection homology of A with lower middle
perversity [13].

Given another Riemannian manifold M ′, for any quasi-isometric (respectively, iso-
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metric) diffeomorphism ξ : M →M ′, the induced isomorphism ξ∗ between the corre-
sponding de Rham complexes is quasi-isometric (respectively, isometric).

6. Sobolev spaces defined by an i.b.c. Here, we study Sobolev spaces asso-
ciated to i.b.c. of an elliptic complex, specially its minimum/maximum i.b.c. These
results will be used in the globalization results of Section 14. Their proofs are given
in Appendix B.

Let T be a non-negative self-adjoint operator in a Hilbert space H. For each
m ∈ N, the Sobolev space of order m associated to T is the Hilbert space completion
Wm = Wm(T ) of D∞ = D∞(T ) with respect to the scalar product 〈 , 〉m defined by
〈u, v〉m = 〈u, (1 + T )mv〉. The notation ‖ ‖m and Clm (or ‖ ‖Wm and ClWm) will be
used for the norm and closure in Wm. There are continuous inclusions Wm+1 ↪→Wm,
and we have D∞ =

⋂
m Wm. Moreover T defines a bounded operator Wm+2 →Wm.

Now, let (D,d) be an i.b.c. of an elliptic complex (E, d) on a Riemannian manifold
M . Its adjoint (D∗,d∗) is an i.b.c. of the elliptic complex (E, δ), where δ = td. We get
the operators D = d+ δ and D = d+ d∗, and the Laplacians Δ = D2 and Δ = D2.
Then Wm = Wm(Δ) can be called the Sobolev space of order m associated to (D,d),
and may be also denoted by Wm(d); the notation Wm(dr) will be also used when we
consider its subspace of homogeneous elements of degree r. Since (D,d) and (D∗,d∗)
define the same Laplacian, we get Wm(d) = Wm(d∗) for all m. For u ∈ D∞

r , we have

‖u‖21 = ‖u‖2 + ‖Du‖2 = ‖u‖2 + ‖dru‖2 + ‖δr−1u‖2 .

So

W 1 = D(D) = D ∩ D∗ , (7)

‖u‖21 = ‖u‖2 + ‖Du‖2 = ‖u‖2 + ‖dru‖2 + ‖d∗
r−1u‖2 (8)

for u ∈W 1(dr). The following generalizes the Rellich lemma on compact manifolds.

Lemma 6.1. The following properties are equivalent:
(i) (D,d) is discrete.
(ii) W 1 ↪→W 0 = L2(E) is compact.
(iii) Wm+1 ↪→ Wm is compact for all m.

For any fixed f ∈ C∞(M), let f also denote the operator of multiplication by f
on C∞(E) (or on L2(E) if f is bounded). Observe that [d, f ] is of order zero because
d is of first order; moreover [d, f ]∗ = −[δ, f ].

Lemma 6.2. If f and |[d, f ]| are bounded, then:
(i) f D(dmin/max) ⊂ D(dmin/max) and [dmin/max, f ] = [d, f ]; and
(ii) f W 1(dmin/max) ⊂W 1(dmin/max).

Let (E′, d′) be another elliptic complex on a Riemannian manifold M ′. The scalar
product of L2(E′) will be denoted by 〈 , 〉′, and let δ′ = td′. Let U and U ′ be open
subsets of M and M ′, respectively, so that U ⊃ supp f , and let ζ : (E|U , d) →
(E′|U ′ , d′) be a quasi-isometric isomorphism of elliptic complexes whose underlying
quasi-isometric diffeomorphism is ξ : U → U ′. For each u ∈ L2(E), identify fu to
fu|U , and identify ζ(fu) ∈ L2(E′|U ′) with its extension by zero to the whole of M ′;
in this way, we get a subspace ζ(f D(dmin/max)) ⊂ L2(E′).

Lemma 6.3. If f and |[d, f ]| are bounded, then the following properties hold:
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(i) We have ζ(f D(dmin/max)) ⊂ D(d′min/max), and d′min/maxζ = ζdmin/max on

f D(dmin/max)
(ii) If moreover ζ is isometric, then ζ(f W 1(dmin/max)) ⊂W 1(d′min/max).

7. A perturbation of the harmonic oscillator. The main analytic tool used
in this paper is a perturbation of the harmonic oscillator introduced and studied in
[3], which is recalled in this section.

Let ρ denote the canonical coordinate of R+. For each a ∈ R, the operator of
multiplication by the function ρa on C∞(R+) will be also denoted by ρa. We have

[d/dρ, ρa] = aρa−1 ,
[
d2/dρ2, ρa

]
= 2aρa−1 d/dρ+ a(a− 1)ρa−2 . (9)

Recall that the harmonic oscillator on C∞(R+) is the operator H = − d2

dρ2 + s2ρ2,
depending on a parameter s > 0. For c1, c2 ∈ R, consider its perturbation

P = H − 2c1ρ
−1 d

dρ
+ c2ρ

−2 . (10)

By (9), we get an operator of the same type if ρ−1 and d
dρ are interchanged.

Let Sev/odd denote the space of even/odd functions in the Schwartz space
S = S(R). The restrictions of those functions to R+ form the space denoted by
Sev/odd,+. The scalar product of L2(R+, ρ

2c1 dρ) will be denoted by 〈 , 〉c1 , and the
corresponding norm by ‖ ‖c1. For each σ > −1/2, let pk denote the sequence of

orthogonal polynomials associated with the measure e−sx2 |x|2σ dx on R [41], called
generalized Hermite polynomials. The corresponding generalized Hermite functions
are φk = pke

−sx2/2.

Proposition 7.1 ([3, Theorem 1.4]). If there is some a ∈ R such that

a2 + (2c1 − 1)a− c2 = 0 , (11)

σ := a+ c1 > −1/2 , (12)

then:
(i) P , with domain ρa Sev,+, is essentially self-adjoint in L2(R+, ρ

2c1 dρ);
(ii) the spectrum of its self-adjoint extension, denoted by P, consists of the eigen-

values (4k+1+2σ)s (k ∈ N) with multiplicity one and normalized eigenfunc-
tions χs,a,σ,k :=

√
2 ρaφ2k,+ (or simply χk); and

(iii) D∞(P) = ρaSev,+.
By Proposition 7.1-(iii), we have hD∞(P) ⊂ D∞(P) for all h ∈ C∞(R+) such

that h′ ∈ C∞
0 (R+). More precisely, we have the following.

Lemma 7.2. Let h ∈ C∞(R+) with h′ ∈ C∞
0 (R+). Then, for all k ∈ N, there is

some Ck = Ck(c1, h) > 0 such that, for all φ ∈ D∞(P),
‖(1 + P )k(hφ)‖c1 ≤ Ck ‖(1 + P )kφ‖c1 .

Proof. With the notation of [3], recall that the Dunkl operator Tσ (σ > −1/2)
on C∞(R) is the perturbation of d

dx defined by Tσ = d
dx on even functions and

Tσ = d
dx + 2σ 1

x on odd functions, where x denotes the canonical coordinate of R.
This gives rise to the Dunkl harmonic oscillator, and Dunkl annihilation and creation
operators are the perturbations L = −T 2

σ + s2x2, B = sx + Tσ and B′ = sx − Tσ
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(s > 0), which are perturbations of the harmonic oscillator, H = − d2

dx2 + s2x2, and

annihilation and creation operators, A = sx+ d
dx and A′ = sx− d

dx . The well known
relations satisfied by H , A and A′ can be generalized for L, B and B′; for instance,

L = BB′ − (1 + 2Σ)s = B′B + (1 + 2Σ)s =
1

2
(BB′ +B′B) , (13)

where Σ is the operator of multiplication by σ on even functions, and by −σ on odd
functions [3, Eq. (3)]. These operators preserve S. Considering these operators in
L2(R, |x|2σ dx) with domain S, we have that B′ is symmetric of B, and L is essentially
self-adjoint in L2(R, |x|2σ dx). Moreover the smooth core of the closure of L is S, and
its spectrum can be described like in the case of H , A and A′.

Now, let f be any smooth even function on R such that f ′ is compactly supported.
Note that the function h of the statement extends to a function on R satisfying these
conditions. According to [3, Theorem 1.4 and Section 5], it is enough to prove the
following.

Claim 1. For all k ∈ N, there is some Ck = Ck(σ, f) > 0 such that, for all φ ∈ S,

‖(1 + L)k(fφ)‖σ ≤ Ck ‖(1 + L)kφ‖σ .

For any non-commutative polynomial of two variables, p = p(X,Y ), let p′ =
p′(X,Y ) be the polynomial obtained from p by reversing the order of the variables;
for example, if p = XY 2, then p′ = Y 2X . It is said that p is symmetric if p = p′;
in this case, p(B,B′) is a symmetric operator. From (13) and by induction on k, we
easily get the following.

Claim 2. For any non-commutative polynomial p = p(X,Y ) of degree k ∈ N,

there is some Cp > 0 such that ‖p(B,B′)φ‖σ ≤ Cp 〈(1 + L)kφ, φ〉1/2σ for all φ ∈ S.
Observe that [B, f ] = f ′ and [B′, f ] = −f ′ because f is even. Then Claim 1

easily follows from (13) for k = 1 (the case k = 0 is trivial). On the other hand, by
[3, Lemma 4.5], for k > 1, we have (1 + L)k =

∑
a q

′
a(B

′, B)qa(B,B′) for some finite
family of homogeneous non-commutative polynomials qa of degree ≤ k. Hence

(1 + L)k(fφ) = f(1 + L)kφ+

k∑
l=1

f (l) pl(B,B′)φ ,

where each pl is a non-commutative polynomial of degree ≤ k − l, which depends on
the non-commutative polynomials qa. Therefore, by Claim 2,

‖(1 + L)k(fφ)‖σ ≤ ‖f(1 + L)kφ‖σ +

k∑
l=1

‖f (l) pl(B,B′)φ‖σ

≤ (max |f |) ‖(1 + L)kφ‖σ +
k∑

l=1

(max |f (l)|) ‖pl(B,B′)φ‖σ

≤ (max |f |) ‖(1 + L)kφ‖σ +

k∑
l=1

(max |f (l)|)Cpl
‖(1 + L)k−lφ‖σ ,

which gives Claim 1.
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The existence of a ∈ R satisfying (11) is characterized by the condition

(2c1 − 1)2 + 4c2 ≥ 0 . (14)

Observe that (14) is satisfied if c2 ≥ min{0, 2c1}.
Lemma 7.3. If h is a bounded measurable function on R+ with h(ρ) → 1 as

ρ→ 0, then 〈hχs,a,σ,0, χs,a,σ,0〉c1 → 1 as s→∞.

Proof. Given any ε > 0, take some ρ0 > 0 such that |h(ρ) − 1| ≤ ε/2 for ρ ≤ ρ0.
For s large enough, we have∫ ∞

ρ0

e−sρ2

ρ2σ dρ ≤ ε

4p20 sup |h− 1|
Hence, for s large enough,

|〈(1− h)χs,a,σ,0, χs,a,σ,0〉c1 |
≤ 2p20

∫ ∞

0

|1− h(ρ)| e−sρ2

ρ2σ dρ

≤ p20ε

∫ ρ0

0

e−sρ2

ρ2σ dρ+ 2p20 (sup |1− h|)
∫ ∞

ρ0

e−sρ2

ρ2σ dρ

< p20ε

∫ ∞

0

e−sρ2

ρ2σ dρ+
ε

2
=

ε

2
‖χs,a,σ,0‖2c1 +

ε

2
= ε .

8. Two simple types of elliptic complexes. Here, we study two simple el-
liptic complexes. They will show up in a direct sum splitting of the local model of
Witten’s perturbation (Section 12). We could describe the spectra of the Laplacians
associated to their minimum/maximum i.b.c., but this will be done with the local
model of the Witten’s perturbation (Section 11).

8.1. Some more results on general elliptic complexes. Consider the nota-
tion of the beginning of Section 5.2.

Lemma 8.1. Let G ⊂ C∞(E) ∩ L2(E) be a graded linear subspace containing
C∞

0 (E), preserved by d and δ, and such that 〈du, v〉 = 〈u, δv〉 for all u, v ∈ G. Let dG ,
δG and ΔG denote the restrictions of d, δ and Δ to G. Assume that ΔG is essentially
self-adjoint in L2(E), and G is the smooth core of ΔG. Then the following properties
hold:

(i) If Gr ⊂ D(dmin,r) and Gr−1 ⊂ D(dmin,r−1) for some degree r, then Gr is the
smooth core of dmin,r.

(ii) If Gr ⊂ D(δmin,r−1) and Gr+1 ⊂ D(δmin,r) for some degree r, then Gr is the
smooth core of dmax,r.

Proof. For each degree r, the restrictions dr : Gr → Gr+1, δr : Gr+1 → Gr and
Δr : Gr → Gr will be denoted by dG,r, δG,r and ΔG,r, respectively. Suppose that
Gr ⊂ D(dmin,r) and Gr−1 ⊂ D(dmin,r−1), and therefore dG,r ⊂ dmin,r and dG,r−1 ⊂
dmin,r−1. Since C

∞
0 (E) ⊂ G and 〈du, v〉 = 〈u, δv〉 for all u, v ∈ G, it follows that Gr+1 ⊂

D(δmax,r) and Gr ⊂ D(δmax,r−1), and therefore δG,r ⊂ δmax,r and δG,r−1 ⊂ δmax,r−1.
By (6), we get ΔG,r ⊂ Δmin,r. So ΔG,r ⊂ Δmin,r, and therefore ΔG,r = Δmin,r

because these operators are self-adjoint in L2(Er). Then Gr is the smooth core of
dmin,r, completing the proof of (i).
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Now, assume that Gr ⊂ D(δmin,r−1) and Gr+1 ⊂ D(δmin,r), and therefore δG,r−1 ⊂
δmin,r−1 and δG,r ⊂ δmin,r. As above, it follows that dG,r−1 ⊂ dmax,r−1 and dG,r ⊂
dmax,r. By (6), we get ΔG,r ⊂ Δmax,r. So ΔG,r ⊂ Δmax,r, obtaining ΔG,r = Δmax,r

as before. Thus Gr is the smooth core of dmax,r, completing the proof of (ii).
Now, suppose that there is an orthogonal decomposition Er+1 = Er+1,1⊕Er+1,2

for some degree r + 1. Thus

C∞(Er+1) ≡ C∞(Er+1,1)⊕ C∞(Er+1,2) ,

C∞
0 (Er+1) ≡ C∞

0 (Er+1,1)⊕ C∞
0 (Er+1,2) ,

L2(Er+1) ≡ L2(Er+1,1)⊕ L2(Er+1,2) ,

and we can write

dr =

(
dr,1
dr,2

)
, δr =

(
δr,1 δr,2

)
.

For i ∈ {1, 2}, let Δr,i = δr,idr,i + dr−1δr−1 on C∞(Er).

Lemma 8.2. We have:

D(dmax,r) = D(dr,1,max) ∩ D(dr,2,max) , dmax,r =

(
dr,1,max|D(dmax,r)

dr,2,max|D(dmax,r)

)
.

Proof. Let u ∈ L2(Er). We have u ∈ D(dmax,r) if and only if there is some w ∈
L2(Er+1) such that 〈u, δrv〉 = 〈w, v〉 for all v ∈ C∞

0 (Er+1), and moreover dmax,ru = w
in this case. Writing w = w1 ⊕ w2 and v = v1 ⊕ v2, this condition on u means that
〈u, δr,ivi〉 = 〈wi, vi〉 for all vi ∈ C∞

0 (Er+1,i) and i ∈ {1, 2}. In turn, this is equivalent
to u ∈ D(dr,1,max) ∩D(dr,2,max) with dr,i,maxu = wi.

Corollary 8.3. If aΔr = bΔr,i + c for some a, b, c ∈ R with a, b 
= 0, dmin,r

and dr,i,min have the same smooth core, and dr,i,min = dr,i,max for some i ∈ {1, 2},
then dmin,r = dmax,r.

Proof. By Lemma 8.2 and since dr,i,min = dr,i,max, we get D(dmax,r) ⊂ D(dr,i,min).
Because aΔr = bΔr,i + c for some a, b, c ∈ R with a, b 
= 0, it follows that

{ u ∈ D(dmax,r) ∩ C∞(Er) | Δk
ru ∈ L2(Er) ∀k ∈ N }

⊂ { u ∈ D(dr,i,min) ∩C∞(Er) | Δk
r,iu ∈ L2(Er) ∀k ∈ N } .

This means that the smooth core of dmax,r is contained in the smooth core of dr,i,min,
which equals the smooth core of dmin,r. Then dmax,r = dmin,r.

8.2. An elliptic complex of length one. Consider the standard metric on
R+. Let E be the graded Riemannian/Hermitian vector bundle over R+ whose non-
zero terms are E0 and E1, which are real/complex trivial line bundles equipped with
the standard Riemannian/Hemitian metrics. Thus

C∞(E0) ≡ C∞(R+) ≡ C∞(E1) , L2(E0) ≡ L2(R+, dρ) ≡ L2(E1) ,

where real/complex valued functions are considered in C∞(R+) and L2(R+, dρ). For
any fixed s > 0 and κ ∈ R, let

C∞(E0) C∞(E1)
d

δ

�
�
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be the differential operators defined by

d =
d

dρ
− κρ−1 ± sρ , δ = − d

dρ
− κρ−1 ± sρ .

It is easy to check that (E, d) is an elliptic complex, whose formal adjoint is (E, δ).
Using (9), we easily get that the homogeneous components of the corresponding Lapla-
cian Δ are:

Δ0 = δd = H + κ(κ− 1)ρ−2 ∓ s(1 + 2κ) , (15)

Δ1 = dδ = H + κ(κ+ 1)ρ−2 ± s(1− 2κ) , (16)

where H is the harmonic oscillator on C∞(R+) defined with the constant s. Then Δ0

and Δ1 are of the form of P in (10) plus a constant. In these cases, Table 1 contains
the possibilities for a given by (11), the corresponding values of σ, the condition (12)
expressed in terms of κ, and the smooth cores of the corresponding self-adjoint oper-
ators with discrete spectra in L2(R+, dρ), given by Proposition 7.1.

a σ Condition Smooth core

Δ0
κ κ κ > −1/2 ρκ Sev,+

1− κ 1− κ κ < 3/2 ρ1−κ Sev,+
Δ1

1 + κ 1 + κ κ > −3/2 ρ1+κ Sev,+
−κ −κ κ < 1/2 ρ−κ Sev,+

Table 1

Self-adjoint operators defined by Δ0 and Δ1

Let Ei ⊂ C∞(E)∩L2(E) (i ∈ {1, 2}) be the dense graded linear subspace described
in Table 2. Observe that, by restricting d and δ, we get complexes (E1, d) and (E1, δ)
when κ > −1/2, and complexes (E2, d) and (E2, δ) when κ < 1/2. Thus Δ preserves
E1 when κ > −1/2, and preserves E2 when κ < 1/2.

Conditions on κ E0i E1i
E1 κ > −1/2 ρκ Sev,+ ρ1+κ Sev,+
E2 κ < 1/2 ρ1−κ Sev,+ ρ−κ Sev,+

Table 2

E1 and E2

Proposition 8.4.

(i) If |κ| < 1/2, then E1 and E2 are the smooth cores of dmax and dmin, respec-
tively.

(ii) If |κ| ≥ 1/2, then (E, d) has a unique i.b.c., whose smooth core is E1 when
κ ≥ 1/2, and E2 when κ ≤ −1/2.

The following lemma will be used in the proof of Proposition 8.4.

Lemma 8.5. Suppose that either θ > 1/2, or θ = 1/2 = κ (respectively, θ = 1/2 =
−κ). Then, for each ξ ∈ ρθ Sev,+, considered as subspace of C∞(E0) (respectively,
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C∞(E1)), there is a sequence (ξn) in C∞
0 (E0) (respectively, C∞

0 (E1)), independent
of κ, such that limn ξn = ξ in L2(E0) (respectively, L2(E1)) and limn dξn = dξ in
L2(E1) (respectively, limn δξn = δξ in L2(E0)). In particular, ρθ Sev,+ is contained
in D(dmin) (respectively, D(δmin)).

Proof. The proof is made for D(dmin); the case of D(δmin) is analogous.
Let 0 < a < b and f ∈ C∞(R+) such that 0 ≤ f ≤ 1, f(ρ) = 1 for ρ ≤ a, and

f(ρ) = 0 for ρ ≥ b. For each n ∈ N, let gn, hn ∈ C∞(R+) be defined by gn(ρ) = f(nρ)
and hn(ρ) = f(ρ/n). It is clear that

χ[ b
n ,na] ≤ (1 − gn)hn ≤ χ[ an ,nb] , (17)

where χS denotes the characteristic function of each subset S ⊂ R+.
Let φ ∈ Sev,+. From (17), we get (1− gn)hnρ

θφ ∈ C∞
0 (E0) and (1− gn)hnρ

θφ→
ρθφ in L2(E0) as n → ∞. Note that the conditions on θ and κ guarantee that
d(ρθφ) ∈ L2(E1). Observe that

d((1 − gn)hnρ
θφ) = −g′nhnρ

θφ+ (1− gn)h
′
nρ

θφ+ (1 − gn)hn d(ρ
θφ) .

