
ASIAN J. MATH. c© 2016 International Press
Vol. 20, No. 5, pp. 795–868, November 2016 001

COINVARIANTS OF LIE ALGEBRAS OF VECTOR FIELDS ON

ALGEBRAIC VARIETIES∗

PAVEL ETINGOF† AND TRAVIS SCHEDLER‡

Abstract. We prove that the space of coinvariants of functions on an affine variety by a Lie
algebra of vector fields whose flow generates finitely many leaves is finite-dimensional. Cases of the
theorem include Poisson (or more generally Jacobi) varieties with finitely many symplectic leaves un-
der Hamiltonian flow, complete intersections in Calabi-Yau varieties with isolated singularities under
the flow of incompressible vector fields, quotients of Calabi-Yau varieties by finite volume-preserving
groups under the incompressible vector fields, and arbitrary varieties with isolated singularities un-
der the flow of all vector fields. We compute this quotient explicitly in many of these cases. The
proofs involve constructing a natural D-module representing the invariants under the flow of the
vector fields, which we prove is holonomic if it has finitely many leaves (and whose holonomicity we
study in more detail). We give many counterexamples to naive generalizations of our results. These
examples have been a source of motivation for us.
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1. Introduction.

1.1. Vector fields on affine schemes. Let k be an algebraically closed field
of characteristic zero, and let X = SpecOX be an affine scheme of finite type over k
(we will generalize this to nonaffine schemes in §2.10 below). Our examples will be
varieties, so the reader interested only in these (rather than the general theory, which
profits from restriction to nonreduced subschemes) can freely make this assumption.
We will be interested in the vector space Vect(X) of global vector fields on X , which
is by definition the space of derivations Der(OX), a Lie algebra acting on OX .

We also remark that our results can be generalized to the analytic setting using
the theory of analytic D-modules, except that in these cases, the coinvariants need
no longer be finite-dimensional, since analytic varieties can have infinite-dimensional
cohomology in general (e.g., a surface with infinitely many punctures). But we will
not discuss this here.

When we say x ∈ X , we mean a closed point, which is the same as a point of
the reduced subvariety Xred. Note that (since k has characteristic zero) it is well-
known that all vector fields on X (which by definition means derivations of OX) are
parallel to Xred (dating to at least [Sei67, Theorem 1]), i.e., they preserve the ideal of
nilpotent elements. Hence, there is a restriction map Vect(X) → Vect(Xred), although
this is not an isomorphism unless X = Xred. In particular, for all global vector fields
ξ ∈ Vect(X) and all x ∈ X , ξ|x ∈ TxXred.

Let v ⊆ Vect(X) be a Lie subalgebra of the Lie algebra of vector fields (which is
allowed to be all vector fields). We are interested in the coinvariant space,

(OX)v := OX/v(OX).
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This is called the coinvariant space because it is, by definition, the coinvariant space
of the module OX over the Lie algebra v ⊆ Vect(X).

Remark 1.1. One could more generally replace v above with an arbitrary set
of vector fields that need not be a Lie algebra or even a vector space, but then the
coinvariants coincide with those of the Lie algebra generated by that set. One could
also allow v to contain not merely vector fields (i.e., derivations ofOX), but differential
operators on OX of order ≤ 1: see Remark 2.17.

Our main results show that, under nice geometric conditions, this coinvariant
space is finite-dimensional, and in fact that the corresponding D-module generated
by v is holonomic. This specializes to the finite-dimensionality theorems [BEG04,
Theorem 4] and [ES10, Theorem 3.1] in the case of Poisson varieties. It also generalizes
a standard result about coinvariants under the action of a reductive algebraic group
(see Remarks 2.10 and 2.11 below).

Our first main result can be stated as follows.

Theorem 1.2. Suppose that, for all i ≥ 0, the locus of x ∈ X where the evaluation
v|x has dimension ≤ i has dimension at most i. Then the coinvariant space (OX)v is
finite-dimensional.

The theorem will be proved in a stronger form in Theorem 2.19 (after its reformu-
lation in Theorem 2.9), hence we omit an explicit proof. Observe that the hypothesis
of Theorem 1.2 implies that, on an open dense subvariety of Xred, v generates the
tangent bundle; as we will explain below, the hypothesis is equivalent to the statement
that Xred is stratified by locally closed subvarieties with this property.

1.2. Goals and outline of the paper. First, in §2, we reformulate Theorem
1.2 geometrically and prove it, along with more general finite-dimensionality and
holonomicity theorems. The main tool involves the definition of a right D-module,
M(X, v), generalizing [ES10], such that Hom(M(X, v), N) ∼= Nv for all D-modules N ,
i.e., the D-module which represents invariants under the flow of v. Then the theorem
above is proved by studying when this D-module is holonomic. This leads to Theorem
2.9 (a reformulation of Theorem 2.19), Theorem 2.19 (a D-module generalization),
2.28 (a partial converse), and 2.57 (a generalization of all the preceding theorems,
although the language is more technical).

The next goal, in §3, is to study examples related to Cartan’s classification of
simple infinite-dimensional transitive Lie algebras of vector fields on a formal polydisc
which are complete with respect to the jet filtration. Namely, according to Cartan’s
classification [Car09, GQS70], there are four such Lie algebras, as follows. For ξ ∈
Vect(X), let Lξ denote the Lie derivative by ξ. Let Ân be the formal neighborhood
of the origin in An, which is a formal polydisc of dimension n. Then, Cartan’s
classification consists of:

(a) The Lie algebra Vect(Ân) of all vector fields on Ân;

(b) The Lie algebra H(Â2n, ω) of all Hamiltonian vector fields on Â2n, i.e., pre-
serving the standard symplectic form ω =

∑
i dxi∧dyi; explicitly, ξ such that

Lξω = 0;

(c) The Lie algebra H(Â2n+1, α) of all contact vector fields on an odd-
dimensional formal polydisc, with respect to the standard contact structure
α = dt+

∑
i xidyi, i.e., those vector fields satisfying Lξα ∈ OX · α;

(d) The Lie algebra H(Ân, vol) of all volume-preserving vector fields on Ân

equipped with the standard volume form vol = dx1 ∧ · · · ∧ dxn, i.e., vector
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fields ξ such that Lξvol = 0.

In §3, we define generalizations of each of these examples to the global (but still affine),
singular, degenerate situation. For example, (a) becomes vector fields on arbitrary
schemes of finite type. For (b)–(d), we define generalizations of the structure on the
variety, which in case (b) yields Poisson varieties. Then, there are essentially two
different choices of the Lie algebra of vector fields. In case (b), these are Hamiltonian
vector fields or Poisson vector fields. We recall that Hamiltonian vector fields are of the
form {f,−} for f ∈ OX , and Poisson vector fields are all vector fields which preserve
the Poisson bracket, i.e., such that ξ{f, g} = {ξ(f), g} + {f, ξ(g)}; this includes all
Hamiltonian vector fields.

In each of the cases (a)–(d), we study the leaves under the flow of v and the
condition for the associated D-module to be holonomic (and hence for (OX)v to be
finite-dimensional). In this section, the examples, remarks, and propositions put
together constitute the main content, although we mention in particular Theorem
3.34 and its corollaries as important results.

In §4 we discuss the globalization of these examples to the nonaffine setting, which
turns out to be straightforward for Hamiltonian vector fields and all vector fields, but
quite nontrivial for Poisson vector fields (and hence their generalizations). We do not
need this material for the remainder of the paper. We mention Theorems 4.1 and 4.45
as important results here.

In the remainder of the paper we study in detail three specific examples for which
the D-module has an interesting and nontrivial structure which reflects the geometry.
In these examples, we explicitly compute the D-module and the coinvariants (OX)v.

In §5, we consider the case of divergence-free vector fields on complete inter-
sections in Calabi-Yau varieties. Holonomicity turns out to be equivalent to having
isolated singularities, and we restrict to this case. Then, the structure of the D-module
and the coinvariant functions (OX)v is governed by the Milnor number and link of
the isolated singularities. We mention Theorems 5.11 and 5.21 as important results.

In §6, we consider quotients of Calabi-Yau varieties by finite groups of volume-
preserving automorphisms. In this case, it turns out that the D-module associated
to volume-preserving vector fields is governed by the most singular points, where the
stabilizer is larger than that of any point in some neighborhood. More generally,
rather than working on the quotient X/G where X is Calabi-Yau and G is a group of
volume-preserving automorphisms, we study the Lie algebra of G-invariant volume-
preserving vector fields on X itself (and we generalize this to the setting where G
preserves volume up to scaling). This discussion culminates in Theorem 6.3.

Finally, in §7, we consider symmetric powers (SnX, v) of smooth varieties (X, v)
on which v generates the tangent space everywhere (which we call transitive). This in-
cludes the symplectic, locally conformally symplectic, contact, and Calabi-Yau cases.
In these situations, we explicitly compute the D-module and the coinvariant functions.
Dually, the main result says that the invariant functionals on OSnX form a polyno-
mial algebra whose generators are the functionals on diagonal embeddings X i → SnX
obtained by pulling back to X i and taking a products of invariant functionals on each
factor of X . For the D-module, this expresses M(SnX, v) as a direct sum of external
tensor products of copies of M(X, v) along each diagonal embedding. The main result
here is Theorem 7.9, which has a companion for symmetric powers of odd-dimensional
contact varieties in Theorem 7.15. These results follow from the more general (but
more abstract) Theorems 7.21, 7.24, and 7.29.

Although Theorem 1.2 and its reformulation and generalization in Theorems 2.9
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and 2.19 can be viewed as main results of this paper (along with the example-driven
discussion leading to the more general Theorem 2.57), more important than this is
the study of examples in the subsequent sections and the main results on these, as
mentioned above. We particularly highlight the examples and constructions of Section
3, as well as Theorems 3.34, 5.11, 6.3, and 7.9, as central to this work.

1.3. Brief history of subject. There are many works which deal with Lie
algebras of vector fields on affine varieties; we survey just a few.

Many of these deal with the study, for each affine variety (or subscheme) X ⊆ An,
of the Lie algebra DX of all vector fields on An which preserve the ideal IX of X :
this is called the tangent algebra. We will call vector fields in DX those vector fields
parallel to X below (and we will use the same terminology for any inclusion X ⊆ Y
of varieties, replacing An by Y ). In fundamental work of Seidenberg [Sei67], it is
shown that DX ⊆ DXred

, where Xred ⊆ X is the reduced subscheme, i.e., its ideal
IXred

=
√
IX is the radical of the ideal IX of X . Moreover, he shows that DXred

is
the intersection of DY over irreducible components Y of Xred. A generalization to
nonreduced affine schemes is given in [HR99].

In work of Hauser and Müller [HM93], it is shown that, for X ⊆ An, isomorphism
classes of Lie subalgebras DX correspond to isomorphism classes of embedded subva-
rieties X ⊆ An, and that the same is true in the local analytic setting, i.e., when X
is an analytic germ, provided dimX ≥ 3. This had been proved in the quasihomoge-
neous isolated singularity case in [Omo80]. In subsequent work by Hauser and Risler
[HR99], these results were generalized to the real analytic setting.

In this paper, we are rather concerned with Lie subalgebras of the Lie algebra of
vector fields on X , which we denote Vect(X), and which is sometimes denoted Θ(X)
in the literature. This is the quotient of DX by the Lie ideal IX · Vect(An). The
fact that this Lie algebra uniquely determines X up to isomorphism is an old result:
in the setting of C∞ manifolds, it was proved in [SP54]; this was generalized to real
analytic manifolds and (complex analytic) Stein spaces in [Gra79], and to normal
algebraic varieties in [Sie96]. One of the main ideas in the analytic setting is that
points of X correspond to maximal finite-codimensional subalgebras of Vect(X). As
a consequence, X is smooth if and only if Vect(X) is simple [Jor86], [Sie96]. These
results were generalized to the local complex analytic setting in [HM94].

We are particularly interested in sualgebras of Vect(X) such as, when X is a
Poisson variety, the subalgebra of Hamiltonian vector fields. In the case of C∞ and
real analytic symplectic manifolds, this Lie algebra has been studied in many places,
such as [ALDM74] and [Gra87].

The aim of this paper, in departure from the aforementioned and numerous other
works on Lie algebras of vector fields, is to study the coinvariant space (OX)v :=
OX/(v · OX) of functions under Lie algebras v ⊆ Vect(X) of vector fields, and to
interpret this geometrically through a study of the D-module (denotedM(X, v) below)
which represents invariants under the flow of v. We believe that studying Lie algebras
of vector fields via this D-module (and more generally using the techniques of D-
modules) is profitable. Our work generalizes previous work of the authors in the case
where X is a Poisson variety and v is the Lie algebra of Hamiltonian vector fields, in
e.g., [ES10, ES13].

Some of the most interesting examples include complete intersections: see §5), as
well as the sequel to this work, [ES14]. This builds on [Gre75]; this case has been
studied in many other places, notably [Yau82, MY82]. The Lie algebra of Hamiltonian
vector fields in this case has been studied in many places, such as [MS96].
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2. General theory. Let Ω•
X := ∧•

OX
Ω1

X be the algebraic de Rham complex,
where Ω1

X is the sheaf of Kähler differentials on X . We will frequently use the de
Rham complex modulo torsion, Ω̃•

X := Ω•
X/torsion.

By polyvector fields of degree m on X , we mean skew-symmetric multiderivations
∧m
k
OX → OX . Let Tm

X be the sheaf of such multiderivations. Equivalently, Tm
X =

HomOX
(Ωm

X ,OX), where ξ ∈ Tm
X is identified with the homomorphism sending df1 ∧

· · · ∧ dfm to ξ(f1 ∧ · · · ∧ fm). This also coincides with HomOX
(Ω̃m

X ,OX).
When X is smooth, then Ω̃•

X = Ω•
X , and its hypercohomology (which, for X

affine, is the same as the cohomology of its complex of global sections) is called the
algebraic de Rham cohomology ofX . Over k = C, this cohomology coincides with the
topological cohomology of X under the complex topology, by a well-known theorem of
Grothendieck. For arbitrary X , we will denote the cohomology of the space of global
sections, Γ(Ω̃•

X), by H•
DR(X), and the hypercohomology of the complex of sheaves

Ω̃•
X by H•

DR(X) (very often we will use these when X is smooth and affine, where
they both coincide with topological cohomology).

We caution that, when X is smooth, ΩX (without a superscript) will denote the
canonical right DX -module of volume forms, which as a OX -module coincides with
ΩdimX

X under the above definition, when X has pure dimension.
By a local system on a variety, we mean an O-coherent right D-module on the

variety. Moreover, from now on, when we say D-module, we always will mean a right
D-module.

2.1. Reformulation of Theorem 1.2 in terms of leaves. Recall that (X, v)
is a pair of an affine scheme X of finite type and a Lie algebra v ⊆ Vect(X) of vector
fields on X . We will give a more geometric formulation of Theorem 1.2 in terms of
leaves of X under v, followed by a strengthened version in these terms.

Definition 2.1. An invariant subscheme is a locally closed subscheme Z ⊆ X
preserved by v; set-theoretically, this says that, at every point z ∈ Z, the evaluation v|z
lies in the tangent space TzZred. A leaf is a connected invariant (reduced) subvariety
Z such that, at every point z, in fact v|z = TzZ. A degenerate invariant subscheme
is an invariant subscheme Z such that, at every point z ∈ Z, v|z � TzZred.

In the case of closed subschemes Z ⊆ X , the above can be rephrased in terms of
the ideal IZ of Z: Z is invariant if v(IZ ) ⊆ IZ ; it is a leaf if OZ/IZ has no nilpotents
and the natural map OZ ⊗v → Der(OZ) is surjective; and Z is a degenerate invariant
subscheme if the cokernel of OZred

⊗ v → Der(OZred
) is fully supported on Zred (i.e.,

for every z ∈ Zred, this cokernel does not vanish in any neighborhood of z).
The terminology “degenerate invariant subscheme” comes from the equivalent

definition: the rank of v on Zred is everywhere less than the dimension of Z; equiv-
alently, in a formal or analytic neighborhood of every point of Z, there are infinitely
many leaves.

When an invariant subscheme is reduced, we call it an invariant subvariety. An
invariant subscheme Z ⊆ X is degenerate if and only if the invariant subvariety Zred

is degenerate. Note that the closure of any degenerate invariant subscheme is also
such. Also, leaves are necessarily smooth. Although the same is clearly not true of
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degenerate invariant subschemes, we can restrict our attention to those with smooth
reduction by first stratifying Xred by its (set-theoretic) singular loci, in view of the
classical result:

Theorem 2.2. [Sei67, Corollary to Theorem 12] The set-theoretic singular locus
of Xred is preserved by all vector fields on X.

We give a proof of a more general assertion in the proof of Proposition 2.6 below.

Remark 2.3. Note that, for the set-theoretic singular locus to be preserved by
all vector fields, we need to use that the characteristic of k is zero; otherwise the
singular locus is not preserved by all vector fields: e.g., in characteristic p > 0, one
has the derivation ∂x of k[x, y]/(y2 − xp), which does not vanish at the singular point
at the origin.

On the other hand, in arbitrary characteristic, the scheme-theoretic singular locus
of a variety of pure dimension k ≥ 0 is preserved, where we define this by the Jacobian
ideal: for a variety cut out by equations fi in affine space, this is the ideal generated
by determinants of (k × k)-minors of the Jacobian matrix ( ∂fi

∂xj
) (this is preserved by

[Har74], where it is shown that it coincides with the smallest nonzero Fitting ideal
of the module of Kähler differentials). In the above example it would be defined by
the ideal (y) when p > 2. This is evidently preserved by all vector fields, which are
all multiples of ∂x. Note, however, that we will not make use of the scheme-theoretic
singular locus in this paper (except in §5, where we will explicitly define it), nor will
we consider the case of positive characteristic.

Definition 2.4. Say that (X, v) has finitely many leaves if Xred is a (disjoint)
union of finitely many leaves.

For example, when X is a Poisson variety and v is the Lie algebra of Hamiltonian
vector fields, then this condition says that X has finitely many symplectic leaves.

We caution that, when (X, v) does not have finitely many leaves, it does not
follow that there are infinitely many algebraic leaves, or any at all:

Example 2.5. Consider the two-dimensional torus X = (A1 \ {0})2, and let
v = 〈ξ〉 for some global vector field ξ which is not algebraically integrable, e.g.,
x∂x − cy∂y where c is irrational. The analytic leaves of this are the level sets of xcy,
which are not algebraic. There are in fact no algebraic leaves at all.

However, it is always true that, in the formal neighborhood X̂x of every point
x ∈ X , there exists a formal leaf of X through x: this is the orbit of the formal group
obtained by integrating v. In the above example, this says that the level sets of xcy
do make sense in the formal neighborhood of every point (x, y) ∈ X .

The condition of having finitely many leaves is well-behaved:

Proposition 2.6. Let Xi := {x ∈ X | dim v|x = i} ⊆ Xred. Then Xi is an
invariant locally closed subvariety. Moreover, X has finitely many leaves if and only
if the connected components of the Xi are all leaves, and X does not have finitely
many leaves if and only if some Xi contains a degenerate invariant subvariety.

Proof. First, to see that the Xi are locally closed, it suffices to show that Yj :=⊔
i≤j Xi is closed for all j. This statement would be clear if v were finite-dimensional;

for general v we can write v as a union of its finite-dimensional subspaces, and Yj(v)
is the intersection of Yj(v

′) over all finite-dimensional subspaces v′ ⊆ v.
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Next, we claim that, for all i ≤ k, the subvariety Xi,k ⊆ X of points x ∈ Xi at
which dimTxX = k is preserved by all vector fields from v.

Let S := Speck[[t]] and XS := SpecOX [[t]]. For every ξ ∈ v, consider the auto-
morphism etξ of OXS

. For any point x ∈ Xi,k, consider the corresponding S-point
xS ∈ XS , i.e., OS-linear homomorphism OXS

→ OS . Let m = mxS
be its kernel, i.e.,

mx[[t]]. Then, let x̃S = etξxS , another S-point of XS , and let m̃ = mxS
be the kernel

of its associated homomorphism OXS
→ OS .

Let the cotangent space to XS at xS be defined as T ∗
xS
XS = m/m2, and similarly

T ∗
x′
S
XS = m̃/m̃2. Since T ∗

xS
XS is a free OS-module of rank k, the same holds for

T ∗
x̃S
XS .

Moreover, we can view v[[t]] as a space of vector fields on XS over S, i.e., as a
subspace of OS-derivations OXS

→ OXS
. Since etξ is an automorphism preserving

v[[t]], it follows as for xS ∈ XS that the image of v[[t]] → HomOS
(T ∗

x̃S
XS ,OS) is a free

OS-module of rank i. We conclude that x̃S ∈ (Xi,k)S = SpecOXi,k
[[t]] ⊆ XS .

We conclude from the preceding paragraphs that v is parallel to Xi,k, i.e., that
v|x ⊆ TxXi,k for all x ∈ Xi,k, as desired.

This can also be used to prove Theorem 2.2: setting i = k = dimX + 1, we
conclude that the intersection of the (set-theoretic) singular locus with the union of
irreducible components of X of top dimension is preserved by all vector fields; one can
then induct on dimension. Alternatively, one can apply the above argument, replacing
Xi,k by the set-theoretic singular locus of X .

For the final statement of the proposition, first note that, if one of the Xi contains
a degenerate invariant subvariety, it cannot be a union of finitely many leaves, since
this cannot hold for a degenerate invariant subvariety. SinceX has finitely many leaves
if and only if the same is true for all of the Xi, we deduce that this fails precisely when
one of the Xi contains a degenerate invariant subvariety. It remains to show that, if X
has finitely many leaves, then the connected components of the Xi are leaves. Since
they cannot contain degenerate invariant subvarieties by the above, it follows that,
for generic x in each irreducible component of Xi, we must have v|x = TxXi. Thus
the dimension of Xi is equal to i, and we have dim v|x ≥ dimTxXi for all x ∈ Xi.
The reverse inequality is automatic, so v|x = TxXi for all x ∈ Xi. This implies that
the connected components of the Xi are leaves.

Remark 2.7. We needed to use the formal power series ring k[[t]] in the proof in
order to integrate derivations to automorphisms for general k of characteristic zero. In
the case that k = C, on the other hand, we could prove the proposition by embedding
X into Ck and locally analytically integrating the flow of vector fields of v (which
individually noncanonically lift to Ck), which must preserve the singular locus and
the rank of v.

Corollary 2.8. There can be at most one decomposition of Xred into finitely
many leaves. The following are equivalent:

(i) X has finitely many leaves;
(ii) X contains no degenerate invariant subvariety;
(iii) For all i, the dimension of Xi is at most i.

Proof. For the first statement, suppose that X = 
iZi = 
iZ
′
i are two decompo-

sitions into leaves. Then each nonempty pairwise intersection Zi ∩ Z ′
j is evidently a

leaf. Now, for each i, Zi = 
j(Zi ∩ Z ′
j) is a decomposition of Zi as a disjoint union
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of locally closed subvarieties of the same dimension as Zi. Since Zi is connected, this
implies that this decomposition is trivial, i.e., Z ′

j = Zi for some j.
For the equivalence, first we show that (i) implies (ii). Indeed, if X were a union

of finitely many leaves and also X contained a degenerate invariant subvariety Z, we
could assume Z is irreducible. Then there would be some Xi such that Xi∩Z is open
and dense in Z. But then the rank of v along Xi∩Z would be less than the dimension
of Z, and hence less than the dimension of Xi, a contradiction. To show (ii) implies
(iii), note that, if dimXi > i, then any open subset of Xi of pure maximal dimension
is degenerate. To show (iii) implies (i), note that the decomposition of Proposition 2.6
must be into leaves if dimXi ≤ i for all i (in fact, in this case, each Xi is a (possibly
empty) finite union of leaves of dimension i).

In view of Corollary 2.8, Theorem 1.2 above can be restated as:

Theorem 2.9. If (X, v) has finitely many leaves, then (OX)v is finite-
dimensional.

In the aforementioned Poisson variety case, the theorem is a special case of [ES10,
Theorem 1.1]. Note that the converse to the theorem does not hold: see Remark 2.22.
As with Theorem 1.2, we will generalize Theorem 2.9 in Theorem 2.19 below, and
hence we omit its proof here.

Remark 2.10. Suppose that X is irreducible and that v acts locally finitely and
semisimply on OX , e.g., if v is the Lie algebra of a reductive algebraic group acting
on X . In this situation, Theorem 2.9 is elementary. It is enough to assume that
X is irreducible, so that if v acts with finitely many leaves, then there is a unique
open dense leaf. In this case, dim(OX)v = 1. This is because, by local finiteness and
semisimplicity, the canonical map (OX)v → (OX)v is an isomorphism, and the former
has dimension one since there is a unique open dense leaf, on which the invariant
functions are all constant.

Remark 2.11. One can obtain examples where dim(OX)v > 1 when v is semisim-
ple and has only a single leaf (in particular, X is smooth), but does not act locally
finitely. For example, let X ⊆ A2 be any nonempty open affine subvariety such that
0 /∈ X . Let sl2 act on X by the restriction of its action on A2. This is the Lie
algebra of linear Hamiltonian vector fields with respect to the usual symplectic struc-
ture on A2. Since X is affine symplectic, if H(X) denotes the Hamiltonian vector
fields, (OX)H(X)

∼= HdimX(X) = H2
DR(X), by the usual isomorphism [f ] �→ f ·volX .1

On the other hand, sl2 ⊆ H(X), so dim(OX)sl2 ≥ dimH2(X) (in fact this is an
equality since sl2 · OX = H(X) · OX inside the ring of differential operators DX on
X , since sl2 generates the tangent space everywhere and is volume-preserving; see
Proposition 2.53 below). There are many examples of such varieties X which have
dimH2(X) > 1. For example, if X is the complement of n + 1 lines through the
origin, then dimH2(X) = n: the Betti numbers of X are 1, n + 1, and n, since the
Euler characteristic is zero, each deleted line creates an independent class in first
cohomology, and there can be no cohomology in degrees higher than two as X is a
two-dimensional affine variety. This produces an example as desired for n ≥ 2.

