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FLOPS AND MUTATIONS FOR CREPANT RESOLUTIONS OF
POLYHEDRAL SINGULARITIES*

ALVARO NOLLA DE CELIST AND YUHI SEKIYA}

Abstract. Let G be a polyhedral group G C SO(3) of types Z/nZ, D2, and T. We prove
that there exists a one-to-one correspondence between flops of G-Hilb(C3) and mutations of the
McKay quiver with potential which do not mutate the trivial vertex. This correspondence provides
two equivalent methods to construct every projective crepant resolution for the singularities C3/G,
which are constructed as moduli spaces M of quivers with potential for some chamber C in the
space © of stability conditions. In addition, we study the relation between the exceptional locus in
M with the corresponding quiver Q¢, and we describe explicitly the part of the chamber structure
in © where every such resolution can be found.
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1. Introduction. This paper focuses on the problem of describing every projec-
tive crepant resolution of the quotient C?/G for a given finite subgroup G of SL(3, C).
In particular, we consider the case when GG belongs to the special orthogonal group
SO(3), also called polyhedral subgroups, classified into five types: cyclic Z/nZ, dihedral
Da,,, tetrahedral T, octahedral @ and icosahedral I.

It is well known that every such crepant resolution is related by a sequence of
flops. The purpose of this work is to construct explicitly every projective crepant
resolution as certain moduli space of quiver representations and describe how can we
perform flops between them in two different and equivalent ways: by changing the
stability condition keeping the original quiver, or by changing the quiver by mutation
but keeping the original stability condition.

The equivariant Hilbert scheme G-Hilb(C?), or moduli space of G-clusters, is the
distinguished candidate of projective crepant resolution to start with (recall that a G-
cluster is a O-dimensional subscheme Z C C? such that Oz = C[G] the regular repre-
sentation of G as C[G]-modules). In one hand, by [BKR] it is known that G-Hilb(C?) is
always a projective crepant resolution of C?/G. For polyhedral subgroups G-Hilb(C?)
was first studied by Gomi, Nakamura and Shinoda in [GNS00, GNS04], showing also
that the fibre over the origin E := 771(0) of 7 : G-Hilb(C?) — C?/G has dimension
one and there is a one to one correspondence between smooth rational curves in
and nontrivial irreducible representations of G (see also [BS]).

In addition, by [IN] we know that we can interpret G-Hilb(C?) as the moduli space
Mg a of f-stable representations of dimension d := (dim V;)y,enrg of the McKay
quiver @ with suitable relations, for a particular choice of generic 6 in the space of
stability conditions O4 := {# € Homz(Z%,Z)®Q | 6-d = 0} c Q!?!. By [BSW],
the relations in Q) are obtained as derivations of a potential W, so we consider quivers
in this paper as quivers with potential (QP for short).
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The space of generic parameters in Oq (or simply ©) is the disjoint union of
finitely many convex polyhedral cones called chambers where the moduli space is
constant, that is, Mpa = Mg q where 0,0’ € C for any chamber C' C ©. Calling
this moduli space M, if follows from [BKR] that in fact M is a projective crepant
resolution of C3 /G for any finite subgroup G C SL(3,C) and any chamber C C ©. In
the opposite direction, it was conjectured (and proved in the Abelian case) by Craw
and Ishii in [CI] that every projective crepant resolution is isomorphic to a M¢ for
some C' C ©.

In terms of the moduli spaces M¢, the operation of a flop corresponds to vary
the stability parameter to cross a wall in © to an adjacent chamber C’, obtaining
a new moduli space M. It should be pointed out that not every wall crossing in
O produces a flop since it may happen that Mo = M. Therefore, one strategy
to obtain our goal is to start from G-Hilb(C?) and perform a flop for every possible
floppable rational curve contained in the exceptional divisor E C G-Hilb(C?). By
constructing explicitly the other side of the flop and iterating the process we eventually
obtain every projective crepant resolution of C?/G.

On the other hand, non-commutative crepant resolutions (NCCRs) of R :=
Clx,y, 2]¢ are considered to be the non-commutative analogue of crepant resolutions
of C3/G. They are algebras of the form A := Endgr(M) where M is a reflexive
R-module, A has finite global dimension and it is a (maximal) Cohen-Macaulay R-
module (see [VdB]). Indeed, if T" is a NCCR of R then for any generic stability con-
dition € the moduli space My 4(I") of #-stable I'-modules of dimension vector d is a
crepant resolution of Spec R. For instance, the skew group algebra S*G is an NCCR of
R, which is Morita equivalent to the Jacobian algebra P(Q, W) := CQ/{(O,W | a € Q1)
of the McKay QP. Then M, a(P(Q,W)) = G-Hilb(C?) where Cj is the chamber
containing the 0-generated stability condition 8% (the one such that 69 > 0 for i # 0).

From this point of view, a common operation to obtain a new NCCR from a given
one is by mutation. For the groups G treated in this paper, we take the Jacobian
algebra P(Q, W) of the McKay QP of G, and consider mutations of quivers with
potential at suitable vertices k in @ without loops. We obtain in this manner new QPs
denoted by uxP(Q, R), starting the iterative procedure which turns out to cover every
projective crepant resolution of C3/G. We say that a quiver with potential (Q’, W') is
an iterated mutation of (Q, W) if there are quivers with potentials (Q, W®) for 0 <
i <nsuchtat (Q, W) = (QW, W) (Q, W) =(Q", W) and (QU+D, Witl) =
ik, (QW, W®) where k; is a vertex of Q® without loops. See 4.3 for the precise
definition of the mutation that we use in this paper, and Section 4.2 for a discussion
about the meaning of mutation at loops in our setting.

In this paper we prove that the two strategies above explained are equivalent for
polyhedral subgroups G C SO(3) of types Z/nZ, Da,, and T. For all these cases every
mutation at a vertex with a loop is trivial, restricting our the study to mutations
only at vertices without loops. For subgroups G C SO(3) of types O and I there are
vertices with loops in some iterated quiver QP (Q’,W’) for which the mutation is
not trivial. As it is explained in Section 4.2, this fact is encoded locally in the factor
algebra A/A(1 — e;)A where A = P(Q’, W’), which in these cases turns out to have
finite dimension. Geometrically, this means that there are a priori floppable (—2,0)
and (—3,1)-curves in the fibre of origin of some crepant resolution of C*/G. Even
though following [Wem14] we can ensure that the correspondence of both approaches
also holds for types O and I, because of the different nature of this cases with respect
to explicit computations (namely the presence of high rank modules in the McKay
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quiver and mutations of QPs at vertices with loops) we leave the treatment of this
cases for a future work.

1.1. Statements of results and corollaries. The main theorem of the paper
is the following.

THEOREM 1.1. Let G C SO(3) of types Z/nZ, Day, or T, and let (Q, W) be the
McKay quiver with potential. Then there exists a one-to-one correspondence between
flops of G-Hilb(C3) and mutations of (Q, W) which do not mutate the trivial vertex.

Therefore, to a given projective crepant resolution M for some C' C © we can
associate a QP (Q¢, W¢) obtained as an iterated mutation from the McKay QP.

The theorem is proved in Section 5.4 and it is done by direct comparison. On
one hand we calculate every possible mutation at non-trivial vertices of the McKay
QP according to Definition 4.3, and on the other hand we construct an explicit open
cover of every projective crepant resolution of C?/G obtained by a sequence of flops
from G-Hilb(C3?). Tt turns out that every open cover consists of a finite number of
copies of C? (see Theorems 5.1, 5.2 and 5.3) and in every step only (—1, —1)-curves are
floppable. The last fact is proved in Lemma 7.1 using Reid’s width for (—2,0)-curves
and S-equivalence classes for (=3, 1)-curves (see also Section 7.1 for an alternative
approach using contraction algebras). In fact, the direct comparison shows that by
mutating at non-trivial vertex k in Q¢ without loops we match what is happening
geometrically when flopping a rational curve Ey, C Mc.

By construction, every such resolution is described as a moduli space of the McKay
quiver for some chamber C' C ©, which means that for this groups the Craw-Ishii
conjecture holds:

COROLLARY 1.2. Let G C SO(3) be a finite subgroup of type Z/nZ, Da, or
T. Then every projective crepant resolution of C3/G is isomorphic to Mc¢ for some
chamber C C ©.

As the next corollary shows, the relation between Mg and (Qc, We) goes one
step further:

COROLLARY 1.3. Let G be as above, let 7¢ : Mo — C3/G be the projective
crepant resolution for some chamber C C © and let Q¢ be the corresponding iterated
quiver.

(i) The dual graph of FEI(O) is the same as the graph of Q¢ removing the trivial

vertez.

(i) The number of loops at a vertex i of the quiver Q¢ determines the degree of

the normal bundle of the corresponding rational curve E; C wEl(O) C Mc.
More precisely, we have the following one-to-one correspondences:

{(=1, =1)-curves in Mc} <+— {non-trivial vertices in Qc with no loops}
{(=2,0)-curves in Mc} <«— {non-trivial vertices in Qc with one loop}
{(=3,1)-curves in Mc} <—— {non-trivial vertices in Qc with two loops}

Although there is no relation with irreducible representations of G except in the
case when M¢ = G-Hilb(C?), this corollary extends the McKay correspondence for
finite subgroups in GL(2, C) of Wemyss [Wem11]. We would also like to note that the
one-to-one correspondences in (ii) are expected since the dimension of the fibre over
the origin 0 € C?/G has dimension one (see Remark 5.4).

The way of finding the projective crepant resolution M in the corresponding
QP (Q¢,We) is shown in the next result (= Theorem 6.9), which states that Mc
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is the moduli space of representations of (Qc, W¢) of dimension vector wd and the
0-generated stability condition 69 (see Section 6 for the precise definition of w). In
the opposite direction, i.e. starting from an iterated QP (Q, W) and its corresponding
moduli space X := Mgo(P(Q,W)), it also provides the way of finding the stabil-
ity parameter 6 such that the moduli space of McKay quiver representations My is
isomorphic to X. The result was motivated by the work of [SY] in dimension 2.

THEOREM 1.4. Let G C SO(3) be a finite subgroup of type Z/nZ, Da, or T, and
let X := M be an projective crepant resolution of C/G. Then

X = M@O,wd(P(Q07 WC))

Moreover, there exists a corresponding sequence of wall crossings from Mg, =
G-Hilb(C3) which leads to X = Mya(A) where A is the Jacobi algebra associated
to the McKay QP, and the chamber C' C Oq containing 0 is given by the inequalities
O(w=te;) > 0 for any i # 0.

In relation to the space of stability conditions © we describe explicitly the part of
the chamber structure that contains every moduli space M constructed in Section
5 (see Theorem 6.4). In other words, considering the dual graph T of ©, that is, one
vertex for each chamber and an edge between two vertices if the corresponding cham-
bers are separated by a wall, then we can state the following corollary (= Corollary
6.7):

COROLLARY 1.5. Let G C SO(3) be a finite subgroup of type Z/nZ, Do, or T.
There exists a path in T containing the chamber Cy where every crepant resolution of
C3/G can be found and such that every wall crossing in T corresponds to a flop.

This nice distribution contrast for example with the general case for Abelian
groups in SL(3,C), where it can happen that finitely many wall crossings (of Types
0 or III) are needed to connect two crepant resolutions related by a single flop. See
[CT] for more details.

The paper is organized as follows. In Section 2 we make a brief introduction
to the finite subgroups of SO(3) and their irreducible representations. In Section 3
we describe the McKay QP (Q, W) using the [BSW] method for every polyhedral
subgroups in SO(3). Section 4 describes mutations of quiver with potentials and
Section calculates every possible mutation of the McKay QP at non-trivial vertices
for subgroups G C SO(3) of types Z/nZ, Ds, and T. In Section 5 we describe
explicitly every projective crepant resolution of C*/G with G C SO(3) of types
Z/nZ, Dy, and T as moduli spaces M of representations of the McKay QP. Section
6 is dedicated to the space of stability conditions © for the moduli spaces M and
the relation between changing the stability condition and mutating at a vertex k € Q.
Finally, in Section 7 we prove the lemma which allows us to calculate explicitly every
crepant resolution by flopping only at (—1, —1)-curves and we describe explicitly the
contraction algebra for the tetrahedral subgroup T.

The authors would like to thank Alastair Craw for his suggestion to study the
polyhedral subgroups to the second author when he was visiting Glasgow. We are
also grateful to Osamu Iyama and Michael Wemyss for invaluable comments and
improvements of this manuscript, Akira Ishii and Kota Yamaura for many useful
discussions. Finally, we would also like to thank Yukari Ito for bringing us together.
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1.2. Conventions. We always take C as ground field although everything can
be done in any algebraically closed field of characteristic 0.

Abusing the notation, we indistinguishably use vertices in a quiver @ and their
corresponding vector spaces in a representations of Q). If in addition @ is the McKay
quiver we also treat them as irreducible representations of Q.

Since we use GIT methods, by crepant resolution 7 : ¥ — X we always mean
projective.

2. Finite subgroups of SO(3). Let G be a finite subgroup of SO(3) which con-
sists of rotations about 0 € R3. These groups are the so called polyhedral groups and
are classified into five cases: cyclic, dihedral, tetrahedral, octahedral and icosahedral
(see Table 1).

Polyhedral group | Isomorphic group | Order
Cyeclic Z/nZ n
Dihedral Da, Z/nZ x7/27 2n
Tetrahedral T Ay 12
Octahedral O Sy 24
Icosahedral 1 Asg 60
TABLE 1

Finite subgroups of SO(3)

2.1. The cyclic group of order n+ 1. Let G be the cyclic subgroup of SO(3)
of order n + 1. Then G is of the form:

e 0 O
G = (1,n,0):=(c=| 0 €' 0 |), where e = £27/(n+1),
n+1 0o 0 1

The character table of G is given in Table 2.

Conjugacy classes |1 o -+ 0! o
Number of elements | 1 1 - ) 1
V; 1 € .. 9 ... in
TABLE 2

Characters of G of type Z/nZ with 0 < j < n.

2.2. The dihedral group of order 2n. Let n be a positive integer and G be
the dihedral subgroup Da,, in SO(3) of order 2n. Then G is generated by:

e 0 0 01 0 |
G=(=[0 ¢ 0 |,7=( 1 0 0 ), wheree= >/
0 0 1 00 -1

These groups are divided into two cases depending on the parity of n.
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For the case n = 2m even, the group has four 1-dimensional irreducible represen-
tations Vp, Vv, Vi, and V;,, and m — 1 irreducible representations V; of dimension 2
for 1 < 57 <m — 1. The character table is given in Table 3.

cc. |1 -1 T TO o'

# |1 1 m m 2

VW | 1 1 1 1 1

Voo |1 1 -1 -1 1

Vi |2 (=12 0 0 €4V
Ve |1 (=)™ 1 -1 (—1)¢
Vi |1 (=)™ -1 1 (—1)*

TABLE 3
Characters of Day, with n =2m even and 1 <i,7 <m — 1.

