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FLOPS AND MUTATIONS FOR CREPANT RESOLUTIONS OF
POLYHEDRAL SINGULARITIES∗

ÁLVARO NOLLA DE CELIS† AND YUHI SEKIYA‡

Abstract. Let G be a polyhedral group G ⊂ SO(3) of types Z/nZ, D2n and T. We prove
that there exists a one-to-one correspondence between flops of G-Hilb(C3) and mutations of the
McKay quiver with potential which do not mutate the trivial vertex. This correspondence provides
two equivalent methods to construct every projective crepant resolution for the singularities C3/G,
which are constructed as moduli spaces MC of quivers with potential for some chamber C in the
space Θ of stability conditions. In addition, we study the relation between the exceptional locus in
MC with the corresponding quiver QC , and we describe explicitly the part of the chamber structure
in Θ where every such resolution can be found.
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1. Introduction. This paper focuses on the problem of describing every projec-
tive crepant resolution of the quotient C3/G for a given finite subgroup G of SL(3,C).
In particular, we consider the case when G belongs to the special orthogonal group
SO(3), also called polyhedral subgroups, classified into five types: cyclic Z/nZ, dihedral
D2n, tetrahedral T, octahedral O and icosahedral I.

It is well known that every such crepant resolution is related by a sequence of
flops. The purpose of this work is to construct explicitly every projective crepant
resolution as certain moduli space of quiver representations and describe how can we
perform flops between them in two different and equivalent ways: by changing the
stability condition keeping the original quiver, or by changing the quiver by mutation
but keeping the original stability condition.

The equivariant Hilbert scheme G-Hilb(C3), or moduli space of G-clusters, is the
distinguished candidate of projective crepant resolution to start with (recall that a G-
cluster is a 0-dimensional subscheme Z ⊂ C3 such that OZ ∼= C[G] the regular repre-
sentation ofG as C[G]-modules). In one hand, by [BKR] it is known thatG-Hilb(C3) is
always a projective crepant resolution of C3/G. For polyhedral subgroups G-Hilb(C3)
was first studied by Gomi, Nakamura and Shinoda in [GNS00, GNS04], showing also
that the fibre over the origin E := π−1(0) of π : G-Hilb(C3) → C3/G has dimension
one and there is a one to one correspondence between smooth rational curves in E
and nontrivial irreducible representations of G (see also [BS]).

In addition, by [IN] we know that we can interpret G-Hilb(C3) as the moduli space
Mθ,d of θ-stable representations of dimension d := (dim Vi)Vi∈IrrG of the McKay
quiver Q with suitable relations, for a particular choice of generic θ in the space of
stability conditions Θd := {θ ∈ HomZ(Z

Q0 ,Z) ⊗ Q | θ · d = 0} ⊂ Q|Q0|. By [BSW],
the relations in Q are obtained as derivations of a potential W , so we consider quivers
in this paper as quivers with potential (QP for short).
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The space of generic parameters in Θd (or simply Θ) is the disjoint union of
finitely many convex polyhedral cones called chambers where the moduli space is
constant, that is, Mθ,d

∼= Mθ′,d where θ, θ′ ∈ C for any chamber C ⊂ Θ. Calling
this moduli space MC , if follows from [BKR] that in fact MC is a projective crepant
resolution of C3/G for any finite subgroup G ⊂ SL(3,C) and any chamber C ⊂ Θ. In
the opposite direction, it was conjectured (and proved in the Abelian case) by Craw
and Ishii in [CI] that every projective crepant resolution is isomorphic to a MC for
some C ⊂ Θ.

In terms of the moduli spaces MC , the operation of a flop corresponds to vary
the stability parameter to cross a wall in Θ to an adjacent chamber C′, obtaining
a new moduli space MC′ . It should be pointed out that not every wall crossing in
Θ produces a flop since it may happen that MC

∼= MC′ . Therefore, one strategy
to obtain our goal is to start from G-Hilb(C3) and perform a flop for every possible
floppable rational curve contained in the exceptional divisor E ⊂ G-Hilb(C3). By
constructing explicitly the other side of the flop and iterating the process we eventually
obtain every projective crepant resolution of C3/G.

On the other hand, non-commutative crepant resolutions (NCCRs) of R :=
C[x, y, z]G are considered to be the non-commutative analogue of crepant resolutions
of C3/G. They are algebras of the form Λ := EndR(M) where M is a reflexive
R-module, Λ has finite global dimension and it is a (maximal) Cohen-Macaulay R-
module (see [VdB]). Indeed, if Γ is a NCCR of R then for any generic stability con-
dition θ the moduli space Mθ,d(Γ) of θ-stable Γ-modules of dimension vector d is a
crepant resolution of SpecR. For instance, the skew group algebra S∗G is an NCCR of
R, which is Morita equivalent to the Jacobian algebra P(Q,W ) := CQ/〈∂aW | a ∈ Q1〉
of the McKay QP. Then MC0,d(P(Q,W )) ∼= G-Hilb(C3) where C0 is the chamber
containing the 0-generated stability condition θ0 (the one such that θ0i > 0 for i 
= 0).

From this point of view, a common operation to obtain a new NCCR from a given
one is by mutation. For the groups G treated in this paper, we take the Jacobian
algebra P(Q,W ) of the McKay QP of G, and consider mutations of quivers with
potential at suitable vertices k in Q without loops. We obtain in this manner new QPs
denoted by μkP(Q,R), starting the iterative procedure which turns out to cover every
projective crepant resolution of C3/G. We say that a quiver with potential (Q′,W ′) is
an iterated mutation of (Q,W ) if there are quivers with potentials (Q(i),W (i)) for 0 ≤
i ≤ n such tat (Q,W ) = (Q(0),W (0)), (Q′,W ′) = (Q(n),W (n)) and (Q(i+1),W (i+1)) =
μki

(Q(i),W (i)) where ki is a vertex of Q(i) without loops. See 4.3 for the precise
definition of the mutation that we use in this paper, and Section 4.2 for a discussion
about the meaning of mutation at loops in our setting.

In this paper we prove that the two strategies above explained are equivalent for
polyhedral subgroups G ⊂ SO(3) of types Z/nZ, D2n and T. For all these cases every
mutation at a vertex with a loop is trivial, restricting our the study to mutations
only at vertices without loops. For subgroups G ⊂ SO(3) of types O and I there are
vertices with loops in some iterated quiver QP (Q′,W ′) for which the mutation is
not trivial. As it is explained in Section 4.2, this fact is encoded locally in the factor
algebra Λ/Λ(1 − ei)Λ where Λ = P(Q′,W ′), which in these cases turns out to have
finite dimension. Geometrically, this means that there are a priori floppable (−2, 0)
and (−3, 1)-curves in the fibre of origin of some crepant resolution of C3/G. Even
though following [Wem14] we can ensure that the correspondence of both approaches
also holds for types O and I, because of the different nature of this cases with respect
to explicit computations (namely the presence of high rank modules in the McKay
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quiver and mutations of QPs at vertices with loops) we leave the treatment of this
cases for a future work.

1.1. Statements of results and corollaries. The main theorem of the paper
is the following.

Theorem 1.1. Let G ⊂ SO(3) of types Z/nZ, D2n or T, and let (Q,W ) be the
McKay quiver with potential. Then there exists a one-to-one correspondence between
flops of G-Hilb(C3) and mutations of (Q,W ) which do not mutate the trivial vertex.

Therefore, to a given projective crepant resolution MC for some C ⊂ Θ we can
associate a QP (QC ,WC) obtained as an iterated mutation from the McKay QP.

The theorem is proved in Section 5.4 and it is done by direct comparison. On
one hand we calculate every possible mutation at non-trivial vertices of the McKay
QP according to Definition 4.3, and on the other hand we construct an explicit open
cover of every projective crepant resolution of C3/G obtained by a sequence of flops
from G-Hilb(C3). It turns out that every open cover consists of a finite number of
copies of C3 (see Theorems 5.1, 5.2 and 5.3) and in every step only (−1,−1)-curves are
floppable. The last fact is proved in Lemma 7.1 using Reid’s width for (−2, 0)-curves
and S-equivalence classes for (−3, 1)-curves (see also Section 7.1 for an alternative
approach using contraction algebras). In fact, the direct comparison shows that by
mutating at non-trivial vertex k in QC without loops we match what is happening
geometrically when flopping a rational curve Ek ⊂ MC .

By construction, every such resolution is described as a moduli space of the McKay
quiver for some chamber C ⊂ Θ, which means that for this groups the Craw-Ishii
conjecture holds:

Corollary 1.2. Let G ⊂ SO(3) be a finite subgroup of type Z/nZ, D2n or
T. Then every projective crepant resolution of C3/G is isomorphic to MC for some
chamber C ⊂ Θ.

As the next corollary shows, the relation between MC and (QC ,WC) goes one
step further:

Corollary 1.3. Let G be as above, let πC : MC → C3/G be the projective
crepant resolution for some chamber C ⊂ Θ and let QC be the corresponding iterated
quiver.

(i) The dual graph of π−1
C (0) is the same as the graph of QC removing the trivial

vertex.
(ii) The number of loops at a vertex i of the quiver QC determines the degree of

the normal bundle of the corresponding rational curve Ei ⊂ π−1
C (0) ⊂ MC .

More precisely, we have the following one-to-one correspondences:

{(−1,−1)-curves in MC} ←−−→ {non-trivial vertices in QC with no loops}
{(−2, 0)-curves in MC} ←−−→ {non-trivial vertices in QC with one loop}
{(−3, 1)-curves in MC} ←−−→ {non-trivial vertices in QC with two loops}

Although there is no relation with irreducible representations of G except in the
case when MC

∼= G-Hilb(C3), this corollary extends the McKay correspondence for
finite subgroups in GL(2,C) of Wemyss [Wem11]. We would also like to note that the
one-to-one correspondences in (ii) are expected since the dimension of the fibre over
the origin 0 ∈ C3/G has dimension one (see Remark 5.4).

The way of finding the projective crepant resolution MC in the corresponding
QP (QC ,WC) is shown in the next result (= Theorem 6.9), which states that MC
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is the moduli space of representations of (QC ,WC) of dimension vector ωd and the
0-generated stability condition θ0 (see Section 6 for the precise definition of ω). In
the opposite direction, i.e. starting from an iterated QP (Q,W ) and its corresponding
moduli space X := Mθ0(P(Q,W )), it also provides the way of finding the stabil-
ity parameter θ such that the moduli space of McKay quiver representations Mθ is
isomorphic to X . The result was motivated by the work of [SY] in dimension 2.

Theorem 1.4. Let G ⊂ SO(3) be a finite subgroup of type Z/nZ, D2n or T, and
let X := MC be an projective crepant resolution of C3/G. Then

X ∼= Mθ0,ωd(P(QC ,WC)).

Moreover, there exists a corresponding sequence of wall crossings from MC0
∼=

G-Hilb(C3) which leads to X ∼= Mθ,d(Λ) where Λ is the Jacobi algebra associated
to the McKay QP, and the chamber C ⊂ Θd containing θ is given by the inequalities
θ(ω−1ei) > 0 for any i 
= 0.

In relation to the space of stability conditions Θ we describe explicitly the part of
the chamber structure that contains every moduli space MC constructed in Section
5 (see Theorem 6.4). In other words, considering the dual graph T of Θ, that is, one
vertex for each chamber and an edge between two vertices if the corresponding cham-
bers are separated by a wall, then we can state the following corollary (= Corollary
6.7):

Corollary 1.5. Let G ⊂ SO(3) be a finite subgroup of type Z/nZ, D2n or T.
There exists a path in T containing the chamber C0 where every crepant resolution of
C3/G can be found and such that every wall crossing in T corresponds to a flop.

This nice distribution contrast for example with the general case for Abelian
groups in SL(3,C), where it can happen that finitely many wall crossings (of Types
0 or III) are needed to connect two crepant resolutions related by a single flop. See
[CI] for more details.

The paper is organized as follows. In Section 2 we make a brief introduction
to the finite subgroups of SO(3) and their irreducible representations. In Section 3
we describe the McKay QP (Q,W ) using the [BSW] method for every polyhedral
subgroups in SO(3). Section 4 describes mutations of quiver with potentials and
Section calculates every possible mutation of the McKay QP at non-trivial vertices
for subgroups G ⊂ SO(3) of types Z/nZ, D2n and T. In Section 5 we describe
explicitly every projective crepant resolution of C3/G with G ⊂ SO(3) of types
Z/nZ, D2n and T as moduli spaces MC of representations of the McKay QP. Section
6 is dedicated to the space of stability conditions Θ for the moduli spaces MC and
the relation between changing the stability condition and mutating at a vertex k ∈ Q.
Finally, in Section 7 we prove the lemma which allows us to calculate explicitly every
crepant resolution by flopping only at (−1,−1)-curves and we describe explicitly the
contraction algebra for the tetrahedral subgroup T.

The authors would like to thank Alastair Craw for his suggestion to study the
polyhedral subgroups to the second author when he was visiting Glasgow. We are
also grateful to Osamu Iyama and Michael Wemyss for invaluable comments and
improvements of this manuscript, Akira Ishii and Kota Yamaura for many useful
discussions. Finally, we would also like to thank Yukari Ito for bringing us together.
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1.2. Conventions. We always take C as ground field although everything can
be done in any algebraically closed field of characteristic 0.

Abusing the notation, we indistinguishably use vertices in a quiver Q and their
corresponding vector spaces in a representations of Q. If in addition Q is the McKay
quiver we also treat them as irreducible representations of Q.

Since we use GIT methods, by crepant resolution π : Y → X we always mean
projective.

2. Finite subgroups of SO(3). Let G be a finite subgroup of SO(3) which con-
sists of rotations about 0 ∈ R3. These groups are the so called polyhedral groups and
are classified into five cases: cyclic, dihedral, tetrahedral, octahedral and icosahedral
(see Table 1).

Polyhedral group Isomorphic group Order
Cyclic Z/nZ n

Dihedral D2n Z/nZ� Z/2Z 2n
Tetrahedral T A4 12
Octahedral O S4 24
Icosahedral I A5 60

Table 1

Finite subgroups of SO(3)

2.1. The cyclic group of order n+1. Let G be the cyclic subgroup of SO(3)
of order n+ 1. Then G is of the form:

G =
1

n+ 1
(1, n, 0) := 〈σ =

⎛⎝ ε 0 0
0 ε−1 0
0 0 1

⎞⎠〉, where ε = e2πi/(n+1).

The character table of G is given in Table 2.

Conjugacy classes 1 σ · · · σi · · · σn

Number of elements 1 1 · · · 1 · · · 1

Vj 1 εj · · · εij · · · εjn

Table 2

Characters of G of type Z/nZ with 0 ≤ j ≤ n.

2.2. The dihedral group of order 2n. Let n be a positive integer and G be
the dihedral subgroup D2n in SO(3) of order 2n. Then G is generated by:

G = 〈σ =

⎛⎝ ε 0 0
0 εn−1 0
0 0 1

⎞⎠ , τ =

⎛⎝ 0 1 0
1 0 0
0 0 −1

⎞⎠〉, where ε = e2πi/n.

These groups are divided into two cases depending on the parity of n.
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For the case n = 2m even, the group has four 1-dimensional irreducible represen-
tations V0, V0′ , Vm and Vm′ , and m− 1 irreducible representations Vj of dimension 2
for 1 ≤ j ≤ m− 1. The character table is given in Table 3.

c.c. 1 -1 τ τσ σi

# 1 1 m m 2

V0 1 1 1 1 1

V0′ 1 1 −1 −1 1

Vj 2 (−1)j2 0 0 εij + ε−ij

Vm 1 (−1)m 1 −1 (−1)i

Vm′ 1 (−1)m −1 1 (−1)i

Table 3

Characters of D2n, with n = 2m even and 1 ≤ i, j ≤ m− 1.

For the case n = 2m+1 odd, the group has two 1-dimensional representations V0

and V0′ , and m 2-dimensional representations Vj for 1 ≤ j ≤ m. The character table
is given in Table 4.

c.c. 1 τ σi

# 1 2m+ 1 2

V0 1 1 1

V0′ 1 −1 1

Vj 2 0 εij + ε−ij

Table 4

Characters of D2n, with n = 2m+ 1 odd and 1 ≤ i, j ≤ m.

In both cases, the representations Vj are realized as Vj(σ) =
(
εj 0
0 ε−j

)
, Vj(τ) =

(0 1
1 0).

2.3. The tetrahedral group. Let G be the tetrahedral subgroup T of SO(3).
Then

G = 〈σ =

⎛⎝ −1 0 0
0 −1 0
0 0 1

⎞⎠ , τ =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠〉.

The group G is isomorphic to the alternating group A4 and it has order 12. This
group is also called trihedral group of order 12 and the character table of G is shown
in Table 5.

2.4. The octahedral group. Let G be the octahedral subgroup O of SO(3).
Then:

G = 〈σ =

⎛⎝ 0 −1 0
1 0 0
0 0 1

⎞⎠ , τ =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠〉.

The group G is isomorphic to the symmetric group S4 and its order is 24. The
character table of G is given in Table 6.
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c.c. 1 σ τ τ2

# 1 3 4 4

V0 1 1 1 1

V1 1 1 ω ω2

V2 1 1 ω2 ω

V3 3 −1 0 0

Table 5

Characters of tetrahedral group of order 12.

c.c. 1 σ2 τ σ στσ2

# 1 3 8 6 6

V0 1 1 1 1 1

V1 1 1 1 −1 −1

V2 2 2 −1 0 0

V3 3 −1 0 1 −1

V4 3 −1 0 −1 1

Table 6

Characters of octahedral group

The representation V3 is the representation given by the inclusion ofG into SO(3),
i.e. it is the natural representation. The irreducible representations V2 and V4 are
realized as V2(σ) = ( 0 1

1 0 ), V2(τ) =
(
ω 0
0 ω2

)
, V4(σ) = −σ, V4(τ) = τ .

