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A COMPACTIFICATION OF THE SPACE OF PARAMETRIZED
RATIONAL CURVES IN GRASSMANNIANS*
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Abstract. We construct a nonsingular projective variety that explicitly compactifies the space
of parametrized rational curves in a Grassmanian such that the boundary is a divisor with simple
normal crossings. This compactification is obtained by blowing up a Quot scheme successively along
its appropriate subschemes.
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1. Introduction. Let V be a vector space of dimension n over an algebraically
closed field k and denote by Gr(k, V') the Grassmannian of k-dimensional subspaces
of V. By a parametrized rational curve in Gr(k,V) we mean a morphism from P!
to Gr(k,V). The space Morg(P!, Gr(k,V)) of all morphisms of degree d from P! to
Gr(k,V) is a smooth quasi-projective variety for each d > 0, and is non-compact for
d > 1. In this paper, we provide an explicit compactification for this space which
satisfies the following conditions: the compactification is a nonsingular projective
variety and the boundary is a divisor with simple normal crossings. This extends the
result in [HLS], where maps to a projective space are considered.

The main tools of the construction include (i) a Quot scheme which serves as a
smooth compactification of Morg(P!, Gr(k,V)), and (ii) a sequence of blowups which
turns the boundary into a divisor with simple normal crossings. The method of
construction is as follows. A smooth compactification of Mory(P!, Gr(k,V)) is given
by the Quot scheme Quot?/[;];hfl Jio which parametrizes all quotient sheaves of the
trivial vector bundle Vp1 on P! of rank n — k and degree d. For short notations, we
introduce Qg := Quot’&ﬂ:l];hfl/k and Qg := Morg(P',Gr(k,V)). We define a chain of

closed subschemes in the boundary Q4 \ C}d:
Za0C Zg1 C - C Zaga1=Qa\ Q.

Set-theoretically, Zg , is the locus of the quotients whose torsion part has degree (or
length) at least d — r; its scheme structure is given as a determinantal subscheme.
We then blow up the Quot scheme successively along these closed subschemes Zg,,.
Starting with Q' := Qu, Z;, 1= Za,, welet Q; (r =0,...,d — 1) be the blowup of

271 along Z;;l, Z} . the exceptional divisor, and Z7; the proper transform of Z;ﬁl

in Qf for [ # r. Set @d = 371 and Zd,r = Zfil;l. Our goal is to prove

THEOREM 1.1. The final outcome @d is a compactification of Qd =
Mory (P, Gr(k, V) satisfying the following properties:
1. de is an 1rreducible nonsingular projective variety;
2. Zqr’s are irreducible nonsingular subvarieties of codimension one and they

intersect transversally, so that the boundary @d \ éd = Uf;é Zd,r s a divisor
with simple normal crossings.
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This way of producing such type of compactifications was used in many classi-
cal constructions such as the space of complete quadrics [Vai82], the space of com-
plete collineations [Vai84], Fulton-MacPherson compactification [FM94], MacPherson-
Procesi compactification [MP98], etc. Our construction is much closer to that of the
spaces of complete objects (e.g. complete quadire, etc.), and in fact, we used in our
proof a result from Vainsencher’s construction of complete collineations. Because of
the strong similarity between our compactification and those spaces of complete ob-
jects, we believe that our compactification is also a parameter space of similar kind,
although the interpretation of the objects that this space parametrizes can be quite
subtle. This is a direction being pursued for a future publication [HS].

Although the method of the construction is straightforward to describe, the proof
is more involved. We outline some key steps of the proof here. In §3, we endow the sets
Zq,» with the structure of determinantal subschemes. This is done with the help of the
universal exact sequence of Qg4: 0 — &5 — V% ) — Fq — 0, where &; is locally free.
For each integer m, there is an induced homomorphism pg, ,, : 7« VIP’\EQ (m) — m.&Y (m).

d
Then Zg,, is defined to be the zero locus of the exterior power /\k(m+1)+r+1 pd.m for
any m > 0. Let Zodm = Zagr \ Zar—1 be the open subscheme of Z;,. We can
show that the locally closed subschemes Z;, Zod)l, e Zod,d_l, C}d form a flattening
stratificaiton of Q4 by the sheaf F§ := Ext'(Fy, Opéd). In §4, we show that there is

a natural morphism from an irreducible nonsingular variety Qq,, to Q¢ whose (set-
theoretic) image is Zg, for each r. Here Qg is a relative Quot scheme over Q.
parametrizing torsion quotients of &, that are flat over @, with degree d — r. This
morphism maps the open subset Qg Xq, @T of Q4. isomorphically onto Zodyr, based
on the fact that 77 is flat over ZOdW. In §5 we first describe the procedure of blowups,
and then prove some main theorems. We first show that the blowup along Z;;l (the

proper transform of Z; , in ngl) is the same as the blowup along the total transform
of Zg, in ngl. This allows us to embed the blowup Q7 into some product of spaces
of collineations and then set up a key commutative diagram (see Diagram (5.2)).
Using this diagram, we can show that the proper transform Z;;l is isomorphic to

Qa.r Xq, Q-1 It is now clear that we should use induction to prove that Z;:l and

Q!, are nonsingular. The proof for the transversality of the intersections of Zj;l’s in
271 is also based on the isomorphism between Zg;l and Qq, X, QT 1.
Acknowledgements. The author is very grateful to his Ph.D advisor Yi Hu
for guidance and support. He is also thankful to Ana-Maria Castravet, Kirti Joshi,
Douglas Ulmer and Dragos Oprea for encouragement and helpful discussions.

2. Preliminaries.

2.1. Quot schemes. In this section, we will first give a brief review of Quot
schemes, and then we fix some notations and review some basic facts.

Let H be a sheaf over a scheme X. A quotient of H is a sheaf F' on X together
with a surjective homomorphism H — F. Two quotients H — F; and H — Fs
are said to be equivalent if there is an isomorphism F; ~ F, such that the following
diagram commutes.

H—»FN

| 1=

H—» I
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Equivalently, the two quotients are equivalent if and only if their kernels are equal as
subsheaves of H. We denote by [H — F| the equivalence class of a quotient H — F.

Let S be a noetherian scheme, X a projective S-scheme, and H a coherent sheaf
on X. For any S-scheme T', we denote by Hp the pullback of H by the projection
X xgT — X. Given a very ample line bundle L on X relative to S and a polynomial
P(t) € Q[t], we define a contravariant functor, denoted by Quotfl’/LX /s and called
the Quot functor, from the category of S-schemes to the category of sets as follows:
for any S-scheme T, let DuotZ’/LX / 5(T') be the set of equivalence classes of quotients
Hr — F where F is flat over T' with Hilbert polynomial P (relative to L).

This functor is represented by a projective S-scheme [Gro62], called the (relative)
Quot scheme, which we denote by QuotZ’/LX /s It is equipped with a universal quotient

H P,L —» F,

QuotH/X/S
on X x SQuotZ’/LX /5 where F is flat over QuotZ’/LX /s with P as its Hilbert polynomial.
Sometimes it will bring us convenience to add to the universal quotient its kernel to
form the universal exact sequence:
0—-&—H

P,L
QuotH/X/S

— F = 0.

THEOREM 2.1 (Universal Property of Quot schemes). For any S-scheme Y, any
quotient Hy — Q on X xgY with Q flat over Y with Hilbert polynomial P determines
a unique S-morphism f 1Y — Quotfl’/LX/S such that the pullback of the universal
quotient by the induced morphism f : X x5 Y — X xg QuotZ’/LX/S is equivalent to
the given quotient on X xXgY:

Hy Q
| 1=
Hy = f*H, [ F

P,L
QuotH/X/S

A consequence of the uniqueness of the morphism is: if f1, fo : Y — QuotZ’/LX /8

are two S-morphisms such that the pullbacks of the universal quotient are equivalent:

Hy :ffHQuotP,L —»]Ff]:

H/X/S
H 1=

Ay = I Hoquatr, o 27

then f; = fo. Note that it is not sufficient to claim f; = fo if we only know an
isomorphism f;F ~ fs F. The commutativity of the above diagram is crucial.

In the special case that X = S and P(t) is a constant integer r, the Quot scheme
becomes a (relative) Grassmannian, which we denote by Grg(H,r). If in addition H is
locally free, we also denote this Grassmannian by Grg(m, H) where m = rank H — .

Most references (for example, [HL97, Nit05, Ser06]) prove the representability
of the Quot functor by constructing the Quot scheme as a closed subscheme of a
Grassmannian. Therefore a natural consequence of this construction is the embedding
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of the Quot scheme into a Grassmannian, but this fact is rarely isolated as a theorem.
For convenience of reference, we state this fact below.

THEOREM 2.2 (Embedding of Quot into Grassmannian) Suppose H is flat over
S with Hilbert polynomial R(t) € Q[t] and put Q := QuotH/X/S Letm: X — S and
0 :Q — S be the structure morphisms, and mg : X x5 @ — @Q the projection. There
1s an integer N such that for all m > N

1. mgu(Ho(m)) = 0. (H(m),

2. mo«(Hg(m)) and mg.(F(m)) are locally free of rank R(m) and P(m) re-
spectively, and the induced homomorphism mg.(Hg(m)) — mg«(F(m)) is
surjective, and

3. the morphism Q — Grg(m.(H(m)), P(m)) = Grs(R(m) — P(m), m.(H(m)))
induced by the surjective homomorphism o*m.(H(m)) — mg.«(F(m)) is a
closed embedding.

When S = Speck, k a field, the Quot scheme QuotZ’/LX /k is a fine moduli space
whose k-valued points parametrize equivalence classes of quotients H — F with F'
having Hilbert polynomial P. In the case that S is a general scheme, Quot H/x/s Can
be viewed as a famlly of Quot schernes parametrized by S: for any point s € S, the
fiber of QuotH/X/S over s is QuotH X (s where X is the fiber of X over s and

k(s) is the residue field of s. This is due to the base-change property of Quot schemes:
for any S-scheme T, QuotZ’/LX/S xsT = QuotZ’TLfXXST/T.