In the right hand side of this equality, the last term converges to d(ρθφ) in L2(E1) as
n→∞ by (17). Moreover

‖(1− gn)h
′
nρ

θφ‖2 =

∫ ∞

0

(1 − gn)
2h′

n
2
(ρ)ρ2θφ2(ρ) dρ

≤ (max ρ2θφ2)n−2

∫ ∞

0

f ′2(ρ/n) dρ

= (max ρ2θφ2)n−1

∫ ∞

0

f ′2(x) dx

= (max ρ2θφ2)n−1 ‖f ′‖2 ,

which converges to zero as n→∞, and

‖g′nhnρ
θφ‖2 =

∫ ∞

0

g′n
2
(ρ)h2

n(ρ)ρ
2θφ2(ρ) dρ

≤ (maxφ2)n2

∫ ∞

0

f ′2(nρ)ρ2θ dρ

= (maxφ2)n1−2θ

∫ ∞

0

f ′2(x)x2θ dx

= (maxφ2)n1−2θ ‖f ′ρθ‖2 ,

which converges to zero as n→∞ if θ > 1/2.
In the case θ = 1/2, it is enough to prove that f can be chosen so that ‖f ′ρ1/2‖ is

as small as desired. For m > 1 and 0 < ε < 1, observe that there is some f as above
such that:

• the support of f ′ is contained in [e−ε, em],
• − 1

mρ ≤ f ′ ≤ 0, and

• f ′(ρ) = − 1
mρ if 1 ≤ ρ ≤ em−ε.

Then

‖f ′ρ1/2‖2 =

∫ em

e−ε

f ′2(ρ)ρ dρ ≤ 1

m2

∫ em

e−ε

dρ

ρ
=

m+ ε

m2
,



WITTEN’S PERTURBATION ON STRATA 75

which converges to zero as m→∞.

Proof of Proposition 8.4. Suppose that |κ| < 1/2. Since 1 ± κ > 1/2, by
Lemma 8.5, E02 ⊂ D(dmin) and E11 ⊂ D(δmin). The other conditions of Lemma 8.1
are satisfied by d with G = E2, and by δ with G = E1 by the discussion previous to
Proposition 8.4. So E2 is the smooth core of dmin and E1 is the smooth core of dmax

by Lemma 8.1.

Now, assume that κ ≥ 1/2 (respectively, κ ≤ −1/2), yielding also 1 + κ >
1/2 (respectively, 1 − κ > 1/2). Then, by Lemma 8.5, E01 ⊂ D(dmin) and E11 ⊂
D(δmin) (respectively, E02 ⊂ D(dmin) and E12 ⊂ D(δmin)). By the discussion previous
to Proposition 8.4, the other conditions of Lemma 8.1 are satisfied by d and δ with
G = E1 (respectively, G = E2). So, by Lemma 8.1, E1 (respectively, E2) is the smooth
core of dmin and dmax.

8.3. An elliptic complex of length two. Consider again the standard metric
on R+. Let F be the graded Riemannian/Hermitian vector bundle over R+ whose
non-zero terms are F0, F1 and F2, which are trivial real/complex vector bundles of
ranks 1, 2 and 1, respectively, equipped with the standard Riemannian/Hermitian
metrics. Thus

C∞(F0) ≡ C∞(R+) ≡ C∞(F2) , C∞(F1) ≡ C∞(R+)⊕ C∞(R+) ,

L2(F0) ≡ L2(R+, dρ) ≡ L2(F2) , L2(F1) ≡ L2(R+, dρ)⊕ L2(R+, dρ) ,

where real/complex valued functions are considered in C∞(R+) and L2(R+, dρ). Fix
s, c > 0 and κ ∈ R, and let

C∞(F0) C∞(F1) C∞(F2) ,

d0 ≡

(
d0,1

d0,2

)

δ0 ≡

(
δ0,1 δ0,2

)
d1 ≡

(
d1,1 d1,2

)

δ1 ≡

(
δ1,1

δ1,2

)�
�

�
�

be the differential operators with δ0 = td0 and δ1 = td1 (thus δi,j =
tdi,j), and

d0,1 =
c√

1 + c2

(
d

dρ
+ κρ−1 ± sρ

)
,

d0,2 =
1√

1 + c2

(
d

dρ
− (κ+ 1)ρ−1 ± sρ

)
,

d1,1 =
1√

1 + c2

(
d

dρ
− κρ−1 ± sρ

)
,

d1,2 =
c√

1 + c2

(
− d

dρ
− (κ+ 1)ρ−1 ∓ sρ

)
.

A direct computation shows that d0 and d1 define an elliptic complex (F, d) of length
two. By (15), (16) and (9), the homogeneous components of the corresponding Lapla-
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cian Δ are given by

Δ0 = δ0,1d0,1 + δ0,2d0,2 = H + κ(κ+ 1)ρ−2 ∓ s

(
2 +

1− c2

1 + c2
(1 + 2κ)

)
,

Δ2 = d1,1δ1,1 + d1,2δ1,2 = H + κ(κ+ 1)ρ−2 ± s

(
2 +

1− c2

1 + c2
(1 + 2κ)

)
,

Δ1 =

(
d0,1δ0,1 + δ1,1d1,1 d0,1δ0,2 + δ1,1d1,2
d0,2δ0,1 + δ1,2d1,1 d0,2δ0,2 + δ1,2d1,2

)
=

(
Δ1,1 0
0 Δ1,2

)
= Δ1,1 ⊕Δ1,2 ,

Δ1,1 = H + κ(κ− 1)ρ−2 ∓ s
1− c2

1 + c2
(1 + 2κ) ,

Δ1,2 = H + (κ+ 1)(κ+ 2)ρ−2 ∓ s
1− c2

1 + c2
(1 + 2κ) .

Thus Δ0, Δ2, Δ1,1 and Δ1,2 are of the form of P in (10) plus a constant. In these cases,
Table 3 contains the possibilities for a given by (11), the corresponding values of σ,
the condition (12) expressed in terms of κ, and the smooth cores of the corresponding
self-adjoint operators with discrete spectra in L2(R+, dρ), given by Proposition 7.1.

a σ Condition Smooth core

Δ0 and Δ2
1 + κ 1 + κ κ > −3/2 ρ1+κ Sev,+
−κ −κ κ < 3/2 ρ−κ Sev,+

Δ1,1
κ κ κ > −1/2 ρκ Sev,+

1− κ 1− κ κ < 3/2 ρ1−κ Sev,+
Δ1,2

2 + κ 2 + κ κ > −5/2 ρ2+κ Sev,+
−1− κ −1− κ κ < −1/2 ρ−1−κ Sev,+

Table 3

Self-adjoint operators defined by Δ0, Δ2, Δ1,1 and Δ1,2

Let Fi ⊂ C∞(F ) ∩ L2(F ) (i ∈ {1, 2}) be the dense graded linear subspace de-
scribed in Table 2. By restricting d and δ, we get complexes (F1, d) and (F1, δ) when
κ > −1/2, and complexes (F2, d) and (F2, δ) when κ < −1/2. Thus Δ preserves F1

when κ > −1/2, and preserves F2 when κ < −1/2.

Condition F0
i F1

i F2
i

F1 κ > −1/2 ρ1+κ Sev,+ ρκ Sev,+ ⊕ ρ2+κ Sev,+ ρ1+κ Sev,+
F2 κ < −1/2 ρ−κ Sev,+ ρ1−κ Sev,+ ⊕ ρ−1−κ Sev,+ ρ−κ Sev,+

Table 4

F1 and F2

Proposition 8.6. Suppose that κ 
= −1/2. Then (F, d) has a unique i.b.c.,
whose smooth core is F1 if κ > −1/2, and F2 if κ < −1/2.
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Proof. We prove only the case with κ > −1/2; the other case is analogous.

By Lemma 8.5 (using the independence of (ξn) on κ in its statement), we get F0
1 ⊂

D(d0,min) and F2
1 ⊂ D(δ1,min). Then, by the discussion previous to this proposition,

the other conditions of Lemma 8.1 are satisfied by the complexes defined by d and δ
with G = F1, obtaining that F0

1 and F2
1 are the smooth cores of d0,min and δ1,min,

respectively. By Proposition 8.4 and since 1+κ, 2+κ > 1/2, we get d0,2,min = d0,2,max

with smooth core F0
1 , and δ1,2,min = δ1,2,max with smooth core F2

1 . So, according
to the discussion previous to this proposition, the conditions of Corollary 8.3 are
satisfied with d and δ, obtaining d0,min = d0,max and δ1,min = δ1,max, which also gives
d1,min = d1,max.

8.4. Finite propagation speed of the wave equation. For the Hermitian
bundle versions of E and F , consider the wave equation

dut

dt
− iDut = 0 (18)

on any open subset of R+, where D = d+δ and ut is in C∞(E) or C∞(F ), depending
smoothly on t ∈ R.

Proposition 8.7. For 0 < a < b, let ut ∈ D∞(dmin/max), depending smoothly
on t ∈ R. The following properties hold:

(i) If ut satisfies (18) on (0, b) and suppu0 ⊂ [a,∞), then supput ⊂ [a− |t|,∞)
for 0 < |t| ≤ a.

(ii) If ut satisfies (18) on [a,∞) and suppu0 ⊂ (0, a], then supput ⊂ (0, a + |t|]
for 0 < |t| ≤ b− a.

Proof. We prove Proposition 8.7 only for E; the proof is clearly analogous for
F , but with more cases because F is of length two. Let ut,0 ∈ C∞(E0) ≡ C∞(R+)
and ut,1 ∈ C∞(E1) ≡ C∞(R+) be the homogeneous components of ut. From the
description of the smooth core of dmin/max in Proposition 8.4, it follows that

lim
ρ↓0

(ut,0 ut,1)(ρ) = 0 . (19)

We have

d

dt

∫ a−t

0

|ut(ρ)|2 dρ =

∫ a−t

0

((iDut, ut) + (ut, iDut))(ρ) dρ − |ut(a− t)|2

= i

∫ a−t

0

((Dut, ut)− (ut, Dut))(ρ) dρ − |ut(a− t)|2 .

But, since d and δ are respectively equal to d/dρ and −d/dρ up to the sum of multi-
plication operators by the same real valued functions,

(Dut, ut)− (ut, Dut) =
dut,0

dρ
· ut,1 − dut,1

dρ
· ut,0 − ut,1 · dut,0

dρ
+ ut,0 · dut,1

dρ

= 2�
(
dut,0

dρ
· ut,1 + ut,0 · dut,1

dρ

)
= 2� d

dρ
(ut,0 ut,1) ,
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giving ∣∣∣∣∫ a−t

0

((Dut, ut)− (ut, Dut))(ρ) dρ

∣∣∣∣
≤ 2

∣∣∣∣(ut,0 ut,1)(a− t)− lim
ρ↓0

(ut,0 ut,1)(ρ)

∣∣∣∣
= 2 |(ut,0 ut,1)(a− t)| ≤ |ut,0(a− t)|2 + |ut,1(a− t)|2 = |ut(a− t)|2

by (19). So

d

dt

∫ a−t

0

|ut(ρ)|2 dρ ≤ 0 ,

giving ∫ a−t

0

|ut(ρ)|2 dρ ≤
∫ a

0

|u0(ρ)|2 dρ = 0 ,

and (i) follows.
Property (ii) can be proved with the same kind of arguments, but using that

limρ→∞ u(ρ) = 0 for all u ∈ D∞(dmin/max) instead of (19).

9. Preliminaries on Witten’s perturbation of the de Rham complex.

Let M ≡ (M, g) be a Riemannian n-manifold. For all x ∈M and α ∈ TxM
∗, let

α� = (−1)nr+n+1 � α∧ � on

r∧
TxM

∗ ,

involving the Hodge star operator � on
∧
TxM

∗ defined by any choice of orientation
of TxM . Writing α = g(X, ·) for X ∈ TxM , we have α� = −ιX , where ιX denotes the
inner product by X . Moreover let

Rα = α∧ − α� , Lα = α∧ + α�

on
∧
TxM

∗. Recall that there is an isomorphism between the underlying linear spaces
of the exterior and Clifford algebras of TxM

∗,∧
TxM

∗ → Cl(TxM
∗) , ei1 ∧ · · · ∧ eir 
→ ei1 • · · · • eir ,

where (e1, . . . , en) is an orthonormal frame of TxM
∗ and “•” denotes Clifford multipli-

cation. By this linear isomorphism, Lα and Rαw correspond to left and right Clifford
multiplication by α (recall that w denotes the degree involution). So Lα and Rβ

anticommute for any α, β ∈ TxM
∗. Any symmetric bilinear form H ∈ TxM

∗⊗TxM
∗

induces an endomorphism H of
∧
TxM

∗ defined by

H =

n∑
i,j=1

H(ei, ej)Lei Rej , (20)

by using an orthonormal frame (e1, . . . , en) of TxM
∗. Observe that |H| = |H |.

On the graded algebra of differential forms, Ω(M), let d and δ be the de Rham
derivative and coderivative, let D = d+ δ (the de Rham operator), and let Δ = D2 =
dδ + δd (the Laplacian on differential forms). For any f ∈ C∞(M), E. Witten [47]



WITTEN’S PERTURBATION ON STRATA 79

has introduced the following perturbations of the above operators, depending on a
parameter s ≥ 0:

ds = e−sf d esf = d+ s df∧ , (21)

δs = esf δ e−sf = δ − s df� , (22)

Ds = ds + δs = D + sR ,

Δs = D2
s = dsδs + δsds = Δ+ s(RD +DR) + s2R2 , (23)

where R = Rdf . Notice that δs =
tds; thus Ds and Δs are formally self-adjoint.

Let Hessf be the endomorphism of
∧
TM∗ induced by Hess f according to (20).

Then RD +DR = Hessf and R2 = |df |2 [38, Lemma 9.17]. So (23) becomes

Δs = Δ+ sHessf + s2 |df |2 . (24)

The Witten’s perturbed operators also make sense with complex valued differen-
tial forms, and the above equalities hold as well.

Example 9.1. Let d±0,s, δ
±
0,s, D

±
0,s, Δ

±
0,s denote the Witten’s perturbed operators

on Ω(Rm) defined by the model Morse function ± 1
2 ρ

2
0 and the standard metric g0.

According to [38, Proposition 9.18 and the proof of Lemma 14.11], Δ±
0,s, with domain

Ω0(R
m), is essentially self-adjoint in L2Ω(Rm, g0), and its self-adjoint extension has

a discrete spectrum of the following form:
• 0 is an eigenvalue of multiplicity one, and the corresponding eigenforms are
of degree zero in the case of Δ+

0,s, and of degree m in the case of Δ−
0,s.

• Let e±s be a 0-eigenform of Δ±
0,s with norm one, and let h be a bounded

measurable function onRm such that h(x)→ 1 as x→ 0. Then 〈he±s , e±s 〉 → 1
as s→∞.
• All non-zero eigenvalues, as functions of s, are in O(s) as s→∞.

Therefore (
∧

TRm∗, d±0,s) has a unique i.b.c., which is discrete.

10. Witten’s perturbation on a cone. For our version of Morse functions,
the local analysis of the Witten’s perturbed Laplacian will be reduced to the case of
the functions ± 1

2ρ
2 on a stratum of a cone with a model adapted metric, where ρ

denotes the radial function. This kind of local analysis begins in this section.

10.1. Laplacian on a cone. Let L be a non-empty compact Thom-Mather
stratification, let ρ be the radial function on c(L), letN be a stratum of L of dimension
ñ, letM = N×R+ be the corresponding stratum of c(L) with dimension n = ñ+1, and
let π : M → N denote the first factor projection. From

∧
TM∗ =

∧
TN∗

�
∧
TR∗

+,
we get a canonical identity

r∧
TM∗ ≡ π∗

r∧
TN∗ ⊕ dρ ∧ π∗

r−1∧
TN∗ ≡ π∗

r∧
TN∗ ⊕ π∗

r−1∧
TN∗ (25)

for each degree r, obtaining

Ωr(M) ≡ C∞(R+,Ω
r(N))⊕ dρ ∧ C∞(R+,Ω

r−1(N)) (26)

≡ C∞(R+,Ω
r(N))⊕ C∞(R+,Ω

r−1(N)) . (27)

Here, smooth functions R+ → Ω(N) are defined by considering Ω(N) as Fréchet space
with the weak C∞ topology. Let d and d̃ denote the exterior derivatives on Ω(M)
and Ω(N), respectively. The following lemma is elementary.
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Lemma 10.1. According to (27),

d ≡
(

d̃ 0
d
dρ −d̃

)
.

Fix an adapted metric g̃ on N , and let g = ρ2g̃ + (dρ)2 be the corresponding
adapted metric on M . The induced metrics on

∧
TM∗ and

∧
TN∗ are also denoted

by g and g̃, respectively. According to (25), on
∧r TM∗,

g = ρ−2r g̃ ⊕ ρ−2(r−1) g̃ . (28)

Given an orientation on an open subset W ⊂ N , and denoting by ω̃ the corre-
sponding g̃-volume form on W , consider the orientation on W ×R+ ⊂M so that the
corresponding g-volume form is

ω = ρn−1 dρ ∧ ω̃ . (29)

The corresponding star operators on
∧
T (W × R+)

∗ and
∧
TW ∗ will be denoted by

� and �̃, respectively.

Lemma 10.2. According to (25), on
∧r

T (W × R+)
∗,

� ≡
(

0 ρn−2r+1�̃
(−1)rρn−2r−1�̃ 0

)
.

Proof. Let α, α′ ∈ π∗∧TN∗, at the same point (x, ρ) ∈ W ×R+. If α and α′ are
of degree r, then

α′ ∧ ρn−2r−1 dρ ∧ �̃α = (−1)rρn−2r−1 dρ ∧ α′ ∧ �̃α

= (−1)rρn−2r−1g̃(α′, α) dρ ∧ ω̃ = (−1)rg(α′, α)ω

by (28) and (29), giving �α = (−1)rρn−2r−1dρ ∧ �̃α. Similarly, if α and α′ are of
degree r − 1, then

dρ ∧ α′ ∧ ρn−2r+1�̃α = ρn−2r+1g̃(α′, α) dρ ∧ ω̃ = g(dρ ∧ α′, dρ ∧ α)ω ,

obtaining �(dρ ∧ α) = ρn−2r+1�̃α.

Let L2Ωr(M, g) and L2Ωr(N, g̃) be simply denoted by L2Ωr(M) and L2Ωr(N).
From (28) and (29), it follows that (27) induces a unitary isomorphism

L2Ωr(M) ∼= (L2(R+, ρ
n−2r−1 dρ) ⊗̂L2Ωr(N))

⊕ (L2(R+, ρ
n−2r+1 dρ) ⊗̂L2Ωr−1(N)) , (30)

which will be considered as an identity.
Let δ and δ̃ denote the exterior coderivatives on Ω(M) and Ω(N), respectively.

Lemma 10.3. According to (27), on Ωr(M),

δ ≡
(
ρ−2 δ̃ − d

dρ − (n− 2r + 1)ρ−1

0 −ρ−2 δ̃

)
.
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Proof. For an oriented open subset W ⊂ N , consider the orientation on W ×R+

defined as above, and let � and �̃ denote the corresponding star operators on
∧
T (W×

R+)
∗ and

∧
TW ∗. By Lemmas 10.1 and 10.2, on Ωr(W × R+),

δ = (−1)nr+n+1 � d�

≡ (−1)nr+n+1

(
0 ρ−n+2r−1�̃

(−1)n−r+1ρ−n+2r−3�̃ 0

)(
d̃ 0
d
dρ −d̃

)

×
(

0 ρn−2r+1�̃
(−1)rρn−2r−1�̃ 0

)
= (−1)nr+n+1

(
−(−1)rρ−2�̃d̃�̃ ρ−n+2r−1 d

dρ ρ
n−2r+1�̃2

0 (−1)n−r+1ρ−2�̃d̃�̃

)

=

(
ρ−2δ̃ −ρ−n+2r−1 d

dρ ρ
n−2r+1

0 −ρ−2δ̃

)
,

which equals the matrix of the statement by (9).

Let Δ and Δ̃ denote the Laplacians on Ω(M) and Ω(N), respectively.

Corollary 10.4. According to (27),

Δ ≡
(

P −2ρ−1 d̃

−2ρ−3 δ̃ Q

)
on Ωr(M), where

P = ρ−2 Δ̃− d2

dρ2
− (n− 2r − 1)ρ−1 d

dρ
,

Q = ρ−2 Δ̃− d2

dρ2
− (n− 2r + 1)

d

dρ
ρ−1 .

Proof. By Lemmas 10.1 and 10.3, and (9),

δd ≡
(
ρ−2 δ̃ − d

dρ − (n− 2r − 1)ρ−1

0 −ρ−2 δ̃

)(
d̃ 0
d
dρ −d̃

)

=

(
ρ−2 δ̃d̃− d2

dρ2 − (n− 2r − 1)ρ−1 d
dρ ( d

dρ + (n− 2r − 1)ρ−1)d̃

−ρ−2δ̃ d
dρ ρ−2 δ̃d̃

)
,

dδ ≡
(

d̃ 0
d
dρ −d̃

)(
ρ−2 δ̃ − d

dρ − (n− 2r + 1)ρ−1

0 −ρ−2 δ̃

)

=

(
ρ−2 d̃δ̃ −d̃( d

dρ + (n− 2r + 1)ρ−1)

ρ−2 d
dρ δ̃ − 2ρ−3δ̃ − d2

dρ2 − (n− 2r + 1) d
dρρ

−1 + ρ−2 d̃δ̃

)
.

The sum of these matrices is the matrix of the statement.