2.5. The icosahedral group. Let G be the icosahedral subgroup I of SO(3):

G = 〈σ =

⎛⎝ 1 0 0
0 ε 0
0 0 ε4

⎞⎠ , τ =
1√
5

⎛⎝ 1 1 1
2 s t
2 t s

⎞⎠〉,

where ε = e2πi/5, s = ε2 + ε3 = −1−√5
2 and s = ε + ε4 = −1+

√
5

2 . Note that

v =
(−1 0 0

0 0 −1
0 −1 0

)
= σ3τ (compare [GNS04, 3.1] and [YY]). The group G is isomorphic

to the alternating group A5 and its order is 60. The character table of G is given in
Table 7.

The natural representation is V1, the irreducible representation V2 is realized as
V2(σ) = σ2, V2(τ) = τ , and the 4-dimensional irreducible representation V3 is obtained
by removing the unit representation from the permutation representation of A5 on
{a, b, c, d, e}. If we take a suitable basis of V3, it is realized as:

V3(σ) =

⎛⎜⎜⎝
ε 0 0 0
0 ε2 0 0
0 0 ε3 0
0 0 0 ε4

⎞⎟⎟⎠ , V3(τ) =
1√
5

⎛⎜⎜⎝
1 t −s −1
t −1 1 −s
−s 1 −1 t
−1 −s t 1

⎞⎟⎟⎠ .

The 5-dimensional irreducible representation V4 is a representation obtained by re-
moving the unit representation from the permutation representation of A5 on the set
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c.c. 1 στ τ σ σ2

# 1 20 15 12 12

V0 1 1 1 1 1

V1 3 0 -1 −s −t

V2 3 0 -1 −t −s

V3 4 1 0 −1 −1

V4 5 −1 1 0 0

Table 7

Characters of icosahedral group

of its 6 subgroups of order 5. Taking a suitable basis, it is realized as:

V4(σ) =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 ε 0 0 0
0 0 ε2 0 0
0 0 0 ε3 0
0 0 0 0 ε4

⎞⎟⎟⎟⎟⎠ , V4(τ) =
1

5

⎛⎜⎜⎜⎜⎝
−1 −6 −6 −6 −6
−1 1− t 2s 2t 1− s
−1 2s 1− s 1− t 2t
−1 2t 1− t 1− s 2s
−1 1− s 2t 2s 1− t

⎞⎟⎟⎟⎟⎠ .

3. McKay quivers with potential for G ⊂ SO(3). Let Q be an arbitrary
finite connected quiver (possibly with loops and 2-cycles) with a vertex set Q0 and
an arrow set Q1. For an arrow a ∈ Q1, denote by ha and ta the head and tail of
a respectively. Let CQ be the path algebra and denote by CQi the C-vector space
with basis Qi consisting of paths of length i in Q, and by CQi,cyc the subspace of CQi

spanned by all cycles. A quiver with potential (QP for short) is a pair (Q,W ) consisting
of Q and an element W ∈ ⊕

i≥2 CQi,cyc called potential. For an arrow a ∈ Q1, the
cyclic derivative ∂aW is defined by ∂a(a1 · · ·a�) =

∑
ai=a ai+1 · · · a�a1 · · ·ai−1 and

extended linearly. The Jacobian algebra of a QP (Q,W ) is defined by

P(Q,W ) := CQ/〈∂aW | a ∈ Q1〉.
Let Q be the McKay quiver of G, that is the quiver such that the vertex set is

the set of irreducible representations Vi of G and we draw aij arrows from Vi to Vj

where aij := dimC HomCG(Vi, V
∗ ⊗ Vj). In this case it is well known that P(Q,W ) is

Morita equivalent to the skew group algebra S ∗ G, where S ∗ G is a free S-module
S ⊗C G with basis G with multiplications given by (s⊗ g)(s′ ⊗ g′) = sg(s′)⊗ gg′ for
any s, s′ ∈ S and g, g′ ∈ G.

Let us now restrict to the case of polyhedral subgroups G ⊂ SO(3). The descrip-
tion of the potential W can be calculated following the method provided in [BSW],
which we now briefly sketch.

Take the standard basis v1, v2 and v3 of V = C3. Note that in this case G acts on
V naturally and dually on the polynomial ring S := C[V ]. Then HomCG(Vi, V

∗⊗ Vj)
is isomorphic to HomCG(Vj , V ⊗ Vi) as a C-vector space. For each arrow a ∈ Q1 we
consider the G-equivariant homomorphism ϕa : Vt(a) → V ⊗ Vh(a). If p = abc is a
closed path of length 3, then by Schur’s lemma, the composition of maps

Vt(a)
ϕa−−→ V ∗ ⊗ Vt(b)

idV ⊗ϕb−−−−−→ V ⊗2 ⊗ Vt(c)

id
V ⊗2⊗ϕc−−−−−−−→ V ⊗3 ⊗ Vh(c)

α⊗idVh(c)−−−−−−→
3∧
V ⊗ Vh(c)

∼−−→ Vh(c)=t(a)
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is a constant denoted by cp. Note that in the above sequence α : V ⊗3 → ∧3
V is

the antisymmetrizer, the last map is the isomorphism given by the composition of∧3 V → V0 defined by v1 ∧ v2 ∧ v3 → �0 and V0 ⊗Vh(c) → Vh(c) defined by �0⊗ v → v,

where �0 is the basis for V0 (recall that
∧3 V ∼= V0 since G ⊂ SL(3,C)).

Theorem 3.1 ([BSW, Theorem 3.2]). If we take W =
∑
|p|=3 cp(dimVh(p))p

then P(Q,W ) is Morita equivalent to S ∗G.

In the following sections we give the explicit description of the McKay QP (Q,W )
for every finite subgroup G ⊂ SO(3). For simplicity we write Q0 = {0, . . . , n} where
i ∈ Q0 corresponds to the irreducible representation Vi. In particular, 0 corresponds
to the trivial representation V0.

3.1. The cyclic group of order n + 1. Let G be a finite cyclic subgroup of
SO(3) of order n+ 1. The McKay quiver Q of G is as follows:

0

1

2

3

n–1

n

a0

a1

a2

an−1

an

bnb0

b1

b2

bn−1

c0

c1

c2

c3

cn−1

cn

For each arrow, the corresponding G-equivariant homomorphism is given by:

ϕai
:Vi → V ⊗ Vi+1 ϕbi :Vi+1 → V ⊗ Vi ϕci :Vi → V ⊗ Vi

�i �→ v2 ⊗ �i+1 �i+1 �→ v1 ⊗ �i �i �→ v3 ⊗ �i

where �i denotes a basis of Vi for any i = 0, . . . , n. For any i = 0, . . . , n, it follows that
cp = −1 if p = ciaibi and cp = 1 if p = cibi−1ai−1, where a−1 = an and b−1 = bn. By
definition of cp, for all other 3-cycles p we have cp = 0. Hence the McKay potential
is given by

W = −
n∑

i=0

aibici +

n∑
i=0

bi−1ai−1ci.

3.2. The dihedral group of order 2n (n even). Let G be a dihedral group
D2n where n = 2m for some positive integer m. The McKay quiver Q of G is as
follows:

0

0′

1 2 m− 2 m− 1

m

m′

aA

d0

D0

c

C
d1

D1

dm−2

Dm−2

C′

c′

B′

b′

A′a′

u1 u2 um−2 um−1

Abusing the notation, the corresponding G-equivariant maps in matrix form are:
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A = a = A′ = a′ = v3, d0 =
(
v2,−v1

)
, D0 =

(
v1
−v2

)
, c =

(
v2, v1

)
, C =

(
v1
v2

)
,

b′ =
(
−v1,−v2

)
, B′ =

(
−v2
−v1

)
, c′ =

(
v1, v2

)
, C′ =

(
v2
v1

)
, di =

(
v2 0
0 v1

)
and

Di =

(
v1 0
0 v2

)
for 0 ≤ i ≤ m− 2, and ui =

(
v3 0
0 −v3

)
for 0 ≤ i ≤ m− 1.

With this notation, d0 =
(
v2,−v1

)
means the G-equivariant map ϕd0 : V0′ →

V ⊗V1 is defined by �0′ �→ v2⊗ �11− v1⊗ �21, where �0′ is the basis of V0′ and {�11, �21} is
the basis of V1 given in the previous section. Note that the above description depends
on the choice of basis for the Vi’s.

For the above equivariant maps, one can calculate the potential to obtain:

W/2 = −ad0C − cD0A+ u1D0d0 + u1Cc−
m−2∑
i=1

uidiDi +

m−1∑
i=2

uiDi−1di−1

− um−1B
′b′ − um−1C

′c′ − a′b′C′ − c′B′A′.

3.3. The dihedral group of order 2n (n odd). Let G be a dihedral group
D2n where n = 2m+ 1 for some positive integer m. The McKay quiver Q of G is as
follows:

0

0′

1 2 m− 2 m− 1 maA

d0

D0

c

C
d1

D1

dm−2

Dm−2

dm−1

Dm−1

u1 u2 um−2 um−1 um

v

and the corresponding G-equivariant maps are

A = a = v3, d0 =
(
v2,−v1

)
, D0 =

(
v1
−v2

)
, c =

(
v2, v1

)
, C =

(
v1
v2

)
, di =(

v2 0
0 v1

)
and Di =

(
v1 0
0 v2

)
for 0 ≤ i ≤ m − 1, ui =

(
v3 0
0 −v3

)
for 0 ≤ i ≤ m,

and v =

(
0 v2
v1 0

)
.

For the above choice of equivariant maps, the potential is given by

W/2 = −ad0C − cD0A+ u1D0d0 + u1Cc−
m−1∑
i=1

uidiDi +

m∑
i=2

uiDi−1di−1 − umv2.

3.4. The tetrahedral group. Let G be the tetrahedral group of order 12. The
McKay quiver Q of G is the following:

0

3

1 2

a A

B

b C

c

u v
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and the corresponding G-equivariant maps are:

a =
(
v1, v2, v3

)
, A =

⎛⎝v1
v2
v3

⎞⎠, b =
(
v1, ωv2, ω

2v3
)
, B =

⎛⎝ v1
ω2v2
ωv3

⎞⎠, c =

(
v1, ω

2v2, ωv3
)
, C =

⎛⎝ v1
ωv2
ω2v3

⎞⎠, u =

⎛⎝ 0 0 v2
v3 0 0
0 v1 0

⎞⎠ and v =

⎛⎝ 0 v3 0
0 0 v1
v2 0 0

⎞⎠.

For the above choice of equivariant maps, the potential is given by

W/3 = uAa+ ωuBb+ ω2uCc− 1

3
u3 − vAa− ω2vBb − ωvCc+

1

3
v3.

3.5. The octahedral group. Let G be the tetrahedral group. The McKay
quiver Q of G is the following:

0 3 4

2

1
a

A

b

B

c

C

d

D

e

E

u v

and the G-equivariant maps are:

a = E =
(
v1, v2, v3

)
, A = e =

⎛⎝v1
v2
v3

⎞⎠, b =

⎛⎝ v1 ωv1
ωv2 v2
ω2v3 ω2v3

⎞⎠, B =

(
v1 ω2v2 ωv3

ω2v1 v2 ωv3

)
, c =

(
v1 ω2v2 ωv3

−ω2v1 −v2 −ωv3

)
, C =

⎛⎝ v1 −ωv1
ωv2 −v2
ω2v3 −ω2v3

⎞⎠, d = D =⎛⎝ 0 v3 v2
v3 0 v1
v2 v1 0

⎞⎠ and u = v =

⎛⎝ 0 −v3 v2
v3 0 −v1
−v2 v1 0

⎞⎠.

For the above equivariant maps, the potential is given by

W/6 = uAa−ubB−udD−1/3u3+veE−vCc−vDd+1/3v3+(w2−w)dCB+(w2−w)Dbc.

3.6. The icosahedral group. Let G be the tetrahedral group. The McKay
quiver Q of G is as follows:

0 1 3

2

4
a

A

b

B

c

C

d

D

e

E

u v w

and the G-equivariant maps are:

a =
(
2v1, v3, v2

)
, A =

⎛
⎝v1
v2
v3

⎞
⎠, u =

⎛
⎝ 0 v3 −v2

2v2 −2v1 0
−2v3 0 2v1

⎞
⎠,

b =

⎛
⎝−2v1 3v3 0 0 3v2

v2 6v1 6v3 0 0
v3 0 0 6v2 6v1

⎞
⎠, B =

⎛
⎜⎜⎜⎝
−4v1 v3 v2
v2 v1 0
0 v2 0
0 0 v3
v3 0 v1

⎞
⎟⎟⎟⎠,
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v =

⎛
⎜⎜⎜⎝

0 6v3 0 0 −6v2
v2 2v1 −2v3 0 0
0 −2v2 4v1 0 0
0 0 0 −4v1 2v3

−v3 0 0 2v2 −2v1

⎞
⎟⎟⎟⎠, c =

⎛
⎜⎜⎜⎝
6v1 0 0
v2 v3 0
0 v1 v3
0 v2 v1
v3 0 v2

⎞
⎟⎟⎟⎠,

C =

⎛
⎝v1 v3 0 0 v2

0 2v2 2v1 2v3 0
0 0 2v2 2v1 2v3

⎞
⎠, d =

⎛
⎝ v3 0 0 v2
−v2 −v1 v3 0
0 v2 −2v1 −v3

⎞
⎠,

D =

⎛
⎜⎜⎝

−v2 v3 0
0 2v1 −v3
0 −v2 2v1

−2v3 0 v2

⎞
⎟⎟⎠, e =

⎛
⎜⎜⎜⎝

6v3 0 0 −6v2
−4v1 2v3 0 0
v2 2v1 3v3 0
0 −3v2 −2v1 −v3
0 0 −2v2 4v1

⎞
⎟⎟⎟⎠,

E =

⎛
⎜⎜⎝

v2 −4v1 v3 0 0
0 2v2 2v1 −3v3 0
0 0 3v2 −2v1 −2v3

−v3 0 0 −v2 4v1

⎞
⎟⎟⎠ and w =

⎛
⎜⎜⎝
v1 v3 0 0
v2 −v1 0 0
0 0 v1 −v3
0 0 −v2 −v1

⎞
⎟⎟⎠.

For the above equivariant maps, the potential is given by

W/12 = −uAa+ 5ubB − 2

3
u3 + 15vBb− 5vcC − 20vEe

+
10

3
v3 + 5weE − wDd− 1

3
w3 − 5dec+ 10CED.

4. Mutations of quivers with potentials. For a QP (Q,W ) let k be a vertex
in Q with no loops (but possibly lying on a 2-cycle). We define the mutation of (Q,W )
by first constructing the QP μ̃k(Q,W ) in the following way:

1. Let Q′ be the quiver obtained from Q by the following steps:
(a) Replace the vertex k in Q by a new vertex k∗.
(b) Add new arrows [ab] : i → j for each pair of arrows a : i → k and

b : k → j in Q.
(c) Replace each arrow a : i → k in Q by a new arrow a∗ : k∗ → i.
(d) Replace each arrow b : k → j in Q by a new arrow b∗ : j → k∗.

2. Let W ′ := [W ] + Δ where
(a) [W ] is obtained by substituting [ab] for each factor ab in W with ha =

k = tb.
(b) Δ =

∑
a,b∈Q1,ha=k=tb

[ab]b∗a∗.

This mutation is obtained from the original [DWZ] with the difference that (Q,W )
may have loops and 2-cycles. This situation is quite natural in some geometric con-
texts as the one treated in this paper.

A QP (Q,W ) is called reduced if W ∈ ⊕
i≥3 CQi,cyc. Given a non-reduced QP

(Q,W ), if there is a reduced QP (Q′,W ′) such that P(Q,W ) � P(Q′,W ′), then we
say that (Q′,W ′) is the reduced part of (Q,W ).

Before going further, let us consider now graded quivers with potentials. Given
(Q,W ) a QP, we can define a map deg : Q1 → Z which extends naturally on CQ. We
say that the potential W is homogeneous of degree d if all terms in W are of degree d.

Definition 4.1. We say that a QP (Q,W ) is graded if there exist a grading in
Q such that W is homogeneous of degree d.

Trivially the Jacobian algebra of a graded QP becomes a graded algebra, and
μ̃k(Q,W ) is naturally graded with degree d (see [Miz], Section 3).

Lemma 4.2. If a QP (Q,W ) is graded, then there exists a reduced graded QP
(Qred,Wred) such that P(Q,W ) � P(Qred,Wred).
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Proof. If (Q,W ) is reduced, we have nothing to do. So we assume that there is
a 2-cycle ab which appears in W . Write W = cabab + W ′ where cab ∈ C is a non-
zero element. Then ∂aW = cabb + ∂aW

′ and ∂bW = caba + ∂bW
′. Without loss of

generality we can assume that deg a ≥ deg b. Then deg ∂aW
′ = deg b, so ∂aW

′ does
not contain a or b. Thus (Q,W ) reduce to a QP whose potential does not contain a
or b and Jacobian algebras are isomorphic, and the new QP obtained is graded. By
repeating this operation, we obtain the required reduced QP.

Definition 4.3. We define the mutation μk(Q,W ) of the quiver with potential
(Q,W ) to be the reduced part of μ̃k(Q,W ).

Example 4.4. Consider the group G = D2n for n = 6. In this case there are 16
non-equivalent QPs, shown in Figure 1.

Q
�

0′

1 2

3

3′

Q0
�

0′

1 2

3

3′

Q01
�

0′

1 2

3

3′

Q012
�

0′

1 2

3

3′

Q3

�

0′

1 2

3

3′

Q32

�

0′

1 2

3

3′

Q321

�

0′

1 2

3

3′

Q3
0

�

0′

1 2

3

3′

Q32
0

�

0′

1 2

3

3′

Q3
01

�

0′

1 2

3

3′

Q3′

�

0′

1 2

3

3′

Q3′2
�

0′

1 2

3

3′

Q3′21
�

0′

1 2

3

3′

Q3′
0�

0′

1 2

3

3′

Q3′2
0�

0′

1 2

3

3′

Q3′
01�

0′

1 2

3

3′

μ3

μ3

μ3

μ2

μ2

μ1μ3′

μ3′

μ3′

μ2

μ2

μ1

μ0′ μ0′ μ0′ μ0′ μ0′

μ1 μ1 μ1

μ2

Fig. 1. Mutations of type D12.