For the case n = 2m + 1 odd, the group has two 1-dimensional representations Vj
and Vi, and m 2-dimensional representations V; for 1 < j < m. The character table
is given in Table 4.

cc. |1 T ol
# |1 2m+1 2
Vo | 1 1 1
Voo |1 -1 1
Vi |2 0 €+ e

TABLE 4
Characters of Day, withn =2m+ 1 odd and 1 < 1,7 < m.

In both cases, the representations V; are realized as V(o) = (on EQJ-) JVi(r) =
(7o)

2.3. The tetrahedral group. Let G be the tetrahedral subgroup T of SO(3).

Then
-1 0 0 0 1 0
G= (o= 0 -1 0 |, = 0 0 1 |)
0 0 1 1 00

The group G is isomorphic to the alternating group A4 and it has order 12. This
group is also called trihedral group of order 12 and the character table of G is shown
in Table 5.

2.4. The octahedral group. Let G be the octahedral subgroup O of SO(3).

Then:
0 -1 0 0 1 0
0o 0 |,r= 0 0 1 |).
0 0 1 1 0 0

The group G is isomorphic to the symmetric group S; and its order is 24. The
character table of G is given in Table 6.



FLOPS AND MUTATIONS FOR POLYHEDRAL SINGULARITIES 7

ce. |l o 1 T2
# |1 3 4 4
VWw |1l 1 1 1
Vi |1 1 W w?
Vo | 1 1 w? w
Vo |3 —-1 0 0
TABLE 5

Characters of tetrahedral group of order 12.

cc. |1 o T oTOo
# |1 3 8 6 6
VW | 1 1 1 1 1
i1 1 1 -1 -1
Vo |2 2 -1 0 0
Vs |3 -1 0 1 -1
Vo |3 -1 0 -1 1

TABLE 6
Characters of octahedral group

The representation V3 is the representation given by the inclusion of G into SO(3),
i.e. it is the natural representation. The irreducible representations V5 and Vj are
realized as Va(o) = (9 §), Va(r) = (4 %), Va(o) = =0, Vi(7) = 7.

2.5. The icosahedral group. Let G be the icosahedral subgroup I of SO(3):

1 0 0 1 1 1
G=(o=[0¢€¢ 0 |, 7=—%=|[ 2 s t |),
0 0 ¢ V5 2t s
where ¢ = €27/5 g = 2 4 ¢ = *15‘/5 and s = ¢+ ¢* = %‘/5 Note that
-10 0
v = ( 00 731) = 037 (compare [GNS04, 3.1] and [YY]). The group G is isomorphic

to the alternating group As and its order is 60. The character table of G is given in
Table 7.

The natural representation is Vi, the irreducible representation V5 is realized as
Va(o) = 0%, V(1) = 7, and the 4-dimensional irreducible representation V3 is obtained
by removing the unit representation from the permutation representation of As on
{a,b,c,d,e}. If we take a suitable basis of V3, it is realized as:

o

m
no

0

0 1 t -1 1 -—s
o 'O =F s 1
et -1 —-s t 1

0
0
Vs(o) = &3
0

S oo m
o o

The 5-dimensional irreducible representation Vj is a representation obtained by re-
moving the unit representation from the permutation representation of As on the set
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ce.|l or 1T o o2
4 [1 20 15 12 12
vwlt 1 1 1 1

Vi |3 0 -1 —s  —t
Vo | 3 0 -1 -t —s
Valda 1 0 -1 -1
Vo |5 -1 1 0 0

TABLE 7
Characters of icosahedral group

of its 6 subgroups of order 5. Taking a suitable basis, it is realized as:

10 0 0 0 -1 -6 -6 -6 —6
0 e 0 0 O -1 1=t 2 2 1—s
Vile)=] 0 0 ¢ 0 0 ,1/4(7):g -1 25 1—s 1—t 2t
00 0 €& 0 —1 2t 1—¢t 1-—s 2s
00 0 0 ¢ -1 1—s 2t 2s  1—t

3. McKay quivers with potential for G C SO(3). Let Q be an arbitrary
finite connected quiver (possibly with loops and 2-cycles) with a vertex set Qo and
an arrow set ;. For an arrow a € @)1, denote by ha and ta the head and tail of
a respectively. Let CQ be the path algebra and denote by CQ; the C-vector space
with basis @); consisting of paths of length 7 in @), and by CQ); ¢y. the subspace of CQ;
spanned by all cycles. A quiver with potential (QP for short) is a pair (Q, W) consisting
of @ and an element W € @,., CQj cyc called potential. For an arrow a € @1, the
cyclic derivative 9,W is defined by 0,(a1---ap) = Zai:a Giq1 - agay -+ -a;—1 and
extended linearly. The Jacobian algebra of a QP (Q,W) is defined by

P(Q,W):=CQ/(OW |a € Q).

Let @ be the McKay quiver of GG, that is the quiver such that the vertex set is
the set of irreducible representations V; of G' and we draw a;; arrows from V; to V;
where a;; := dimc Homeg(V;, V* @ V;). In this case it is well known that P(Q, W) is
Morita equivalent to the skew group algebra S * G, where S % G is a free S-module
S @c G with basis G with multiplications given by (s ® ¢)(s' ® ¢') = sg(s’) ® gg’ for
any s,s' € Sand ¢g,9' € G.

Let us now restrict to the case of polyhedral subgroups G C SO(3). The descrip-
tion of the potential W can be calculated following the method provided in [BSW],
which we now briefly sketch.

Take the standard basis vy, v2 and vs of V = C3. Note that in this case G acts on
V naturally and dually on the polynomial ring S := C[V]. Then Homcq(V;, V* @ Vj)
is isomorphic to Homeg (V;, V @ Vi) as a C-vector space. For each arrow a € Q1 we
consider the G-equivariant homomorphism ¢, : Vi) = V @ Vi) If p = abe is a
closed path of length 3, then by Schur’s lemma, the composition of maps

i id c
Vt(a) LoV Vt(b) M Ve? @ Vt(c) ﬂ) Ve ® Vh(c)

O‘®idvh(c) K ~
/\ V& Vie) — Vie)=t(a)
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is a constant denoted by c¢,. Note that in the above sequence o : V&3 — /\3 V is
the antisymmetrizer, the last map is the isomorphism given by the composition of
A’V = Vp defined by vy Avs Avg — £o and Vo @ Viye) — Ve defined by £y @v — v,
where £y is the basis for Vj (recall that A*V = V; since G € SL(3,C)).

TueorEM 3.1 ([BSW, Theorem 3.2]). If we take W = 3°, 5 cp(dim V(p))p
then P(Q, W) is Morita equivalent to S * G.

In the following sections we give the explicit description of the McKay QP (Q, W)
for every finite subgroup G C SO(3). For simplicity we write Qo = {0,...,n} where
i € Qo corresponds to the irreducible representation V;. In particular, 0 corresponds
to the trivial representation V.

3.1. The cyclic group of order n + 1. Let G be a finite cyclic subgroup of
SO(3) of order n + 1. The McKay quiver @ of G is as follows:

For each arrow, the corresponding G-equivariant homomorphism is given by:

Ya, Vi > V@Vig b, Vie1 = VeV e, Vi =2 VeV

b= v ® i liv1 = v ® 4 Ui — v3 @4
where ¢; denotes a basis of V; for any i = 0,...,n. Forany ¢ =0,...,n, it follows that
cp = —1if p=cia;b; and ¢, =1 if p = ¢;b;—1a;_1, where a_; = a,, and b_; = b,,. By

definition of ¢,, for all other 3-cycles p we have ¢, = 0. Hence the McKay potential
is given by

n n
W=-— E a;bic; + E bi—1a;—1¢;.
1=0 =0

3.2. The dihedral group of order 2n (n even). Let G be a dihedral group
D5, where n = 2m for some positive integer m. The McKay quiver @ of G is as
follows:

Al

Abusing the notation, the corresponding G-equivariant maps in matrix form are:
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R 2

—Us

B 0
Vo= (o). B = (T2). ¢ = ) € = (2)od = () ) ana

Di:(vl 0)for0§i§m—2,andui:(v3 0
(%) 0 —7U3

) for0<i<m-—1.

With this notation, dy = (’1)2, —’Ul) means the G-equivariant map g4, : Voo —
V @V is defined by £y + vo @ £} —v1 ® €2, where £ is the basis of Vi and {£},¢3} is
the basis of V; given in the previous section. Note that the above description depends
on the choice of basis for the V;’s.

For the above equivariant maps, one can calculate the potential to obtain:

m—2 m—1
W/2 = —adyC — ¢DyA 4 u1 Dody + u1Cc — Z u;d; D; + Z u;D;_1di—1
i=1 =2

— U1 B’V — tyy_1C'¢ —ad'b'C" = /B'A’.

3.3. The dihedral group of order 2n (n odd). Let G be a dihedral group
Dy, where n = 2m + 1 for some positive integer m. The McKay quiver ) of G is as

follows:
0
\@ O 000

do Dy Dm—2 Dm 1 Q

Do

<

0’

and the corresponding G-equivariant maps are

A=a=uws dy = (v2,—01), Dy = (_1)11)2), c = (v2,11), C = <Z;), d; =

vz 0 and D; = v 0 for0<i<m-—1, u; = 3 0 for 0 < i < m,
0 wun 0 v 0 -—w3

0 (%)
(% 0
For the above choice of equivariant maps, the potential is given by

and v =

m—1
W/2 = —adyC — ¢DyA 4 u1 Dody + u1Cc — Z w;d; D; + ZUZ io1di_q — umv>.
i=1 =2

3.4. The tetrahedral group. Let G be the tetrahedral group of order 12. The
McKay quiver ) of G is the following:
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and the corresponding G-equivariant maps are:

U1 U1
_ _ _ 2 _ 2 _
a = (U17U27U3); A = v2 |, b = (’Ul,w’Ug,W U3)7 B = w vz |, € =
VU3 w3
U1 0 0 (%) 0 V3 0
(’Ul,w2’02,W’U3), C=|wv |,u=|vs 0 OfJandv=]10 0 v
w?vs 0 v O vo 0 0

For the above choice of equivariant maps, the potential is given by
2 L3 2 L3
W/3 = uAa+ wuBb+ w uC’c—gu —vAa—w va—va’c—i-gv .

3.5. The octahedral group. Let G be the tetrahedral group. The McKay
quiver @ of G is the following:

2
) \
B C
a d e
(E—: i e |
A D E
O O

u v

and the G-equivariant maps are:

U1 U1 wv1
a = FE = (’Ul,’Ug,’U3), A = e = ve |, b = W9 v |, B =
VU3 w2U3 w2U3
U1 w2v2 wv3 (% w2v2 wv3 U1 wn
(w2v1 Vg wv3>’ €= (—w2v1 —Ug —wvg>’ C= w2v2 _12)2 yd=D=
W v —W U3
0 v3 U2 0 —U3 (%]
vg 0 wvi|andu=v=/{[ v3 0 —u
Vg U1 0 —V2 U1 0

For the above equivariant maps, the potential is given by
W/6 = uAa—ubB—udD—1/3u*+ve E—vCc—vDd+1/3v*+(w? —w)dC B+(w? —w) Dbc.

3.6. The icosahedral group. Let G be the tetrahedral group. The McKay

quiver Q) of GG is as follows:
2
c d
c D
a b e
34
O " O

00— i1 _—=
A
Q

and the G-equivariant maps are:

1 0 U3 —v2
a= (21}1,1)3,112), A= |v2 |,u= | 2vs —2u1 0 |,
V3 —2vs3 0 2u1

—4v; vz w2
—2v1 3wz 0 0 3va V9 V1 0
b= Vg 6v;  6us 0 0 |,B= 0 o) o,
v3 0 0 6vy  6v1 0 0 w3
U3 0 v
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0 6vs 0 0 —6v2 6v; 0O 0
V2 2v1 —2v3 0 0 vo w3 O
v = 0 —2v9 4vq 0 0 ,c= 0 v w3 |,
0 0 0 —4v 2u3 0 v2 U1
—v3 0 0 209 —2v1 V3 0 1w

V1 v3 0 0 V9 v3 0 0 v2
C=10 2wy 2v1 2ws 0 ),d=|—-v2 —u1 v3 0 s
0 0 2ue  2v1  2vs 0 ) —2v;  —w3

v v 0 6vs3 0 0 —6v2
0 2 9 3 B —4vq 2v3 0 0
D = v1 v3 ,e= V9 201 3vs 0 s
0 —v2  2v1
—oug 0 s 0 —3vy —2v1 —v3
0 0 —2v9 4vq
v2 —4v v3 0 0 U1 v3 0 0
o 0 2v2 2v1  —3vs3 0 and w — v —v1 0 0
0 0 v —2v;  —2v3 0 0 v1 —v3
—v3 0 0 —v2 4vq 0 0 —v2  —v1

For the above equivariant maps, the potential is given by
2
W/12 = —uAa + 5ubB — gu?’ + 15vBb — 5vcC — 20vEe
10 1
—I—gv?’ + SweFE — wDd — gw?’ — bdec+ 10CED.

4. Mutations of quivers with potentials. For a QP (Q, W) let k be a vertex
in @ with no loops (but possibly lying on a 2-cycle). We define the mutation of (Q, W)
by first constructing the QP i (Q, W) in the following way:
1. Let Q' be the quiver obtained from @ by the following steps:
(a) Replace the vertex k in @ by a new vertex k™.
(b) Add new arrows [ab] : i@ — j for each pair of arrows a : i« — k and
b:k—jin Q.
(¢) Replace each arrow a : i — k in @ by a new arrow a* : k* — i.
(d) Replace each arrow b: k — j in @ by a new arrow b* : j — k*.
2. Let W' := [W] + A where
(a) [W] is obtained by substituting [ab] for each factor ab in W with ha =
k = tb.
(b) A= > [ab]b*a’.
a,beQ1,ha=k=tb
This mutation is obtained from the original [DWZ] with the difference that (Q, W)
may have loops and 2-cycles. This situation is quite natural in some geometric con-
texts as the one treated in this paper.
A QP (Q,W) is called reduced if W € @,~ 3 CQjcyc. Given a non-reduced QP
(Q, W), if there is a reduced QP (Q’, W'’) such that P(Q, W) ~ P(Q',W’), then we
say that (Q', W’) is the reduced part of (Q, W).
Before going further, let us consider now graded quivers with potentials. Given
(Q, W) a QP, we can define a map deg : @1 — Z which extends naturally on CQ. We
say that the potential W is homogeneous of degree d if all terms in W are of degree d.

DEFINITION 4.1. We say that a QP (Q, W) is graded if there exist a grading in
@ such that W is homogeneous of degree d.

Trivially the Jacobian algebra of a graded QP becomes a graded algebra, and
1 (Q, W) is naturally graded with degree d (see [Miz], Section 3).