10.2. Witten’s perturbation on a cone. Let d±s , δ
±
s , D

±
s and Δ±

s (s ≥ 0)
denote the Witten’s perturbations of d, δ, D and Δ induced by the function f = ± 1

2ρ
2

on M . In this case, df = ±ρ dρ. According to (27),

ρ dρ∧ ≡
(
0 0
ρ 0

)
, −ρ dρ� ≡

(
0 ρ
0 0

)
.
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So the following is a consequence of Lemmas 10.1 and 10.3, (21) and (22).

Corollary 10.5. According to (27), on Ωr(M),

d±s ≡
(

d̃ 0
d
dρ ± sρ −d̃

)
,

δ±s ≡
(
ρ−2 δ̃ − d

dρ − (n− 2r + 1)ρ−1 ± sρ

0 −ρ−2 δ̃

)
.

With the notation of Section 9,

R = ±ρ(dρ∧− dρ�) ≡ ±
(
0 ρ
ρ 0

)
,

and therefore

R2 ≡
(
ρ2 0
0 ρ2

)
≡ ρ2 . (31)

Lemma 10.6. RD +DR = ±(2r − n) on Ωr(M).

Proof. By Lemmas 10.1 and 10.3, and according to (27),

RD ≡ ±
(
0 ρ
ρ 0

)(
d̃+ ρ−2δ̃ − d

dρ − (n− 2r + 1)ρ−1

d
dρ −d̃− ρ−2δ̃

)

= ±
(

ρ d
dρ −ρd̃− ρ−1δ̃

ρ d̃+ ρ−1δ̃ −ρ d
dρ − n+ 2r − 1

)
,

DR ≡ ±
(
d̃+ ρ−2 δ̃ − d

dρ − (n− 2r − 1)ρ−1

d
dρ −d̃− ρ−2 δ̃

)(
0 ρ
ρ 0

)

= ±
(
− d

dρ ρ− n+ 2r + 1 ρ d̃+ ρ−1 δ̃

−ρ d̃− ρ−1δ̃ d
dρ ρ

)
.

So the result follows using (9).

The following is a consequence of (24), Corollary 10.4 and Lemma 10.6.

Corollary 10.7. According to (27),

Δ±
s ≡

(
P±
s −2ρ−1d̃

−2ρ−3δ̃ Q±
s

)
on Ωr(M), where

P±
s = ρ−2Δ̃ +H − (n− 2r − 1)ρ−1 d

dρ
∓ s(n− 2r) ,

Q±
s = ρ−2Δ̃ +H − (n− 2r + 1)ρ−1 d

dρ
+ (n− 2r + 1)ρ−2 ∓ s(n− 2r) .
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11. Domains of the Witten’s Laplacian on a cone. Theorem 1.1 is proved
by induction on the dimension. Thus, with the notation of Section 10, suppose that
d̃min/max satisfies the statement of Theorem 1.1. Let

H̃min/max = ker D̃min/max = ker Δ̃min/max ,

which is a graded subspace of Ω(N). For each degree r, let

R̃min/max,r−1, R̃∗
min/max,r ⊂ L2Ωr(N)

be the images of d̃min/max,r−1 and δ̃min/max,r, respectively, whose intersections with

D∞(Δ̃) are denoted by R̃∞
min/max,r−1 and R̃∗∞

min/max,r. According to Section 5.1, Δ̃

preserves R̃∞
min/max,r−1 and R̃∗∞

min/max,r−1, and its restrictions to these spaces have the

same eigenvalues. For any eigenvalue λ̃ of the restriction of Δ̃ to R̃∞
min/max,r−1, let

R̃min/max,r−1,λ̃ = Eλ̃(Δ̃min/max) ∩ R̃∞
min/max,r−1 ,

R̃∗
min/max,r−1,λ̃

= Eλ̃(Δ̃min/max) ∩ R̃∗∞
min/max,r−1 .

Moreover

L2Ωr(N) = H̃r
min/max ⊕

⊕̂
λ̃

(
R̃min/max,r−1,λ̃ ⊕ R̃∗

min/max,r,λ̃

)
, (32)

where λ̃ runs in the spectrum of Δ̃min/max on R̃∞
min/max,r−1 and R̃∗

min/max,r.

Now, consider the Witten’s perturbed Laplacian Δ±
s . In the following, suppose

that s > 0.

11.1. Domains of first type. For some degree r, let 0 
= γ ∈ H̃r
min/max. By

Corollary 10.7,

Δ±
s ≡ H − (n− 2r − 1)ρ−1 d

dρ
∓ s(n− 2r)

on C∞(R+) ≡ C∞(R+) γ ⊂ Ωr(M). This operator is of the type of P in (10) with
c2 = 0. Thus (14) is satisfied. In this case, Table 5 contains the possibilities for a given
by (11), the corresponding values of 2σ, the condition (12) expressed in terms of r,
and the smooth cores of the corresponding self-adjoint operators with discrete spectra
in L2(R+, ρ

n−2r−1 dρ), given by Proposition 7.1. The corresponding eigenvalues are
also indicated in Table 5, referring to the expressions

(4k + (1 ∓ 1)(n− 2r))s , (33)

(4k + 4− (1± 1)(n− 2r))s . (34)

They are of multiplicity one, with corresponding normalized eigenfunctions χk. More
precisely, for Δ+

s and Δ−
s , (33) becomes 4ks and (4k + 2(n − 2r))s, respectively,

and (34) becomes (4k+4− 2(n− 2r))s and (4k+ 4)s, respectively. Table 6 indicates
the signs of these eigenvalues. In all tables of Section 11, grey color indicates the cases
where there exist some negative eigenvalue or a too restrictive condition (the cases
that will be disregarded).

When n−3
2 ≤ r ≤ n−1

2 , we have got two essentially self-adjoint operators, with
a = 0 and a = −n+ 2r + 2. These two operators are equal just when r = n

2 − 1.
All of the above operators defined by Δ±

s , as well as their domains, will be said
to be of first type.
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a 2σ Condition Smooth core Eigenvalues

0 n− 2r − 1 r ≤ n−1
2 Sev,+ given by (33)

−n+ 2r + 2 −n+ 2r + 3 r ≥ n−3
2 ρ−n+2r+2 Sev,+ given by (34)

Table 5

Self-adjoint operators of first type

Conditions Smooth core
Sign of the eigenvalues

< 0 0 > 0

Δ+
s r ≤ n−1

2 Sev,+ k = 0 k ≥ 1

Δ−
s ∀k

Δ+
s

r ≥ n−1
2

r ≥ n−3
2 ρ−n+2r+2 Sev,+

∀k
r = n

2 − 1 k = 0 k ≥ 1

r = n−3
2 k = 0 k ≥ 1

Δ−
s ∀k

Table 6

Sign of the eigenvalues for operators of first type

11.2. Domains of second type. With the notation of Section 11.1,

Δ±
s ≡ H − (n− 2r − 1)ρ−1 d

dρ
+ (n− 2r − 1)ρ−2 ∓ s(n− 2r − 2)

on C∞(R+) ≡ C∞(R+) dρ ∧ γ ⊂ Ωr+1(M) by Corollary 10.7. This is an operator
of the type of P in (10) with c2 = 2c1. Thus (14) is also satisfied. In this case,
Table 7 contains the possibilities for a given by (11), the corresponding values of 2σ,
the condition (12) expressed in terms of r, and the smooth cores of the corresponding
self-adjoint operators with discrete spectra in L2(R+, ρ

n−2r−1 dρ), given by Proposi-
tion 7.1. The corresponding eigenvalues are also indicated in Table 5, referring to the
expressions

(4k + 4 + (1∓ 1)(n− 2r − 2))s , (35)

(4k − (1± 1)(n− 2r − 2))s . (36)

They are of multiplicity one, with corresponding normalized eigenfunctions χk. More
precisely, for Δ+

s and Δ−
s , (35) becomes (4k+4)s and (4k+2(n− 2r))s, respectively,

and (36) becomes (4k + 4 − 2(n− 2r))s and 4ks, respectively. Table 8 indicates the
signs of these eigenvalues.

For n−1
2 ≤ r ≤ n+1

2 , we have obtained two essentially self-adjoint operators, with
a = 1 and a = −n+ 2r + 1. These operators are equal just when r = n

2 .
All of the above operators defined by Δ±

s , as well as their domains, will be said
to be of second type.

11.3. Domains of third type. Let μ =
√
λ̃ for an eigenvalue λ̃ of the re-

striction of Δ̃min/max to R̃∞
min/max,r−1. According to Section 5.1, there are non-zero

differential forms,

α ∈ R̃min/max,r−1,λ̃ ⊂ Ωr(N) , β ∈ R̃∗
min/max,r−1,λ̃

⊂ Ωr−1(N) ,
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a 2σ Condition Smooth core Eigenvalues

1 n− 2r + 1 r ≤ n+1
2 ρSev,+ given by (35)

−n+ 2r + 1 −n+ 2r + 1 r ≥ n−1
2 ρ−n+2r+1 Sev,+ given by (36)

Table 7

Self-adjoint operators of second type

Condition Smooth core
Sign of the eigenvalues

< 0 0 > 0

Δ+
s

r ≤ n+1
2 ρSev,+

∀k

Δ−
s

r = n+1
2 k = 0 k ≥ 1

r = n
2 k = 0 k ≥ 1

r ≤ n−1
2 ∀k

Δ+
s r ≥ n−1

2 ρ−n+2r+1 Sev,+ ∀k
Δ−

s k = 0 k ≥ 1

Table 8

Sign of the eigenvalues for operators of second type

such that d̃β = μα and δ̃α = μβ. By Corollary 10.7,

Δ±
s ≡ H − (n− 2r + 1)ρ−1 d

dρ
+ μ2ρ−2 ∓ (n− 2r + 2)s

on C∞(R+) ≡ C∞(R+)β ⊂ Ωr−1(M). This operator is of the type of P in (10) with
c2 = μ2 > 0. Thus (14) is satisfied, and (11) becomes

a =
−n+ 2r ±√

(n− 2r)2 + 4μ2

2
. (37)

These two possibilities for a have different sign because μ > 0.
For the choice of positive square root in (37), we get

σ =
1 +

√
(n− 2r)2 + 4μ2

2
>

1

2
(38)

according to (12). Then Proposition 7.1 asserts that Δ±
s , with domain ρa Sev,+, is

essentially self-adjoint in L2(R+, ρ
n−2r+1 dρ); the spectrum of its closure consists of

the eigenvalues (
4k + 2 +

√
(n− 2r)2 + 4μ2 ∓ (n− 2r + 2)

)
s , (39)

with multiplicity one and corresponding normalized eigenfunctions χk; and the smooth
core of its closure is ρa Sev,+. Notice that (39) is > 0 for all k.

For the choice of negative square root in (37), we get

σ =
1−√

(n− 2r)2 + 4μ2

2
(40)
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according to (12). Then σ > −1/2 if and only if

μ < 1 and |n− 2r| < 2
√
1− μ2 , (41)

which is equivalent to
√
3
2 ≤ μ < 1 and r = n

2 , or μ <
√
3
2 and n−1

2 ≤ r ≤ n+1
2 . In this

case, Proposition 7.1 asserts that Δ±
s , with domain ρa Sev,+, is essentially self-adjoint

in L2(R+, ρ
n−2r+1 dρ); the spectrum of its closure consists of the eigenvalues(

4k + 2−
√
(n− 2r)2 + 4μ2 ∓ (n− 2r + 2)

)
s , (42)

with multiplicity one and corresponding normalized eigenfunctions χk; and the smooth
core of its closure is ρa Sev,+. For Δ+

s , (42) is < 0 for k = 0. For Δ−
s , (42) is > 0 for

all k.
Table 9 summarizes the information about the sign of the eigenvalues for all

choices of a and the sign of the model function.

a Condition Sign of the eigenvalues

Δ±
s (37) with +

√
No restriction > 0 ∀k

Δ+
s (37) with −√ (41) (strong)

< 0 for k = 0

Δ−
s > 0 ∀k

Table 9

Sign of the eigenvalues for operators of third type

When (41) is satisfied, we have got two different essentially self-adjoint operators
defined by the two different choices of a in (37).

All of the above operators defined by Δ±
s , as well as their domains, will be said

to be of third type.

11.4. Domains of fourth type. Let μ, α and β be like in Section 11.3. By
Corollary 10.7,

Δ±
s ≡ H − (n− 2r − 1)ρ−1 d

dρ
+ (μ2 + n− 2r − 1)ρ−2 ∓ (n− 2r − 2)s

on C∞(R+) ≡ C∞(R+) dρ∧α ⊂ Ωr+1(M). This is another operator of the type of P
in (10), which satisfies (14) because

(1− (n− 2r − 1))2 + 4(μ2 + n− 2r − 1) = (n− 2r)2 + 4μ2 > 0 .

Moreover (11) becomes

a =
−n+ 2r + 2±√

(n− 2r)2 + 4μ2

2
. (43)

These two possibilities for a are different because μ > 0.
With the choice of positive square root in (43) and according to (12), σ is also

given by (38), which is > 1/2. Then Proposition 7.1 asserts that Δ±
s , with domain

ρa Sev,+, is essentially self-adjoint in L2(R+, ρ
n−2r−1 dρ); the spectrum of its closure

consists of the eigenvalues(
4k + 2 +

√
(n− 2r)2 + 4μ2 ∓ (n− 2r − 2)

)
s , (44)
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with multiplicity one and corresponding normalized eigenfunctions χk; and the smooth
core of its closure is ρa Sev,+. Observe that (44) is > 0 for all k.

With the choice of negative square root in (43) and according to (12), σ is
also given by (40), which is > −1/2 if and only if (41) is satisfied. In this case,
Proposition 7.1 asserts that Δ±

s , with domain ρa Sev,+, is essentially self-adjoint in
L2(R+, ρ

n−2r−1 dρ); the spectrum of its closure consists of the eigenvalues(
4k + 2−

√
(n− 2r)2 + 4μ2 ∓ (n− 2r − 2)

)
s , (45)

with multiplicity one and corresponding normalized eigenfunctions χk; and the smooth
core of its closure is ρa Sev,+. For Δ+

s , (45) is > 0 for all k. For Δ−
s , (45) is < 0 for

k = 0.
Table 10 summarizes the information about the sign of the eigenvalues for all

choices of a and the sign of the model function.

a Condition Sign of the eigenvalues

Δ±
s (43) with +

√
No restriction > 0 ∀k

Δ+
s (43) with −√ (41) (strong)

> 0 ∀k
Δ−

s < 0 for k = 0

Table 10

Sign of the eigenvalues for operators of fourth type

When (41) is satisfied, we have got two different essentially self-adjoint operators
defined by the two different choices of a in (43).

All of the above operators defined by Δ±
s , as well as their domains, will be said

to be of fourth type.

11.5. Domains of fifth type. Let μ, α and β be like in Sections 11.3 and 11.4.
By Corollary 10.7,

Δ±
s ≡

(
P±
μ,s −2ρ−1μ

−2ρ−3μ Q±
μ,s

)
on

C∞(R+)⊕ C∞(R+) ≡ C∞(R+)α+ C∞(R+) dρ ∧ β ⊂ Ωr(M) ,

where

P±
μ,s = H − (n− 2r − 1)ρ−1 d

dρ
+ μ2ρ−2 ∓ (n− 2r)s ,

Q±
μ,s = H − (n− 2r + 1)ρ−1 d

dρ
+ (μ2 + n− 2r + 1)ρ−2 ∓ (n− 2r)s .

We will conjugate this matrix expression of Δ±
s by some non-singular matrix Θ, whose

entries are functions of ρ, to get a diagonal matrix whose diagonal entries are operators
of the type of P in (10). This matrix will be of the form Θ = BC with

B =

(
1 0
0 ρ−1

)
, C =

(
c11 c12
c21 c22

)
,
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where cij are constants to be determined. Let P±
μ,s and Q±

μ,s be simply denoted by P
and Q. A key observation here is that, by (9),

Q− ρ−1 P ρ = 2(n− 2r)ρ−2 ,

obtaining

B−1 Δ±
s B =

(
1 0
0 ρ

)(
P −2μ ρ−1

−2μ ρ−3 Q

)(
1 0
0 ρ−1

)
=

(
P −2μρ−2

−2μρ−2 ρQρ−1

)
=

(
P −2μρ−2

−2μρ−2 P + 2(n− 2r)ρ−2

)
.

On the other hand, C must be non-singular and

C−1 =
1

detC

(
c22 −c12
−c21 c11

)
.

Therefore Θ−1Δ±
s Θ = (Xij) with

X11 = P +
2

detC
(μ (−c22c21 + c12c11)− (n− 2r)c12c21) ρ

−2 ,

X12 =
2

detC

(
μ (−c222 + c212)− (n− 2r)c12c22

)
ρ−2 ,

X21 =
2

detC

(
μ (c221 − c211) + (n− 2r)c11c21

)
ρ−2 ,

X22 = P +
2

detC
(μ(c21c22 − c11c12) + (n− 2r)c11c22) ρ

−2 .

We want (Xij) to be diagonal, so we require

μ(c212 − c222)− (n− 2r)c12c22 = μ(c211 − c221)− (n− 2r)c11c21 = 0 .

Both of these equations are of the form

μ(x2 − y2)− (n− 2r)xy = 0 , (46)

with x = c12 and y = c22 in the first equation, and x = c11 and y = c21 in the second
one. There is some c ∈ R� {0} such that

x2 − y2 − n− 2r

μ
xy = (x+ cy)

(
x− y

c

)
; (47)

in fact, we need c− 1
c = −n−2r

μ , giving

μc2 + (n− 2r)c− μ = 0 , (48)

whose solutions are

c± =
−n+ 2r ±√

(n− 2r)2 + 4μ2

2μ
. (49)

Observe that c+c− = −1. Let c = c+ > 0, and therefore −1/c = c−. By (47), the
solutions of (46) are given by x+ cy = 0 and cx− y = 0. Then we can take

C =

(
1 −c
c 1

)
,
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with detC = 1 + c2 > 0. So, for

Θ =

(
1 0
0 ρ−1

)(
1 −c
c 1

)
=

(
1 −c

cρ−1 ρ−1

)
,

we get X12 = X21 = 0, and

X11 = P +
2(−2μc+ (n− 2r)c2)

1 + c2
ρ−2 ,

X22 = P +
2(2μc+ n− 2r)

1 + c2
ρ−2 .

The notation X = X11 and Y = X22 will be used; thus Θ−1Δ±
s Θ = X ⊕ Y . The

above expressions of X and Y can be simplified as follows. We have

1 + c2 =
2μ− (n− 2r)c

μ

by (48), obtaining

2(−2μc+ (n− 2r)c2)

1 + c2
= −2μc , 2(2μc+ n− 2r)

1 + c2
=

2μ(2μc+ n− 2r)

2μ− (n− 2r)c
.

Moreover

(2μc+ n− 2r)2 = (n− 2r)2 + 4μ2 > 0

by (49), and

(2μ− (n− 2r)c)(2μc+ n− 2r)

= 4μ2c+ 2μ(n− 2r)− (n− 2r)2μc2 − (n− 2r)2c

= 4μ2c+ 2μ(n− 2r)− (n− 2r)2μ(1 − n− 2r

μ
c)− (n− 2r)2c

= c(4μ2 + (n− 2r)2)

by (48). Therefore

2(2μc+ n− 2r)

1 + c2
=

2μ(2μc+ n− 2r)2

(2μ− (n− 2r)c)(2μc+ n− 2r)

=
2μ((n− 2r)2 + 4μ2)

c(4μ2 + (n− 2r)2)
=

2μ

c
.

It follows that X = P − 2μcρ−2 and Y = P + 2μ
c ρ−2, obtaining

X = H − (n− 2r − 1)ρ−1 d

dρ
+ (μ2 − 2μc)ρ−2 ∓ (n− 2r)s ,

Y = H − (n− 2r − 1)ρ−1 d

dρ
+ (μ2 +

2μ

c
)ρ−2 ∓ (n− 2r)s .

These operators are of the type of P in (10), and satisfy (14) because, by (49),

(1− (n− 2r − 1))2 + 4(μ2 − 2μc) =
(
2−

√
(n− 2r)2 + 4μ2

)2

≥ 0 ,

(1 − (n− 2r − 1))2 + 4

(
μ2 +

2μ

c

)
=
(
2 +

√
(n− 2r)2 + 4μ2

)2

> 0 .
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So, for X and Y , the constants (11) and (12) become

a =
2− n+ 2r ± (2−√

(n− 2r)2 + 4μ2)

2
, (50)

b =
2− n+ 2r ± (2 +

√
(n− 2r)2 + 4μ2)

2
, (51)

σ =
1± (2−√

(n− 2r)2 + 4μ2)

2
, (52)

τ =
1± (2 +

√
(n− 2r)2 + 4μ2)

2
. (53)

Suppose that σ, τ > −1/2. By Proposition 7.1, X and Y , with respective domains
ρa Sev,+ and ρb Sev,+, are essentially self-adjoint in L2(R+, ρ

n−2r−1 dρ); the spectra
of their closures consist of the eigenvalues

(4k + 2a+ (1∓ 1)(n− 2r))s , (54)

(4k + 2b+ (1∓ 1)(n− 2r))s , (55)

with multiplicity one and corresponding normalized eigenfunctions χs,a,σ,k and
χs,b,τ,k, respectively, and the smooth cores of their closures are ρa Sev,+ and ρb Sev,+.

Since 1√
1+c2

C is an orthogonal matrix, it defines a unitary isomorphism

L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r−1 dρ)

→ L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r−1 dρ) ,

and we already know that

B = 1⊕ ρ−1 : L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r−1 dρ)

→ L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r+1 dρ)

is a unitary isomorphism too. So 1√
1+c2

Θ is a unitary isomorphism

L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r−1 dρ)

→ L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r+1 dρ) .