We demonstrate how to calculate the mutation of (Q,W ) at the vertex 0′. First
add new arrows [aA], [D0A], [ad0], [D0d0], replace a,A, d0, D0 by a∗, A∗, d∗0, D

∗
0 respec-

tively as shown below, and denote the new quiver by μ̃0′(Q).

Q
�

0′

1 2

3

3′

aA

d0

D0

c

C d1

D1

C′

c′

B′

b′

A′a′

u1 u2

μ̃0′(Q)

μ̃0′

�

0′

1 2

3

3′

A∗a∗

D∗0
d∗0

c

d1

D1

C′

c′

B′

b′

A′a′

u1 u2

[ad0]

[D0A]

C

[aA]

[D0d0]

μ0′(Q)

μ0′

�

0′

1 2

3

3′

A∗a∗

D∗0
d∗0

d1

D1

C′

c′

B′

b′

A′a′

u2

[aA]

Then the potential [W ] + Δ is given by

[W ] + Δ

=− [ad0]C − c[D0A] + u1Cc+ u1[D0d0]− u1d1D1 + u2d1D1 − u2B
′b′ − u2C

′c′

− a′b′C′ −A′c′b′ + a∗[aA]A∗ + a∗[ad0]d∗0 +D∗0 [D0A]A
∗ +D∗0 [D0d0]d

∗
0,

which is non-reduced. By taking derivations we have the following equalities

∂C = −[ad0] + cu1, ∂c = −[D0A] + u1C, ∂u1 = [D0d0]− d1D1 + Cc,
∂[ad0] = −C + d∗0a

∗, ∂[D0A] = −c+A∗D∗0 , ∂[D0d0] = u1 + d∗0D
∗
0 .
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allowing us to obtain the reduced expression W0′ of [W ] + Δ:

W0′ = − (D∗0d
∗
0)

2a∗A∗ + d∗0D
∗
0d1D1 + u2d1D1 − u2B

′b′ − u2C
′c′

− a′b′C′ −A′c′B′ + a∗[aA]A∗.

If μ0′(Q) is a quiver obtained from μ̃0′(Q) by removing c, C, [ad0], [D0A], u1, [D0d0],
then μ0′(Q,W ) := (μ0′(Q),W0) is a reduced QP and we have P(μ̃0′(Q,W )) �
P(μ0′(Q,W )). The rest of mutations in Figure 1 are obtained similarly.

4.1. Mutations of McKay quivers with potentials for G ⊂ SO(3). Let
G ⊂ SO(3) be a finite subgroup of type Z/nZ, D2n or T. Denote by � the vertex 0
corresponding trivial representation of G. We do not consider mutations at vertex �
and by Definition 4.3 we do not mutate at any vertex which has a loop (see Section
4.2 for the justification of these two assumptions).

4.1.1. The cyclic group of order n + 1. Let (Q,W ) be the McKay QP of
G obtained in 3.1. Notice that every vertex in Q has a loop, so according to our
definition there are no mutations in this case.

4.1.2. The dihedral group of order 2n (n even). Let n = 2m with m ≥ 2
and (Q,W ) be the McKay QP of G obtained in 3.2. Because of the symmetry between
the vertices m and m′ we only write down mutations of (Q,W ) with respect to 0′ and
m. Mutations with respect to m′ are done in the same way.

We first fix some notations. Note that we do not mutate at the vertex � so for
simplicity we denote by Q0 the quiver obtained by mutating at vertex 0′. The quiver

Q
m...(m−j)
0...i denotes the iterated quiver obtained by mutating vertices 0, 1, . . . , i fol-

lowed by mutations at vertices m,m−1, . . . , j. The order in both sequences 0, 1, . . . , i
and m,m− 1, . . . , j are necessary due to the fact that we only mutate a vertices with-
out loops. Moreover, upper indices and lower indices are independent, i.e. mutation
at 0’ followed by mutation at m is the same ate mutation at m followed by mutation
at 0’ (both give Qm

0 ).
By abusing the notation, in the calculation of μk(Q,W ) for some QP (Q,W ) we

do not use the notations (−)∗ and [−]: for example, starting from the McKay quiver
Q with notations as in Section 3.2, arrows a, A and u	 in the quiver Q0···i actually
mean A∗, a∗ and [aA] respectively. Finally, we write

Xj = ujdjDj for j = 0, . . . ,m− 2, Xm−1 = um−1C
′c′, X′

m−1 = um−1B
′b′

Yj = ujDj−1dj−1 for j = 1, . . . ,m− 1, Ym = umc′C′, Y ′
m = umb′B′

Zj = djDjDj−1dj−1 for j = 1, . . . ,m− 2, Zm−1 = C′c′Dm−2dm−2, Z′
m−1 = B′b′Dm−2dm−2.

The ingredients of the calculations in the general case are the same as in Example
4.4. We summarize the result in the following proposition.

Proposition 4.5. For dihedral groups of order 2n (n even) there are (m + 1)2

non-equivalent mutation QPs of the form (Q
m...(m−j)
0...i ,W

m...(m−j)
0...i ) obtained from the

McKay QP (Q,W ).

The list of every possible (Q
m...(m−j)
0...i ,W

m...(m−j)
0...i ) is the following:

Q0...i with 0 ≤ i ≤ m− 2 Q0...(m−1)

�

0′

1 i− 1 i i+ 1 i+ 2 m− 1

m

m′

aA

d0

D0

di−1

Di−1

di

Di

di+1

Di+1

C ′
c′

B′
b′

A′a′

u�

u0

u1 ui−1 ui+2 um−1

�

0′

1 2 m− 2 m− 1

m

m′

aA

d0

D0

d1

D1

dm−2

Dm−2

C ′

c′

B′

b′

u�

u0

u1 u2 um−2

um

u′
m
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W0...i = aAu� − Aau2
0 +

∑i−1
j=0 Xj −∑i−1

j=1 Yj − Zi + Zi+1 +
∑m−2

j=i+2 Xj −∑m−1
j=i+2 Yj

+Xm−1 +X′
m−1 + a′b′C′ + c′B′A′.

W0...(m−1) = aAu� − Aau2
0 +

∑m−3
j=0 Xj −∑m−2

j=1 Yj + Zm + Z′
m + Ym + Y ′

m.

Qm...(m−j)
with 0 ≤ j ≤ m− 2 Qm...1

�

0′

1 i− 1 i i+ 1 i+ 2 m− 1

m

m′

aA

d0

D0

c

C di−1

Di−1

di

Di

di+1

Di+1

C ′
c′

A′a′

u1 ui−1 ui+2 um−1

um

u′
m

�

0′

1 2 m− 2 m− 1

m

m′

c

C

d0

D0

d1

D1

dm−2

Dm−2

C ′
c′

A′a′

u�

u0

u2 um−2 um−1

um

u′
m

Wm...(m−j) = ad0C + cD0A− u1D0d0 − u1Cc+
∑i−1

j=1 Xj +
∑i−1

j=2 Yj + Zi − Zi+1

−∑m−1
j=i+2 Xj +

∑m
j=i+2 Yj − u2

mA′a′ + A′a′u′
m.

Wm...1 = u�cC + u0d0D0 − Ccd1D1 −D0d0d1D1 −∑m−1
j=2 Xj +

∑m
j=3 Yj

−A′a′u2
m + a′A′u′

m.

Q
m...(m−j)
0...i with i + j ≤ m− 3

.

�

0′

1 i− 1 i i+ 1 i+ 2 j − 1 j j + 1 j + 2 m− 1

m

m′

aA

d0

D0

di−1

Di−1

di

Di

di+1

Di+1

dj−1

Dj−1

dj

Dj

dj+1

Dj+1

C ′
c′

A′a′

u�

u0

u1 ui−1 ui+2 uj−1 uj+2 um−1

um

u′
m

W
m...(m−j)
0...i = aAu� −Aau2

0 +
∑i−1

k=0 Xk −∑i−1
k=1 Yk − Zi + Zi+1 +

∑j−1
k=i+2 Xk −∑j−1

k=i+2 Yk

+Zj − Zj+1 −∑m−1
k=j+2 Xk +

∑m
k=j+2 Yk − a′A′u2

m + A′a′u′
m.

Q
m...(i+2)
0...i

�

0′

1 i− 1 i i+ 1 i+ 2 i+ 3 m− 1

m

m′

aA

d0

D0

di−1

Di−1

di

Di

di+1

Di+1

di+2

Di+2

C ′
c′

A′a′

u�

u0

u1 ui−1 ui+1 ui+3 um−1

um

u′
m

W
m...(i+2)
0...i = aAu� −Aau2

0 +

i−1∑
k=0

Xk −
i−1∑
k=1

Yk − Zi + Yi+1 +Xi+1 − Zi+2 −
m−1∑
k=i+3

Xk

+
m∑

k=i+3

Yk − a′A′u2
m + A′a′u′

m.

4.1.3. The dihedral group of order 2n (n odd). Let n = 2m+1 with m ≥ 2
and (Q,W ) be the McKay QP of G obtained in 3.3. In the following proposition
we write down all QPs which are obtained from the McKay QP not mutating at the
vertex �.
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Proposition 4.6. For the dihedral group of order 2n (n odd) there are m+1 non-
equivalent mutation QPs of the form (Q0...i,W0...i) which obtained from the McKay
QP (Q,W ). The list of every possible (Q0...i,W0...i) is the following:

Q0...i with 0 ≤ i ≤ m− 2 Q0...(m−1)

�

0′

1 i− 1 i i+ 1 i+ 2 m− 1 maA

d0

D0

di−1

Di−1

di

Di

di+1

Di+1

dm−1

Dm−1

u�

u0

u1 ui−1 ui+2 um−1 um

v

�

0′

1 2 m− 2 m− 1 maA

d0

D0

d1

D1

dm−2

Dm−2

dm−1

Dm−1

u�

u0

u1 ui−1 ui+2

v

W0...i = u�aA− aAu2
0 +

∑i−1
j=0 djDjuj −∑i−1

j=1 Dj−1dj−1uj −Di−1di−1diDi

+Dididi+1Di+1 +
∑m−1

j=i+2 djDjuj −∑m
j=i+2 Dj−1dj−1uj + umv2.

W0...(m−1) = aAu� − aAu2
0 +

∑m−2
j=0 djDjuj −∑m−2

j=1 Dj−1dj−1uj −Dm−2dm−2dm−1Dm−1

+Dm−1dm−1v2.

4.1.4. The tetrahedral group. Let (Q,W ) be the McKay QP of G obtained
in 3.4. In this case there are 5 non-equivalent mutation QPs which are equivalent to
(Q,W ) (see Figure 2).

Q

�

3

1 2

a A

B

b C

c

u v

Q1

�

3

1 2

a A

B

b C

c

u

Q2

�

3

1 2

a A

B

b C

c

v

Q12

�

3

1 2

a A

B

b C

c

Q123

�

1

2 3

a A

B

b C

c

d

D

u2 u3

u0

1

2

2

1

3

Fig. 2. Mutations of type T.

The potentials in these cases are:

W = uAa+ ωuBb+ ω2uCc− 1
3u

3 − vAa− ω2vBb− ωvCc+ 1
3v

3.
W1 = (1− ω2)Aau− ωAaBb+ (ω2 − 1)Ccu− ω2CcbB + ω2Bbu2 + ω(Bb)2u

+ 1
3 (Bb)3.

W2 = (ω2 − 1)Aav − ωAaCc+ (1− ω2)Bbv − ω2BbCc+ ω2Ccv2 + ω(Cc)2v
+ 1

3 (Cc)3.
W12 = AaBb+AaCc− (Bb)2Cc−Bb(Cc)2.
W123 = aAu0 −AaBb −AaCc+ bBu2 − dDu2 + cCu3 −Ddu3 +Bdc+ CDb.
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We note that in (Q1,W1) and (Q2,W2) there is a relation of the form v = ω2u−
ωBb and u = ω2v − ωCc respectively, so u and v are symmetric and Q12 = Q21.

4.2. Mutations of quivers with potential and NCCRs. In this section we
explain why we do not consider mutations at the trivial vertex � and the reason why
we do not take into account mutations at vertices with loops. We finish the section
with a brief discussion about the number of NCCRs for the cases we treat in this
paper in the complete local setting.

We first start by explaining the equivalence between mutation of QP of Section 4
and mutations of NCCRs (also called tilting mutation). Let Λ = P(Q,W ) =

⊕
i∈Q0

Pi

be a NCCR and Pk the projective right Λ-module associated to the vertex k. Let
f : Pk → X be a left addΛ/Pk-approximation and take Kk := Coker f . If f is injec-
tive, then μkΛ := Λ/Pk ⊕Kk is a tilting Λ-module and EndΛ(μkΛ) is also a NCCR.
By a similar strategy of [BIRS], it can be shown that if a QP (Q,W ) is gradable and
Λ is a 3-Calabi-Yau algebra, then the tilting mutation coincides with the mutation
of QP. In other words, we have an isomorphism EndΛ(μkΛ) � P(μk(Q,W )). In our
case, since the potential W is homogeneous of degree 3 the McKay QP (Q,W ) is
graded, so all mutations μ(Q,W ) obtained from it are gradable. Also, note that the
algebras P (μk(Q,W )) are 3-Calabi-Yau (3-CY for short) since S ∗G is 3-CY and the
property of 3-CY is closed under Morita equivalences and mutations, so the result
applies.

The reason why we do not mutate at the trivial vertex � can be explain in two
different ways. In one hand this vertex corresponds to the trivial representation of
G, so it does not correspond to any exceptional curve in the fibre over the origin.
Thus geometrically there is no reason to mutate (or equivalently flop) at the vertex
�. On the other hand, in the context of NCCRs we are dealing with algebras of the
form EndR(M) for some reflexive module M . Then it is easy to see that if R is a
Gorenstein ring then M is a Cohen-Macaulay R-module if and only if M contains R
as a direct summand. Therefore, the mutation at � would replace R by a different
module, losing the Cohen-Macaulay condition.

With respect to the mutation at vertices with loops, let us consider first the
following result of Iyama and Wemyss.

Theorem 4.7 ([IW10], 6.13). Suppose R is a complete local normal three-
dimensional Gorenstein ring. Denote Λ = EndR(M), let Mk be an indecomposable
summand of M and consider Λk := Λ/Λ(1 − ek)Λ where ek is the idempotent in Λ
corresponding to Mk. Then if dimC Λk = ∞ then μkΛ � Λ.

If we remove the complete local condition this result is still true but up to additive
closure, that is, one can show that if dimC Λk = ∞ then add(M/Mk ⊕Kk) = addM .
In some respect this is enough for our purposes, since at the level of modules we
have that EndR(M/Mk⊕Kk) and EndR(M) are Morita equivalent, which induces an
isomorphism of the corresponding moduli spaces.

For the groups treated in this paper, the following proposition states that every
iterated QP obtained from the McKay QP verifies that the dimension of the factor
algebra Λk at every vertex k with a loop is infinity. In fact, every vertex with a loop
corresponds to a non-floppable curve in the corresponding moduli space (see Section
7), allowing us to consider only mutations at vertices without loops.

Proposition 4.8. Let G ⊂ SO(3) of type Z/nZ, D2n and T. Let (Q′,W ′) be
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an iterated QP from the McKay QP (Q,W ) and let Λ = P(Q′,W ′) be the Jacobian
algebra. Then for any vertex i ∈ Q′0 with a loop we have that dimC Λi = ∞.

Proof. In the Abelian case every vertex i has a loop and Λi =
⊕

�≥0 Cc
�
i , thus

dimC Λi = ∞. For the dihedral groups it is straightforward to check that for every
vertex i ∈ Q′ there is no relation derived from the potential W ′ which identifies up

i as
a combination of other paths for some p > 0.

For G = T, notice that in the McKay QP we have relations of the form u2 =
3(Aa+ωBb+ω2Cc) and v2 = 3(Aa+ω2Bb+ωCc) but there is no relation involving
uv, so dimC Λ3 = ∞.

However, for subgroups G ⊂ SO(3) of type O and I, there are vertices i
in the McKay QP with a loop such that dimC Λi < ∞. For instance, in O we
have relations of the form u2 = 3(Aa + bB + dD) and v2 = 3(Cc + Dd + eE) so
dimC Λ3 = dimC Λ4 = 2. This fact predicts that the mutation at this vertices is not
trivial and also that the (−2, 0)-curves corresponding to this vertices are floppable.
At present we do not have a definition of mutation of quivers with potential at a
vertex with a loop, so these cases will be treated in a future work.

We finish this section by considering the number of NNCRs for the cases treated in
this paper. We restrict ourselves to the complete case, that is, let R̂ be the completion
of R := SG and we want to look for all possible NCCRs over R̂. We say that
Λ := EndR̂(M) is a Cohen-Macaulay (CM) NCCR if M is Cohen-Macaulay. If the
set of NCCRs obtained by a sequence of mutations at non-trivial vertices is finite,
then this set contains all possible CM NCCRs (see [IW13], Theorem 1.9). In our case
we proved that the list of QPs obtained by mutating at non-trivial vertices is finite
(notice that by Theorem 4.7 mutating at loops in the complete setting is trivial), so
we obtain the following result.

Theorem 4.9. Let G be a finite subgroup of SO(3) of types Z/nZ, D2n and
T. The number of mutations of the McKay QP at non-trivial vertices is finite up
to isomorphisms. Moreover the number of CM NCCRs of R̂ is finite up to Morita
equivalences.

5. Explicit description of the moduli spaces Mθ. In this section we describe
the explicit structure of every projective crepant resolution π : X → C3/G for G ⊂
SO(3) of types Z/nZ, D2n and T. We do not describe the cyclic case G ∼= Z/nZ
since G-Hilb(C3) is the unique crepant resolution and it is already treated in [CR]
and [Nak].