1Dually, in the complex case k = C, the second homology of X as a topological space produces
the functionals on OX invariant under H(X) (and hence also those invariant under sl2) by C ∈

H2(X) �→ ΦC , ΦC(f) =
∫
C
fvolX .
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2.2. The D-module defined by v. The proof of the theorems above is based
on a stronger result concerning the D-module whose solutions are invariants under the
flow of v. This construction generalizes M(X) from [ES10] in the case X is Poisson
and v is the Lie algebra of Hamiltonian vector fields. Namely, we prove that this
D-module is holonomic when X has finitely many leaves. We will explain a partial
converse in §2.4, and discuss holonomicity in more detail in §2.9 below.

We will need to use right D-modules on X as formulated by Kashiwara. Namely,
first suppose V is a smooth affine variety. Then the category of right D-modules on V
is the category of right modules over the ring DV of differential operators on OV with
polynomial coefficients. In particular, any right D-module on V is a module over OV ,
and we can therefore define its support just as for OV -modules. Next, suppose X ⊆ V
is any closed affine subvariety. Then we define the category of right D-modules on X
to be the full subcategory of right D-modules on V which are supported on X , i.e.,
whose support is contained in X . This all generalizes to define right D-modules on
any variety as follows: for smooth varieties the same definition applies where OV and
DV are now sheaves of algebras and modules are quasicoherent sheaves of modules,
and then D-modules on X ⊆ V is defined in the same way (where X and V need not
be affine). As proved by Kashiwara, the category of right D-modules on X does not
depend, up to canonical equivalence, on the choice of embedding X ⊆ V . Therefore we
can refer to D-modules onX without a choice of embedding, and given any embedding
X ⊆ V , we can call the resulting right D-modules on V the image under Kashiwara’s
equivalence (of right D-modules on X), i.e., under Kashiwara’s equivalence between
the category of right D-modules on X and the category of right D-modules on V
supported on X . (We remark that there is another way to define the category of right
D-modules on X , under the name “crystals,” which does not depend on a choice of
embedding X ⊆ V at all, and if one uses this definition, Kashiwara’s equivalence is a
theorem.)

For every variety X , there is a canonical right D-module on X which we call DX .
When X = V is smooth, this is just the ring (or sheaf of rings) DV of differential
operators viewed as a right module over itself. When X ⊆ V is an embedding, then
DX = IX · DV \DV , the quotient of DV by the right ideal generated by the functions
IX ⊆ OX vanishing on X . Note that DX is canonically equipped with a left action
by functions on X , as well as by vector fields on X , i.e., derivations on OX (which
are the same as derivations of OV preserving IX modulo derivations whose image is
entirely in IX).

From now on, since we will only deal with right D-modules, we will often suppress
the term “right.” Our main object of study is the following D-module on X :

M(X, v) := v · DX \ DX , (2.12)

where v · DX is the submodule generated by the action of v on DX . (We will also use
the same definition when X is replaced by its completion X̂x at points x ∈ X , even
though X̂x does not have finite type.)

Explicitly, if i : X → V is an embedding into a smooth affine variety V , let
ṽ ⊆ Vect(V ) be the subspace of vector fields which are parallel to X and restrict on
X to elements of v. Then, the image of M(X, v) under Kashiwara’s equivalence is

M(X, v, i) = (IX + ṽ)DV \ DV .

Let π : X → Speck be the projection to a point, and π0 the functor of underived
direct image from D-modules on X to those on k, i.e., k-vector spaces. Explicitly,
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if M is a D-module on a smooth affine variety V which is supported on X , then
π0M := M ⊗DV

OV .

Proposition 2.13. π0M(X, v) = (OX)v.

Proof. Fix an affine embedding X ↪→ V . Then,

π0M(X, v) = (IX + ṽ)DV \ DV ⊗DV
OV = (OX)v.

If Z ⊆ X is an invariant closed subscheme, we will repeatedly use the following
relationship between M(X, v) and M(Z, v|Z):

Proposition 2.14. If i : Z → X is the tautological embedding of an invariant
closed subscheme, then there is a canonical surjection M(X, v) � i∗M(Z, v|Z).

Proof. Since i∗M(Z, v|Z) = ((v+IZ ) ·DX)\DX , where IZ is the ideal of Z, this is
the quotient of M(X, v) = v ·DX \DX by its submodule (v ·DX ∩IZ ·DX)\(IZ ·DX).

Remark 2.15. As pointed out in the previous subsection, one could more gen-
erally allow v to be an arbitrary subset of Vect(X). However, it is easy to see that
the D-module is the same as for the Lie algebra generated by this subset. So, no
generality is lost by assuming that v be a Lie algebra.

Notation 2.16. By a Lie algebroid in Vect(X), we mean a Lie subalgebra which
is also a coherent subsheaf.

Remark 2.17. One could more generally (although equivalently in a sense we

will explain) allow v ⊆ D≤1
X to be a space of differential operators of order ≤ 1. One

then sets, as before, M(X, v) = v · DX \ DX . In this case, one obtains the same D-
module not merely by passing to the Lie algebra generated by v, but in fact one can
also replace v by v · OX . Let σ : D≤1

X → Vect(X) denote the principal symbol. Then,
we conclude that σ(v) ⊆ Vect(X) is actually a Lie algebroid (cf. Notation 2.16).

This is actually equivalent to using only vector fields, in the following sense: Given
any pair (X, v) with v ⊆ D≤1

X , one can consider the pair (A1 ×X, v̂) where, for x the
coordinate on A1, v̂ contains the vector field ∂x together with, for every differential
operator θ ∈ v, σ(θ)− (θ− σ(θ))x∂x. Since (x∂x +1) = ∂x · x ∈ (∂x · DA1), one easily
sees that M(A1×X, v̂) ∼= ΩA1 �M(X, v). So, in this sense, one can reduce the study
of pairs (X, v) to the study of affine schemes of finite type with Lie algebras of vector
fields. In particular, our general results extend easily to the setting of differential
operators of order ≤ 1.

Remark 2.18. Similarly, one can reduce the study of pairs (X, v) to the case
where X is affine space. Indeed, if X ↪→ An is any embedding, and IX is the ideal of
X , we can consider the Lie algebroid

IX · D≤1
An + v ⊆ D≤1

An .

This makes sense by lifting elements of v to vector fields on An, and the result
is independent of the choice. We can then apply the previous remark to reduce
everything to Lie algebras of vector fields on affine space. (This is not really helpful,
though: in our examples, v is naturally associated with X (e.g., Hamiltonian vector
fields on X), so it is not natural to replace X with an affine space.)
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2.3. Holonomicity and proof of Theorems 1.2 and 2.9. Recall that a
nonzero D-module on X is holonomic if it is finitely generated and its singular support
is a Lagrangian subvariety of T ∗X (i.e., its dimension equals that of X). We always
call the zero module holonomic. (Derived) pushforwards of holonomic D-modules
are well-known to have holonomic cohomology. Since a holonomic D-module on a
point is finite-dimensional, this implies that, if M is holonomic and π : X → pt is
the pushforward to a point, then π∗M (by which we mean the cohomology of the
complex of vector spaces), and in particular π0M , is finite-dimensional. Therefore,
if we can show that M(X, v) is holonomic, this implies that (OX)v = π0M(X, v) is
finite-dimensional, along with the full pushforward π∗M(X, v). This reduces Theorem
2.9 and equivalently Theorem 1.2 to the statement:

Theorem 2.19. If (X, v) has finitely many leaves, then M(X, v) is holonomic.
In this case, the composition factors are intermediate extensions of local systems along
the leaves.

The converse does not hold: see, e.g., Example 2.32.

Proof of Theorem 2.19. The equations gr v are satisfied by the singular support
of M(X, v). These equations say, at every point x ∈ X , that the restriction of the
singular support of M(X, v) to x lies in (v|x)⊥. Thus, if Z ⊆ X is a leaf, then the
restriction of the singular support of M(X, v) to Z lies in the conormal bundle to
Z, which is Lagrangian. If X is a finite union of leaves, it follows that the singular
support of M(X, v) is contained in the union of the conormal bundles to the leaves,
which is Lagrangian. The last statement immediately follows from this description of
the singular support.

We will be interested in the condition on v for M(X, v) to be holonomic, which
turns out to be subtle.

Definition 2.20. Call (X, v), or v, holonomic if M(X, v) is.

We will often use the following immediate consequence, whose proof is omitted:

Proposition 2.21. If v is holonomic, then Ov is finite-dimensional.

Remark 2.22. The converse to Proposition 2.21 does not hold in general
(although we will have a couple of cases where it does: the Lie algebras of all
vector fields (Proposition 3.3) and of Hamiltonian vector fields preserving a top
polyvector field (Corollary 3.37)). A simple example where this converse does not
hold is (X, v) = (A2, 〈∂x〉) (where x is one of the coordinates on A2), where
M(X, v) = ΩA1 � DA1 is not holonomic, but Ov = 0. This example also has in-
finitely many leaves, namely all lines parallel to the x-axis.

2.4. Incompressibility and a weak converse. We say that a vector field ξ
preserves a differential form ω if the Lie derivative Lξ annihilates ω.

Definition 2.23. Say that v flows incompressibly along an irreducible invariant
subvariety Z if there exists a smooth point z ∈ Z and a volume form on the formal
neighborhood of Z at z which is preserved by v.

There is an alternative definition using divergence functions which does not re-
quire formal localization, which we discuss in §3.5; see also Proposition 2.24.(iii).
When X is irreducible and v flows incompressibly on X , we omit the X and merely
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say that v flows incompressibly. Note that this is equivalent to flowing generically
incompressibly.

In §2.6 we will prove

Proposition 2.24. Let X be an irreducible affine variety. The following condi-
tions are equivalent:

(i) v flows incompressibly;
(ii) M(X, v) is fully supported;
(iii) For all ξi ∈ v and fi ∈ OX such that

∑
i fiξi = 0, one has

∑
i ξi(fi) = 0.

Moreover, the equivalence (ii) ⇔ (iii) holds when X is an arbitrary affine scheme of
finite type, if one generalizes (ii) to the condition: (ii’) The annihilator of M(X, v)
in OX is zero.

Remark 2.25. We can alternatively state (ii’) and (iii) as follows, in terms of
global sections of v · DZ ⊆ DZ (cf. §2.6 below): (ii’) says that (v · DZ) ∩OZ = 0, and
(iii) says that (v · OZ) ∩ OZ = 0.

Motivated by this proposition, we will generalize the notion of incompressibility
to the case of nonreduced subschemes in §2.8 below, to be defined by conditions (ii’)
or (iii) above.

Example 2.26. In the case that X is a Poisson variety, v is the Lie algebra
of Hamiltonian vector fields, and Z ⊆ X is a symplectic leaf (i.e., a leaf of v), then
v flows incompressibly on Z, since it preserves the symplectic volume along Z, and
hence also preserves the symplectic volume in a formal neighborhood of any point
z ∈ Z.

Definition 2.27. Say that v has finitely many incompressible leaves if it has no
degenerate invariant subvariety on which v flows incompressibly.

As before, if v does not have finitely many incompressible leaves, one does not
necessarily have infinitely many incompressible leaves, or any at all (see Example 2.5,
which does not have finitely many incompressible leaves, but has no algebraic leaves).

In §2.7 below we will prove

Theorem 2.28.

(i) For every incompressible leaf Z ⊆ X, letting i : Z̄ ↪→ X be the tautological
embedding of its closure, the canonical quotient M(X, v) � i∗M(Z̄, v|Z̄) is
an extension of a nonzero local system on Z to Z̄.

(ii) If (X, v) is holonomic, then it has finitely many incompressible leaves.

Note that the converse to (i) does not hold: see Example 2.34. We will give a
correct converse statement in §2.9 below. Also, the converse to (ii) does not hold, as
we will demonstrate in Example 2.31.

We conclude from the Theorems 2.19 and 2.28 that

finitely many leaves ⇒ holonomic ⇒ finitely many incompressible leaves, (2.29)

but neither converse direction holds, as mentioned (see Examples 2.32 and 2.31, re-
spectively). However, we will see below that the second implication is generically a
biconditional for irreducible varieties X , i.e., X generically has finitely many incom-
pressible leaves if and only if X is generically holonomic.
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Example 2.30. When X is Poisson and v the Lie algebra of Hamiltonian vector
fields, then Theorem 2.28 and Example 2.26 imply that v is holonomic if and only
if X has finitely many symplectic leaves. More precisely, if Z ⊆ X is any invariant
subvariety, then in the formal neighborhood of a generic point z ∈ Z, we can integrate
the Hamiltonian flow and write Ẑz = V ×V ′ for formal polydiscs V and V ′, where the
Hamiltonian flow is along the V direction, and transitive along fibers of (V ×V ′) � V ′.
Then Hamiltonian flow preserves the volume form ωV ⊗ωV ′ , where ωV is the canonical
symplectic volume, and ωV ′ is an arbitrary volume form on V ′. Therefore, all Z are
incompressible. (In particular, this includes the case mentioned already in Example
2.26.) Then (2.29) shows that H(X) is holonomic if and only if there are finitely
many leaves.

Example 2.31. We demonstrate that (OX)v need not be finite-dimensional if
we only assume that X has finitely many incompressible leaves. Therefore, v is not
holonomic (although non-holonomicity also follows directly in this example). Let
X = A2 × (A \ {0}) ⊆ A3, with A2 = Speck[x, y] and A \ {0} = Speck[z, z−1].
Let v = 〈y2∂x, y∂y + z∂z, ∂z〉. Then this has an incompressible open leaf, {y �= 0},
preserving the volume form 1

y2 dx ∧ dy ∧ dz. The complement consists of the leaves

{x = c, y = 0} for all c ∈ k, which are not incompressible since the restriction of v to
each such leaf (or to their union, {y = 0}) includes both ∂z and z∂z.

We claim that the coinvariants (OX)v are infinite-dimensional, and isomorphic
to k[x] · yz−1 via the quotient map OX � (OX)v. Indeed, y2∂x(OX) = y2OX ,
(y∂y + z∂z)OX = k[x] · 〈yizj | i + j �= 0〉, and ∂z(OX) = k[x, y] · 〈zi | i �= −1〉. The
sum of these vector subspaces is the space spanned by all monomials in x, y, z, and
z−1 except for xiyz−1 for all i ≥ 0.

Example 2.32. It is easy to give an example where v is holonomic but has
infinitely many leaves: for Y any positive-dimensional variety, consider X = A1 × Y ,
v := 〈∂x, x∂x〉, where x is the coordinate on A1. Then the leaves of (X, v) are of the
form A1 × {y} for y ∈ Y , but M(X, v) = 0, which is holonomic.

Example 2.33. For a less trivial example, which is a generically nonzero holo-
nomic D-module without finitely many leaves, let X = A3 with coordinates x, y, and
z, and let v be the Lie algebra of all incompressible vector fields (with respect to the
standard volume) which along the plane x = 0 are parallel to the y-axis. Then we
claim that the singular support of M(X, v) is the union of the zero section of T ∗X and
the conormal bundle of the plane x = 0, which is Lagrangian, even though there are
not finitely many leaves. Actually, from the computation below, we see that M(X, v)
is isomorphic to j!ΩA1\{0}�ΩA2 , where j : A1\{0} ↪→ A1 is the inclusion (which is an
affine open embedding, so j! is an exact functor on holonomic D-modules). This is an
extension of ΩA3 by i∗ΩA2 , where i : A2 = {0} ×A2 ↪→ A3 is the closed embedding,
i.e., there is an exact sequence

0 → i∗ΩA2 → M(X, v) → ΩA3 → 0.

Thus, there is a single composition factor on the open leaf and a single composition
factor on the degenerate (but not incompressible) invariant subvariety {x = 0}.

To see this, note first that ∂y ∈ v. We claim that 1 + x∂x and ∂z are in v · DX :

∂y · y − (y∂y − x∂x) = 1 + x∂x;

(1 + x∂x) · ∂z − (x∂z) · ∂x = ∂z.
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Thus, 〈1+ x∂x, ∂y, ∂z〉 ⊆ v · DX . Conversely, we claim that v ⊆ 〈1+ x∂x, ∂y, ∂z〉 · DX .
Indeed, given an incompressible vector field of the form ξ = xf∂x + g∂y + xh∂z ∈ v

for f, g, h ∈ OX , we can write

ξ = (1 + x∂x) · f + ∂y · g + ∂z · xh,

where the RHS is a vector field (and not merely a differential operator of order ≤ 1)
because ξ is incompressible. Explicitly, the condition for this RHS to be a vector field,
and the condition for ξ to be incompressible, are both that ∂x(xf)+∂y(g)+∂z(xh) = 0.

We conclude that 〈1+x∂x, ∂y, ∂z〉·DX = v·DX . Therefore,M(X, v) ∼= j!ΩA1\{0}�

ΩA2 , as claimed.

Example 2.34. We can slightly modify Example 2.33, so that (again forX := A3

and i : {0} × A2 ↪→ A3), i∗ΩA2 appears as a quotient of M(X, v) rather than as a
submodule. More precisely, we will have M(X, v) ∼= j∗ΩA1\{0} � ΩA2 . To do so, let
v be the Lie algebra of all incompressible vector fields preserving the volume form
1
x2 dx ∧ dy ∧ dz (cf. Example 2.31), which again along the plane x = 0 are parallel
to the y-axis. Note also that, in this example, the subvariety {0} × A2 is still not
incompressible (since ∂y and y∂y are both in v|0×A2 , and these cannot both preserve
the same volume form), even though this subvariety now supports a quotient i∗ΩA2

of M(X).
To see this, we claim that v · DX = 〈1 − x∂x, ∂y, ∂z〉 · DX . For the containment

⊇, we show that 1− x∂x and ∂z are in v · DX . This follows from

∂y · y − (y∂y + x∂x) = 1− x∂x;

(1 − x∂x) · ∂z + (x∂z) · ∂x = ∂z.

Then, as in Example 2.33, if ξ = xf∂x + g∂y + xh∂z ∈ v preserves the volume form
1
x2 dx ∧ dy ∧ dz, then

ξ = −(1− x∂x) · f + ∂y · g + ∂z · xh.

Therefore, we also have the opposite containment, v · DX ⊆ 〈1 − x∂x, ∂y, ∂z〉 · DX .
As a consequence, M(X, v) ∼= j∗ΩA1\{0} �ΩA2 . We therefore have a canonical exact
sequence

0 → ΩA3 → M(X, v) → i∗ΩA2 → 0.

2.5. The transitive case. In this section we consider the simplest, but impor-
tant, example of v and the D-module M(X, v), namely when v has maximal rank
everywhere:

Definition 2.35. A pair (X, v) is called transitive at x if v|x = TxX . We call
the pair (X, v) transitive if it is so at all x ∈ X .

In other words, the transitive case is the one where every connected component
of X is a leaf. Note that, in particular, X must be a smooth variety. Also, we remark
that X is generically transitive if and only if it is generically not degenerate.

Proposition 2.36. If (X, v) is transitive and connected, then M(X, v) is a
rank-one local system if v flows incompressibly, and M(X, v) = 0 otherwise.
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Proof. By taking associated graded of M(X, v), in the transitive connected case,
one obtains either OX (where X ⊆ T ∗X is the zero section) or zero. So M(X, v)
is either a one-dimensional local system on X , or zero. In the incompressible case,
in a formal neighborhood of some x ∈ X , a volume form is preserved, so there is a
surjection M(X̂x, v|X̂x

) � ΩX̂x
, and hence in this case M(X, v) is a one-dimensional

local system. Conversely, if M(X, v) is a one-dimensional local system, then in a
formal neighborhood of any point x ∈ X , it is a trivial local system, and hence it
preserves a volume form there.

Example 2.37. In the case when X is connected and Calabi-Yau and v preserves
the global volume form (which includes the case where X is symplectic and v is the Lie
algebra of Hamiltonian vector fields), then we conclude that M(X, v) ∼= ΩX . Thus,
for π : X → pt the projection to a point, (OX)v = π0ΩX = HdimX

DR (X), the top de
Rham cohomology. Taking the derived pushforward, we conclude that π∗M(X, v) =
π∗ΩX = HdimX−∗

DR (X). In the Poisson case, where (OX)v is the zeroth Poisson
homology, in [ES10, Remark 2.27] this motivated the term Poisson-de Rham homology,
HPDR

∗ (X) = π∗M(X, v), for the derived pushforward. More generally, if v preserves
a multivalued volume form, then M(X, v) is a nontrivial rank-one local system and
π∗M(X, v) = HdimX−∗

DR (X,M(X, v)) is the cohomology of X with coefficients in this
local system (identifying M(X, v) with its corresponding local system under the de
Rham functor). See the next example for more details on how to define such v.

Example 2.38. The rank-one local system need not be trivial when v does
not preserve a global volume form. For example, let X = (A1 \ {0}) × A1 =
Speck[x, x−1, y]. Then we can let v be the Lie algebra of vector fields preserving
the multivalued volume form d(xr)∧ dy for r ∈ k. It is easy to check that this makes
sense and that the resulting Lie algebra v is transitive. Then, M(X, v) is the rank-
one local system whose local homomorphisms to ΩX correspond to scalar multiples
of this volume form, which is nontrivial (but with regular singularities) when r is not
an integer. For k = C, the local system M(X, v) thus has monodromy e−2πir.

More generally, if X is an arbitrary smooth variety of pure dimension at least
two, and ∇ is a flat connection on ΩX , we can think of the flat sections of ∇ as
giving multivalued volume forms, and define a corresponding Lie algebra v so that
HomDX

(M(X, v),ΩX) returns these forms on formal neighborhoods. Precisely, we can
let v be the Lie algebra of vector fields preserving formal flat sections of ∇. We need
to check that v is transitive, which is where we use the hypothesis that X has pure
dimension at least two: see §3.5.2 and in particular Proposition 3.62 (alternatively, we
could simply impose the condition that v be transitive, which is immediate to check
in the example of the previous paragraph). Then M(X, v) ∼= (ΩX ,∇)∗ ⊗OX

ΩX ,
via the map sending the canonical generator 1 ∈ M(X, v) to the identity element
of EndOX

(ΩX). Conversely, if (X, v) is transitive and M(X, v) is nonzero (hence a
rank-one local system), then HomOX

(M(X, v),ΩX) canonically has the structure of a
local system on X with formal flat sections given by HomDX

(M(X, v),ΩX), and one
has a canonical isomorphism

M(X, v) ∼= HomOX
(M(X, v),ΩX)∗ ⊗OX

ΩX .

On the other hand, if X is one-dimensional and v is transitive, then M(X, v)
cannot be a nontrivial local system, since there are no vector fields defined in any
Zariski open set preserving a nontrivial local system. More precisely, assuming X is a
connected smooth curve, in order to be incompressible, v must be a one-dimensional
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vector space. Then, if ξ ∈ v is nonzero, then the inverse ξ−1 defines the volume form
preserved by v.

We can prove a converse generically: if v is incompressible (which as we already
stated in Proposition 2.24, but did not yet prove, is the same as M(X, v) being gener-
ically nonzero), then it is generically transitive if and only if M(X, v) is generically
holonomic (hence, if and only if it is generically a local system of rank one). We
actually prove a more general result, about the dimension of the singular support of
M(X, v) generically:

Proposition 2.39. If (X, v) is a variety, then M(X, v) is fully supported on X
if and only if v flows incompressibly on every irreducible component of X. In this
case, the dimension of the singular support of M(X, v) on each irreducible component
Y ⊆ X is generically dimY + (dimY − r), where r is the generic rank of v on Y .

Before we prove the proposition, we give the converse statement to Proposition
2.36:

Corollary 2.40. If (X, v) is an irreducible variety, then v is generically holo-
nomic if and only if it is either generically transitive or not incompressible.

Proof of Corollary 2.40. This follows because M(X, v) is generically holonomic if
and only if the singular support generically has dimension equal to that of X , since X
is generically transitive if and only if the generic rank of v is equal to the dimension
of X .

Proof of Proposition 2.39. It suffices to assume X is irreducible, since the
statements can be checked generically on each irreducible component. For generic
x ∈ X , in the formal neighborhood X̂x, we can integrate the flow of v and write
X̂x

∼= (V × V ′), where V and V ′ are two formal polydiscs about zero, mapping
x ∈ X̂x to (0, 0) ∈ (V × V ′), and such that v generates the tangent space in the V
direction everywhere, i.e., v|(v,v′) = TvV × {0} at all (v, v′) ∈ (V × V ′).

Since ÔX,x · v = TV �OV ′ , inside v · ÔX,x we have, for every ξ ∈ TV , an element

of the form ξ+D(ξ), for some D(ξ) ∈ ÔX,x. Namely, this is true because, when ξ ∈ v

and f ∈ ÔX,x, ξ · f = f · ξ + ξ(f) ∈ v · ÔX,x, and TV is contained in the span of such
f · ξ.