Therefore, when σ, τ > −1/2, the operator Δ±
s , with domain

Θ(ρa Sev,+ ⊕ ρb Sev,+) = {(ρaφ− cρbψ, cρa−1φ+ ρb−1ψ) | φ, ψ ∈ Sev,+} , (56)

is essentially self-adjoint in

L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r+1 dρ)

≡ L2(R+, ρ
n−2r−1 dρ)α+ L2(R+, ρ

n−2r+1 dρ) dρ ∧ β , (57)

which is a Hilbert subspace of L2Ωr(M, g); the spectrum of its closure consists of
the eigenvalues (54) and (55), with multiplicity one and corresponding normalized
eigenvectors 1√

1+c2
Θ(χs,a,σ,k, 0) and

1√
1+c2

Θ(0, χs,b,τ,k); and the smooth core of its

closure is (56).
The condition τ > −1/2 only holds with the choice

τ =
3 +

√
(n− 2r)2 + 4μ2

2
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in (53), which corresponds to the choice

b =
4− n+ 2r +

√
(n− 2r)2 + 4μ2

2
(58)

in (51). With this choice, the eigenvalues (55) become(
4k + 4∓ (n− 2r) +

√
(n− 2r)2 + 4μ2

)
s , (59)

which are > 0 for all k.
Consider the choice

a =
−n+ 2r +

√
(n− 2r)2 + 4μ2

2
(60)

in (50), and, correspondingly,

σ =
−1 +√

(n− 2r)2 + 4μ2

2
> −1

2

in (52). Then the eigenvalues (54) become(
4k ∓ (n− 2r) +

√
(n− 2r)2 + 4μ2

)
s , (61)

which are > 0 for all k.
Now, consider the choice

a =
4− n+ 2r −√

(n− 2r)2 + 4μ2

2
(62)

in (50), and therefore

σ =
3−√

(n− 2r)2 + 4μ2

2

in (52). In this case, the condition σ > −1/2 means that

μ < 2 and |n− 2r| < 2
√
4− μ2 . (63)

The eigenvalues (54) become(
4k + 4∓ (n− 2r)−

√
(n− 2r)2 + 4μ2

)
s . (64)

For Δ+
s , (64) is:

• ≥ 0 for all k if and only if n− 2r ≤ 2− μ2/2, and
• = 0 just when k = 0 and n− 2r = 2− μ2/2.

For Δ−
s , (64) is:

• ≥ 0 for all k if and only if n− 2r ≥ μ2/2− 2, and
• = 0 just when k = 0 and n− 2r = μ2/2− 2.

Table 11 summarizes the information about the sign of the eigenvalues for all
choices of a and b.

All of the above operators defined by Δ±
s , as well as their domains, will be said

to be of fifth type.



92 J. A. ÁLVAREZ LÓPEZ AND M. CALAZA

a b Condition Sign of the eigenvalues

(60)
(58)

No restriction > 0 ∀k
(62) (63) (strong) ∃ eigenvalues < 0 easily

The other choice Impossible

Table 11

Sign of the eigenvalues for operators of fifth type

12. Splitting of the Witten’s complex on a cone.

12.1. Subcomplexes defined by domains of first and second types. Con-
sider the notation of Sections 11.1 and 11.2. The following result follows from Corol-
lary 10.5.

Lemma 12.1. For s ≥ 0, d±s and δ±s define maps

0 C∞(R+) γ C∞(R+) dρ ∧ γ 0 ,
d
±
s,r−1

δ
±
s,r−1

d
±
s,r

δ
±
s,r

d
±
s,r+1

δ
±
s,r+1

�
�

�
�

�
�

which are given by

d±s,r =
d

dρ
± sρ , δ±s,r = − d

dρ
− (n− 2r − 1)ρ−1 ± sρ ,

using the canonical identities

C∞(R+) γ ≡ C∞(R+) dρ ∧ γ ≡ C∞(R+) .

According to Sections 11.1 and 11.2, γ can be used to define the following domains
of first and second types:

Erγ,1 = Sev,+ γ for r ≤ n− 1

2
,

Erγ,2 = ρ−n+2r+2 Sev,+ γ for r ≥ n− 3

2
,

Er+1
γ,1 = ρSev,+ dρ ∧ γ for r ≤ n+ 1

2
,

Er+1
γ,2 = ρ−n+2r+1 Sev,+ dρ ∧ γ for r ≥ n− 1

2
.

The following is a direct consequence of Lemma 12.1.

Lemma 12.2. For any s ≥ 0, d±s and δ±s define maps

0 Erγ,i Er+1
γ,i 0 ,

d
±
s,r−1

δ
±
s,r−1

d
±
s,r

δ
±
s,r

d
±
s,r+1

δ
±
s,r+1

�
�

�
�

�
�

where i = 1 if r ≤ n−1
2 , and i = 2 if r ≥ n−1

2 .

Remark 13. If n is odd, by Lemma 12.1 and (30), and since Sev,+ ⊂
L2(R+, ρ

2σ dρ) if and only if σ > −1/2, we get

d±s (Erγ,2) 
⊂ L2Ωr+1(M) for r =
n− 3

2
,

δ±s (Er+1
γ,1 ) 
⊂ L2Ωr(M) for r =

n+ 1

2
.
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This is compatible with Δ+
s 
≥ 0 on Erγ,2 when r = n−3

2 (Section 11.1), and Δ−
s 
≥ 0

on Er+1
γ,1 when r = n+1

2 (Section 11.2).

Remark 14. If n is even, notice that

Erγ,1 = Erγ,2 = Sev,+ γ for r =
n

2
− 1 ,

Er+1
γ,1 = Er+1

γ,2 = ρSev,+ dρ ∧ γ for r =
n

2
.

The domains of first and second type are summarized in Tables 12 and 13, omit-
ting the differential form part. Grey ground color is used for the repeated terms, and
grey color for the terms that are not mapped to L2Ω(M) by d±s or δ±s .

Erγ,1 Erγ,2 Er+1
γ,1 Er+1

γ,2

r

n ρn+2 Sev,+ ρn+1 Sev,+
...

...
...

n
2 + 1 ρ4 Sev,+ ρ3 Sev,+

n
2 ρ2 Sev,+ ρSev,+ ρSev,+

n
2 − 1 Sev,+ Sev,+ ρSev,+
n
2 − 2 Sev,+ ρSev,+
...

...
...

0 Sev,+ ρSev,+
Table 12

Domains of first and second type when n is even

Erγ,1 Erγ,2 Er+1
γ,1 Er+1

γ,2

r

n ρn+2 Sev,+ ρn+1 Sev,+
...

...
...

n+3
2 ρ5 Sev,+ ρ4 Sev,+

n+1
2 ρ3 Sev,+ ρSev,+ ρ2 Sev,+

n−1
2 Sev,+ ρSev,+ ρSev,+ Sev,+

n−3
2 Sev,+ ρ−1 Sev,+ ρSev,+

n−5
2 Sev,+ ρSev,+
...

...
...

0 Sev,+ ρSev,+
Table 13

Domains of first and second type when n is odd

By Lemma 12.2, Eγ,i = Erγ,i ⊕ Er+1
γ,i is a subcomplex of length one of Ω(M) with

d±s and δ±s , even for s = 0, where i = 1 for r ≤ n−1
2 , and i = 2 for r ≥ n−1

2 . Moreover
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let Eγ,0 denote the dense subcomplex of Eγ,i defined by

Erγ,0 = C∞
0 (R+) γ ≡ C∞

0 (R+) ,

Er+1
γ,0 = C∞

0 (R+) dρ ∧ γ ≡ C∞
0 (R+) .

The closure of Eγ,i (and Eγ,0) in L2Ω(M) is denoted by L2Eγ . We have

L2Erγ = L2(R+, ρ
n−2r−1 dρ) γ ≡ L2(R+, ρ

n−2r−1 dρ) ,

L2Er+1
γ = L2(R+, ρ

n−2r−1 dρ) dρ ∧ γ ≡ L2(R+, ρ
n−2r−1 dρ) .

Assume now that s > 0. With the notation of Section 8.2, consider the real
version of the elliptic complex (E, d) determined by the constants s and

κ =
n− 2r − 1

2
, (65)

and also its subcomplexes Ei, where i = 1 if κ > −1/2 (r ≤ n−1
2 ), and i = 2 if κ < 1/2

(r ≥ n−1
2 ).

Proposition 12.3. There is a unitary isomorphism L2Eγ → L2(E), which re-
stricts to isomorphisms of complexes up to a shift of degree, (Eγ,0, d±s )→ (C∞

0 (E), d)
and (Eγ,i, d±s )→ (Ei, d), where i = 1 if r ≤ n−1

2 , and i = 2 if r ≥ n−1
2 .

Proof. The unitary isomorphism

ρκ : L2(R+, ρ
n−2r−1 dρ)→ L2(R+, dρ)

defines a unitary isomorphism L2Eγ → L2(E), which restricts to an isomorphism
Eγ,0 → C∞

0 (E). Furthermore

ρκErγ,1 = ρκSev,+ γ ≡ ρκSev,+ ≡ E01 ,

ρκEr+1
γ,1 = ρ1+κ Sev,+ dρ ∧ γ ≡ ρ1+κSev,+ ≡ E11

if r ≤ n−1
2 , and

ρκErγ,2 = ρκ−n+2r+2 Sev,+ γ ≡ ρ1−κ Sev,+ ≡ E02 ,

ρκEr+1
γ,2 = ρκ−n+2r+1 Sev,+ γ ≡ ρ−κ Sev,+ ≡ E12

if r ≥ n−1
2 . By Lemma 12.1 and (9), we also have

ρκ d±s,r ρ
−κ = ρκ

(
d

dρ
± sρ

)
ρ−κ =

d

dρ
− κρ−1 ± sρ ,

which is the operator d of Section 8.2.

Corollary 12.4.

(i) If r 
= n−1
2 , then (Eγ,0, d±s ) has a unique Hilbert complex extension in L2Eγ ,

whose smooth core is Eγ,i, where i = 1 if r < n−1
2 , and i = 2 if r > n−1

2 .
(ii) If r = n−1

2 , then (Eγ,0, d±s ) has different minimum and maximum Hilbert com-
plex extensions in L2Eγ , whose smooth cores are Eγ,2 and Eγ,1, respectively.
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Proof. This follows from Propositions 8.4 and 12.3.

For each degree r, we will choose one of the possible domains of first and second
type defined by γ, denoted by Erγ and Er+1

γ , so that Eγ = Erγ ⊕ Er+1
γ is a subcomplex

of (Ω(M), d±s ) according to Lemma 12.2.

If n is even, there is only one choice of domains of first and second types by
Remark 14. Thus Erγ and Er+1

γ have only one possible definition in this case.

If n is odd, there are two possible choices of domains of first and second types
just for the following values of r:

Erγ,1 = Sev,+ γ

Erγ,2 = ρ−1 Sev,+ γ

}
for r =

n− 3

2
,

Erγ,1 = Sev,+ γ

Erγ,2 = ρSev,+ γ

Er+1
γ,1 = ρSev,+ dρ ∧ γ

Er+1
γ,2 = Sev,+ dρ ∧ γ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ for r =
n− 1

2
,

Er+1
γ,1 = ρSev,+ dρ ∧ γ

Er+1
γ,2 = ρ2 Sev,+ dρ ∧ γ

}
for r =

n+ 1

2
.

By Remark 13 and Corollary 12.4, we choose

Erγ = Erγ,1 for r =
n− 3

2
,

Er+1
γ = Er+1

γ,2 for r =
n+ 1

2
.

In order to get the minimum and maximum i.b.c. of (
∧
TM∗, d), according to

Corrollary 12.4, we choose

Erγ = Erγ,2
Er+1
γ = Er+1

γ,2

}
if γ ∈ H̃r

min

Erγ = Erγ,1
Er+1
γ = Er+1

γ,1

}
if γ ∈ H̃r

max

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ for r =
n− 1

2
.

According to Corollary 12.4, the above choices of Eγ satisfy the following.

Corollary 12.5.

(i) If r 
= n−1
2 , then (Eγ,0, d±s ) has a unique Hilbert complex extension in L2Eγ ,

whose smooth core is Eγ .
(ii) If r = n−1

2 , then (Eγ,0, d±s ) has different minimum and maximum Hilbert

complex extensions in L2Eγ . If γ ∈ H̃min/max, then Eγ is the smooth core of
the minimum/maximum Hilbert complex extension of (Eγ,0, d±s ).

Let (Dγ ,d
±
s,γ) denote the Hilbert complex extension of (Eγ,0, d±s ) with smooth core

Eγ , letΔ±
s,γ be the corresponding Laplacian, and letH±

s,γ = H±,r
s,γ ⊕H±,r+1

s,γ = kerΔ±
s,γ .

The following result follows from Sections 11.1 and 11.2, Lemma 7.3 and the choices
made to define Eγ .
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Proposition 12.6.

(i) (Dγ ,d
±
s,γ) is discrete.

(ii) H+,r+1
s,γ = 0, dimH+,r

s,γ = 1 if

r ≤

⎧⎪⎨⎪⎩
n
2 − 1 if n is even
n−3
2 if n is odd and γ ∈ H̃r

min
n−1
2 if n is odd and γ ∈ H̃r

max ,

and H+,r
s,γ = 0 otherwise.

(iii) H−,r
s,γ = 0, dimH−,r+1

s,γ = 1 if

r ≥

⎧⎪⎨⎪⎩
n
2 if n is even
n−1
2 if n is odd and γ ∈ H̃r

min
n+1
2 if n is odd and γ ∈ H̃r

max ,

and H−,r+1
s,γ = 0 otherwise.

(iv) If e±s ∈ H±
s,γ with norm one for each s, and h is a bounded measurable function

on R+ with h(ρ)→ 1 as ρ→ 0, then 〈he±s , e±s 〉 → 1 as s→∞.
(v) All non-zero eigenvalues of Δ±

s,γ are in O(s) as s→∞.

12.2. Subomplexes defined by domains of third, fourth and fifth types.

Consider the notation of Sections 11.3–11.5. The following result follows from Corol-
lary 10.5.

Lemma 12.7. For s ≥ 0, d±s and δ±s define maps

0 C∞(R+)β C∞(R+)α+ C∞(R+) dρ ∧ β

C∞(R+) dρ ∧ α 0 ,

d
±
s,r−2

δ
±
s,r−2

d
±
s,r−1

δ
±
s,r−1

d
±
s,r

δ
±
s,r

d
±
s,r+1

δ
±
s,r+1

�
�

�
�

�
�

�
�

which are given by

d±s,r−1 =

(
μ

d
dρ ± sρ

)
,

δ±s,r−1 =
(
μρ−2 − d

dρ − (n− 2r + 1)ρ−1 ± sρ
)

,

d±s,r =
(

d
dρ ± sρ −μ

)
,

δ±s,r =

(− d
dρ − (n− 2r − 1)ρ−1 ± sρ

−μρ−2

)
,

according to the canonical identities

C∞(R+)β ≡ C∞(R+) dρ ∧ α ≡ C∞(R+) ,

C∞(R+)α+ C∞(R+) dρ ∧ β ≡ C∞(R+)⊕ C∞(R+) .

Consider only the choices of a given by the positive square roots in (37) and (43)
for domains of third and fourth types, and (60) for domains of fifth type; the other
choices of a are rejected because they are very restrictive on μ and r, and give rise to
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some negative eigenvalues. If these values of a are denoted by a3, a4 and a5 according
to the types of domains, then a5 = a3 = a4−1, and therefore the notation a5 = a3 = a
and a4 = a+1 will be used. Recall also that we only have the choice (58) for b, which
equals a + 2. So we only consider the following domains of third, fourth and fifth
types defined by α and β:

Fr−1
α,β = ρa Sev,+ β ≡ ρa Sev,+ ,

Fr+1
α,β = ρa+1 Sev,+ dρ ∧ α ≡ ρa+1 Sev,+ ,

Fr
α,β = ρa

{
(φ− cρ2ψ)α+ (cρ−1φ+ ρψ) dρ ∧ β | φ, ψ ∈ Sev,+

}
≡ ρa

{
(φ− cρ2ψ, cρ−1φ+ ρψ) | φ, ψ ∈ Sev,+

}
.

Lemma 12.8. For any s ≥ 0, d±s and δ±s define maps

0 Fr−1
α,β Fr

α,β Fr+1
α,β 0

d
±
s,r−2

δ
±
s,r−2

d
±
s,r−1

δ
±
s,r−1

d
±
s,r

δ
±
s,r

d
±
s,r+1

δ
±
s,r+1

�
�

�
�

�
�

�
�

Proof. Lemma 12.7 gives δ±s (Fr−1
α,β ) = d±s (Fr+1

α,β ) = 0.
Observe that

a = cμ , (66)

obtaining

c(a+ n− 2r) = μ (67)

by (48). By Lemma 12.7, (66) and (67), for h ∈ Sev,+,

d±s (ρ
ahβ) = ρa

(
μhα+

(
d

dρ
+ cμρ−1 ± sρ

)
(h) dρ ∧ β

)
, (68)

δ±s (ρ
a+1h dρ ∧ α) = ρa

((
−ρ d

dρ
− μ

c
± sρ2

)
(h)α− μρ−1h dρ ∧ β

)
. (69)

The inclusion d±s (Fr−1
α,β ) ⊂ Fr

α,β follows from (68) if there are φ, ψ ∈ Sev,+ so that

φ− cρ2ψ = μh , (70)

cρ−1φ+ ρψ =

(
d

dρ
+ cμρ−1 ± sρ

)
(h) . (71)

Subtract cρ−2 times (70) from ρ−1 times (71) to get

ψ =
1

1 + c2

(
ρ−1 d

dρ
± s

)
(h) ,

which is well defined in Sev,+. This ψ and φ = μh+ cρ2ψ satisfy (70) and (71).
The inclusion δ±s (Fr+1

α,β ) ⊂ Fr
α,β holds by (69) if there are φ, ψ ∈ Sev,+ so that

φ− cρ2ψ =

(
−ρ d

dρ
− μ

c
± sρ2

)
(h) , (72)

cρ−1φ+ ρψ = −μρ−1h . (73)
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The sum of (72) and cρ times (73) gives

φ =
1

1 + c2

(
−ρ d

dρ
− 1 + c2

c
μ± sρ2

)
(h) ,

which belongs to Sev,+. The even extensions of h and φ to R, also denoted by h
and φ, satisfy cφ(0) = −μh(0), and therefore μh + cφ ∈ ρ2 Sev. It follows that
ψ = ρ−2(μh+ cφ) ∈ Sev,+. These functions φ and ψ satisfy (72) and (73).

For arbitrary φ, ψ ∈ Sev,+, let

ζ = ρa
((
φ− cρ2ψ

)
α+

(
cρ−1φ+ ρψ

)
dρ ∧ β

)
. (74)

By Corollary 10.5, (66) and (67),

d±s (ζ) =ρa+1

((
ρ−1 d

dρ
± s

)
(φ)

+ c

(
−ρ d

dρ
−
(
c2 + 1

c
μ+ 2

)
∓ sρ2

)
(ψ)

)
dρ ∧ α ,

δ±s (ζ) =ρa
(
c

(
−ρ−1 d

dρ
± s

)
(φ)

+

(
−ρ d

dρ
−
(
c2 + 1

c
μ+ 2

)
± sρ2

)
(ψ)

)
β ,

showing that d±s (Fr
α,β) ⊂ Fr+1

α,β and δ±s (Fr
α,β) ⊂ Fr−1

α,β .

By Lemma 12.8, Fα,β = Fr−1
α,β ⊕ Fr

α,β ⊕ Fr+1
α,β is a subcomplex of length two of

Ω(M) with d±s and δ±s . Let Fα,β,0 denote the dense subcomplex of Fα,β defined by

Fr−1
α,β,0 = C∞

0 (R+)β ≡ C∞
0 (R+) , Fr+1

α,β,0 = C∞
0 (R+) dρ ∧ α ≡ C∞

0 (R+) ,

Fr
α,β,0 = C∞

0 (R+)α+ C∞
0 (R+) dρ ∧ β ≡ C∞

0 (R+)⊕ C∞
0 (R+) .

The closure of Fα,β (and Fα,β,0) in L2Ω(M) is denoted by L2Fα,β . We have

L2Fr−1
α,β = L2(R+, ρ

n−2r+1 dρ)β ≡ L2(R+, ρ
n−2r+1 dρ) ,

L2Fr+1
α,β = L2(R+, ρ

n−2r−1 dρ) dρ ∧ α ≡ L2(R+, ρ
n−2r−1 dρ) ,

L2Fr
α,β = L2(R+, ρ

n−2r−1 dρ)α + L2(R+, ρ
n−2r+1 dρ) dρ ∧ β

≡ L2(R+, ρ
n−2r−1 dρ)⊕ L2(R+, ρ

n−2r+1 dρ) .

Assume now that s > 0. With the notation of Section 8.3, consider the real
version of the elliptic complex (F, d), as well as its subcomplex F1, determined by the
constants s, c and

κ =
−1 +√

(n− 2r)2 + 4μ2

2
> −1

2
. (75)

By (49),

κ = cμ+
n− 2r − 1

2
=

μ

c
− n− 2r + 1

2
. (76)
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Proposition 12.9. There is a unitary isomorphism L2Fα,β → L2(F ), which
restricts to isomorphisms of complexes up to a shift of degree, (Fα,β , d

±
s ) → (F1, d)

and (Fα,β,0, d
±
s )→ (C∞

0 (F ), d).