The results are summarized in Theorems 5.1, 5.2 and 5.3 for the subgroups of type
D2n with n odd, D2n with n even and T respectively. This explicit description allows
us to conclude that every projective crepant resolution X is isomorphic to a moduli
space Mθ of θ-stable representations of the McKay quiver with relations (Q,R) for
some θ ∈ Θ, and X consists of a finite union of copies of C3. Moreover, we give
local coordinates of every open set and the degrees of the normal bundles of every
exceptional rational curve in the fibre π−1(0).

The proof is done by the explicit calculation of every case. The strategy used is
the following:
Step 1 We obtain first the crepant resolution X := G-Hilb(C3) ∼= Mθ0 , where θ0 is

the so called 0-generated stability condition (i.e. θ0 is generic and θ0i > 0 for
every i 
= 0), which from [IN] is well known to be contained in the chamber
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corresponding to G-Hilb(C3). In particular, this choice of stability implies
that for every ρ ∈ IrrG\{ρ0} there exist dim(ρ) linearly independent paths
from ρ0 to ρ.

Step 2 By calculating the gluings between the open sets in X we obtain the degrees
of the normal bundle of every rational exceptional curve in π−1(0). This is
done by using the quiver of the endomorphism algebra EndSG(

⊕
ρ∈IrrG Sρ)

where Sρ are the CM SG-modules Sρ := (S ⊗ ρ)G, which coincides with
the McKay quiver. This identification allows us to give local coordinates at
each open set in terms of the original coordinates x, y and z in C3. Then by
Lemma 7.1 we know that only the rational curves E ⊂ X of type (−1,−1)
are floppable, which gives us a finite number of possible flops of X .

Step 3 We calculate the flop X ′ of X by only modifying the open sets containing the
curve which is flopped, obtaining X ′ again as a moduli space MC′ . Here we
use a representation space which dominates both sides of the flop.

Step 4 We repeat the process until we find all possible flops of (−1,−1)-curves.
As a consequence, every projective crepant resolution X of C3/G for G ⊂ SO(3)

of types Z/nZ, D2n and T is described by an affine open coverX ∼=
⋃
Ui with Ui

∼= C3

(see part (1) in Theorems 5.1, 5.2 and 5.3).
In this section S := C[x, y, z], (Q,W ) always denote the McKay quiver potential

as in Section 3, Λ := P(Q,W ) and d = (di)i∈Q0 := (dim ρ)ρ∈IrrG. Thus we write
simplyMθ orMC to denote the moduli spaceMθ,d(Λ), where θ ∈ C for some C ⊂ Θ.

The notion of stability of a representation of (Q,W ) is defined as follows (cf.
[King]): let M be a representation of Q of dimension vector d, let θ ∈ Θd and define
θ(M) :=

∑
θidi. Then M is θ-(semi)stable if θ(M ′) > 0 = θ(M) for 0 � M ′ � M

(with the usual ≥ for semistability). The stability parameter θ ∈ Θd is said to be
generic if every θ-semistable representation is θ-stable.

For dimension vectors d of representations (and subrepresentations) ofQ we adopt

the notation d =
d0
d0′

d1 . . . dm, where di = dimVi and Vi is the vector space associated

to the vertex i ∈ Q0.

5.1. The dihedral group of order 2n (n odd). With the potential given in
Section 3.3 the relations derived by the potential W in this case are:

∂a, ∂A, ∂b, ∂B, ∂c, ∂C : bC = 0, cB = 0, Ca = u1B,Ac = bu1, BA = u1C, ab = cu1.

∂d1, . . . , ∂dm−1 : D1u1 = u2D1, . . . , Dm−1um−1 = umDm−1.

∂D1, . . . , ∂Dm−1 : u1d1 = d1u2, . . . , um−1dm−1 = dm−1um.

∂u1 : Bb+ Cc = d1D1.

∂u2, . . . , ∂um−1 : d2D2 = D1d1, . . . , dm−1Dm−1 = Dm−2dm−2.

∂um : Dm−1dm−1 = v2.

∂v : umv + vum = 0.

We introduce the following notation for the arrows of Q as linear maps between
vector spaces: a := a, A := A, b := (b1, b2), B :=

(
B1

B2

)
, c := (c1, c2), C =

(
C1

C2

)
, di :=(

di
11 di

12

di
21 di

22

)
, Di :=

(
Di

11 Di
12

Di
21 Di

22

)
, uj :=

(
uj
11 uj

12

uj
21 uj

22

)
and v := ( v11 v12

v21 v22 ), where 1 ≤ i ≤ m−1,

1 ≤ j ≤ m, and every entry belongs to C. We may drop the upper indices in the
entries of the matrices for di, Di and ui if the context allows us to do so, and we may
also drop the lower indices when there exist a unique element in the matrix which is
non-zero.

Theorem 5.1. Let G = D2n ⊂ SO(3) with n odd. Let f1 := x2m+1 + y2m+1 and
f2 := x2m+1 − y2m+1. Then,
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1. There are m + 1 crepant resolutions of πi : X0...i → C3/G for −1 ≤ i ≤ m,
given by the open covers:

X0...i =

i+1⋃
k=1

U ′′k ∪ U ′i+2 ∪
m+2⋃
k=i+3

Ui

where Ui, U
′
i , U

′′
i
∼= C3 for all i, with corresponding local coordinates

U ′1 ∼= C3
a,b,C = SpecC[ z

f2
, xy, f1].

Ui
∼= C3

d,D,u = SpecC[ (xy)
i−1z
f2

, f2
(xy)i−2z ,

zf1
f2

], for i ≤ m+ 1.

Um+2
∼= C3

v,V,u = SpecC[z2, f1
(xy)m , f2

(xy)mz ].

U ′i ∼= C3
a,d,D = SpecC[ (xy)

i−1z
f2

, f1
(xy)i−1 , xy], for i ≤ m+ 1.

U ′′i ∼= C3
a,d,D = SpecC[ zf1f2

, (xy)i

f1
, f1
(xy)i−1 ], for i ≤ m.

For i = −1 we have X ∼= G-Hilb(C3).
2. The degrees of the normal bundles NX/E of the exceptional rational curves

E ⊂ X0...i are

Open cover of E Degree of NX/E

Ui ∪ Ui+1 (−2, 0) for i = 2, . . . ,m
(−3, 1) for i = m+ 1

U ′
i ∪ Ui+1 (−1,−1) for i = 1, . . . ,m

(−2, 0) for i = m+ 1

U ′′
i ∪ U ′

i+1 (−1,−1) for i = 1, . . . ,m− 1

U ′′
i ∪ U ′′

i+1 (−2, 0) for i = 1, . . . ,m

3. Let πi : X0...i → C3/G a crepant resolution. Then the dual graph of π−1
i (0)

is of the form:

• • · · · • •
Proof. Step 1. Let X := G-Hilb(C3) ∼= Mθ for the 0-generated stability condition

θ and dimension vector d = 1
1 2 . . . 2. Then we can construct the following open cover

of X :

G-Hilb(C3) ∼= U ′1 ∪
m+2⋃
i=2

Ui

We divide the proof of this fact in 4 steps:
(i) We can always choose c = (1, 0). Otherwise, by the 0-generated stability

we need to have ab = (1, 0), so that the relation ab = cu1 implies that
A(c1)

2+u1
21c2 = 1. But then c1 and c2 cannot be both zero at the same time,

which means that we can change basis at the vertex 1 to obtain c = (1, 0).

(ii) Similarly, we can change basis to choose di :=
(

1 0
di
21 di

22

)
for every i. Therefore

it is remaining to generate the basis element (0, 1) at every 2-dimensional
vertex.

(iii) The open conditions to generate the 2-dimensional vertices can be done in-

volving only the maps di and Di. Indeed, if we suppose that ui =
(

0 1
ui
21 ui

22

)
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then using the relations involving the vertex i we can conclude that Di
22 
= 0,

thus we can choose Di
21 = 0 and Di

22 = 1 instead.
(iv) By the stability condition we need to reach the vertex 0′ with a nonzero map

from 0, thus we have that

either cd1d2 · · · diDiDi−1 · · ·D1B 
= 0
or a 
= 0

Consider the first case and suppose initially that i = 1, which after a change
of basis is equivalent to say that cd1D1B = 1. In particular we can choose

B2 = 1 and D1 :=
(

0 1
D1

21 D1
22

)
, which leads to a contradiction when ap-

plying the relation Bb + Cc = d1D1. Similarly, for i > 0 we obtain con-
tradiction with the relation Di−1di−1 = diDi. Therefore we either have
cd1 · · · dm−1umDm−1 · · ·D1B 
= 0 or cd1 · · · dm−1vDm−1 · · ·D1B 
= 0. By (ii)
we can always choose the second option, which gives the open set

U ′1 : cd1 · · · dm−1vDm−1 · · ·D1B = 1

By the relation cB = 0 we get B1 = 0, so by changing basis we can always

take c = (1, 0), di :=
(

1 0
di
21 di

22

)
, Di :=

(
di
11 di

12
0 1

)
for all i, v =

(
0 1

v21 v22

)
and

B := ( 01 ), and using the relations we obtain the representation space for U ′1
shown in Figure 3. If we suppose that a 
= 0, by (ii) and the usual change
of basis at every 2-dimensional vertex i we reach the standard basis element
(1, 0) by the path cd1 · · · di. Then, the rest of possibilities for the open sets
are

U2 : cd1 · · · dm−1vDm−1 · · ·D1 = (0, 1), a = 1
U3 : cd1 · · · dm−1vDm−1 · · ·D2 = (0, 1), ab = 1
Ui : cd1 · · · dm−1vDm−1 · · ·Di = (0, 1), abd1 · · · di−1 = (0, 1) for 4 ≤ i < m

Um+1 : cd1 · · · dm−1v = (0, 1), abd1 · · · dm−2 = (0, 1)
Um+2 : cd1 · · · dm−1 = (1, 0), abd1 · · · dm−1 = (0, 1)

U ′1 ∼= C3
a,b,C

A = aC2 − ab2m+1

0

0′

1 2 m−1 maA

(-C, b)

( 0
1 )

(1, 0)

( bC) ( 1 0
0 b )

( b 0
0 1 )

( 1 0
0 b )

( b 0
0 1 )

(
-aC ab

-ab2m aC

) (
-aC ab2

-ab2m-1 aC

) (
-aC abm

-abm+1 aC

)

( 0 1
b 0 )

U2
∼= C3

b,B,u

A = b2 − u2(uB)2m−1

0

0′

1 2 m−1 m1A

(b, u)

( 0
B )

(1, 0)(
uB
−bB

)
( 1 0
0 uB )

( uB 0
0 1 )

( 1 0
0 uB )

( uB 0
0 1 )

(
b u

-u(uB)2m-1 -b

) (
b u(uB)

-u(uB)2m-2 -b

) (
b u(uB)m-1

-u(uB)m -b

)

( 0 1
uB 0 )

Fig. 3. Open sets U ′
1 and U2 in D2n-Hilb(C3).

It follows that X = G-Hilb(C3) is covered by the union of m + 2 open sets
isomorphic each of them to C3.

Step 2. For every ρ ∈ IrrG let Sρ := (S ⊗ ρ)G be the CM SG-modules. Writing
down irreducible maps between these modules we obtain the McKay quiver shown in
Figure 4.

Every point in an open set U ⊂ X is a representation of Q of dimension vector
d = 1

1 2. . . 2 generated by a subset of linearly independent distinguished arrows. We
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S0

S0′

S1 S2 Sm−1 Smzz

(x, -y)

( y
-x )

(x, y)

( y
x )

(
x 0
0 y

)
(
y 0
0 x

)
(
x 0
0 y

)
(
y 0
0 x

)
(z 0
0 −z) (z 0

0 −z) (z 0
0 −z)

(
0 x
y 0

)
Fig. 4. Quiver of CM-modules Sρ for G = D2n, n odd.

choose basis elements for the vector spaces at every vertex of Q by following the
distinguished arrows of U in the quiver between the CM SG-modules shown above.
For instance, in U ′1 with coordinates a, b and C, the distinguished arrows are c,
d1, . . . , dm−1, v, Dm−1, . . . , D1 and B, so we choose the following basis elements:

V0 1 V2 (x2, y2) = e1
V0′ x7 − y7 (y5, x5) = e2
V1 (x, y) = e1 V3 (x3, y3) = e1

(y6, x6) = e2 (y4, x4) = e2

For instance, this choice of basis elements implies that taking the paths in the
quiver a, cC and cd1 · · · dm−1vDm−1 · · ·D1C we obtain the identities z = a(x7 − y7),
2xy = b · 1 and x7 + y7 = C · 1, which by rescaling the coefficients gives us the
coordinates of the open set U ′1:

a = z/(x7 − y7), b = xy, C = x7 + y7.

The same method gives U2
∼= C3

b,B,u with b = xyz/f2, B = f2/z and u = zf1/f2. The
gluing between U ′1 and U2 is given by (a, b, C) �→ (ab, a1, aC) thus the exceptional
P1
(z:x7−y7) has a normal bundle of degree (−1,−1). In other words, knowing the

representation space of an open set U ⊂ Mθ0 we can recover the local coordinates for
U , and the gluing between open sets determines the degrees of the normal bundles of
the exceptional curves.

It follows that in X we have π−1(0) =
⋃m

i=0 Ei where Ei
∼= P1 with coordinates

(xy)iz : x2m+1 − y2m+1 for i = 0, . . . ,m, intersecting pairwise according to the dual
graph shown below (see also [GNS04] §3.5).

•
E0

•
E1

· · · •
Em−1

•
Em

Therefore E0 is a (−1,−1)-curve, Em is a (−3, 1)-curve, and the rest are (−2, 0)-
curves. By Lemma 7.1 only E0 can be floppable, which gives us X0.

Step 3. Recall that any (−1,−1)-curve E ⊂ X is floppable. In fact, there exists
F ∼= P1 × P1 ⊂ Y fitting in the following diagram

E ⊂ X X ′ ⊃ E′

F ⊂ Y

σ σ′
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where F dominates E and E′ in two different ways as the exceptional locus for σ and
σ′ (see for instance [Reid] §5.5 and references therein). In our case, the curve E0 ⊂ X
is covered by U ′1 and U2, and to calculate the new open sets in U ′′1 , U

′
2 ⊂ X0 covering

the flopped curve E′0 we look at the following representation space:

0

0′

1 2 m−1 maab21 − ab2(b2B)2m−1

(b1, b2)

( 0
B )

(1, 0)(
b2B
-b1B

) (
1 0
0 b2B

)
(
b2B 0
0 1

)
(
1 0
0 b2B

)
(
b2B 0
0 1

)

(
ab1 ab2

-ab2(b2B)2m−1 -ab1

)(
ab1 ab22B

-ab2(b2B)2m−2 -ab1

) (
ab1 ab2(b2B)m−1

-ab2(b2B)m -ab1

)

(
0 1

b2B 0

)
It is the representation space obtained by taking the distinguished nonzero arrows

which are common in U ′1 and U2. This space dominates both sides of the flop, in the
sense that if we set B = 1 we get U ′1 and if we set a = 1 we get U2, covering E0; if
b1 = 1 we get U ′′1 and if b2 = 1 we get U ′2, covering the flop of E0. The coordinates of
F ∼= P1 × P1 are (a : B; b1 : b2).

Step 4. For the rest of crepant resolutions X0...i we argue in the same way, i.e. we
repeat this process in every (−1,−1)-curve to produce every open set U ⊂ Mθ. We
show in Figure 5 the representation spaces for the open sets U ′i and U ′′i , the rest are
done similarly.

U ′i ∼= C3
a,d,D

3 ≤ i ≤ m+1

A = ad2 − aD2α+3

0

0′

1 2 i−3 i−2 i−1 i m−1 maA

(0, 1)

( 0
D )

(1, 0)

(D0 ) ( 1 0
0 1 )

(D 0
0 D )

( 1 0
0 1 )

(D 0
0 D )

( 1 0
d 1 )(
D 0
-dD D

) ( 1 0
0 D )

(D 0
0 1 )

( 1 0
0 D )

(D 0
0 1 )

( 0 a
A 0 ) ( 0 a

A 0 )
(

ad a
-aD2α+3 -ad

) (
ad aD

-aD2α+2 -ad

) (
ad aDα

-aDα+2 -ad

)

( 0 1
D 0 )

U ′′i ∼= C3
a,d,D

2 ≤ i ≤ m

A = a + ad2(dD)2α+1

0

0′

1 2 i−2 i−1 i i+1 m−1 maA

(0, 1)

( 0
dD )

(1, 0)

( 0
dD) ( 1 0

0 1 )(
dD 0
0 dD

) ( 1 0
0 1 )(

dD 0
0 dD

) ( 1 0
1 d )(

dD 0
-D D

) ( 1 0
0 dD )

( dD 0
0 1 )

( 1 0
0 dD )

( dD 0
0 1 )

( 0 a
A 0 ) ( 0 a

A 0 )

(
a ad

-ad(dD)2α+1 -a

)(
a ad(aD)

-ad(dD)2α -a

) (
a ad(dD)α

-ad(dD)α+1 -a

)

( 0 1
dD 0 )

Fig. 5. Open sets U ′
i and U ′′

i contained in crepant resolutions of C3/D2n with n odd.

In each of X0...i with 0 < i < m there are precisely two (−1,−1)-curves, whose
flops give X0...(i−1) and X0...(i+1) respectively. In the case i = m, the 3-fold X0...m

has only Em−1 as a (−1,−1)-curve and the flop produces the previous X0...m−1, so
we stop. This proves (3).

The gluings between the open sets shown below, from which we can read off the
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degrees of the normal bundles in (2).

U ′
1 → U2 : (a, b, C) �→ (ab, a−1, aC)

Ui → Ui+1 : (d,D, u) �→ (d2D, d−1, u), for i = 2, . . . ,m+ 1
Um+1 → Um+2 : (d,D, u) �→ (u2 − 4d3D, d−1u, d−1)

U ′
i → Ui+1 : (a, d,D) �→ (aD, a−1, ad), for i = 2, . . . ,m

U ′
m+1 → Um+2 : (a, d,D) �→ (a2d2 − 4a2D, d, a−1)
U ′′

i → U ′
i+1 : (a, d,D) �→ (ad, d−1, dD), for i = 1, . . . , m− 1

U ′′
i → U ′′

i+1 : (a, d,D) �→ (a, d2D, d−1), for i = 1, . . . ,m

In every crepant resolution the dual graph of the fibre over the origin 0 ∈ C3/G is of
type A, they only differ in the degrees of the normal bundles over Ei given in (2).