2.2. Notations and facts. We now fix some notations. Let k be a fixed alge-
braically closed field and P! the projective line over k. For any k-scheme X, we write
P := P! xx X and denote the projection P% — X by mx, or simply 7. For any
point # € X, we denote by PL the fiber 73" () = P! xy () over 2. For any coherent
sheaf F over P, we write F(m) := F ® p*Op1(m), where p denotes the projection
Py — P

For any morphism f : ¥ — X of k-schemes, we denote by f : P — P the

morphism 1 x f: P! x; X — P! x Y. If Z C X is a subscheme and F a coherent
sheaf on P4, we denote by Fz the restriction of F' to PL. In particular, if z € X is a
point, then F, is the restriction of F to PL.
PO, (1)
H/PL/S >
where S is either Speck or a variety over k. For any coherent sheaf F' on P!, its
Hilbert polynomial has the form P(t) = r(t+ 1) +d, where r = rank F' and d = deg F.
So we abbreviate the notation:

In this paper, we will only encounter Quot schemes of the form Quot

r(t+1)+d, O[Pl (1)

QUOtH/IP’l /S = Quot H/PL/S

Next we prove some basic properties of the functor Extk (—,Ox). For any scheme

X and any sheaf F' over X, we put
v :HO’ITLX(F, Ox), F* = &L’tﬁ((F,Ox)

PRrROPOSITION 2.3. Let 0 — Ey — Ey — F — 0 be a short exact sequence of
coherent sheaves on a scheme X with Ey and E; locally free. For any scheme Y and
any morphism f:Y — X, we have a canonical identification

fHE?) = (f7F)°



SPACE OF RATIONAL CURVES IN GRASSMANNIAN 923

Proof. Since Ey and E; are both locally free, we have canonical identifications
f*(Ezv):(f*El)vv t=0,1.
Thus we obtain a commutative diagram

(f*Eo)" — (f*E1)Y — (f*f)s —0,

FH(EY) — fH(BY) — f*(F7) —0

where the first row is obtained by applying f* to the exact sequence first and taking
dual second, and the second row is obtained by taking dual of the original exact
sequence first and applying f* second. So we have another canonical identification
[*(F¢) = (f*F)® because they are both quotients of f*Ey by the image of f*EY. O

REMARK. For any locally free sheaf F, since we have a canonical identification
(EY) = (f*E)Y, we will write f*EY for both. In the same manner, for any coherent
sheaf F', when we have a canonical identification f*(F¢) = (f*F)¢, we will write f*F*
for both.

PROPOSITION 2.4. Suppose X is a noetherian k-scheme, and T is a torsion
coherent sheaf on P%, flat over X with relative degree d. Then
1. TE is also torsion and flat over X with relative degree d;
2. we have a canonical isomorphism T =T .

Proof. Write T as a quotient of a locally free sheaf & and let & be the kernel:
0—=& =& —T—0. (2.1)

Then & is also locally free. Since rank7 = 0, we have rank & = rank £;. Suppose &;
is of relative degree d; over X, ¢ =0,1. Then d = dy — d;.
(1) Dualizing the exact sequence (2.1), we obtain another exact sequence

0—=& =& —=T°—=0. (2.2)

To show that 7°¢ is flat over X, we only need to show, by Lemma 2.1.4 in [HL97], that
for every point x € X, the map (&), — (£1)) obtained by restricting the injective
map & — &) to the fiber P is injective. We first restrict the exact sequence (2.1)
to the fiber PL. Since T is flat, we obtain an exact sequence

0= (&1)x — (&0)x — To — 0.
Taking dual:
0=(T2)" = (&)L — (&1)) = TF — 0.

So (£0)Y — (&1)Y is injective for all z € X. Hence 7€ is flat over X. Since &’ are
both locally free of the same rank and has relative degree —d;, i = 0,1, T¢ is torsion
on PL with relative degree (—d;) — (—do) = d over X.

(2) We have a commutative diagram

0—& —— & ——T —0

0—=&Y =&Y —T<—0
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where the second row is an exact sequence obtained by dualizing the exact sequence
(2.2). Thus we see that there is a canonical isomorphism 7% = 7. O

Lastly, we review a slightly extended result of Mumford on flattening stratifica-
tions, as stated in the following proposition. Parts (1)-(3) are due to Mumford, and
part (4) is added for the purpose of this paper.

PROPOSITION 2.5. Let X be a noetherian scheme, F a coherent sheaf on X, and
R = {dimy ;) Fl. |z € X}. For each r € R, define Cy == {x € X | dimy(y) F|, = r}.
Then
1. R is a finite set. The sets C,. are disjoint and their union is | X|.
2. For each x € C,, there is an affine open set U, > x together with an exact
sequence of sheaves on U,

05 505 5 Fly, =0

such that the ideal J,y, generated by all entries of v defines a subscheme
Y, v, of Uy whose support is exactly C, NUy. The subschemes Y, y, for all
x € C, patch together to form a subscheme of X, whose support is exactly
C,.. Denote this subscheme by X,..

3. The subschemes X, satisfy the following universal property: for any mor-
phism f 'Y — X of noetherian schemes, the pullback f*F is locally free
over Y of rank r if and only if f factors through the inclusion X, — X. In
particular, F|x, is a rank r locally free sheaf on X, for each r € R.

4. Assume in addition that By 2 Ey — F — 0 is a locally free presentation of F
with rank Ey = [. For j > 1, let I; be the sheaf image of the homomorphism
Hom (N Er, N Eo)Y — Ox induced by N p : N Eyx — N Eo, and let Z;
be the closed subscheme defined by the ideal sheaf I;. Then Z; C Zjiq Cmd
Zijt1\ Zj = Xi—; as schemes for j > 1.

Proof. (1), (2) and (3) are proved in [Mum66], Lecture 8, pg 55, Case 1°. We
now prove (4). Suppose F has a locally free presentation Fj 5 Ey - F = 0on
X. Then we have |Z;| = {z € X | dim,,) F|, > | — j + 1}, which obviously satisfy
|Z;| C|Zj41| and |Zj44]\ |Z;] = | Xi—;|. At any point € X;_;, there exists an affine
open neighborhood V. of x, possibly smaller than U,, such that

Erlv, & Eoly, = Flv, =0

is a free presentation of F' on V,. Thus the ideal I;;1(V,), which is generated by all

(j+ 1) x (j + 1) minors of p, is the same as the ideal J,, on V,,, by the Fitting ideal

lemma. So (Z;41\ Z;) NV, = X;_; NV, as schemes for all = € X;_;. Therefore
Zjs1\ Zj = X;—j as schemes. O

Before we proceed to the next section, let us mention a few more conventions and
notations. Let F and F' be two locally free sheaves on X. We say F is a subbundle
of F, if there is an injective homomorphism E — F' of sheaves and the quotient F'/FE
is locally free. In this case, we write the homomorphism as F < F and call it a
subbundle map.

For any locally free sheaf E on a scheme X, the projective bundle on X associated
to E is

P(E) := ProjSym(E").
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It is equipped with the universal quotient line bundle 7*EY —» Op(g)(1), where 7 :
P(E) — X is the structure morphism. Its dual Opg)(—1) < 7*E is the universal
subline bundle. For any coherent sheaf I on P(E), we write F/(m) := F'® Op(gy(m).

3. The Quot-scheme compactification and its boundary. From now on,
we work over an algebraically closed field k. Let V' be a vector space of dimension
n over k, and k < n a fixed positive integer. The Grassmannian Gr := Gr(k, V) of
k-dimensional subspaces of V' comes equipped with a universal quotient Vg, — W
of locally free sheaves on Gr. The degree of a morphism f : P! — Gr is equal to
deg f*W, which coincides with the usual degree of the map P* — P(A" V) obtained by
composing f with the Pliicker embedding Gr < P(A\" V). For d > 0, let Morg(P*, Gr)
denote the set of all degree d morphisms from P! to Gr. The set Morg(P!, Gr) has
a natural structure of a (quasi-projective) variety, which can be realized as an open
subscheme of the Hilbert scheme of P, corresponding to graphs.

There is a one-to-one correspondence between the set Mory (P!, Gr) and the set of
all equivalence classes of quotients Vp1 — F where F' is locally free, which is set up by
associating each degree d morphism to the pullback of the universal quotient on Gr.
This identifies the space Mory(PP!, Gr) with the open locus of locally free quotients
in the Quot scheme Quotg;’;hfl Ji This Quot scheme is an irreducible nonsingular
projective variety of dimension nd + k(n — k) [Str87], hence it provides a smooth
compactification of Morg(P!, Gr). For short notations, we put

Qa = Quoty 7 . Qq = Mory(P', Gr) C Qu.
The Quot scheme @ is equipped with a universal short exact sequence on ]P’bd:
O—>5d—>V% —Fa—0 (3.1)
d

where Fy is flat over Q4 of rank n — k and relative degree d, and &, is locally free of
rank k and relative degree —d.

For any point ¢ € @4, the pullback of the universal exact sequence to ]P’é is also
an exact sequence:

0—&iq— Ver = Faq—0.

The boundary Qg \ COQd consists of the points ¢ with Fy , having torsion. For any
coherent sheaf F', we denote by Fi, the torsion submodule of F. We define a chain
of closed subsets

Cao CCy1 C - CCqa1=0Qa\Qu

by setting Cy, = {q € Qa| deg(Fa,q)tor > d — 1}.

The degree of the torsion part (Fg q)tor of Fq,q can be determined by the rank of
certain linear maps. Fix a point ¢ € Q4 and set E :=Ey 4, F := Fa g, T := (Fa,q)tors
and V := Vp}z. For r > 0, let

pq.r - Hom(V, O(r)) — Hom(E, O(r))

be the map obtained by applying Hom(—,O(r)) to £ — V. Here O(r) := Op1(r).
Then we have
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ProrosiTION 3.1.
K =k(r+1)+d—degT, if r>d—degT -1,
rank pq r > (k+1)(r + 1), if 0<r<d-—degT —1.

Proof. We have an isomorphism F ~ T & Fy, where Fy = F/T is a locally
free sheaf of rank n — k and degree d — degT. Applying Hom(—, O(r)) to the exact
sequence, one gets an exact sequence

qu

0 — Hom(F, O(r)) — Hom(V,O(r)) ' Hom(E, O(r)).
Thus
rank pg , = dim Hom(V, O(r)) — dim Hom(F, O(r))
= dim HO(VV (T)) — dim HOID(Fl, O(T‘))
=n(r+ 1) — dim H°(F) (r)).

We have an isomorphism Fj ~ @?;f O(d;), where d; > 0 and Z?;lk di =d—degT.
Hence

n—k n—k
HY(FY (r) ~ H(EP O(r — di)) = @ H(O(r -
i=1 i=1
and
dim HO(FY (r Zmax{r—d +1,0}.

Ifr>d—degT —1, then r —d; +1 > 0 for all 7, hence

n—k n—Fk
dim HO(FY (r)) = Y (r—d;i+1) = (n—k)(r+1)+ > _ di = (n—k)(r+1)— (d—deg T).
i=1 =1

Therefore
rankpg, =n(r+1)—(n—k)(r+1)+d—degT =k(r +1)+d — degT.

If0<r<d-—degT — 1, then we have two cases:
(i) r —d; +1 >0 for all 4. Then

n—k

dim HO(FY (r)) = Z(r —di+1)=(n—Fk)(r+1)—(d—degT)
<tn=-kr+1)—@r+)=n-k=1)(r+1);

(i) r —d; +1 < 0 for some i. Without loss of generality, we assume r —d; +1 < 0.
Then

n—k n—k
dim HO(FY (r Zmax{r—d +1, O}<Z(r+1):(n—k—1)(r+1).
=2 =2
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In either case, we have dim H°(F)Y(r)) < (n —k — 1)(r + 1), so
rankpg, > n(r+1)—(n—k—-1)(r+1)=(k+1)(r+1).
a

Note that the two “if” conditions in the proposition are not mutually exclusive,
and this will lead to some interesting results.

COROLLARY 3.2. Ifrankp,; < k(i + 1)+ i for some i >0, then degT > d — 1

and

rank p,; —rank p,; = k(I —14), foralll >1i—1.