Proof. As an intermediate step, let

F̂r−1
α,β = ρFr−1

α,β = ρa+1 Sev,+ , F̂r+1
α,β = Fr+1

α,β = ρa+1 Sev,+ ,

F̂r
α,β = Θ−1(Fr

α,β) = ρa Sev,+ ⊕ ρa+2 Sev,+ ,

F̂α,β = F̂r−1
α,β ⊕ F̂r

α,β ⊕ F̂r+1
α,β , F̂α,β,0 = Fα,β,0 ,

L2F̂r−1
α,β = L2F̂r+1

α,β = L2Fr+1
α,β = L2(R+, ρ

n−2r−1 dρ) ,

L2F̂r
α,β ≡ L2(R+, ρ

n−2r−1 dρ)⊕ L2(R+, ρ
n−2r−1 dρ) ,

L2F̂α,β = L2F̂r−1
α,β ⊕ L2F̂r

α,β ⊕ L2F̂r+1
α,β .

Moreover let Ξ : L2Fα,β → L2F̂α,β be the unitary isomorphism defined by

ρ : L2Fr−1
α,β → L2F̂r−1

α,β ,
√
1 + c2 Θ−1 : L2Fr

α,β → L2F̂r
α,β

and the identity map L2Fr+1
α,β → L2F̂r+1

α,β . It restricts to isomorphisms Fα,β → F̂α,β

and Fα,β,0 → F̂α,β,0. Thus, by Lemma 12.8, (Fα,β , d
±
s ) induces via Ξ a complex

0 F̂r−1
α,β F̂r

α,β F̂r+1
α,β 0 .

d̂
±
s,r−2 d̂

±
s,r−1 d̂

±
s,r d̂

±
s,r+2

� � � �

By Lemma 12.7 and (9),

d̂±s,r−1 =
1√

1 + c2

(
1 cρ
−c ρ

)(
μ

d
dρ ± sρ

)
ρ−1

=
1√

1 + c2

(
c d

dρ + (μ− c)ρ−1 ± csρ
d
dρ − (cμ+ 1)ρ−1 ± sρ

)
, (77)

d̂±s,r =
1√

1 + c2

(
d
dρ ± sρ −μ

)( 1 −c
cρ−1 ρ−1

)
=

1√
1 + c2

(
d
dρ − cμρ−1 ± sρ −c d

dρ − μρ−1 ∓ csρ
)

. (78)

Now, the unitary isomorphism

ρ
n−2r−1

2 : L2(R+, ρ
n−2r−1 dρ)→ L2(R+, dρ)

induces a unitary isomorphism L2F̂α,β → L2(F ), which restricts to isomorphisms

F̂α,β → F1 and F̂α,β,0 → C∞
0 (F ). Moreover, by (77), (78), (9) and (76),

ρ
n−2r−1

2 d̂±s,r−1 ρ
−n−2r−1

2 =
1√

1 + c2
ρ

n−2r−1

2

(
c d

dρ + (μ− c)ρ−1 ± csρ
d
dρ − (cμ+ 1)ρ−1 ± sρ

)
ρ−

n−2r−1

2

=
1√

1 + c2

(
c
(

d
dρ + κρ−1 ± sρ

)
d
dρ − (κ+ 1)ρ−1 ± sρ

)
,
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ρ
n−2r−1

2 d̂±s,r ρ
−n−2r−1

2

=
1√

1 + c2
ρ

n−2r−1

2

(
d
dρ − cμρ−1 ± sρ −c d

dρ − μρ−1 ∓ csρ
)
ρ−

n−2r−1

2

=
1√

1 + c2

(
d
dρ − κρ−1 ± sρ c

(− d
dρ − (κ+ 1)ρ−1 ∓ sρ

))
,

which are the operators d0 and d1 of Section 8.3.

Corollary 12.10. (Fα,β,0, d
±
s ) has a unique Hilbert complex extension in

L2Fα,β, whose smooth core is Fα,β.

Proof. This follows from Propositions 8.6 and 12.9.

Let (Dα,β ,d
±
s,α,β) denote the unique Hilbert complex extension of (Fα,β,0, d

±
s ),

according to Corollary 12.10, and let Δ±
s,α,β denote the corresponding Laplacian.

The following result follows from Sections 11.3–11.5.

Proposition 12.11.

(i) (Dα,β ,d
±
s,α,β) is discrete.

(ii) The eigenvalues of Δ±
s,α,β are positive and in O(s) as s→∞.

12.3. Splitting into subcomplexes. Let Bmin/max,0 denote an orthonormal

frame of H̃min/max consisting of homogeneous differential forms. For each positive

eigenvalue μ of D̃min/max, let Bmin/max,μ be an orthonormal frame of Eμ(D̃min/max)
consisting of differential forms α+ β like in Section 12.2. Then let

d±
s,min/max =

⊕
γ

d±
s,γ ⊕

⊕̂
μ

⊕
α+β

d±
s,α,β ,

where γ runs in Bmin/max,0, μ runs in the positive spectrum of D̃min/max, and α + β

runs in Bmin/max,μ. Observe that the domain of d±
s,min/max is independent of s, and

therefore it is denoted by Dmin/max. Let also

Gmin/max =
⊕
γ

Eγ,0 ⊕
⊕
μ

⊕
α+β

Fα,β,0 .

Proposition 12.12. d±s,min/max = d±
s,min/max.

Proof. By Corollaries 12.5 and 12.10, Lemma 5.2 and (32), (Dmin/max,d
±
s,min/max)

is the minimum/maximum Hilbert complex extension of (Gmin/max, d
±
s ). Then the

result easily follows from the following assertions.

Claim 3. Gmin/max ⊂ D(d±s,min/max).

Claim 4. Ω0(M) ⊂ Dmin/max.

Let d̂±s,min/max denote the minimum/maximum Hilbert complex extension of

(Ω0(M), d±s ) with respect to the product metric ĝ = g̃ + (dρ)2 on M = N × R+.
With the terminology of [8, p. 110], observe that (Ω(M), d±s ) is the product com-
plex of the de Rham complex of N , (Ω(N), d̃), and the Witten’s deformation of the
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de Rham complex of R+, defined by the function ± 1
2ρ

2. Then, by [8, Lemma 3.6
and (2.38b)],

D(d̂±s,min/max) ⊃ C∞
0 (R+)D(d̃min/max) + C∞

0 (R+) dρ ∧D(d̃min/max)

⊃ Gmin/max . (79)

On the other hand, for 0 < a < b < ∞, let L2
a,bΩ(M, g) and L2

a,bΩ(M, ĝ) denote

the Hilbert subspaces of L2Ω(M, g) and L2Ω(M, ĝ), respectively, consisting of L2

differential forms supported in N × [a, b]. Since g and ĝ are quasi-isometric on N ×
(a′, b′) for 0 < a′ < a and b < b′ <∞, it follows that

D(d±s,min/max) ∩ L2
a,bΩ(M, g) = D(d̂±s,min/max) ∩ L2

a,bΩ(M, ĝ) . (80)

Moreover

Gmin/max ⊂
⋃

0<a<b<∞
L2
a,bΩ(M, g) =

⋃
0<a<b<∞

L2
a,bΩ(M, ĝ) . (81)

Now Claim 3 follows from (79)–(81).
Finally, Claim 4 follows from

Ω0(M) ⊂
⊕
γ

Eγ,0 ⊕
⊕̂
μ

⊕
α+β

Fα,β,0 , (82)

where γ, μ and α + β vary as above. The inclusion (82) can be proved as follows.
According to (26), any ξ ∈ Ω0(M) can be written as ξ = ξ0 + dρ ∧ ξ1 with ξ0, ξ1 ∈
C∞

0 (R+,Ω0(N)). Then, by (32), we get functions fk,γ , fk,�,α,β ∈ C∞
0 (R+) (k, � ∈

{0, 1}) defined by fk,γ(ρ) = 〈ξk(ρ), γ〉g̃, fk,0,α,β(ρ) = 〈ξk(ρ), β〉g̃ and fk,1,α,β(ρ) =
〈ξk(ρ), α〉g̃ , where 〈 , 〉g̃ denotes the scalar product of L2Ω(N), and moreover

ξ =
∑
γ

(f0,γ γ + f1,γ dρ ∧ γ)

+
∑
μ

∑
α+β

(f0,0,α,β β + f1,0,α,β α+ f1,0,α,β dρ ∧ β + f1,1,α,β dρ ∧ α)

in L2Ω(M, g), where γ, μ and α + β vary as above. Thus ξ belongs to the space in
the right hand side of (82).

Remark 15. From (4), Lemma 7.2, and Propositions 8.4, 8.6 and 12.12, it follows
that, with the notation of Example 4.2, h(ρ)D∞(d±s,min/max) ⊂ D∞(d±s,min/max) for

all h ∈ C∞(R+) such that h′ ∈ C∞
0 (R+).

Let H±
s,min/max =

⊕
rH±,r

s,min/max = kerΔ±
s,min/max.

Corollary 12.13.

(i) d±s,min/max is discrete.

(ii) H+,r
min
∼= Hr

min(N) if

r ≤
{

n
2 − 1 if n is even
n−3
2 if n is odd ,

and H+,r
min = 0 otherwise.
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(iii) H+,r
max
∼= Hr

max(N) if

r ≤
{

n
2 − 1 if n is even
n−1
2 if n is odd ,

and H+,r
max = 0 otherwise.

(iv) H−,r+1
min

∼= Hr
min(N) if

r ≥
{

n
2 if n is even
n−1
2 if n is odd ,

and H+,r+1
min = 0 otherwise.

(v) H−,r+1
max

∼= Hr
max(N) if

r ≥
{

n
2 if n is even
n+1
2 if n is odd ,

and H+,r+1
max = 0 otherwise.

(vi) If e±s ∈ H±
s,min/max has norm one for each s, and h is a bounded measurable

function on R+ with h(ρ)→ 1 as ρ→ 0, then 〈he±s , e±s 〉 → 1 as s→∞.
(vii) Let 0 ≤ λ±

s,min/max,0 ≤ λ±
s,min/max,1 ≤ · · · be the eigenvalues of Δs,min/max,

repeated according to their multiplicities. Given k ∈ N, if λ±
s,min/max,k > 0 for

some s, then λ±
s,min/max,k ∈ O(s) as s→∞.

(viii) There is some θ > 0 such that lim infk λ
±
s,min/max,kk

−θ > 0.

Proof. For γ, μ and α+ β as above, the spectra of Δ±
s on Eγ and Fα,β is discrete

by Propositions 12.6-(i) and 12.11-(i). Moreover the union of all of these spectra

has no accumulation points according to Sections 11.1–11.5 and since Δ̃min/max has
a discrete spectrum. Then (i) follows by Proposition 12.12.

Now, properties (ii)–(vii) follow directly from Propositions 12.6, 12.11 and 12.12.

To prove (viii), let 0 ≤ λ̃min/max,0 ≤ λ̃min/max,1 ≤ · · · denote the eigenvalues of

Δ̃min/max, repeated according to their multiplicities, and let μmin/max,� =
√
λ̃min/max,�

for each � ∈ N. Since N satisfies Theorem 1.1-(ii) with g̃, there is some C0, θ̃ > 0 such
that

λ̃min/max,� ≥ C2
0�

θ̃ (83)

for all large enough �. Consider the counting function

N
±
s,min/max(λ) = #

{
k ∈ N | λ±

s,min/max,k < λ
}

for λ > 0. From (33)–(36), (39), (44), (59), (61) and (83), and the choices made in
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Section 12, it follows that there are some C1, C2, C3 > 0 such that

N±
s,min/max(λ) ≤ #

{
(k, �) ∈ N2 | C1k + C2 μmin/max,� ≤ λ

}
≤ #{ (k, �) ∈ N2 | C1k + C2C0�

θ̃/2 − C3 ≤ λ }

≤ #

{
(k, �) ∈ N2

∣∣∣∣∣ � ≤
(
λ+ C3

C2C0
− C1k

C2C0

)2/θ̃
}

≤
∫ λ+C3

C1

0

(
λ+ C3

C2C0
− C1x

C2C0

)2/θ̃

dx

=
θ̃(λ+ C3)

(2+θ̃)/θ̃

(2 + θ̃)(C2C0)2/θ̃C1

.

So N±
s,min/max(λ) ≤ Cλ(2+θ̃)/θ̃ for some C > 0 and all large enough λ, giving (viii)

with θ = θ̃
2+θ̃

.

Example 12.14. Consider the notation of Examples 3.7, 3.14 and 9.1. On
the stratum Sm−1 × R+ of c(Sm−1), the model rel-Morse function ± 1

2 ρ
2 and the

metric g1 define the Witten’s perturbed operators d±s , δ
±
s , D

±
s and Δ±

s . Since ρ0
and g0 respectively correspond to ρ and g1 by can : Sm−1 × R+ → Rm � {0}, it
follows that d±s , δ

±
s , D

±
s and Δ±

s respectively correspond to d±0,s, δ
±
0,s, D

±
0,s, Δ

±
0,s by

can∗ : Ω(Rm � {0})→ Ω(Sm−1 × R+), and moreover

L2Ω(Rm, g0) ≡ L2Ω(Rm � {0}, g0) can∗−−−−→ L2Ω(Sm−1 × R+, g1) (84)

is a unitary isomorphism. The extension by zero defines a canonical injection
Ω0(R

m � {0}) → Ω0(R
m), whose composite with (can∗)−1 is an injective homomor-

phism of complexes, (Ω0(S
m−1 × R+), d

±
s ) → (Ω0(R

m), d±0,s). Thus the unique i.b.c.

of (
∧
TRm∗, d±0,s) in L2Ω(Rm, g0) corresponds to d±s,max via (84).

If m ≥ 2, then H
m−1

2 (Sm−1) = 0 for odd m. So (
∧
T (Sm−1 × R+)

∗, d±s ) has a
unique i.b.c. by Corollaries 12.5 and 12.10, and Proposition 12.12.

If m = 1, then Ω(S0) = Ω0(S0) ≡ R2, and therefore, according to (26), (27) and
Corollary 10.5,

Ω0(S0 × R+) ≡ C∞(R+,R
2) ,

Ω1(S0 × R+) ≡ dρ ∧ C∞(R+,R
2) ≡ C∞(R+,R

2) ,

d±s ≡
d

dρ
± sρ , δ±s ≡ −

d

dρ
± sρ ,

giving d±s,min 
= d±s,max by Proposition 8.4-(i).

13. Local model of the Witten’s perturbation. The local model of our
version of Morse functions around their critical points will be as follows. Let m± ∈
N, let L± be a compact Thom-Mather stratification, and let M± be a stratum in
c(L±). Thus, either M± = N± × R+ for some stratum N± of L±, or M± is the
vertex stratum {∗±} of c(L±). On the stratum M = Rm+ × Rm− ×M+ ×M− of
Rm+ × Rm− × c(L+)× c(L−), for any choice of product Thom-Mather stratification
on c(L+) × c(L−), consider an adapted metric given as product of standard metrics
on the Euclidean spaces Rm± and model adapted metrics on the strata M±. Let ds
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be the Witten’s perturbed differential map on Ω(M) induced by the model rel-Morse
function 1

2 (ρ
2
+ − ρ2−) (Remark 11-(ii)). Let Δs,min/max be the Laplacian defined by

ds,min/max, and Hs,min/max =
⊕

rHr
s,min/max = kerΔs,min/max. The following result

is a direct consequence of Example 9.1, Corollary 12.13 and Lemma 5.1.

Corollary 13.1.

(i) ds,min/max is discrete.
(ii) If M+ = N+ × R+ and M− = N− × R+, then

Hr
s,min/max

∼=
⊕
r+,r−

H
r+
min/max(N+)⊗H

r−
min/max(N−) ,

where (r+, r−) runs in the subset of Z2 defined by (1)–(3).
(iii) If M+ = {∗+} and M− = N− × R+, then

Hr
s,min/max

∼=
⊕
r−

H
r−
min/max(N−) ,

where r− runs in the subset of Z defined by r = m− + r− + 1 and (3).
(iv) If M+ = N+ × R+ and M− = {∗−}, then

Hr
s,min/max

∼=
⊕
r+

H
r+
min/max(N+) ,

where r+ runs in the subset of Z defined by r = m− + r+ and (2).
(v) If M+ = {∗+} and M− = {∗−}, then dimHr

s,min/max = δr,m− .

(vi) If es ∈ Hs,min/max with norm one for each s, and h is a bounded measurable
function on R+ with h(ρ)→ 1 as ρ→ 0, then 〈hes, es〉 → 1 as s→∞.

(vii) Let 0 ≤ λs,min/max,0 ≤ λs,min/max,1 ≤ · · · be the eigenvalues of Δs,min/max,
repeated according to their multiplicities. Given k ∈ N, if λs,min/max,k > 0 for
some s, then λs,min/max,k ∈ O(s) as s→∞.

(viii) There is some θ > 0 such that lim infk λs,min/max,k k
−θ > 0.

14. Globalization of the weak Weyl’s asymptotic formula. Here, for the
maximum/minimum i.b.c. of an elliptic complex, we show globalization results for
its domain, the discreteness of the spectrum, and, mainly, the type of weak Weyl’s
asymptotic formula stated in Theorem 1.1-(ii). This will play a key role in the proof
of Theorem 1.1.

Consider the notation of the Section 6. The following refinement of Lemma 6.1
is obtained with a deeper analysis.

Lemma 14.1. Suppose that (D,d) is discrete, and let 0 ≤ λ1 ≤ λ2 ≤ · · · be the
eigenvalues of Δ, repeated according to their multiplicities. Let B1 be the standard
unit ball of W 1, and Br the standard ball of radius r > 0 in L2(E). Then the following
properties are equivalent for θ > 0:

(i) lim infk λkk
−θ > 0.

(ii) There are some C0, C1 > 0 such that, for all n ∈ Z+, there is a linear subspace
Zn ⊂ L2(E) so that:
(a) Zn is closed and of codimension ≤ C0 n

1/θ in L2(E);
(b) D(W 1 ∩ Zn) ⊂ Zn; and
(c) B1 ∩ Zn ⊂ BC1/n.
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(iii) There are some C0, . . . , C4 > 0 and A ∈ Z+ such that, for all n ∈ Z+, there
is a linear map8 Rn = (R1

n, . . . , R
A
n ) : L

2(E)→⊕
A L2(E) so that:

(a) dimkerRn ≤ C0 n
1/θ;

(b) ‖Rnu‖ ≤ C1 ‖u‖ for all u ∈ L2(E);
(c) ‖Rnu‖ ≥ C2 ‖u‖ for all u ∈ (kerRn)

⊥;
(d) Ra

n(W
1) ⊂W 1 and ‖[D, Ra

n]u‖ ≤ C3 ‖u‖ for all u ∈W 1; and
(e) B1 ∩Ra

n(L
2(E)) ⊂ BC4/n.

Proof. Let (ei) (i ∈ Z× := Z \ {0}) be a complete orthonormal system of L2(E)
such that e±k is a ±√λk-eigenvector of D for each k ∈ Z+. The mapping u =∑

i uiei 
→ (ui) defines a unitary isomorphism L2(E) ∼= �2(Z×). MoreoverW 1 consists
of the elements u ∈ L2(E) with

∑
k(1+λk)u

2
±k <∞. We have ‖u‖21 =

∑
k(1+λk)(u

2
k+

u2
−k) for u ∈W 1.

Suppose that (i) holds. Then there is some C > 0 so that 1+ λk ≥ Ckθ for all k.
For each n ∈ Z+, the linear subspace

Zn =
{
u ∈ L2(E) | u±k = 0 if k ≤ (n/C)1/θ

}
of L2(E) satisfies (ii)-(a),(b) with C0 = 2/C1/θ. Furthermore, for every u ∈ B1 ∩Zn,

‖u‖2 =
∑

k>(n/C)1/θ

(u2
k + u2

−k) <
C

n

∑
k>(n/C)1/θ

kθ(u2
k + u2

−k)

≤ 1

n

∑
k>(n/C)1/θ

(1 + λk)(u
2
k + u2

−k) =
‖u‖21
n

<
1

n
,

completing the proof of (ii)-(c) with C1 = 1.
Now, assume that (ii) is satisfied. By (ii)-(a),

L2(E) = Z⊥
n ⊕ Zn (85)

as topological vector space [39, Chapter I, 3.5]. Furthermore, by (ii)-(a) and the
canonical linear isomorphism W 1/(W 1 ∩ Zn) ∼= (W 1 + Zn)/Zn, we also get that
W 1 ∩ Zn is a closed linear subspace of finite codimension in W 1. Hence

W 1 = Yn ⊕ (W 1 ∩ Zn) (86)

as topological vector spaces for any linear complement Yn of W 1 ∩ Zn in W 1 [39,
Chapter I, 3.5].

On the other hand, for each u ∈ Z⊥
n , the linear mapping v 
→ 〈u,Dv〉 is bounded

on Yn because Yn is of finite dimension, and 〈u,Dw〉 = 0 for all w ∈W 1 ∩Zn by (ii)-
(b). So v 
→ 〈u,Dv〉 is bounded on W 1 by (86), obtaining that u ∈ W 1 by (7) since
D is self-adjoint. Hence Z⊥

n ⊂ W 1, and therefore we can take Yn = Z⊥
n in (86),

obtaining

W 1 = Z⊥
n ⊕ (W 1 ∩ Zn) (87)

as topological vector spaces. Note that W 1 ∩Zn is dense in Zn by (85) and (87). So,
since D is self-adjoint, it follows from (ii)-(b) and (87) that D preserves Z⊥

n .