5.2. The dihedral group of order 2n (n even). With the potential given in
Section 3.2 the list of relations in this case is the following:

∂a, ∂A, ∂b, ∂B, ∂c, ∂C : bC = 0, cB = 0, Ca = u1B,Ac = bu1, BA = u1C, ab = cu1.

∂a′, ∂A′, ∂b′, ∂B′, ∂c′, ∂C′ : b′C′ = 0, c′B′ = 0, C′a′ = um−1B
′,

A′c′ = b′um−1, B
′A′ = um−1C

′, a′b′ = c′um−1.

∂d1, . . . , ∂dm−2 : D1u1 = u2D1, . . . , Dm−2um−2 = um−1Dm−2.

∂D1, . . . , ∂Dm−2 : u1d1 = d1u2, . . . , um−2dm−2 = dm−2um−1.

∂u1 : Bb+ Cc = d1D1.

∂u2, . . . , ∂um−2 : d2D2 = D1d1, . . . , dm−2Dm−2 = Dm−3dm−3.

∂um : B′b′ + C′c′ = Dm−2dm−2.

We consider the same notation as in 5.1 for the arrows of Q as linear maps, adding in

this case a′ := a′, A′ := A′, b′ := (b′1, b
′
2), B

′ :=
(

B′
1

B′
2

)
, c′ := (c′1, c

′
2) and C′ :=

(
C′

1

C′
2

)
.

Theorem 5.2. Let G = D2n ⊂ SO(3) with n even. Let f1 := xm + ym and
f2 := xm − ym. Then,

1. There are (m + 1)(m + 2)/2 non-isomorphic crepant resolutions πij :

X
m...(m−j)
0...i → C3/G given by the open covers:

X
m...(m−j)
0...i =

i+1⋃
k=1

U ′′k ∪ U ′i+2 ∪
m−j⋃
k=i+3

Uk ∪ V ′m−j+1 ∪
m+3⋃

k=m−j+2

V ′′k

for −1 ≤ i, j ≤ m − 1, where Uk, U
′
k, U

′′
k , V

′
k, V

′′
k

∼= C3 for all k, with local
coordinates

Ui
∼=

(i≤m)
C3
d,D,u = SpecC[ (xy)

i−1z
f1f2

, f1f2
(xy)i−2z

, zf1
f2

] V ′
i
∼=

i≤m

C3
a′,u,C′ = SpecC[ (xy)

i−2z2

f2
2

, xy, f1f2
(xy)i−2z

]

Um+1
∼= C3

C′,c′,B′

= SpecC[ zf2
f1

, f1f2
(xy)m−1z

, zf1
f2

]

V ′
m+1

∼= C3
a′,b′,C′

= SpecC[ (xy)
m−1z2

f2
2

,
f2
2

(xy)m−1 ,
f1f2

(xy)m−1z
]

U ′
i
∼=

(i≤m)

C3
a,d,D = SpecC[

(xy)i−1z
f1f2

,
f2
1

(xy)i−1 , xy] V ′
m+2

∼= C3
a′,c′,C′ = SpecC[z2,

f2
2

(xy)m−1 ,
f1
zf2

]

U ′
m+1

∼= C3
a,B′,c′

= SpecC[ zf2
f1

,
f2
1

f2
2
,

f2
2

(xy)m−1 ] V ′′
i

∼=
i≤m+1

C3
d,D,C′ = SpecC[

(xy)i−2z2

f2
2

,
f2
2

(xy)i−3z2
, zf1

f2
]

U ′′
i

∼=
(i≤m−1)

C3
a,d,D = SpecC[ zf1

f2
, xiyi

f2
1

,
f2
1

(xy)i−1 ] V ′′
m+2

∼= C3
A,c′,C′ = SpecC[z2,

f2
2

(xy)m−1z2
, zf1

f2
]

U ′′
m

∼= C3
a,c′,C′ = SpecC[ zf1

f2
,

f2
1

(xy)m−1 ,
f2
2

f2
1
] V ′′

m+3
∼= C3

A′,b′,B′ = SpecC[z2,
f2
1

(xy)m−1 ,
f2
zf1

]

When i = j = −1 we have X ∼= G-Hilb(C3).
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2. The degrees of the normal bundles NX/E of the exceptional rational curves

E ⊂ X
m...(m−j)
0...i are:

Open cover of E Degree of NX/E Open cover of E Degree of NX/E

Ui ∪ Ui+1 (−2, 0) for 2 ≤ i ≤ m U ′
i ∪ V ′

i+1 (−2, 0) for 1 ≤ i ≤ m

Ui ∪ V ′
i+1 (−1,−1) for 2 ≤ i ≤ m+ 1 U ′′

i ∪ U ′
i+1 (−1,−1) for 1 ≤ i ≤ m

Um+1 ∪ V ′′
m+3 (−1,−1) U ′′

i ∪ U ′′
i+1 (−2, 0) for 1 ≤ i ≤ m− 1

U ′
i ∪ Ui+1 (−1,−1) for 1 ≤ i ≤ m V ′

i ∪ V ′′
i+1 (−1,−1) for 2 ≤ i ≤ m+ 1

(−2, 0) for i = m+ 1 V ′′
i ∪ V ′′

i+1 (−2, 0) for 3 ≤ i ≤ m+ 2

3. The dual graph of π−1
ij (0) is:

• • · · · •
•

•
for X0...i with i ≤ m,

• • · · · •
•

•
for X0...m−1,

• • · · · • for the rest.

Proof. Step 1. As in the proof of Theorem 5.1 we start by calculating explicitly
X := G-Hilb(C3) ∼= Mθ0 for the 0-generated stability condition θ0. In this case the
open cover is given by

G-Hilb(C3) ∼= U ′1 ∪
m+1⋃
k=2

Uk ∪ V ′m+2 ∪ V ′′m+3

From Section 3 we can see that the McKay quiver in this case only differs from
the case when n is odd in the vertices m − 1, m and m′, thus the argument is
very similar to the proof of Step 1 in Theorem 5.1. In particular, we can choose

c = (1, 0), di :=
(

1 0
di
21 di

22

)
and we cannot have a path cdi · · · diDi · · ·D1B 
= 0 for

any i. Therefore, we have three possibilities to reach the second linearly independent
vector, which we may choose to be (0, 1), at the vector space at the vertex m + 1.
Namely cdi · · · dm−2B

′b′ = (0, 1), cdi · · · dm−2C
′c′ = (0, 1) or abdi · · · dm−2 = (0, 1).

By symmetry the first two are equivalent, so we can assume that C′1 = 1 and c′ =
(0, 1). In other words, we have that

either cd1d2 · · · dm−2C
′c′ = (0, 1)

or abdi · · · dm−2 = (0, 1)

Let us consider the first case. To reach the 1-dimensional vector space at the vertexm′

we can always choose B′1 = 1. Indeed, by the relations c′B′ = 0 and C′a′ = um−1B
′

we obtain the equality a′ = u11B
′
1. This means that if we choose a′ 
= 0 then B′1 
= 0,

and we can change basis to consider B′1 = 1 instead.
Thus we obtain the following open sets

U ′1 : cd1 · · · dm−2C
′ = 1, B′ = 1, c′Dm−2 · · ·D1B = 1

U2 : cd1 · · · dm−2C
′ = 1, B′ = 1, c′Dm−2 · · ·D1 = (0, 1), a = 1

U3 : cd1 · · · dm−2C
′ = 1, B′ = 1, c′Dm−2 · · ·D2 = (0, 1), ab = (0, 1)

Ui : cd1 · · · dm−2C
′ = 1, B′ = 1, c′Dm−2 · · ·Di−2 = (0, 1), abd1 · · · di−3

= (0, 1) for 4 ≤ i < m+ 1
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If abdi · · · dm−2 = (0, 1) then there are only two possibilities which satisfy the 0-
generated stability condition, namely cd1 · · · dm−2B

′A′ = 1 and cd1 · · · dm−2C
′a′ = 1,

giving the open sets V ′m+2 and V ′′m+3:

V ′m+2 : abdi · · · dm−2 = (0, 1), cd1 · · · dm−2B
′A′ = 1

V ′′m+3 : abdi · · · dm−2 = (0, 1), cd1 · · · dm−2C
′a′ = 1

Again, by using the relations in every case we conclude that G-Hilb(C3) is covered by
the union of m+ 3 open sets isomorphic to C3.

Step 2. As in the proof of 5.1, the local coordinates in (1) are obtained using the
quiver structure of the CM SG-modules Sρ, which in this case is given in Figure 6.

S0

S0′

S1 S2 Sm−2 Sm−1

Sm

Sm′

zz

(x, -y)

( y
-x )

(x, y)

(yx) (
x 0
0 y

)
(
y 0
0 x

)
(
x 0
0 y

)
(
y 0
0 x

)

(xy)

(y, x)

( x
-y )

(y, -x)

zz

( z 0
0 -z ) ( z 0

0 -z ) ( z 0
0 -z )

Fig. 6. Quiver of the CM-modules Sρ for G = D2n, n even.

.

If we call π : G-Hilb(C3) → C3/G, it follows that π−1(0) =
⋃m+1

i=0 Ei where
Ei

∼= P1 intersect according to the following dual graph:

•
E0

•
E1

· · · •
Em−1

• Em

• Em+1

The curves Ei have coordinates (xy)
iz : x2m−y2m for i < m, Em has coordinates

xm + ym : z(xm − ym) and Em′ has coordinates xm − ym : z(xm + ym). The rational
curves E0, Em and Em+1 are (−1,−1)-curves, and the rest of Ei’s are (−2, 0)-curves.
By Lemma 7.1 only the flop of E0, Em and Em+1 gives us new crepant resolutions.
As in Section 4.1.2, by the symmetry of the curves Em and Em+1 it is enough to
consider flops from G-Hilb(C3) at E0 and Em.

Step 3 is analogous to the proof of Theorem 5.1.
Step 4. Using the same method as in the proof of Theorem 5.1 we see that we

can flop consecutively the curves E0, . . . , Em−1 (in this order) to obtain the chain of
flops

G-Hilb(C3) = X ��� X0 ��� . . . ��� X0...m−1

At every step we perform the flop as in the proof of Theorem 5.1, producing each
time two new open sets. The dual graph of the fibre over the origin of these crepant
resolutions are the same as the dual graph for G-Hilb(C3) except for X0...m−1 which
is

•
E′0 •

E′1 · · · •
E′m−1

• Em

• Em+1

In any of the crepant resolutions X0...i except for i = m− 1 we can also flop the
rational curve Em to obtain the crepant resolution Xm

0...i, where now Em−1 and the
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flopped curve E′m are (−1,−1)-curves. Flopping E′m again takes us back to X0...i and

flopping Em−1 leads us to X
m(m−1)
0...i . In the same way we obtain the sequence of flops

X0...i ��� Xm
0...i ��� X

m(m−1)
0...i ��� . . . ��� Xm...i+2

0...i

and continuing the process in the same fashion we construct the (m + 1)(m + 2)/2
crepant resolutions πij : X

j
i → C3/G. Except for X0...i which is described above, the

dual graph of the fibre π−1(0) for the rest of crepant resolutions is

• • · · · •
which finishes the proof of (3).

For (2), the degrees of the normal bundles in each case are obtained by using the
gluings between the open sets shown below, and the result follows.

Ui → Ui+1 : (d,D, u) �→ (d2D, d−1, u), i ≤ m− 1

Um → Um+1 : (d,D, u) �→ (u− 4d2D, d−1, u)
Um+1 → V ′m+2 : (C′, c′, B′) �→ (B′C′, c′C′, (C′)−1)
Um+1 → V ′′m+3 : (C′, c′, B′) �→ (B′C′, B′c′, (B′)−1)

U ′i → Ui+1 : (a, d,D) �→ (aD, a−1, ad), i ≤ m− 1

(a, d,D) �→ (ad− 4aD, a−1, ad), i = m

U ′i → V ′i+1 : (a, d,D) �→ (a2d,D, a−1), i ≤ m− 1

(a, d,D) �→ (a2d, d− 4D, a−1), i = m

U ′′i → U ′i+1 : (a, d,D) �→ (ad, d−1, dD), i ≤ m

U ′′i → U ′′i+1 : (a, d,D) �→ (a, d2D, d−1), i ≤ m− 2

(a, d,D) �→ (a, d−1, 1− 4d2D), i = m− 1

Ui → V ′i+1 : (d,D, u) �→ (du, dD, d−1), i ≤ m− 1

(d,D, u) �→ (du, d−1u− 4dD, d−1), i = m

V ′i → V ′′i+1 : (a′, u, C′) �→ (a′u, (a′)−1, a′C′), i ≤ m + 1

V ′′i → V ′′i+1 : (d,D,C′) �→ (d2D, d−1, C′), i ≤ m

(d,D,C ′) �→ ((C′)2 − 4d2D, d−1, C′), i = m + 1

(A, c′, C′) �→ (A, c′(C′)2, (C′)−1), i = m + 2

5.3. The tetrahedral group. Let G be the tetrahedral group of order 12. In
this case the McKay quiver and the relations derived by the potential W are the
following:

0

3

1 2

a A

b

B c

C

u v

uA = vA, au = av

uB = ωvB, bu = ωbv

uC = ω2vC, cu = ω2cv

Aa+ ωBb+ ω2Cc = u2

Aa+ ω2Bb+ ωCc = v2

Considering the arrows as linear maps between vector spaces we denote them

by a := (a1, a2, a3), A :=

(
A1

A2

A3

)
, b := (b1, b2, b3), B :=

(
B1

B2

B3

)
, c := (c1, c2, c3),

C :=

(
C1

C2

C3

)
, u :=

(
u11 u12 u13
u21 u22 u23
u31 u32 u33

)
and v :=

(
v11 v12 v13
v21 v22 v23
v31 v32 v33

)
.

The quiver structure of the CM SG-modules Sρ in this case is the following:
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S0

S3

S1 S2

(x,y,z)

(x
y
z

)

( x
w2y
wz

)
(x,w2y,wz)

(0 z 0
0 0 x
y 0 0

) (0 0 y
x 0 0
0 z 0

)

(x,wy,w2z)

(
x
wy

w2z

)

Fig. 7. The quiver structure of the CM SG-modules for G = T

Let us define the following polynomials which appear frequently in the rest of this
section.

f0 := x2 + y2 + z2, R0 := y2z2 + x2z2 + x2y2,
f1 := x2 + ω2y2 + ωz2, R1 := y2z2 + ωx2z2 + ω2x2y2,
f2 := x2 + ωy2 + ω2z2, R2 := y2z2 + ω2x2z2 + ωx2y2.
f3 := xyz,
f4 := (x2 − y2)(y2 − z2)(z2 − x2).

Notice that we have 3R0 = f2
0 − f1f2, 3R1 = f2

1 − f0f2, 3R2 = f2
2 − f0f1,

R3
0 = R1R2 + 3f0f

2
3 , R2

1 = R0R2 + 3f1f
2
3 , R2

2 = R0R1 + 3f2f
2
3 and R3

2 − R3
1 =

3f2
3 (f2R2 − f1R1), as some of the relations among these polynomials. The invariant

ring SG is generated by f0, f3, f1f2 and f4 (See [GNS00, §2]) but f1f2 = f2
0 − 3R0

holds, hence one can take R0 as a generator of SG instead of f1f2. There is only one
relation between these polynomials:

f2
4 + 4R3

0 − f2
0R

2
0 − 18f0R0f

2
3 + 4f3

0 f
2
3 + 27f4

3 .

Theorem 5.3. Let G be the tetrahedral group of order 12 and let π : Y → C3/G
be a crepant resolution. Then,

1. There exist 5 crepant resolutions of π : Xi → C3/G related by flops with the
following configuration:

X0

X1

X2

X12 X123

Moreover, X0
∼= G-Hilb(C3) and every Xi is described as the union of 4

open sets isomorphic to C3. The open covers are X0 = U0 ∪ U1 ∪ U2 ∪ U3,
X1 = U ′0 ∪U ′1 ∪U2 ∪U3, X2 = U0 ∪U1 ∪U ′2 ∪U ′3, X3 = U ′0 ∪U ′1 ∪U ′2 ∪U ′3 and
X4 = U ′0 ∪ U ′′1 ∪ U ′′2 ∪ U ′3, where the local coordinates in each open set are

U0
∼= C3

c2,c3,C1
= Spec[

f2
1 f3
R1

, f1R2

R1
, f2
f2
1
] U ′0 ∼= C3

c3,C1,C3
= Spec[ R2

f1f3
, f2f3

R1
,
f2
1 f3
R1

]

U1
∼= C3

c2,c3,C3
= Spec[ f2f3R1

, f2R2

f1R1
,
f2
1

f2
] U ′1 ∼= C3

c2,C1,C3
= Spec[ f1f3R2

, f2R2

f1R1
, f1R2

R1
]

U2
∼= C3

b2,b3,B3
= Spec[ f1f3R2

, f1R1

f2R2
,
f2
2

f1
] U ′2 ∼= C3

b2,B1,B3
= Spec[ f2f3R1

, f1R1

f2R2
, f2R1

R2
]

U3
∼= C3

b2,b3,B1
= Spec[

f2
2 f3
R2

, f2R1

R2
, f1
f2
2
] U ′3 ∼= C3

b3,B1,B3
= Spec[ R1

f2f3
, f1f3R2

,
f2
2 f3
R2

]

U ′′1 ∼= C3
B1,c1,C1

= Spec[ f1f3R2
, R0

f3
, f2f3R1

] U ′′2 ∼= C3
B1,c2,C1

= Spec[ f1R0

R2
, f3
R0

, f2R0

R1
]
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2. The dual graphs of π−1(0) in each crepant resolution with the corresponding
degrees for the normal bundles are:

• • •
(−1,−1) (−3, 1) (−1,−1)

• • •
(−1,−1) (−2, 0) (−1,−1)

• • •
(−1,−1) (−2, 0) (−1,−1)

• • •
(−1,−1) (−1,−1) (−1,−1)

• •

•

(−2, 0) (−2, 0)

(−1,−1)

Proof. We start by calculating explicitly G-Hilb(C3) as a moduli space of rep-
resentations of the McKay QP. Let θ0 be a 0-generated stability condition. Then
X0 := G-Hilb(C3) is covered by U0, U1, U2 and U3, where

U0 : aB = 1 aBbC = 1 a = (1, 0, 0) au = (0, 1, 0) b = (0, 0, 1)
U1 : aB = 1 aC = 1 a = (1, 0, 0) au = (0, 1, 0) b = (0, 0, 1)
U2 : aB = 1 aC = 1 a = (1, 0, 0) au = (0, 1, 0) c = (0, 0, 1)
U3 : aCcB = 1 aC = 1 a = (1, 0, 0) au = (0, 1, 0) c = (0, 0, 1)

First notice that by using the relations we have that auB = avB = ω2auB, which
implies auB = 0. Similarly we obtain that following paths vanish:

auB = avB = auC = avC = buA = bvA = buC = bvC = cuA = cvA = cuB = cvB = 0 (#)

We split the calculation this time in 5 steps:
(i) By changing basis we can assume that a = (1, 0, 0).
(ii) If aB = aC = 0, then it follows auivjB = auivjC = 0 by the relations of

the middle vertex, which contradicts the 0-generated stability condition θ.
Therefore either aB 
= 0 or aC 
= 0. Moreover we may assume that aB = 1
or aC = 1 by change of basis.