LEMMA 4.2. If a QP (Q,W) is graded, then there exists a reduced graded QP
(Qred; Wrea) such that P(Q, W) ~ P(Qred, Wred)-
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Proof. Tf (Q,W) is reduced, we have nothing to do. So we assume that there is
a 2-cycle ab which appears in W. Write W = cqpab + W’ where ¢y, € C is a non-
zero element. Then 9,W = cub + 9, W' and O,W = cppa + OW'. Without loss of
generality we can assume that dega > degb. Then degd,W’' = degb, so 9, W' does
not contain a or b. Thus (Q, W) reduce to a QP whose potential does not contain a
or b and Jacobian algebras are isomorphic, and the new QP obtained is graded. By
repeating this operation, we obtain the required reduced QP. O

DEFINITION 4.3. We define the mutation ug(Q, W) of the quiver with potential
(Q, W) to be the reduced part of 1, (Q, W).

ExXAMPLE 4.4. Consider the group G = Ds,, for n = 6. In this case there are 16
non-equivalent QPs, shown in Figure 1.

Q ¢ o 0, e Q . Q N Q 5 . @ QQQ“‘Q
SR o= PR = PR P2 b= 2]
0'/ \‘%/ n’/ \ 3 0// \ 3 n’/ \‘a/ 0’/ 3, n’/ 3 n’/ 31
O O | O | ’ | ’ | . | O O O
O @ o o d o o @ 0 4 , 0 @ O
t())/l:_)\‘(z)’ - t(J)’ l:)\s)’ - t(i)//lcg<s’ - 0’/122/3’ - 11’/122/(3’
© a1 a1 m| Y ©
Q 4 oo o W@ . 0O @
== L=<]= 1
VRN NV U
Y] 3 0 ol 3 o )
((D f:z/o
CD/ \(’5

Fic. 1. Mutations of type Di2.

We demonstrate how to calculate the mutation of (Q, W) at the vertex 0’. First
add new arrows [aA], [DoA], [ado], [Dodo], replace a, A, dy, Do by a*, A*, df, D§ respec-
tively as shown below, and denote the new quiver by fig (Q).

[aA] [a4]

Ao (Q) O Ho(Q)

/ \ o \ 2 \

Then the potential [W] 4+ A is given by

Q

fado

\

W]+ A
— [adO]C’ — C[D()A] +ui1Ce + ’U,l[Dodo] —urdi1 D1 + usdi1 D1 — UQB/b/ — UQO/C/
—ad'b'C" — AV + a*[aA)|A* + a*[ady]df + D§[DoA]A* + D§[Dodo]ds,

which is non-reduced. By taking derivations we have the following equalities

8(] = —[ado] + cuq, 0, = —[D()A] =+ ulc, 8ul = [Dodo] —d1 D1 + OC,
8[,1,10] = —C +dja™, 8[D0A] = —c+ A*Dj, 8[D0d0] =u +diDj.
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allowing us to obtain the reduced expression Wy of [W] + A:
Wy = — (D§d3)?a* A* + diD§dy Dy + ugdy Dy — us B'Y — usC'c!
—ad'bC' — A B+ a*[aA]A*.

If 110/(Q) is a quiver obtained from fig/(Q) by removing ¢, C, [ado], [DoA], u1, [Dodo],
then po (Q,W) = (o (Q), Wp) is a reduced QP and we have P(jg (Q,W)) =~
P(po (@, W)). The rest of mutations in Figure 1 are obtained similarly.

4.1. Mutations of McKay quivers with potentials for G C SO(3). Let
G C SO(3) be a finite subgroup of type Z/nZ, Ds, or T. Denote by % the vertex 0
corresponding trivial representation of G. We do not consider mutations at vertex
and by Definition 4.3 we do not mutate at any vertex which has a loop (see Section
4.2 for the justification of these two assumptions).

4.1.1. The cyclic group of order n + 1. Let (Q,W) be the McKay QP of
G obtained in 3.1. Notice that every vertex in ) has a loop, so according to our
definition there are no mutations in this case.

4.1.2. The dihedral group of order 2n (n even). Let n = 2m with m > 2
and (Q, W) be the McKay QP of G obtained in 3.2. Because of the symmetry between
the vertices m and m’ we only write down mutations of (Q, W) with respect to 0’ and
m. Mutations with respect to m’ are done in the same way.

We first fix some notations. Note that we do not mutate at the vertex x so for
simplicity we denote by Qo the quiver obtained by mutating at vertex 0’. The quiver
Qg?::zi(mﬂ ) denotes the iterated quiver obtained by mutating vertices 0,1,...,7 fol-
lowed by mutations at vertices m,m—1,...,j. The order in both sequences 0,1,...,4
and m,m—1,...,j are necessary due to the fact that we only mutate a vertices with-
out loops. Moreover, upper indices and lower indices are independent, i.e. mutation
at 0’ followed by mutation at m is the same ate mutation at m followed by mutation
at 0’ (both give Q7).

By abusing the notation, in the calculation of (@, W) for some QP (Q, W) we

do not use the notations (—)* and [—]: for example, starting from the McKay quiver
() with notations as in Section 3.2, arrows a, A and u, in the quiver Q...; actually
mean A*, a* and [aA] respectively. Finally, we write

Xj =wujd;jDjfor 5 =0,...,m — 2, Xm—1 = Um_10C"¢, X,'n,1 = Uy, 1B’V
Y =wujDj_1dj_1 forj=1,...,m—1, Y = umc'C’, an =umb' B’
Zj=d;D;D;_1dj_y for j=1,....,m =2, Zm1=C"c'Dpmsdm—2, Zh_1=BYDp_odm_2.

The ingredients of the calculations in the general case are the same as in Example
4.4. We summarize the result in the following proposition.

PROPOSITION 4.5. For dihedral groups of order 2n (n even) there are (m + 1)?
non-equivalent mutation QPs of the form (Qy"; (m=3) S ~(m= 7)) obtained from the
McKay QP (Q,W).

The list of every possible (Qq" " (m=3) W (m J)) is the following:

ﬁ Qo..; with 0 <i<m—2 h Qo..(m-1) S
* * m
Uy Uiy Uiry Uy, / Uy Uy Uy 2 %
O Ou o 4O O QuO Oy
Al |a 1--—-i—1 = i+ 1 L+277m—1 a Al |a 1< —2------ m—2 m—1
do -7 D, D, +1 do -7 Dy -2 B
/Dy A /Dy v
v m 0" m
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Wo..i = aAux — Aaug + 237 Z —Zi+Ziy1 + ZJ 1+2 X — Y

g 1+2 J
+ X1 + X! +a b’C’ + c’B’A’
Wo. (m—1) = adAu, — Aaud + 27;03 X; - Y 4 Zm + Zly + Y + Y.

Qm...(mfj) with 0 S] <m-2 Unm Uy le

1:1 Uiy Uivz  Um—1 v ) ¢ uy Um 2 Uy 71
f Qua a a) OFLe >N\ O O s O)
777,[71 '/\:iJrl i+2--m—1 df |& ; 1/D_\2 ffffff m—2 mf
D; Dy do 1
/A
o '

ol iy

3

G
=(3

wme(m=3) = aqdoC + cDoA — w1 Dody — u100+ SIAXi+ Y+ Zi — Zia

e X T Y —ud, Ad + A,a'“' ]
wme1 — UxcC + ugdogDg — Ced1 Dy — Dodod1 D1 — Z;’;} Xj =+ Zm
—Ala'u2, +a' Alul,.

Uy m...(m—j . . . um
O Omi( D with i +5<m-3
* nL
Uy Uiy Uiso Ui Ujps  Up
O OQu o O Ouan o a0 O)
Ao i I i i1 i 2 1 Jeme j+2**m71
do D;y D; Djty D, D; D,H
/Dy
0" m
gy U
wm M=) = g Au, — A il LY — Z+ 2 Xj — Yy
0..i = adu, — Aaud + 334 Xe — 42 Ya +Zip + 00 it2 Xk Yici it2

+Zj—Zj+1 Zk_ﬁLsz-i-Zk j+2 k—a’A’u2 —‘rAl / ,

(i+2)
Q QO...% @
: Uit1 Uity  Um—1 7

S OO a Ouy 0 O/(
m’

_, i A i+ 1 i+2___i+3--m—1
do Diy D; Diya Dis
/D,
; )
o ,
_ i1 i1 —
W(T'"i~(l+2) = aAuy — Aaug + Z X — Z Yi —Zi+Yig1 + Xiv1 — Ziqo — Z X
k=0 k=1 k=1i+3

m
+ Z Y, —d' Al + Ald
k=i+3

4.1.3. The dihedral group of order 2n (n odd). Let n = 2m+1 with m > 2
and (Q,W) be the McKay QP of G obtained in 3.3. In the following proposition

we write down all QPs which are obtained from the McKay QP not mutating at the
vertex x.
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PROPOSITION 4.6. For the dihedral group of order 2n (n odd) there are m=+1 non-
equivalent mutation QPs of the form (Qo...i, Wo...i) which obtained from the McKay
QP (Q,W). The list of every possible (Qo...;, Wo..i) is the following:

& Qo..; with 0 <i<m —2 h Qo..(m-1)
* *
uy Uiy Uito 1 u Uiy Uiso
O OQu o 4O O e O O O s
Al |a 1----i—1_"=1i < i+1__ 7+277m—1 m Al |le 1 —92------ m—2 m—1" > m

W D D Dt 50 Do ()
D, l ;

Wo..i = wuxaA — aAuO + ZJ Od Djuj Z DJ 1d3 1Uj — D;_1d;_1d;D;
+D;didiy1Div1 + Z] z+2d Djuj — Zj_l+2 Dj_1dj_quy + umv?.
Wo...(m—1) =  aAux —aAud + 372 d;jDjuy; — 3% Dy vdj1us — Dyn—2dm—2dm—1Dm—1
+Dm71dm71v2-

4.1.4. The tetrahedral group. Let (Q, W) be the McKay QP of G obtained
in 3.4. In this case there are 5 non-equivalent mutation QPs which are equivalent to
(Q, W) (see Figure 2).

x/

! NE )

AVl f
A |

Y - 0

Fic. 2. Mutations of type T.

The potentials in these cases are:

W = wuAa+ wuBb+ w?uCc — %u?’ —vAa — w?vBb — wvCc + %v‘o’.
W= (1-w?)Aau —wAaBb+ (w? —1)Ccu — w?*CchB + w?Bbu? + w(Bb)*u
1 3
+3(Bb)°.
Wy = (w?—1)Aav — wAaCc + (1 — w?)Bbv — w?BbCc + w?Ccv? + w(Ce)?v
+1(Cc)3.
3
Wia = AaBb+ AaCc — (Bb)?Cc — Bb(Ce)?.
Wias = aAug — AaBb — AaCc+ bBuy — dDugy + ¢Cus — Ddus + Bdc + CDb.



FLOPS AND MUTATIONS FOR POLYHEDRAL SINGULARITIES 17

We note that in (Q1, W1) and (Q2, W2) there is a relation of the form v = w?u —
wBb and u = w?v — wCec respectively, so u and v are symmetric and Q12 = Qa1.

4.2. Mutations of quivers with potential and NCCRs. In this section we
explain why we do not consider mutations at the trivial vertex x and the reason why
we do not take into account mutations at vertices with loops. We finish the section
with a brief discussion about the number of NCCRs for the cases we treat in this
paper in the complete local setting.

We first start by explaining the equivalence between mutation of QP of Section 4
and mutations of NCCRs (also called tilting mutation). Let A = P(Q, W) = @, P
be a NCCR and Py the projective right A-module associated to the vertex k. Let
f: P — X be a left add A/ Pg-approximation and take K} := Coker f. If f is injec-
tive, then uiA := A/Py ® K is a tilting A-module and Endy (uxA) is also a NCCR.
By a similar strategy of [BIRS], it can be shown that if a QP (Q, W) is gradable and
A is a 3-Calabi-Yau algebra, then the tilting mutation coincides with the mutation
of QP. In other words, we have an isomorphism Enda (puxA) ~ P(pr(Q, W)). In our
case, since the potential W is homogeneous of degree 3 the McKay QP (Q, W) is
graded, so all mutations p(Q, W) obtained from it are gradable. Also, note that the
algebras P(ux(Q,W)) are 3-Calabi-Yau (3-CY for short) since S * G is 3-CY and the
property of 3-CY is closed under Morita equivalences and mutations, so the result
applies.

The reason why we do not mutate at the trivial vertex x can be explain in two
different ways. In one hand this vertex corresponds to the trivial representation of
G, so it does not correspond to any exceptional curve in the fibre over the origin.
Thus geometrically there is no reason to mutate (or equivalently flop) at the vertex
*. On the other hand, in the context of NCCRs we are dealing with algebras of the
form Endr(M) for some reflexive module M. Then it is easy to see that if R is a
Gorenstein ring then M is a Cohen-Macaulay R-module if and only if M contains R
as a direct summand. Therefore, the mutation at * would replace R by a different
module, losing the Cohen-Macaulay condition.

With respect to the mutation at vertices with loops, let us consider first the
following result of Iyama and Wemyss.

THEOREM 4.7 ([IW10], 6.13). Suppose R is a complete local normal three-
dimensional Gorenstein ring. Denote A = Endg(M), let My be an indecomposable
summand of M and consider A, := AJA(1 — ex)A where ey, is the idempotent in A
corresponding to My. Then if dimgc Ag = oo then upA ~ A.

If we remove the complete local condition this result is still true but up to additive
closure, that is, one can show that if dim¢ Ay = oo then add(M/M;, & Kj) = add M.
In some respect this is enough for our purposes, since at the level of modules we
have that Endg (M /M, ® K};) and Endr (M) are Morita equivalent, which induces an
isomorphism of the corresponding moduli spaces.

For the groups treated in this paper, the following proposition states that every
iterated QP obtained from the McKay QP verifies that the dimension of the factor
algebra Ay at every vertex k with a loop is infinity. In fact, every vertex with a loop
corresponds to a non-floppable curve in the corresponding moduli space (see Section
7), allowing us to consider only mutations at vertices without loops.

PROPOSITION 4.8. Let G C SO(3) of type Z/nZ, Doy, and T. Let (Q',W') be
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an iterated QP from the McKay QP (Q,W) and let A = P(Q',W’) be the Jacobian
algebra. Then for any vertex i € Qf, with a loop we have that dime A; = oo.

Proof. In the Abelian case every vertex i has a loop and A; = @,~, Ccf, thus
dimc A; = oo. For the dihedral groups it is straightforward to check that for every
vertex ¢ € Q' there is no relation derived from the potential W’ which identifies u! as
a combination of other paths for some p > 0.

For G = T, notice that in the McKay QP we have relations of the form u? =
3(Aa+wBb+w?Cc) and v? = 3(Aa+ w?Bb+wCc) but there is no relation involving
uv, so dimc Ag = oo. O

However, for subgroups G C SO(3) of type O and I, there are vertices 4
in the McKay QP with a loop such that dim¢ A; < oo. For instance, in QO we
have relations of the form u? = 3(A4a + bB + dD) and v? = 3(Cc + Dd + eE) so
dim¢ Az = dime Ay = 2. This fact predicts that the mutation at this vertices is not
trivial and also that the (—2,0)-curves corresponding to this vertices are floppable.
At present we do not have a definition of mutation of quivers with potential at a
vertex with a loop, so these cases will be treated in a future work.