8For A ∈ Z+ and any topological vector space L, the notation
⊕

A L is used for the direct sum
of A copies of L. Similarlarly, for any linear map between topological vector spaces, T : L → L′, the
notation

⊕
A T :

⊕
A L →

⊕
A L′ is used for the direct sum of A copies of T .
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To get (iii), take A = 1 and Rn equal to the orthogonal projection of L2(E) to Zn.
Then (iii)-(a) follows from (ii)-(a), and properties (iii)-(b),(c) hold with C1 = C2 = 1
because Rn is an orthogonal projection. By (ii)-(b) and since D preserves Z⊥

n , we
get Rn(W

1) ⊂W 1 and DRn = RnD on W 1, showing (iii)-(d). Property (iii)-(e) is a
consequence of (ii)-(c).

Finally, assume that (iii) is true. The following general assertion will be used.

Claim 5. Let H be a (real or complex) Hilbert space, Π an orthogonal projection
of H with finite rank p, and 0 < C < 1. Then the cardinality of any orthonormal set
contained in UC = { u ∈ H | ‖Πu‖ > C ‖u‖ } is ≤ p/C2.

Suppose v1, . . . , vp is an orthonormal basis of Π(H). Let u1, . . . , uk be orthonormal
vectors in UC , and Π′ the orthogonal projection of H to the linear subspace generated
by them. We get Claim 5 because

kC2 ≤
k∑

j=1

‖Πuj‖2 =
k∑

j=1

p∑
i=1

|〈vi, uj〉|2 =

p∑
i=1

‖Π′vi‖2 ≤ p .

Let pn = �C0 n
1/θ�.

Claim 6. There is some I ⊂ Z with #I ≤ 2pn and ‖Rnei‖ ≥ C2/
√
2 for all

i ∈ Z � I.

Let Πn and Π̃n be the orthogonal projections of L2(E) to kerRn and (kerRn)
⊥,

respectively. By Claim 5, the cardinality of the set I = { i ∈ Z | ‖Πnei‖ > 1/
√
2 } is

≤ 2pn. For i ∈ Z � I, we have

‖Rnei‖ = ‖RnΠ̃nei‖ ≥ C2 ‖Π̃nei‖ ≥ C2/
√
2

by (iii)-(c), showing Claim 6.
From Claim 6, it follows that there is some in ∈ Z such that

|in| ≤ pn + 1 , (88)

‖Rnein‖ ≥ C2/
√
2 . (89)

We have

‖Ra
nein‖21 = ‖Ra

nein‖2 + ‖DRa
nein‖2

≤ ‖Ra
nein‖2 + (‖Ra

nDein‖+ ‖[D, Ra
n]ein‖)2 ≤ C2

1 +
(
C1

√
λ|in| + C3

)2

.

Hence

ua
n,r :=

r√
C2

1 +
(
C1

√
λ|in| + C3

)2 Ra
nein ∈ B1 ∩Ra

n(L
2(E))

for all r ∈ [0, 1), giving

rC2/
√
2√

C2
1 +

(
C1

√
λ|in| + C3

)2 ≤ r ‖Rnein‖√
C2

1 +
(
C1

√
λ|in| + C3

)2
≤ r

∑
a ‖Ra

nein‖√
C2

1 +
(
C1

√
λ|in| + C3

)2 =
∑
a

‖ua
n,r‖ <

AC4

n
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for all r ∈ [0, 1) by (89) and (iii)-(e). So there is some C > 0, independent of n, such
that

λ|in| ≥
1

C2
1

(√
C2

2n
2

2A2C2
4

− C2
1 − C3

)2

≥ Cn2 (90)

for n large enough. If |in−1| ≤ k < |in| for n large enough and k ∈ N, then

λk ≥ λ|in−1| ≥ C(n− 1)2 ≥ Cn ≥ C

( |in| − 1

C0

)θ

≥ C(k/C0)
θ

by (90) and (88). This shows (i) because, since |in| → ∞ as n→∞ by (90), there is
an increasing sequence (n�) in Z+ such that [|in0−1|,∞) =

⋃
�[|in�−1|, |in�

|).
Proposition 14.2. Let (E, d) be an elliptic complex on a Riemannian manifold

M . Let {Ua} be a finite open covering of M , and let {fa} be a smooth partition of
unity on M subordinated to {Ua} such that each |[d, fa]| is bounded. Assume also that
there is another family {f̃a} ⊂ C∞(M) such that f̃a and |[d, f̃a]| are bounded, f̃a = 1
on supp fa, and supp f̃a ⊂ Ua. For each a, let (Ea, da) be an elliptic complex on a
Riemannian manifold Ma, let Va ⊂ Ma be an open subset, and let ζa : (E|Ua , d) →
(Ea|Va , d

a) be a quasi-isometric isomorphism of elliptic complexes over ξa : Ua → Va.
Then the following properties hold:

(i) D(dmin/max) = { u ∈ L2(E) | ζa(fau) ∈ D(damin/max) ∀a }.
(ii) If damin/max is discrete for all a, then dmin/max is discrete.

Proof. The inclusion “⊂” of (i) follows from Lemma 6.3-(i).
Now, take any u ∈ L2(E) such that ζa(fau) ∈ D(damin/max) for all a. Let ga and

g̃a be the smooth functions on each Ma, supported in Va, that correspond to fa and
f̃a via ξa. By Lemma 6.3-(i),

fau = ζ−1
a ζa(fau) = ζ−1

a (g̃a ζa(fau)) ∈ D(dmin/max) .

So u =
∑

a fau ∈ D(dmin/max), completing the proof of (i).
To prove (ii), we can make the following reduction. Since discreteness is invariant

by quasi-isometric isomorphisms of elliptic complexes, like in the proof of Lemma 6.3-
(i), after shrinking {Ua} if necessary, we can assume that each ζa : (E|Ua , d) →
(Ea|Va , d

a) is isometric. If every damin/max is discrete, then each W 1(damin/max) ↪→
L2(Ea) is compact by Lemma 6.1. So

Cl1(ga W
1(damin/max)) ↪→ Cl0(ga L

2(Ea))

is compact for all a by Lemma 6.2-(ii). Therefore

Cl1(faW
1(dmin/max)) ↪→ Cl0(fa L

2(E))

is compact by Lemma 6.3-(ii). Since W 1(dmin/max) =
∑

a faW
1(dmin/max) by

Lemma 6.2-(ii), it follows that W 1(dmin/max) ↪→ L2(E) is compact. Hence dmin/max

is discrete by Lemma 6.1.

Proposition 14.3. With the notation of Proposition 14.2, suppose that every
damin/max is discrete, and therefore dmin/max is also discrete. Let

0 ≤ λa
min/max,0 ≤ λa

min/max,1 ≤ · · · , 0 ≤ λmin/max,0 ≤ λmin/max,1 ≤ · · ·
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denote the eigenvalues, repeated according to their multiplicities, of the Laplacians
Δa

min/max and Δmin/max defined by damin/max and dmin/max, respectively. Suppose

that, for all a, there is some9 θa > 0 such that lim infk λ
a
min/max,kk

−θa > 0. Then

lim infk λmin/max,k k
−θ > 0 with θ = mina θa.

Proof. According to Sections 5.1 and 5.2, the condition lim infk λ
a
min/max,kk

−θa >
0 is invariant by quasi-isometric isomorphisms of elliptic complexes. Thus, like in
the proof of Proposition 14.2-(ii), we can assume that ζa : (E|Ua , d) → (Ea|Va , d

a) is
isometric. Set Da

min/max = damin/max + δamax/min and W 1,a = W 1(damin/max). Let B1,a

denote the standard unit ball in W 1,a, and Ba
r the standard ball of radius r > 0 in

L2(Ea). By Lemma 14.1, we get the following.

Claim 7. There are some Ca,0, Ca,1 > 0 for every a such that, for all n ∈ Z+,
there is a linear subspace Za

n ⊂ L2(Ea) so that:
(a) Za

n is closed and of codimension ≤ Ca,0 n
1/θa in L2(Ea);

(b) Da
min/max(W

1,a ∩ Za
n) ⊂ Za

n; and

(c) B1,a ∩ Za
n ⊂ Ba

Ca,1/n
.

For each a, fix an open subset Oa ⊂M such that supp fa ⊂ Oa, Oa ⊂ Ua and the
frontier of Oa has zero Riemannian measure. Let Pa = ξa(Oa),

Pa =
{
v ∈ L2(Ea) | v is essentially supported in Pa

}
,

and Za ′
n = Za

n ∩ Pa. Each Pa is a closed linear subspace of L2(Ea) satisfying

Da
min/max(W

1,a ∩ Pa) ⊂ Pa . (91)

Claim 8.

(a) Za ′
n is closed and of codimension ≤ Ca,0 n

1/θa in Pa;
(b) Da

min/max(W
1,a ∩ Za ′

n ) ⊂ Za ′
n ; and

(c) B1,a ∩ Za ′
n ⊂ Ba

Ca,1/n
∩ Pa.

Claim 8-(a) follows from Claim 7-(a) and the canonical linear isomorphism
Pa/Za ′

n
∼= (Pa + Za

n)/Z
a
n. Claim 8-(b) is a consequence of Claim 7-(b) and (91),

and Claim 8-(c) follows from Claim 7-(c).
Now, consider the linear spaces

Oa =
{
u ∈ L2(E) | u is essentially supported in Oa

}
,

Za ′′
n = { u ∈ Oa | ∃v ∈ Za ′

n so that ζa(u|Ua) = v|Va } .

Each Oa is a closed linear subspace of L2(E), and we have L2(E) =
∑

aOa. Set
Dmin/max = dmin/max+ δmax/min and Wm = Wm(dmin/max) (m ∈ Z+). Let B

1 be the
standard unit ball in W 1, and Br the standard ball of radius r > 0 in L2(E). Since
ζa : (E|Ua , d)→ (Ea|Va , d

a) is isometric for all a, Claim 8 gives the following.

Claim 9.

(a) Za ′′
n is closed and of codimension ≤ Ca,0 n

1/θa in Oa;
(b) Dmin/max(W

1 ∩ Za ′′
n ) ⊂ Za ′′

n ; and
(c) B1 ∩ Za ′′

n ⊂ BCa,1/n ∩ Oa.

9The notation θa,min/max would be more correct, but, for the sake of simplicity, reference to the
maximum/minimum i.b.c. is omitted here and in most of the notation of the proof.



WITTEN’S PERTURBATION ON STRATA 109

Let Y a
n be a linear complement of each Za ′′

n in Oa. By Claim 9-(a), we have

Oa = Y a
n ⊕ Za ′′

n (92)

as topological vector spaces [39, Chapter I, 3.5]. On the other hand, for any m ∈ Z+,

Wm ∩ Oa ⊃ { u ∈ C∞
0 (E) | suppu ⊂ Oa } , (93)

in particular, Wm ∩ Oa is dense in Oa. So we can choose Y a
n ⊂Wm by Claim 9-(a);

in this case, we get

Wm ∩ Oa = Y a
n ⊕ (Wm ∩ Za ′′

n ) (94)

as topological vector spaces with respect to the ‖ ‖-topology.
Claim 10. Wm ∩ Za ′′

n is ‖ ‖-dense in Za ′′
n for all m ∈ Z+.

Choosing Y a
n ⊂Wm, Claim 10 follows from (92), (94) and the density ofWm∩Oa

in Oa.
For the case m = 1, observe that (94) is satisfied with

Y a
n = Oa ∩ (W 1 ∩ Za ′′

n )⊥1 , (95)

where ⊥1 denotes 〈 , 〉1-orthogonality in W 1. From now on, consider this choice for
Y a
n . Thus (94), for arbitrary m, also holds with respect to the ‖ ‖1-topology whenever

Y a
n ⊂Wm; in particular, this is true for m = 1.

Claim 11. Dmin/max(Y
a
n ) ⊂W 1.

Since the Riemannian measure of the frontier of Oa is zero, Oa⊥ consists of the
sections u ∈ L2(E) whose essential support is contained in M �Oa. Hence the set

(W 1 ∩ Oa⊥) + Y a
n + (W 1 ∩ Za ′′

n )

is dense in L2(E) by (94) for m = 1. It follows that, given any u ∈ Y a
n , to check that

Dmin/maxu ∈W 1, its enough to check that the mapping

v 
→ 〈Dmin/maxu,Dmin/maxv〉

is bounded on W 1 ∩ Oa⊥, Y a
n and W 1 ∩ Za ′′

n . This mapping vanishes on W 1 ∩ Oa⊥

because

Dmin/max(W
1 ∩ Oa) ⊂ Oa , Dmin/max(W

1 ∩ Oa⊥) ⊂ Oa⊥ .

Moreover it is bounded on Y a
n because this space is of finite dimension. Finally, for

v ∈ W 1 ∩ Za ′′
n , we have

〈Dmin/maxu,Dmin/maxv〉 = −〈u, v〉
because u ⊥1 v. Thus the above mapping is bounded on W 1 ∩Za ′′

n , which completes
the proof of Claim 11.

Claim 12. W 2 ∩ Za ′′
n is ‖ ‖1-dense in Za ′′

n .

From Claim 11, we get Y a
n ⊂ W 2. Hence (94) holds for m ∈ {1, 2} with respect

to the ‖ ‖1-topology, yielding Claim 12 because W 2 ∩ Oa is ‖ ‖1-dense in W 1 ∩ Oa

by (93).
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Claim 13. Dmin/max(Y
a
n ) ⊂ Y a

n .

For u ∈ Y a
n and v ∈ W 2 ∩ Za ′′

n , since Dmin/max is self-adjoint, we have

〈Dmin/maxu, v〉1 = 〈Dmin/maxu, v〉+ 〈Δmin/maxu,Dmin/maxv〉
= 〈u,Dmin/maxv〉+ 〈Dmin/maxu,Δmin/maxv〉 = 〈u,Dmin/maxv〉1 = 0

by Claims 11 and 9-(b), and (95). Then Claim 13 follows by Claim 12.

Claim 14. Y a
n = Oa ∩ (Za ′′

n )⊥.

Let u ∈ Y a
n and v ∈W 1 ∩Za ′′

n . By Claim 13, Δmin/max is a self-adjoint operator
on Y a

n . Then u = (1 +Δmin/max)u0 for u0 = (1 +Δmin/max)
−1u ∈ Y a

n , obtaining

〈u, v〉 = 〈(1 + Δmin/max)u0, v〉 = 〈u0, v〉1 = 0

by (95). This shows Claim 14 by Claim 10 and (92).

Let Πa
n : Oa → Za ′′

n denote the orthogonal projection. The following claim follows
from (94) for m = 1, and Claims 9-(b), 13 and 14.

Claim 15. Πa
n(W

1 ∩ Oa) ⊂W 1 ∩ Oa, and [Dmin/max,Π
a
n] = 0 on W 1 ∩Oa.

Consider each function fa as the corresponding bounded multiplication operator
on L2(E). Assuming that a runs in {1, . . . , A} for some A ∈ Z+, we get the bounded
operator T = (f1, . . . , fA) : L

2(E) → ⊕
A L2(E). Also, let Σ :

⊕
A L2(E) → L2(E)

be the bounded operator defined by Σ(u1, . . . , uA) =
∑

a ua. We have ΣT = 1 because
{fa} is a partition of unity.

Claim 16. The image of T is closed.

Let (ui) be a sequence in L2(E) such that (Tui) converges to some v in
⊕

A L2(E).
Then ui = ΣTui → Σv as i→∞, obtaining Tui → TΣv as i→∞. Hence v = TΣv ∈
T (L2(E)), showing Claim 16.

By Claim 16 and the open mapping theorem (see e.g. [14, Chapter III, 12.1] or [39,
Chapter III, 2.1]), we get that T is a topological homomorphism10. So T : L2(E) →
T (L2(E)) is a quasi-isometric isomorphism; its inverse is Σ : T (L2(E)) → L2(E).
Since Πn :=

⊕
a Π

a
n is an orthogonal projection of

⊕
A L2(E), it follows that Rn :=

ΠnT satisfies Lemma 14.1-(iii)-(b),(c). Moreover, by Claim 9-(a),

dimkerRn ≤ dim kerΠn =
∑
a

dim kerΠa
n ≤

∑
a

C0,a n
1/θa ≤ C0 n

1/θ

with C0 =
∑

a C0,a and θ = mina θa, showing that Rn satisfies Lemma 14.1-(iii)-(a).

We have Rn = (R1
n, . . . , R

A
n ) with Ra

n = Πa
n fa. Since each function |[d, fa]| is

uniformly bounded, it follows that fa W
1 ⊂ W 1 and [Dmin/max, fa] : W

1 → L2(E)
extends to a bounded operator on L2(E). So each Ra

n satisfies Lemma 14.1-(iii)-(d)
by Claim 15.

Finally, Ra
n satisfies Lemma 14.1-(iii)-(e) by Claim 9-(c). Now, the result follows

from Lemma 14.1.

10Recall that a bounded operator between topological vector spaces, T : H → G, is called a
topological homomorphism if the map T : H → T (H) is open, where T (H) is equipped with the
restriction of the topology of G.
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15. Proof of Theorem 1.1. Consider the notation of Theorem 1.1: M is a
stratum with compact closure of a Thom-Mather stratification A, and g is an adapted
metric on M . Let {(Oa, ξa)} be a finite covering of M by charts of A. For each a, we
have ξa(Oa) = Ba× cεa(La), where Ba is an open subset of Rma for some ma ∈ N, La

is a compact Thom-Mather stratification, and εa > 0. Then each ξa defines an open
embedding of M ∩Oa into Rma ×Ma for some stratum Ma of c(La). We have, either
Ma = Na × R+ for some stratum Na of La, or Ma = {∗a}, where ∗a is the vertex of
c(La). If Ma = Na × R+, then ξa(M ∩Oa) = Ba ×Na × (0, εa). If Ma = {∗a}, then
ξa(M ∩ Oa) = Ba × {∗a} ≡ Ba. Thus every ξa(M ∩ Oa) is, either open in Rma , or
open in Rma × Na × R+. By shrinking {(Oa, ξa)} if necessary, we can assume that
each diffeomorphism ξa : M ∩ Oa → ξa(M ∩Oa) is quasi-isometric with respect to a
model adapted metric on Rma ×Ma.

By Lemma 4.4, there is a smooth partition of unity {λa} of M subordinated to
the open covering {M ∩ Oa} such that each function |dλa| is bounded. Also, using
Example 4.2, it is easy to construct another family {λ̃a} ⊂ C∞(M) such that λ̃a and
|dλ̃a| are bounded, λ̃a = 1 on suppλa, and supp λ̃a ⊂M ∩Oa. The existence of such
families {λa} and {λ̃a} is required to apply Propositions 14.2 and 14.3.

Let da,s be the Witten’s perturbation of da induced by the function fa = 1
2ρ

2
a on

Rma×Ma, where ρa is the radial function of Rma×c(La). According to Corollary 13.1-
(i),(viii), each da,s,min/max satisfies the properties stated in Theorem 1.1, and let
Δa,s,min/max denote the corresponding Laplacian.

Using Example 4.2 again, it is easy to see that there is some rel-admissible function
ha on Rma ×Ma such that ha = 0 on ξ(M ∩ Oa) and ha = 1 on the complement of

some rel-compact neighborhood of ξ(M ∩Oa) in Rm ×Ma. Let d̂a,s and Δ̂a,s be the

Witten’s perturbation of da and Δa induced by the function f̂a = hafa. The functions
|daf̂a−dafa| and |Hess f̂a−Hess fa| are uniformly bounded, and therefore Δ̂a,s−Δa,s

is a homomorphism with uniformly bounded norm by (24). By the min-max principle

(see e.g. [37, Theorem XIII.1]), we get that d̂a,s,min/max satisfies the properties stated
in Theorem 1.1. Then Theorem 1.1 follows by Propositions 14.2 and 14.3.

16. Functions of the perturbed Laplacian on strata. The first ingredient
to prove Theorem 1.2 is the following properties of the functional calculus of the
perturbed Laplacian on strata.

Let M be a stratum of a compact Thom-Mather stratification equipped with an
adapted metric, and let d and Δ be the de Rham derivative and Laplacian on M .
Let f be any rel-admissible function on M , and let ds and Δs be the corresponding
Witten’s perturbations of d and Δ. Since f is rel-admissible, for each s, Δs −Δ is a
homomorphism with uniformly bounded norm by (24). Hence ds,min/max defines the
same Sobolev spaces as dmin/max. Moreover the properties stated in Theorem 1.1 can
be extended to the perturbation ds,min/max by (24) and the min-max principle.

For any rapidly decreasing function φ on R, we easily get that φ(Δs,min/max) is a
Hilbert-Schmidt operator on L2Ω(M) by the version of Theorem 1.1-(ii) for ds,min/max.
In fact, φ(Δs,min/max) is a trace class operator because φ can be given as the product

of two rapidly decreasing functions, |φ|1/2 and sign(φ) |φ|1/2, where sign(φ)(x) =
sign(φ(x)) ∈ {±1} if φ(x) 
= 0.

The extension of Theorem 1.1-(ii) to ds,min/max also shows that φ(Δs,min/max)
is valued in W∞(dmin/max) ⊂ Ω(M). Like in the case of closed manifolds (see e.g.
[38, Chapters 5 and 8]), it can be easily proved that φ(Δs,min/max) can be given by
a Schwartz kernel Ks, and Trφ(Δs,min/max) equals the integral of the pointwise trace
of Ks on the diagonal. But we do not know whether Ks is uniformly bounded by the
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lack of a “rel-Sobolev embedding theorem” (Section 19).