Now assume that v preserves a volume form ω on X̂x. Recall that this means
that, for all ξ ∈ v, one has Lξω = 0. Since the right D-module action of vector fields
ξ ∈ Vect(X) on ΩX is by ω · ξ := −Lξω, we conclude that D(ξ) = Lξω/ω. Write

ω = f ·ωV ∧ωV ′ where ωV and ωV ′ are volume forms on V and V ′ and f ∈ ÔX,x is a

unit. Then we conclude that M(X̂x, v|X̂x
) ∼= ΩV � DV ′ , the quotient of DX,x by the

right ideal generated by ωV -preserving vector fields on V .
Conversely, assume that M(X, v) is fully supported. Since x was generic,

M(X̂x, v|X̂x
) is also fully supported. Thus, for every ξ ∈ TV , there is a unique

D(ξ) such that ξ +D(ξ) ∈ v · D̂X,x (and in fact this is in v · ÔX,x).

Let ∂1, . . . , ∂n be the constant vector fields on V ×V ′. We conclude that v·D̂X,x =

{ξ+D(ξ) : ξ ∈ TV �OV ′}·Sym〈∂1, . . . , ∂n〉. Since M(X̂x, v|X̂x
) is fully supported, this

implies that gr(v·D̂X,x) = TV ·SymÔX,x
TX̂x

, and hence thatM(X̂x, v|X̂x
) ∼= ΩV �DV ′ .

Then, v also preserves a formal volume form, since Hom(M(X̂x, v|X̂x
),ΩV ×V ′) �= 0.

(Explicitly, for the unique (up to scaling) volume form ωV on V preserved by v|V ,
these are of the form ωV � ωV ′ for arbitrary volume forms ωV ′ on V ′.)
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For the final statement, the proof shows that, in the incompressible (irreducible)
case, the dimension of the singular support is generically dim V + 2dimV ′, which is
the same as the claimed formula when we note that dimV = r and dimV +dimV ′ =
dimY .

2.6. Proof of Proposition 2.24. By Proposition 2.39, conditions (i) and (ii)
are equivalent, when X is an irreducible affine variety. Now let X be an arbitrary
affine scheme of finite type. We prove that (ii’) and (iii) are equivalent.

In view of Remark 2.25, the implication (ii’) ⇒ (iii) is immediate. To make
Remark 2.25 precise, we should define v · OX as a subspace of global sections of DX .
One way to do this is to take an embedding i : X → V into a smooth affine variety
V as in §2.2; in the notation there, the global sections of i∗(v · DX) then identify as

Γ(V, i∗(v · DX)) = IXDV \
(
(ṽ+ IX) · DV

)
. (2.41)

Then, by v · OX we mean the subspace

v · OX = (IXDV ∩ ṽ · OV ) \ ṽ · OV . (2.42)

Finally, by OX itself, we mean the subspace

OX = (IXDV ∩ OV ) \ OV . (2.43)

Then, it follows that (ii’) is equivalent to (v·DX)∩OX = 0 and that (iii) is equivalent to
(v·OX)∩OX = 0, as desired. In other words, it is equivalent to ask that (ṽ·DV )∩OV ⊆
IX and (ṽ · OV ) ∩ OV ⊆ IX .

We now prove that (iii) implies (ii’). Assume that V = An = Speck[x1, . . . , xn].
Note that

(ṽ+ IX) · DV = (ṽ + IX) · OV · Sym〈∂1, . . . , ∂n〉.

Thus, the fact that
(
(ṽ+ IX) · OV

)
∩OV = IX , i.e., (iii), implies also that

(
(ṽ+ IX) ·

DV

)
∩ OV = IX , i.e., (ii’).

Remark 2.44. For irreducible affine varieties, we can also show that (i) and (iii)
are equivalent directly without using Remark 2.25, and hence by Proposition 2.39, that
(ii) and (iii) are equivalent. Suppose (i). By Proposition 2.39, v flows incompressibly
on Z. Let z ∈ Z be a smooth point and ω ∈ ΩẐz

be a formal volume preserved by v.
Then, if fi ∈ OZ and ξi ∈ v|Z satisfy

∑
i fiξi = 0, we have 0 = Lfiξiω =

∑
i ξi(fi),

which proves (iii).
Conversely, suppose that (iii) is satisfied. Let z ∈ Z be a smooth point where

the rank of v|Z is maximal. Then, in a neighborhood U ⊆ Z of z, OU · v is a free
submodule of TU , and hence has a basis ξ1, . . . , ξj . In the language of §3.5, one can
define a divergence function D : OU · v → TU , D(

∑
i fiξi) =

∑
i ξi(fi). Therefore, by

Proposition 3.52, v flows incompressibly on U , and hence on Z.

2.7. Proof of Theorem 2.28. Part (i) is an immediate consequence of Propo-
sition 2.14 and Proposition 2.39.

For part (ii), suppose that X does not have finitely many incompressible leaves.
Then, there is a degenerate invariant subvariety i : Z ↪→ X such that v flows incom-
pressibly on Z. By Proposition 2.14 and Proposition 2.39, there is a nonholonomic
quotient of M(X, v) supported on the closure of Z. So M(X, v) is not holonomic.
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2.8. Support and saturation. To proceed, note that in some cases, M(X, v)
is actually supported on a proper subvariety, e.g., in Example 2.32, where it is zero;
more generally, by Proposition 2.24, this happens if and only if v does not flow in-
compressibly. In this case, it makes sense to replace X with the support of M(X, v),
and define an equivalent system there. More precisely, we define a scheme-theoretic
support of M(X, v):

Definition 2.45. The support of (X, v) is the closed subscheme Xv ⊆ X defined
by the ideal (v · DX) ∩OX of OX .

To make sense of this definition, we work in the space of global sections of v ·
DX , using (2.42) and (2.43). Note that here it is essential that we allow Xv to be
nonreduced (this was our motivation for working in the nonreduced context).

We immediately conclude (and therefore omit the proof of):

Proposition 2.46. Let i : Xv → X be the natural closed embedding. Then, there
is a canonical isomorphism M(X, v) ∼= i∗M(Xv, v|Xv

).

The above remarks say that, when X is a variety, X = Xv if and only if v flows
incompressibly. Moreover, v flows incompressibly on an invariant subvariety Z ⊆ X if
and only if Z = Zv|Z . With this in mind, we extend the definition of incompressibility
to subschemes:

Definition 2.47. We say that v flows incompressibly on an invariant subscheme
Z if Z = Zv|Z .

With this definition, as promised, the conditions (i), (ii’), and (iii) of Proposition
2.24 are equivalent for arbitrary affine schemes of finite type.

Proposition 2.48. Let Z ⊆ X be an irreducible closed subvariety. Then there
exists a quotient of M(X, v) whose support is Z if and only if Z is invariant and v

flows incompressibly on some infinitesimal thickening of Z. In this case, this quo-
tient factors through the quotient M(X, v) � i∗M(Z ′, v|Z′ ), for some infinitesimal
thickening Z ′, with inclusion i : Z ′ ↪→ X.

Here, an infinitesimal thickening of a subvariety Z ⊆ X is a subscheme Z ′ ⊆ X
such that Z ′

red = Z. Note that it can happen that v flows incompressibly on Z ′ but not
on Z, as in Example 2.34. We caution that, on the other hand, M(X, v) could have a
submodule supported on Z even if v does not flow incompressibly on any infinitesimal
thickening of Z: see Example 2.33.

Proof of Proposition 2.48. M(X, v) = v ·DX \DX admits a quotient supported on
Z if and only if, for some N ≥ 1, (v+INZ ) ·DX is not the unit ideal. This is equivalent
to saying that M(Z ′, v|Z′ ) �= 0 for some infinitesimal thickening Z ′ of Z. This can
only happen if Z is invariant. By definition, such a restriction is fully supported if and
only if v flows incompressibly on Z ′. For the final statement, note that the quotient
morphism must factor through a map M(X, v) � (v + INZ )DX \ DX , and the latter
is M(Z ′, v|Z′), where we define Z ′ by IZ′ = INZ .

Next, even if X = Xv, there can be many choices of v that give rise to the same
D-module. This motivates

Definition 2.49. The saturation vs of v is Vect(X)∩ (v · DX). Precisely, in the
language of §2.6 for an embedding i : X ↪→ V ,

vs =
(
Vect(V ) ∩

(
(ṽ+ IX) · DV

))
|X .
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It is easy to check that the definition of the saturation does not depend on the
choice of embedding. We next define a smaller, but more computable, saturation:

Definition 2.50. The O-saturation vos of v is Vect(X) ∩ (v · OX), precisely,

vos := {
∑
i

fiξi | fi ∈ OX , ξi ∈ v, s.t.
∑
i

ξi(fi) = 0}.

Equivalently, for any embedding X ⊆ V as above,

vos =
(
Vect(V ) ∩

(
(vV + IX) · OV

))
|X .

Note that, by definition, vos ⊆ OX · v; however, the same does not necessarily hold
for vs, as in Examples 2.33 and 2.34. In particular, in those examples, vs has rank
two on the locus x = 0, whereas vos has rank one.

However, generically on incompressible affine varieties, vos = vs. More precisely:

Definition 2.51. If (X, v) is incompressible, then call a vector field ξ ∈ OX · v
incompressible if, writing ξ =

∑
i fiξi for fi ∈ OX and ξi ∈ v, one has

∑
i ξi(fi) = 0.

The meaning of this definition is explained in the following remark:

Remark 2.52. When X is a variety, ξ ∈ OX · v is incompressible if and only
if, for every irreducible component of X , at a smooth point with a formal volume
preserved by v, then ξ also preserves that volume. Indeed, Lξ =

∑
i fiLξi +

∑
i ξi(fi),

so if Lξi = 0 for all i, then the same is true for Lξ if and only if
∑

i ξi(fi) = 0.

Note that we used incompressibility for the definition to make sense; otherwise
there could be multiple expressions

∑
i fiξi for ξ which yield different values

∑
i ξi(fi).

Proposition 2.53. If v flows incompressibly, then vos is the subspace of OX ·v of
incompressible vector fields. If X is additionally a variety, then for some open dense
subset U ⊆ X, (v|U )s = (v|U )os is the subspace of OU · v of incompressible vector
fields.

Proof. For the first statement, if X is incompressible and fi ∈ OX , ξi ∈ v are such
that

∑
i ξi(fi) = 0, then it follows that

∑
i fi · ξi =

∑
i ξi · fi.

For the second statement, first note that, by Proposition 2.39, since v is incom-
pressible and X is a variety, on each irreducible component, vs must generically have
the same rank as v. Now let U ⊆ X be the locus of smooth points x ∈ X such that,
if Y ⊆ X is the irreducible component containing x, the dimension of v|x is maximal
along Y . Then OU ·v|U is locally free. It follows that this also equals OU ·(v|U )s. Since
M(U, (v|U )s) = M(U, v|U ) is fully supported, (v|U )s is incompressible. By the first
part, we therefore have (v|U )s ⊆ (v|U )os; the opposite inclusion is true by definition.
Finally, note that, by definition, U is open and dense.

Example 2.54. When X = Xv is reduced and irreducible, in the formal neigh-
borhood of a generic point of x ∈ X , one has X̂x

∼= (V × V ′) for formal polydiscs
V and V ′, and vs = vos = OV ′ · H(V ) where V is equipped with its standard vol-
ume form (this also gives an alternative proof of part of Proposition 2.53). So, up to
isomorphism, this only depends on the dimension of X and the generic rank of v.



814 P. ETINGOF AND T. SCHEDLER

Remark 2.55. There is a close relationship between the saturation and the
support ideal. In the language of Remark 2.17, if we generalize v to the setting of
differential operators of order ≤ 1, then the natural saturation becomes (v·DX)∩D≤1

X .
In the case v ⊆ Vect(X), this saturation contains both vs and the ideal of Xv; by a
computation similar to that of §2.6, in fact, this saturation is vs · OX .

Remark 2.56. By Remark 2.55, one obtains an alternative formula for the
support ideal, call it IXv

, of X : this is IXv
= (vs · OX) ∩OX . This can be viewed as

a generalization of the equivalence of Proposition 2.24, (ii’) ⇔ (iii), in the case that
v = vs is saturated.

2.9. Holonomicity criteria.

Theorem 2.57. The following conditions are equivalent:
(i) (X, v) is holonomic;
(ii) For every (degenerate closed) invariant subscheme Z ′ ⊆ X on which v flows

incompressibly, for i : Z := Z ′
red → Z ′ the inclusion, i!M(Z ′, v|Z′ ) is generi-

cally a local system;
(iii) X has only finitely many invariant closed subvarieties Z on which v flows

incompressibly in some infinitesimal thickening i : Z ↪→ Z ′ ⊆ X, and for
all of them, in formal neighborhoods of generic z ∈ Z there is a canonical
isomorphism

i!M(Z ′, vZ′ ) ∼= ΩẐz
⊗ ((i∗ΩẐz

)v|Z′ )∗.

In this case, M(X, v) admits a filtration

0 ⊆ M≥dimX(X, v) ⊆ M≥dimX−1(X, v) ⊆ · · · ⊆ M≥0(X, v) = M(X, v),

whose subquotients M≥j(X, v)/M≥(j+1)(X, v) are direct sums of indecomposable ex-
tensions of local systems on open subvarieties of the dimension j varieties appearing
in (iii) by local systems on subvarieties of their boundaries.

Here (i∗ΩẐz
)v|Z′ is the (finite-dimensional) vector space of distributions along Z

preserved by the flow of v|Z′ . For example, in the case that there exists a product

decomposition Ẑ ′
z
∼= Ẑz ×S for some zero-dimensional scheme S, for which the inclu-

sion of Ẑz is the obvious one to Ẑz × {0}, then i∗ΩẐz

∼= (ΩẐz
⊗k O∗

S), where ΩẐz
is

the space of formal volume forms on Ẑz and O∗
S is the (finite-dimensional) space of

algebraic distributions on S.

Proof of Theorem 2.57. Since holonomic D-modules are always of finite length
and their composition factors are intermediate extensions of local systems, and since
in our case it is clear that any local systems must be on invariant subvarieties, it is
immediate that (i) ⇒ (iii) ⇒ (ii); we only need to explain the formula in (iii). First,
note that, by Kashiwara’s equivalence (i.e., via the restriction functor of D-modules
from Z ′ to Z), the categories of D-modules on Z ′ and on Z are canonically equivalent.
Then, the multiplicity space ((i∗ΩẐz

)v|Z′ )∗ is explained by the canonical isomorphism

(i∗ΩẐz
)v|Z′ ∼= HomD̂X,z

(M(Ẑ ′
z, v|Ẑ′

z
), i∗ΩẐz

),

looking at the image of the canonical generator ofM(Ẑ ′
z, v|Ẑ′

z
), and viewingD-modules

on Z ′ as D-modules on the ambient space X .



COINVARIANTS OF LIE ALGEBRAS OF VECTOR FIELDS 815

So, we prove that (ii) implies (i). Suppose (ii) holds. We prove holonomicity by
induction on the dimension of X . There is an open dense subset Y ⊆ X such that
M(X, v)|Y is a local system (viewed as a D-module on Yred). Take Y to be maximal
for this property, i.e., the set-theoretic locus where M(X, v) is a local system in some
neighborhood.

Let j : Y ↪→ X be the open embedding. Then by adjunction, since j∗M(X, v) =
M(X, v)|Y is holonomic, we obtain a canonical map H0j!M(X, v)|Y → M(X, v). The
cokernel is supported on the closed invariant subvariety Z := X \Y , which has strictly
smaller dimension than that of X . By Proposition 2.48, the quotient factors through
M(Z ′, v|Z′) for some infinitesimal thickening Z ′ of Z. Then, by induction, M(Z ′, v|Z′ )
is holonomic. This implies the result.

The final statement follows from the inductive construction of the previous para-
graph, if we note that the image of H0j!M(X, v)|Y is an extension of the local system
M(X, v)|Y by local systems on boundary subvarieties, none of which split off the
extension.

Note that, by Example 2.33, in general the extensions appearing (iii) can con-
tain composition factors supported on invariant subvarieties which do not themselves
appear in (iii).

We remark that the theorem also gives another proof of Proposition 2.36 (which
we don’t use in the proof of the theorem), since a connected transitive variety (X, v)
is a single leaf and therefore v is holonomic.

Using part (iii) of the Theorem, we immediately conclude

Corollary 2.58. When (X, v) is holonomic, an invariant subscheme Z ′ ⊆ X is
incompressible if and only if, for generic z ∈ Z := Z ′

red, with i : Z ↪→ Z ′ the inclusion,
(i∗ΩẐz

)v|Z′ �= 0.

Note that, when Z ′ is a variety, the corollary is tantamount to the definition of
incompressibility, and does not require holonomicity.

In particular, we can weaken the holonomicity criterion of Theorem 2.19, adding
in the word “incompressible”:

no incompressible degenerate invariant closed subschemes ⇒ holonomic. (2.59)

For a counterexample to the converse implication, recall Example 2.34 (since there is a
degenerate subvariety 0×A2 supporting a quotient, this must have an incompressible
infinitesimal thickening by Proposition 2.48).

2.10. Global generalization. Although most of the phenomena discussed in
this paper are already fully visible in the affine case, it is useful to generalize them
to the non-affine setting. One reason for this is that we are interested in the leaves
under the flow of v, and even when X is affine, the maximal leaves of v in general
need not be themselves affine (they are only locally closed, and hence quasi-affine).
(In this case, by Example 2.63 below, this poses no problem if we consider as the Lie
algebra of vector fields on each such locally closed Y ⊆ X the restriction v|Y ). It
is also interesting, however, to consider examples where X need not be affine, since
for example, if X is a not-necessarily affine symplectic or Calabi-Yau variety and v

is the associated Lie algebra of Hamiltonian or volume-preserving vector fields, then
π∗M(X, v) ∼= HdimX−∗(X), by Example 2.37 (in fact, M(X, v) ∼= ΩX), which shows
that the M(X, v) has geometric meaning.

Suppose that X is not necessarily affine. Since X does not in general admit
(enough) global vector fields, we need to generalize v to a presheaf of vector fields,
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i.e., a sub-presheaf of k-vector spaces of the tangent sheaf. As we will see, even for
affine X , this is more natural and more flexible: for example, even in the case of
Hamiltonian vector fields, we will see that Zariski-locally Hamiltonian vector fields
need not coincide with Hamiltonian vector fields, so that the natural presheaf v is not
even a sheaf, let alone constant; see Remark 4.5 below.

Nonetheless, all of the main examples and results of this paper are already in-
teresting for affine varieties and do not require this material, so the reader interested
only in the affine case can feel free to skip this subsection.

Let X be a not necessarily affine variety and v a presheaf of Lie algebras of vector
fields on X . For any open affine subset U ⊆ X , we can define the D-module on
U , M(U, v(U)), as above. Recall that this is defined as a certain quotient of DU .
Therefore, to show that the M(U, v(U)) glue together to a D-module on X , it suffices
to check that the restriction to U ∩ U ′ of the submodules of DU and DU ′ whose
quotients are M(U, v(U)) and M(U ′, v(U ′)), respectively, are the same. This does not
hold in general, but it does hold if one has the following condition:

Definition 2.60. Say that (X, v) is (Zariski) D-localizable if, for every open
affine subset U ⊆ X and every open affine U ′ ⊆ U ,

v(U ′)DU ′ = v(U)|U ′DU ′ . (2.61)

Remark 2.62. If X is already affine, the definition is still meaningful (and this
is the case we will primarily be interested in here). In this case we can restrict to
U = X in (2.61).

Example 2.63. If X is irreducible and v is a constant sheaf, then it is immediate
that v is D-localizable. More generally, for reducible X and v ⊆ Vect(X), we can
consider the associated presheaf v(U) := v|U , and this is D-localizable.

We will use below the following basic

Lemma 2.64. Let X be an affine scheme of finite type and v ⊆ Vect(X) an
arbitrary subset of vector fields. Then for every affine open U ⊆ X, one has the
equality of sheaves on U ,

(v · DX)|U = v|U · DU .

In particular, as a sheaf, the sections of v · DX on U coincide with the global sections
of v|U · DU .

Similarly, for every x ∈ X, we have (v · DX)|X̂x
= v|X̂x

· D̂X,x.

Proof. We use (2.41). In these terms, for X ↪→ V an embedding into a smooth
affine variety V , let U ′ ⊆ V be an affine open subset such that U ′ ∩ X = U . Then
(v · DX)|U identifies with the D-module restriction of (2.41) to U ′, which is then
v|U · DU . We conclude the first assertion. The final assertion is similar.

Given a presheaf C, let Sh(C) be its sheafification.

Proposition 2.65. Suppose that (X, v) is D-localizable. Then the following hold:
(i) The M(U, v(U)) glue together to a D-module M(X, v) on X.
(ii) For every open affine U and every open affine U ′ ⊆ U , M(X, v)|U ′ =

M(U ′, v(U ′)).
(iii) (X, Sh(v)) is also D-localizable, and M(X, Sh(v)) = M(X, v).
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Proof of Proposition 2.65. For (i), note that (2.61) applied to U ′ := U ∩V implies
that M(U, v(U)) and M(V, v(V )) glue. Then, (ii) is an immediate consequence of
(2.61).

It remains to prove (iii). Suppose that U is an affine open, U ′ ⊆ U is affine open,
and ξ ∈ Sh(v)(U ′). Let u ∈ U ′. By definition, there exists a neighborhood U ′′ ⊆ U ′ of
u such that ξ|U ′′ ∈ v(U ′′). By (2.61), ξ|U ′′ ∈ v(U)|U ′′ · DU ′′ . Thus, by Lemma 2.64, ξ
is a section of the D-module v(U)|U ′ ·DU ′ = (v(U)·DU )|U ′ on U ′. This proves the first
statement. This also proves the second statement, since U ′ ⊆ U and ξ ∈ Sh(v)(U ′)
were arbitrary.

Remark 2.66. As in Remark 2.15, we could have allowed v to be an arbitrary
presheaf of vector fields (rather than a presheaf of Lie algebras of vector fields).
However, it is easy to see that it is then D-localizable if and only if the presheaf
of Lie algebras generated by it is, and that the resulting D-module is the same. So,
no generality is lost by requiring that v be a presheaf of Lie algebras.

Using the above, in the D-localizable setting, the results of this section extend
to nonaffine schemes of finite type. We omit further details (but we will discuss
D-localizability more in §4 below).

3. Generalizations of Cartan’s simple Lie algebras. In this section we
state and prove general results on Lie algebras of vector fields on affine varieties
which generalize the simple Lie algebras of vector fields on affine space as classified by
Cartan. Namely, we will consider the Lie algebras of all vector fields; of Hamiltonian
vector fields on Poisson varieties; of Hamiltonian vector fields on Jacobi varieties
(this generalizes both the previous example and the setting of contact vector fields
on contact varieties); and of Hamiltonian vector fields on varieties equipped with a
top polyvector field, or more generally equipped with a divergence function. The
last example, which seems to not have been studied before, generalizes the volume-
preserving or divergence-free vector fields on An or on Calabi-Yau varieties. We also
consider invariants of these Lie algebras under the actions of finite groups (we will
continue this study in §§6 and 7).

Namely, in this section we compute the leaves under the flow of these vector
fields and determine when they are holonomic, and hence their coinvariants are finite-
dimensional.

We will state all examples in the affine setting; in §4 below we will explain how
to generalize them to the nonaffine setting (which will at least work for the cases of
all vector fields and Hamiltonian vector fields).

3.1. The case of all vector fields. Consider the case where v is the Lie algebra
of all vector fields. In this case we have a basic result:

Proposition 3.1. The support, Z = XVect(X), of Vect(X) is the locus where all
vector fields vanish, i.e., the scheme of the ideal (Vect(X)(OX)). Moreover,

M(X,Vect(X)) = DZ := Vect(X)(OX) · DX \ DX ,

and (OX)Vect(X) = OZ .

The support is evidently incompressible, and is the union of zero-dimensional
leaves at every point. Therefore, Vect(X) is holonomic if and only if this vanishing
locus is finite.

Proof. Given ξ ∈ Vect(X), the submodule v · DX contains [ξ, f ] = ξ(f) for
all f ∈ OX . These generate the ideal (Vect(X)(OX)) over OX , which defines the
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vanishing scheme of Vect(X). Conversely, notice that, for X ⊆ V with V smooth, and
every point p ∈ X , if x1, . . . , xn is a system of coordinates for the formal neighborhood
V̂p with dual basis of constant vector fields ∂1, . . . , ∂n, then for every vector field ξ on

V̂p, we have ξ =
∑n

i=1 ξ(xi)∂i. Hence for every ξ ∈ v, we have ξ · 1 ∈ ξ(OX) · DX , and
hence ξ · DX ⊆ ξ(OX) · DX . Thus v · DX ⊆ ξ(OX) · DX . The last statement follows
immediately.

This motivates the

Definition 3.2. A point x ∈ X is exceptional if all vector fields on X vanish at
x.

Clearly, all exceptional points are singular, but not conversely: for example, if
X = Y ×Z where Z is smooth and of purely positive dimension, then X will have no
exceptional points, regardless of how singular Y is.

Proposition 3.3. The following are equivalent:
(i) The quotient (OX)Vect(X) is finite-dimensional;
(ii) X has finitely many exceptional points;
(iii) Vect(X) (i.e., M(X,Vect(X))) is holonomic.

Proof. First, (ii) and (iii) are equivalent by Proposition 3.1, since DZ is holonomic
if and only if Z has dimension zero, i.e., set-theoretically Z is finite. By the proposi-
tion, with Z the support of Vect(X), then Zred is the locus of exceptional points of X
and M(X,Vect(X)) = DZ , so the equivalence follows. Similarly, these are equivalent
to (i), since (OX)Vect(X) = OZ .

Remark 3.4. Note that the implication (i) ⇒ (iii) above, a converse to Propo-
sition 2.21, is special to the case v = Vect(X). See, e.g., Remarks 2.22 and 3.20.