We finish this section by considering the number of NNCRs for the cases treated in
this paper. We restrict ourselves to the complete case, that is, let R be the completion
of R := S% and we want to look for all possible NCCRs over R. We say that
A := Endz(M) is a Cohen-Macaulay (CM) NCCR if M is Cohen-Macaulay. If the
set of NCCRs obtained by a sequence of mutations at non-trivial vertices is finite,
then this set contains all possible CM NCCRs (see [IW13], Theorem 1.9). In our case
we proved that the list of QPs obtained by mutating at non-trivial vertices is finite
(notice that by Theorem 4.7 mutating at loops in the complete setting is trivial), so
we obtain the following result.

THEOREM 4.9. Let G be a finite subgroup of SO(3) of types Z/nZ, Da, and
T. The number of mutations of the McKay QP at non-trivial vertices is finite up
to isomorphisms. Moreover the number of CM NCCRs of R is finite up to Morita
equivalences.

5. Explicit description of the moduli spaces Mjy. In this section we describe
the explicit structure of every projective crepant resolution m : X — C*/G for G C
SO(3) of types Z/nZ, Dy, and T. We do not describe the cyclic case G = Z/nZ
since G-Hilb(C?) is the unique crepant resolution and it is already treated in [CR]
and [Nak].

The results are summarized in Theorems 5.1, 5.2 and 5.3 for the subgroups of type
Dy, with n odd, Ds,, with n even and T respectively. This explicit description allows
us to conclude that every projective crepant resolution X is isomorphic to a moduli
space My of f-stable representations of the McKay quiver with relations (@, R) for
some § € O, and X consists of a finite union of copies of C3. Moreover, we give
local coordinates of every open set and the degrees of the normal bundles of every
exceptional rational curve in the fibre 771(0).

The proof is done by the explicit calculation of every case. The strategy used is
the following:

Step 1 We obtain first the crepant resolution X := G-Hilb(C?) =2 Mo, where 6° is
the so called 0-generated stability condition (i.e. 8% is generic and 6 > 0 for
every i # 0), which from [IN] is well known to be contained in the chamber
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corresponding to G-Hilb(C?). In particular, this choice of stability implies
that for every p € Irr G\{po} there exist dim(p) linearly independent paths
from pg to p.

Step 2 By calculating the gluings between the open sets in X we obtain the degrees
of the normal bundle of every rational exceptional curve in 7=1(0). This is

done by using the quiver of the endomorphism algebra Endge (B ,cr,r ¢ Sp)

where S, are the CM S%modules S, := (S ® p)¢, which coincides with
the McKay quiver. This identification allows us to give local coordinates at
each open set in terms of the original coordinates x,y and z in C3. Then by
Lemma 7.1 we know that only the rational curves E C X of type (—1,—1)
are floppable, which gives us a finite number of possible flops of X.

Step 3 We calculate the flop X’ of X by only modifying the open sets containing the
curve which is flopped, obtaining X’ again as a moduli space M. Here we
use a representation space which dominates both sides of the flop.

Step 4 We repeat the process until we find all possible flops of (—1, —1)-curves.

As a consequence, every projective crepant resolution X of C3/G for G C SO(3)
of types Z/nZ, D, and T is described by an affine open cover X 2 | JU; with U; = c?
(see part (1) in Theorems 5.1, 5.2 and 5.3).

In this section S := Clz, y, z|, (Q, W) always denote the McKay quiver potential
as in Section 3, A := P(Q,W) and d = (d;)icq, = (dim p),enrg. Thus we write
simply My or M¢ to denote the moduli space Mg 4(A), where § € C for some C' C ©.

The notion of stability of a representation of (@, W) is defined as follows (cf.
[King]): let M be a representation of @ of dimension vector d, let § € ©4 and define
(M) := > 0;d;. Then M is 6-(semi)stable if 6(M') > 0 =60(M) for 0 C M’ C M
(with the usual > for semistability). The stability parameter § € G4 is said to be
generic if every #-semistable representation is f-stable.

For dimension vectors d of representations (and subrepresentations) of @ we adopt

the notation d = 50, dy ...dp, where d; = dim V; and V; is the vector space associated
0
to the vertex ¢ € Q.

5.1. The dihedral group of order 2n (n odd). With the potential given in
Section 3.3 the relations derived by the potential W in this case are:

da,0A,0b,0B,0¢,0C : bC =0,cB=0,Ca=u1B,Ac=bur, BA=u1C,ab= cus.
8d17 e 78dm71 : D1U1 = ’UJQ.Dl7 ey Dm,1u7n,1 = umDm71.
81)17 ey 8Dm71 : Uldl = dl’uz, ey umfldmfl = dmflum.
Our: Bb+Cc=diD.
aug7 - ﬁum,l . d2D2 = D1d17 ey dm71Dm71 = Dmfzdmfz.
Om : Dm1dm_1 = v°.

ov: Umnv + vUum = 0.

We introduce the following notation for the arrows of ) as linear maps between
vector spaces: a :=a, A:= A, b:= (b1,bs), B := (g;), c:=(c1,c2), C = (g;), d; ==
(dil dl@) D; = (Dil DiQ) w; = (uﬂll u]m) and v := (i 22), where 1 <i<m—1

dyy dyy )’ D3y D3y )’ J Uy Uy V21 vz /o - ’
1 < j < m, and every entry belongs to C. We may drop the upper indices in the
entries of the matrices for d;, D; and u; if the context allows us to do so, and we may
also drop the lower indices when there exist a unique element in the matrix which is

non-zero.

THEOREM 5.1. Let G = Da, C SO(3) with n odd. Let f; := 2?7t +y?™+L and
fo i= a?mtl —g2mFL Then,
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1. There are m + 1 crepant resolutions of m; : Xo.; — C3/G for —1 < i < m,
given by the open covers:

it+1 m+2
= uiuul,u | U
k=1 k=i+3

where U, U/, U!" 2 C? for all i, with corresponding local coordinates

Up=Clc= Spec C[+ ,my,fl]

Ui=Cip, = Spec(C[(“’) ; (w)ff o, B, fori<m 41,
Upio =2 (ij Vu = Spec Cl-2, (wyl)"” (wffm ]
U’N(CZdD—SpeC(C[ m’) ,(zyfﬁ,my], fori<m+1.
U/=C:,p= Spec(C[fi fl) ,(my@,l], fori < m.

For i = —1 we have X = G-Hilb(C?).
2. The degrees of the normal bundles Nx g of the exceptional rational curves
E C Xy are

Open cover of E | Degree of Nx,i
Ui UU;+1 (=2,0) fori=2,.
(-3, )forz—m+1
U/ UU;z (=1,-1) fori=1,.
(-2, )forz-m—&—l
U"UU{H (=1,-1) fori=1,...,m—1
U/ uuU, (=2,0) fori=1,.

3. Let m; : Xo..; — C3/G a crepant resolution. Then the dual graph of 71';1(0)
is of the form:

Proof. Step 1. Let X := G-Hilb(C3) = M, for the 0-generated stability condition
# and dimension vector d = %2 ...2. Then we can construct the following open cover
of X:

m—+2
G-Hilb(C*) = Uj U | U;
i=2

We divide the proof of this fact in 4 steps:

(i) We can always choose ¢ = (1,0). Otherwise, by the 0-generated stability
we need to have ab = (1,0), so that the relation ab = cu; implies that
A(c1)?+ud ca = 1. But then ¢; and ¢ cannot be both zero at the same time,
which means that we can change basis at the vertex 1 to obtain ¢ = (1,0).

(ii) Similarly, we can change basis to choose d; := ( d; d22 ) for every i. Therefore

it is remaining to generate the basis element (0,1) at every 2-dimensional
vertex.
(iii) The open conditions to generate the 2-dimensional vertices can be done in-

volving only the maps d; and D;. Indeed, if we suppose that u; = ( 9 1 )

Ugy Upp
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then using the relations involving the vertex i we can conclude that Db, # 0,
thus we can choose Di; = 0 and Di, = 1 instead.

(iv) By the stability condition we need to reach the vertex 0" with a nonzero map
from 0, thus we have that

either Cd1d2 s 'diDiDi—l cee DlB 75 0
or a#0

Consider the first case and suppose initially that ¢ = 1, which after a change

of basis is equivalent to say that cdy D1 B = 1. In particular we can choose

By =1 and D; := ( DO;l Dléz), which leads to a contradiction when ap-

plying the relation Bb + Cc¢ = dyD;. Similarly, for ¢ > 0 we obtain con-
tradiction with the relation D;_1d;_1 = d;D;. Therefore we either have
Cdl ce dmflumDmfl s DlB 7§ 0 or Cdl s dmflvafl s DlB 7§ 0. By (11)
we can always choose the second option, which gives the open set

U{ : Cdl c 'dm—lva—l c DlB =1

By the relation ¢B = 0 we get B; = 0, so by changing basis we can always
10 i
take ¢ = (1,0), d; := (dél d;2), D; = (d(l)l 12) for all 4, v = (0, ,.,) and

B :=(9), and using the relations we obtain the representation space for U]
shown in Figure 3. If we suppose that a # 0, by (ii) and the usual change
of basis at every 2-dimensional vertex ¢ we reach the standard basis element
(1,0) by the path cdy - --d;. Then, the rest of possibilities for the open sets
are

Us: cdi-+-dm1vDm1---D1=(0,1),a=1
Us: cdi+ dm-10vDm-1---D2=(0,1),ab=1
Uit cdi o dm10Dm 1+ Di=(0,1),abdy -+ di 1 = (0,1) for 4<i<m
Um+1 coedy - dmov = (071)7abd1 o lm—-2 — (07 1
Unia: cdi- dm1 = (1,0),abd1 coedme1 = ( 71)

! ~
Uy =C3, (chu

0 0
a ab -aC b b B w@B) ™!
\ (0] (fabg'g" Zb;) (e, et \(1 0) (u(uBz -1 LZ) (u(umzm—z "(i ) (,u(ubmm &5 )
0
b

0)
ENSITRS, wn O B Ousm O e,

a \_/2 ————— m—lCm Al v 1 Y —— m,]CTﬂ
b 0) om0y "
(Cb)/' €39) 49) (b,u)/ (1) &)
(v6) 0 (u5 o)
0/ (1) A= aC2 _ qp2mtl 0’/ (3) A=1b2 - u2(uB)2m—?

F1G. 3. Open sets Uy and Uz in Doy, - Hilb(C3).

It follows that X = G-Hilb(C?) is covered by the union of m + 2 open sets
isomorphic each of them to C3.

Step 2. For every p € It G let S, := (S ® p)¢ be the CM S%-modules. Writing
down irreducible maps between these modules we obtain the McKay quiver shown in
Figure 4.

Every point in an open set U C X is a representation of () of dimension vector
d = 12...2 generated by a subset of linearly independent distinguished arrows. We
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\Nw (5 _Oz>
%\O
(l’»-y)

=0

Fic. 4. Quiver of CM-modules S, for G = Dap, n odd.

(52 (52

(5y) O

/\
S 2 - T T T T —7% S m—1 \_/ m

i) O
(59)

z

choose basis elements for the vector spaces at every vertex of Q by following the
distinguished arrows of U in the quiver between the CM S%-modules shown above.
For instance in Uy with coordinates a, b and C, the distinguished arrows are c,
diy...,dm—1,v, Dyy_1,...,D1 and B, so we choose the following basis elements:

Vo 1 Va | (2%,9%) = e
VO/ $7 o y7 (y5, I‘5) = e9
Vi| (my)=e |[Va|(@®y’)=e

(y°,2°%) = e (y*,2h) = e

For instance, this choice of basis elements implies that taking the paths in the
quiver a, ¢C' and cdy - - - dy,— 19Dy, —1 - - - D1C we obtain the identities z = a(2” —y7),
22y = b-1 and 27 + y” = C - 1, which by rescaling the coefficients gives us the
coordinates of the open set Uj:

a=z/@ —y)b=ay,C =" +y.

The same method gives Uy = Cj p , with b = zyz/ fo, B = fa/z and u = zf1/ f. The
gluing between U] and Us is given by (a,b,C) — (ab,a1,aC) thus the exceptional
P%z:zhgﬂ) has a normal bundle of degree (—1,—1). In other words, knowing the
representation space of an open set U C Myo we can recover the local coordinates for
U, and the gluing between open sets determines the degrees of the normal bundles of
the exceptional curves.

It follows that in X we have 771(0) = /-, E; where E; =~ P! with coordinates

(wy)iz : ?mHL — y2m+L for 4 = 0,...,m, intersecting pairwise according to the dual
graph shown below (see also [GNS04] §3.5).

Ey Ey En-1 En

° o——. .- —e@ °

Therefore Ey is a (—1, —1)-curve, E,, is a (=3, 1)-curve, and the rest are (—2,0)-
curves. By Lemma 7.1 only Ej can be floppable, which gives us Xj.

Step 3. Recall that any (—1, —1)-curve E C X is floppable. In fact, there exists
F = P! x P! C Y fitting in the following diagram
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where I’ dominates F and E’ in two different ways as the exceptional locus for o and
o’ (see for instance [Reid] §5.5 and references therein). In our case, the curve Ey C X
is covered by Ui and Uy, and to calculate the new open sets in U, U} C X covering
the flopped curve E{; we look at the following representation space:

0 a Y al a e
Nm (abzwggym 1_7;,;21) ) (i 20
) \O o sz O ( [1) szB) O
A
/ \—/
(b1,b2) (b%B ?) (b%B ?) O
/. (9) (+%8)

It is the representation space obtained by taking the distinguished nonzero arrows
which are common in U] and Us,. This space dominates both sides of the flop, in the
sense that if we set B = 1 we get Uy and if we set a = 1 we get Us, covering Ey; if
by =1 we get Uy’ and if by = 1 we get U}, covering the flop of Ey. The coordinates of
F =Pl x P! are (a: B;by : ba).

ab? — aba (b2 B)*™ !

o

Step 4. For the rest of crepant resolutions Xy, ; we argue in the same way, i.e. we
repeat this process in every (—1,—1)-curve to produce every open set U C My. We
show in Figure 5 the representation spaces for the open sets U/ and U/, the rest are
done similarly.

UIN(CadD

3<i<mt1

\(1 0 g (28) ( D2<‘“ :d) ( D2ot? ud) (—(LD01+2 ﬂfd)
UNSXTE ap O wn O ap) (45)
/1\_/2 —————— i3 Ti-2l i1 S i————e m-1___=m
o (5 3) (6 5) (.ipB) (89 (89
0 ((]l)
0’/ (%) A= ad? — ap2a+3 v
U// ~ (C
a,d,D

\00 (48) (3%) (.awé)w“ i'f) (—ml(;m“ udfzm) (—admaD)““ ad(i?)u)
W) N0 ap 6 O 4y Ous O i) O

Al e 1< _——=2--———-- i—27 i1 i itl————— m-1___>m
- — il =i -
7 (4D ) () (0 0) (ap0) (D0
(0.1) 0 dD 0 dD -D D 01 01 Q
/ 0 (dpd)
o (ap) A =a+ ad?(dD)2e+1

FIG. 5. Open sets U} and U!' contained in crepant resolutions of C3/Day, with n odd.