(iii) We consider the case aB = 1 and aC = 0. If aBbC = 0, then it turns
out that any path through C is zero by the relations. This contradicts the
0-generated condition. So it must be aBbC 
= 0 and b not a linear multiple
of a. We may assume aBbC = 1 and b = (0, 0, 1). Next assume that au =
(λ, 0, η) for some λ, η ∈ C. Since auC = 0 by (#), and C1 = 0, C3 = 1 by
aC = 0, ABbC = 1, it follows that η = 0. Moreover since auB = 0 by (#),
and B1 = 1 by aB = 1, it follows that λ = 0 hence au = 0, which leads to
aBbC = aAaC + ωaBbC + ω2aCcC = au2 = 0. This contradicts aBbC = 1,
hence au is linear independent of (1, 0, 0) and (0, 0, 1). Therefore we can take
au = (0, 1, 0) by change of basis. These are the conditions for U0.

(iv) The case aB = 0 and aC = 1 is similar to (iii). This case leads to U3.
(v) Consider the case aB = aC = 1. If au = (λ, 0, 0) for some λ ∈ C, because

auB = 0 and B1 = 1, we must have λ = 0, hence au = 0. The relations
aAa+ ωaBb+ ω2aCc = au2 and aAa+ ω2aBb+ ωaCc = av2 means⎧⎨⎩

A1 + ωb1 + ω2c1 = 0
ωb2 + ω2c2 = 0
ωb3 + ω2c3 = 0

⎧⎨⎩
A1 + ω2b1 + ωc1 = 0

ω2b2 + ωc2 = 0
ω2b3 + ωc3 = 0

hence it follows b1 = c1 and b2 = c2 = b3 = c3 = 0, that is, b = c = (b1, 0, 0).
This means we cannot generate the middle vertex, which contradicts the 0-
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generated condition. Therefore au is not a linear multiple of a, hence we can
assume au = (0, 1, 0).
We claim that if both of b and c are linear multiple of a and au, then it
contradicts the 0-generated condition. Indeed, if we assume b = (b1, b2, 0)
and c = (c1, c2, 0), the relations aAa + ωaBb + ω2aCc = au2 and aAa +
ω2aBb+ ωaCc = av2 are equivalent to⎧⎨⎩

A1 + ωb1 + ω2c1 = u21

ωb2 + ω2c2 = u22

0 = u23

⎧⎨⎩
A1 + ω2b1 + ωc1 = v21

ω2b2 + ωc2 = v22
0 = v23

Therefore

au2 = (0, 1, 0)u = (u21, u22, u23) = (u21, u22, 0),

av2 = (0, 1, 0)u = (v21, v22, v23) = (v21, v22, 0),

which are linear combinations of a and au. Therefore we can not generate the
middle vertex. Consequently it must be b = (0, 0, 1) or c = (0, 0, 1). These
conditions give U1 and U2 respectively.
We show in Figure 8 the representation spaces for each open set inG-Hilb(C3).

0

3

1 2

(1,0,0)
(

c1C1+c3
c2(1−A1C1)
c1+c3A1

)

(0,0,1)( 1
0
A1

)
(c22C1 − c23,c2,c3)

(
C1
0
1

)

( 0 1 0
u21 ω2c2C1 u23

ω2c2 -ω2c3 -ω2c2C1

) (
0 1 0

v21 ωc2C1 v23
ωc2 -ωc3 -ωc2C1

)

u21 = c3 − ωc1C1

u23 = ω + ω2c3C1
v21 = c3 − ω2c1C1
v23 = ω2 + ωc3C1

U0
∼= C3

c2,c3,C1

0

3

1 2

(1,0,0)

(
c1+c3C3

c2(C3−A1)

(c1c3+c22)C3

)

(0,0,1)( 1
0
A1

)
(c22 − c23C3,c2,c3)

( 1
0
C3

)

( 0 1 0
u21 ω2c2 u23

ω2c2C3 -ω2c3C3 -ω2c2

) (
0 1 0

v21 ωc2 v23
ωc2C3 -ωc3C3 -ωc2

)

u21 = c3C3 − ωc1

u23 = ω + ω2c3
v21 = c3C3 − ω2c1

v23 = ω2 + ωc3

U1
∼= C3

c2,c3,C3

0

3

1 2

(1,0,0)

(
b1+b3B3

b2(B3−A1)

(b1b3+b22)B3

)

(b1,b2,b3)( 1
0
B3

)
(0,0,1)

( 1
0
A1

)

(
0 1 0

u21 ωb2 u23
ωb2B3 -ωb3B3 -ωb2

) ( 0 1 0
v21 ω2b2 v23

ω2b2B3 -ω2b3B3 -ω2b2

)

b1 = b22 − b23B3
u21 = b3B3 − ω2b1

u23 = ω2 + ωb3
v21 = b3B3 − ωb1

v23 = ω + ω2b3

U2
∼= C3

b2,b3,B3

0

3

1 2

(1,0,0)
(

b1B1+b3
b2(1−A1B1)
b1+b3A1

)

(b1,b2,b3)(
B1
0
1

)
(0,0,1)

( 1
0
A1

)

(
0 1 0

u21 ωb2B1 u23
ωb2 -ωb3 -ωb2B1

) ( 0 1 0
v21 ω2b2B1 v23
ω2b2 -ω2b3 -ω2b2B1

)

b1 = b22B1 − b23
u21 = b3 − ω2b1B1
u23 = ω2 + ωb3B1
v21 = b3 − ωb1B1

v23 = ω + ω2b3B1

U3
∼= C3

b2,b3,B1

Fig. 8. Representation spaces for the open covering of T-Hilb(C3).

We calculate now the local coordinates along the exceptional curves using the
quiver shown in Figure 7. For example in the open set U0

∼= C3
c2,c3,C1

, we have that

aC = C1·(the basis of ρ2)

which implies that f2 = C1f
2
1 , thus C1 = f2/f

2
1 . Similarly,

aA = (c1C1 + c3) · 1 =⇒ c1 = (f0 − c3)f
2
1 /f2

aBbA = (c1 + c3A1) · 1 =⇒ f1f2 = c1 + c3f0
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which gives c3 = −f1R2/R1. Finally auA = 3
√
3f3 = c2(1 − A1C1) · 1, so that

c2 =
√
3f3f

2
1/R1. Therefore (after rescaling) the coordinate ring of U0 is given by

C[c2, c3, C1] = C
[
f3f

2
1

R1
, f1R2

R1
, f2
f2
1

]
. The rest of the cases are done similarly.

It follows that the fibre over the origin π−1(0) ⊂ X0 consists of 3 rational curves
E1, E2 and E3 intersecting pairwise as

•
E1

•
E3

•
E2

The explicit open cover shows that the curves E1 and E2 have degree (−1,−1)
while E3 has degree (−3, 1). By Lemma 7.1 we can flop E1 and E2, giving rise to X1

and X2 respectively. By symmetry we only explain the flop of E2.
First Flop X2. In the flop of the rational curve E2 we only need to change the

open sets U2 and U3. By the same method as in the dihedral case we produce the
rational curve E′2 covered by open sets U ′2 and U ′3, both of them isomorphic to C3,
and given by

U ′2 b2 = 1 aC = 1 a = (1, 0, 0) au = (0, 1, 0) c = (0, 0, 1)
U ′3 b3 = 1 aC = 1 a = (1, 0, 0) au = (0, 1, 0) c = (0, 0, 1)

0

3

1 2

(1,0,0)

(
b1B1+B3

b2(B3−B1A1)

(b1+b22)B1B3

)

(b1,b2,1)(
B1
0
B3

)
(0,0,1)

( 1
0
A1

)

(
0 1 0

u21 ωb2B1 u23
ωb2B3 -ωB3 -ωb2B1

) (
0 1 0

v21 ω2b2B1 v23
ω2b2B3 -ω2B3 -ω2b2B1

)

b1 = b22B1 − B3
u21 = −ω2b1B1 + B3

u23 = ω2 + ωB1
v21 = −ωb1B1 + B3

v23 = ω + ω2B1

U ′
2
∼= C3

b2,B1,B3

0

3

1 2

(1,0,0)
(

b1B1+b3B3
B3−B1A1

(b1b3+1)B1B3

)

(b1,1,b3)(
B1
0
B3

)
(0,0,1)

( 1
0
A1

)

(
0 1 0

u21 ωB1 u23
ωB3 -ωb3B3 -ωB1

) (
0 1 0

v21 ω2B1 v23
ω2B3 -ω2b3B3 -ω2B1

)

b1 = B1 − b23B3
u21 = −ω2b1B1 + b3B3

u23 = ω2 + ωb3B1
v21 = −ωb1B1 + b3B3

v23 = ω + ω2b3B1

U ′
3
∼= C3

b3,B1,B3

Second flop X12. In X1 we can flop E′2 obtaining X0 back, or E1. In the latter
case we get the new curve E′1 covered by U ′0 and U ′1, both of the isomorphic to C3.
The conditions for the new open sets are:

U ′0 c2 = 1 aB = 1 a = (1, 0, 0) au = (0, 1, 0) b = (0, 0, 1)
U ′1 c3 = 1 aB = 1 a = (1, 0, 0) au = (0, 1, 0) b = (0, 0, 1)

0

3

1 2

(1,0,0)
(

c1C1+C3
C3−C1A1

(c1c3+1)C1C3

)

(0,0,1)( 1
0
A1

)
(C1 − c23C3,1,c3)

(
C1
0
C3

)

(
0 1 0

u21 ω2C1 u23

ω2C3 -ω2c3C3 -ω2C1

) (
0 1 0

v21 ωC1 v23
ωC3 -ωc3C3 -ωC1

)

u21 = −ωc1C1 + c3C3

u23 = ω + ω2c3C1
v21 = −ω2c1C1 + c3C3

v23 = ω2 + ωc3C1

U ′
0
∼= C3

c3,C1,C3

0

3

1 2

(1,0,0)

(
c1C1+C3

c2(C3−C1A1)

(c1+c22)C1C3

)

(0,0,1)( 1
0
A1

)
(c22C1 − C3,c2,1)

(
C1
0
C3

)

(
0 1 0

u21 ω2c2C1 u23

ω2c2C3 -ω2C3 -ω2c2C1

) (
0 1 0

v21 ωc2C1 v23
ωc2C3 -ωC3 -ωc2C1

)

u21 = −ωc1C1 + C3

u23 = ω + ω2C1
v21 = −ω2c1C1 + C3

v23 = ω2 + ωC1

U ′
1
∼= C3

c2,C1,C3

Third flop X123. The degree of the normal bundle of the curve E3 in X12 is now
(−1,−1) so we can perform the last flop. We obtain the open sets U ′′1 and U ′′2 given
by:

U ′′1 c2 = c3 = 1 a = (1, 0, 0) au = (0, 1, 0) b = (0, 0, 1)
U ′′2 c1 = c3 = 1 a = (1, 0, 0) au = (0, 1, 0) b = (0, 0, 1)
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0

3

1 2

(1,0,0)
( c1C1+C3

−C1A1+B1C3

C1(A1−c21)

)

(0,0,1)(
B1
0
A1

)
(c1,1,1)

(
C1
0
C3

)

( 0 1 0
C3-ωC1c1 ω2C1 u23

ω2(A1-C1c1) u32 -ω2C1

) (
0 1 0

v21 ωC1 v23
v31 v32 -ωC1

)

C3 = B1(C1 − c1)

u23 = ω2C1 + ωB1
u32 = −ω2(C1 − c1)

v21 = C3 − ω2C1c1
v23 = ωC1 + ω2B1
v31 = ω(A1 − C1c1)

v32 = −ω(C1 − c1)

U ′′
1
∼= C3

B1,c1,C1

0

3

1 2

(1,0,0)
( C1+C3

−c2C1A1+c2B1C3

C1(c
2
2A1−1)

)

(0,0,1)(
B1
0
A1

)
(1,c2,1)

(
C1
0
C3

)

( 0 1 0
u21 ω2c2C1 u23

ω2c2C3 u32 -ω2c2C1

) (
0 1 0

v21 ωc2C1 v23
ωc2C3 v32 -ωc2C1

)

C3 = B1(c22C1 − 1)

u21 = C3 − ωC1

u23 = ω2C1 + ωB1
u32 = −ω2(c22C1 − 1)

v21 = −ω2C1 + C3
v23 = ωC1 + ω2B1
v32 = −ω(c22C1 − 1)

U ′′
2
∼= C3

B1,c2,C1

The normal bundles of the rational curves in the fibre over the origin are obtained
by the explicit gluings among the open sets covering the curves. These gluings are
given below and the result follows.

U0 → U1 : (c2, c3, C1) �→ (c2C1, c3C1, C
−1
1 )

U1 → U2 : (c2, c3, C3) �→ (c2c
−1
3 , c−1

3 , c33C3 − 3c22(c3 − 1))
U2 → U3 : (b2, b3, B3) �→ (b2B3, b3B3, B

−1
3 )

U0 → U1 : (c2, c3, C1) �→ (c2C1, c3C1, C
−1
1 )

U1 → U ′
2 : (c2, c3, C3) �→ (c2, c

−1
3 , c23C3 − 3c22(1− c−1

3 ))
U ′

2 → U ′
3 : (b2, B1, B3) �→ (b−1

2 , b2B1, b2B3)
U ′

0 → U ′
1 : (c3, C1, C3) �→ (c−1

3 , c3C1, c3C3)
U ′

1 → U ′
2 : (c2, C1, C3) �→ (c2C1, C

−1
1 , C1C3 − 3c22C1(C1 − 1)))

U ′
2 → U ′

3 : (b2, B1, B3) �→ (b−1
2 , b2B1, b2B3)

U ′
0 → U ′′

1 : (c3, C1, C3) �→ (c−1
3 , c23C3 − 3C1, C1)

U ′′
2 → U ′′

1 : (B1, c2, C1) �→ (B1c2, c
−1
2 , c2C1)

U ′
3 → U ′′

1 : (b3, B1, B3) �→ (B1, b
2
3B3 − 3B1, b

−1
3 )

5.4. Proof of Theorem 1.1. The proof is explicit and it follows from the direct
comparison between every mutation of (Q,W ) at non-trivial vertices with no loops
and the description of every crepant resolution of C3/G given in Sections 4.1 and 5
respectively.

The case G ∼= Z/nZ is immediate, there are no flops of X and no mutations of
(Q,W ) since every vertex has a loop.

For the rest of the cases, note that in every projective crepant resolution π :
X → C3/G the dual graph of the exceptional fibre π−1(0) =

⋃
Ei (described in the

part (3) of Theorems 5.1, 5.2 and part (2) in Theorem 5.3) coincide with the graph
associated to the corresponding mutated quiver in Section 4.1 removing the trivial
vertex. Recall that the graph of a quiver Q is obtained by forgetting the direction of
the arrows. More precisely,

For G ∼= D2n, n odd: Dual graph of π−1
i (0) = Graph of Qi\0

For G ∼= D2n, n even: Dual graph of π−1
ij (0) = Graph of Q

m...(m−j)
0...i \0

For G ∼= T: Dual graph of π−1(0) = Graph of Qi\0

and it follows that flopping the curve Ei corresponds to mutate with respect to the
vertex i. This also proves Corollary 1.3.

Remark 5.4. Part (ii) of Corollary 1.3 also follows by direct comparison, al-
though it is an expected fact since the dimension of the fibres is one. Indeed, since
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Db(X) ∼= Db(Λ) with Λ := EndR(M) we have that

loops at a vertex k = dimC Ext1A(Sk, Sk)

= dimC HomDb(Λ)(Si, Si[1])

= dimC HomDb(X)(OEk
(−1),OEk

(−1)[1])

= dimC Ext1X(OEk
,OEk

)

= dimC H0(NEk
|X)

and the three possible cases give H0(O(−1)⊕O(−1)) = 0, H0(O(−2)⊕O) = C and
H0(O(−3) ⊕ O(1)) = C2. We want to thank M. Wemyss for explaining this fact to
us.

Example 5.5. In the case D2n for n = 7 there are 4 non-equivalent QPs, as
shown in Figure 9.

�

0′

1 2 3

�

0′

1 2 3

�

0′

1 2 3

�

0′

1 2 3

(−1,−1) (−2, 0) (−2, 0) (−3, 1) (−1,−1) (−1,−1) (−2, 0) (−3, 1) (−2, 0) (−1,−1) (−1,−1) (−3, 1) (−2, 0) (−2, 0) (−1,−1) (−2, 0)

μ0′ μ1 μ2

Fig. 9. Mutations QC and the corresponding fibre over the origin in MC for the dihedral group
of type D14 ⊂ SO(3).