Corollary 3.5. If X has a finite exceptional locus Z ⊆ X (i.e., v is holonomic),
then

M(X,Vect(X)) ∼=
⊕
z∈Z

δz ⊗ (ÔX,z)Vect(ÔX,z)
.

Proof. This follows immediately by formally localizing at each exceptional point.

Corollary 3.6. Under the same assumptions as in the previous corollary, if
π : X → pt is the projection to a point,

π∗M(X,Vect(X)) = π0M(X,Vect(X)) ∼=
⊕
z∈Z

(ÔZ,z)Vect(ÔZ,z)
.

Proof. This follows since π∗δx = π0δx = k for any point x ∈ X .

Example 3.7. Suppose that X has finitely many exceptional points. Then, the
dual space ((OX)Vect(X))

∗ = (O∗
X)Vect(X), of functionals invariant under all vector

fields, includes the evaluation functionals at every exceptional point. These are lin-
early independent. However, they need not span all invariant functionals. In other
words, the multiplicity spaces (ÔX,x)Vect(ÔX,x)

in the corollaries need not be one-

dimensional.
For example, if one takes a curve X ⊂ A2 of the form P (x, y) + Q(x, y) = 0

in the plane with P (x, y) and Q(x, y) homogeneous of degrees n and n+ 1, then we
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claim that, if n ≥ 5 and P and Q are generic, all vector fields on X vanish to degree
at least two at the singularity at the origin. Therefore, the coinvariants (OX)Vect(X)

have dimension at least three, even though 0 is the only singularity of X .

Indeed, up to scaling, any vector field which sends P to a constant multiple of P up
to higher degree terms is of the form aEu+v, where a ∈ k and v vanishes up to degree
at least two at the origin. Suppose that such a vector field preserves the ideal (P +Q),
i.e., that it sends P + Q to a multiple of P + Q. We claim that a = 0. Otherwise,
we can assume up to scaling that a = 1. Then (Eu+v)(P + Q) = f(P + Q) for
some polynomial f . By comparing the parts of degree n, we conclude that f(0) = n.
Writing f = n + bx + cy + g, where g vanishes to degree at least two at the origin,
we conclude that Q = (−v + (bx+ cy) Eu)P . So there exists a quadratic vector field
w = −v + (bx + cy) Eu which takes P to Q. The space of all quadratic vector fields
is six-dimensional, whereas the space of all possible Q is of dimension n + 2. So for
n ≥ 5, we obtain a contradiction, since P and Q are assumed to be generic.

Here is an explicit example for the smallest case, n = 5, of such a P and Q: Let
P = x5+y5 and Q = x3y3. Then it is clear that the equation Q = −v(P )+(bx+cy)P
cannot be satisfied for any quadratic vector field v and any b, c ∈ k.

Example 3.8. One example of a variety with infinitely many exceptional points,
and hence infinite-dimensional (OX)Vect(X) and non-holonomic Vect(X), is a nontriv-
ial family of affine cones of elliptic curves: one can take X = Speck[x, y, z, t]/(x3 +
y3 + z3 + txyz), which is a family over A1 = Speck[t] whose fibers are affine cones
of elliptic curves in P2. Then, we claim that all singular points x = y = z = 0 are
exceptional. This is true because, otherwise, there would be a vector field nonvanish-
ing somewhere along the line x = y = z = 0, and then the family would, formally or
analytically locally along this line, have to be isomorphic to a product of the line and
some other analytic variety or formal scheme; this is impossible in this case since the
affine cones at different values of t are nonisomorphic.

A direct algebraic proof is as follows: Take any vector field on X and lift it to a
vector field ξ on A4 parallel to X . Then ξ(x3+y3+z3+txyz) = f(x3+y3+z3+txyz)
for some f ∈ OA4 . Replacing ξ by ξ− (1/3)f · (x∂x + y∂y + z∂z), we can assume that
f = 0. Restricting to t = t0, we obtain

ξ|t=t0(x
3 + y3 + z3 + t0xyz) = −ξ(t)|t=t0 · xyz. (3.9)

Suppose that ξ did not vanish at (0, 0, 0, t0). We can assume ξ is homogeneous with
respect to the grading |x| = |y| = |z| = 1 and |t| = 0. Then ξ|t=t0 is either constant
or linear. By (3.9), ξ|t=t0 annihilates x3 + y3 + z3, but no constant or linear vector
field can do that, which is a contradiction.

Example 3.10. As pointed out by the referee, a simpler (although reducible)
example where there are infinitely many singular points is a family of four lines in
the plane, all passing through the origin, one of which rotates. Namely, take X =
Speck[x, y, z]/(xy(x+ y)(x+ zy)). Then, there cannot be a vector field nonvanishing
along the singular line x = y = 0, since for different values of z (not including 0
and 1), the variety of four lines is nonisomorphic. Thus the singular line consists of
exceptional points.

To see this algebraically, first note that any vector field ξ preserving the ideal
xy(x+ y)(x+ zy) must preserve the ideal generated by each linear factor (the vector
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field must be parallel to each of the four planes). Write ξ = f∂x + g∂y + h∂z. Then
the conditions for ξ to preserve (x), (y), (x + y), and (x+ zy) are equivalent to

x | f, y | g, (x + y) | (f + g), and (x+ zy) | (f + gz + hy).

Let f0, g0, h0 ∈ k[z] be such that

f ≡ xf0 (mod (x, y)2), g ≡ yg0 (mod (x, y)2), h ≡ h0 (mod (x, y)).

Then the conditions (x + y) | (f + g) and (x + zy) | (f + gz + hy), modulo (x+ y)2,
become

f0 + g0 = 0, f0 + g0 + h0/z = 0.

This implies that h0 = 0, and hence that ξ vanishes along the line x = y = 0, as
claimed.

3.2. The Poisson case. Suppose that X is an affine Poisson scheme of finite
type, i.e., OX is a Poisson algebra. Let π be the Poisson bivector field on X . Then,
we can let v be the Lie algebra of Hamiltonian vector fields, H(X) = Hπ(X). In
particular, these vector fields are ξf := π(df) for f ∈ OX . In this case, (OX)v =
HP0(OX), the zeroth Poisson homology of OX . As pointed out in Example 2.30,
H(X) is holonomic if and only if X has finitely many symplectic leaves.

There are several natural larger Lie algebras to consider than H(X). Note that
H(X) is the space of vector fields obtained by contracting π with exact one-forms.
So, one can consider instead LH(X) = LHπ(X) = π(Ω̃1

X)cl, the space of vector
fields obtained by contracting π with closed one-forms modulo torsion (note that
contracting π with torsion yields zero, since OX is torsion-free). Here we will denote
the resulting vector field by ηα := π(α). Thus, when X is generically symplectic,
LH(U)/H(U) ∼= H1

DR(U) for all open affine U ⊆ X . (Recall from the beginning of §2
that, over k = C, if U is smooth, this coincides with the first topological cohomology
of U).

Here, LH stands for “locally Hamiltonian;” in a smooth affine open subset, in
the case that k = C, these are the vector fields which are locally Hamiltonian in the
analytic topology. In general, in a smooth open subset, these are the vector fields
which, restricted to a formal neighborhood of a point, are Hamiltonian. However,
as explained in the next example, in formal neighborhoods of singular points not all
locally Hamiltonian vector fields are Hamiltonian:

Example 3.11. In the formal neighborhood of singular points, locally Hamil-
tonian vector fields need not be Hamiltonian, since the first de Rham cohomology
modulo torsion need not vanish in such a neighborhood, and as mentioned above,
when X is generically symplectic, then LH(X)/H(X) ∼= H1(Ω̃•

X).
Here is an example where this cohomology does not vanish. Suppose Z ⊆ An

is a complete intersection with an isolated singularity at z ∈ Z. By (5.5) below, in
this case Ω̃•

Z,z is acyclic except in degree k = dimZ, where dimHk(Ω̃•
Z,z) = μz − τz,

where μz and τz are the Milnor and Tjurina numbers of z (see §5 below; we will not
use the general definition here). In the case when Z ⊆ A2 is a reduced curve cut out
by Q ∈ k[x, y] with an isolated singularity at the origin, then all one-forms modulo
torsion are closed, but they are not all exact in general. Explicitly, H1(Ω̃•

Z,0)
∼=

(Q, ∂xQ, ∂yQ)0/(∂xQ, ∂yQ)0, where (−)0 ⊆ ÔA2,0 is the ideal in the completed local
ring at the origin.
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Specifically, take Q = x3 + x2y + y4, where

(Q, ∂xQ, ∂yQ)

= (3x2 + 2xy, x2 + 4y3, x3 + x2y + y4)

= (3x2 + 2xy, x2 + 4y3, y4)

�= (3x2 + 2xy, x2 + 4y3) = (∂xQ, ∂yQ).

One therefore obtains a nonexact (closed) one-form. Such a form is α := x · dy: one
can compute that

α ∧ dQ = (−3x3 − 2x2y) · dx ∧ dy ≡ 2y4 · dx ∧ dy

(mod dk[[x, y]] ∧ dQ + (Q)dx ∧ dy + (x, y)5dx ∧ dy),

and this is not equivalent to zero modulo dk[[x, y]]∧ dQ+(Q)dx∧ dy+(x, y)5dx∧ dy.
Then, consider the Poisson variety X = Z ×A1 with the Poisson structure (∂x ∧

∂y)(dQ)∧ ∂t, with t the coordinate on A1. This is generically symplectic, so provides
an example where LH(X) �= H(X). Specifically, the vector field ηα = (−3x3−2x2y)∂t
is locally Hamiltonian on X , but in the formal neighborhood of the origin it is not
Hamiltonian. By the above computation, this spans LH(X̂0)/H(X̂0).

Note that the fact that LH(X) and H(X) are Lie algebras follow from the fact
that [LH(X), LH(X)] ⊆ H(X), since {ηα, ηβ} = ξiηαβ for closed one-forms α and β.

Next, one can consider P (X) = Pπ(X), the space of all Poisson vector fields, i.e.,
those ξ such that Lξ(π) = 0. Clearly, we have H(X) ⊆ LH(X) ⊆ P (X). If X is
symplectic (which for us in particular means X is smooth), then it is well-known that
LH(X) = P (X), but this may not be true in general (even if X has finitely many
symplectic leaves: see Example 3.19). However, there is a certain generalization of
this equality to the mildly singular case, as explained in the next remark.

Remark 3.12. In the case that X is normal and generically symplectic, then the
following conditions are equivalent:

(i) X is symplectic on its smooth locus;
(ii) On each irreducible component, X is symplectic outside of a codimension two

subset.
This is because the degeneracy locus of a Poisson structure is given by a single equation
π∧�dimY/2� = 0, so on the smooth locus this consists of divisors (if it is generically
nondegenerate).

If we assume that either of these conditions is satisfied, then letting X◦ ⊆ X be
the smooth locus (which is not affine unless X = X◦) we claim that P (X) = P (X◦) =
LH(X◦), where here by P (X◦) we mean global Poisson vector fields on the nonaffine
X◦, and by LH(X◦) we mean the collection of vector fields ηα for α ∈ Γ(X◦,ΩX◦) a
closed one-form regular on X◦.

Indeed, in this case, all vector fields which are regular on X◦ extend to all of X .
Thus P (X) = P (X◦). Moreover, if ξ ∈ P (X) is a global Poisson vector field, then
dividing by the Poisson bivector, we obtain a closed one-form regular on X◦, and
conversely.

The leaves of X under both H(X) and LH(X) are the symplectic leaves. For
H(X), this is the definition of symplectic leaves; for LH(X), this is true because,
since all one-forms (and in particular all closed one forms) are spanned over OX by
exact one-forms, the evaluations at each point of the contraction of π with either span
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the same subspace of the tangent space. That is, H(X)|x = LH(X)|x for all x ∈ X ,
as subspaces of TxX . In fact, H(X) and LH(X) define the same D-module, since
they have the same O-saturation, as defined in §2.8:

Proposition 3.13. The O-saturations are equal: H(X)os = LH(X)os. Hence,
M(X,H(X)) ∼= M(X,LH(X)).

Proof. Given any closed one-form α :=
∑

i fidgi ∈ T ∗
X , for fi, gi ∈ OX , we claim

that ηα =
∑

i ξgi · fi. This follows because
∑

i[ξgi , fi] =
∑

i ξgi(fi) = π(dα) = 0.
Hence LH(X) · OX ⊆ H(X) · OX . For the opposite inclusion, note that H(X) ⊆
LH(X).

In the case that X has finitely many symplectic leaves, then P (X) also has these
as its leaves, since in this case every Poisson vector field must be parallel to the
symplectic leaves. On the other hand, it can happen that P (X) has finitely many
leaves but not LH(X):

Example 3.14. If π = x∂x∧∂y on A2, then there are infinitely many symplectic
leaves: the y-axis is a degenerate invariant subvariety with respect to LH(X). On
the other hand, the vector field ∂y is Poisson, so the y-axis is a leaf with respect to
P (X).

For LH(X), the same argument as for H(X) shows that, in the notation of
Proposition 2.6, all of the Xi are incompressible, and hence LH(X) is holonomic
if and only if it has finitely many leaves (the symplectic leaves); or one can use
Proposition 3.13. So, again, Theorem 2.19 is the same as Theorem 2.9.

On the other hand, it can happen that P (X) is holonomic even though it does
not have finitely many leaves:

Example 3.15. If X is a variety equipped with the zero Poisson structure, then
P (X) is the Lie algebra of all vector fields, and as explained in §3.1, this is holonomic
if and only if there are finitely many exceptional points. This can happen without
having finitely many leaves, e.g., if one takes a product X = A1 × Y where Y has
infinitely many exceptional points (cf. Example 3.8). Moreover, this is an example
where the Xi are not incompressible (if x is the coordinate on A1, P (X) contains
both ∂x and x∂x, so cannot be incompressible on any of the Xi = A1 × Yi−1).

Example 3.16. If Y is an n-dimensional Calabi-Yau variety (e.g., Y = An)
and X = Z(f1, . . . , fn−2) ⊆ Y is a surface which is a complete intersection f1 =
· · · = fn−2 = 0, then there is a standard Jacobian Poisson structure on X , given by
iΞdf1 ∧ · · · ∧ dfn−2, where Ξ = vol−1

Y is the inverse to the volume form on Y , which
we then contract with the exact n − 2-form df1 ∧ · · · ∧ dfn−2. It is then standard
that the result is a Poisson bivector field. Then H(X) is holonomic if and only if
X has only isolated singularities. Already in the case Y = A3 and X = Z(f) for
f a (quasi)homogeneous surface with an isolated singularity at zero, this is quite
interesting; HP0(OX) = (OX)H(X) was computed in [AL98] (although, as we will
explain in §5, it follows from older results of [Gre75]); we will compute M(X,H(X))
in [ES14]. See Example 3.39 and §5.

Example 3.17. If X and Y are Poisson schemes of finite type, then for any of
the three Lie algebras defined above, the coinvariants are multiplicative in the sense
that (OX×Y )H(X×Y ) = (OX)H(X)⊗(OY )H(Y ) and similarly for LH and P . Similarly,
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the leaves of X × Y are the products of leaves from X and of leaves from Y . These
facts follow from the following formula, which also holds for LH and P replacing H :

H(X)⊕H(Y ) ⊆ H(X × Y ) ⊆ (OX �H(Y ))⊕ (H(X)�OY ). (3.18)

The first inclusion holds because, for f ∈ OX and g ∈ OY , ξ(f⊗1)+(1⊗g) = ξf + ξg.
The second follows because, for f ∈ OX and g ∈ OY , ξf⊗g(h) = fξg + gξf . To
extend (3.18) to the case of LH(X × Y ), it remains only to consider also the action
of Hamiltonian vector fields of closed one-forms modulo torsion generating H1

DR(X×
Y ) = H1

DR(X)⊕H1
DR(Y ) (assuming for simplicity that X and Y are connected). So

it suffices to consider Hamiltonian vector fields of closed one-forms modulo torsion on
X and Y separately. One concludes that (3.18) holds for LH replacing H . Finally,
for P (X × Y ), one also has (3.18) with P replacing H , since πX×Y = πX ⊕ πY and
Vect(X × Y ) = (Vect(X)�OY )⊕ (OX �Vect(Y )).

Example 3.19. Here we give an example of a variety X with finitely many
symplectic leaves for which LH(X) � P (X). Namely, suppose X is a homogeneous
cubic hypersurface, Q = 0, in A3 with an isolated singularity at the origin, i.e., the
cone over a smooth curve of genus one. Then X is equipped with the Poisson bivector
given by contracting the top polyvector field ∂x ∧ ∂y ∧ ∂z on A3 with dQ, where x, y,
and z are the coordinate functions on A3. This has two symplectic leaves: the origin
and its complement.

We claim that the Euler vector field is Poisson but not locally Hamiltonian. This
is because the Poisson bracket preserves total degree, so the Euler vector field is
Poisson, but it cannot be Hamiltonian since the Poisson bivector vanishes to degree
two at the origin, i.e., π(df ∧dg) ⊆ m2

0 for all f, g ∈ OX , with m0 the maximal ideal of
functions vanishing at the origin. Hence all Hamiltonian vector fields vanish to degree
two at the origin as well.

For example, X could be the hypersurface x3 + y3 + z3 = 0, which is the cone
over the Fermat curve. Then {x, y} = 3z2, {y, z} = 3x2, and {z, x} = 3y2, and it is
clear that the Euler vector field is Poisson but not (locally) Hamiltonian.

Remark 3.20. We note that, unlike for all vector fields, the converse to Propo-
sition 2.21 does not hold in the Poisson case. Indeed, one can consider A3 with the
Poisson structure ∂x ∧ ∂y, which has infinitely many leaves (hence is not holonomic)
but vanishing HP0.

Finally, ifX is an affine Poisson scheme of finite type with finitely many symplectic
leaves, and f : X → Y is a finite map, then the argument of [ES10] showed that the
Lie algebra of Hamiltonian vector fields of Hamiltonian functions from f∗OY has
finitely many leaves. We recover the result from op. cit. that OX/{OX ,OY } is
finite-dimensional. This includes the case, for example, where X = V is a symplectic
vector space, and Y = V/G for G < Sp(V ) a finite subgroup (or even any finite
subgroup G < GL(V )). If G < Sp(V ) then we obtain the G-invariant Hamiltonian
vector fields, H(X)G. Note that, in this case, if q : X → X/G is the projection, then
q∗M(X,H(X)G)G ∼= M(X/G,H(X/G)).

3.3. Jacobi schemes. A Jacobi structure [Lic78] is a generalization of a Poisson
structure, which includes both symplectic and contact manifolds (see the examples
below), and can be thought of as a degenerate or singular version of both. By defi-
nition, it is a Lie bracket on OX which need not satisfy the Leibniz rule, but instead
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satisfies that {f,−} is a differential operator of order ≤ 1 for all f ∈ OX . Equiva-
lently, the Lie bracket is given by a pair of a bivector field π and a vector field u via
the formula

{f, g} = π(df ∧ dg) + u(fdg − gdf).

Here, by a degree k polyvector field, we mean a skew-symmetric multiderivation ofOX

of degree k, i.e., a linear map ∧kOX → OX which is a derivation in each component.
The Jacobi identity is then equivalent to the identities

[u, π] = 0, [π, π] = 2u ∧ π,

where [−,−] is the Schouten-Nijenhuis bracket on polyvector fields.
To any affine Jacobi scheme X of finite type, one naturally associates the Lie

algebra of Hamiltonian vector fields ξf for f ∈ OX , given by the principal symbol of
the differential operator {f,−}, i.e.,

ξf = π(df) + fu, i.e., ξf (g) = {f, g}+ gu(f).

It is well-known and easy to verify that one has the identity

[ξf , ξg] = ξ{f,g},

so this indeed forms a Lie algebra. Call it H(X) := Hπ,u(X).
We can also define a version P (X) := Pπ,u(X) of vector fields preserving the

Jacobi structure, i.e., vector fields ξ such that ξ({f, g}) = {ξ(f), g} + {f, ξ(g)} = 0
for all f, g ∈ OX . However, unlike before, it is no longer true that H(X) ⊆ P (X).
In particular, to have ξf ∈ P (X), we require that [u, ξf ] = ξu(f) = 0. So to have
H(X) ⊆ P (X), we need in general to have u = 0, i.e., the structure should be
Poisson.

Remark 3.21. It seems that we cannot define an analogue of LH(X) in this
setting since there is no way to obtain Hamiltonian vector fields from closed one-
forms. In a neighborhood of a smooth point, one could consider vector fields that
restrict in a formal neighborhood of the point to a Hamiltonian vector field, but
in general this will not coincide with the definition of LH(X) in the Poisson case, in
neighborhoods of singular points where the first de Rham cohomology does not vanish
in the formal neighborhood; see Example 3.11.

Remark 3.22. Unlike the Poisson case, given Jacobi varieties X and Y , there
is no natural way to define a Jacobi structure on the product X × Y : if one set
πX×Y = πX ⊕ πY and uX×Y = uX ⊕ uY , then the identity [π, π] = 2u ∧ π would no
longer be satisfied: πX ∧uY and πY ∧uX would appear on the RHS but not the LHS.
However, one can still equip X × Y with the Lie algebra of vector fields vX ⊕ vY ;
in this general situation (i.e., for any vX and vY ), one always has (OX×Y )vX⊕vY

∼=
(OX)vX

⊗ (OY )vY
.

Example 3.23. The analogue of symplectic varieties in this setting is a smooth
Jacobi variety for which H(X) has full rank everywhere, i.e., it has only one leaf
(assuming X is connected). This is called a transitive Jacobi variety.

As pointed out in, e.g., [MS98] (this is in the smooth context, but the result is
proved using a formal neighborhood and works in general), there are two types of
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connected transitive varieties. One is called locally conformally symplectic, and is the
situation where π is nondegenerate (recall we assumed X was smooth). Therefore,
X is even-dimensional. In this case, u is equivalent to the data of a closed one-form
φ satisfying dω = φ ∧ ω, where ω is the inverse of π, and φ = u(ω). Then, in the
formal neighborhood of any point x ∈ X , we can write φ = df for some function f ,
and then H(X) preserves the formal volume form (e−fω)∧ dimX (cf. Example 3.25
below). This need not be a global volume form, so M(X,H(X)) is a rank-one local
system which need not be trivial.

The other type of transitive Jacobi variety is an odd-dimensional contact variety.
In this case, the Jacobi structure is equivalent to the structure of a contact one-form
α, i.e., a one-form such that volX := α ∧ (dα)∧(dimX−1)/2 is a nonvanishing volume
form. This determines u and π uniquely by the formulas

u(dα) = 0, u(α) = 1, π(α, β) = 0, π(β ∧ dα) = −β + u(β)α, ∀β ∈ T ∗
X .

By the next example, in this case v does not flow incompressibly, so by Proposition
2.36, M(X,H(X)) = 0. On the other hand, we will see that P (X) does flow incom-
pressibly and transitively, preserving the volume form volX , so M(X,P (X)) = ΩX

and π∗M(X,P (X)) ∼= HdimX−∗
DR (X). In particular, (OX)P (X) = HdimX

DR (X).

Example 3.24. The standard example of a contact variety is A2d+1 with the
standard contact structure, α = dt +

∑
i xidyi. Also, note that an arbitrary contact

variety restricts to one isomorphic to this in the formal neighborhood of any point.
We claim that no volume form is preserved by H(A2d+1), and hence the flow of
H(X) on an arbitrary contact variety is not incompressible. Indeed, let Eu be the
weighted Euler vector field on A2d+1 assigning weights |xi| = 1 = |yi| and |t| = 2,
i.e., Eu = 2t ∂

∂t +
∑

i xi
∂

∂xi
+ yi

∂
∂yi

. Then, we have π = −∑
i

∂
∂xi

∧ ( ∂
∂yi

− xi
∂
∂t ) and

u = ∂
∂t . In this case, ξ1 = ∂

∂t , ξxi
= − ∂

∂yi
+ xi

∂
∂t , ξyi

= ∂
∂xi

, and ξt = −∑
i xi

∂
∂xi

.

In particular, the Lie algebra H(X) does not preserve any volume form (if it did, for
this form to be preserved by ξ1, ξxi

, and ξyi
, it would have to preserve the constant

vector fields, and hence the form would have to be the standard volume form, i.e., the
one determined by the contact structure; however this form is not preserved by ξt.)

Finally, note that, in the above case, P (A2d+1), the Lie algebra of all vector fields
that commute with both π and u, is the subspace of Hamiltonian vector fields ξf
where f is independent of t. So P (A2d+1) � H(A2d+1). This still flows transitively,
since it includes the constant vector fields as above. As a result, for arbitrary odd-
dimensional contact varieties, P (X) � H(X). In fact, P (X) does flow incompressibly,
since it preserves the standard volume form (it is clear that it preserves the inverse
top polyvector field, ±π∧(dimX−1)/2 ∧ u).