In each of Xy ; with 0 < ¢ < m there are precisely two (—1, —1)-curves, whose
flops give Xy (;—1) and Xg_ (j11) respectively. In the case i = m, the 3-fold Xo. .
has only F,,—1 as a (—1, —1)-curve and the flop produces the previous Xo. -1, SO
we stop. This proves (3).

The gluings between the open sets shown below, from which we can read off the
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degrees of the normal bundles in (2).

Ul = Us: (a,b,C) > (ab,a™*, aC)
Ui = Uit : (cl,D,u)»—)(dD,d1 u), fori=2,....m+1
Upni1 = Uiz (d,D,u) — (u* —4d*D,d  u,d™)
U = U1: (a,d, D)~ (aD,a % ad), fori=2,...,m
Uhit = Ung2: (a,d, D) — (a®d* —4a®D,d,a™ ")
Ul — U{H : (a,d,D) s (ad,d™*,dD), fori=1,...,m—1
U/ - U/'y: (a,d,D)+ (a,d*D,d™"), fori=1,...,m

In every crepant resolution the dual graph of the fibre over the origin 0 € C3/G is of
type A, they only differ in the degrees of the normal bundles over E; given in (2). O

5.2. The dihedral group of order 2n (n even). With the potential given in
Section 3.2 the list of relations in this case is the following:

da,dA,0b,0B,0c,0C : bC =0,cB =0,Ca=u1B,Ac =bui, BA=u1C,ab= cu;.
da’,0A', 00 ,0B',0¢',0C" : VC'=0,/B' =0,C0"a = um-1B,
A'd =bum_1,B'A =um 1C",a'b = cum_1.
8d17 ey 8dm72 . D1U1 = 1,62.D17 ey Dm,2u7n,2 = um,1D7n,2.
8D1, ey 8Dm72 : Uldl = dl’uz, cee ,Umfzdmfz = dmfzumfl.

Our: Bb+Cc=dD.

8’!127 o 78um,2 : dzDz = D1d17 ey dmszmfz = Dmfgdmfg.
O : BY +C'c = Dy —odm—o.

We consider the same notation as in 5.1 for the arrows of ) as linear maps, adding in

this case o’ :=a’, A" := A", b = (b, b}), B’ := (gi), = (d, ) and C' := (g: )

THEOREM 5.2. Let G = Da,, C SO(3) with n even. Let f1 := 2™ + y™ and
foi=a™ —y™. Then,
1. There are (m + 1)(m + 2)/2 non-isomorphic crepant resolutions m;;

Xg_q_'_'l-'(mfj) — C?/G given by the open covers:

i+1 m—j m+3
X m=a) - U ruUL,u | eoviau oW
k=i+3 k=m—j+2

for =1 < i,j < m — 1, where Uy, U,, U, VI, V" = C3 for all k, with local

coordinates
(IZJ<7;) C3.p.u = Spec C[(x?cz;;lz, (zgiff%, zf—J;l} ‘Z/<’7: C3, w01 = Spec C[(’Cy);2;2 LTy, (z£)f22 ]
Unt1 =C% B, Vg1 =C o . )

= Spec C[ZL2 i ,(wf)l% fo21} = Spec (C[(xy);;z ) (zy{m Ts (zy)lnjfz ;]
g;:) Clup= Spec(C[(x?ﬁfz ) (zy)%wy] V2 2C3, o = SpecC[2?, W’ Z%}
Upi1 & (Ca Bl = SpecC[% f—lz, (zy{gﬂ 7] V! (Cg Dol = Spec(C[(xy)i2;2Z27 (zy){ziaz2 ) ZTJ;I}

7,<m+1

b= Clap=SpecCl, )| Viiea 2 o0 = SpeeCle?, gl )
U = C3 , o, =SpecC[Z, (zy;‘fn . %} Vi g2 CY, = SpecCls? (W)% L

When i = j = —1 we have X = G-Hilb(C3).
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2. The degrees of the normal bundles NX/E of the exceptional rational curves
ECXO “M=9) are:

Open cover of E | Degree of NX/E Open cover of E | Degree of NX/E
U; UU;41 (=2,0) for2<i<m Ujuv/, (=2,0) for1<i<m
U; UV, (=1,-1) for2<i<m-+1 Uj'uui (=1,-1) for1<i<m
Unt1 UV s | (=1,-1) ujuu, (=2,0) for1<i<m-—1
Ul VU1 (=1,-1) for1 <i<m Viuvi, (=1,-1) for2<i<m+1
(=2,0) fori=m+1 V' uVvi, (=2,0) for3<i<m+2

8. The dual graph of wi;l(()) is:

for Xo..; with i < m,

fOT XO...mfl;

o— ... —o6 for the rest.

Proof. Step 1. As in the proof of Theorem 5.1 we start by calculating explicitly
X := G-Hilb(C3) = Mo for the O-generated stability condition #°. In this case the
open cover is given by

m+1
G-Hilb(C*) = U] U | ] Uk UV, 1, UVl s
k=2

From Section 3 we can see that the McKay quiver in this case only differs from
the case when n is odd in the vertices m — 1, m and m’, thus the argument is

very similar to the proof of Step 1 in Theorem 5.1. In particular, we can choose

c=(1,0), d; == (dzl dgz) and we cannot have a path cd;---d;D;--- D1 B # 0 for

any i. Therefore, we have three possibilities to reach the second linearly independent
vector, which we may choose to be (0,1), at the vector space at the vertex m + 1.
Namely cd; - dp—2B'd = (0,1), ¢d; -+ - dpp—2C'¢ = (0,1) or abd; - --dp—2 = (0,1).
By symmetry the first two are equivalent, so we can assume that C; = 1 and ¢ =
(0,1). In other words, we have that

either cdydy -+ dpy—2C'¢ = (0,1)
or abd;---dp—o=1(0,1)

Let us consider the first case. To reach the 1-dimensional vector space at the vertex m’
we can always choose B] = 1. Indeed, by the relations ¢/B’ = 0 and C'a’ = u,,_1 B’
we obtain the equality a’ = w11 B]. This means that if we choose a’ # 0 then B} # 0,
and we can change basis to consider B = 1 instead.

Thus we obtain the following open sets

U{ : cdl---dm_QC':1,B’:1,c’Dm_2---DlB—1

U22 cdl---dm_gC’:1,B’:1,c’Dm_2--- ( ,1 a =

Ugl cd1-~-dm_20’:l,B’zl,c’Dm_2~-~ ( ,1 ,ab ( )

Ul' : Cdl s dm_gc/ = 1,B/ = 1,C/Dm_2 ce (O, ),abd1 1 3
=(0 )f0r4<z<m—|—1

);
)

)
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If abd; - - - dp,—2 = (0,1) then there are only two possibilities which satisfy the 0-
generated stability condition, namely cdy - - - d,,, o B’A’ =1 and ¢dy - - - d,,_2C'a’ = 1,
giving the open sets V,,,, and V! 5:

o s abd; - -

(O, 1), Cdl tee dm,QB/A/ =1
Vo 3t abd; 0,1

2 =
dpp—o = ( ) )aCdl o 'dm72cla/ =1
Again, by using the relations in every case we conclude that G-Hilb(C?) is covered by
the union of m + 3 open sets isomorphic to C3.

Step 2. As in the proof of 5.1, the local coordinates in (1) are obtained using the
quiver structure of the CM S%-modules S, which in this case is given in Figure 6.

z z P Sm—1 z z
y 0 y 0 N
(@) (32) (82) (2)

Sor S
Fi1G. 6. Quiver of the CM-modules S, for G = Day, n even.

If we call 7 : G-Hilb(C?) — C3/@, it follows that 7=1(0) = /4" E; where
E; = P! intersect according to the following dual graph:

o m—+1

The curves E; have coordinates (zy)%z : 2™ —y*™ for i < m, E,, has coordinates
™+ y™: z(x™ — y™) and E,, has coordinates ™ — y™ : z(2™ 4 y™). The rational
curves Ey, E,, and E,,41 are (—1, —1)-curves, and the rest of E;’s are (—2,0)-curves.
By Lemma 7.1 only the flop of Ey, E,, and E,,+1 gives us new crepant resolutions.
As in Section 4.1.2, by the symmetry of the curves F,, and F,,11 it is enough to
consider flops from G-Hilb(C?) at Ey and E,,.

Step 8 is analogous to the proof of Theorem 5.1.

Step 4. Using the same method as in the proof of Theorem 5.1 we see that we
can flop consecutively the curves Fy, ..., E,,—1 (in this order) to obtain the chain of
flops

G-Hilb(C?) = X --+ Xo -+ ... - Xo._.m—1

At every step we perform the flop as in the proof of Theorem 5.1, producing each
time two new open sets. The dual graph of the fibre over the origin of these crepant
resolutions are the same as the dual graph for G-Hilb(C?) except for X, ,,_1 which
is

L4 m—+1
In any of the crepant resolutions Xy, ; except for i = m — 1 we can also flop the
rational curve E,, to obtain the crepant resolution X§* ;, where now E,,_; and the

NE
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flopped curve E! are (—1,—1)-curves. Flopping E! again takes us back to Xy, and
flopping E,,—1 leads us to X" (_?171). In the same way we obtain the sequence of flops

m(m—1) 42
Xo..i--+Xg' ;- X0 - X

.7

and continuing the process in the same fashion we construct the (m + 1)(m + 2)/2
crepant resolutions ;; : Xf —C3 /G. Except for X ; which is described above, the
dual graph of the fibre 771(0) for the rest of crepant resolutions is

which finishes the proof of (3).
For (2), the degrees of the normal bundles in each case are obtained by using the
gluings between the open sets shown below, and the result follows.

(d®D,d=u),i<m—1

Ui — Ui : —
d,D,u) + (u—4d*D,d "1, u)

Um — Um+1 :

E
Uni1 = V9ot (C',¢,B)— (B'C',JC', (C")™)
Upsr = Vg (C'.d, By — (B'C", B'd, (B))~Y)
U' - U1: (a,d, D)~ (aD,at ad),i<m -1
(a,d,D) — (ad — 4aD,a ', ad),i=m
U/ = V/,: (a,d, D) (a*d,D,a™ "), i<m-1
(a,d, D)+ (a?d,d —4D,a" %), i=m
U’ 5 Ul : (a,d D) (ad,d=",dD),i <m
U/'- U : (a,d, D)~ (a,d*D,d™1),i<m-2
(a,d,D) — (a,d 1,1 —4d?D),i=m —1
Ui—V/,: (d,D,u)— (du,dD,d ), i<m—1
(d, D,u) ~ (du,d‘u —4dD,d"Y),i = m
V= Vi (du,C)— (du,(a/)1,ad'C)i<m+1
V' VI (d,D,C") e (2D, d 7O i< m
(d,D,C") — ((C")? —4d*D,d=*,C"),i=m+1
(A, d,C") — (A, d(C)2,(C) 1), i=m+2

a

5.3. The tetrahedral group. Let G be the tetrahedral group of order 12. In
this case the McKay quiver and the relations derived by the potential W are the

following:
1 2
X% uA =vA, au = av
B ¢ uB = wvB, bu = wbv
uO ; Ov uC = w?vC, cu = w?cv

A Aa + wBb + w?Ce = u?

Aa + w?Bb + wCe = v?
0

Considering the arrows as linear maps between vector spaces we denote them

A B
by a = (al,ag,a3), A = (ﬁ;), b= (bl,bg,bg), B = (B;), c = (01,02,03),
3

B3
C1 Uil U2 W13 V11 Vi2 V13
C:=| c , U i= | u21 U22 u23 and v ;= [ v21 v22 vas ).
Cs

U31 u32 U33 V31 V32 V33

The quiver structure of the CM S%-modules S, in this case is the following:
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So
FIG. 7. The quiver structure of the CM S -modules for G =T

Let us define the following polynomials which appear frequently in the rest of this
section.

foi=a%+y%+ 22 Ry =222 + 2222 + 2292,
f1:= 2% + w?y? + w2? Ry =222 + wr?2? + w?a?y?,
fori= 2 + wy2 + w222, Ry = y2z2 +w?x?2? + wx2y2.
f3 = zyz,

fo= (@ —y?)(y° — 2%)(2° — 2?).

Notice that we have 3R0 = fg - flfg, 3R1 = f12 - fofg, 3R2 = f22 - fofl,
Rg = R1Ry + 3f0f§, R% = RoRs + 3f1f3?, R% = RoR: + 3f2f§ and R% — R:f =
3f2(f2Ra2 — fiR1), as some of the relations among these polynomials. The invariant
ring S¢ is generated by fo, f3, fif2 and fi (See [GNS00, §2]) but fif2 = f2 — 3Ry
holds, hence one can take Ry as a generator of S¢ instead of fi fo. There is only one
relation between these polynomials:

f3+A4R3 — fARE — 18foRof3 +Afs f3 + 27f5.

THEOREM 5.3. Let G be the tetrahedral group of order 12 and let m: Y — C3/G
be a crepant resolution. Then,
1. There exist 5 crepant resolutions of © : X; — C3/G related by flops with the
following configuration:

-~ ~
XO < X12 -~ - - X123
P4
~ -
~ -~

Moreover, Xo = G-Hilb(C?) and every X; is described as the union of /
open sets isomorphic to C3. The open covers are Xo = Uy U Uy U Us U Us,
X1 = UéUU{UUQUUg, X2 = U()UU1UU2/UU§, X3 = UéUU{UUéUUé and
X, =Ulu U uUY UU;, where the local coordinates in each open set are

Ry fafs f12f3]

~ 3 — JiJs f1Ra fo I~ 3 —
Uo=C;, ., c, = Spec Uy = C, ¢, .c, = Spec

c2, R1 ? R1 7j2 flfS7 Rl ’ Rl
U, = ng)cs)CS = Spec fafs foRo Ji Uj = ng,Cl,Cg = Spec fifs foRo f1R2]

fofs fiRa1 @]
R’ faR2’ Ra
Ri  fifs f22f3]
fafs? R2’ Ro
fiRo f3 f2R0]

R> " Ro’ Ry

~ M3 _ J1, ! ~ 3 _
Uz = Cbz,b?nBs = Spec U; = Cbz,Bth = Spec

[
R, ViR Ry
[
[

~ M3 _ J
Us = Cb?;b?nBl = Spec

Uy = C%

! ~ 3 —
Us = Cbs,Bth = Spec

Spec[flf3 %’?_07 f2f3] Ul = (CSB

1,¢1,C1 1,¢2,C1



FLOPS AND MUTATIONS FOR POLYHEDRAL SINGULARITIES 29

2. The dual graphs of 7=1(0) in each crepant resolution with the corresponding
degrees for the normal bundles are:

(=2,0) (=2,0)

(-1,-1) (=3,1) (-1,-1) »~ S (L= (=1L,-1) (=1,-1) °
. o . o o -———— g

.
~ - (—=1,-1)

Proof. We start by calculating explicitly G-Hilb(C?) as a moduli space of rep-
resentations of the McKay QP. Let #° be a 0-generated stability condition. Then
Xo := G-Hilb(C?) is covered by Uy, Uy, Uz and Us, where
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First notice that by using the relations we have that auB = avB = w?auB, which
implies auB = 0. Similarly we obtain that following paths vanish:

auB = avB = auC = avC = buA = bvA = buC = bvC = cuA = cvA = cuB = cvB =0 (#)

We split the calculation this time in 5 steps:

(i) By changing basis we can assume that a = (1,0,0).