Proof. Suppose rankp,; < k(i +1) +¢ < (k+ 1)(i + 1) for some i > 0. By

Proposition 3.1, we must have i > d — degT’, hence degT > d —i. We now have
1—1>d—degT — 1. Thus for [ > i — 1, we obtain, by Proposition 3.1 again, that

rank p,; —rankp,; = (k(l+1)+d—degT) — (k(: + 1)+ d — degT) = k(I — 7).

[

PROPOSITION 3.3.
1. If degT = d —r (resp. > d —r), then rankpg.,, = k(m + 1) +r (resp.
<k(m+1)+r) for allm > r.
2. Ifrankpgm = k(m+ 1) +r (resp. < k(m+1)+r) for some m > r, then
degT =d—r (resp. >d—r).

Proof. (1) Suppose degT = d —r (resp. > d —r). Then r = d — degT (resp.
> d — degT), and by Proposition 3.1, we have rank p,, = k(r + 1) +d — degT =
k(r+1)4r (resp. < k(r+1)+7). Then by Corollary 3.2, for any m > r, rank pg ., =
rank pg » + k(m —r) =k(m + 1) +r (resp. < k(m+1)+r).

(2) Suppose rank py m = k(m + 1) + 7 (resp. < k(m + 1) 4+ r) for some m > r.
Then rank pg ,m < k(m + 1) + m. Let m’ = m — 1. By Corollary 3.2, rank pg ., —
rank pg m = —k. So rank pg = rankpg ., —k=k(m+1)+r—k=k(m' +1)+r
(resp. < k(m’ +1)+r). If m’ > r, then we are back in the starting situation (m’
playing the role of m), so we can repeat this process, and eventually we must have
rank p, , = k(r+1)+r (resp. < k(r+1)-+r). By Corollary 3.2, we have deg T > d—r,
orr > d—degT. Then by Proposition 3.1, d —deg T = rank pg ,, — k(r+1) = r (resp.
<), and hence degT =d —r (resp. > d—r). 0

For each integer m, we set m := k(m+1). Proposition 3.3 implies that for m > r,

q € Cq,r <= the induced homomorphism of the exterior powers

m4r+1 m4r+1 m—+r+1

/\ Pgm /\ Hom(V,O(r)) — /\ Hom(E, O(r))

is a zero homomorphism. This suggests a way to endow each Cy , with a structure of
determinantal subschemes. Denote by 7 : Ple — g the projection map. Let

Pam : T Vpr (m) — m.E (m)

1
Qg
be the Og,-homomorphism obtained by applying Hom(—, (9% (m)) to the monomor-
d
phism &; — V% from the universal exact sequence first and m, second.
d
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For each [ > 1, the exterior power of pg,m,

l l l
/\pdﬁm : /\W*Vpéd (m) — /\ﬁ*gl}/(m

is a section of Hom (/\l V1 (m), A m.£)(m)). By Proposition 3.3, for m > d,
Qd

NG pd.m 18 nowhere vanishing on Q4 for r < —1, but vanishes precisely on Cy,

for » > 0.

. Ftr1 . .
The section A" pg.,n induces a homomorphism

m4r+1 m—+r+1

wom (g, A o)) 0,

The image, which we denote by I, is an ideal sheaf. For m > d, each Ig,m

defines a subscheme of ()4 whose support is Cyg . A natural question is: is the scheme

structure independent of m? We will show that the answer is yes if m > 0.
Dualizing the universal exact sequence (3.1), one obtains a long exact sequence

0—>}'dv—>V[F,\£2 =& = F;—0. (3.2)
d

We need to study the sheaf 3. By Proposition 2.3, for any morphism f : X — IP’Qd,
we can write f*Fj for both f (F5) and (f*Fq)°. In particular, for any subscheme
Z C Qa, we write (Fq)% for (F5)z and ((Fa)z)°. Some facts are quick: (}'d)‘i =
((Fa)g,)® = Osince (Fq), is locally free, and for any point g € Qq, F5 , =~ ((.7’-'0l,q)t0r)5
since Fy4 splits as a direct sum of its torsion part and locally free part. Then by
Proposition 2.4, we see that 73  is torsion and deg F , = = deg(Fa,q)tor- Thus Fj is a
torsion sheaf and Supp F5 C ]P’l \Pl

LEMMA 3.4. For any closed point q € Qq, there is an open neighborhood U of q
such that Fglp1 = Fg(m)|py for all m > 0.

Proof. Let ¢ € Qq be a closed point and i, : P' — Pg,  the inclusion map defined
by i4(t) = (t,q). So the image of i, is exactly Py. Since the sheaf F  is torsion on P,
the support of F3  consists of only finitely many points of IP’;. Therefore, Supp Fj is a
proper closed subset of P¢, . Choose a point ¢ € P! so that i,(t) € Pj \ Supp Fg , and
let U = Qq\ 7(p~"(t) N Supp Fy), where p : P, — P! is the projection. Obviously,
g € U. Now choose an exact sequence on P*:

0= Opr = Opi(m) =T =0

such that Supp 7' = {t}. Pulling the sequence back to P}, (which preserves exactness)
and tensoring with félp}] , we get a long exact sequence

Tor1(Fgley, 0" Tley) = Faley, = Fa(m)ley, — Faley, @ p*Tpy, — 0.
Note that Supp F5 and Supp p*T do not intersect on P{;, hence Tory (F3 |]P>%] D T|py) =

0 and Fjlpy ® p*T[p = 0, which gives rise to an isomorphism Fj ~ F3(m) on P}.
Obviously, this open set U works for all m > 0. O
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PROPOSITION 3.5.

1. For any closed point q € Qg, there is an open neighborhood U of q such that
T Fi(m)u ~ 1 F50)|u, for all m,1 > 0.

2. There is an integer mq > d (independent of r) such that Igym = Iarm, as
subsheaves of Oq, for all m > mg and for any 0 <r <d —1.

Proof. (1) By the above lemma, we deduce that there exists U such that
Fa(m)lpy = Fg(1)[py, for arbitrary m,l. Then

WU*(-Fs(m)hP’b) = 7TU*(-7:§(Z)|P},)-
The statement follows from the facts that
mFa(m)lo = 1o (Fg(m)ley,)  and  mFg(D)]u = mow(Fg(D)ley,)-
(2) We break up the exact sequence (3.2) into two short exact sequences:

0—>]-'(}/—>Vpéd —H—=0, 0H—=E — F;—0.
Twisting the two sequences with O%d (m) (which preserves exactness) and applying
., we get another two exact sequences

0 — mF, (m) — W*Vp\éd (m) = mH(m) — R'm.F) (m)

0 — mH(m) = mEY (m) — T F5(m) — R'm.H(m).

There is an integer my > d such that R'm, Fy(m) =0 = R'm,H(m) for all m > m,.
Hence for m > mg, the above two sequences join together into one long exact sequence:

0 mFy (m) = mVal, (m) P EY (m) — 1 F5(m) — 0. (3.3)
d

We see that V1 (m) = Vg, @ HY(P',0(m)) is a free Og,-module, and 7.£ (m)
Qq
is locally free (of rank (m + d)).
Now fix an m > mg. We can choose an affine open cover U; of Q4 such that
o F5(m)|u, ~ mF5(ma)|u, on each U;. We may also assume that 7.E)(m) and
7€y (mq) are both free on each U;. We have exact sequences

P ‘ 1
v e (1)

Ty VIP\{Q (1)
d

u, — mFgq(l)

v =0, l=m,mgq.

So the ideal Iy, ;(U;) C Oq, (U;) is exactly the (d —r—1)th Fitting ideal of m, F5(1)|v,
for I = m,mq. Since m. F3(m)|y, ~ mFg(ma)|v,, we have Ig, m(Ui) = Lgrmy(Us)
for each U;. It then follows that Iy, m = I4,rm,. O

For 0 < r < d—1, we denote by Z,, for the closed subscheme of Qg defined
by the ideal 14 m,, and write Iz, = := I m,. Obviously, the support of Z4, is the
closed set Cy , defined earlier. The Zg,’s form a chain of closed subschemes:

Zao C Zga1 C -+ C Zga—1 = Qa \ Qa-
For convenience of notations, we set
Zd7_1 =, Zd,d = Qu, and Zodﬂ« = Zdﬂ« \ Zd,T—17 for 0 <r <d.

Thus we have Zod10 = Zg,0 and Zodﬁd = @d. Note that each Zodyr is an open subscheme
of Zd,r-
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THEOREM 3.6. R )
1. For 0 <r <d, Zg, is the schematic zero locus of /\m+T+l Pdm, and | Zg,| =
{q € Qa| deg Fy, =d —r}. In particular, Za,'s are pairwise disjoint, and
d e
1Qal = L% Zas|. o
2. For 0 < r < d, the inclusion i : Zg, — Qa has the following universal
property: if Y is a noetherian scheme and f :Y — Qg is a morphism, then
f*Fg is flat over Y with relative degree d—r if and only if f factors through i.
In particular, the sheaf (]-'d)EZa on Plza is flat over Zg , with relative degree
d,r d,r
d—r.
Proof. (1) follows easily from the fact that deg(F3); = deg(Fa q)tor- We now
prove (2). For any m > mg, we have an exact sequence:

Vel (m) " £ (m) = 7 Fi(m) = 0,
d

There is an integer N7 such that, for all m > Ny,
frmFa(m) = my . f*Fa(m).

Suppose f factor through i. By Proposition 2.5 (3) and (4), and by the definition of
Zg,r, [*mFg(m) is locally free for all m > mg. So my . f*F5(m) is locally free for all
m > max{mg, N1}. It follows that f*}'j is flat over Y. In particular, taking Y = Zodm
and f to be the identity map, we see that (]:d)aéd i is flat over ZOdW.

Now suppose f*]-'j is flat over Y. Then there is an integer Ny such that
my« f*F5(m) is locally free for all m > N,. Thus f*m.F5(m) is locally free for
all m > max{ Ny, Na,mg4}. By Proposition 2.5 again, f factors through ¢. O

REMARK. The above theorem says that the locally closed subschemes
24,0, 2d1,- -, Zd,da—1 and Qg form the flattening stratification of (Qq by the sheaf
F3.

4. More about the boundary. For d > r > 0, we consider the relative Quot
scheme over @,

L 0,d—r
Qdﬂ“ = QUOtgr/PlQT/QT .

We denote by 0 : Qg — @, the structure morphism. It is equipped with a universal
exact sequence on Py,

0—=Epr— 0°E — Tar — 0 (4.1)

where Tg, is flat over Q4 , with relative degree d —r and rank 0 (i.e., 7g,, is torsion),
and &y, is taken as a subsheaf of 0*E,: Ear C 0*E,. Tt is easy to see that Ear is
locally free of rank k£ and of relative degree —d.

We now give a set-theoretic description of the points in Q4. Let ¢ = [Vpr — F]
be a closed point of @, and let E = ker(Vp1 — F'). Obviously, E is locally free of rank

k and degree —r. The fiber 671(g) is the Quot scheme Quot%’?;n; Jic So any closed

point in the fiber #71(q) is represented by a quotient £ — T where T is torsion with
degree d — r. The kernel E' := ker(E — T) is locally free of rank k and degree —d.