Example 3.25. By the Darboux theorem, every locally conformally symplectic
variety X of dimension 2d has the form, in a formal neighborhood of a point x ∈ X ,
ω = efω0 and φ = df , where ω0 is the standard symplectic form on Â2d ∼= X̂x. In this
case π = e−fπ0 where π0 is the standard Poisson bivector onA2d, and u = π(df) is e−f

times the Hamiltonian vector field of f under the standard symplectic structure. Thus,
H(X̂x) is identical with the Lie algebra of Hamiltonian vector fields preserving the
standard symplectic form ω0 (in this formal neighborhood), so it flows incompressibly.
However, as noted above, H(X̂x) �⊆ P (X̂x). In fact, in this case, as in the case of
odd-dimensional contact varieties, P (X̂x) � H(X̂x). Indeed, P (X̂x) consists of ξg
such that u(g) = 0, i.e., {f, g} = 0.
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We see as a consequence of the above that, in general, the leaves ofH(X) consist of
odd-dimensional contact varieties and locally conformally symplectic varieties. The
former are not incompressible (without passing to an infinitesimal neighborhood),
whereas the latter are. As a consequence, we conclude from Proposition 2.39 that

Proposition 3.26. Let X be a Jacobi variety. Then X = XH(X) if and only if
the generic rank of H(X) is even on each irreducible component.

(Recall from Definition 2.45 that XH(X) is the support of M(X,H(X)) on X .)

Example 3.27. Here is an example of a Jacobi variety where there is an odd-
dimensional leaf having an infinitesimal neighborhood which is incompressible. Let
X = A2 with π = −x∂x∧∂t and u = ∂t. Then H(X) has rank two except along x = 0,
where it has rank one. Moreover, the distribution φ := ∂x(δx=0) � dt is preserved
by H(X): for ξxitj with i ≥ 2 this clearly annihilates φ; then ξxtj = jx2tj−1∂x
and ξtj = jxtj−1∂x + tj∂t also do (recall that the action of differential operators on
distributions is a right action; the action of vector fields is given by (ψ ·ξ)(f) = ψ(ξ(f))
for ψ a distribution and f a function). The final vector field, ξtj , can alternatively be
rewritten in H(X) · OX as

ξtj = j(x∂x − 1)tj−1 + ∂t · tj ,

and note that x∂x − 1 and ∂t annihilate φ, which implied that ξtj does.

Question 3.28. Let Xeven be the closure of the locus where the rank of v is even.
Then, is the set-theoretic support, (XH(X))red, of (X,H(X)) equal to Xeven? If the
answer is negative, is there an example where H(X) has everywhere odd rank, but
M(X,H(X)) �= 0?

3.4. Varieties with a top polyvector field. Motivated by the idea that a
Poisson structure is a singular and/or degenerate generalization of a symplectic struc-
ture, we define a similar analogue of Calabi-Yau structures, and their associated Lie
algebras of incompressible vector fields. These are also motivated by the relationship
between incompressibility and holonomicity.

In the Poisson case, one replaces a nondegenerate two-form by a possibly de-
generate two-bivector, which in the nondegenerate case is inverse to the symplectic
form. Thus, by analogy, we replace a volume form by a top polyvector field, which is
allowed to vanish on some locus. On the nondegenerate, smooth locus, one recovers
a nonvanishing volume form by taking the inverse of the polyvector field.

Specifically, let X be an affine variety of dimension n equipped with a global top
polyvector field, i.e., a multiderivation Ξ : ∧nOX → OX . Then, as in the Poisson
case, there are three natural Lie algebras to consider: the Lie algebraHΞ(X) of vector
fields obtained by contracting Ξ with exact (n− 1)-forms; the Lie algebra LHΞ(X) of
vector fields obtained by contracting Ξ with closed (n− 1)-forms; and the Lie algebra
PΞ(X) of all incompressible vector fields, i.e., vector fields ξ such that Lξ(Ξ) = 0
(vector fields preserving Ξ). Note that, in this case, when X is irreducible and Ξ is
nonzero, it is immediate that all three flow incompressibly on X .

Analogously to the case of generically symplectic varieties with their associated
(locally) Hamiltonian vector fields, for arbitrary irreducible (X,Ξ) with Ξ �= 0, one
has LHΞ(U)/HΞ(U) ∼= HdimX−1

DR (U) for all open affine U ⊆ X . Moreover, when U
is additionally smooth, LHΞ(X) coincides with those vector fields which, in formal
neighborhoods of all x ∈ U , are Hamiltonian.
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Remark 3.29. As in the Poisson case (see Example 3.11), in the formal neigh-
borhood of a singular point x ∈ X , not all locally Hamiltonian vector fields need be
Hamiltonian, since HdimX−1

DR (X̂x) need not vanish. Indeed, as in Example 3.11, when
X = A1 ×Z where Z is a complete intersection with an isolated singularity at z ∈ Z,
then dimHdimX−1

DR (X̂(t,z)) = μz − τz , which need not be zero (already for the case
of a hypersurface in An). Then, equipped with the polyvector field ΞA1 � ΞZ where
ΞZ is as in Example 3.39 (which in the case Z = {Q = 0} ⊆ An is ΞAn(dQ)), one
concludes that LH(X̂(t,z))/H(X̂(t,z)) ∼= HdimX−1(X̂(t,z)) �= 0.

As in the Poisson case, these are Lie algebras since [LH(X), LH(X)] ⊆ H(X),
as we explain. Given a (n− 2)-form (modulo torsion) α ∈ Ω̃n−2

X , let ξα := Ξ(dα) be
its associated Hamiltonian vector field. Similarly, given a closed (n− 1)-form modulo
torsion, γ ∈ Ω̃n−1

X , let ηγ := Ξ(γ) be its associated locally Hamiltonian vector field.
Then the fact that [LH(X), LH(X)] ⊆ H(X) follows from the formula, where α and
β are closed (n− 1)-forms modulo torsion,

[ηα, ηβ ] = ξiηα (β), (3.30)

which can be verified in a formal neighborhood of a smooth point of X where Ξ is
nonvanishing, and hence which holds globally.

As in the Poisson case (Proposition 3.13), H(X) and LH(X) define the same
D-modules on X :

Proposition 3.31. The O-saturations are equal: H(X)os = LH(X)os. Thus,
M(X,H(X)) ∼= M(X,LH(X)).

Proof. Given a closed n− 1 form α =
∑

i fidβi, we see that ηα =
∑

i ηβ · fi, since∑
i ηβ(fi) = Ξ(dα) = 0. Thus, LH(X) ·OX ⊆ H(X) ·OX , and the proposition follows

since H(X) ⊆ LH(X).

Next, we compute the leaves of HΞ(X) and of LHΞ(X). All non-open leaves turn
out to be points. We will use a general

Definition 3.32. Given a Lie algebra of vector fields v on X , the degenerate
locus of v is the locus of x ∈ X such that v|x �= TxXred.

Note that the degenerate locus includes the singular locus of Xred (which equals
X in this subsection, although the preceding definition makes sense more generally).

Remark 3.33. If X is irreducible, then we claim that the degenerate locus is
the same as the locus of x such that dim v|x < dimX , i.e., such that v does not have
maximal rank. Thus, in terms of Proposition 2.6, the degenerate locus is the union of
Xi for i < dimX . To prove the claim, we only have to show that, along the singular
locus, the rank of v is strictly less than dimX . This is true at generic singular points,
where the singular locus is smooth, since v must be parallel to the singular locus.
Then, the result follows for the entire singular locus, by replacing X by its singular
locus and inducting on the dimension of X .

Now return to our assumption that (X,Ξ) is a variety with a top polyvector field
Ξ. For v = HΞ(X), LHΞ(X), or PΞ(X), it is clear that the degenerate locus is the
union of the singular locus with the vanishing locus of Ξ. We will also call this the
degenerate locus of Ξ.

Theorem 3.34. Let (X,Ξ) be a variety equipped with a top polyvector field. If
v := HΞ(X) or LHΞ(X), then every degenerate point is a (zero-dimensional) leaf.
That is, v|x �= TxX implies v|x = 0.
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We remark that the theorem is in stark contrast to the previous subsections,
where in general there can exist leaves of positive dimension less than the dimension
of X . For surfaces, where Ξ is the same as a Poisson structure, the theorem reduces
to the statement that all symplectic leaves have dimension zero or two.

Proof of Theorem 3.34. It suffices to show that Ξ vanishes on the singular locus
of X . Let Z be an irreducible component of the singular locus. Then dimZ < dimX ,
and v is parallel to Z. Hence, (∧dimZv)|Z = 0 (this holds at smooth points of Z,
hence generically on Z, and hence on all of Z).

Corollary 3.35. For (X, v) as in the theorem, assuming also that X is purely
of positive dimension, the following are equal:

(i) The degenerate locus of v;
(ii) The set-theoretic support of the ideal generated by v(OX);
(iii) The set of points x such that (ÔX,x)v �= 0.

Proof. It is easy to see that (ii) and (iii) coincide with the vanishing locus of v
since X is positive-dimensional. The theorem implies that this coincides with (i).

Corollary 3.36. For (X, v) as in the theorem, X is the union of finitely many
open leaves and the degenerate (set-theoretic) locus of Ξ. There are finitely many
leaves if and only if the degenerate locus is finite.

Proof. The connected components of the open locus where v|x = TxX are the
open leaves (of which there are finitely many), and the vanishing locus of v|x is the
union of all points which are leaves. By the theorem, the union of these is all of X .

Corollary 3.37. Let v := HΞ(X) or LHΞ(X). Then, the following are equiva-
lent:

(i) (OX)v is finite-dimensional;
(ii) The degenerate locus of Ξ is finite;
(iii) v is holonomic.

Proof. By the corollary, X has finitely many leaves if and only if it has finitely
many zero-dimensional leaves. Since zero-dimensional leaves are automatically incom-
pressible, this shows that (ii) and (iii) are equivalent. Moreover, since zero-dimensional
leaves always support linearly independent evaluation functionals in ((OX)v)

∗, (i) im-
plies (ii) and (iii). The implication (iii) ⇒ (i) is immediate.

Note that, in contrast to HΞ(X) and LHΞ(X), PΞ(X) can be holonomic even
without having finitely many leaves (e.g., in the case when Ξ = 0, this happens if and
only if X has finitely many exceptional points).

One example of a variety with a top polyvector field is an even-dimensional (affine)
Poisson variety, with Ξ = π∧ dimX/2, for π the Poisson bivector field. Note that
PΞ(X) ⊇ Pπ(X). We claim that this is a proper containment if and only if dimX > 2.
For dimX = 2 it is clear these are equal. Otherwise, since Ξ �= 0 if and only if π
is generically symplectic, passing to a formal neighborhood of a point, the statement
reduces to the case X = A2n with n > 1 and the usual symplectic structure, where it
is well-known and easy to check.

Example 3.38. As noted in example 2.37, if X is a symplectic variety, then in
particular it is Calabi-Yau andM(X,Hπ(X)) = M(X,HΞ(X)) = ΩX , whether we use
the Poisson bivector π or the top polyvector field Ξ = ∧dimX/2π. However, for general
Poisson varieties, again setting Ξ = ∧dimX/2, this does not hold. For example, if the
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Poisson bivector field π has generic rank two and dimX ≥ 4, then the top exterior
power, Ξ = π∧(dimX/2), is zero, so HΞ = LHΞ = 0, and PΞ = Vect(X), but this is
clearly not true of Hπ, LHπ, and Pπ, and the coinvariants will differ in general.

Example 3.39. Generalizing Example 3.16, we can let (Y,ΞY ) be any n-
dimensional variety with a top polyvector field, and let X = Z(f1, . . . , fk) ⊆ Y
be a complete intersection. Then we can set ΞX = iΞY

(df1 ∧ · · · ∧ dfk), which is a top
polyvector field on X . (Note that, when Y = An, the Lie algebra H(X) has been
studied in many places, e.g., in [MS96]). Then, by Corollary 3.37, H(X) is holonomic
if and only if X has only isolated singularities, and the degenerate locus of Y meets
X at only finitely many points. In this case, we explicitly compute (OX)H(X) in §5.

Remark 3.40. Unlike Example 3.17, a product formula does not hold for the
above Lie algebras of vector fields on X × Y , when X and Y are equipped with top
polyvector fields ΞX and ΞY and X×Y is equipped with the tensor product ΞX�ΞY .
First of all, for the Lie algebras P , note that, in general,

P (X × Y ) �⊆ (P (X)�OY )⊕ (OX � P (Y )).

For example, when X and Y admit vector fields EuX ,EuY such that LEuX
(ΞX) = ΞX

and LEuY
(ΞY ) = ΞY , then EuX −EuY is in the LHS but not the RHS above. (This

holds, for example, when X and Y are conical with top polyvector fields ΞX and
ΞY which are homogeneous of nonzero weight under the scaling action, replacing the
standard Euler vector fields by suitable nonzero multiples).

Using this, one can see that a product formula does not hold for coinvariants:
suppose (OX)P (X) � (OX)Vect(X). Suppose that ξ ∈ Vect(X) is a vector field such
that ξ(OX) �⊆ P (X)(OX) and Lξ(ΞX) = ΞX . Then P (X × X)(OX×X) contains
(ξ � 1 − 1 � ξ)(OX � 1) = ξ(OX), but this is not contained in (P (X)(OX)�OX) +
(OX�P (X)(OX)). Since also P (X×X) contains horizontal and vertical vector fields,
P (X)� 1 and 1 � P (X), we conclude that (OX×X)P (X×X) is quotient of (OX)�2

P (X)

by a nontrivial vector subspace.

For an explicit example, we could let X be the cuspidal curve x2 = y3 in the
plane A2. Then, P (X) = 〈2x∂y + 3y2∂x〉 and hence (OX)P (X) surjects (in fact
isomorphically by a special case of Corollary 5.23; cf. Remark 5.24) to (OX)/(2x, 3y2),
which is two-dimensional; on the other hand, since Vect(X) contains the Euler vector
field 3x∂x + 2y∂y, (OX)Vect(X) = (OX)/(x, y) is one dimensional. In particular, in

this case, (OX2)P (X2) is two-dimensional, whereas (OX)⊗2
P (X) is four-dimensional.

For the Lie algebras of Hamiltonian and locally Hamiltonian vector fields, let
(Y,ΞY ) be any (affine) variety with (OY )H(Y ) = 0 (by Corollary 3.35 and Example

2.37, this is equivalent to Y being Calabi-Yau with HdimY (Y ) = 0), and (X,ΞX)
be a positive-dimensional (affine) variety. Then, we claim that (OX×Y )H(X×Y )

∼=
(OX)/(H(X)·OX)�OY , where now (H(X)·OX) is the ideal generated by H(X)·OX .
That is, we claim that the vector space H(X × Y ) · OX×Y is (H(X) · OX)�OY .

To see this, note that the ideal (H(X) · OX) is identified with the image of the
contraction of ΞX with top differential forms on X . Now, on the product variety
X × Y , top differential forms are spanned by exterior products of top differential
forms on X with top differential forms on Y . The same is true for top polyvector
fields: a derivation of OX ⊗ OY is uniquely determined by its restriction to OX ⊗ 1
and 1⊗OY , by the formula D(f ⊗ g) = D(f)⊗ g + f ⊗D(g). Thus, skew-symmetric
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multiderivations of degree dimX + dimY are of the form ΞX � ΞY for ΞX and ΞY

top polyvector fields on X and Y , respectively.

Therefore, the contraction of top polyvector fields on X × Y with top differential
forms lies in the ideal (H(X) · OX) ⊗ OY (in fact, they are equal, in view of the
assumption that (OY )H(Y ) = 0, or by the next argument). Thus we get the inclusion
of H(X × Y ) · OX×Y in (H(X) · OX)⊗OY .

Conversely, for any element f ∈ (H(X) ·OX) ⊆ OX , suppose that f = ΞX(α) for
some top differential form α. For any g ∈ OY , write g = ΞY (dβ) for some (dim Y −2)-
form β. Then, (f ⊗ g) = (ΞX ∧ΞY )(α∧ dβ). Therefore, (f ⊗ g) ∈ H(X × Y ) · OX×Y .
This gives the opposite inclusion.

Note that the ideal (H(X) ·OX) is supported at the zero-dimensional leaves of X ,
which by Theorem 3.34 is the degenerate locus of ΞX . More generally, for arbitrary
X and Y , the leaves of H(X×Y ) and LH(X×Y ) consist of the open leaves obtained
as products of open leaves in X with open leaves in Y , and zero-dimensional leaves
at every point of the degenerate locus.

Finally, as in the Poisson case, one can also consider, for every map f : X → Y ,
the smaller Lie algebra of vector fields obtained by contracting Ξ with exact (or closed)
(n − 1)-forms pulled back from Y . The leaves of the resulting Lie algebra consist of
open leaves, which are the restriction of the open leaves in X to the noncritical locus,
together with zero-dimensional leaves at the critical points of f together with the
degenerate locus of Ξ. This example includes, for every subgroup G < SL(n) (or
even GL(n)), the map X = An → An/G = Y . The coinvariants of OAn under the
resulting Lie algebra is finite-dimensional if and only if the critical locus of f is finite,
i.e., no nontrivial element of G has one as an eigenvalue; equivalently, this says that
G acts freely on the 2n− 1-sphere of unit vectors in Cn. More generally, we can take
a quotient of an arbitrary pair (X,Ξ) by a finite group of automorphisms preserving
Ξ, and the coinvariants of the resulting Lie algebra are finite-dimensional if and only
if the degenerate locus of X is finite and all elements of the group have only isolated
fixed points.

One can alternatively consider, for a finite group quotient X � X/G, the Lie
algebras H(X)G, LH(X)G, and P (X)G. We can do this slightly more generally,
where G only preserves Ξ up to scaling (then G still acts on H(X), LH(X), and
P (X)).

Proposition 3.41. Suppose dimX ≥ 2 and let G be a finite group of automor-
phisms of X which acts on Ξ by rescaling. Let v be H(X) or LH(X). Then the leaves
of vG consist of the points of the degenerate locus of X, together with the connected
components of the subvarieties of the open leaf whose stabilizers are fixed subgroups
of G.

If the degenerate locus of X is finite, then vG has finitely many leaves, and the
same result holds for v = P (X).

Call a subgroup K < G parabolic if it occurs as the stabilizer of a point in X , i.e.,
it is the stabilizer of one of the leaves of vG.

Proof. It is clear that vG must flow parallel to the given subvarieties. Therefore,
since H(X) ⊆ LH(X), we only have to show that H(X)G flows transitively along
each of the given subvarieties. Also, the last statement is immediate from this, the
fact that P (X) preserves the given subvarieties (since the degenerate locus is finite,
it cannot flow along it), and H(X) ⊆ P (X).
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Let U be the nondegenerate locus of X . Let K < G be parabolic and let Z be a
connected component of {x ∈ U | StabG(x) = K}, as mentioned in the proposition.
We have to show that, for z ∈ Z, H(U)G spans TzZ.

Fix z ∈ Z and w ∈ TzZ. We will find ξ ∈ H(X)G such that ξ|z = w. Since U is
a union of finitely many open leaves, there exists ξ ∈ H(X) such that ξ|z = w. Let
φ ∈ Ω̃dimX−2

X be such that ξ = ξφ. Let f ∈ OX be such that f(z) = 1 and f(y) = 0
for all y ∈ G · z \ {z}, and moreover such that df |G·z = 0.

Now, consider η := |K|−1
∑

g∈G g∗ξfφ ∈ H(X)G. Then (ξψ)|z = w, as desired.

Using Theorem 2.9, we immediately conclude:

Corollary 3.42. In the situation of Proposition 3.41, the coinvariants
(O(X))H(X)G are finite-dimensional.

Note that, when X is normal and G acts by automorphisms on (X,Ξ) (preserving
Ξ) with critical locus of codimension at least two, then P (X)G = P (X/G). This is
because, by Hartogs’ theorem, vector fields on X/G are the same as G-invariant
vector fields on X , and such vector fields preserve ΞX if and only if they preserve
ΞX/G. In particular, we conclude in this case that (OX/G)P (X/G) = (O(X))GP (X)G ,

and that this, as well as (OX)P (X)G itself, are finite-dimensional if and only if the

degenerate locus of X is finite. Moreover, M(X/G,P (X/G)) ∼= q∗M(X,P (X)G)G,
where q : X → X/G is the projection. We caution, however, that H(X/G) and
LH(X/G) are in general much smaller than P (X/G) (even for X Calabi-Yau), owing
to the fact that G-invariant k-forms on X do not in general descend to k-forms on
X/G when k > 1. In fact, by Theorem 3.34, (OX/G)H(X/G) and (OX/G)LH(X/G),
as well as (OX)H(X/G) and (OX)LH(X/G), are finite-dimensional if and only if the
non-free locus of G is finite and X has a finite degenerate locus.

3.5. Divergence functions and incompressibility. The preceding example
can be generalized to the setting of degenerate versions of multivalued volume forms
(i.e., Calabi-Yau structures) rather than of ordinary volume forms. We formulate
this in terms of divergence functions, which also yield an alternative definition of
incompressibility (Proposition 3.52).

We assume throughout that X is irreducible and reduced. Recall the definitions
of polyvector fields T •

X and differential forms Ω•
X and Ω̃•

X from §2.
Definition 3.43. Let N ⊆ TX be an OX -submodule. A divergence function D

on N is a morphism of sheaves of vector spaces D : N → OX satisfying D(fξ) =
fD(ξ) + ξ(f) for all ξ ∈ N and f ∈ OX . When N = TX , we call this a divergence
function on X .

As we will explain, divergence functions should be viewed as a degenerate, multi-
valued version of Calabi-Yau structures: they simultaneously generalize flat sections
of flat connections on the canonical bundle (which includes volume forms), discussed
in Example 2.38, and top polyvector fields on possibly singular schemes of finite type,
discussed in §3.4.

For the latter, given (X,Ξ), we let N ⊆ TX be the submodule of ξ ∈ TX

such that Lξ(Ξ) is a multiple of Ξ. This is a submodule in view of the identity
Lfξ(Ξ) = fLξ(Ξ) − ξ(f) · Ξ, which can be checked in local formal coordinates where
Ξ is nondegenerate (where we can take Ξ to be the inverse to the standard volume
form on the formal neighborhood of the origin in affine space). Next, define D by
the formula D(ξ) · Ξ = −Lξ(Ξ). Note that, on the nondegenerate locus of Ξ, call it
X◦ ⊆ X , we have N |X◦ = TX◦ , since X◦ is Calabi-Yau.
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Next, we explain how divergence functions generalize multivalued volume forms:

Proposition 3.44. If X is normal and of pure dimension n, then the following
are in natural bijection:

(i) Divergence functions D on N ⊆ TX ;
(ii) Connections N × Ω̃n

X → Ω̃n
X on Ω̃n

X along N .
(iii) Connections N × T n

X → T n
X on T n

X along N .
The equivalence between (i) and (ii) is given by the correspondences, for ξ ∈ N and
ω ∈ Ω̃n

X ,

D �→ ∇D, ∇D
ξ (ω) = Lξ(ω)−D(ξ) · ω; (3.45)

∇ �→ D∇, D∇(ξ) = Lξ −∇ξ ∈ EndOX
(Ω̃n

X) ∼= OX . (3.46)

The equivalence between (i) and (iii) is given by the formulas, for ξ ∈ N and Ξ ∈ T n
X ,

D �→ ∇D, ∇D
ξ (Ξ) = Lξ(Ξ) +D(ξ) · Ξ; (3.47)

∇ �→ D∇, D∇(ξ) = ∇ξ − Lξ ∈ EndOX
(T n

X) ∼= OX . (3.48)

Finally, the constructions D �→ ∇D are valid even when X is not normal.

We will need the elementary

Lemma 3.49. Suppose that X is normal and that F is a torsion-free coherent
sheaf on X which is a line bundle outside of codimension two. Then End(F ) = OX .

Proof. For any a ∈ End(F ), on some open subset U ⊆ X where F is a line
bundle and X \ U has codimension two, a|U ∈ End(F |U ) ∼= Γ(OU ) (the isomorphism
holds because endomorphisms of any line bundle L are canonically identified with
functions, via the map sending a function to the endomorphism of multiplication by
that function). By normality, the resulting function extends (uniquely) to a function
fa ∈ OX on all of X . Since OX ⊆ End(F ), we conclude that fa − a ∈ End(F ) has
zero restriction to U , and hence is zero since F is torsion-free.

Proof of Proposition 3.44. Suppose that D is a divergence function. Then ∇D
ξ (f ·

ω) = f∇D
ξ (ω) + ξ(f) · ω. Similarly, ∇D

fξ(ω) = f∇D(ω) + ξ(f)− ξ(f) = f∇D(ω). We

deduce that ∇D
ξ is a connection. Similarly, if ∇ is a connection on Ω̃X , then first of all

Lξ(fω)−∇ξ(fω) = f
(
Lξ(ω)−∇ξ(ω)

)
, so D∇(ξ) is indeed a well-defined OX -module

endomorphism of Ω̃X . By Lemma 3.49, this is the same as an element of OX . Then,
D∇(fξ) = fD∇(ξ) + ξ(f), so D∇ is a divergence function. One immediately checks
that D∇D = D and ∇D∇ = ∇.

The proof of the equivalence between (i) and (iii) is similar, so we omit the details.
For the final statement, note that well-definition of ∇D did not require normality.

Remark 3.50. In fact, in Proposition 3.44, we can replace T n
X and Ω̃n

X by any
torsion-free coherent sheaves which coincide with T n

X and Ω̃n
X , respectively, outside of

codimension two; the proof then goes through unchanged.

Remark 3.51. For not necessarily normal X , but still of pure dimension n,
Proposition 3.44 generalizes to give an equivalence between divergence functions of
the form D : N → EndOX

(Ω̃n
X) ⊇ OX and connections N × Ω̃n

X → Ω̃n
X . Similarly, we

obtain an equivalence between divergence functions valued in EndOX
(T n

X) ⊇ OX and
connections on T n

X along N .
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Divergence functions yield the following alternative formulation of the incom-
pressibility condition. Let OX · v denote the OX -linear span of v and similarly for
OX′ where X ′ is an open subvariety of X (we will also use this notation for formal
neighborhoods, etc.).