(i) If aB = aC = 0, then it follows au'v’ B = au’vIC = 0 by the relations of
the middle vertex, which contradicts the O-generated stability condition 6.
Therefore either aB # 0 or aC' # 0. Moreover we may assume that aB = 1
or aC =1 by change of basis.

(iii) We consider the case aB = 1 and aC = 0. If aBbC' = 0, then it turns
out that any path through C' is zero by the relations. This contradicts the
0-generated condition. So it must be aBbC # 0 and b not a linear multiple
of a. We may assume aBbC' = 1 and b = (0,0,1). Next assume that au =
(A, 0,7n) for some A\, € C. Since auC = 0 by (#), and C; = 0,C5 = 1 by
aC = 0, ABbC = 1, it follows that n = 0. Moreover since auB = 0 by (#),
and By = 1 by aB = 1, it follows that A\ = 0 hence au = 0, which leads to
aBbC = aAaC + waBbC + w?aCcC = au® = 0. This contradicts a BbC = 1,
hence au is linear independent of (1,0,0) and (0,0,1). Therefore we can take
au = (0,1,0) by change of basis. These are the conditions for Up.

(iv) The case aB = 0 and aC =1 is similar to (iii). This case leads to Us.

(v) Consider the case aB = aC = 1. If au = (), 0,0) for some A € C, because
auB = 0 and By = 1, we must have A = 0, hence au = 0. The relations
aAa + waBb + w?aCc = au? and aAa + w?aBb + waCc = av? means

A +wby +w2c1:O Aq +w2b1 +wep =0
why + w?cy =0 w2by +weg =0
whs + w?c3 =0 w?bs + weg =0

hence it follows by = ¢; and ba = ¢ = by = ¢3 = 0, that is, b = ¢ = (b1, 0,0).
This means we cannot generate the middle vertex, which contradicts the O-
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generated condition. Therefore au is not a linear multiple of a, hence we can
assume au = (0, 1,0).

We claim that if both of b and ¢ are linear multiple of a and au, then it
contradicts the O-generated condition. Indeed, if we assume b = (by,bs,0)
and ¢ = (c1,c2,0), the relations ada + waBb + w?aCc = au® and aAa +
w?aBb + waCc = av? are equivalent to

A +wby + w2c1 = U21 A+ w2b1 +wep =

= V21
wby + w2c2 = U292 w2b2 —+ weo = V22
0= U23 0= V23

Therefore
= (07 1,0)U = (u21vu227U23) = (U217U22,0)7
2 =(0,1,0)u = (va1,v22,v23) = (var, v22,0),

which are linear combinations of @ and au. Therefore we can not generate the
middle vertex. Consequently it must be b = (0,0,1) or ¢ = (0,0,1). These
conditions give U; and Us respectively.

We show in Figure 8 the representation spaces for each open set in G-Hilb(C?).

Uy =C CZCSCI (0,0,1) (
Al

0 3 0
u2] w 0201 u23 1121 "J“ZC1 v23 a2t wley  w
2 2

w ey -w<es -w20201 W(‘Z -weg ~wepCh w 52C3 w2cg03 -w

U =C 620303 (0,0,1)

c)Q ’

[

(¢3C1 — c3.eq,c3)
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(¢ — c3Cz.c2,c3)

1 0
L21 weg w23
wzcd ~wegCa -weg

o
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Q

oy o

(1,0,0) c1C1+es (1,0,0) c1+¢3C3
gy = cg — w(‘1(71 (CZ(I*Alcl)) ug) = cgCsg — wey c2(C3—A1)
ugg = w + wlezCy c1tesds ugz = w + w?ey (c1e3+c3)C3
va1 :LS—WZLICI vg = c3C3 — w2cy
vo3 = w? 4 wezCy 0 vo3 = w? + weg 0

1 1

3
~
Us = Cbz«b&Bs

3
(brbz, bg) Us = Cbzybs»Bl {or.b2:b2)
(é) (0,0,1) (%1 (0,0,1)
B3 1

0 3 0 0 1 0 3 0
U1 wb2 7L23 Va1 w b2 v23 ug1 wby By u23 vl w b231 v23
wbg B3 -wb3 B3 -wbg -wbgy By

w?by B3 -w?b3 By -w?by wby  -wbg w?by ~w?by -w?by By

b1 +-b3 B: by B1+b,
by = b3 — b3 B; (1,0,0) 1163853 by = b2B, — b2 (1,0,0) 1B1+0b3
! 2 3 (52(33 A1) . 27 by(1—A1By)

2
ugy b:;B57W by 2 ugy = by — w2by By

ugg = w? + why (b1b3+b3)B3 ug3 = w2 + why By b1+bz Ay
vy = by Bg — wby vp1 = by — wby By

vz = w + w?bg vo3 = w + w?bz By

FIG. 8. Representation spaces for the open covering of T-Hilb(C?).

We calculate now the local coordinates along the exceptional curves using the
quiver shown in Figure 7. For example in the open set Uy = C? we have that

aC = Cy-(the basis of ps)
which implies that fo = Cyf?, thus C; = fa/fZ. Similarly,

aA = (c1C1+c3)- 1= c1 = (fo—c3)fi/ 2
aBbA = (c1 +c3A1)- 1= fifa=c1+c3fo

c2,c3,C17
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which gives ¢35 = —f1Ry/R;. Finally aud = 3V3f; = co(1 — A1Cq) - 1, so that
co = \V/3f3ff/R1. Therefore (after rescaling) the coordinate ring of Uy is given by

Cleg,e3,C1) =C [%{12, flR—l?, ;—13} The rest of the cases are done similarly.

It follows that the fibre over the origin 7=1(0) C Xq consists of 3 rational curves
FEq, E> and Es intersecting pairwise as

By  E3; B
[} [ ] [ )

The explicit open cover shows that the curves E; and Fy have degree (—1,—1)
while F3 has degree (—3,1). By Lemma 7.1 we can flop E; and FEs, giving rise to X3
and Xy respectively. By symmetry we only explain the flop of Es.

First Flop X5. In the flop of the rational curve Es we only need to change the
open sets Us and Us. By the same method as in the dihedral case we produce the
rational curve E) covered by open sets U} and Uj, both of them isomorphic to C3,
and given by

Uy ba=1 aC=1 a=(1,0,0) au
Uj bs3=1 aC=1 a=(1,0,0) au=(0,

1
1 U; 2 C3, 5, B, (b1.1.b3) (3’1)
(0,0,1) By (0,0,1)
(&)
0

0 i 0 0 1 3 0 1 0
v21  w baBy w3 w1 wBi  uag va1  w?Br o
wB3 -wb3z B3 -wBq

w?by By -w?Bs -w?by By w?Bj3 -w?b3 B3 -w? B,

7 3
Uz = CbeBleB.

0 1
uz1 wbp By ug3
wbgy By -wBj3 -wby By
(1,0,0)

by = v2B) — By 0, . bgBlng by = By — b2Bj (1,0,0) b1 B1+b3 B3
ugy = —w2by By + By 2( o0t v ugy = —w?by By + b3 By Bs—B1 4

ugy = w? + wBy (b1+b3)B1B3 uag = w2 + whby By (b1b3+1)B1 B3
vg1 = —wb1 By + B3 vg1 = —wby By + b3 B3

vo3 = w + w?2By 0 vo3 = w + w2b3z By 0

Second flop X12. In X1 we can flop E} obtaining X, back, or Fi. In the latter
case we get the new curve E] covered by U} and Uj, both of the isomorphic to C3.
The conditions for the new open sets are:

Uy ec2=1 aB=1 a=(1,0,0) a
U ¢3=1 aB=1 a=(1,0,0) a

[ef) C1
~ 3 0 ~ 3 0
Uy = Ces.00,08 (0,0,1) <Cs> Ui = Cey.00,08 (0,0,1) Cs)
( [1] ) (€1 — ¢2C3.,1,¢3) ( [1] ) (301 — C3.e0,1)
A A
0

0 1 3 0 1 0 0 1 0 3 0 1 o
<u21 w?C1 uasg > (U21 wCp w23 )( uzr  w?caCp uag ) ( vep weaCp o wag )
1

w2Cs ~w?e3Cs ~w2C wC3 -wezCs -wC1 / \Ww2eyCy -w2C5 -w2eaCy weaCy -wCs ~wegCh

N
=
TN

(1,0,0) c1C1+C3 (1,0,0) c1C1+C3
ugl = —we1Cp + e3C3 037?161‘410 ugy = —weyCp + Cg 02(035011“1)
ugg = w + w?ezCy (ere3+1)01C3 ugg = w + w2Cq (e1+4¢3)C1C3
vg] = —w%clcl + c3C3 va1 = —w2c1Cq + Cg
vag = w? + wezCy 0 vz = w? + wCy

Third flop X123. The degree of the normal bundle of the curve E3 in Xi5 is now
(—1,—1) so we can perform the last flop. We obtain the open sets Uy and Uy given
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Uy =C%, ., Cl 0,0,1) Uy =2C%, ., 01 (0,0,1) <3
(e1,1,1) (1.eg,1)

3 0 0 3 0
C3- wcl(‘l w Cl ug3 U21 wcl V23 w1 w chl ugg ’u21 wcgcl V23
w2(A1-Cre1) uze -w?Cy v31 v32 -wCO1 w?cyC3  wzy  -w?eaCy WC2C§ v32 -weaC1

O3 = B1(C1 — c1) (1,0,0) C?lglj:gic C3 = By(3Cy — 1) (1,0,0) . CCI}J;CB 5o
ugg = w20y + wBy LALTELES ug) = C3 — wCy 2C1 41 +e2B1Cy
ugy = —w?(Cy = 1) Ci(Ar—ei) ug3 = w22C'12+ wBy C1(ezA1—1)
vg1 = C3 — w?Cie; ugy = —w?(c3Cy — 1)

vo3 = wCq + w?2B; 0 vy = —w2Cy + O 0

v31 = w(A1 — Crer) azj_mcl+w25l

v3z = —w(C1 —c1) v3g = —w(c3Cy — 1)

The normal bundles of the rational curves in the fibre over the origin are obtained
by the explicit gluings among the open sets covering the curves. These gluings are
given below and the result follows.

Uog — Uy : (02703701) — (02017030170 )

Ui — Uz : (c2,c3,C3) — (0203 ,C5 7036’3 — 302(03 - 1))

Us — Us : (1)271737 3) — (b2B37b3B37B3 )

Uy — Uy : (C 63701) —r (CzCl,C3OI7O )

Ur — Us : (c2,c3,C5) — (62,63 , 305 —3c3(1 —c31))

Ué — Ué : (bz,Bl,Bg) — ( ; ,szl,sz:;)

Ué — U{ : (C 01, 3) — (63 763611763613)

U{ — Ué : (62,01, 3) — ( O1,O 0103 — 36201(01 — 1)))
Ué — Ué : (bz,Bl, 3 ( 2 ,szl,sz:;)

)

U(l) — Ul” : (63701703) — (63 ,C303 — 301, 01)
Ué/ — Ul” : (B17027C1) — (B102702 70201)

Ui — UY' : (b3, B1, B3) + (B1,b3Bs — 3B1,b3 ")

d

5.4. Proof of Theorem 1.1. The proof is explicit and it follows from the direct
comparison between every mutation of (@, W) at non-trivial vertices with no loops
and the description of every crepant resolution of C3/G given in Sections 4.1 and 5
respectively.

The case G = Z/nZ is immediate, there are no flops of X and no mutations of
(Q, W) since every vertex has a loop.

For the rest of the cases, note that in every projective crepant resolution 7 :
X — C3/G the dual graph of the exceptional fibre 771(0) = |J E; (described in the
part (3) of Theorems 5.1, 5.2 and part (2) in Theorem 5.3) coincide with the graph
associated to the corresponding mutated quiver in Section 4.1 removing the trivial
vertex. Recall that the graph of a quiver @ is obtained by forgetting the direction of
the arrows. More precisely,

For G = Dy, n odd: Dual graph of wi_l(O) = Graph of Q;\0
For G = Dy, n even: Dual graph of 7@1(0) = Graph of Qg?_'_fm*”\o
For G = T: Dual graph of 7=1(0) = Graph of @;\0

and it follows that flopping the curve E; corresponds to mutate with respect to the
vertex ¢. This also proves Corollary 1.3.

REMARK 5.4. Part (ii) of Corollary 1.3 also follows by direct comparison, al-
though it is an expected fact since the dimension of the fibres is one. Indeed, since
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Db(X) = Db(A) with A := Endg(M) we have that
loops at a vertex k = dime Ext!, (Sk, Si)
= dim¢ Hompy(a) (S5, Si1])
= dimc Hom py(xy(Op, (—1), O, (=1)[1])
= dim¢ Ext (Og,, Og,)
= dimg H (N, |x)
and the three possible cases give H*(O(—1) ® O(—1)) =0, H(O(-2) ® 0) = C and

H°(O(=3) ® O(1)) = C2. We want to thank M. Wemyss for explaining this fact to
us.

ExaMpPLE 5.5. In the case Dy, for n = 7 there are 4 non-equivalent QPs, as
shown in Figure 9.

()\o O 0w () O O u ) s 0
/1czco —_ /1OZO€> —_ /192’:)3 — /1 2/=/—=3
O O
(=1,-1) (=2,0) (=2,0) (-3,1) (~1,-1) (=1,-1) (=2,0) (-3,1) (=2,0) (=1,-1)(=1,-1) (=3,1) (=2,0) (=2,0) (~1,-1) (-2,0)

Fi1a. 9. Mutations Q¢ and the corresponding fibre over the origin in M for the dihedral group
of type D1a C SO(3).

6. The space of stability conditions. Let G C SO(3) of type Z/nZ, Ds, or
T, let @ be the McKay quiver, take X = M to be a projective crepant resolution
of C3/G for some chamber C' C O, and fix the open cover of X given in Section 5.
Then every open set U C X is isomorphic to C‘Z)b’c where a, b and ¢ are the local
coordinates of C? given in Theorems 5.1, 5.2 and 5.3. For a given point (a,b,c) € U
we denote the corresponding representation by M, . € Mc.

Fix 0 € C. For any 0-stable representation M, ;. € U, the explicit knowledge
of the representation space of U gives every possible subrepresentation of M, ;.. In
other words, the analysis of the matrices in the representation space of every open set
in the open cover of X give the inequalities defining the chamber C' C ©. In order to
do this analysis we encode the structure of the representation space of an open set by
using its skeleton.