LEMMA 4.1. With E' and T defined as above, we have dim Hom(E’,T') = k(d—r)
and Ext'(E',T) = 0.
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Proof. We have E’/ ~ @le O(d;). Then

k
Hom(E', T @Hom ), T) =~ @Hom(O,T) = H(T)®*
i=1

Ext!( @Ext @Ext (0, T) = HY(T)®*

So dim Hom(E',T) = kdim H°(T) = k(d — ). That Ext'(E',T) = 0 follows from
HY(T)=0.0

By the deformation theory on Quot schemes (see [Ser06], Proposition 4.4.4), the
above lemma implies that

PRrROPOSITION 4.2. The structure morphism 0 : Qq., — Q, is smooth of relative
dimension k(d —r).

PROPOSITION 4.3. Qq., is an trreducible nonsingular projective variety of dimen-
sion dim @y +k(d—7r)=nr+k(n—k+d—r).

Proof. The nonsingularity, projectivity and dimension counting of @g, follow
easily from the two facts: (i) @, is a smooth and projective variety of dimension
nr+k(n—k); (ii) Qq,, is smooth and projective over @, of relative dimension k(d—r).
It only remains to show the irreducibility. Since @, is irreducible, by [Sha94], Ch. 1,
Sec. 6, Theorem 8, Qq,, is irreducible if we can show that all the fibers of 6 over the
closed points of @, are irreducible. The proof of this part is inspired by the proof of
Theorem 2.1 in [Str87].

Let [Vp1 — F|] be a closed point of Q,. The fiber of 6 over this point is a Quot
scheme Quot%';lgf/k where E = ker(Vp: — F'). Let N be a vector space of dimension
d —r, and let W be the vector space

W = Hom(Np1(—1), Np1) x Hom(FE, Np1).

Then dim W = 2(d — )% + k(d — r). Let X = Spec(D;~, Sym'W") be the associated
affine space. There are tautological morphisms p and v which fit into the diagram on
PL:

X

Np}((—l) = Npr —» Coker(v) .

Tu

Ex

Let X C X be the open subvariety defined by the conditions: (i) v is injective on
each fiber over X, and (ii) the induced map Ex — Coker(v) is surjective. The sheaf
Coker(v) is flat over X with rank 0 and relative degree d — r. Thus the surjection
Ex — Coker(v) gives a morphism g : X — Quot%’%?f/k.

Next we show that ¢ is surjective. Let [E — T] be a closed point of Quot%;l[;l’}k,

and H := H°(P',T). By Proposition 1.1 in [Str87], we have a natural exact sequence

0— Hp:(—1) = Hpr — T — 0.
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Applying Hom(E, —) to it, we obtain an exact sequence
.-+ — Hom(E, Hp1) — Hom(E, T) — Ext(E, Hp1 (1)) — - - -
We have
Ext' (B, Hpi(—1)) = H (Hp1 (1) ® EY) = HY(EY(~1)) ® Hp1 =0

because H'(EY(—1)) = 0. So the map Hom(E, Hp:) — Hom(E, T) is surjective, and
hence the quotient map E — T factors through Hp1 — T as

H]pl (—1) — H]pl — T .

[

This diagram gives a point of X, whose image under ¢ is the point [E — T'|. Therefore
g is surjective and hence Quot%?gf/k is irreducible since X is irreducible. O

On ]P’}Qd _» we have two short exact sequence
0= Eap— 0°E — Tar — 0, 0—0*E, — Ve, = 0*F, — 0.
d,r

The second is the pullback of the universal exact sequence of @, by é Let Fg4, be the
quotient of V% by Eq4, (based on the inclusions £;, C 6*E, C H*V% = V% ).
d,r ” d

T

Then we can form a commutative diagram as follows:

0 0 (4.2)
|l |

0—E&gr—0E —Tar—0

where the dotted arrows are induced maps on quotients. All rows and the middle
column are exact, hence the last column is forced to be exact as well. Since 7y, and
0* F, are both flat over Qd,r, 50 is F4 . Moreover, Fg, has rank n — k and relative
degree d. Thus by the universal property of QQ4, the exact sequence from the middle
row determines a morphism

¢: Qar — Qu
such that the following diagram commutes

0—&ir—Vpr —>Fq,—0. (4.3)

d,r
| | l=

0— ¢*Ey — gZ*V% — " Fq—0
d
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PrROPOSITION 4.4. For0<1<d, Iz, ,-Oq,, =1z,,-Oq,,, where as convention
we set Iz, , := 0 for | > r. In other words, the scheme-theoretic preimage & (Zay)
is equal to the scheme-theoretic preimage 0~ (Z,.1) = Qar Xq, Zr1, L =0,...,7.

Proof. We have a commutative diagram of sheaves on IP’IQd o

0— ¢*Eq — 0°E — Tar — 0

~

VPI

Qd,r

with exact row. Fix an integer m > 0. Applying Hom(—, (919%2 (m)) first and m,
d

T

second, we obtain a commutative diagram

T V]P,\é (m)
d,r

I

0 — m0*E) (m) — mp*EY (m) — 1T 5, (m) — 0.

The row is still exact because m > 0. By Proposition 2.4, 77, is flat over Qq,,. So
7. T;,(m) is locally free and the homomorphism m.0*EY (m) — m.¢*E](m) in the
above diagram is a subbundle homomorphism. After dropping the term mfir(m),
we rewrite the diagram as

0" pr,m
—

H*W*VP\éT (m) 0*m EY (m)

¢*m Vi (m)
Qa

¢*pd,m
—

¢*mE (m)

where we have used the canonical identifications: ¢*m,.Ey(m) = m.¢*EY (m),
O m.EY (m) = m0*E)(m) and ¢*mVp1 (m) = *m Vg (m) = Ve (m) for
Qg Qr Qq

m > 0. One checks that the first row is the map 0*p,,, and the secorfd row is

m+1+1

¢*pa.m- Applying the exterior power /\ to the above diagram, we obtain the

following commutative daigram

/\Tﬁ+l+1 9*

/\m+z+1 0 1., VIF"V}QT (m) N Tbm, /\m+l+1 O*m.EY (m) (4.4)

P y /\m+z+1
/\ ¢ Tx VIP’IQ (m)
d

" pd,m =
Py NP gt £ (m)

where the second column is still a subbundle map. This diagram induces another
commutative diagram

0q,,, — Hom(N™ 16 m. Vgl (m), \™ T 07 £Y (m) (4.5)

[

Og,, — Hom( A" 9" m iy, (m), ™ g7 (m)
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where the first row is induced by /\ﬁHJrl 0% prm, the second row is induced by
/\mHJrl @*pa,m and the second column is a subbundle map obtained by applying

Hom(\™ T g, Vpi (m), —) to the second column of the previous diagram. Dual-
Q4

izing the above diagram and using the canonical identifications

m—41+1 m—+I+1

* Vv * \Y \

Hom( N\ O m V) (m), N 0mEY (m)
m~+I+1 m+1+1

—_ O* \%4 \% \%

= 0" Hom( /\ Vel (m), N mEY (m))Y,
m—41+1 m—+I+1

* \V * \Y \

Hom( [\ o'm Vel (m), N\ o"mEi(m))
m—41+1 m—+I+1

= ¢" Hom( J\ mvpéd(m), N mE(m))Y,
we obtain a commutative diagram

¢* Hom(N™ T 7w VL (m), N €Y (m)Y — Oq,, (4.6)

Qqa

L H

0" Hom(A™ T V (m), T gy ()Y O,

where the first column is a surjection. One checks that the image of the first row is
Iz,,-0Oq,, and the image of the second row is Iz, , - Oq, . By the surjectivity of
the first column, we have an equality Iz,, - Oq,, = Iz,, - Oq,.,. 0

COROLLARY 4.5. For 0 <[ < r, the restriction of ¢ to the subscheme Qq,r Xq,
Zyy = 07YZ1) of Qa,r factors through the inclusion Zg; — Qq. In particular, ¢
factors through the inclusion Zg, — Qq.

We denote by ¢ : Qq,» = Zg4, the morphism factored out from ¢ : Qq, = Qq.
PROPOSITION 4.6. The morphism ¢ is surjective.

Proof. Let ¢ € Zg,. Then deg(Faq)ior > d — 7. Let T C Fgqq be a torsion
subsheaf of degree d —r, let F' = Fy /T, and let E = ker(Vp1 — Faq — F). Then
we form the following commutative diagram with exact rows and exact columns

0 0
Lo
0—E&qq +F yT——0

|| |

0—C&iq— Ve — Faq—0

O

|
:F
!
0

The middle column represents a point x € @, since deg F' = r, and the first row
corresponds a point y € Qg.-, which is on the fiber 67!(z) over z. One checks that
©(y) = ¢q. Thus ¢ is surjective. O
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We put Qq,r ::onm xqQ, Qr = 6‘_1(QT) C Qq,r, and write ¢g : Qq,» — Qq for the
restriction of ¢ to Qg .
PROPOSITION 4.7. The map ¢g factors through the inclusion Zodm — Qq-

Proof. By the universal property of Zodm (Theorem 3.6), we only need to show
that ¢ F5 is flat over Qg with relative degree d — r. Since we have

GoFs = (0" Fa)y, = (Far)y,

we only need to show that (.7-',17T)‘% is flat over C}dw with relative degree d — 7.
d,r

Note that we have a short exact sequence from the last column of the diagram
(4.2):

0= Tar — Far — 0 F — 0.

Restricting it to Pg yields an exact sequence
d,r

0— (7717,_)@(117‘ — (fd’r)éd,r — é*(fr)Qr — 0.
Then dualizing the sequence, we obtain a an exact sequence

e O(F)G, = (Fan)y, = (Tan)y, —0.

Since (F) g, is locally free, we have (}'T)EQ =0, and hence

r

(Far)y, = (Tar), - (4.7)

By Proposition 2.4, (ﬁ,r)% is flat over C())d)r with relative degree d — r. It follows
d,r
that (]:dxr)z; is flat over (g, with relative degree d —r. O
d,r

We denote by ¢ : éd,r — Zodm the map factored out from ¢q : éd,r — @Qq. The
composition of ¢ with the inclusion Zg, < Zg, is the restriction of the morphism ¢
to Qd,r-

PROPOSITION 4.8. The morphism ¢ : @d,r — Zodm is an isomorphism.