Proposition 3.52. Let X be an arbitrary affine variety and v a Lie algebra of
vector fields v on X. Then, the flow of v along X is incompressible if and only if
there exists an open dense subset X◦ ⊆ X and a divergence function on OX◦ · v|X◦

annihilating v|X◦ . In this case, in the formal neighborhood of every point of X◦, there
exists a volume form preserved by v.

The proof is given in Section 3.5.3 below, after we develop some needed material.
We can restate the proposition in terms of connections using the following basic result:

Proposition 3.53. In terms of Proposition 3.44, when X is normal and of pure
dimension, a divergence function D on N annihilates v ⊆ N if and only if ∇D

ξ = Lξ

for all ξ ∈ v.

The proof of Proposition 3.53 is immediate from the definition of ∇D and D∇,
and hence omitted. Using it, Proposition 3.52 becomes the following statement: when
X is normal and of pure dimension, the flow of v along X is incompressible if and only
if there exists an open dense subset X◦ and a connection ∇ on Ω̃n

X◦ along OX◦ · v|X◦

such that ∇D
ξ = Lξ for all ξ ∈ v|X◦ .

3.5.1. Flat divergence functions. In terms of Proposition 3.44, we can de-
scribe what it means for a divergence function to be flat. As before, assume that X
is a variety of pure dimension n. Assume that N ⊆ TX is a Lie subalgebroid.

Consider the extension of D to an operator D̃ : ∧•
OX

N → ∧•−1
OX

N given by

ξ1 ∧ · · · ∧ ξk �→
k∑

i=1

(−1)k−iD(ξi)ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξk

+
∑
i,j

(−1)i+j−1[ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξk. (3.54)

Note that, since we take the exterior algebra overOX , one must check that the formula
is well-defined, i.e., that one obtains the same result if we multiply ξi by f as if we
multiply ξj by f , for all i < j and all f ∈ OX . This is easy to check.

Definition 3.55. Call a divergence function D flat if the associated operator
(3.54) has square zero: D̃2 = 0.

Example 3.56. Suppose that N = TX and X is smooth. Then we can replace
(3.54) with

ΩdimX−•
X ⊗OX

T n
X , (3.57)

equipped with the derivation dD = d⊗ Id+ Id⊗∇̄D, where ∇̄D : T n
X → Ω1

X ⊗OX
T n
X

is the usual k-linear operator associated to the connection ∇D. This is isomorphic to
(3.54) by contracting Ω• with T n

X . Thus, d2D = 0 if and only if D is flat.

Example 3.58. More generally than Example (3.56), suppose that X is smooth
and N is locally free of rank n− k and the vanishing locus of a collection of (linearly
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independent) one-forms df1, . . . , dfk. Then, we can consider the k-form α = df1∧· · ·∧
dfk, and replace (3.54) by

(ΩdimX−k−•
X ∧ α) ⊗OX

T n
X . (3.59)

This is equipped with the derivation dD defined as before, and with this derivation,
the contraction map produces an isomorphism of (3.59) with (3.54). Thus, it remains
true that d2D = 0 if and only if D is flat. Moreover, by Frobenius’s theorem, in a
formal neighborhood of a smooth point x ∈ X , such f1, . . . , fk always exist since N
is integrable.

Proposition 3.60. Let D : N → OX be a divergence function with N ⊆ TX a
Lie subalgebroid, and let v := {ξ ∈ N | D(ξ) = 0}. Suppose moreover that N = OX ·v.
Then D is generically flat if and only if v is a Lie algebra.

By generically flat, we mean that, restricted to an open dense subset of X , D
is flat. Note that the condition N = OX · v is automatic if we replace X with a
formal neighborhood X̂x for generic x ∈ X and define v ⊆ TX̂x

as above, since N

is integrable, so we can write X̂x
∼= V × V ′ for formal polydiscs V, V ′ such that N

identifies with the subsheaf of TX̂x
in the V direction. Then it remains to note that,

if ∂i are the constant vector fields in the V direction, then e−
∫
D(∂i)dxi∂i ∈ v for all i

and these generate N .

Proof. First, if D is generically flat, then on some open dense subset of X , given
any ξ, η ∈ v, we have D̃2(ξ ∧ η) = 0 (since D(ξ) = 0 = D(η)), which implies that
[ξ, η] ∈ v as well.

Consider now the reverse implication. It suffices to restrict to a formal neighbor-
hood of a smooth point x ∈ X (on each connected component of X). Then, as noted
in Example 3.58, we can assume N is the vanishing locus of k nonvanishing one-forms
df1, . . . , dfk. Set α = df1 ∧ · · · ∧ dfk and replace (3.54) by (3.59). By Proposition 3.53,
v consists of those ξ ∈ N such that ∇D

ξ = Lξ on Ωn
X̂x

, or equivalently on (Ωn−k

X̂x

∧ α).

Assume that v is a Lie algebra. Then, for ξ, η ∈ v,

[∇D
ξ ,∇D

η ] = [Lξ, Lη] = L[ξ,η] = ∇D
[ξ,η].

Note that this also implies that [∇D
ξ ,∇D

η ] = ∇D
[ξ,η] for all ξ, η ∈ ÔX,x ·N , since this

equality remains true when replacing ξ by f · ξ for f ∈ ÔX,x, and it is biadditive in

ξ and η. Since N = OX · v, and hence N |X̂x
= ÔX,x · v|X̂x

, the equality holds for

all ξ, η ∈ ÔX,x. Now, the identity [∇D
ξ ,∇D

η ] = ∇D
[ξ,η] on Ωn

X̂x
implies in the standard

way that the derivation dD on (ΩdimX−k−•

X̂x

∧ α) ⊗OX
T n
X̂x

has square zero. Namely,

one can verify that d2D is given by contraction with the two-form α given by

α(ξ ∧ η) = [∇D
ξ ,∇D

η ]−∇D
[ξ,η] ∈ End(T n

X̂x
) = ÔX,x.

3.5.2. Hamiltonian vector fields on varieties with flat divergence func-

tions. Now we define, analogously to §3.4, Hamiltonian and incompressible vector
fields preserving flat divergence functions (i.e., preserving the formal volumes associ-
ated to them).
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Let X be a variety of pure dimension n and N ⊆ TX an OX -submodule, and
D : N → OX be a flat divergence function. Then first we have the Lie algebra
P (X,D) ⊆ N of all incompressible vector fields in N . Note that the OX -linear span
of P (X,D) need not be all of N .

Next, given any element τ ∈ ∧2
OX

N , consider the image θτ := D̃(τ) ∈ N . By
construction, D(θτ ) = 0. We call θτ the Hamiltonian vector field of τ . Since [θτ , θτ ′ ] =
θLθτ (τ

′), these form a Lie subalgebra of P (X,D),

H(X,D) := 〈θτ 〉 ⊆ P (X,D).

Example 3.61. If X is Calabi-Yau and D is the associated divergence function,
we again recover H(X,D) = P (X,D) = H(X), the Lie algebra of volume-preserving
vector fields.

As long as N has rank at least two, then H(X,D) has enough vector fields, in
the sense that OX ·H(X,D) = N ; more precisely:

Proposition 3.62. Suppose that the image of N at the tangent fiber TxX has
dimension at least two. Then H(X,D)|x = N |x, i.e., H(X,D) ⊆ N spans the same
tangent space at x as N . In particular, if N = TX and X has pure dimension at least
two, then H(X,D) is transitive.

As a consequence, the same result holds for P (X,D) ⊇ H(X,D).

Proof. Let x ∈ X be a point, and ξ, η ∈ N two vector fields linearly independent
at x. Let f ∈ OX be a function such that ξ(df)(x) = 1 and η(df)(x) = 0. Then(
D̃(fξ ∧ η)− fD̃(ξ ∧ η)

)
|x = η|x.

On the other hand, if N has rank one, then P (X,D) can be zero, e.g., when X is
a smooth curve and D is a divergence function preserving a multivalued volume form
which is not single valued (cf. Example 2.38).

Example 3.63. Consider the case of Example 3.58, i.e., where N is locally free
of rank n−k and the zero locus of (linearly independent) exact one-forms df1, . . . , dfk.
Set α := df1∧· · ·∧dfk and replace (3.54) by (3.59). Given any element β ∈ (Ωn−k−2

X ∧
α)⊗ T n

X , we can define the Hamiltonian vector field

ξβ = ctr(∇D(β)),

where ctr is the operator

ctr : Ω̃•
X ⊗OX

T n
X → T n−•

X , ctr(ω ⊗ τ) = iτ (ω).

These vector fields coincide with H(X,D) as defined above, since (3.59) is isomorphic
to (3.54) via the contraction operation.

Next, call an element of (Ωn−k−•
X ∧ α) ⊗OX

T n
X ∇D-closed if it is in the kernel

of ∇D. Then, if γ ∈ (Ωn−k−1
X ∧ α) ⊗ T n

X is ∇D-closed, we can define the locally
Hamiltonian vector field

ηγ := ctr(γ).

These vector fields coincide with P (X,D) as defined above, since via the contraction
isomorphism of complexes (3.59) and (3.54), the vector fields ηγ are precisely those
elements of N with zero divergence.
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Example 3.64. Suppose (X,Ξ) is a variety of pure dimension n equipped with
a generically nonvanishing top polyvector field Ξ as in §3.4, and define N and D as
at the beginning of §3.5. Then we see immediately that P (X) = P (X,D), consisting
of the vector fields ξ such that LξΞ = 0.

3.5.3. Proof of Proposition 3.52. Let n = dimX . We can assume that
X = X◦ is smooth and that v has constant (i.e., maximal) rank. Therefore Ωn

X = Ω̃n
X ,

and we omit the tilde from now on. We show that v flows incompressibly on X if and
only if there exists a connection ∇ on Ωn

X along N := OX · v such that ∇ξ = Lξ for
all ξ ∈ v.

First, suppose that v flows incompressibly on X . Let x ∈ X be a point and
ω ∈ ΩX̂x

a formal volume form preserved by v. Let ∇ be the unique flat connection
whose flat sections are multiples of ω. Then ∇ξω = 0 = Lξω for all ξ ∈ v. Therefore,
the restriction of ∇ to N is as desired.

Conversely, suppose that ∇ is a connection on Ωn
X along N such that ∇ξ = Lξ for

all ξ ∈ v. Since v is a Lie algebra, Proposition 3.60 implies that ∇ is generically flat.
Thus, at a generic point x ∈ X , N̂x is free over ÔX,x, and we can write TX̂x

= N̂x⊕L

for some complementary free ÔX,x-submodule L. Then the connection ∇ can be
extended to a flat connection on TX̂x

. Let ω ∈ ΩX̂x
be a nonzero flat formal section

of ∇. Then ∇ξ(ω) = 0 for all ξ ∈ TX . Hence Lξ(ω) = 0 for all ξ ∈ v. Therefore, ω is
preserved by v.

3.6. Smooth curves. Let X be a smooth connected curve. In this section we
explicitly compute M(X, v). We may assume that v is nonzero. Let Z ⊆ X be the
vanishing locus of v, which is zero-dimensional. Let X◦ := (X \ Z) ⊆ X be the
complement.

Lemma 3.65. If v is one-dimensional, then M(X, v)|X◦ = ΩX◦ . Otherwise,
M(X, v)|X◦ = 0.

Proof. By our assumptions, v|X◦ is transitive. Moreover, if v is one-dimensional,
then any nonzero element ξ ∈ v is a top polyvector field on X vanishing on Z, so ξ−1

defines a nondegenerate volume form on X◦ preserved by v. Therefore we conclude
that M(X◦, v) ∼= ΩX◦ by Proposition 2.36. On the other hand, if v is at least two-
dimensional, then if ξ1, ξ2 ∈ v are linearly independent, then on some open subset
U ⊆ X◦, ξ−1

1 and ξ−1
2 both define nondegenerate volume forms which are not scalar

multiples of each other. Then there can be no volume form on U preserved by both,
even restricted to Ûx for every x ∈ U .

Proposition 3.66. If dim v ≥ 2, then M(X, v) ∼=
⊕

z∈Z δz⊗(ÔX,z)v. Moreover,

dim(ÔX,z)v is the minimum order of vanishing of vector fields of v at z.

Note in particular that each dim(ÔX,z)v is positive.

Proof. By the lemma, we immediately conclude that M(X, v) is a direct sum of
copies of delta-function D-modules at points of Z, which is finite. Then, the result
follows from the fact that

Hom(M(X, v), δz) = Hom(DX , δz)
v = ((ÔX,z)

∗)v. (3.67)
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Now, assume that v = 〈ξ〉, so that M(X, v) = ξ ·DX \DX for ξ ∈ Vect(X). Then,
by the lemma and the argument of the proposition, we have an exact sequence

0 → j!ΩX◦ = ΩX → M(X, v) →
⊕
z∈Z

δz ⊗ (ÔX,z)v → 0. (3.68)

It turns out that this sequence is maximally nonsplit. Namely, at each z ∈ Z,
Ext(δz,ΩX) = k, since X is a smooth curve.

Proposition 3.69. When v is one-dimensional, then M(X, v) = N⊕⊕
z∈Z δz⊗

(ÔX,z)v/k, where N is an indecomposable D-module fitting into an exact sequence

0 → j!ΩX◦ = ΩX → N →
⊕
z∈Z

δz → 0. (3.70)

As before, dim(ÔX,z)v is the minimum order of vanishing of vector fields of v at z.

Proof. By formally localizing at z ∈ Z, it is enough to assume that v = 〈xk∂x〉
for A1 = Speck[x] and k ≥ 1. In this case, it suffices to prove that

Hom(DA1/xk∂x · DA1 ,ΩA1) = 0.

But, no volume form on A1 is annihilated by Lxk∂x
(even in a formal neighborhood

of zero): the rational volume form annihilated by Lxk∂x
is x−kdx. The last statement

follows as in the previous proof.

3.7. Finite maps. Let f : X → Y be a finite surjective map of affine varieties.
In this section we explain how to construct more examples using finite maps, which
generalizes the aforementioned Lie algebras of Hamiltonian vector fields of Hamil-
tonians pulled back from Y . We will not need the material of this section for the
remainder of the paper.

Definition 3.71. Let VectX(Y ) ⊆ Vect(Y ) be the subspace of vector fields ξ on
Y such that there exists a vector field f∗ξ on X such that f∗(f

∗ξ|x) = ξ|f(x) for all
x ∈ X .

Algebraically, VectX(Y ) consists of the derivations of OY which extend to deriva-
tions of OX .

Since f is finite and X and Y are reduced, it is generically a covering map.
Therefore, when f∗ξ exists, it is unique.

Example 3.72. If X is a normal variety and the critical locus of f has codimen-
sion at least two, then by Hartogs’ theorem, vector fields on X outside the singular
and critical locus extend to all of X . Therefore, VectX(Y ) = Vect(Y ), since f is a
covering map when restricted to this latter locus.

Suppose that X and Y are varieties and vY ⊆ VectX(Y ). Let vX := f∗vY .

Proposition 3.73.

(i) (X, vX) has finitely many leaves if and only if (Y, vY ) does.
(ii) (X, vX) has finitely many incompressible leaves of and only if (Y, vY ) does.
(iii) (X, vX) has finitely many zero-dimensional leaves if and only if (Y, vY ) does.

Proof. Restricted to any invariant subvariety Z ⊆ X , f is still finite and therefore
generically a covering map. This reduced the statement to the case where f is a
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covering map of smooth varieties. Then, the statements (i)–(ii) follow from the basic
facts that (i) X is generically transitive if and only if Y is; (ii) X is incompressible if
and only if Y is. Statement (iii) follows from the fact that f restricts to a finite map
from the vanishing locus of vX onto the vanishing locus of vY .

Example 3.74. In the situation of Example 3.72, X has finitely many leaves
under the flow of all vector fields if and only if the same is true of Y , and X has
finitely many exceptional points if and only if Y does. Thus, (OX)Vect(X) is finite-
dimensional if and only if (OY )Vect(Y ) is.

Example 3.75. If f : X → Y is a finite Poisson map of varieties with finitely
many symplectic leaves and X is normal, one recovers the observation at the end of
§3.2 in the setting of Poisson maps (note that the critical locus of f is automatically of
codimension at least two, since f is nondegenerate over the open leaves of Y ). Thus,
one recovers [ES10, Theorem 3.1] in this setting, i.e., that f∗H(Y ) is holonomic
(similarly one obtains that f∗LH(Y ) and f∗P (Y ) are holonomic). Here, we only
used the conditions that X is normal and Y has finitely many symplectic leaves to
assure that H(Y ) ⊆ VectY (X); to drop these assumptions, one can observe that
H(Y ) ⊆ VectY (X), since f∗ξh = ξf∗h (which also allows one to drop the condition
that Y is Poisson altogether); similarly we can conclude in this setting that LH(Y ) ⊆
VectY (X).

Example 3.76. Suppose f : X → Y is a finite map of varieties equipped with
top polyvector fields ΞX and ΞY such that f∗(ΞX |x) = ΞY |f(x) for all x ∈ X (an
“incompressible” finite map). If X is normal, ΞY has a finite degenerate locus, and
the dimension of X is at least two, one concludes that f∗H(Y ) is holonomic (as
well as f∗LH(Y ) and f∗P (Y )), and hence that (OX)f∗H(Y ) is finite-dimensional; this
recovers an observation at the end of §3.4 in a special case. As in the previous remark,
we can drop the assumption that X is normal and replace the assumption that ΞY has
a finite degenerate locus by the one that ΞX has a finite degenerate locus, because the
fact that H(Y ) ⊆ VectY (X) is automatic since we can pull back closed (n− 1)-forms
from Y to X (this also applies to LH(Y ), but not necessarily to P (Y )).

In the case Y = X/G where G is a finite group acting on (X,ΞX), one similarly
recovers the observation from the end of §3.4, that (OX/G)P (X/G) = (OX)Gf∗P (X/G) =

(OX)GP (X)G , as well as (OX)P (X)G , are finite-dimensional if and only if ΞX has a finite

degenerate locus, i.e., if and only if (OX)P (X) is finite-dimensional.

4. Globalization and Poisson vector fields.

4.1. Hamiltonian vector fields are D-localizable. In order to prove that our
main examples are D-localizable (for all vector fields and Hamiltonian vector fields),
we prove the following more general result, which roughly states that a Lie algebra
of vector fields generated by a coherent sheaf E of “potentials” is D-localizable (in
the Poisson case with v = H(X), or in the case v = Vect(X), E = OX , as we will
explain):

Theorem 4.1. Let E be a coherent sheaf on an affine variety X equipped with a
map v : E → TX of k-linear sheaves, such that, for all e ∈ E, the bilinear map

πe(f, g) := v(f · e)(g)− f · v(e)(g)
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defines a skew-symmetric biderivation O⊗2
X → OX . Then (the Lie algebra generated

by) v(E) is D-localizable.

The condition of the theorem can alternatively be stated as: v : E → TX is a
differential operator of order ≤ 1 whose principal symbol σ(v) : E → TX ⊗ TX is
skew-symmetric.

Proof. Let X ⊆ An be an embedding into affine space, and let x1, . . . , xn be the
coordinate functions on An. Let U ⊆ X be an open affine subset. We need to show
that, for every g ∈ OU and e ∈ E(X), then v(g · e) ∈ v(E(X)) · DU . Let V ⊆ An be
an open affine subset such that V ∩X = U . We claim that, in DU , for all f ∈ OV ,

v(f · e) = v(e) · f +

n∑
i=1

(
v(xi · e)− v(e) · xi

)
· ∂f

∂xi
, (4.2)

which immediately implies the statement. To prove (4.2), we first rewrite it (putting
vector fields on the left-hand side and functions on the right hand side) as

(v(f · e)− f · v(e))−
n∑

i=1

∂f

∂xi

(
v(xi · e)− xiv(e)

)

= v(e)(f) +

n∑
i=1

(
− ∂f

∂xi
v(e)(xi) + (v(xi · e)− xiv(e))(

∂f

∂xi
)
)
.

So the statement is equivalent to showing that both sides of the above desired equality
are zero. For the LHS, this follows from the fact that, for fixed e ∈ E, the map
f �→ v(f · e) − f · v(e) is a derivation of f ; in more detail, this implies that this is
obtained from a linear map Ω1 → TX , df �→ v(f · e) − f · v(e), and then we write
df =

∑
i

∂f
∂xi

dxi. For the RHS, the fact that v(e) ∈ TX is a derivation implies that

v(e)(f) +
∑n

i=1 − ∂f
∂xi

v(e)(xi) = 0, just as before. It remains to show that

n∑
i=1

(
v(xi · e)− xi · v(e)

)( ∂f
∂xi

)
= 0.

Using the definition of πe, we can rewrite the LHS of this expression as

∑
i

πe

(
xi,

∂f

∂xi

)
.

Now, viewing πe as a bivector field (i.e., a skew-symmetric biderivation), this can be
rewritten as

∑
i

πe

(
dxi ∧ d(

∂f

∂xi
)
)
= πed(df) = 0.

Note that the proof actually shows that v(U) · OU = v(X)|U · OU . Similarly, we
have the same fact for the Lie algebras generated by v(U) and v(X).

Corollary 4.3. (X,Vect(X)) is D-localizable. More generally, if E ⊆ Vect(X)
is a coherent subsheaf, then (the Lie algebra generated by) E is D-localizable.

Proof. Take v = Id in the theorem.



840 P. ETINGOF AND T. SCHEDLER

Corollary 4.4. Let X be either Poisson, Jacobi, or equipped with a top polyvec-
tor field. Then the presheaf H(X) of Hamiltonian vector fields is D-localizable. More-
over, in the Poisson and top polyvector field cases, the presheaf LH(X) of locally
Hamiltonian vector fields is also D-localizable, and defines the same D-module.

Similarly, when X is equipped with a coherent subsheaf N ⊆ TX and a divergence
function D : N → OX , then the presheaf H(X,D) is D-localizable, setting E :=
∧2
OX

N .

Proof. In the Poisson and Jacobi cases, we can take E = OX and v(f) = ξf .
Then it is easy to check that πe is a skew-symmetric biderivation for all e ∈ E, so the
theorem implies that HX is D-localizable. In the case of a top polyvector field Ξ, we
take E = Ω̃n−2

X and again let v(α) = ξα = Ξ(dα).

For the second statement, it suffices to recall from Propositions 3.13 and 3.31
that, in the Poisson and top polyvector field cases, H(X) · OX = LH(X) · OX for all
affine X .

The final statement follows in the same manner.

On the other hand, P (X) need not be D-localizable: see §4.2 for a detailed
discussion.

Remark 4.5. We note that, in general, HX is not a sheaf, and neither is LHX .

For an example where HX and LHX are not sheaves, let X be the complement in
A3 of the plane x+ y = 0, equipped with the Poisson structure given by the potential
f(x, y, z) = xy

x+y , i.e.,

{x, y} = 0, {y, z} = y2

(x+ y)2
, {z, x} =

x2

(x+ y)2
.

Consider the vector field ξ := (x+ y)−2∂z . This is regular, and on the open set where
x �= 0, it is the Hamiltonian vector field of x−1, and on the open set where y �= 0, it
is the Hamiltonian vector field of −y−1. But it is not globally Hamiltonian, since if
ξ = ξf for some f ∈ OX , then we would have f = x−1 +C for some Casimir function
C regular on the locus x �= 0 (recall that a Casimir function means a function that is
Poisson central). Then, on the locus y �= 0, we would obtain that g := x−1 +C + y−1

is a Casimir function. But then, if h is any regular function such that {y, h} does not
vanish along y = 0, we would conclude that {g, h} has a pole along y = 0, which is
impossible since it must be zero.

The same argument shows that ξ is not given by a global one-form: in this case,
writing the global one-form as d(x−1) + β for ηβ = 0, we would again conclude
that, for any regular h such that {y, h} does not vanish along y = 0, the function
ηd(x−1)+β(h) = −{y−1, h} has no pole at y = 0, a contradiction.

On the other hand, in the case that X is generically symplectic, it follows that
HX and LHX are sheaves, since in this case any vector field which is Hamiltonian
in some neighborhood must be given by a unique Hamiltonian function up to locally
constant functions, and this is then defined and Hamiltonian on the regular locus of
that function (the locally Hamiltonian case is even simpler, since locally Hamiltonian
vector fields are given by unique closed one-forms).

Note similarly that, in the case of a variety with a top polyvector field Ξ, LHX

is a sheaf, since if Ξ is nonzero, then on its nonvanishing locus a locally Hamiltonian
vector field is once again given by a unique closed (n− 1)-form.
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Remark 4.6. In the examples above, the presheaves also are equipped naturally
with spaces of sections on formal neighborhoods X̂x of every point x ∈ X ; the presheaf
condition requires only that these contain the restrictions of sections on open subsets
containing x. Thus it makes sense to define the notion of formal D-localizability, i.e.,
that, for every open affine U and x ∈ U ,

v(X̂x)DX̂x
= v(U)|X̂x

DX̂x
. (4.7)

Formal localizability implies usual localizability: indeed, if v is formally localizable,
and ξ ∈ v(U ′) for some U ′ ⊆ U , then at every x ∈ U ′, it follows that ξ|X̂x

∈ v(U)·DX̂x
,

and hence ξ ∈ v(U) · DU , by Lemma 2.64.

Theorem 4.1 extends to show that, under the assumptions there, v is formally
D-localizable, by formally localizing the embedding X → An to X̂x → Ân

0 . Then, the
same proof applies. We conclude as before that the presheaves of (locally) Hamiltonian
vector fields are formally D-localizable, as well as Vect(X) and all coherent subsheaves
thereof.