DEFINITION 6.1. Under the above conditions, we call skeleton sk(U) of U the
representation of @ corresponding to the origin 0 € U.

Once we choose basis for the vector spaces at every vertex of @, the skeleton is
obtained by setting a =b = ¢ =0, i.e. sk(U) = Mg,00-

EXAMPLE 6.2. Let G = £(1,2,0) and consider X = G-Hilb(C?) = M, where
Cy contains the 0-generated stability condition. Then X is covered by 3 open sets
U; = C3 for i = 1,2, 3 with skeletons

VAN, \

0—>2 0—>2
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where only the non-zero arrows in sk(U;), for i = 1,2, 3, are represented in the figure.
The chamber Cj is therefore defined by 61,65 > 0.

As a consequence of the mnext lemma, if there exists a finite open
cover of Mg = Uzj\il U, and we define Cy = {60 € O|6(N) >
0 for every 0 C N C sk(U;) and every i}, then C' = Cgy.

LEMMA 6.3. Let 6 € O be a generic parameter. If My o is 0-stable then Mgy .
1s O-stable.

Proof. Let (a,b,c) € U and let M, . be the corresponding representation. For
every proper subrepresentation N, . C Mgp,. , the dimension vectors for N, . and
No,0,0 coincide. Therefore since Ny o0 C Mo,0,0 and My o, is O-stable we have that
H(Na@c) = 9(N070)0) > 0.0

THEOREM 6.4. (i) Let G = Do, with n odd and let X; be a crepant resolution of
C3/G. The chamber C; C © for which X; = Mc, is given by the inequalities:

0k >0 for k#0,1,
91<0,
91+92<0,

91—|—92++91<0,
91—|—92+—|—91—|—91+1>0

The wall between C; and Ciy1 is defined by 61 + 92 +...4+6;,+6;,11=0.
(i1) Let G = Da,, with n even and let X(T'.'i'(mﬁ) be a crepant resolution of C?/G.
The chamber C;; C © for which X(T"(mﬂ) = Mg, is given by the inequalities:

%

O >0 fork#0,1,m+1,

61 < 0,01 +62<0,...,5 0,0k <0,

Stbey > 0, Ot < 0,0 + Oniy <0, 30 0, <0,
Z?:l 9/€ + 9m+2 > 07 ;:;11 9/@ > 07
Omi1 + Omy2 >0, Z;n:nll_j 0 > 0.

The wall between C; ; and Ci+1ij 1s defined by 22121 0 = 0, and the wall between
Ci; and C; j11 1s given by Z;cn:+m—j+1 05, = 0.
(i1i) Let G be the tetrahedral group of order 12 and let X; be a crepant resolution
of C3/G. The chamber C; C © for which X; = Mg, is given by the inequalities:

Co : 9i>0,7;750
Cy: 01 <0,00>0,00+603>0
Cy 91>0,92<0,92+93>0
Cia: 61 <0,00b<0,0;+605+63>0
Cioz: 01+603>0,0,+03>0,00+0+63<0

Proof. (i) Consider the open cover of X; given in Theorem 5.1 and let M € X; be
a representation of (). We calculate for which parameters § € © the representation
M is f-stable. By the representation spaces of every open set we can see that the
skeletons for the open sets U;, U/ and U]’ are:
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—. RS T S S P =l e
./ ) ./ /
U]. UfL 2<i<m+1) Um+2
B c/
U{(1§i§m+1) Ui”(lgigm)

Every dot in the above picture corresponds to a basis element in the corresponding
vector space in a representation of ). Notice that the dimension vector is }2...2 so
that there is one dot for each 1-dimensional vertex and two dots for each 2-dimensional
vertex.

We order the subindices of the stability condition 6 := (6;)o<i<m+1 € QIQol by
the sequence 92...m+1 along the vertices of Q. Let s; := J0...010...0 be the di-
mension vector with entry 1 at the position ¢. With this notation, we see that every

f-stable submodule in the open sets U7, ..., U/’ contains a submodule with dimension
vector sg, ..., S;+2 respectively. Similarly, there exist a submodule of dimension vec-
tor Siy3,...,Sm42 in any f-stable module contained in U o, ..., U, +2 respectively.

Therefore we have that 6; > 0 for ¢ > 2.

The rest of the condition follows by examining the remaining submodules. If
M, € U/ then there exist a submodule W; C M; with dim(W;) = {1...12...2 where
the first 2 is located in the position ¢ + 1. This imply that 6; +...+6; < 0. Finally if
Niy1 € U], then there exist a submodule Vi1 C Niyq with dim(Vig1) = 91...10...0

where the last 1 is located in the position ¢ 4+ 1, which means that Eiii 6; > 0.

Any other inequalities coming from the submodules of M € M are implied by
the ones we have just described, so the chamber C' is defined by the inequalities of the
statement. By comparing the chamber conditions of Xo _; and Xy, (4+1) we obtain
the equation of the wall.

(ii) This time we order the subindices of the stability condition 6 := (6;)o<i<m+2 €

Q!?90l by the sequence (1)2 co.m ﬁ% along the vertices of (). The skeletons of the open

sets in this case are as follows:
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SN Aq PAMA/'PAWA )rﬁmﬁq
SR S S S A SN e S S NN |
) A A 2 VI 2o

Ui @<i<m Um+1 m2 m-+3
N i A< N, A<
/o’—*. S e e . e - .(__,.\
: Ui/ (2<i<m) * . U,’n+1
N ek A.z' N
ANY e

U/ a<i<m-n U,

\A_,qumA< ?AN,JLQ_A4
SN SN S S S SN S

v v .

V; (2<i<m+1) Vi// (3<i<m+2)

Consider the open cover of X (m ) given in 5.2 and let M € X =m=) he 4
representation of ). We now deﬁne the dimension vectors which are relevant in the
proof, together with the corresponding inequality that any submodule N C M with
one of these dimension vectors produce:

Dimension vector Inequality in ©

i

0 0 0; >0

i 0 070100 i
1 7

ri= (1)1‘»~110 ‘08 > k1 0k >0
7 m-+1

n; 1= 80-~-011 15 jei Ok >0
1 m+2

eii= Y0011t Or >0

0 : 1

g 7

= 51-~-112~--2} Zk*19k<0
1 m+1

dlziz z11»~1(1J O <0

m
ji= (1)1-~-1(1) Zk:19k+9m+2>0

Note that 1 = s1, nm+1 = Smy1 and 741 = ng.

The following Lemma shows the presence of the first two inequalities of the The-
orem, namely 0 > 0 for k # 0,1, m + 1, and ZmH 0, > 0.

LEMMA 6.5. (i) 6; >0 for all i #0,1,m + 1.
(ii) There always exists a submodule Ny C M with dim(Ny) = n;.

Proof. (i) By the open covers given in Theorem 5.2 (1) and the corresponding
skeletons, any crepant resolution of C3/G has at least one open set containing a
submodule S; with dim(S;) = s; for ¢ = 2,...,m,m + 2. In the cases i = 0,1,m + 1
note that Sy do not belong to any open set so that there’s no condition of the form
0o > 0. The submodule S; is only contained in U] and Us, which implies that only
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Xm-(m=7) for any j have the condition #; > 0. Finally, only Uy, 41 and V4o contain
the submodule S, 41, so that the condition 6,,11 > 0 only is valid in Xq_ j for any k.

ii) Notice that for every k the submodule Ny € U7, V/, and every X/ ("~
y k Yk Y Ao..

i contains

at least one of these affine sets. This finishes the proof of the lemma. O

The dimension vectors that we have to consider in every open set are the follow-

ing:
Open set  Dimension vectors

Ui 8i—1,8i,Ti—1,Mi (2<i<m)

Uerl Sms Sm+1; Sm+2,Tm

V,r;l+2 Sm+1, 11
rx+3 Sm+27j7 Em+1
UZI SiyTiyMiyM1,Cly. .., Ci—1 (1 <i<m)
1/n+1 Sm+1ySm+2yMm, N1, Cm
UZ-N Si41sMi4+1,Cly-..,C (1<m—1)

u Sm41,Sm+2,J, Cm
v/ Sie1, Sm42, Ti1Mi—1,M1, J, diy o . s At
v 8i—248i—15Sm42,Ti-2,€i—1,di—1, -y Amy1 (i <m+1)
7;;4-2 Smy Sm+2yTmy €Emy dm-l—l

- (m—j)

The result follows by going through the open cover of X(T P
Theorem 5.2, and writing down the corresponding inequalities.
(iii) The skeletons in this case are:

NNy

Us N NS .

N Jj )7 vy (/

As expected, only the skeletons for U;,7 = 0, ..., 3 are generated from the vertex 0.
Indeed, this is equivalent to the 0-generated stability condition which only G-Hilb(C?)
satisfies.

= Mg,; given in

)7. ~ )/ ~
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= te
e e
> o

-
-
e e=e
o e
e e—e o

/ 5\

3

e te
e te
>

o ¢
o ¢
o e
o ee

Now take the open covers of X; given in Theorem 5.3. Then the inequalities
defining the chambers C; for which X; = Mg, are given by the submodules of the
above skeletons, and the result follows. O

REMARK 6.6. The set of inequalities in Theorem 6.4 does not give the reduce
description of the chamber C' C ©. Nevertheless, for any crepant resolution the
minimum number of walls or inequalities defining C' is precisely |Qo| — 1, which coin-
cides with the number of components of the fibre over the origin (or the number of
non-trivial irreducible representations of G).
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If for d := (dim p;)ieq, we consider the dual graph 7 of ©4 (that is, one vertex
for each chamber and an edge between two vertices if the corresponding chambers are
separated by a wall), as a consequence of the previous theorem we have the following
corollary.

COROLLARY 6.7. There exists a path in T where every crepant resolution of
C3/G can be found and such that every wall crossing in T corresponds to a flop.

This nice distribution contrast for example with the general case for Abelian
groups in SL(3,C), where it can happen that finitely many wall crossings (of Types
0 or IIT) are needed to connect two crepant resolutions related by a single flop. See
[CT] for more details.

6.1. Stability conditions and mutations. In this section we compare the
classical approach of changing the stability condition on the representations of the
McKay QP to obtain all crepant resolutions of C3/G with the mutation approach,
which change the QP but not the stability.

Let G C SO(3) of type Z/nZ, Dy, or T, and let (Q,W) be the Mckay QP.
Let Z®@ be the space of dimension vectors, with canonical basis {eg,e1,...,e,}.
Let Homgz(Z%°,Z) be the dual space with the dual basis e, ef,..., e’ and define
O := Homgz(Z%,7Z) ® Q the whole parameter space. Let d = > icq, (dim p;)e; with
pi € IrrG.

Let u(Q, W) a QP obtained by a sequence of mutations u = p;, - - - p;,,, from the
McKay QP. We denote by A = P(u(Q,W)) the Jacobian algebra. We fix a vertex
i € Qo with no loops and let P; be the projective A-module and S; the simple module
associated to the vertex i. Then, as in [BIRS] Proposition 4.2, there is an exact
sequence of the form

0P +Xo= P Pu—Xi= @ Puub P80 (6.1)
a€Q1,ha=1i a€Qq,ta=1

Let (—, —) be a symmetric bilinear form on Z®@° defined by

o) — 2 i=j

In our case, if 7 and j are adjacent, then we can see that there is only one arrow from
i — j, so (e;,e;)is —1.

We define (M, N) := (dim M,dim N) := (dim M,dim N) for any finite dimen-
sional A-modules M, N. We denote by s; the reflection with respect to a vertex ¢,
which is defined by

sii=a — (o, €)e;
for any dimension vector o € Z?0 and dually

n

819 =0 — 6‘1 Z(ei,ej)e;.

Jj=0

Trivially, for any dimension vector «, 6(«) = 0 if and only if (s;0)(s;a) = 0. For
a sequence L = f;, - - - p;,, of mutations, we consider the corresponding sequence of
reflections w = s, -+ 5; Then dimension vectors wd determine parameter spaces

m*
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Oua. Let 0 € O,,q be the 0-generated stability condition and C the chamber in © 4
defined by the inequalities of 69 > 0 for i # 0.

LEMMA 6.8. The chamber of Mgo ,q(A) is Co.

Proof. 1t follows from direct calculations that all simple modules associated to
vertices can be a subrepresentation of some point in Mgo ,,q(A) O

Recall that by the one-to-one correspondence between flops of G-Hilb(C?) and
mutations of the McKay QP, for any projective crepant resolution X = M for some
C' C O there exists a corresponding iterated QP (Q¢, W) obtained by a sequence of
mutations from the McKay QP. The goal of this subsection is the next result.

THEOREM 6.9. Let X — C?/G be an arbitrary projective crepant resolution,
that is X = Mc¢ for some C C ©. Then X = Mgo ,q(I') for the Jacobian algebra
I':=P(Qc,Wc) and the 0-generated stability condition 6°. Moreover, there exists a
corresponding sequence of wall crossings from G-Hilb(C?) which leads to X = Mg q(A)
where A = P(Q, W), d = (dim p;),,enr ¢ and the chamber C C ©q containing 6 is
given by the inequalities 0(w~'e;) > 0 for any i # 0.

The rest of the section is dedicated to prove the above theorem.

DEFINITION 6.10. For any parameter § € O, we define the full subcategory
Sp(A) of ModA consisting of @-semistable finite dimensional A-modules. Moreover we
denote by Sp o(A) the full subcategory of Sp(A) consisting of f-semistable A-modules
of dimension vector « if Sp o(A) is not empty.

In the exact sequence (6.1), let K; be the kernel of f fitting in the exact sequence

05K 5X 5P =8 —o. (6.2)

Then it can be checked that T; := A/P; & K; is a tilting A-module of projective
dimension one. We put I' = End, (7;). By a similar strategy as in [BIRS], it follows
that T' ~ P(uw(Q, W)).

LEMMA 6.11. Let M be a finite dimensional A-module of dimension vector oz =
(ag). Then the alternating sum of the dimension vector of RHomy (T;, M) is given by
the following formula:

dimp Homy (T, M) — dimp Ext} (T;, M) = s;a.

Proof. For each j € Qo, e; denotes the corresponding idempotent of A. The
following hold:

Homy (K;, M) if j =i
Homy (T}, M)e; ~ Homp (e;T;, M) = oma( ) ifj=i
Homy (P;, M) ifj#i
and
Exty (K;, M) if j =i
0 if j # 1.
By applying Homy (—, M) to the exact sequence 0 — P; — X2 — K; — 0, we have

Exty (Ti, M)e; ~ Extj (e;T;, M) = {

0 — Homy (K;, M) — Homp (Xo, M) — Homp (P;, M) — BExtj (K;, M) — 0.
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Hence we have
dim¢ Homp (K;, M) —dim¢ Ext}\(Ki, M) = dim¢ Homp (Xo, M) —dime Homy (P, M).
so that dimp Homy (T;, M) — dimp Ext} (T}, M) is equal to

> aje; + (dimg Homy (K;, M) — dime Ext) (K;, M))e;

j#i
= Zozjej + ( Z Qg — Oéi)ei = o — (20&1 - Z Oéta)ei = — (a,ei)ei. a
J#i a€Q1,ha=i ac€Q1,ha=i

We have a similar result as in the two dimensional case treated in [SY].