17. Finite propagation speed of the wave equation on strata. Let M be
a stratum of a compact Thom-Mather stratification, g an adapted metric on M , and
f a rel-Morse function on M . Let ds, δs, Ds and Δs (s ≥ 0) be the corresponding
Witten’s perturbed operators on Ω(M), defined by f and g. Complex coefficients are
needed to consider the induced wave equation

dαt

dt
− iDsαt = 0 , (96)

where i =
√−1 and αt ∈ Ω(M) depends smoothly on t ∈ R. We may also consider

that (96) is satisfied only on some open subset of M .

If (96) holds on the whole of M , then, given α ∈ D∞(ds,min/max), a usual energy
estimate shows the uniqueness of the solution of (96) with the initial conditions α0 = α
(see e.g. [38, Proposition 7.4]). In this case the solution is given by

αt = exp(itDs,min/max)α ∈ D∞(ds,min/max) .

Compactly supported smooth solutions of (96) propagate at finite speed (see e.g.
[38, Proposition 7.20]). To prove Theorem 1.2, we need a version of that result for
strata, stating this finite propagation speed towards/from the rel-critical points of f
using forms in D∞(ds,min/max). For that purpose, we have shown first the correspond-
ing result for the simple elliptic complexes of Sections 8.2 and 8.3.

Take a rel-Morse chart around each x ∈ Critrel(f), like in Definition 4.6, with
values in a stratum M ′

x = Rmx,+×Rmx,−×Mx,+×Mx,− of a product Rmx,+×Rmx,−×
c(Lx,+) × c(Lx,−), where either Mx,± = Nx,± × R+, or Mx,± is the vertex stratum
{∗x,±} of c(Lx,±). We can assume that the domains of these rel-Morse charts are
disjoint one another by Remark 11-(i). Consider a model metric gx on each M ′

x. For
each ρ > 0, let Bx,±,ρ be the standard ball of radius ρ in Rmx,± . If Mx,+ = Nx,+×R+

and Mx,− = Nx,− × R+, let

Ux,ρ = Bx,+,ρ ×Bx,−,ρ ×Nx,+ × (0, ρ)×Nx,− × (0, ρ) ⊂M ′
x .

If Mx,± = {∗x,±}, remove the factor Nx,± × (0, ρ) from the definition of Ux,ρ (or
change it by {∗x,±}). Let d′x,s, δ

′
x,s, D

′
x,s and Δ′

x,s denote Witten’s perturbed oper-
ators on Ω(M ′

x) defined by gx and the model rel-Morse function (Section 13). The
corresponding wave equation is

dαt

dt
− iD′

x,sαt = 0 , (97)

with αt ∈ Ω(M ′
x) depending smoothly on t ∈ R. By Propositions 12.3, 12.9 and 12.12,

the following result clearly boils down to the case of Proposition 8.7.

Proposition 17.1. For 0 < a < b, let αt ∈ D∞(d′x,s,min/max), depending
smoothly on t ∈ R. The following properties hold:

(i) If αt satisfies (97) on Ux,b and suppα0 ⊂ M ′
x � Ux,a, then suppαt ⊂ M ′

x �

Ux,a−|t| for 0 < |t| ≤ a.

(ii) If αt satisfies (97) on M ′
x�Ux,a and suppα0 ⊂ Ux,a, then suppαt ⊂ Ux,a+|t|

for 0 < |t| ≤ b− a.
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There is some ρ0 > 0 such that each Ux,ρ0
is contained in the image of the rel-

Morse chart centered at x. We will identify each Ux,ρ0
with an open subset of M

via the rel-Morse chart. According to Example 3.13, we can choose g so that its
restriction to each Ux,ρ0

is identified with the restriction of gx.

Proposition 17.2. Let 0 < a < b < ρ0 and α ∈ L2Ω(M). The following
properties hold for αt = exp(itDs,min/max)α:

(i) If suppα ⊂M � Ux,a, then suppαt ⊂M � Ux,a−|t| for 0 < |t| ≤ a.

(ii) If suppα ⊂ Ux,a, then suppαt ⊂ Ux,a+|t| for 0 < |t| ≤ b− a.

Proof. Since exp(itDs,min/max) is bounded, we can assume that α ∈
D∞(ds,min/max), and therefore αt ∈ D∞(ds,min/max) for all t. According to Re-
mark 15, there is some h ∈ C∞(M) such that supph ⊂ Ux,ρ0

, h = 1 on Ux,b, and
hD∞(ds,min/max) ⊂ D∞(ds,min/max). Then hαt, considered as a differential form on

M ′
x, satisfies (97) on Ux,b in the case of (i), and on M ′

x � Ux,a in the case of (ii), and
belongs to D∞(d′s,min/max). Thus the result follows from Proposition 17.1 because
h = 1 on Ux,b.

18. Proof of Theorem 1.2. Consider the notation of Section 17.

18.1. Analytic inequalities. By (21), esf : (Ω0(M), ds) → (Ω0(M), d) is an
isomorphism of complexes, and, since f is bounded, esf : L2Ω(M) → L2Ω(M) is a
quasi-isometric isomorphism. So we get the isomorphism of Hilbert complexes

esf : (D(ds,min/max), ds,min/max)→ (D(dmin/max), dmin/max) ,

and therefore

βr
min/max = dimHr(D(ds,min/max), ds,min/max) (98)

for all s ≥ 0. In fact, since |df | is bounded, it also follows from (21) that

D(ds,min/max) = D(dmin/max) , ds,min/max = dmin/max + s df ∧ .

Thus

esf D(dmin/max) = D(dmin/max) .

Let φ be a smooth rapidly decreasing function on R with φ(0) = 1. Then the
operator φ(Δs,min/max) is of trace class (Section 16), and set

μr
s,min/max = Tr(φ(Δs,min/max,r)) .

By (98), the following result follows with the obvious adaptation of the proof of [38,
Proposition 14.3].

Proposition 18.1. We have the inequalities

β0
min/max ≤ μ0

min/max ,

β1
min/max − β0

min/max ≤ μ1
s,min/max − μ0

s,min/max ,

β2
min/max − β1

min/max + β0
min/max ≤ μ2

s,min/max − μ1
s,min/max + μ0

s,min/max ,

etc., and the equality

χmin/max =
∑
r

(−1)r μr
s,min/max .
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18.2. Null contribution away from the rel-critical points. By (24) and
because |df | and |Hess f | are bounded on M , for all s ≥ 0,

D(Δs,min/max) = D(Δmin/max) , (99)

Δs,min/max = Δmin/max + sHessf + s2 |df |2 . (100)

For ρ ≤ ρ0, let Uρ =
⋃

x Ux,ρ, with x running in Critrel(f). Fix some ρ1 > 0 such
that 4ρ1 < ρ0. Let G and H be the Hilbert subspaces of L2Ω(M) consisting of forms
essentially supported in M � Uρ1

and M � U3ρ1
, respectively. It follows from (99)

and (100) that there is some C > 0 so that, if s is large enough11,

Δs,min/max ≥ Δmin/max + Cs2 on G ∩ D(Δmin/max) . (101)

Let h be a rel-admissible function on M such that h ≥ 0, h ≡ 1 on Uρ1
and h ≡ 0

on M � U2ρ1
(Example 4.2). Then Ts,min/max = Δs,min/max + hCs2, with domain

D(Δmin/max), is self-adjoint in L2Ω(M) with a discrete spectrum, and moreover

Ts,min/max ≥ Δmin/max + Cs2 (102)

for s is large enough by (101).
Given any φ0 ∈ Sev with compactly supported Fourier transform12, the function

φ1(y) =
∫ y

−∞ xφ0(x)
2 dx satisfies the same properties as φ0 and has a monotone

restriction to [0,∞). Now, by using a linear change of variable with φ1/φ1(0), we get

some φ ∈ Sev such that φ ≥ 0, φ(0) = 1, supp φ̂ ⊂ [−ρ1, ρ1], and φ|[0,∞) is monotone.
Let ψ ∈ S such that φ(x) = ψ(x2). Using Proposition 17.2-(i), the argument of the
first part of the proof of [38, Lemma 14.6] gives the following.

Lemma 18.2. ψ(Δs,min/max) = ψ(Ts,min/max) on H.

Let Π : L2Ω(M) → H denote the orthogonal projection. According to Sec-
tion 16, ψ(Δs,min/max) is of trace class for all s ≥ 0. Then the self-adjoint operator
Πψ(Δs,min/max)Π is also of trace class (see e.g. [38, Proposition 8.8]).

Lemma 18.3. Tr(Πψ(Δs,min/max)Π)→ 0 as s→∞.

Proof. The eigenvalues of Δmin/max and Ts,min/max are respectively denoted by

0 ≤ λmin/max,0 ≤ λmin/max,1 ≤ · · · , 0 ≤ λs,min/max,0 ≤ λs,min/max,1 ≤ · · · ,
repeated according to their multiplicities. By (102) and the min-max principle,

λs,min/max,k ≥ λmin/max,k + Cs2

for s large enough. So

Tr(ψ(Ts,min/max)) =
∑
k

ψ(λs,min/max,k) ≤
∑
k

ψ(λmin/max,k + Cs2)

for s large enough, giving Tr(ψ(Ts,min/max))→ 0 as s→∞ since ψ is rapidly decreas-
ing. Then the result follows because, by Lemma 18.2,

Tr(Πψ(Δs,min/max)Π) = Tr(Πψ(Ts,min/max)Π) ≤ Tr(ψ(Ts,min/max)) .

11Recall that, for symmetric operators S and T in a Hilbert space, with the same domain D, it is
said that S ≤ T if 〈Su, u〉 ≤ 〈Tu, u〉 for all u ∈ D.

12The Schwartz functions with compactly supported Fourier transform are characterized by the
Paley-Wiener-Schwartz theorem (see e.g. [22, Theorem 7.3.1]). They form a dense subalgebra of S,
which is invariant by linear changes of variables.



WITTEN’S PERTURBATION ON STRATA 115

18.3. Contribution from the rel-critical points. The following is a direct
consequence of Corollary 13.1.

Corollary 18.4. If h is a bounded measurable function on R+ such that h(ρ)→
1 as ρ→ 0, then

lim
s→∞

Tr(h(ρ)φ(Δ′
x,s,min/max,r)) = νrx,min/max .

For each x ∈ Critrel(f), let H̃x ⊂ L2Ω(M) be the Hilbert subspace of differential
forms supported in Ux,3ρ1

; it can be also considered as a Hilbert subspace of L2Ω(M ′
x)

since g and gx have identical restrictions to Ux,ρ0
. Moreover Δs and Δ′

x,s can be
identified on differential forms supported in Ux,ρ0

. By using Proposition 17.2-(ii), the
argument of the first part of the proof of [38, Lemma 14.6] can be obviously adapted
to show the following.

Lemma 18.5. φ(Δs,min/max) ≡ φ(Δ′
x,s,min/max) on H̃x for all x ∈ Critrel(f).

For each x ∈ Critrel(f), let Π̃x : L2Ω(M)→ H̃x and Π̃′
x : L2Ω(M ′

x)→ H̃x denote

the orthogonal projections. Since the subspaces H̃x are orthogonal to each other,
Π̃ :=

∑
x Π̃x : L2Ω(M)→ H̃ :=

∑
x H̃x is the orthogonal projection.

Lemma 18.6. Tr(Π̃φ(Δs,min/max,r) Π̃)→ νrmin/max as s→∞.

Proof. By Corollary 18.4 and Lemma 18.5, and since Π̃′
x is the multiplication

operator by the characteristic function of Ux,3ρ1
in M ′

x for all x ∈ Critrel(f), we get

lim
s→∞

Tr(Π̃φ(Δs,min/max,r) Π̃)

= lim
s→∞

∑
x

Tr(Π̃x φ(Δs,min/max,r) Π̃x)

= lim
s→∞

∑
x

Tr(Π̃′
x φ(Δ

′
x,s,min/max,r) Π̃

′
x) =

∑
x

νrx,min/max = νrmin/max .

By Lemmas 18.3 and 18.6, and because Π + Π̃ = 1, we have

lim
s→∞

Tr(φ(Δs,min/max,r)) = νrmin/max ,

showing Theorem 1.2 by Proposition 18.1.

19. The spaces Wm(dmin/max) depend on the metric. Let M be a stratum
of an arbitrary compact stratification equipped with an adapted metric g. Since the
operator P of Section 7 has a version of the Sobolev embedding theorem [3], if the
spaces Wm(dmin/max) were independent of g, we could prove a version of the Sobolev
embedding theorem for these spaces. This would allow to adapt the nice arguments
of [38, Lemma 14.6] to show a stronger version of Lemma 18.3: the Schwartz kernel
of ψ(Δs,min/max) would converge uniformly to zero on (M � U2ρ1

) × (M � U2ρ1
).

However the spaces Wm(dmin/max) may depend on the choice of g. By taking local
charts and arguing like in Section 15, it is enough to check this assertion for the
perturbed “rel-local” models d±s,min/max, which can be done as follows.

With the notation of Section 11.1, consider the case where n is odd, r = n−1
2

and a = 0; thus σ = 0. We have χ0 γ ∈ W∞(d±s,min/max) with the metric g. Let
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g̃′ be another adapted metric on N , and consider the corresponding adapted metric
g′ = ρ2g̃′ + dρ2 on M . Let Δ̃′ and Δ′ be the Laplacians on Ω(N) and Ω(M) defined
by g̃′ and g′, respectively, and let Δ′ ±

s be the Witten’s perturbation of Δ′ induced by
the function ± 1

2ρ
2. Let 〈 , 〉g̃′ and 〈 , 〉′ denote the scalar products of L2Ω(N, g̃′) and

L2Ω(M, g′), respectively, and let ‖ ‖g̃′ denote the norm defined by 〈 , 〉g̃′ . Suppose

that Δ̃′γ 
= 0. By Corollary 10.7, we have Δ′ ±
s = ρ−2Δ̃′ +H∓ s on C∞(R+) γ. Then

〈Δ′ ±
s (χ0 γ), χ0γ〉′ = 〈Δ̃′γ, γ〉g̃′

∫ ∞

0

ρ−2χ2
0 dρ+ ‖γ‖2g̃′(1 ∓ 1)s =∞

according to (30) and Section 11.1, and because χ0(ρ) =
√
2p0e

−sρ2/2 is bounded
away from zero for 0 < ρ ≤ 1. So χ0 γ 
∈W 1(d±s,min/max) with the metric g′, obtaining
different spaces W 1(d±s,min/max) by using g and g′.

Appendix A. Proofs about stratifications. This appendix contains the
proofs of the new results stated about stratifications, as well as their adapted metrics
and rel-Morse functions (Sections 3 and 4).

Proof of Lemma 3.8. With the notation of Section 3.1.3, let ρ : c(L) → [0,∞)
and ρ′ : c(L′)→ [0,∞) be the radial functions, and let ρ′′ = h(ρ×ρ′) : c(L)× c(L′)→
[0,∞) for h like in Section 3.1.2. Since the restrictions ρ : L × R+ → R+ and
ρ′ : L′ × R+ → R+ are submersive weak morphisms, and h : R2

+ → R+ is non-
singular, it follows that ρ′′ : c(L) × c(L′) \ {(∗, ∗′)} → R+ is a submersive weak

morphism. Hence L′′ = ρ′′−1
(1) is saturated in c(L) × c(L′) [43, Lemma 2.9, p. 17].

Let ∗′′ denote the vertex of c(L′′). Since h is homogeneous of degree one, the mapping

[([x, r], [x′, r′]), s] 
→ ([x, rs], [x′, r′s])

defines an isomorphism c(L′′)→ c(L)× c(L′). Its inverse is given by (∗, ∗′) 
→ ∗′′ and,
for (r, r′) 
= (0, 0),

([x, r], [x′, r′]) 
→
[([

x,
r

h(r, r′)

]
,

[
x′,

r′

h(r, r′)

])
, h(r, r′)

]
.

Proof of Lemma 3.11. Let (S, τ) be a Thom-Mather stratification on A satisfying
the conditions of the statement. Then the elements of S are the connected components
X of the sets f−1(X ′) for X ′ ∈ S, equipped with the unique differential structure so
that f : X → X ′ is a local diffeomorphism. Thus S is determined by f and S ′.

Let X ∈ S and X ′ ∈ S ′ with f(X) ⊂ X ′, and let (T, π, ρ) ∈ τX and (T ′, π′, ρ′) ∈
τ ′X′ with f(T ) ⊂ T ′, π′ f = f π and ρ′ f = ρ; in particular, ρ is determined by f and
ρ′. Let x ∈ T and x′ = f(x) ∈ T ′. Then f π(x) = π′(x′), obtaining that π(x) is the
unique point of X ∩ f−1(π′(x′)) that is contained in the connected component of x in

f−1π′−1
(π′(x′)). It follows that π is also determined by f and π′, and therefore τX

is determined by f and τ ′X′ .

Proof of Proposition 3.20. This is proved by induction on depthM . If depthM =
0, then M̂ ≡M = M , and there is nothing to prove.

Suppose that depthM > 0 and the statement holds for strata of lower depth.
We can assume that the strata of M is connected. For each stratum X of M , let
(TX , πX , ρX) be a representative of the tube around X in M satisfying the conditions
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of Section 3.1.4 with a compact Thom-Mather stratification LX and a family {(Ui, φi)}
of local trivializations of πX . The corresponding cocycle with values in c(Aut(LX))
consists of the maps hij : Ui ∩ Uj → c(Aut(LX)) defined by hij(x) = (φj φ

−1
i )(x, ·).

We have hij(x) = c(gij(x)) for a cocycle consisting of maps gij : Ui ∩ Uj → Aut(Lx).
By the density of M in M and Remark 6-(i), there is a dense stratum N of LX

so that φi(M ∩ π−1
X (Ui)) = Ui ×N ×R+ for all i. Consider triples (x, i, P ) such that

x ∈ Ui and P ∈ π0(N). Two triples of this type, (x, i, P ) and (y, j,Q), are declared to
be equivalent if x = y and gij(x)(P ) = Q. The equivalence class of each triple (x, i, P )
is denoted by [x, i, P ], and let X ′ denote the corresponding quotient set. There is a
canonical map fX : X ′ → X , defined by fX([x, i, P ]) = x. Consider the topology on
X ′ determined by requiring that the sets U ′

i,P = { [x, i, P ] | x ∈ Ui } are open, and
the restrictions fX : U ′

i,P → Ui are homeomorphisms. Notice that fX is a finite fold
covering map; in particular, in the case X = M , fM is a homeomorphism. Consider
the differential structure on each X ′ so that fX is a local diffeomorphism.

By the induction hypothesis, for each P ∈ π0(N), P̂ satisfies the statement of the
proposition with some Thom-Mather stratification. Consider quadruples (x, i, P, u)

such that x ∈ Ui, P ∈ π0(N) and u ∈ c(P̂ ). Two such quadruples, (x, i, P, u) and

(y, j,Q, v), are said to be equivalent if x = y, gij(x)(P ) = Q and c(ĝij(x))(u) = v.
The equivalence class of each quadruple (x, i, P, u) is denoted by [x, i, P, u], and let
T ′
X denote the corresponding quotient set. There are canonical maps, π′

X : T ′
X →

X ′, lim′
X : T ′

X → TX , ρ′X : T ′
X → [0,∞) and ι′X : M ∩ TX → T ′

X defined by
π′
X([x, i, P, u]) = [x, i, P ], lim′

X([x, i, P, u]) = φ−1
i (x, c(limP )(u)), ρ′X([x, i, P, u]) =

ρ(u), and ι′X(z) = [x, i, P, (ιP (v), r)] if z ∈ M ∩ π−1
X (Ui) and φi(z) = (x, v, r) ∈

Ui × P × R+. Notice that fX π′
X = πX lim′

X and ρX lim′
X = ρ′X .

Let G ⊂ Aut(LX) be the subgroup generated by the above elements gij(x). Since
the canonical action of G on LX preserves N , we get an induced action of G on π0(N).
Since X is connected, there is a bijection between G\π0(N) and π0(X

′), where any
orbit O ∈ G\π0(N) corresponds to the connected component X ′

O ∈ π0(X
′) consisting

of the points [x, i, P ] ∈ X ′ with P ∈ O. Also, let T ′
X,O = (π′

X)−1(X ′
O) ⊂ T ′

X .
Given any O ∈ G\π0(N), fix some P0 ∈ O. For any other P ∈ O, there is

some gP ∈ G such that gP (P ) = P0. Thus the restriction gP : P → P0 induces

a map ĝP : P̂ → P̂0, and let φ′
i,P : (π′

X)−1(U ′
i,P ) → U ′

i,P × c(P̂0) be the bijection
defined by φ′

i,P ([x, i, P, u]) = ([x, i, P ], c(ĝP )(u)). Consider the topology on T ′
X,O

determined by requiring that the sets (π′
X)−1(U ′

i,P ) are open, and the maps φ′
i,P

are homeomorphisms. Then the maps φ′
i,P are local trivializations of the restriction

π′
X,O : T ′

X,O → X ′
O of π′

X , obtaining that π′
X,O is a fiber bundle with typical fiber

c(P̂0). The associated cocycle has values in c(Aut(P̂0)); in fact, it consists of the

functions h′
i,P ;j,Q : U ′

i,P ∩ U ′
j,Q → c(Aut(P̂0)) defined by

h′
i,P ;j,Q([x, i, P ])(u) = c(g′i,P ;j,Q([x, i, P ]))(u) ,

where g′i,P ;j,Q : U ′
i,P ∩ U ′

j,Q → Aut(P̂0) is the cocycle given by

g′i,P ;j,Q([x, i, P ]) = ĝQ ĝij(x) ĝP
−1

.