4.2. D-localizability of Poisson vector fields. An interesting question raised
in the previous subsection is whether P (X) is D-localizable. This turns out to have
an interesting answer, which we discuss here. The material of this subsection will
not be needed for the rest of the paper, and our motivation is partly to illustrate the
nontriviality of D-localizability. We will first give the statements and examples, and
postpone the proofs of the propositions to the end of the subsection, for the purpose
of emphasizing the statements and counterexamples to their generalization.

Proposition 4.8. Let X be an irreducible affine Poisson variety on which P (X)
flows incompressibly. If P (X) is D-localizable, then the generic rank of P (X) must
equal that of P (U) for every open subset U ⊆ X.

Conversely, suppose that X is a smooth affine Poisson variety on which the rank
of P (U) equals that of H(U) everywhere, for all affine open U ⊆ X, and that this
rank is constant on X. Then, for all affine open U ⊆ X, one has an equality of
O-saturations P (U)os = H(U)os. Hence, P (X) is D-localizable.

The assertion of the second paragraph follows from the more general

Lemma 4.9. Suppose v ⊆ w is an inclusion of Lie algebras of vector fields on
a smooth affine variety X. Suppose that the rank of v is constant and equals that
of w everywhere, and moreover that w flows incompressibly. Then vos = wos. In
particular, M(X, v) = M(X,w).

Proof. Since the ranks of v and w are constant and equal, we conclude that, for
every x ∈ X , there exists an open subset U ⊆ X such that OU · v|U = OU · w, and
hence in fact OX · v = OX ·w. Now, if w flows incompressibly, and hence also v, then
vos = wos = the subspace of OX · v of incompressible vector fields, by Proposition
2.53.

Remark 4.10. Lemma 4.9 generalizes to affine schemes of finite type, if we
replace the rank condition by the condition that OX · v = OX ·w.

We also give a localizability result that does not require X to be smooth, in the
situation of Remark 3.12, where P (X) = LH(X◦) for X◦ the smooth locus of X .
First we recall the following notation from Section 2:
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Notation 4.11. Given any not necessarily affine scheme Y , we will let
H•

DR(Y ) := H•(Γ(Ω̃Y )) denote the cohomology of the complex of global sections of
de Rham differential forms modulo torsion.

For all x ∈ X , Let OX,x be the uncompleted local ring of X at x.

Proposition 4.12. Suppose X is Poisson, normal, and symplectic on its smooth
locus. Let S be its singular locus.

(i) For every s ∈ S, let Es ⊆ S be the union of all irreducible components of S
containing s. Suppose that, for all s ∈ S, the natural map

H1
DR(X \ Es)⊕H1

DR(SpecOX,s) → H1
DR(SpecOX,s \ Es) (4.13)

is surjective. Then, P (X) is D-localizable. Moreover, for all s ∈ S,

P (SpecOX,s) = P (X)|SpecOX,s
· OX,s + LH(SpecOX,s). (4.14)

(ii) Now suppose that S is finite and k = C. Then the hypothesis of (i) is satisfied
if, for all s ∈ S and all affine Zariski open neighborhoods U of s, the natural
map on topological cohomology,

H1
top(X \ {s})⊕H1

top(U) → H1
top(U \ {s}) (4.15)

is surjective. In particular, in this case, P (X) is D-localizable, and (4.14)
holds.

Example 4.16. When X has a contracting Gm action (where this is the mul-
tiplicative group), i.e., OX is nonnegatively graded with k in degree zero, then
H•(X) = k, and in particular H2(X) = 0. Therefore, in this case, when X also
is normal, generically symplectic, and has an isolated singularity at the fixed point
for the contracting action, the conditions of the proposition are satisfied, so P (X) is
D-localizable. Also, in this case, P (U) = P (X)|U + LH(U) for all open sets (and for
those U which don’t contain the singularity we have P (U) = H(U), since then U is
symplectic).

For such an example where P (U)/LH(U) is nonzero, let X be the locus x3+y3+
z3 = 0 (or a more general elliptic singularity); then P (U)/LH(U) is generated by the
Euler vector field in P (X) for all open affine U .

Example 4.17. Here is a simple example of a non-normal X for which P (X) is
not D-localizable: Suppose X = Speck[x2, x3, y, xy] and {x, y} = y. This is gener-
ically symplectic but not normal. Then we claim that every global Poisson vector
field vanishes at y = 0. Indeed, ξ = f∂x + g∂y is Poisson if and only if ∂f

∂x + ∂g
∂y = g

y .

Writing g = yh, we obtain ∂f
∂x + y ∂h

∂y = 0. So y | ∂f
∂x . Since ξ is a vector field on X , f

vanishes at the origin, and hence y | f . This proves the claim. On the other hand, in
the complement U of any hyperplane through the origin, ∂x is a Poisson vector field;
but this can only be in P (X) · DU when the hyperplane was y = 0. Thus P (X) is not
D-localizable.

Remark 4.18. In the case X is smooth, if it has finitely many symplectic leaves,
it is in fact symplectic. However, there are many cases where X is smooth and
generically symplectic, and P (X) has finitely many leaves even thoughX has infinitely
many symplectic leaves; e.g., π = x∂x ∧ ∂y on A2, as mentioned in §3.2.
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We give an example where X is smooth but P (X) is not D-localizable:

Example 4.19. Let g be the Lie algebra g := sl2 and let X = g∗, equipped with
the induced Poisson bracket on OX = Sym g. Then, all global Poisson vector fields
are Hamiltonian, since H1(g, Sym g) = 0 (this implies that all derivations g → Sym g

are inner, and hence all Poisson derivations of Sym g, i.e., Poisson vector fields on
g∗, are Hamiltonian). It is clear that the Poisson bivector has rank two, except at
the origin, where the rank is zero; hence this is the rank of P (X). However, we
claim that the rank of the space of generic Poisson vector fields is three. Indeed,
write g = 〈e, h, f〉 with the standard bracket [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .
So e, h, f ∈ OX are linear coordinates. Let C = 2ef + 1

2h
2 ∈ OX be the Casimir

function, so {C, g} = 0 for all g ∈ OX . Then, if we localize where e �= 0, we
can consider the coordinate system (e, h, C) and take the directional derivative in
the C direction, which in the original coordinates (e, h, f) is ξ := 1

2e∂f . Since the
Poisson bivector field is tangent to the planes where C is constant, this vector field
is Poisson, which is also immediate from explicit computation (it is enough to check
that {ξ(x), y} + {x, ξ(y)} = ξ{x, y} for x, y ∈ OX , which clearly reduces to the case
x = f, y = h, where {ξ(f), h} = 1

e = ξ(2f) = ξ{f, h}.) By Proposition 4.8, it follows
that P (X) is not D-localizable.

Proof of Proposition 4.8. By incompressibility and Proposition 2.39, the generic
rank of P (X) equals 2 dimX minus the dimension of the singular support of
M(U ′, P (X)|U ′) for small enough open subsets U ′ (viewing P (X)|U ′ as a vector
space). Thus D-localizability implies that this must also equal the generic rank of
P (U) for every open subset U ⊆ X .

The second statement follows from Lemma 4.9, provided we can show that P (X)
flows incompressibly. By assumption, P (X) flows parallel to the symplectic leaves.
But, to be Poisson, such vector fields must preserve the symplectic form along the
leaves, and hence they are incompressible along the leaves. Thus, as for H(X) (see
Example 2.30), one concludes that P (X) flows incompressibly on X .

Proof of Proposition 4.12. (i) Suppose that ξ ∈ P (SpecOX,s). As explained in
Remark 3.12, this means that ξ = ηα where α is a closed one-form on SpecOX,s \Es.
By the hypothesis (4.13), we can write

α = αSpecOX,s
+ αX\Es

+ df, (4.20)

where αSpecOX,s
is a closed one-form modulo torsion on SpecOX,s, αX\Es

is a closed
one-form modulo torsion on X \ Es, and f ∈ Γ(SpecOX,s \ Es). By normality,
f ∈ OX,s. Thus ξf ∈ H(SpecOX,s). Note that ηαSpec OX,s

∈ LH(SpecOX,s), by

definition. As in Remark 3.12, we obtain that ηX\Es
∈ P (X). Therefore, applying

the operation β �→ ηβ to both sides of (4.20), we obtain (4.14), since ξ was arbitrary.

As a consequence, we deduce that P (SpecOX,s) ⊆ P (X)|SpecOX,s
·OX,s. Now, s ∈

X was an arbitrary singular point. At smooth points x ∈ X , we have P (SpecOX,x) =
H(SpecOX,x) ⊆ H(X)|SpecOX,x

· OX,x.

Now, for arbitrary open affine U ⊆ X , P (X)|U · DU is a sheaf on U , by Lemma
2.64. By the above, P (U)|SpecOX,x

⊆ P (X)|SpecOX,x
· DX,x, where the latter is the

Zariski localization of DX at x. By Lemma 2.64, P (X)|SpecOX,x
· DX,x = (P (X)|U ·

DU )|SpecOX,x
. We conclude that, for all x ∈ U ,

P (U)|SpecOX,x
⊆ (P (X)|U · DU )|SpecOX,x

,
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and since P (X) · DU is a sheaf, this implies that P (U) ⊆ P (X)|U · DU . As U was
arbitrary, we conclude the D-localizability of P (X).

(ii) In order to prove (4.13), it suffices to prove the statement when SpecOX,s

is replaced by sufficiently small Zariski open neighborhoods U of s. This is because
every closed one-form modulo torsion in SpecOX,s \Es is actually regular on U \ Es

for some Zariski open neighborhood U of s, and we are free to shrink it.
Now, assuming that S is finite, Es = {s} for all s ∈ S. By the preceding para-

graph, it suffices to show that (4.15) implies that the map

H1
DR(X \ {s})⊕H1

DR(U) → H1
DR(U \ {s}) (4.21)

is surjective. To see this, we first note that, for Y smooth but not necessarily affine,
we have an isomorphism by Grothendieck’s theorem,

H•
DR(Y ) ∼= H•

top(Y ),

where H•
DR(Y ) denotes the hypercohomology of the complex of sheaves Ω•

Y = Ω̃•
Y .

Next, there is a natural map H1
DR(U) → H1

top(U), obtained by integrating along
cycles; one can slightly perturb a closed path in U to miss the isolated singularities
of U , and integrating against a one-form on U which is closed mod torsion (hence
closed when restricted to the smooth locus of U) produces a well-defined answer,
which depends only on the homology class in U of the closed path.

Then, the restriction map H1
DR(U) = H1

DR(U) → H1
DR(U \ {s}) = H1

top(U \ {s})
factors through the map H1

DR(U) → H1
top(U), which is surjective by the main result

of [BH69].

Then, (4.15) implies that we have a surjection

H1
DR(X \ {s})⊕H1

DR(U) → H1
DR(U \ {s}), (4.22)

where here we note that H1
DR(U) = H1

DR(U) since U is affine.

Since X = (X \ {s})∪U , we have an exact Mayer-Vietoris sequence on hyperco-
homology of the triple (X,X \ {s}), U), which in part takes the form

H1
DR(X \ {s})⊕H1

DR(U)

→ H1
DR(U \ {s}) → H2

DR(X) → H2
DR(X \ {s})⊕H2

DR(U). (4.23)

By (4.22), the first map is surjective, and hence the last map is injective.

We also have a Mayer-Vietoris sequence for ordinaryH•
DR, associated to the exact

sequence of complexes of global sections,

0 → Ω•
X → Γ(Ω•

X\{s})⊕ Ω•
U → Γ(Ω•

U\{s}) → 0.

This has the form

H1
DR(X \ {s})⊕H1

DR(U)

→ H1
DR(U \ {s}) → H2

DR(X) → H2
DR(X \ {s})⊕H2

DR(U). (4.24)

Now, the final map in (4.23) factors through the final map in (4.24) (since X is affine).
Therefore the last map in (4.24) must also be injective. We conclude that the first
map of (4.24), which is the same as (4.21), is surjective. This completes the proof.
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4.3. Formal D-localizability of Poisson vector fields. It turns out that
formal D-localizability of Poisson vector fields is a stronger condition, which implies
(in the incompressible case) that X is generically symplectic.

Proposition 4.25. If X is irreducible affine Poisson and P (X) flows incom-
pressibly, then if P (X) is formally D-localizable, then X must be generically symplec-
tic.

Note that this in particular implies that the condition of Proposition 4.8 is satis-
fied: P (U) has generic rank equal to dimX for all U .

Proof of Proposition 4.25. Suppose that X is not generically symplectic. Then,
in the neighborhood of some sufficiently generic smooth point, X̂x

∼= V × V ′ as
a formal Poisson scheme, where V is a symplectic formal polydisc and V ′ is a
positive-dimensional formal polydisc with the zero Poisson bracket. So P (X̂x) =
(P (V ) ⊗OV ′)⊕ (O(V ) ⊗Vect(V ′)). This is evidently not incompressible since V ′ is
positive-dimensional. Thus M(X̂x, P (X̂x)) = 0. However, if we assume P (X) flows
incompressibly, then M(X,P (X))|X̂x

�= 0 for sufficiently generic x (with P (X) here
the constant sheaf). Thus P (X) is not formally D-localizable.

We can also give a positive result parallel to Proposition 4.12:

Proposition 4.26. Suppose X is affine Poisson, normal, and symplectic on its
smooth locus. Let S be its singular locus.

(i) For every s ∈ S, let Es ⊆ S be the union of all irreducible components of S
containing s. Suppose that, for all s ∈ S, the natural map

H1
DR(X \ Es)⊕H1

DR(Spec ÔX,s) → H1
DR(Spec ÔX,s \ Es) (4.27)

is surjective. Then, P (X) is formally D-localizable. Moreover, for all s ∈ S,

P (Spec ÔX,s) = P (X)|Spec ÔX,s
· ÔX,s + LH(Spec ÔX,s). (4.28)

(ii) Suppose that S is finite and k = C. Then the hypothesis of (i) is satisfied if,
for sufficiently small neighborhoods U of s in the complex topology, H1

top(X \
{s}) → H1

top(U \ {s}), is surjective. In particular, in this case, P (X) is
formally D-localizable, and (4.28) holds.

Remark 4.29. The condition of (ii) is equivalent to asking that H1
top(X \{s}) →

H1
top(U \ {s}) be surjective for any fixed contractible neighborhood U of s (whose

existence was proved in [Gil64]). Thus, the condition of (ii) is the same as that of
(4.15), except replacing Zariski open subsets by analytic neighborhoods, and using
holomorphic functions rather than algebraic functions.

Proof of Proposition 4.26. The proof of part (i) of the proposition is the same as
in Proposition 4.12, except replacing U by X̂x. We omit the details. Note that, when
x /∈ S, one has P (X̂x) = H(X̂x), since then X̂x is symplectic.

For part (ii), we use holomorphic functions and analytic neighborhoods and var-
ious results about them, contained in §4.4 below. As in Proposition 4.12, for every
analytic neighborhood U of s, the assumption of (ii) together with Grothendieck’s
theorem implies that the map on hypercohomology,

H1
DR(X \ {s}) → H

1,an
DR (U \ {s}),
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is surjective. Using the Mayer-Vietoris sequence for the exact sequence of complexes
of sheaves ((4.38) below for Y = X , Z = {s}, and V = U), we conclude that the map

H2
DR(X) → H2

DR(X \ {s})⊕H2,an(U)

is injective. This map factors through the map from ordinary cohomology to hyper-
cohomology, so we conclude that the map

H2
DR(X) → H2

DR(X \ {s})⊕H2,an(U)

is also injective. Using the Mayer-Vietoris sequence for ordinary cohomology (using
the global sections of (4.38), which is an exact sequence of complexes since X is
affine), we conclude that

H1
DR(X \ {s})⊕H1,an

DR (U) → H1,an
DR (U \ {s}) (4.30)

is surjective. Then, by Theorem 4.45 below, we conclude that

H1
DR(X \ {s})⊕H1

DR(X̂s) → H1
DR(X̂s \ {s}) (4.31)

is also surjective, as desired.

Remark 4.32. In fact, we did not need the full strength of Theorem 4.45 below,
but only the fact that the maps H1

DR(U) → H1
DR(X̂s) and H1

DR(U \{s}) → H1
DR(X̂s\

{s}) are surjective. At least the first fact can be proved in an elementary way by
lifting closed formal differential forms to closed analytic differential forms, and does
not require resolution of singularities as used in the proof of Theorem 4.45.

Example 4.33. Here is an example of a surface with an isolated singularity,
which is normal and symplectic away from the singularity, for which P (X) is D-
localizable (in fact satisfying (4.15)) but not formally D-localizable (so in particular
not satisfying (4.27)). This example was pointed out to us by J. McKernan.

Let E ⊆ P2 be a smooth cubic curve. Then, under the intersection pairing on
P2, E · E = 9. Now, blow up P2 at twelve generic points of E. Let Y be the
resulting projective surface, and let E′ ⊆ Y be the proper transform of E. Then
E′ · E′ = 9 − 12 = −3, so we can blow down E′ to obtain a new surface, call it Z,
where the image of E′ is a singular point, call it s, whose formal neighborhood Ẑs is
isomorphic to the cone over an elliptic curve.

Note that H1
top(Z \ {s}) ∼= H1

top(Y \E′) ∼= H1
top(P

2 \E) = 0, since E ⊆ P2 has a
nontrivial normal bundle.

Next, embed Z into projective space PN of some dimension N > 2. Let C ⊆ Z
be the intersection of Z with a generic hyperplane, and let X := Z \ C be the
resulting affine surface. Since O(C) is (very) ample, C has a nontrivial normal bundle.
Hence, the restriction map induces isomorphisms H1

top(Z) ∼→ H1
top(X) and H1

top(Z \
{s}) ∼→ H1

top(X \ {s}). In particular, these are zero as well.
Thus, H1

DR(X \ {s}) = 0. We claim that H1
DR(X \ {s}) = 0 as well. More

generally, this follows from the following statement:

Lemma 4.34. Let V be a scheme or complex analytic space. Then the map
H1

DR(V ) → H1
DR(V ) is injective.

We remark that, in the case V is a smooth variety (as with V = X\{s} above), by
Grothendieck’s theorem we can replace H1

DR(V ) by the topological first cohomology
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of V , and then the statement follows because, if an algebraic or analytic one-form
is the differential of a smooth (C∞) function, then the function must actually be
algebraic (or analytic).

Proof of Lemma 4.34. Consider the spectral sequence Hi(RjΓ(ΩV )) ⇒ H
i+j
DR(V ).

In total degrees ≤ 2, the second page has the form

H0
DR(V ) → H1

DR(V )⊕H0(R1Γ(ΩV )) → H2
DR(V )⊕H1(R1Γ(ΩV ))⊕H0(R2Γ(ΩV )).

The first map above is zero, and the restriction of the second map above to H1
DR(V ) is

zero. Therefore the summand of H1
DR(V ) maps injectively to a summand of the third

page of the spectral sequence. The same argument shows that, at every page, H1
DR(V )

maps injectively to the next page, so the map H1
DR(V ) → H1

DR(V ) is injective.

Now, since X \{s} is symplectic, all global Poisson vector fields are locally Hamil-
tonian given by a global closed one-form. By the above, H1

DR(X \ {s}) = 0, so that
locally Hamiltonian vector fields are Hamiltonian. Therefore, all global Poisson vector
fields are Hamiltonian.

On the other hand, not all Poisson vector fields on X̂s are Hamiltonian, since X̂s

is isomorphic to the formal neighborhood of the vertex in the cone over an elliptic
curve, and there one has the Euler vector field which is not Hamiltonian. Hence,
P (X) is not formally D-localizable. (In fact, P (X) is not étale-locally D-localizable
either, since the Euler vector field exists in an étale neighborhood of x, or equivalently
in the strict Henselization of the local ring at x.)

On the other hand, we claim that P (X) is D-localizable, and in fact that (4.15)
holds. Let U ⊆ X be any affine open subset containing s. Since Z is rational
(as Y , and hence Z, is birational to P2), so is U . Now, we claim that the map
H1

DR(U) → H1
DR(U \ {s}) is surjective. Consider the sequence (4.39) for the pair

(U, {x}): this yields the exact sequence

H1
DR(U) → H1

DR(U \ {s})⊕H1
DR(Ûs) → H1

DR(Ûs \ {s}).

It suffices to show that the map H1
DR(U \ {s}) → H1

DR(Ûs \ {s}) is zero. By Lemma

4.34 above, this is equivalent to showing that the map H1
DR(U \{s}) → H1

DR(Ûs\{s})
is zero. This map factors through the hypercohomology of any punctured neighbor-
hood of s contained in U \ {s}, which by Grothendieck’s theorem is the same as the
topological cohomology of that punctured neighborhood. Such punctured neighbor-
hoods, for sufficiently small contractible U , are homotopic to nontrivial S1-bundles
over an elliptic curve, and their fundamental group is isomorphic to that of the elliptic
curve. If the map H1

DR(U \ {s}) → H1
DR(Ûs \ {s}) were nonzero, then a nontrivial

period of the elliptic curve would be computable as integrals of closed algebraic one-
forms on U \ {s}. However, as remarked, U is rational. Thus this would imply that
a nontrivial period of the elliptic curve were computable as the integral of a rational
closed one-form along a contour in C2. This is well-known to be impossible, since
these periods are given by transcendental hypergeometric functions with infinite mon-
odromy. Thus, P (X) is D-localizable. (Note that this paragraph also gives another
proof that P (X) is not formally D-localizable, and in fact that P (U) is not formally
D-localizable for every open affine neighborhood U of s: these periods are computable
in a formal neighborhood of s, but by the above, they are not computable using global
closed one-forms. Passing from closed one-forms to Poisson vector fields via the sym-
plectic form on U \ {s}, this yields that P (U) is not formally D-localizable.)
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Example 4.35. We give an example where X is smooth and P (X) is D-
localizable but not formally D-localizable. By Propositions 4.8 and 4.25, one way
this happens is if the rank of P (U) equals that of H(U) and is constant but less than
the dimension of X (which in particular is not generically symplectic).

Let X = (A×)3 = Speck[x±1, y±1, z±1] with the Poisson bracket {x, y} = xyz
and {x, z} = {y, z} = 0. Then H(U) has rank two everywhere, for every open affine
subset U ⊆ X . We claim that any rational Poisson vector field on X annihilates z.
Therefore, the rank of every vector field in P (U) is also everywhere two, for every
open subset U ⊆ X , as desired.

To prove that every rational Poisson vector field annihilates z, it is enough to
assume that k = C. Let ξ be a rational Poisson vector field and let c ∈ C be such
that it does not have a pole at z = c. Then the irregular locus of ξ in {z = c} is an
algebraic curve in A2. One can show that such a curve must avoid a real two-torus
T = {|x| = r, |y| = s}, and then

∫
T×{c}

π−1 is a nonzero constant multiple of 1
z . Since

ξ preserves π, one concludes that it must be parallel to the level sets of z, i.e., it
annihilates z.

Remark 4.36. We can also give an elementary algebraic proof that, in the
above example, every rational Poisson vector field annihilates z. Any rational Poisson
vector field must send z to a rational function of z, since these are all the rational
Casimirs. Moreover, any such vector field is still Poisson after multiplying by an
arbitrary rational function of z. Hence, if such a vector field exists which does not
annihilate z, then there must be one of the form ∂z + f∂x + g∂y for some rational
functions f, g on X .

On the other hand, we can explicitly write one such non-rational vector field,
∂z +

x log x
z ∂x. This vector field is best understood by writing the Poisson bracket in

coordinates (u, v, z) = (log x, log y, z), as {u, v} = z, and the vector field as ∂z +
u
z ∂u.

Thus, given a rational vector field ∂z + f∂x+ g∂y, taking the difference, we would

obtain a non-rational Poisson vector field of the form −x log x
z ∂x + f∂x + g∂y. But no

such vector field can be Poisson, since a vector field parallel to the symplectic leaf
is Poisson if and only if its symplectic divergence vanishes, which here is 1

z∂x(f −
x log x) + ∂y(g), and this cannot vanish for f and g rational.

4.4. Analytic-to-formal comparison for de Rham cohomology.

4.4.1. Preliminaries on analytic forms and Mayer-Vietoris sequences.

We will need to use holomorphic differential forms, on an algebraic variety Y which
need not be affine.

Definition 4.37. Let Y be an algebraic variety over k = C. Let Ω•,an
Y denote

the complex of sheaves of holomorphic Kähler differential forms, and Ω̃•,an
Y its quotient

modulo torsion. Let H•,an
DR (Y ) denote the hypercohomology of the latter complex, and

H•,an
DR (Y ) denote the cohomology of the complex of global sections Γ(Ω̃•,an

Y ).

Grothendieck’s theorem also extends to the holomorphic setting, where we obtain
that H•,an

DR (U) ∼= H•
top(U) if U is smooth.

For Z ⊆ Y a subvariety and V an analytic neighborhood of Z, we will make use
of the Mayer-Vietoris sequence associated to the exact sequence of complexes,

0 → Ω̃•
Y → Ω̃•

Y \Z ⊕ Ω̃•,an
V → Ω̃•,an

V \Z → 0. (4.38)
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Similarly, we will need the corresponding exact sequence when V is replaced by a
formal neighborhood of Z:

0 → Ω̃•
Y → Ω̃•

Y \Z ⊕ Ω̃•
ŶZ

→ Ω̃•
ŶZ\Z

→ 0. (4.39)

Note that there is a natural map by restriction from the sequence (4.38) to (4.39).
This forms the commutative diagram with exact rows,

· · · �� Hi
DR(Y ) �� Hi

DR(Y \ Z)⊕H
i,an
DR (V ) ��

��

H
i,an
DR (V \ Z) ��

��

· · ·

· · · �� Hi
DR(Y ) �� Hi

DR(Y \ Z)⊕Hi
DR(ŶZ) �� Hi

DR(ŶZ \ Z) �� · · ·
(4.40)

Finally, note that, when Y is affine, we can also consider the same diagram for ordinary
rather than hypercohomology, since the sequences (4.38) and (4.39) remain exact on
the level of global sections.