Proof. We construct a morphism v : Zodm — éd,m and show that ¢y = idZd

and Yo = id@d . Let 7 : Zodm — Qg4 be the inclusion. Pullback the universal exact
sequence (3.1) to Plzd :

0— i*Ed — VIF’% — ;*]'—d — 0.
Zd,T
Taking dual, one obtains a long exact sequence
0= (" Fa)” = Vi =) —» i F; = 0.
Zd,T

Let G = ker(i*€) — i*F5). Then we can break up the above sequence into two short
exact sequences:

0= (" Fg)' = Vot —=G—=0, 0G—i"E —i"F;—0. (4.8)

Zd,r
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By Theorem 3.6, i*Fj is flat over Zodw with relative degree d — r. It follows that G
and (i*F4)V are both flat over Zodyr, and hence they are both locally free. Since i*F3
has rank 0 and relative degree d — r, we know that G has rank k and relative degree
r, and that (i*F4)" has rank n — k and relative degree —r. Taking dual again to both
sequences in (4.8), we obtain

0—=GY = Vi — (i"Fag)"Y =0, (4.9)

Zd,r

0—i"E—GY — (i*F5)° — 0. (4.10)

We have (i*F4)VV is locally free of rank n — k and relative degree r. By the universal
property of @, the exact sequence (4.9) gives rise to a morphism

1/}0 : Zod,r — Q’I"7

such that the following diagram commutes:

0— G ——= Ve — (i*Fg)VV —0 (4.11)

‘ i l
I =

0—95E — U5V, — > UF —— 0.

Here we view GV as a subsheaf of Vpi . We see that 1/73}} is locally free, and hence
Zd,r

by Theorem 3.6, 1y factors through the inclusion @T — Q. We write
’(/Jl : Zod,r — 627‘

for the morphism factored out from .
Taking into account the diagram (4.11), the exact sequence (4.10) becomes

00— i*Ey — Y& — (I*F5)° — 0. (4.12)

By Proposition 2.4, (i*F35)¢ is flat over Zodw with rank 0 and relative degree d — r.
Thus by the universal property of Qg ,, the exact sequence (4.12) above induces a
morphism of @,-schemes

w2 : Zd,r — Qd,r

such that the following diagram commutes:

0——i*Eg —— Y3 — (I*F5)° — 0 (4.13)

| I !

0— P3Eqr — V50°E — V3 Tar — 0.
The maps ¥1 and 1o fit into the following commutative diagram

Zod,r o
'111._’_(
éd,rc? Qd,r
Lol
Qr——Qr
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Since C}dw = Qa4r XQ, COQT, 11 and 19 induce a @,-morphism ) : Zod,r — C())d,r.

We now show that (i) ¢ =idy and (ii) ¥ =id

(i) To show that ¢y = idZ“d,Tv it suffices to show that 1Py =i, or ¢t = i, or
¢j =i, or ¢p1po = i. Note that we have the following commutative diagram

0— P3Ear — wQVDﬂ — V3 Far—0

d,r

H ™
~

0—)2*5,1—)‘/@;1& —)E*]:d—>0

Zd,r

where the first row is obtained by applying Y% to the middle row of the diagram
(4.2), and the equality ¥3&4, = i*Eq is from the diagram (4.13). Thus we have a
commutative diagram of equivalent quotients:

%*VIF“ :1/;*(25*‘/1 :&;Vpl :Vp{ :g*VPl
Q4 Qd,r Qq

Zd,r

! ;@L@¢i
O F,

Oy Fo == 50" Fg —=— b5 F g, —— 1" Fg——1"F4

where the subdiagram (I) is obtained by applying ¢4 to the diagram (4.3), and the
subdiagram (@) is obtained from the above diagram. By the universal property of Qy,
we must have ¢io = i, and hence ¢ =id,

(ii) Let 5 : @d r — Qq,r denote the inclusion. To show that 1@ = idg, it suffices
to show that jiyp = j, or e = j.
We first show that 1o : Qd r — Qg is a Qr-morphism, where Qd » 1s viewed

as a @,-scheme through 6 : Qd,r — Q.. Equivalently, we show that 65 = 69, or
0j = 1pp. We have two commutative diagrams of the same shape with exact rows
and columns:

0 0 0 0
0— j*Ear —>§70°E — 7" Tar — 0 0— @"i*Eq —> G YGEr — G (I"F3)° — 0
0— 3" Ear— Voo —33¢"Fs—0 0— @ "8 — Voo  —— @ i"Fqg——0
Qd,r : Qa,r :
A L~ A o~
O F. = j 0" F, O Y Fr == O Y5 Fr
0 0 0 0

The left diagram is obtained from (4.2) by replacmg Fa,» with ¢*Fq using the
isomorphism Fy, ~ ¢*F, first and applying j* second, while the right diagram
is obtained by combining the two exact sequences (4.9) and (4 10) first, replacing
GV with &, and (i*F4)VV with ¥3F, second, and applying ¢* third. Note that
19 = ¢o = ¢j. Hence the two middle rows are exactly the same exact sequences
because they are both the pullback of the universal exact sequence of Q¢ by the same
map ¢g. Note also that j*7;, and @ *(4*F5)¢ are both torsion submodules of the same
module j*¢*Fy = ¢*i* Fy since 7*0* F, and @*¢gF, are both locally free. Therefore,
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3*Ta,r = ¢*(i*F5)¢ as submodules, and hence we have a commutative diagram

Ve —» 5 Fy—» j 0 F,

Qd,'r l

V% — O Fq —» O Fr.

d,r

So 07 = e by the universal property of Q..
Next, we have a commutative diagram of equivalent quotients on Ple L

Vo 078, = G P30°E, == Y€, == j*0%E,
¢ ) !

w%‘%*ri,r — S‘;*J’ikfim i> 4;7* (;*]:5)8 :3*7:7M

where the subdiagram @) is obtained by applying ¢* to the diagram (4.13). By the
universal property of Qg ,, ¥2¢ = j as (Q,-morphisms, hence ¢ = idde .o

This shows that ¢ : Qg = Zg4,, is a birational morphism. It then follows that

COROLLARY 4.9. For eachr, Zg,, is irreducible and of codimension (n—k)(d—r),
and Zg , is nonsingular. In particular, Z, o is an irreducible nonsingular subvariety

of Qa-

5. Successive blowups and main theorems. We now perform a sequence of
blowups on Q4. Set Q;l = Qq, Z(;,i = Zqy. Forr=0,---,d—1, let Q) be the
blowup of Q:l_l along Zg;l Q= BlZ;?QZ—l), Zj.,. the exceptional divisor, and
Z}y, the proper transform of Z;jl in QF for [ # r. We write IZQ i for the ideal sheaf
of Zf“ in in, for all r, .

This way of constructing of a compactification is similar to that in the construc-
tion of the space of complete quadrics and the space of complete collineations by
Vainsencher [Vai82, Vai84]. In fact, our proof will rely on a result from his construc-
tion of the space of complete collineations. To state that result, we begin with a brief
review of the space of collineations. Some original notations are modified.

Let E and F' be two locally free sheaves on a k-scheme S and set

S(E,F) :=P(Homs(E, F)).

If S = Speck, then E and F are vector spaces, and S(F, F') parametrizes all nonzero
linear maps £ — F up to scalar multiple. Hence S(E, F) is called the space of
collineations from E to F. For a general k-scheme S, S(E, F) is considered as a
family of space of collineations parametrized by S.

The universal quotient line bundle p* Hom(E, F)" — Ogg py(1) on S(E, F) cor-
responds to a nowhere-vanishing homomorphism u : p*E — p*F ® Og(g,r)(1), called
the universal homomorphism, where p : S(E, F') — S is the structure morphism. For
r=1,---,N where N = min{rank E, rank F'} — 1, let D,.(F, F') be the schematic zero
locus of A" ' N prE - N F @ Os(g,p) (7 + 1). The ideal sheaf Ip (g p)
of D,.(E, F) is the image of the homomorphism

r+1 r+1 \Vi
p* Hom ( /\ E, /\ F) ® Og(p,r)(=r —1) = Ip_(&,r) C Os(E,F)
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induced by A" w.

Set S,(E,F) := SN E,\N"T" F), r = 1,...,N. The homomorphism A" "',
which is nowhere vanishing on S(E,F) \ D,.(F,F), determines an S-morphism:
S(E,F)\ D.(E,F) = S,(E, F) by the universal property of S, (E, F).

Starting with S°(E, F) := S(E, F), DY(E, F) := D,(E, F), let S"(E, F) be the
blowup of S""Y(E, F) along DI~'(E,F), and denote by D! (E,F) the exceptional
divisor, Dy (E, F) the proper transform of D '(E,F) in S"(E,F) for | # r. The
ideal sheaf of Dj(E,F) in S"(E, F) is denoted by Ipr (e F)-

The useful result from [Vai84] is Theorem 2.4 (8), which gives a relationship
between the ideal sheaf of the total transform and that of the proper transform of
D;~Y(E, F) in the blowup S"(E, F) — S""1(E, F). We state the result below for the
convenience of reference.

THEOREM 5.1 (Vainsencher). Forl > r > 1, we have

Ipr-1(g,ry " Osr(e,p) = Ippe,r) - (Ipp(e,m)

We will use this result to show that there is a similar relationship between the
ideal sheaf of the total transform and that of the proper transform of Z;ﬁl in the

blowup Q7 — Q"

PROPOSITION 5.2. Forl>r >0, Izgzl Oqy =175, - (IZ;’T)l—T“.

Proof. Fix an integer m > mgq and consider the space S(m.Vpi (m), m.Ej (m)).

Qg
For simplicity of notations, we put S := S(mVpi (m),m.&j(m)), D, =
Qg
D, (1. V1 (m),mEf (m)), and Dj := Dj(m.Vpi (m), m.E (m)).
Qg Qq

The nowhere vanishing section pg ., of Hom(m. V. (m), 7.EY (m)) on Qg induces

]Pl

[°F]
a closed embedding f : Q4 — S such that pg,, = f*u, where u is the universal
homomorphism on S:

w:p m Vi (m) = p*m& (m) ® Os(1).

Q4
Through this embedding, we will consider Q4 as a closed subscheme of S. By defini-
tion, Zg,, is the schematic zero locus of NG Pdm = N = e AT
It follows that

QiNDpyr=Zgr, 7=0,...,d-1
scheme-theoretically, and
QiND =92, 1=1,...,m—1.

The latter equalities mean that the first m—1 blowups of S along D; forl = 1,...,m—1
has no effect on Qq. Therefore, we also have an embedding Qq — S™=1 together
with Qu N D™ = Zg,r, for 0 <7 < d—1. In other words, I ,m-1 - Oq, = Iz,,.

m+r m—+r
Starting from the m-th blowup, the blowups on S has an effect on Q4. We have
the following pullback diagram of blowups

Q2< Sﬁz—i—r

| |

Qg—l( , Sﬁri—r—l
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for all 0 <r < d— 1. Further we have @, N Dgi{ = Zg)l, for [ > r. Thus for [ > r,

Lgyr - Oay = Ipmrr - Ogps - Ogp = Ipmer—r - Ogmer - Og;

m-+1 m+i

©

DRt (IDE+T)7:—T‘+1 . OQ; — IZQ,I» . (IZ;T)i—r-H

m+i m4i
where (%) is by Theorem 5.1. 00
Applying the above proposition repeatedly, we obtain

COROLLARY 5.3. For all0 <r <d—1,

]de . OQQ’I = Z;;l . (IZ )2 ..... (IZQ‘;l )r . (IZZ,Bl )r+1'

r—1
d,r—1

Suppose m > mgand 0 < r < d—1. The homomorphisms /\ﬁ%Llel Pdm, 0 <1<,
are nowhere vanishing on Qq \ Zg,», hence they correspondingly induce embeddings
of Q) 4-schemes

Qa\Zar — Sﬁ+l(w*VP\{Q (m), m.Ef(m)), 0<1<r.