6. The space of stability conditions. Let G ⊂ SO(3) of type Z/nZ, D2n or
T, let Q be the McKay quiver, take X ∼= MC to be a projective crepant resolution
of C3/G for some chamber C ⊂ Θ, and fix the open cover of X given in Section 5.
Then every open set U ⊂ X is isomorphic to C3

a,b,c where a, b and c are the local

coordinates of C3 given in Theorems 5.1, 5.2 and 5.3. For a given point (a, b, c) ∈ U
we denote the corresponding representation by Ma,b,c ∈ MC .

Fix θ ∈ C. For any θ-stable representation Ma,b,c ∈ U , the explicit knowledge
of the representation space of U gives every possible subrepresentation of Ma,b,c. In
other words, the analysis of the matrices in the representation space of every open set
in the open cover of X give the inequalities defining the chamber C ⊂ Θ. In order to
do this analysis we encode the structure of the representation space of an open set by
using its skeleton.

Definition 6.1. Under the above conditions, we call skeleton sk(U) of U the
representation of Q corresponding to the origin 0 ∈ U .

Once we choose basis for the vector spaces at every vertex of Q, the skeleton is
obtained by setting a = b = c = 0, i.e. sk(U) = M0,0,0.

Example 6.2. Let G = 1
3 (1, 2, 0) and consider X = G-Hilb(C3) ∼= MC0 , where

C0 contains the 0-generated stability condition. Then X is covered by 3 open sets
Ui

∼= C3 for i = 1, 2, 3 with skeletons

0

1

2 0

1

2 0

1

2
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where only the non-zero arrows in sk(Ui), for i = 1, 2, 3, are represented in the figure.
The chamber C0 is therefore defined by θ1, θ2 > 0.

As a consequence of the next lemma, if there exists a finite open
cover of MC =

⋃N
i=1 Ui and we define Csk := {θ ∈ Θ|θ(N) >

0 for every 0 � N � sk(Ui) and every i}, then C = Csk.

Lemma 6.3. Let θ ∈ Θ be a generic parameter. If M0,0,0 is θ-stable then Ma,b,c

is θ-stable.

Proof. Let (a, b, c) ∈ U and let Ma,b,c be the corresponding representation. For
every proper subrepresentation Na,b,c ⊂ Ma,b,c , the dimension vectors for Na,b,c and
N0,0,0 coincide. Therefore since N0,0,0 ⊂ M0,0,0 and M0,0,0 is θ-stable we have that
θ(Na,b,c) = θ(N0,0,0) > 0.

Theorem 6.4. (i) Let G = D2n with n odd and let Xi be a crepant resolution of
C3/G. The chamber Ci ⊂ Θ for which Xi

∼= MCi
is given by the inequalities:

θk > 0 for k 
= 0, 1,
θ1 < 0,
θ1 + θ2 < 0,

...
θ1 + θ2 + . . .+ θi < 0,
θ1 + θ2 + . . .+ θi + θi+1 > 0.

The wall between Ci and Ci+1 is defined by θ1 + θ2 + . . .+ θi + θi+1 = 0.

(ii) Let G = D2n with n even and let X
m...(m−j)
0...i be a crepant resolution of C3/G.

The chamber Cij ⊂ Θ for which X
m..(m−j)
0..i

∼= MCij
is given by the inequalities:

θk > 0 for k 
= 0, 1,m+ 1, θ1 < 0, θ1 + θ2 < 0, . . . ,
∑i

k=1 θk < 0,∑m+1
k=1 θk > 0, θm+1 < 0, θm + θm+1 < 0, . . . ,

∑m+1
k=m−j+1 θk < 0,∑m

k=1 θk + θm+2 > 0,
∑i+1

k=1 θk > 0,

θm+1 + θm+2 > 0,
∑m+1

k=m−j θk > 0.

The wall between Ci,j and Ci+1,j is defined by
∑i+2

k=1 θk = 0, and the wall between

Ci,j and Ci,j+1 is given by
∑m+1

k=m−j+1 θk = 0.
(iii) Let G be the tetrahedral group of order 12 and let Xi be a crepant resolution

of C3/G. The chamber Ci ⊂ Θ for which Xi
∼= MCi

is given by the inequalities:

C0 : θi > 0, i 
= 0
C1 : θ1 < 0, θ2 > 0, θ1 + θ3 > 0
C2 : θ1 > 0, θ2 < 0, θ2 + θ3 > 0
C12 : θ1 < 0, θ2 < 0, θ1 + θ2 + θ3 > 0
C123 : θ1 + θ3 > 0, θ2 + θ3 > 0, θ1 + θ2 + θ3 < 0

Proof. (i) Consider the open cover of Xi given in Theorem 5.1 and let M ∈ Xi be
a representation of Q. We calculate for which parameters θ ∈ Θ the representation
M is θ-stable. By the representation spaces of every open set we can see that the
skeletons for the open sets Ui, U

′
i and U ′′i are:
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U ′1

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

Ui (2 ≤ i ≤ m + 1)

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•
•

•
•

· · ·
· · ·

•
•

•
•

i−2

Um+2

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

U ′i (1 ≤ i ≤ m + 1)

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•
•

•
•

· · ·
· · ·

•
•

•
•

i−2

U ′′i (1 ≤ i ≤ m)

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•
•

•
•

· · ·
· · ·

•
•

•
•

i−2

Every dot in the above picture corresponds to a basis element in the corresponding
vector space in a representation of Q. Notice that the dimension vector is 1

1 2. . . 2 so
that there is one dot for each 1-dimensional vertex and two dots for each 2-dimensional
vertex.

We order the subindices of the stability condition θ := (θi)0≤i≤m+1 ∈ Q|Q0| by
the sequence 0

1 2. . .m+1 along the vertices of Q. Let si := 0
0 0. . . 010. . . 0 be the di-

mension vector with entry 1 at the position i. With this notation, we see that every
θ-stable submodule in the open sets U ′′1 , . . . , U

′′
i contains a submodule with dimension

vector s2, . . . , si+2 respectively. Similarly, there exist a submodule of dimension vec-
tor si+3, . . . , sm+2 in any θ-stable module contained in Ui+2, . . . , Um+2 respectively.
Therefore we have that θi > 0 for i ≥ 2.

The rest of the condition follows by examining the remaining submodules. If
Mi ∈ U ′′i then there exist a submodule Wi ⊂ Mi with dim(Wi) = 1

0 1. . . 12. . . 2 where
the first 2 is located in the position i+1. This imply that θ1 + . . .+ θi < 0. Finally if
Ni+1 ∈ U ′i+1 then there exist a submodule Vi+1 ⊂ Ni+1 with dim(Vi+1) = 0

1 1. . . 10. . . 0

where the last 1 is located in the position i+ 1, which means that
∑i+1

i=1 θi > 0.

Any other inequalities coming from the submodules of M ∈ MC are implied by
the ones we have just described, so the chamber C is defined by the inequalities of the
statement. By comparing the chamber conditions of X0...i and X0...(i+1) we obtain
the equation of the wall.

(ii) This time we order the subindices of the stability condition θ := (θi)0≤i≤m+2 ∈
Q|Q0| by the sequence 0

1 2 . . .m
m+1
m+2 along the vertices of Q. The skeletons of the open

sets in this case are as follows:
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Ui (2 ≤ i ≤ m)

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•

i−2

Um+1

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•
V ′m+2

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•
V ′′m+3

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•

U ′i (2 ≤ i ≤ m)

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•

i−2

U ′m+1

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•

U ′′i (1 ≤ i ≤ m−1)

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•

i−1

U ′′m

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•

V ′i (2 ≤ i ≤ m+1)

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•

i−2

V ′′i (3 ≤ i ≤ m+2)

•

•

•
•

•
•

· · ·
· · ·

•
•

•
•

•
•

•
•

· · ·
· · ·

•
•

•
•

•

•

i−3

Consider the open cover of X
m...(m−j)
0...i given in 5.2 and let M ∈ X

m...(m−j)
0...i be a

representation of Q. We now define the dimension vectors which are relevant in the
proof, together with the corresponding inequality that any submodule N ⊂ M with
one of these dimension vectors produce:

Dimension vector Inequality in Θ

si := 0
0

0 · · · 0 1 0 · · · 0 0
0

i
θi > 0

ri := 0
1

1 · · · 1 1 0 · · · 0 0
0

i ∑i
k=1 θk > 0

ni := 0
0

0 · · · 0 1 1 · · · 1 1
0

i ∑m+1
k=i θk > 0

ei := 0
0

0 · · · 0 1 1 · · · 1 1
1

i ∑m+2
k=i θk > 0

ci := 1
0

1 · · · 1 1 2 · · · 2 1
1

i ∑i
k=1 θk < 0

di :=
1
1

2 · · · 2 1 1 · · · 1 0
1

i ∑m+1
k=i θk < 0

j := 0
1

1 · · · 1 0
1

∑m
k=1 θk + θm+2 > 0

Note that r1 = s1, nm+1 = sm+1 and rm+1 = n1.

The following Lemma shows the presence of the first two inequalities of the The-
orem, namely θk > 0 for k 
= 0, 1,m+ 1, and

∑m+1
k=1 θk > 0.

Lemma 6.5. (i) θi > 0 for all i 
= 0, 1,m+ 1.
(ii) There always exists a submodule N1 ⊂ M with dim(N1) = n1.

Proof. (i) By the open covers given in Theorem 5.2 (1) and the corresponding
skeletons, any crepant resolution of C3/G has at least one open set containing a
submodule Si with dim(Si) = si for i = 2, . . . ,m,m+ 2. In the cases i = 0, 1,m+ 1
note that S0 do not belong to any open set so that there’s no condition of the form
θ0 > 0. The submodule S1 is only contained in U ′1 and U2, which implies that only
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Xm...(m−j) for any j have the condition θ1 > 0. Finally, only Um+1 and V ′m+2 contain
the submodule Sm+1, so that the condition θm+1 > 0 only is valid in X0...k for any k.

(ii) Notice that for every k the submodule N1 ∈ U ′k, V
′
k, and every X

m...(m−j)
0...i contains

at least one of these affine sets. This finishes the proof of the lemma.

The dimension vectors that we have to consider in every open set are the follow-
ing:

Open set Dimension vectors
Ui si−1, si, ri−1, ni (2 ≤ i ≤ m)

Um+1 sm, sm+1, sm+2, rm
V ′m+2 sm+1, n1

V ′′m+3 sm+2, j, em+1

U ′i si, ri, ni, n1, c1, . . . , ci−1 (1 ≤ i ≤ m)

U ′m+1 sm+1, sm+2, nm, n1, cm
U ′′i si+1, ni+1, c1, . . . , ci (i ≤ m− 1)

U ′′m sm+1, sm+2, j, cm
V ′i si−1, sm+2, ri−1, ni−1, n1, j, di, . . . , dm+1

V ′′i si−2, si−1, sm+2, ri−2, ei−1, di−1, . . . , dm+1 (i ≤ m + 1)

V ′′m+2 sm, sm+2, rm, em, dm+1

The result follows by going through the open cover of X
m..(m−j)
0..i

∼= MCij
given in

Theorem 5.2, and writing down the corresponding inequalities.

(iii) The skeletons in this case are:

•

•
•
•

• •

•

•
•
•

• •

•

•
•
•

• •

•

•
•
•

• •

•

•
•
•

• •

•

•
•
•

• •

•

•
•
•

• •

•

•
•
•

• •

•

•
•
•

• •

•

•
•
•

• •

U0 U1 U2 U3 U ′′1

U ′0 U ′1 U ′2 U ′3 U ′′2

As expected, only the skeletons for Ui, i = 0, . . . , 3 are generated from the vertex 0.
Indeed, this is equivalent to the 0-generated stability condition which only G-Hilb(C3)
satisfies.

Now take the open covers of Xi given in Theorem 5.3. Then the inequalities
defining the chambers Ci for which Xi

∼= MCi
are given by the submodules of the

above skeletons, and the result follows.

Remark 6.6. The set of inequalities in Theorem 6.4 does not give the reduce
description of the chamber C ⊂ Θ. Nevertheless, for any crepant resolution the
minimum number of walls or inequalities defining C is precisely |Q0| − 1, which coin-
cides with the number of components of the fibre over the origin (or the number of
non-trivial irreducible representations of G).
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If for d := (dim ρi)i∈Q0 we consider the dual graph T of Θd (that is, one vertex
for each chamber and an edge between two vertices if the corresponding chambers are
separated by a wall), as a consequence of the previous theorem we have the following
corollary.

Corollary 6.7. There exists a path in T where every crepant resolution of
C3/G can be found and such that every wall crossing in T corresponds to a flop.

This nice distribution contrast for example with the general case for Abelian
groups in SL(3,C), where it can happen that finitely many wall crossings (of Types
0 or III) are needed to connect two crepant resolutions related by a single flop. See
[CI] for more details.

6.1. Stability conditions and mutations. In this section we compare the
classical approach of changing the stability condition on the representations of the
McKay QP to obtain all crepant resolutions of C3/G with the mutation approach,
which change the QP but not the stability.

Let G ⊂ SO(3) of type Z/nZ, D2n or T, and let (Q,W ) be the Mckay QP.
Let ZQ0 be the space of dimension vectors, with canonical basis {e0, e1, . . . , en}.
Let HomZ(Z

Q0 ,Z) be the dual space with the dual basis e∗0, e
∗
1, . . . , e

∗
n and define

Θ := HomZ(Z
Q0 ,Z) ⊗ Q the whole parameter space. Let d =

∑
i∈Q0

(dim ρi)ei with
ρi ∈ IrrG.

Let μ(Q,W ) a QP obtained by a sequence of mutations μ = μi1 · · ·μim from the
McKay QP. We denote by Λ = P(μ(Q,W )) the Jacobian algebra. We fix a vertex
i ∈ Q0 with no loops and let Pi be the projective Λ-module and Si the simple module
associated to the vertex i. Then, as in [BIRS] Proposition 4.2, there is an exact
sequence of the form

0 → Pi → X2 =
⊕

a∈Q1,ha=i

Pta → X1 =
⊕

a∈Q1,ta=i

Pha
f→ Pi → Si → 0. (6.1)

Let (−,−) be a symmetric bilinear form on ZQ0 defined by

(ei, ej) =

{
2 i = j

−#(i → j) i 
= j

In our case, if i and j are adjacent, then we can see that there is only one arrow from
i → j, so (ei, ej) is −1.

We define (M,N) := (dimM, dimN) := (dimM, dimN) for any finite dimen-
sional Λ-modules M,N . We denote by si the reflection with respect to a vertex i,
which is defined by

siα := α− (α, ei)ei

for any dimension vector α ∈ ZQ0 and dually

siθ := θ − θi

n∑
j=0

(ei, ej)e
∗
j .

Trivially, for any dimension vector α, θ(α) = 0 if and only if (siθ)(siα) = 0. For
a sequence μ = μi1 · · ·μim of mutations, we consider the corresponding sequence of
reflections ω = si1 · · · sim . Then dimension vectors ωd determine parameter spaces



FLOPS AND MUTATIONS FOR POLYHEDRAL SINGULARITIES 39

Θωd. Let θ
0 ∈ Θωd be the 0-generated stability condition and C0 the chamber in Θωd

defined by the inequalities of θ0i > 0 for i 
= 0.

Lemma 6.8. The chamber of Mθ0,ωd(Λ) is C0.

Proof. It follows from direct calculations that all simple modules associated to
vertices can be a subrepresentation of some point in Mθ0,ωd(Λ)

Recall that by the one-to-one correspondence between flops of G-Hilb(C3) and
mutations of the McKay QP, for any projective crepant resolution X ∼= MC for some
C ⊂ Θ there exists a corresponding iterated QP (QC ,WC) obtained by a sequence of
mutations from the McKay QP. The goal of this subsection is the next result.

Theorem 6.9. Let X → C3/G be an arbitrary projective crepant resolution,
that is X ∼= MC for some C ⊂ Θ. Then X ∼= Mθ0,ωd(Γ) for the Jacobian algebra
Γ := P(QC ,WC) and the 0-generated stability condition θ0. Moreover, there exists a
corresponding sequence of wall crossings from G-Hilb(C3) which leads to X ∼= Mθ,d(Λ)
where Λ = P(Q,W ), d = (dim ρi)ρi∈IrrG and the chamber C ⊂ Θd containing θ is
given by the inequalities θ(ω−1ei) > 0 for any i 
= 0.

The rest of the section is dedicated to prove the above theorem.

Definition 6.10. For any parameter θ ∈ Θ, we define the full subcategory
Sθ(Λ) of ModΛ consisting of θ-semistable finite dimensional Λ-modules. Moreover we
denote by Sθ,α(Λ) the full subcategory of Sθ(Λ) consisting of θ-semistable Λ-modules
of dimension vector α if Sθ,α(Λ) is not empty.

In the exact sequence (6.1), let Ki be the kernel of f fitting in the exact sequence

0 → Ki
g→ X1

f→ Pi → Si → 0. (6.2)

Then it can be checked that Ti := Λ/Pi ⊕Ki is a tilting Λ-module of projective
dimension one. We put Γ = EndΛ(Ti). By a similar strategy as in [BIRS], it follows
that Γ � P(μiω(Q,W )).

Lemma 6.11. Let M be a finite dimensional Λ-module of dimension vector α =
(αk). Then the alternating sum of the dimension vector of RHomΛ(Ti,M) is given by
the following formula:

dimΓ HomΛ(Ti,M)− dimΓ Ext
1
Λ(Ti,M) = siα.

Proof. For each j ∈ Q0, ej denotes the corresponding idempotent of Λ. The
following hold:

HomΛ(Ti,M)ej � HomΛ(ejTi,M) =

{
HomΛ(Ki,M) if j = i

HomΛ(Pj ,M) if j 
= i

and

Ext1Λ(Ti,M)ej � Ext1Λ(ejTi,M) =

{
Ext1Λ(Ki,M) if j = i

0 if j 
= i.