The conditions of Section 3.1.4 are satisfied, obtaining that π′
X,O is a conic bundle,

which induces a Thom-Mather stratification on T ′
X,O.

Since NX,O :=
⋃

P∈O P is G-invariant, the set NX,O × R+ is invariant by all
transformations hij(x) for x ∈ Uij , and therefore it defines an open subspace MX,O ⊂



118 J. A. ÁLVAREZ LÓPEZ AND M. CALAZA

M ∩ TX . Let lim′
X,O : T ′

X,O → TX , ρ′X,O : T ′
X,O → [0,∞) and ι′X,O : MX,O → T ′

X,O
be defined by restricting lim′

X , ρ′X and ι′X . Then (T ′
X,O, π

′
X,O, ρ

′
X,O) is the canon-

ical representative of the tube of X ′ in T ′
X,O, ι′X,O is a dense open embedding,

lim′
X,O ι′X,O = id, and lim′

X,O is the conic bundle morphism over fX : X ′
O → X

induced by the maps κi,P : U ′
i,P → Mor(P̂0, LX) given by κi,P ([x, i, P ]) = limP ĝP

−1

(Section 3.1.4). By the induction hypothesis, κi,P ([x, i, P ]) restricts to local diffeo-
morphisms between corresponding strata, and therefore lim′

X,O restricts to local dif-
feomorphisms between corresponding strata.

On T ′
X ≡

⊔
O∈G\π0(N) T

′
X,O, consider the sum of the topologies and Thom-Mather

stratifications of the spaces T ′
X,O (Remark 3). By Lemma 3.5-(i), lim′

X : T ′
X → TX

is a morphism that restricts to local diffeomorphisms between corresponding strata.
Observe that the strata of T ′

X are connected.

By using the local trivializations of πX and each π′
X,O, and Example 3.19, it

follows that ι′X,O : MX,O → T ′
X,O extends to an isomorphism M̂X,O → T ′

X,O such

that lim′
X,O corresponds to limMX,O . Hence ι′X : M ∩ TX → T ′

X extends to an iso-

morphism M̂ ∩ TX → T ′
X such that lim′

X corresponds to limM∩TX . Then, according

to Remark 8-(ii), we can consider the spaces T ′
X as open subspaces of M̂ , obtain-

ing an open covering of M̂ as X runs in the family of strata of M . Moreover each
restriction limM : T ′

X → M ∩ TX restricts to local diffeomorphisms between the
corresponding strata. Hence, by Lemma 3.11, for strata X and Y of M , the restric-
tions of the Thom-Mather stratifications of T ′

X and T ′
Y to T ′

X ∩ T ′
Y induce the same

Thom-Mather stratification with connected strata. By Lemma 3.4-(ii), it follows that

there is a unique Thom-Mather stratification with connected strata on M̂ whose re-
striction to each T ′

X induces the above conic bundle Thom-Mather stratification. By
Lemma 3.5-(ii), limM is a morphism because its restriction to each T ′

X is a morphism.
This completes the proof of (i).

In the above construction, consider every U ′
i,P × P0 as a stratum of each U ′

i,P ×
c(P̂0) via id×ιP0

. Let g′i,P be any Riemannian metric on U ′
i,P , and let g̃0 be an

adapted metric on P0 with respect to P0 ⊂ LX . Thus g′i,P + g̃0 is an adapted metric
on U ′

i,P × P0, and therefore, by the induction hypothesis, it is also adapted with

respect to U ′
i,P × c(P̂0). Hence, considering each MX,O as a stratum of T ′

X,O via ι′X,O,
the restriction of g to each MX,O is adapted with respect to T ′

X,O, and (ii) follows.

Part (iii) follows from (i), (ii) and Remark 7-(iii).

Proof of Lemma 4.4. If depthM = 0, then the statement is obvious. Thus
suppose that depthM > 0. For 0 ≤ k ≤ depthM , let Fk denote the union of all
strata X ≤M with depthX ≤ k. The result follows from the following assertion.

Claim 17. For 0 ≤ k ≤ depthM , there is a family of smooth functions {λa,k}
on M such that:

(i) 0 ≤∑
a λa,k ≤ 1 for all k;

(ii) λa,k is supported in M ∩Oa for all a ∈ A;
(iii) there is some open neighborhood Uk of Fk in A so that

∑
a λa,k = 1 on

Uk ∩M ; and,
(iv) for any adapted metric on M , each function |dλa,k| is rel-locally bounded.

This claim is proved by induction on k. To simplify its proof, observe that it is
also satisfied for k = −1 with F−1 = U−1 = ∅, and λa,−1 = 0 for all a ∈ A.
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Now, assume that Claim 17 holds for some k ∈ {−1, 0, . . . , depthM − 1}. Let Vk

be another open neighborhood of Fk in A such that Vk ⊂ Uk. We can assume that
the strata of A are connected by Remark 1-(v).

Fk+1�Fk is the union of the strataX 
⊂ Fk that satisfyX�X ⊂ Fk, and therefore
the sets X � Vk are closed in A � Vk and disjoint from each other. For the strata
X ⊂ Fk+1 �Fk, choose representatives (TX , πX , ρX) ∈ τX satisfying the properties of
Definition 3.1-(iv)–(vi), Proposition 3.9 and Remark 4-(ii). Let ΦX denote the conic
bundle structure of πX . Moreover, like in Remark 1-(ii), we can assume that the sets
TX � Vk are disjoint one another.

By refining {Oa} if necessary, we can suppose that, for each stratum X ⊂ Fk+1�

Fk, any point in X � Vk is in some set Oa such that there is a chart of A of the form
(Oa, ξa), obtained from a local trivialization in ΦX according to Definition 3.10; in
this case, let ξa(Oa) = Ba × cεa(LX) for some open Ba ⊂ RmX and εa > 0, where
mX = dimX ; let AX be the family the indices a ∈ A that satisfy this condition. For
each a ∈ AX , take a smooth function ha : [0,∞) → [0, 1] supported in [0, εa) and
such that ha = 1 around 0. Let {μa | a ∈ AX } be a smooth partition of unity on
Fk+1�Vk subordinated to the open covering {Oa�Vk | a ∈ AX }. Set λk =

∑
a λa,k.

Then define

λa,k+1 = λa,k + (1− λk) · ρ∗Xha · π∗
Xμa

if a ∈ AX for some stratum X ⊂ Fk+1 � Fk, and λa,k+1 = λa,k otherwise. These
functions are smooth on M because λk is smooth and equals 1 on Uk. It is easy to
check that they also satisfy Claim 17-(i)–(iv).

To prove Proposition 4.5, we use the following lemma whose proof is elementary.

Lemma A.1. Let X be a Riemannian manifold of dimension n, and let f ∈
C∞(X) and p ∈ X. If df(p) 
= 0, then there is a system of coordinates (x1, . . . , xn) of
X around p such that (∂1(p), . . . , ∂n(p)) is an orthonormal reference and ∂i∂jf = 0
for all i, j ∈ {1, . . . , n}, where ∂i = ∂/∂xi.

Proof of Proposition 4.5. Let | |a and ∇a denote the norm and Levi-Civita con-
nection of each ga, and let | | and ∇ denote the norm and Levi-Civita connection of
g. On every M ∩ Oa, the functions |df |a and |∇adf |a are rel-locally bounded. Since
g and ga are rel-locally quasi-isometric on M ∩ Oa, we get that |df | and |∇adf | are
rel-locally bounded on M ∩Oa. By shrinking {Oa} if necessary, we can assume that
there are constants Ka ≥ 0 and Ca ≥ 1 such that

|df |, |∇adf |, |dλa| ≤ Ka on M ∩Oa , (103)

1

Ca
|X |a ≤ |X | ≤ Ca |X |a ∀X ∈ T (M ∩Oa) . (104)

For any fixed a0 ∈ A, it is enough to prove that |∇df | is bounded on M ∩ Oa0
.

For each p ∈ M ∩ Oa0
, take any system of coordinates (x1, . . . , xn) on some open

neighborhood U of p in M such that (∂1(p), . . . , ∂n(p)) is an orthonormal reference
with respect to g. Let ga,ij and gij be the corresponding metric coefficients of ga and
g on Oa∩U and U , respectively; thus gij(p) = δij , and we can write gij =

∑
a λa ga,ij

on U . As usual, the inverses of the matrices (ga,ij) and (gij) are denoted by (gija ) and
(gij). By (104) and since gij(p) = δij , we have

1

C2
a

ga,ii(p) ≤ 1 ≤ C2
a ga,ii(p)
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for all i ∈ {1, . . . , n} if p ∈ Oa, obtaining

|ga,ij(p)| = 1

2
| |∂i(p) + ∂j(p)|2a − ga,ii(p)− ga,jj(p) |

≤ 1

2
(|∂i(p) + ∂j(p)|2a + ga,ii(p) + ga,jj(p))

≤ C2
a

2
(|∂i(p) + ∂j(p)|2 + 2) = 2C2

a

for all i, j ∈ {1, . . . , n}. Since Oa0
meets a finite number of sets Oa, it follows that

|ga,ij(p)| and |gija (p)| are bounded by some C ≥ 1, independent of the point p ∈ Oa0
.

Similarly, by (103), we get that |df(p)|, |∇adf(p)| and |dλa(p)| are bounded by some
K ≥ 0 independent of the point p ∈ Oa0

.

Let Γk
a,ij and Γk

ij be the Christoffel symbols of ga and g on Oa ∩ U and U ,

respectively, corresponding to (x1, . . . , xn). Since gij(p) = δij(p), we have13

Γk
ij(p) =

1

2
(∂igjk + ∂jgik − ∂kgij)(p)

=
1

2

∑
a

(ga,jk ∂iλa + λa ∂iga,jk + ga,ik ∂jλa + λa ∂jga,ik

− ga,ij ∂kλa − λa ∂kga,ij)(p)

=
1

2

∑
a

(ga,jk ∂iλa + ga,ik ∂jλa − ga,ij ∂kλa)(p)

+
∑
a

λa(p) Γ
�
a,ij(p) ga,�k(p) .

⎫⎪⎪⎬⎪⎪⎭ (105)

On the other hand,

∇df = dxi ⊗∇i(∂kf dxk) = ∂i∂kf dxi ⊗ dxk − ∂kf Γk
ij dx

i ⊗ dxj

= (∂i∂jf − ∂kf Γk
ij) dx

i ⊗ dxj . (106)

Similarly,

∇adf = (∂i∂jf − ∂kf Γk
a,ij) dx

i ⊗ dxj . (107)

If df(p) = 0, then

∇df(p) = (∂i∂jf dxi ⊗ dxj)(p) = ∇adf(p)

by (106) and (107), and therefore |∇df(p)| ≤ K.
If df(p) 
= 0, by Lemma A.1, we can assume that the coordinates (x1, . . . , xn) also

satisfy ∂i∂jf(p) = 0 for all i, j ∈ {1, . . . , n}. So, by (106) and (107),

∇df(p) = −(∂kf Γk
ij dx

i ⊗ dxj)(p) , ∇adf(p) = −(∂kf Γk
a,ij dx

i ⊗ dxj)(p) .

Since gij(p) = δij , it follows that |(∂kf Γk
a,ij)(p)| ≤ K for all i, j ∈ {1, . . . , n}, and it

13Einstein convention is used for the sums involving local coefficients.
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is enough to find a similar bound for each |(∂kf Γk
ij)(p)|. But, by (105),

|(∂kf Γk
ij)(p)| ≤

1

2
|df(p)|

∑
a

|dλa(p)| (|ga,jk(p)|+ |ga,ik(p)|+ |ga,ij(p)|)

+
∑
a

λa(p) |(∂kf Γ�
a,ij)(p)| |ga,�k(p)|

≤
(
3

2
K2C +KC

)
·#{ a ∈ A | Oa ∩Oa0


= ∅ } .

Proof of Proposition 4.9. If depthM = 0, then the statement holds by the density
of the Morse functions in C∞(M) with the strong C∞ topology [21, Theorem 6.1.2].
Thus suppose that depthM > 0. Let the sets Fk be defined like in the proof of
Lemma 4.4.

Claim 18. For 0 ≤ k ≤ depthM , there is an open neighborhood Uk of Fk in A
and some fk ∈ C(Uk ∩M) such that, for each stratum X ≤M ,

(i) fk restricts to a rel-Morse function on Uk ∩X ; and,
(ii) if depthX > k, then:

(a) the restriction of fk to Uk ∩X has no critical points, and
(b) there is some (TX , πX , ρX) ∈ τX such that fk is constant on the fibers

of πX : Uk ∩M ∩ TX → X .

This assertion is proved by induction on k. To simplify its proof, observe that it
is also satisfied for k = −1 with F−1 = U−1 = ∅ and f−1 = ∅.

Now, assume that Claim 18 holds for some k ∈ {−1, 0, . . . , depthM − 1}. Let
Vk be another open neighborhood of Fk in A so that Vk ⊂ Uk. We can assume that
the strata of A are connected by Remark 1-(v). For the strata X ⊂ Fk+1 � Fk,
we can choose representatives (TX , πX , ρX) ∈ τX satisfying Definition 3.1-(iv)–(vi),
Proposition 3.9, Remark 4-(ii), and Claim 18-(ii)-(b) with fk. We can also suppose
that π−1

X (Vk ∩X) = Vk ∩ TX . Fix an adapted metric g on M .
Let X be a stratum contained in Fk+1�Fk. By the density of the Morse functions

in C∞(X) with the strong C∞ topology, and since the restriction of fk to Uk ∩ X
has no critical points by Claim 18-(ii)-(a), it is easy to construct a Morse function hX

on X such that hX = fk on Vk ∩ X . Since Uk and fk satisfy Claim 18-(ii)-(b) with
(TX , πX , ρX), we get π∗

XhX = fk on Vk ∩M ∩ TX . Furthermore hX has no critical
points on X ∩ Vk because Uk and fk satisfy Claim 18-(ii)-(a).

If depthM = k + 1, then M is the only X as above, and fk+1 = hM satisfies
the conditions of Claim 18. Thus suppose that depthM > k + 1. Let Wk be another
open neighborhood of Fk in A so that Wk ⊂ Vk. Let λX be a C∞ function on X
such that 0 ≤ λX ≤ 1, λX = 0 on X ∩Wk, and λX = 1 on X � Vk. Let Ũk+1 is
the open neighborhood of Fk+1 given as the union of Wk and the sets TX for strata
X ⊂ Fk+1 � Fk. The function fk on Wk ∩M and the functions π∗

XhX + π∗
XλX · ρ2X

on the sets TX ∩M can be combined to define a function f̃k+1 ∈ C(Ũk+1 ∩M). For
all strata X,Y ⊂M with depthX = k + 1 and depth Y ≥ k + 1, we have

df̃k+1 =⎧⎪⎨⎪⎩
dfk on Y ∩Wk

π∗
XdhX + 2ρX dρX on Y ∩ (TX � Vk)

π∗
XdhX + π∗

XdλX · ρ2X + π∗
XλX · 2ρX dρX on Y ∩ TX ∩ (Vk �Wk) .

(108)
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Thus df̃k+1 
= 0 at every point of Y ∩Wk because fk satisfies Claim 18-(ii)-(a). If
depth Y > k+1, then df̃k+1 
= 0 also at every point of Y ∩(TX�Vk) because dρX 
= 0
modulo πX -basic forms. Since dhX = dfk 
= 0 at every point in the compact subset
X ∩ (Vk �Wk) of X ∩ Uk, it also follows from (108) that df̃k+1 
= 0 at the points of
Y ∩ TX ∩ (Vk �Wk) with ρX small enough. So the restriction fk+1 of f̃k+1 to some

open neighborhood Uk+1 of Fk+1 in Ũk+1 satisfies Claim 18-(ii)-(a).

We already know that fk+1 restricts a rel-Morse function on Y ∩Wk because it
is the restriction of fk. The above argument also shows that the rel-critical points
of the restriction of fk+1 to Y ∩ (Uk+1 � Wk) must be over critical points of hX in
X �Wk, which are in X � Vk. Since fk+1 = π∗

XhX + ρ2X on Y ∩ (TX � Vk), we easily
get that the rel-critical points of the restriction of fk+1 to Y ∩ (Uk+1�Wk) satisfy the
condition of Definition 4.6. Thus Uk+1 and fk+1 satisfy Claim 18-(i). On the other
hand, Uk+1 and fk+1 satisfy Claim 18-(ii)-(b) by Definition 3.1-(vi), completing the
proof of the claim.

Finally, let us complete the proof of Proposition 4.9. A basic neighborhood N of
any h ∈ C∞(M) with respect to the weak C∞ topology can be determined by a finite
family of charts (Ui, φi) of M , compact subsets Ki ⊂ Ui, some k ∈ N and some ε > 0.
Precisely, N consists of the functions h′ ∈ C∞(M) such that |D�((h′ − h)φ−1

i )| < ε
on φi(Ki) for all i and 0 ≤ � ≤ k. By Claim 18, there is some open neighborhood
U of M �M in A and some f ∈ C(U ∩M) that restricts to rel-Morse functions on
U ∩X for all strata X ≤M , and whose restriction to U ∩M has no critical points. By
shrinking U if necessary, we can assume that U ∩Ki = ∅ for all i. Let V be another
open neighborhood of M � M in A so that V ⊂ U . By the density of the Morse
functions in C∞(M) with the strong C∞ topology, it is easy to check that there is a
Morse function h′ ∈ N such that h′ = f on V ∩M . Therefore h′ ∈ F ∩ N .

Appendix B. Proofs about Hilbert complexes. This appendix contains the
proofs of the new auxiliary results stated about Hilbert complexes, specially for i.b.c.
of elliptic complexes (Sections 5 and 6).

Proof of Lemma 5.2. Property (i) follows because d is dense in d if each da is
dense in da.

Now, assume the conditions of (ii) and let δ =
⊕

a δ
a. Then each da is the adjoint

of the minimum Hilbert complex extension of (Ea, δa). So, by (5) and (i), (D,d) is
the adjoint of the minimum Hilbert complex extension of (E , δ), and therefore it is
the maximum Hilbert complex extension of (E , d).

Proof of Lemma 6.1. The part “(i) ⇒ (iii)” follows with the arguments of the
proof of the Rellich’s theorem on a torus (see e.g. [38, Theorem 5.8]). The part
“(ii)⇒ (i)” follows with the arguments to prove that any Dirac operator on a closed
manifold has a discrete spectrum (see e.g. [38, pp. 81–82]).

Proof of Lemma 6.2. For each u ∈ D(dmin), there is a sequence (un) in C∞
0 (E)

such that un → u and (dun) is convergent in L2(E); in fact, dminu = limn dun. Then
fun → fu and

d(fun) = f dun + [d, f ]un → f dminu+ [d, f ]u

in L2(E) because f and |[d, f ]| are bounded. So fu ∈ D(dmin) and dmin(fu) =
f dminu+ [d, f ]u.

Now, suppose that u ∈ D(dmax). Thus there is some v ∈ L2(E) such that
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〈u, δw〉 = 〈v, w〉 for all w ∈ C∞
0 (E); indeed, v = dmaxu. Then

〈fu, δw〉 = 〈u, fδw〉 = 〈u, δ(fw)− [δ, f ]w〉
= 〈v, fw〉 − 〈u, [δ, f ]w〉 = 〈fv + [d, f ]u,w〉

for all w ∈ C∞
0 (E). So fu ∈ D(dmax) and dmax(fu) = f dmaxu + [d, f ]u. This

completes the proof of (i).
Property (ii) follows from (7) by applying (i) to d and δ.

Proof of Lemma 6.3. Let u ∈ f D(dmin). Then u ∈ D(dmin) by Lemma 6.2-(i); in
fact, according to its proof, there is a sequence (un) in C∞

0 (E) such that un → u and
dun → dminu in L2(E), and with suppun ⊂ supp f for all n. Then ζun ∈ C∞

0 (E′),
ζun → ζu and d′ζun = ζdun → ζdminu in L2(E′). Hence ζu ∈ D(d′min) and d′minζu =
ζdminu.

To prove the case of dmax, since D(d′max) is invariant by quasi-isometric changes
of the metrics of M ′ and E′, after shrinking U and U ′ if necessary, we can assume
that ζ : (E|U , d) → (E′|U ′ , d′) is an isometric isomorphism of elliptic complexes.
Such a change of metrics can be achieved by taking an open subset V ′ ⊂M ′ so that
ξ(supp f) ⊂ V ′ and V ′ ⊂ U ′, and using a smooth partition of unity ofM ′ subordinated
to {V ′,M ′�ξ(supp f)} to combine metrics. Let u ∈ f D(dmax). Then u ∈ D(dmax) by
Lemma 6.2-(i); indeed, according to its proof, the support of v := dmaxu is contained
in supp f . Thus

〈ζu, δ′ζw〉′ = 〈ζu, ζδw〉′ = 〈u, δw〉 = 〈v, w〉 = 〈ζv, ζw〉′

for each u ∈ f D(dmax) and all w ∈ C∞
0 (E|U ). So 〈ζu, δ′w′〉′ = 〈ζv, w′〉′ for all

w′ ∈ C∞
0 (E′), obtaining ζu ∈ D(d′max) and dmax(ζu) = ζdmaxu. This completes the

proof of (i).
If ζ is isometric, then it is also an isometric isomorphism (E|U , δ) → (E′|U ′ , δ′).

So (ii) follows from (7) by applying (i) to d and δ.
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