These embeddings together further induce an embedding of Q4 \ Z4, into a fibered
product

Qa\ Zar = [ ] @uSmn(m Vi, (m), m £ (m)).
=0

Here we denote by H s the fibered product over S for any scheme S.

THEOREM 5.4. Let m > mgq. Forr=0,...,d—1, the blowup Q7 is isomorphic
to the closure of the image of the embedding

Qa\ Zar = [[ @uSani(m.Vp), (m), m&f (m)).
1=0 ¢

Proof. By construction, @)}, is the blowup of le_l along the subscheme Z;;l. Let

b: Q;l — Qg4 denote the composite blowup. Corollary 5.3 says that the ideal sheaf of
the proper transform Zg;l of Zy,, and the ideal sheaf of the total transform b=1(Z,.,.)

_— )2...([ )
d,r—1 Z
)**1). Therefore, the blowup of Q:l_l along Zg;l is the same as the blowup

of Z4, only differ by an invertible ideal sheaf (i.e., the sheaf (I,
Uz
along the total transform b='(Zy,), ie., Q) = Blb—l(ZdYT)Qg_l. Since Zg4, is the
schematic zero locus of /\"AHTH pdm on Qa, b=(Z4,) is the schematic zero locus
of /\ﬁHrT'|rl b*pa,m on Q:l_l. So Bly-1(z, ) 2—1 is the closure of the image of the
embedding induced by A"+ b* pd,m:

r—1
d,1

Qy '\ (Zay) = Sar (b7 Vp, (m), b7 mE4 (m)

= Q:l_l XQq SﬁlJrT(W*VIP\éd (m)7 W*gg (m))

Thus we see that the proof can be completed by induction on r. O
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Note that the closure of the image of the embedding
Qd \ Zd,r — Serl(W*VP\éd (m), W*gl}/ (m))

is exactly the blowup Blyz, ,Qq of Qq along Z;,;. Thus we obtain an easy corollary.

COROLLARY 5.5. The blowup QY is isomorphic to the closure of Qq \ Za,r in the
product

Blz,,Qa Xq, - X, Blz, ,Qa-

Next we fix m > 0, and for each r = 0,...,d —1 and each [ = 0,...,7 — 1, we
introduce a diagram

Qur " Qur X, St (mVyh, (m), m.E) (m) (5.1)

| R [

Qd \ Zd,rfl —W> Sfﬁ-i—l (7T>'=‘/[p>\£2 (m)v Tr*g(\i/ (m))
d

™~ éj%

J

where ¢ and j are inclusion maps, p is the projection and ¢ is the structure morphism.
The other maps are defined as follows.

DEFINITION OF gb Recall that we have an isomorphism ¢ : @d,r — Zodyr. We
define ¢ to be the composition

o SZ o
Qar = Zar — Qa\ Zar—1-

Thus (;5 is an embedding with image Zodﬁr.
Before defining the other maps, we simplify notations by setting

41 mAi+1
Al — g* HOm( /\ W*VP\%T (7’)’L)7 /\ W*g;/(m))a
M++1 i+l

— v v
By := Hom( /\ W*V%d (m), /\ &7 (m))
so that we can write

Qa.r XQ, Smi(m Vi1 (m), mE) (m)) = P(Ar),  Sgmpi(mVpl

1
Qr Qq

(m), m &y (m)) = P(B))
with universal quotient line bundles p* Ay — Op(4,)(1) and ¢*B)" = Op(,)(1) respec-
tively. Note that the projection p is the same as the structure morphism P(A4;) — Qq.

DEFINITION OF ¢y. In view of the identification C}dw = Qdr XQ, C}T, we define
the map «; to be the pullback of the embedding of ),-schemes

@T =Qr\ Zrr—1 = S (W*VP\é (m), W*Eg/(m))

induced by the nowhere vanishing homomorphism /\ﬁl'HJrl Pr.m O CDQT. So we see that

«y is an embedding. Equivalently, o is determined by the quotient line bundle i*.A) —



942 Y. SHAO

mAl+1 0

i*Oq,., corresponding to the nowhere vanishing homomorphism * /\ Prm O

Qd,r-

DEFINITION OF f3;. Recall that we have a surjection ¢*B) — A}’ on Qg , from the
diagram (4.6). The composition of its pullback to P(A4;) with the universal quotient
line bundle

P "B — p A = Op(a,(1)
determines the morphism ;.

DEFINITION OF 7;. The Q4-morphism +; is determined by the surjection j*B)" —
7*Ogq, corresponding to the nowhere vanishing homomorphism j* /\m'HJrl Pd,m ON

Qa\ Zaqr—1. Thus v is an embedding.

LEMMA 5.6.
1. In the diagram (5.1), the two triangles and the two parallelograms are com-
mutative, i.e., pay =1, qy = J, ¢t = j(b and qB; = ¢p.
2. We have isomorphisms of line bundles o Op4,)(1) = i*Oq,.,., B; Ops,) (1) =~
Op(ay (1) and v/ Opg,)(1) = j*Oq,, which make the following diagrams com-
mute:

afp* A —» af Opap (1) Biq"B) ——————» B Ops)y(1) i a™ B —» ¥ Opi, (1)

H l= | |~ | |~

i"AY —i"Oq,, p ¢ BY —» p* AV —» Op(a,)(1) J B ——» j*Oq,

Here the first rows are the pullbacks of the universal quotient line bundles on
P(A;) and P(B;), and the second rows are those surjections that induce the
corresponding maps.

Proof. These are all straightforward by the definitions of the maps in the diagram
(5.1). 0O

The commutativity of the two triangles means that «; is a (04 -morphism and ~,
is a Qg-morphism. Through the morphism ¢ : Qg4 — Qq, all Qq r-schemes are also
Qqg-schemes. Thus the commutativity of the two parallelograms means that ¢ and ;
are both @Qg-morphisms. «; can also be viewed as a morphism of @ 4-schemes.

It remains to show that

LEMMA 5.7. The rectangle in the diagram (5.1) is commutative, i.e., oy = ’yldo).

Proof. We compute and compare the pullbacks of the universal quotient line
bundle on P(5;) via 5y and via 7;¢ respectively, as is demonstrated in the following
commutative diagram:

O  ap A ——=i"A B <)

Lo |

af B Opsy (1) = af Opeay (1) = i*0q,, = i*¢*Oq, = 6" 5* Og, —> ¢*{ Op(s,) (1)

The subdiagram (D) is obtained by applying « to the second diagram in Lemma
5.6(2), @ is the first diagram in Lemma 5.6(2), @ is obtained by restricting the
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diagram (4.6) to C}dm and @ is obtained by applying ¢* to the third diagram in
Lemma 5.6(2).

So we see that the pullbacks of the universal quotient line bundle via S;a; and
via w} are equivalent, which implies that ;o = *yldo). O

The maps ¢?, «y and ~; are all embeddings, but f; is in general not. The following
is an important observation.

PROPOSITION 5.8. The map Br_1 is a closed embedding.

The proof of this proposition will take much space, and we leave it to the next
section so that we can come to our main result as quick as possible. We will assume
this proposition for this section.

The diagrams (5.1) for [ = 0,...,r — 1 naturally induce a commutative diagram
r—1
Qar —— Qur xq, [ @.Sasi (m Vel (m), m£) (m) (5.2)
1=0
é lﬁ
r—1
Qa \ Zd,r—l ;} H QdeﬁJrl (T‘—*V[P\{Q (m)7 W*E(\i/(m))
1=0 ¢

The map « is the Qg -morphism into the fibered product over (4, determined by
the embeddings o;:

r—1

r—1
Qar = g Qu P(AI) = Qu,r Xq, E) QTSﬁerl(W*VpéT (m), m.&EY (m)).
Equivalently, it is the pullback of the embedding
r—1
Qr — g QTSﬁz-i-l(W*Vp\{QT (m), mEY (m))
via 0 : Qg — @r. Thus a is an embedding, and the closure of the image of « is

exactly Qa., xq, Q" 1.
The map S is the Qg-morphism into the fibered product over Q4 determined by
the composition

r—1
[T 0o BOAD) B B(A) B B(B) = S (m V3, (m), 7.8 (m))
=0

where p; is the projection to the [the factor.

The map v is the Qg-morphism into the fibered product over @4 determined by
the embeddings ;. Hence v is an embedding, and the closure of the image of v is
exactly Q:fl.

Based on Proposition 5.8, we can prove

PROPOSITION 5.9. The Qg-morphism S is a closed embedding.
Proof. For each [, the map §; : P(A;) — P(B;) can be decomposed as follows:

PA) B BB = Qu, x0, P(B) L P(BY,
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where the map (@ is the closed embedding induced by the surjection ¢*B) — A; and

r—1 r—1
@ is the natural projection. Thus the map /5 : H Qu. P(A) — H @,P(B;) can be
1=0 1=0
decomposed as
r—1 @ r—2
Qu P(A) = [] 0w P(6"B) xq,, P(Ar1)
1=0

Il
o ©

S o~
|

I
—

Qd,r(Qdﬂ” XQa P(Bl)) XQua,r P('ATfl)

=0
r—2 @ r—2 r—1

= P(B) % g, P(Ar1) = [ @uP(B) x@. P(B,—1) = [[ P(B1)
=0 =0 =0

where @) is the closed embedding induced by the map @), and @) is the closed embed-
ding induced by S,—1 : P(A,—1) — P(B,—1). It follows that j is a closed embedding. O

PROPOSITION 5.10. We have an isomorphism Qa» X ¢, Q7" = Zg;l.

Proof. We know the closure of the image of « is Qg X, Q-~'. Since 3 is
an embedding, the closure of the image of S« is isomorphic to Qa.r Xg, Q771 On
the other hand, (b is an embedding with image Zdr and the closure of the image
of vis Q" ! Hence the closure of the image of 7(;5 is isomorphic to Zgrl. By the

commutatlvity of the diagram (5.2), the image of S and the image of 7¢ are the equal,
and so are their closures. This gives us an isomorphism Qg x¢, Q! = ZT o

Let us denote the isomorphism as ¢ : Qq,r X, QL ' — Z;;l. Then it fits into
the following commutative diagram

r—1
Qd,rc—> Qd,r XQ, Q:ilc—> Qd,r XQ, H QTSﬁ+l(7T*VP\£? (m)u 77*8;/ (m))
=0
@ @ [5
r—1
Z4.,C VA Q' —— T[] @uSm+ w*vﬂﬂ (m),mé‘c\[(m)).
=0

We are now ready to prove the first of the main results.
THEOREM 5.11. For 0 <r <d -1, Zg;l and Q7 are both nonsingular.