By applying HomΛ(−,M) to the exact sequence 0 → Pi → X2 → Ki → 0, we have

0 → HomΛ(Ki,M) → HomΛ(X2,M) → HomΛ(Pi,M) → Ext1Λ(Ki,M) → 0.
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Hence we have

dimC HomΛ(Ki,M)−dimC Ext1Λ(Ki,M) = dimC HomΛ(X2,M)−dimC HomΛ(Pi,M).

so that dimΓ HomΛ(Ti,M)− dimΓ Ext
1
Λ(Ti,M) is equal to∑

j �=i

αjej + (dimC HomΛ(Ki,M)− dimC Ext1Λ(Ki,M))ei

=
∑
j �=i

αjej + (
∑

a∈Q1,ha=i

αta − αi)ei = α− (2αi −
∑

a∈Q1,ha=i

αta)ei = α− (α, ei)ei.

We have a similar result as in the two dimensional case treated in [SY].

Theorem 6.12. If θi > 0, then there is an equivalence

Sθ(Λ)
HomΛ(Ti,−)

�� Ssiθ(Γ)−⊗ΓTi

��

of categories which preserves S-equivalence classes. Moreover this equivalence induces
an isomorphism

Mθ,α(Λ) ∼= Msiθ,siα(Γ)

of varieties for any α ∈ ZQ0 .

Proof. Since Ti is a tilting module, there is a derived equivalence

D(ModΛ)
RHomΛ(Ti,−)

�� D(ModΓ).

− L⊗ΓTi

��

The functor RHomΛ(Ti,−) induces a functor HomΛ(Ti,−) from Sθ(Λ) to modΓ.
We show that HomΛ(Ti,−) is well-defined. Let M be a θ-semistable Λ-module of
dimension α. By applying HomΛ(−,M) to the exact sequence (6.2) and using the
fact that Λ is 3-CY, we have

Ext1Λ(Ti,M) � Ext3(Si,M) � DHomΛ(M,Si).

Since θi > 0, M doesn’t have Si as a factor. So we have HomΛ(M,Si) = 0, hence
Ext1Λ(Ti,M) = 0. Next we show that M ′ = HomΛ(Ti,M) is siθ-semistable. By
Lemma 6.11 we have

(siθ)(M
′) = (siθ)(dimΓ HomΛ(Ti,M)) = (siθ)(siα) = θ(α) = 0.

We take any proper submodule N ′ of M ′ and consider the following exact sequence

0 → N ′ → M ′ → C → 0.

By applying −⊗Γ Ti to the above, since TorΓ1 (M
′, Ti) = 0 we have an exact sequence

0 → TorΓ1 (C, Ti) → N ′ ⊗Γ Ti
f→ M ′ ⊗Γ Ti � M.
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We have TorΓ1 (N,Ti)ej = TorΓ1 (N,Tiej) = 0 since Tiej � HomΛ(Λ, Ti)ej �
HomΛ(Pj , Ti) is a projective Γop-module. So dimΓ Tor

Γ
1 (C, Ti) = emi for some non-

negatve integer m. Since TorΓ1 (N
′, Ti) = 0 we have dimΛN ′⊗ΓTi = si dimΓ N

′. Thus
since Im f is a submodule of M , we have

(siθ)(N
′) = (siθ)(si dimΛN ′ ⊗Γ Ti)

= θ(dimΛ N ′ ⊗Γ Ti)

= θ(emi ) + θ(Im f) ≥ 0.

Note that if M is θ-stable, then M ′ is also siθ-stable since θ(Im f) > 0. The converse
is proved similarly. Moreover, one can easily check that S-equivalent classes are
preserved.

As in [SY, Theorem 5.6], for any dimension vector α the functors HomΛ(Ti,−) and
−⊗ΓTi induce inverse morphisms f : Mθ,α(Λ) → Msiθ,siα(Γ) and g : Msiθ,siα(Γ) →
Mθ,α(Λ) so that there is an isomorphism between the moduli spaces.

Corollary 6.13. A chamber C ⊂ Θωd is mapped to a chamber siC ⊂ Θsiωd.
More precisely, if C is defined by inequalities θ(α) > 0 for a set of vectors {α}, siC
is defined by inequalities θ(siα) > 0.

Proof. For any θ ∈ Θωd by Theorem 6.12, a Λ-module M of dimension vector ωd
is θ-(semi)stable if and only if HomΛ(Ti,M) is siθ-(semi)stable, so the first assertion
follows. The second assertion follows from the fact that siθ(siα) > 0 is equivalent to
θ(α) > 0 for any θ ∈ C.

Proof of Theorem 6.9. Let X be any crepant resolution and μ(Q,W ) the
corresponding QP given in the previous sections. By Theorem 6.12 it follows
that Mθ0,ωd(μ(Q,W )) ∼= Mω−1θ0,d(Q,W ) and it can be checked that X �
Mω−1θ0,d(Q,W ). Also by combining Lemma 6.8 and Corollary 6.13, the chamber
containing ω−1θ0 is given by the equalities θ(ω−1ei) > 0.

Example 6.14. Let G = D14. The rows in the following diagram correspond to
the different chambers in the three mutated algebras for which the crepant resolution
of C3/G shown in the left column can be realized. Note that in any mutated algebra
we can find the corresponding crepant resolution in the chamber containing the
0-generated parameter.

Q :

�

0

1 3

d = 1
122

Q0 :

�

0

1 3

d = 1
222

Q01 :

�

0

1 3

d = 1
222

(−1,−1) (−2, 0)

G-Hilb(C3)
(−3, 1)

θ0 > 0
θ1 > 0
θ2 > 0

θ0 < 0
θ0 + θ1 > 0

θ2 > 0

θ0 + θ1 < 0
θ0 > 0

θ1 + θ2 > 0

(−1,−1) (−1,−1)

X0
(−3, 1)

θ0 < 0
θ0 + θ1 > 0

θ2 > 0

θ0 > 0
θ1 > 0
θ2 > 0

θ0 + θ1 > 0
θ1 < 0

θ1 + θ2 > 0

(−2, 0) (−1,−1)

X01
(−2, 0)

θ1 > 0
θ0 + θ1 < 0

θ0 + θ1 + θ2 > 0

θ0 + θ1 > 0
θ1 < 0

θ1 + θ2 > 0

θ0 > 0
θ1 > 0
θ2 > 0
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7. Floppable curves in MC. Let G ⊂ SO(3) of type Z/nZ, D2n or T. Let
π : X → C3/G be a crepant resolution and E ⊂ X be a rational curve. In this section
we prove that the only rational curves in a crepant resolution of C3/G that can be
flopped are the (−1,−1)-curves.

There are three possible degrees for the normal bundle NX|E over a curve E ∼= P1

in X , namely (−1,−1), (−2, 0) and (−3, 1), and all three types appear in the families
treated in this paper. For every (−1,−1)-curve there always exists a flop X ��� X ′

of E where X and X ′ are isomorphic in codimension one. If E is a (−2, 0)-curve then
we use the width of E defined in [Reid] to conclude that E is always contained on a
scroll, which implies that it does not exist a small contraction of X which contracts
E.

There are only two (−3, 1)-curves: Em ⊂ D2n-Hilb(C
3) when n is odd and E2 ⊂

T-Hilb(C3). In both cases we use the fact that X ∼= MC for some chamber C ∈ Θ
and we consider the contraction of E as the map MC → Mθ where θ ∈ C lies on a
wall of the chamber C (cf. [CI] §3.2). By the study of S-equivalence classes we are
able to describe explicitly the contracted locus and conclude that such a contraction
is divisorial, i.e. the curve is not floppable.

We finish the section giving an alternative proof of the fact that E2 ⊂ T-Hilb(C3)
is not floppable using contraction algebras.

Lemma 7.1. Let G ⊂ SO(3) of type Z/nZ, D2n or T, and let π : X → C3/G
be a crepant resolution. Then only the rational curves E ⊂ X with degree of normal
bundle (−1,−1) are floppable.

Proof. Let (Q,R) the McKay quiver with relations, Λ = CQ/R, d :=
(dim ρ)ρ∈IrrG and θ ∈ Θ be the 0-generated parameter. Denote by Mθ := Mθ,d(Λ).
By the part (3) in Theorems 5.1, 5.2 and 5.3 only Em ⊂ D2n-Hilb(C3) when n is odd
and E2 ⊂ T-Hilb(C3) are (−3, 1)-curves. Since the open sets covering these curves do
not change under the flop of any other curve, it is enough to prove that they are not
floppable in G-Hilb(C3). Thus, it is enough to show the following three claims:

(i) If E is a (−2, 0)-curve then E is contained on a scroll.
(ii) Let G = D2n ⊂ SO(3) with n odd. Then the (−3, 1)-curve on Mθ is not

floppable.
(iii) Let G ⊂ SO(3) be the tetrahedral group. Then the (−3, 1)-curve on Mθ is

not floppable.

Proof of (i). By the covering of X given in Section 5 we know that E ⊂ X is
covered by two open sets U and U ′ where U,U ′ ∼= C3. First notice that for every
curve E of type (−2, 0) we can make a suitable change of basis on U or U ′ to obtain
the gluing to be of the form U\{a = 0} � (a, b, c) �→ (a−1, a2b, c) ∈ U ′\{a′ = 0}. It is
straightforward in most cases, although we give here some of them:

In D2n with n odd have U ′m+1\{a = 0} � (a, b, B) �→ (a2(d4 − D2/4), d, a−1) ∈
Um+2\{u = 0}, so we can change of coordinates in U ′m+1 by (ā, d̄, D̄) = (a, d, d2−D).

In D2n with n even have V ′′m+1\{d = 0} � (d,D,C ′) �→ (C′2 + d2D, d−1, C′) ∈
V ′′m+2\{c′ = 0}, so we can change of coordinates in V ′′m+2 by (Ā, c̄′, C̄′) = (A −
C ′2, c′, C′).

In T have U1\{c3 = 0} � (c2, c3, C3) �→ (−c2, c
−1
3 , c22(1+ c−1

3 )− c23C3) ∈ U ′2\{B1},
so we can change of coordinates in U ′2 by (b̄1, B̄1, B̄3) = (b1, B1, b

2
2(1 +B1)−B3).

The width of a (−2, 0)-curve E ∈ X is defined in [Reid] as

n := sup{n|∃ scheme En with E ⊂ En ⊂ X s.t. En
∼= E × SpecC[ε]/εn}
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Once we have the gluing in the form (a, b, c) �→ (a−1, a2b, c), the curve E ⊂ U is
defined by the ideal I = (b, c) and for any k > 0 the ideal Jk = (b, ck) satisfy the
conditions of the criteria in Proposition 5.10 in [Reid], so the curve E has infinity
width. Thus E moves in a scroll S ⊂ X so there is no small contraction of X which
contracts only E.

Proof of (ii). First we note that, if θ̄ is a parameter with θi > 0 for i 
= 0,m and
θm = 0, then there is a morphism f : Mθ → Mθ̄ which cannot be further factored
into birational morphisms between normal varieties. If M is a point on Mθ, then the
image [M ] := f(M) is an S-equivalence class of M with respect to θ̄.

In the open cover Um+2, put x = u, y = v, z = V . We consider the hypersurface
X ⊂ Um+2 defined by y2 − xz2 = 0. We prove that the surface X is contracted to a
curve by calculating S-equivalence classes. Fix x = α and denote by Xα the curve on
X determined by x = α. Note that X0 is contained in the (−3, 1)-curve. Take any
representation M on Xα.

Um+2 � C3
α,y,z � M =

C

C

C2 C2 C2 C21α

(0, 1)

( 0
0 )

(1, 0)

(00) ( 1 0
0 1 )

( 0 0
0 0 )

( 1 0
0 1 )

( 0 0
0 0 )

(0 1
α 0) um = (0 1

α 0)

v = ( y z
-αz -y )

Then there is a submodule M ′ of M whose dimension vector is 2em. One can check
that the eigenvalue of um is 0 and eigenvectors are (

√
α, 1) and (−√

α, 1). Since
y2 − αz2 = (y +

√
αz)(y − √

αz), we put X+
α = X ∩ (y +

√
αz = 0) and X−

α =
X ∩ (y − √

αz = 0). Then Xα = X+
α ∪ X−

α . If M is a point on X+
α , we consider

the subspace M ′′ of M ′ spanned by (−√
α, 1). The actions of um, v are zero on

M ′′, so it becomes subrepresentation of M ′, and we have a filtration of θ̄-semistable
representations

0 � M ′′ � M ′ � M.

One can check that

[M ′/M ′′] � [ C
√
α = um v = 0 ], [M ′′] � [ C0 = um v = 0 ]

where the vector spaces lie only on the vertex m. Thus the factor modules M/M ′,
M ′/M ′′, M ′′ do not depend on y, z. Hence any representation on X+

α is S-equivalent
to the representation [M/M ′]⊕ [M ′/M ′′]⊕ [M ′′]. Similarly any representation on X−

α

is also S-equivalent to it. Thus the surface X is contracted to a curve. Therefore,
there is no small contraction and the (−3, 1)-curve is not floppable.

Proof of (iii). It is proved by the same strategy, however the computation is not
so obvious, so we show it. We take the open set U1 and put x = C3, y = c2, c3 = z.
We consider the hypersurface X defined by y2 = xz2 − xz + x = x(z + ω)(z + ω2)
where ω is a primitive 3rd root of unity. We fix x = α and put Xα = X ∩ (x = α).
Take any representation M on Xα. Then we have A1 = α, so the matrices in M
become as follows:

a = (1, 0, 0), b = (0, 0, 1), c = (y2 − αz2, y, z), A = α
(

1
0
α

)
, B =

(
1
0
α

)
, C =

(
1
0
α

)
,

u =

(
0 1 0

αz−ω(y2−αz2) ω2y ω+ω2z

ω2αy −ω2αz −ω2y

)
, v =

(
0 1 0

αz−ω2(y2−αz2) ωy ω2+ωz
ωαy −ωαz −ωy

)
.
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Thus we see that there is a subrepresentationM ′ ofM generated by (α, 0,−1) and

(0, 1, 0): C2ω2
( −y α(z+ω)

−(z+ω2) y

)
= u v = ω

(
−y α(z+ω2)

−(z+ω) y

)
. The eigenval-

ues of u, v are 0 and the eigenvectors are (y, z + ω2), (α(z + ω2), y) and (y, z +
ω), (α(z + ω), y) respectively. Here we put X+

α = Xα ∩ (y =
√
α(z + w)) and

X−
α = Xα ∩ (y = −√

α(z + w)). Then if M is on X+
α , all eigenvectors are multi-

ples of the vector (
√
α, 1). So by taking the subrepresentation M ′′+ of M ′ generated

by (
√
α, 1), we have a filtration of θ̄-semistable representations:

0 � M ′′ � M ′ � M

and one can check that factor modules M/M ′,M ′/M ′′+,M ′′+ do not depend on y, z.
So any point on X+

α is S-equivalent to M/M ′ ⊕M ′/M ′′+ ⊕M ′′+. Similarly one can
check that any point on X−

α is S-equivalent to M/M ′⊕M ′/M ′′−⊕M ′′− where M ′′−

is the subrepresentation of M ′ generated by (−√
α, 1). Therefore X is contracted to

a curve, so the (−3, 1)-curve is not floppable.

7.1. A contraction algebra. In this section we give an alternative proof of
Lemma 7.1 by using contraction algebras. LetG be the tetrahedral group T of order 12,
S := C[x, y, z] as usual. Let Mi := (S⊗ρ)G for i = 0, . . . , 3 be the non-isomorphic CM

SG-modules with M0
∼= R, and let M :=

⊕3
i=0 Mi. Then the algebra Λ := EndSG(M)

is isomorphic to the Jacobian algebra P(Q,W ) for the McKay QP (Q,W ) given in
the previous sections.

Let X := T-Hilb(C3) ∼= Mθ0,d(Λ) with θ0 = (−5, 1, 1, 1) and d = (1, 1, 1, 3).
Let E3 ⊂ X the rational curve of type (−3, 1), which corresponds with the vertex
3 ∈ Q0. If E3 is floppable there exists a small contraction τ : X → Y , where we
can realize Y as the moduli space Mθ0,d(Γ) with θ0 = (−3, 1, 1), d = (1, 1, 1) and

Γ := EndSG(M/M3) is obtained by removing the module M3 from M . We call Γ a
contraction algebra by its analogy with what is happening geometrically.

It turns out that Γ is isomorphic to the path algebra CQ/R for the following
quiver (Q,R) with relations:

V0

V1 V2

a
A

b

B

c
C

d D

e

E g

G

aA = Cc, bB = Aa, cC = Bb

da = ae, eb = bg, gc = cd

dC = Cg, eA = Ad, gB = Be

Da = ωaE, Ed = ωbG, Gc = ωcD

DC = ω2CG, EA = ω2AD, GB = ω2BE

D2 = d3 + abc+ CBA− 3Ccd

ω2E2 = e3 + bca+ACB − 3Aae

ωG2 = g3 + cab+BAC − 3Bbg

Thus we obtain Y ∼= Mθ0,d(Q,R) = U1 ∪ U2 ∪ U3 where Ui are hypersurfaces given
by equations:

U1 : (wG2 = d3 + c+ c2C3 − 3cCd) ⊂ C4
c,C,d,G

U2 : (wG2 = d3 + b2B + bB2 − 3bBd) ⊂ C4
c,B,d,G

U3 : (wG2 = d3 +A+A2a3 − 3aAd) ⊂ C4
c,C,d,G

Therefore Y has a singular line L which in U2 is given by the points (d, d, d, 0). As in
Lemma 7.1 that the preimage of L is precisely the equation y2 = xz2−xz+x by setting
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C3 = x, c2 = y and c1 = y2 − xz2. Therefore τ is not a small contraction, therefore
E3 is not floppable. Moreover, this construction coincides with the contraction map
Mθ0 → Mθ0 described in the previous lemma where θ0 is a stability condition at the
wall θ3 = 0.
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