THEOREM 6.12. If 6; > 0, then there is an equivalence

Homn (T4,—)
Sp(A) ? Ss,0(T)
—Wriqg

of categories which preserves S-equivalence classes. Moreover this equivalence induces
an isomorphism

MH,OL(A) = MSiG,Sia(F)
of varieties for any o € Z2.
Proof. Since T; is a tilting module, there is a derived equivalence
RHomn (T5,—)
D(ModA) —————=D(ModI).

L
—@rT;

The functor RHoma (T3, —) induces a functor Homa (75, —) from Sp(A) to modT.
We show that Homp (75, —) is well-defined. Let M be a #-semistable A-module of
dimension a. By applying Homy(—, M) to the exact sequence (6.2) and using the
fact that A is 3-CY, we have

Ext} (T;, M) ~ Ext?(S;, M) ~ D Homy (M, S;).
Since 6; > 0, M doesn’t have S; as a factor. So we have Homp (M, S;) = 0, hence

Ext} (T;, M) = 0. Next we show that M’ = Homy(T;, M) is s;0-semistable. By
Lemma 6.11 we have

(5,6) (M) = (5,0)(dimy Hom, (T3, M)) = (s,6)(s:0) = 6(a) = 0.
We take any proper submodule N’ of M’ and consider the following exact sequence
0N - M —C—0.

By applying — @r T} to the above, since Tor} (M’,T;) = 0 we have an exact sequence

0— Tt (C,T3) = N' @r T % M’ @ Ti ~ M.
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We have Torj (N, T;)e; = Tor;(N,Tie;) = 0 since Tie; =~ Homp(A,T)e; =~
Homy (P}, T;) is a projective I'°P-module. So dimy. Tor} (C,T;) = eV
negatve integer m. Since Torl;(N’, T;) = 0 we have dim, N'®rT; = s; dim N’. Thus
since Im f is a submodule of M, we have

for some non-

(5:0)(N') = (s;0)(s; dimy N' @r T5)
— §(dim, N @r T))
6(el") + 6(Im f) > 0.

Note that if M is @-stable, then M’ is also s;0-stable since #(Im f) > 0. The converse
is proved similarly. Moreover, one can easily check that S-equivalent classes are
preserved.

Asin [SY, Theorem 5.6], for any dimension vector « the functors Homy (7}, —) and
— ®@r T; induce inverse morphisms f : Mg o(A) = My,0,5,o(I') and g : My, 6,0(I) —
M.« (A) so that there is an isomorphism between the moduli spaces. O

COROLLARY 6.13. A chamber C C ©4q is mapped to a chamber s;C C Og,ud.-
More precisely, if C is defined by inequalities 8(c) > 0 for a set of vectors {a}, s;C
is defined by inequalities 0(s;a) > 0.

Proof. For any 6 € ©,4 by Theorem 6.12, a A-module M of dimension vector wd
is O-(semi)stable if and only if Homy (T}, M) is s;0-(semi)stable, so the first assertion
follows. The second assertion follows from the fact that s;0(s;a) > 0 is equivalent to
O(or) > 0 for any 0 € C. O

Proof of Theorem 6.9. Let X be any crepant resolution and p(Q,W) the
corresponding QP given in the previous sections. By Theorem 6.12 it follows
that Moo wa(u(Q,W)) = My-190q(Q,W) and it can be checked that X =~
M -190 a(Q,W). Also by combining Lemma 6.8 and Corollary 6.13, the chamber
containing w~16° is given by the equalities f(w~'e;) > 0. O

EXAMPLE 6.14. Let G = D14. The rows in the following diagram correspond to
the different chambers in the three mutated algebras for which the crepant resolution
of C?/G shown in the left column can be realized. Note that in any mutated algebra
we can find the corresponding crepant resolution in the chamber containing the
0-generated parameter.

* C’( C*
Q: ()\1 Q Qo : () 1 3 () 1_—3
0/ O | Co/
_ 1 1 — 1
d= {2 d= 32 = 222
G-Hllb((Cf’) 6y >0 0y <0 o +6, <0
(-L-1) (=200  (-3.1) 0y >0 Op+6, >0 0o >0
ST T 0y >0 0y >0 01 +60:>0
X, 0o <0 0y >0 0o +60, >0
(LoD (-1-1) (3.1 0o+ 6, >0 01 >0 0, <0
T T 0y >0 02 >0 01 +60>>0
Xy 01 >0 0o +60, >0 0o >0
(=2,0)  (=1,-1)  (-2.0) 0o +6, <0 01 <0 61 >0
Oy + 01+ 602 >0 61 +60>>0 6y >0
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7. Floppable curves in M. Let G C SO(3) of type Z/nZ, Ds, or T. Let
7: X — C3/G be a crepant resolution and E C X be a rational curve. In this section
we prove that the only rational curves in a crepant resolution of C3/G that can be
flopped are the (—1, —1)-curves.

There are three possible degrees for the normal bundle N X|E over a curve £ & P!
in X, namely (—1,—1), (—2,0) and (-3, 1), and all three types appear in the families
treated in this paper. For every (—1, —1)-curve there always exists a flop X --» X’
of E where X and X’ are isomorphic in codimension one. If F is a (—2,0)-curve then
we use the width of FE defined in [Reid] to conclude that E is always contained on a
scroll, which implies that it does not exist a small contraction of X which contracts
E.

There are only two (—3,1)-curves: E,, C Da,-Hilb(C?) when n is odd and E5 C
T-Hilb(C?). In both cases we use the fact that X = M¢ for some chamber C' € ©
and we consider the contraction of £ as the map M¢c — My where f € C lies on a
wall of the chamber C' (cf. [CI] §3.2). By the study of S-equivalence classes we are
able to describe explicitly the contracted locus and conclude that such a contraction
is divisorial, i.e. the curve is not floppable.

We finish the section giving an alternative proof of the fact that Ey C T-Hilb(C?)
is not floppable using contraction algebras.

LEMMA 7.1. Let G C SO(3) of type Z/nZ, Da, or T, and let 7 : X — C3/G
be a crepant resolution. Then only the rational curves E C X with degree of normal
bundle (—1,—1) are floppable.

Proof. Let (Q,R) the McKay quiver with relations, A = CQ/R, d :=
(dim p)perr ¢ and 6 € © be the 0-generated parameter. Denote by Mg := Mg q(A).
By the part (3) in Theorems 5.1, 5.2 and 5.3 only E,, C Da,-Hilb(C3) when n is odd
and F2 C T-Hilb(C?) are (—3,1)-curves. Since the open sets covering these curves do
not change under the flop of any other curve, it is enough to prove that they are not
floppable in G-Hilb(C?). Thus, it is enough to show the following three claims:

(i) If E is a (—2,0)-curve then FE is contained on a scroll.

(ii) Let G = Dg, C SO(3) with n odd. Then the (—3,1)-curve on My is not

floppable.

(iii) Let G C SO(3) be the tetrahedral group. Then the (—3,1)-curve on My is

not floppable.

Proof of (i). By the covering of X given in Section 5 we know that £ C X is
covered by two open sets U and U’ where U, U’ = C3. First notice that for every
curve F of type (—2,0) we can make a suitable change of basis on U or U’ to obtain
the gluing to be of the form U\{a = 0} 3 (a,b,¢) — (a~t,a?b,c) € U'\{a' = 0}. Tt is
straightforward in most cases, although we give here some of them:

In Dy, with n odd have Uy, ,\{a = 0} > (a,b, B) = (a*(d* — D*/4),d,a™") €
Up+2\{u = 0}, so we can change of coordinates in U}, ., by (a,d, D) = (a,d,d*> — D).

In Dy, with n even have V2 ,\{d = 0} > (d,D,C") — (C"* +d*D,d *,C") €
Vi io\{¢" = 0}, so we can change of coordinates in V,., , by (A,¢,C") = (A —
cn”,cd, .

In T have U;\{c3 = 0} 3 (ca, c3,C3) = (—c2,c5 ", c3(1 4¢3 1) — c2C3) € U\ {B1},
so we can change of coordinates in U} by (b1, B1, B3) = (b1, B1,b3(1 + B1) — Bs).

The width of a (—2,0)-curve F € X is defined in [Reid] as

n = sup{n|3 scheme FE,, with F C F,, C X s.t. E,, & E x SpecCle]/c"}
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Once we have the gluing in the form (a,b,c) — (a=!,a%b,c), the curve E C U is
defined by the ideal I = (b,c) and for any k > 0 the ideal J, = (b, c¥) satisfy the
conditions of the criteria in Proposition 5.10 in [Reid], so the curve E has infinity
width. Thus E moves in a scroll S C X so there is no small contraction of X which
contracts only F.

Proof of (ii). First we note that, if § is a parameter with 6; > 0 for i # 0,m and
0 = 0, then there is a morphism f : My — My which cannot be further factored
into birational morphisms between normal varieties. If M is a point on My, then the
image [M] := f(M) is an S-equivalence class of M with respect to 6.

In the open cover U,, o, put x = u,y = v,z = V. We consider the hypersurface
X C Uy defined by y? — 222 = 0. We prove that the surface X is contracted to a
curve by calculating S-equivalence classes. Fix © = o and denote by X, the curve on
X determined by z = . Note that Xy is contained in the (—3,1)-curve. Take any

representation M on X,.
C
\}w o4 i = (2D
NS gy O
Upyo ~ C3 SM= o | 2 _>C------ 22

e <7 0O NG

Then there is a submodule M’ of M whose dimension vector is 2e,,. One can check
that the eigenvalue of w,, is 0 and eigenvectors are (y/«,1) and (—+/c,1). Since
y? —az? = (y + Vaz)(y — Vaz), we put X = XN (y+ az = 0) and X, =
X N(y—+az=0). Then X, = XF UX_. If M is a point on X, we consider
the subspace M" of M’ spanned by (—+/a,1). The actions of u,,,v are zero on
M" | so it becomes subrepresentation of M’, and we have a filtration of #-semistable

representations
0CM'"C M C M.

One can check that

e = [Va=un (G € D=0 | )| 0=un(C € O)o=0 )

where the vector spaces lie only on the vertex m. Thus the factor modules M/M’,
M'/M", M" do not depend on y, z. Hence any representation on X is S-equivalent
to the representation [M/M'| & [M’/M"] & [M"]. Similarly any representation on X
is also S-equivalent to it. Thus the surface X is contracted to a curve. Therefore,
there is no small contraction and the (—3,1)-curve is not floppable.

Proof of (iii). Tt is proved by the same strategy, however the computation is not
so obvious, so we show it. We take the open set U; and put x = Cs,y = ca,¢c3 = 2.
We consider the hypersurface X defined by y? = 222 — 2z + 2 = 2(z + w)(z + w?)
where w is a primitive 3rd root of unity. We fix z = a and put X, = X N (z = ).
Take any representation M on X,. Then we have A; = «, so the matrices in M
become as follows: . .

a=(L0.0.b=(0.0.1).c= (4~ az2p.2). A=a(3).B= (1) .0= (1),

o
0 1 0 0 1 0
u=| cz—w@?—az?) Wy wtw?z ,U = az—w?(y?—az?) wy widwz |.

wzay —wzaz —wzy way —woaz —wy
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Thus we see that there is a subrepresentation M’ of M generated by («, 0, —1) and

— Oz(Z-‘ruJ) — a(ztw?
(0,1,0): w? (7(z+yw ) C c? O” =w (7<ziw) ( Z )> . The eigenval-

ues of u,v are 0 and the eigenvectors are (y,z + w?), (a(z + w?),y) and (y,z +
w), (a(z + w),y) respectively. Here we put X = X, N (y = Va(z + w)) and
X, = XoN(y = —a(z +w)). Then if M is on X[, all eigenvectors are multi-

ples of the vector (v/a,1). So by taking the subrepresentation M"* of M’ generated
by (v/,1), we have a filtration of §-semistable representations:

OoCcM'CcM CcM

and one can check that factor modules M /M’ ,M'/M"* M"* do not depend on v, z
So any point on X[ is S-equivalent to M /M’ @® M'/M"+ @ M"*. Similarly one can
check that any point on X is S-equivalent to M/M' @& M'/M"~ @& M"~ where M"~
is the subrepresentation of M’ generated by (—+/a,1). Therefore X is contracted to
a curve, so the (—3,1)-curve is not floppable. O

7.1. A contraction algebra. In this section we give an alternative proof of
Lemma 7.1 by using contraction algebras. Let G be the tetrahedral group T of order 12,
S := C[z,y, z] as usual. Let M; := (S®p)® fori =0,...,3 be the non-isomorphic CM
S%-modules with My = R, and let M := @?:0 M. Then the algebra A := Endge (M)
is isomorphic to the Jacobian algebra P(Q, W) for the McKay QP (Q,W) given in
the previous sections.

Let X := T-Hilb(C3) = Mgyo q(A) with 6° = (=5,1,1,1) and d = (1,1,1,3).
Let E5 C X the rational curve of type (—3,1), which corresponds with the vertex
3 € Qo. If F5 is floppable there exists a small contraction 7 : X — Y, where we
can realize Y as the moduli space Mg ;(I') with 60 = (=3,1,1),d = (1,1,1) and
I' := Endgc (M/Ms3) is obtained by removing the module M3 from M. We call T a
contraction algebra by its analogy with what is happening geometrically.

It turns out that I' is isomorphic to the path algebra CQ/R for the following
quiver (@, R) with relations:

E g9
S5 . O
Vi Vs aA = Cec, bB = Aa, cC = Bb
¢ B G da = ae, eb = by, gc = cd
dC =Cyg, eA = Ad, gB = Be
A C Da = waFE, Ed = wbG, Ge¢ = weD
a ¢ DC = w?CG, EA =w?AD, GB = w?>BE
D? = d3 + abc+ CBA — 3Ccd
W2E? = ¢3 + beca + ACB — 3Aae
(GO wG? = g + cab + BAC — 3Bbg

Thus we obtain YV = Mg 5(Q, R) = Uy UUs U Us where U; are hypersurfaces given
by equations:

Up: (wG* =d* 4+ c+PC% =3cCd) C Cl oy

Us: (wG? = d® +b°B +bB* — 3bBd) C Ci 5 , &

Us: (wG® =d® + A+ A%® — 3aAd) C Cleya

Therefore Y has a singular line L which in Us is given by the points (d, d, d,0). As in
Lemma 7.1 that the preimage of L is precisely the equation y? = xz? —xz+2 by setting
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C3 =2, co =y and ¢; = y> — 222. Therefore 7 is not a small contraction, therefore
Ej3 is not floppable. Moreover, this construction coincides with the contraction map
Mgo — My described in the previous lemma where 6° is a stability condition at the

wall 6 = 0.
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