Proof. We prove this by induction on r (but for all d > r + 1). When r = 0,
Zg;l = Zg, is nonsingular, hence QY, the blowup of Qg along Zq4,0, is also nonsin-
gular. Assume the statement is true for r = N — 1, that is, Zé\f&il and Qflvfl are
nonsingular for all d > N. We prove that the statement is also true for r = N.
By the above proposition, chl\jj\_,l = Q4N XQn Q%_l, and by induction hypothesis,

N—-1 . . N—1 - . N . o
~  is nonsingular, hence Z; v~ is nonsingular. @ is nonsingular because it is

the blowup of the nonsingular variety Qélv ~1 along the nonsingular subvariety Z év ]Ql.
This completes the proof. O
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PROPOSITION 5.12. The isomorphism @ maps the closed subscheme Qq, Xq,
Z:yl_l of Qar xq, Qr1 isomorphically onto the closed subscheme Zg;l N Zg;l of
Z;;l foreachl=0,--- ;r—1.

Proof. For simplicity, we put Qg;l = Qa,r Xq, Q"~'. Consider the following
commutative diagram

1 N —1
Qr ——Qy, — @y

| l |
Qr 2 Qa,r a Qa

where ¢ is defined to be the composition Qg;l 2 Zg;l — Qgil. The ideal sheaf of
Qar XQ, Z:Jl in Qg;l is IZT?l . OQ;A. Because of the isomorphism @ : Q4 X,
Qr~! — Z 1, we see that the ideal sheaf of the preimage ¢~*(Z},'nZ, ;") in Q7,1 is
Iyra 'Ongl . Thus to show that ¢ induces isomorphisms Qg x o, Z.; '~Z5 'nZ5 ",

rl
it suffices to show that

IZ . OQrfl = ZT?l . Oszl, = O7 ceey P — 1. (53)

r—1
d,l d,r

We now prove it by induction on /. When [ = 0, we have

()
'OQ;;I = (IZd,O : OQd,r) : OQ;;‘I = (IZr,o 'OQd,r) -0

= Uz Ogi=1) Ogr =175 0

I, Qi

r—1
d,0
Qi
where (%) is by Proposition 4.4.

Assume (5.3) holds for all I < N — 1 for some N < r — 1, and we prove it also
holds for [ = N. By Corollary 5.3, we have

Iz, « .(')in\,fl = Iy (IZ£§11)2 ..... (IZé\fgl)N-i-l’
Iz, Ogn—1 = PR (IZi\fJ;il)z ..... (IZS’,JI)NH'
Hence we have
Trpy Uy )7 )™ Ogr
= (Izjg,l . (Izjz;il)Q ..... (]Z(JXO,I)NH 'OQZ’I) 'OQZ,?
= ((Iz,n - Ogn-1) - Ogr-1) - (9%71 = Iz, » OQZ—I) Ogr-1
(Uzan - Oqu.,) OQT*1 =Uz.v 0q..) OQT;} (5.4)
= ((Ir,y - Ogn-1) - Ogr-1) OQZ;I
= (IZN” (IZN’I ) ..... (Izﬁgl)NH OQPI) OQ'P;I
=z (g )7 Uz )V Ogpons

By induction hypothesis, we have an equality of invertible ideal sheaves

(I )2 (IZS,BI)NH ) OQST = (I,

d,N—1

)2 ..... (szgl)NH .0

r—1
rN—1
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We can eliminate this invertible ideal sheaf from both sides of the equality (5.4) and
obtain

O yr-1 = -0

Lz Oqpr = 1250 Oy
Thus the statement is true for N. O
An easy corollary is as follows:
COROLLARY 5.13. For any N distinct integers ly,...,Iy € {0,---,r =1}, @

N
maps Qa,r XqQ. ﬂ Z:)l_jl isomorphically onto the scheme-theoretic intersection Zg;l N

N
r—1
Mz
j=1

THEOREM 5.14. For 0 <[l <d—1andl <r <d-1, Zg,l is monsingular,
irreducible, and of codimension one in Q7.

j=1

Proof. We fix [ and prove that Zj ; is nonsingular, irreducible, and of codimension
one for all » > [. By definition, Zf“ is the exceptional divisor in the blowup Q% —

f[l with the nonsingular irreducible blowup center Zf[ll. Hence Z 1li ; is nonsingular,

irreducible, and of codimension one. Zf;?l, the proper transform of Zé ; in QZ’H, can

be considered as the blowup of Zf“ along its nonsingular subvariety lei 141 N Zél o
hence it is nonsingular and of codimension one. Repeat this argument, we conclude
that Zé [P ,Zj?l are all nonsingular and of codimension one. 0

It remains to prove the transversality.
THEOREM 5.15. For 0 <r <d-—1, Z; .-, Z;, intersect transversally in Qy.

Proof. We prove it by induction on r (for all d > r). When r = 0, the state-
ment is trivial. Assume that the statement is true for » — 1. We first show that
Zg;l, 2551, e Z;;l,l transversally. Since Zcfolv e Z;;l,l intersect transversally by
induction hypothesis, we only need to show that Zg;l intersect with 2551, ce Zg;il
transversally. Let z € Zs;l, and suppose Zg;ll, cee Z;Zi are those from the collec-
tion {Z;jl |0 <1 <r—1} which pass through . We show that Zg;l intersect with
Z;;ll, R Z:ljj\l[ transversally at x by calculating the dimensions of tangent spaces.
Since the tangent space of a scheme-theoretic intersection of some subschemes is equal
to the intersection the the tangent spaces of those subschemes, we have

N N N
.25 0 ) T.Zy7 = To(Zy' 0 N Z37) = To1(a) (Qar Xa, N zZh
Jj=1 Jj=1 j=1

~

where the last equality is by Corollary 5.13. Let y € Q"~! be the image of ¢~ (x
under the projection Qg X¢g, Q7" — Q"~1. By induction hypothesis, Z:l_l, =
0,...,7 — 1, intersect transversally in Q"~1. Thus we have

N N
codim ( () 7,2, ") = codimT,Zj ;' = N
j=1

j=1
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or
N
dim () 7,7];") = dimQ;"' = N = dimQ, — N.
j=1
Therefore
N N
dim (T, 25" 0 () TeZ5,)) = dim Tpo100) (Qar %@, () Z00))
j=1 j=1

N
= (dim Qu,r — dim @) + dim ([ 7,27") = (dim Qur — dim Q,) + (dim Q, — N)

Jj=1
— dimQu, — N = dim 2~ N = dim T, 25— N

and hence
N
codim (T, Z; ' 0 (| TwZy,)) = dim Q" — (dim T, Z; ' — N)
j=1
N
= codim T, Z . + N = codim T, Z " + Y codim T, Z; .
j=1
It follows that Zg;l intersect with Zg_f)l, R 22;1,1 transversally at x. Since z is
an arbitrary point, we know Z;;l,Zg_Ol, . .,Zg;il intersect transversally. Since

transversality is preserved under blowups along a nonsingular center, we obtain the
statement for r. O

For [ < r — 1, the proper transform Zy, of Zgjl, which can be regarded as the

blowup of Zg;l along the nonsingular subvariety Zg;l N Zg;l, is a nonsingular and
of codimension one in Q). Thus Theorem 1.1 follows easily from the combination of
Theorem 5.11, 5.14 and 5.15.

6. The proof of Proposition 5.8. This section is a proof of Proposition 5.8.
We first introduce another relative Quot scheme:

0,d—r
= Quot 2.
Qavr = Quotey py q,

with structure morphism @ : Qqv » — Qq. It comes equipped with a universal exact
sequence on Plev E

0= Egvy —0*E) = Tav,r — 0

where Tgv , is flat over ()¢ with rank 0 and relative degree d — r.
Recall that the relative Quot scheme ()4, has a universal exact sequence on ]P’}Qd o

0= Ear— 0 = Tar — 0
and there is a homomorphism ¢ : Q4,, — Qq such that

Ear = 9" E.
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Dualizing the universal exact sequence of (q,», we obtain
006 = ¢ = T;, =0

where 77, is flat over Qq, of relative degree d — r and rank 0. By the universal
property of Qgv ., we see that the above sequence gives rise to a ()g-morphism:

n: Qd,r — de,r

such that the following diagram commutes:

00— 08 *EY ; 0 (6.1)

d,r
| | I~

0— 7" Eqv p — TI*EY — 7" Taqv » — 0.

PROPOSITION 6.1. The morphism n is a closed embedding.

Proof. We will show that 7 induces an isomorphism from (g, to a closed sub-
scheme of Qgv . The map 7 fits into the following commutative diagram:

Qd,r l> de,r
le \¢\,4 lﬂ
QT Qd

We have the following exact sequence on ]P’bd:
Vp\é — &) = F5 —0.
d
Pull back the sequence by 1 to P} =

Vel =0 0P F; =0

QaV
and let 7 be the cokernel of the composite map

Vi = 0 = Tav .

QaV

As a quotient of the torsion sheaf Tgv ., T is also torsion. We have a commutative
diagram:

0 (6.2)

|

gdv,r

l

Vol =0 =0 F 0

dem
|| | .

/a4 —Tavr——T ——0

QaV l l

0 0
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where the two rows and the second column are exact. The exactness of the third
column is induced from the the exactness of the second column.

For each point ¢ € Q4v r, the restriction of the last row to IP’; is an exact sequence
VPV%, — (Tav.r)g = Tg = 0

since pullback is a right exact functor. Hence the fiber 7, on ]P’é is a torsion sheaf of
degree at most d — r. Consider the flattening stratification of Qqv , by 7, and let Z
be the stratum over which 7 has relative degree d —r. Then Z is a closed subscheme
of Qqv r, and it satisfies the universal property:

For any morphism f : X — Qgv ,, the pull-back f*7 is flat over X with relative
degree d — r if and only if f factors through the inclusion i : Z — Qqv .

We now show that 7 : Qq, — Qav,, factors through Z. The pull-back of the
above commutative diagram under 7 fits into the following commutative diagram

Vol gy

Qd,r
R
VP\EMT — *E)

]

VP\% — 7 Tav r — 7T —0
d,r

where the second column and the third row are exact sequences. Therefore we see
that vab — 7 Tqv » from the third row is a zero map. So 7*Tgv , = 7*7T, and hence

d,r
7T is flat over g, with relative degree d — r. By the universal property of Z, the
map 7 factors through the inclusion Z < Qqv ,. We denote the map factored out
from 7 as

n Qar — Z.
Now pull back the last row of (6.2) to P} to get an exact sequence
VPVIZ = (Tav )z — Tz — 0.

By the definition of Z, Tz is flat over Z with relative degree d — r. Let K be the
kernel of the homomorphism (7gv )z — Tz. Then for every point ¢ € Z, we have a
short exact sequence on IP’;:

0= Ky = (Tavr)g = Tqg — 0.

We see that C, is a torsion sheaf of degree 0 on P}, hence K, = 0. It follows that
K =0, and therefore

(VY = (Tav.)z) =K =0, (Tav.)z = Ta.
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So we have the following commutative diagram on P:

0 0
V]P’\{Z ...... N (gdv,T)Z ............ )T/—)O
L
VPVIZ — (0*E))z — (0*F3)z — 0

o—J—
i;

with all columns and the last two rows being exact, where 7" := ker((0*F5)z — Tz).
Then 77 is torsion since (9*F5)z is so. The dotted arrows in the first row are the
induced maps. The first row is forced to be exact as well.

Taking dual of the first row, we get an exact sequence

0= (Eav,r)z = Ve = F =0

where JF := Coker((Eqv,r) — Vp1). We now show that J is flat over Z with rank
n — k and relative degree r. By Lemma 2.1.4 in [HL97], we only need to show that
(Eav.r)g — Vps is injective for every point ¢ € Z. We restrict the first row and last

column of the previous diagram to the fiber IP’;:

<

N—o

l

Vp\g — (gdvﬂm)q E—

=
H

N

g

o= <

Since pull-back is right exact, the row is exact and the column is right exact. Note
that Tz is flat over Z, so the column is exact, and hence, ’Tq’ is torsion. Taking dual
of the row, we get an exact sequence

0— (gdvﬂ_);/ — V[pé.
So F is flat over Z, and we have an exact sequence
0— (Eqv )y — Ver — Fg — 0.

Since (Eqv,r), has rank k and degree —r, we have F, has rank n — k and degree 7.
By the universal property of @,., the above exact sequence induces a morphism

7 = Q)
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such that the following diagram commutes:

0— (gdv.,r)% Vpl F 0

| E

0 — & — E*V% — & F, —0.

Restricting the universal exact sequence of Q4v , to PL and dualizing it, we obtain
an exact sequence:

— (g*gd)z — (5dv)r)% — (7&\/7,“)82 — 0.
il
£&r
Note that (7qv )% is flat over Z with rank 0 and relative degree d — r. Thus the
above exact sequence induces a morphism ¢ : Z — Qg of Q,-schemes such that
0— (ﬁ*gd)z — (gdvﬂm)% — (nvﬂm)gz —0

I I 1=

0—(*Eayp — O E —— Tar — 0

I I
E*é*gd 5_*87“

We now show that (i) ¢(n’ = idg, . and (ii) #'¢ = idz.
(i) We have the following commutative diagram of equivalent quotients:

W*e_*gr . ﬁ/*é*é*gr . ﬁ/*(gdv,r)% I —*gé/vm _ *57“ _ é*gr

| | | |1

O Taw =1 CTaw =7 (T )y =TT — Ti5 = Ta-

By the universal property of Qq,,, (1’ = idg,,.

(ii) Let i : Z < Qqv be the inclusion map. To show that '¢ = idy, it suffices
to show that in'¢ = ¢, or n¢ = i. We have the following commutative diagram of
equivalent quotients:

¢ i i L l l

G Tav i = C Tav = C T, = (Tav )% = (Tav.r)z = 0 Tav o

By the universal property of Qgv ., we have n{ =4 and hence /¢ =idz. O
Next we fix m > 0 and recall that on ()4, we have a subbundle homomorphism
m-r m—+r m-r
N 0l (m) =\ " mEf (m) = 6" |\ mEf(m)
Note that rankm.EY(m) = m + r. Hence /\ﬁ“”'|r1 0*m.EY (m) is a line bundle, and
the above homomorphism induces a @)4-morphism

m4r

§: Qar— P( /\ i (m)).
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Denote by h : P( AT m.£y (m)) = Qg the structure morphism and by
m-4r

h*( /\ W*g(\i/(m))v —» OIF,(/\EJrrW*g;(m))(l)

the universal quotient line bundle. Then we have a commutative diagram

5*h*(/\’fﬁ+'f W*g&/ (m))v — 5*OP(A7ﬁ+T ﬂ-*g;(m))(l) (63)

H l=

¢ (N &Y (m)Y —— (N™ 0°m.EY (m))V.

PROPOSITION 6.2. The morphism § is a closed embedding.
Proof. We claim that § is the composition of the sequence of Q)4-morphisms
mr

Qa.r > Qav.r = Grg, (M + r,m.EY (m)) A P( /\ m.Ef (m))

where ¢ is the closed embedding of Quot scheme into Grassmannian by Proposition
(2.2) and A is the Pliicker embedding.
Denote by g : Grg,(m + r,m.E) (m)) = Qq the structure morphism and by

0— K —=g'm&)(m) =W —0

the universal exact sequence of locally free sheaves of the Grassmannian Grg, (m +
r,m&) (m)). By the definition of ¢, we have a commutative diagram with exact rows

0

0 e gty (m) W
| || l=

0 — mav r(m) — P &Y (m) — 7w Tqv »(m) — 0

where the first row is obtained by applying ¢* to the universal exact sequence of
Grg, (m+r,m.&)(m)) and the second row is obtained by applying 7. (_®OP({2 (m))
av,r

to the universal exact sequence of QQ4v . By the definition of A, we have a commutative
diagram

/\*h*(/\m-i-T 77*5(\1/ (m))v R — )\*OP(/\m+T ﬂ*Sg(m))(l)
A|| -
g N mE (M) (N K)Y

where the first row is obtained by applying A* to the universal quotient line bundle
on P(A™"" m.£Y (m)) and the second row is obtained by first applying A™*" to the
subbundle K < ¢g*m,£)(m) and then taking dual. Thus we obtain a commutative
diagram

W AR (A mE () —— X Op g gy (1)
N 1=
0 (N g (m)Y s (N

¢ (N Y (m))Y ————— (N 07 1.EY (m))V
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where the upper rectangle is the pullback of the previous one and the lower rectangle
is based on the following identifications

m-4r m-4r mr
n /\ K= /\ K = /\ N mEqv (M)
m-+r m-r m-+r

= N\ 77 v r(m) = N\ m0°E(m) = N\ 0°m.E) (m)
By the universal property of P( /\ﬁﬂrr m.£y (m)), we have § = Awp. Since 1, ¢ and A
are all closed embeddings, ¢ is also a closed embedding. O
We are now ready to prove Proposition 5.8.

_ Proof of Proposition 5.8.  We first simplify notations by setting £ :=
N0 EY (m), M= N rEY (m) and V := AT m VY (m). Thus we can
Q
write ’
Qd,r XQ, Simt+r—1 (W*Vp\é (m), mEY (m)) =S(¢*V, L) =P(¢*VY @ L),
Satr1 (W*Vp\é (m), &Y (m)) = SV, M) =P(VY @ M).
d
Consider the following commutative diagram

S(6*V, £) 15 P(¢* V) P(h*VY) = P(VY) x g, P(M)CD PV © M) = S(V, M)

I bo, b | T,

Qar =——— Qd,rc—6> P(M vY) a
o I 1
Qa Qa Qa Qa Qu

where p, ¢, f, g and h are the structure morphisms, m; and 7, are the projections to
the first and second factor respectively, p is an isomorphism, 4 is a closed embedding
induced by §, and o is a Segré embedding. The specific definitions of p, 6 and o are
given below.

DEFINITION OF . The universal quotient line bundle on S(¢*V, £) is
p* Hom(¢*V, L)Y = p*¢*V @ p* LY — Og(pov,1)(1).
Note that £ is a line bundle. Tensoring by p*L, we obtain p*¢*V¥ — Og(gy r)(1) @
p*L. This induces a Qg -morphism u : S(¢*V, L) — P(¢*V") such that the following
diagram commutes:

prg* gV ———» p1* Op(peyvy(1) (6.4)

H 1=

P *V —— Ogg+v,)(1) @ p*L

where the first row is the pullback of the universal quotient line bundle via p. One
checks that p is an isomorphism.

DEFINITION OF 6. The universal quotient line bundle g*¢*V = g*6*(h*V) —
Op(g+1)(1) on P(¢*VY) induces the map ¢ such that the following diagram commutes:

SRV~ 6* Op(-yvy (1) (6.5)

H l=

g ety ——» OIF’(;b*VV)(l)
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where the first row is the pullback of the universal quotient line bundle on P(h*VY).
Equivalently, using the identification P(h*VY) = P(VY) x g, Q4.r, 0 is the same as the
map 1 x & : P(VY) xg, Qar — P(VY) xg, P(M). Since ¢ is a closed embedding, so
is 0.

DEFINITION OF o. On P(VY) x¢, P(M) there are two quotient line bundles
TV = 7Oy (1), m3h" MY — 7508 () (1)

which are the pullbacks of the universal quotient line bundles on P(VY) and P(M)
respectively. We tensor the first line bundle with 75h*Op(rq)(1) and the second line
bundle with 7} f*V to obtain a sequence of surjections

mh* (Ve MY)
=m fV@mh M = 7 fV @ 150y (1) = 71 Opeov) (1) @ w5 Op(any (1).

The composition of the above sequence induces the map o. Thus we have the following
commutative diagram

a*q* Hom(V, M)¥ a* Osy,am)(1) (6.6)

|| 1=

7T§ *(V ® M\/) —» wff*V (024 W;OP(M)(l) —» FTOIF’(VV)(l) ®7T§OP(M)(1)

One checks that the map o defined this way is exactly a (relative) Segré embedding.

We remark here that the projection 7y can also be viewed as the structure
morphism of P(h*VY) as a P(M)-scheme, and the projection 71 is the same as
the Qg-morphism P(h*VY) — P(VV) induced by the universal quotient line bundle
m3h*V — Op(-pvy(1). Thus we have a commutative diagram

wi‘f*V —»TFTOP(VV)(l) (67)

| I~

7T§ *V —_— Op(h*vv)(l).

~ We claim that Br_1 is the composition of the first row of the diagram, i.e., 5,_1 =
odpu. We prove this claim by computing the pullbacks of the universal subline bundle
on S(V, M) via f,_1 and via odu respectively. The computations are demonstrated
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in the following commutative diagram

w8 o*q* Hom(V, M)V K0T Og(v, M) (1)

|| o 1=

PR (V@ MY) % w8 FTV @ 178 w5 Onan (1) — 1" ] Oppovy (1) @ 15" 3 Op e (1)

|| | ® 1=

PE (V@ MY) ——% @5 mEhTY @ 18 w5 Onan) (1) — 178" Opg vy (1) @ "6 15 Opany (1)

|| | ® Iz

B g eV @ pr gt s R MY —% 1F 9" 6"V @ uF g* 8 Op(any (1) — 1 Opgueypvy (1) @ p*g* 6" Opany (1)

H a I- I-

g PV @ g MY 1 G PV @ g LY e T Oy (1) @ g LY

POV QU g MY —————H g TV @ p LY —————————H 1 Opyrpvy (1) @ pLY

I I ® 1=

PP VRpPM —m0 S pH VP LY Os(p*v,2)(1)
I I [
p*¢* Hom(V, M)¥ ——————% p* Hom(¢*V, L)Y Os(g+v,2)(1)
I © 1=
Br_1q" Hom(V, M)V Br_10sv, 1) (1)

where the subdiagram (I) is obtained by applying w*o* to diagram (6.6), @ is obtained
by applying p*0* to diagram (6.7) first and then tensoring with ‘LL*S*TF;OP(M)(l),
@ is obtained by applying p* to diagram (6.5) first and then tensoring with
M*S*W§OP(M)(1) = p*g*0*Opagy(1), @ is obtained by applying p*g* to diagram
(6.3) first and then tensoring with p*g*¢*V, @ is obtained by tensoring diagram
(6.4) with p*£Y, and ©) is obtained from the definition of S,_;.

Thus we have shown that 8,_; = aSu. Since p is an isomorphism and both 6 and
o are closed embeddings, it follows that (§,_1 is a closed embedding. O
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