4.4.2. Comparison isomorphisms for smooth varieties. Now consider the
case that Y is smooth. Then, we will need the result that a small enough tubular
neighborhood V of Z retracts onto Z. By Grothendieck’s theorem, this implies

H
•,an
DR (V ) ∼= H•

top(Z), (4.41)

where as before H denotes hypercohomology (which is necessary since we do not
require Y to be affine).

Hartshorne’s theorem [Har72, Har75] gives an algebraic analogue of the above
statement:

H•
DR(ŶZ) ∼= H•

top(Z). (4.42)

Moreover, the isomorphism (4.42) composed with the restriction H
•,an
DR (V ) →

H•
DR(ŶZ) is the natural isomorphism (4.41). Put together, we deduce that the re-

striction map is an isomorphism,

H
•,an
DR (V ) ∼→ HDR(ŶZ). (4.43)

Therefore, the five-lemma implies that the vertical arrows in (4.40) are all isomor-
phisms. In particular, this yields also

H
•,an
DR (V \ Z) ∼→ H•

DR(ŶZ \ Z). (4.44)

Note that, when Y is affine, we can also replace hypercohomology with ordinary
cohomology (in the second isomorphism), by using (4.40) for ordinary cohomology.

4.4.3. Comparison theorem for isolated singularities.

Theorem 4.45. Suppose that X is a complex algebraic variety with an isolated
singularity at x ∈ X. Then, for sufficiently small contractible neighborhoods U of x,
there are canonical isomorphisms

H
•,an
DR (U) ∼→ H•

DR(X̂x), H
•,an
DR (U \ {x}) ∼→ H•

DR(X̂x \ {x}). (4.46)
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If in addition U is Stein, then we have canonical isomorphisms on cohomology of
global sections,

H•,an
DR (U) ∼→ H•

DR(X̂x), H•,an
DR (U \ {x}) ∼→ H•

DR(X̂x \ {x}). (4.47)

Remark 4.48. The theorem also extends to the case where X is an analytic
variety with an isolated singularity at x, with the same proof as below, since Hironaka’s
theorem on resolution of singularities also applies to analytic varieties. (This is a strict
generalization of the theorem, since every algebraic variety is also analytic, and the
objects above are the same.)

Proof. Let Y → X be a resolution of singularities, and let Z ⊆ Y be the fiber
over x. Let V be a tubular neighborhood of Z which retracts to Z and U its image
under the resolution, which therefore retracts to x. Then the resolution maps restrict
to isomorphisms Y \ Z ∼→ X \ {x}, V \ Z ∼→ U \ {x}, and ŶZ \ Z ∼→ X̂x \ {x}. By
(4.44), we conclude the second isomorphism in (4.46).

Now, the above was for specific neighborhoods U , namely those obtainable from
tubular neighborhoods V of Z ⊆ Y . For any smaller contractible neighborhood
U ′ ⊆ U of x, the restriction map H•

top(U \ {x}) → H•
top(U

′ \ {x}) is an isomorphism,
and hence, by Grothendieck’s theorem, the second isomorphism of (4.46) holds for
sufficiently small contractible neighborhoods of x.

Consider now (4.40) for the pair (X, {x}), with U such that the second isomor-
phism of (4.46) holds. The five-lemma then implies that the vertical arrows are all
isomorphisms, which implies the first isomorphism of (4.46).

Next, the first isomorphism of (4.47) follows immediately, since U is Stein, so
hypercohomology of U and X̂x coincides with the cohomology of global sections.
Finally, since X is affine, we can consider (4.40) for the pair (X, {x}) using ordinary
rather than hypercohomology. The five-lemma now implies that the vertical arrows
are once again isomorphisms, yielding the second isomorphism of (4.47).

5. Complete intersections with isolated singularities. In this section, we
explicitly compute (OX)v, M(X, v), and π∗M(X, v), in the case that X ⊆ Y is a
locally complete intersection of positive dimension, Y is affine Calabi-Yau, and X has
only isolated singularities; cf. Example 3.39. For M(X, v) itself, the assumption that
Y (and hence X) is affine is not necessary, using §4.

We set v = H(X) (one could equivalently use LH(X), in view of Proposition
3.31.) Note that, in the case X is two-dimensional, then X is a Poisson variety and
H(X) is the Lie algebra of Hamiltonian vector fields.

5.1. Complete intersections: Greuel’s formulas. Here we recall from
[Gre75] an explicit formula for the de Rham cohomology of an analytic neighbor-
hood of x.

Embed X̂x ⊆ An cut out by equations f1, . . . , fk such that (f1, . . . , fi) has only
isolated singularities for all i. Then define the ideals

JX,x,i = (f1, . . . , fi−1,
∂(f1, . . . , fi)

∂(xj1 , . . . , xji)
, 1 ≤ j1 ≤ · · · ≤ ji ≤ n) ⊆ O

Ân,x. (5.1)

Here ∂(f1,...,fi)
∂(xj1 ,...,xji

) is the determinant of the matrix of partial derivatives ∂xjp
(fq), 1 ≤

p, q ≤ i. Then, the Milnor number, μx, of the singularity of X at x is given by

μx =

k∑
i=1

(−1)k−i codimÔAn,x
JX,x,i. (5.2)
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Definition 5.3. Let X and x be as above. Define the singularity ring, CX,x, of
X at x to be

CX,x := ÔAn,x/(JX,x,k, fk),

and define the Tjurina number, τx, to be the dimension of CX,x.

Note that the ring CX,x does not depend on the embedding X̂x ⊆ Ân
x and is

also definable intrinsically as the quotient of ÔX,x by the m-th Fitting ideal of Ω1
X̂x

,

cf. [Har74] and Remark 2.3).

Theorem 5.4. [Gre75, Proposition 5.7.(iii)] If x is an isolated singularity which
is locally a complete intersection in the analytic topology, then

H•(Ω̃•,an
X,x )

∼= kμx−τx [− dimX ]. (5.5)

Here, V [− dimX ] is the graded vector space concentrated in degree dimX with
underlying vector space V .

5.2. General structure. Since H(X) has finitely many leaves, M(X,H(X)) is
holonomic. Let i : Z ↪→ X be the (finite) singular locus of X .

Note that i∗H
0i∗M(X, v) is the maximal quotient ofM(X, v) supported on Z. Let

N be its kernel. Let X◦ := X\Z and let IC(X) = j!∗ΩX◦ be the intersection cohomol-
ogy D-module of X , i.e., the intermediate extension of ΩX◦ . Since j!M(X, v) ∼= ΩX◦ ,
this is a composition factor of M(X, v), and all other composition factors are delta
function D-modules of points in Z. Since N has no quotient supported on Z, it must
be an indecomposable extension given by an exact sequence of the form

0 → K → N → IC(X) → 0, (5.6)

where K is supported at Z. Then, the structure of M(X, v) reduces to comput-
ing i∗H

0i∗M(X, v), the extension (5.6), and how these two are extended. The first
question has a nice general answer:

Theorem 5.7. For every z ∈ Z, with iz : {z} → X the embedding, there is a
canonical exact sequence

0 → HdimX
DR (X̂z) → H0i∗zM(X, v) → CX,z → 0. (5.8)

By Theorem 4.45, there is a canonical isomorphismHdimX(Ω̃•,an
X,z )

∼→ HdimX
DR (X̂z).

By Theorem 5.4, the former has dimension μz−τz. On the other hand, dim CX,z = τz .
We conclude

Corollary 5.9. i∗H
0i∗M(X, v) ∼=

⊕
z∈Z δμz

z .

The following basic result will be useful in the theorem and later on. For an
arbitrary scheme X and point x ∈ X , let (ÔX,x)

∗ be the continuous dual of ÔX,x

with respect to the adic topology.

Lemma 5.10. Let (X, v) and x ∈ X be arbitrary. Then Hom(M(X, v), δx) ∼=
((ÔX,x)

∗)v.
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Proof. Note that Hom(DX , δx) ∼= (ÔX,x)
∗, since the latter are exactly the delta

function distributions at x. By definition of M(X, v), each φ ∈ Hom(M(X, v), δx) is
uniquely determined by φ(1), which can be any element of δx which is invariant under
v.

The theorem can therefore be restated as

Theorem 5.11. For all z ∈ Z, there is a canonical exact sequence

0 → HdimX
DR (X̂z) → (ÔX,z)v → CX,z → 0. (5.12)

In particular, dim(ÔX,z)v = μz.

In the case that Y = A3 and X is a quasihomogeneous hypersurface, the con-
sequence that (ÔX,z)v = μz = τz was discovered in [AL98] without using the earlier
results of [Gre75].

Proof. Let n := dimY , m := dimX , and k := n−m. Let IX := (f1, . . . , fk) be
the ideal defining X . Consider the map

Φ : Ω̃•
X → Ω•+k

Y /IX · Ω•+k
Y , α �→ α ∧ df1 ∧ · · · ∧ dfk,

which induces also a map taking the completion at z, which we also denote by Φ. Note
that, in this formula, we have to lift α to a form on Y , but the map is independent
of the choice of lift. Furthermore, Φ is injective, since X \ Z is locally transversely

cut out by f1, . . . , fk. Let H̃(X) ⊆ H(Y ) be the Lie algebra of vector fields obtained
from the (n− 2)-forms Φ(Ω̃m−2

X ). Then we have an identification

(ÔX,z)v
∼→ Ωn

Ŷz
/(H̃(X)(ÔY,z) + IX) · volŶz

, (5.13)

obtained by multiplying by volŶz
. In turn, H̃(X)(ÔY,z) · volŶz

identifies with

dΦ(Ωm−1

Ŷz

). Therefore,

(ÔX,z)v
∼→ Ωn

Ŷz
/(dΦ(Ωm−1

X̂z

) + IXΩn
Ŷz
). (5.14)

We now compute the RHS. Recall that Φ is an injection of complexes. The image of
Hm(Ω̃•

X̂z
) is a subspace of (5.14). Moreover, the quotient of Ωn

Ŷz
by this image is

CX,z = Ωn
Ŷz
/(IXΩn

Ŷz
+Φ(Ωm

X̂z
)). (5.15)

We obtain the desired canonical exact sequence (5.12).

We can be more specific about the meaning of K in (5.6) and use this to describe
the derived pushforward π∗M(X, v), where π : X → pt is the projection to a point.
Let πi := H−iπ∗. If we apply π∗ to (5.6), we obtain isomorphisms πiN ∼= πi IC(X)
for i > 1, and an exact sequence

0 → π1N → IHdimX−1(X) → π0K → π0N → IHdimX(X) → 0. (5.16)

Here IH∗(X) denotes the intersection cohomology of X , IH∗(X) := πdimX−∗ IC(X).
Similarly, from the exact sequence 0 → N → M(X, v) → i∗H

0i∗M(X, v) → 0,
we obtain isomorphisms πi(N) ∼= πiM(X, v), i ≥ 1, and a split exact sequence

0 → π0N → (OX)v → H0i∗M(X, v) → 0.
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Put together, we obtain

Corollary 5.17. For i ≥ 2, πiM(X, v) ∼= IHdimX−i(X). For some decomposi-
tion K = K ′ ⊕K ′′, one has a split exact sequence

0 → π1M(X, v) → IHdimX−1(X) → π0K
′ → 0, (5.18)

and an isomorphism

(OX)v ∼= IHdimX(X)⊕
⊕
z∈Z

(ÔX,z)v ⊕ π0K
′′. (5.19)

Remark 5.20. We will show in [ES14] that N = H0j!ΩX\{0}, so one obtains an
exact sequence

0 → K → N → IC(X) → 0.

Moreover, K = K ′ =
(
Ext(IC(X), δ0)

∗ ⊗ δ0
)
. Finally, will then conclude that

π•M(X, v) ∼= HdimX−•
top (X)⊕ kμz .

5.3. The quasihomogeneous case. Now suppose that X ⊆ An where An =
Speck[x1, . . . , xn], each of the xi is assigned a weight mi ≥ 1, and X is cut out
by k := n − dimX weighted-homogeneous polynomials in the xi. In this case,
HP0(OX) is a nonnegatively graded vector space by weight. Moreover, M(X,H(X))
is a weakly Gm-equivariant D-module which decomposes into weight submodules.
Hence, H0i∗M(X,H(X)) is weight-graded. Then, the proofs of the preceding results
generalize to this context (considering also [Gre75] and references therein). Moreover,
by [Fer70] (cf. [Gre75, Korollar 5.8]), in this case H•

DR(X) = 0 and (5.5) implies that
μz = τz, which is the dimension of the singularity ring (see Definition 5.3). By using
the weight-graded versions of the arguments of [Gre75] one deduces, for Xsing the
scheme-theoretic singular locus of X , defined by the ideal (JX,0,k, fk),

Theorem 5.21. The graded vector space H0i∗M(X,H(X)) has Poincaré poly-
nomial

P (H0i∗M(X,H(X)); t) = P (OXsing
; t) = P (OAn/(JX,0,k, fk); t)

=

k∑
i=1

(−1)k−iP (OAn/JX,0,i; t). (5.22)

Since OX is nonnegatively graded and X is connected, H(X) is spanned by
homogeneous vector fields, and (OX)H(X) is finite-dimensional, we conclude that

(ÔX)H(X)
∼= (OX)H(X). Therefore, Lemma 5.10 implies

Corollary 5.23. P ((OX)H(X); t) = P (OAn/(JX,0,k, fk); t).

In particular, in this case, IHdimX(X) = 0 and K ′′ = 0 (i.e., K = K ′).

Remark 5.24. In the case that k = 1, i.e., X is a quasihomogeneous hypersurface
Z(f), the ideal of the singular locus of X is also known as the Jacobi ideal JX =
(∂if) = (∂if, f). For the last equality, let mi be the weight of xi for all i as above,
and set m :=

∑
i mi. Then f = 1

m

∑
imixi∂if .
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In this case, one can prove the theorem in an elementary way. Namely, we need
to show that

H(X)(OX) = JX/(f).

Equivalently, we have to show that

Ωn−1
X ∧ df + IX · Ωn

An = dΩn−2
X ∧ df + IX · Ωn

An . (5.25)

For this, let Eu :=
∑

i mixi∂i be the Euler vector field on An. Set Eu∨ :=
iEu(volAn) ∈ Ωn−1

An . Then, for all g ∈ OAn , we have the identities

Eu∨ ∧dg = Eu(g) · volAn , d(g Eu∨) = (Eu(g) +m · g) · volAn .

Therefore, we conclude that, for all quasihomogeneous α ∈ Ωn−1
X , letting | · | denote

the weighted degree function,

ᾱ := α− (|α|+m)−1(dα/volAn) Eu∨ ∈ dΩn−2
An .

Moreover,

α ∧ df ≡ ᾱ ∧ df (mod IX · Ωn
An).

We conclude (5.25), and hence the theorem in this case.

6. Finite quotients of Calabi-Yau varieties. Let X be an affine connected
Calabi-Yau variety and Ξ the top polyvector field inverse to the volume form; for
instance, we could have X = An with the inverse to the standard volume form. In
this case, H(X) = LH(X) = P (X). Let G be a finite group acting by automorphisms
on X , such that the action on Ξ is by multiplication by a character G → k×. In this
section we will compute the D-moduleM(X,H(X)G). Everything generalizes without
change to the case where X is not affine, using §4.

As noticed at the end of §3.4, in the case that G actually preserves Ξ, using
the induced top polyvector field on X/G, H(X)G = P (X/G). So we also deduce
M(X/G,P (X/G)) = q∗M(X,H(X)G)G where q : X → X/G is the projection, and
hence also its underived pushforward to a point, (OX/G)P (X/G). We note that, by
Proposition 3.41, when dimX ≥ 2, H(X)G has finitely many leaves and hence is
holonomic, so P (X/G) is as well; however, in general, H(X/G) and LH(X/G) are
not holonomic (by Corollary 3.35, they are holonomic if and only if X/G has only
finitely many singular points, i.e., only finitely many points of X have nontrivial
stabilizers in G).

More generally, the statements of the preceding paragraph generalize to the set-
ting that G acts by multiplication by a character on Ξ, if we consider X/G to be
equipped with the multivalued volume form obtained from X . More precisely, the
flat connection on the canonical bundle of X is G-invariant and therefore descends to
X/G, so as in §3.5, X/G is equipped with a divergence function.

We will restrict our attention to the case where dimX ≥ 2. Note that, in the case
X = A1 = Speck[x], then if G < GL(1) is nontrivial, then there are no G-invariant
volume preserving vector fields on X . Thus more generally, if X is one-dimensional
and G acts nonfreely, then there are no G-invariant volume-preserving vector fields
on X . Therefore, there is nothing to compute for the case of dimension less than two.
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Recall from §3.4 that we call a subgroup K < G parabolic if there exists a point
x ∈ X such that StabG(x) = K. Let Par(G) be the set of parabolic subgroups of G.
For K ∈ Par(G), the connected components of XK are called parabolic subvarieties
of X . By Proposition 3.41, these are exactly the closures of the leaves of v, which are
the connected components of (XK)◦ = {x ∈ X | StabG(x) = K}.

Let X◦ ⊆ X be the inclusion of the open locus where G acts freely. Clearly,
M(X,H(X)G)|X◦ ∼= ΩX◦ . Therefore, by adjunction, we have a map H0j!ΩX◦ =
ΩX → M(X,H(V )G), and the cokernel of this map is supported on a union of proper
parabolic subvarieties of V . Suppose that U ⊆ V K is a maximal such subvariety for
K ∈ Par(G). We claim that U is zero-dimensional, i.e., a finite union of points. By
formally localizing in the neighborhood of a generic point of U , it suffices to assume
that K = G. This reduces the claim to:

Lemma 6.1. Suppose that U and W are positive-dimensional vector spaces and
G < GL(W ) is finite. Then M(U ×W,H(U ×W )G) ∼= ΩU×W .

Proof. Let W ◦ ⊆ W be the open subset where G acts freely. Then H(U ×W ◦)G

is transitive, so M(U ×W ◦, H(U ×W ◦)G) ∼= ΩU×W◦ . Let j : (U ×W ◦) ↪→ U ×W
be the inclusion. Therefore one obtains a map H0j!M(U × W ◦, H(U × W ◦)G) =
ΩU×W → M(U ×W,H(U ×W )G), which is obviously injective. To prove the lemma,
therefore, we have to show that M(U ×W,H(U ×W )G) has no quotients supported
on a proper subvariety of U × W , i.e., one of the form U × WK for some parabolic
subgroup K < G (in terms of Proposition 2.48, we have to show that there is no
infinitesimal thickening of such a subvariety which is incompressible; we will not use
this interpretation).

Let X := U×W and v := H(U×W )G. Suppose there were a quotient of M(X, v)
supported on U ×WK for some parabolic subgroup K < G. By formally localizing in
a neighborhood of a generic point of U ×WK , we can reduce to the case that K = G;
let us assume this. So we have to show that there is no quotient supported at U×{0}.

Since v includes constant vector fields in the U direction, the defining quotient
DX � M(X, v) factors through DX � ΩU � DW . Moreover, given a vector field
ξ ∈ v, write ξ = ξ1 + ξ2 where ξ1 ∈ OW ⊗ Vect(U) and ξ2 ∈ OU ⊗ Vect(W )G. Let
D : Vect(X) → OX be the standard divergence function, i.e., D(ξ) = Lξω/ω, where
ω is the standard volume form on X . Then, since v includes constant vector fields
in the U direction, ξ1 +D(ξ1) ∈ v · DX . Thus, ξ2 −D(ξ1) = ξ2 +D(ξ2) ∈ v · DX as
well. Conversely, the constant vector fields in the U direction together with elements
ξ2 +D(ξ2) span v · DX . We conclude that M(X, v) = v · DX \ DX is of the form

M(X, v) = ΩU �N, N = 〈ξ +D(ξ) | ξ ∈ Vect(W )G〉 · DW \ DW .

Therefore, the lemma reduces to showing that N admits no quotient supported at
0 ∈ W . First of all, let EuW ∈ Vect(W ) be the Euler vector field on W . Then
EuW +D(EuW ) = (EuW +dim(W )) ∈ v ·DX . On the other hand, since dim(W ) > 0,
EuW +dim(W ) acts by an automorphism on every quotient supported at zero (note
that sections of the delta function D-module are in nonpositive polynomial degree,
and homogeneous sections in degree m ≤ 0 are annihilated by Eu+m (since we are
using right D-modules)). Thus, N admits no such quotient.

We conclude that the cokernel of the inclusion ΩX ↪→ M(X, v) is supported at
finitely many points, i.e., it is a direct sum of delta-function D-modules at these
points. Since we assumed that dimX ≥ 2, Ext(ΩX , δ) = 0 when δ is such a delta-
function D-module (this follows because it is true in the case X = An and the point
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is the origin). Therefore, M(X, v) is semisimple, and we can explicitly conclude its
structure, as follows.

Definition 6.2. Let Parpt(X,G) be the collection of points which are parabolic
subvarieties; call them parabolic points.

Equivalently, the parabolic points x ∈ X are those such that, for some open
neighborhood U containing x, StabG(x) is strictly larger than the stabilizer of any
point in U \ {x}.

Theorem 6.3. M(X, v) ∼= ΩX ⊕
⊕

x∈Parpt(X,G) δx ⊗ (ÔX,x)v, and each (ÔX,x)v
is finite-dimensional.

Proof. By the preceding material, it remains only to compute the multiplicity of
δx. Note that this must be finite-dimensional since M(X, v) is holonomic. The result
thus follows from Lemma 5.10.

7. Symmetric powers of varieties. Given (X, v), note that v also acts nat-
urally on the symmetric powers SnX := Xn/Sn. Then, the diagonal embedding
of X into SnX is invariant, and more generally, arbitrary diagonal embeddings are
invariant.

In this section, we compute the coinvariants (OSnX)v as well as the D-module
M(SnX, v) for all n ≥ 1 in the transitive (affine) cases of §3 (the “global” versions
of the simple Lie algebras of vector fields). In the symplectic case this specializes
to the main result of [ES13]. Our main result says that, in the Calabi-Yau and
symplectic cases, this is a direct sum of the pushforwards under Xn

� SnX of the
canonical D-modules ΩΔ as Δ ranges over the diagonal subvarieties Δ ⊆ Xn up to
the action of Sn. In other words, these are the intersection cohomology D-modules of
the diagonal subvarieties of SnX . In the locally conformally symplectic case, and in
a more general transitive setting that includes all of these cases, we prove the same
result, except replacing ΩΔ by the diagonal embedding of M(X, v). Moreover, when
X is a contact variety and v = H(X), or X is smooth and v = Vect(X), we show that
M(SnX, v) = 0, and extend these cases to a more general transitive setting where v

does not flow incompressibly.

More generally, we will prove general structure theorems on M(SnX, v) in the
case that v is transitive and satisfies a certain condition we call quasi-locality, which
essentially says that its restriction to the m-th infinitesimal neighborhood of every
finite set is equal to the sum of its restrictions to the m-th infinitesimal neighborhood
of each point in the set. For convenience, we will also generally assume that X is
connected; it is easy to remove this assumption.

7.1. Relation to Lie algebras for SnX. The study of SnX under v is closely
related to the study of SnX under its own associated Lie algebras of vector fields.
Note that OSnX = Symn OX is spanned by elements f⊗n for f ∈ OX . Let symm :
O⊗n

X → Symn OX be the symmetrization map,

symm(f1 ⊗ · · · ⊗ fn) =
1

n!

∑
σ∈Sn

fσ(1) ⊗ · · · ⊗ fσ(n).

Note that, if X is Poisson with bivector field π, then so is SnX , using the unique
Poisson bracket on Symn OX obtained from the Leibniz rule; in other words, one can
consider the bivector field

∑n
i=1 π

i on Xn = SpecO⊗n
X , where πi = Id⊗(i−1) ⊗π ⊗
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Id⊗(n−i) ∈ (∧OX
TX)⊗n denotes π acting on the i-th component. This then restricts

to symmetric functions OSnX = Symn OX .

If X is even-dimensional and equipped with a top polyvector field Ξ, then SnX
is equipped with the top polyvector field ∧nΞ.

As discussed in Remark 3.22, when X is Jacobi, there is no natural Jacobi struc-
ture induced on Xn and hence neither on SnX .

We then have the following elementary proposition (the first part was essentially
used in [ES13]):

Proposition 7.1.

(i) If X is Poisson, then M(SnX,H(X)) ∼= M(SnX,H(SnX));
(ii) For X even-dimensional and equipped with a top polyvector field, P (X) ⊆

P (SnX);
(iii) For X equipped with a divergence function D on a coherent subsheaf N ⊆

TX , one has P (X,D) ⊆ P (SnX,D), where Sn is equipped with a divergence
function on OSnX · N , using the natural embedding of vector spaces N ⊆
TX ↪→ TSnX (via extending derivations from OX to OSnX = Symn

k OX);
(iv) For general X, Vect(X) ⊆ Vect(SnX).

Proof. (i) Given f ∈ OX , it is evident that (up to normalization)
nξsymm(f⊗1⊗(n−1)) identifies with ξf ∈ H(X). Hence H(X) ⊆ H(SnX) (this is
also a special case of part (ii)). Next, H(SnX) is spanned by the vector fields
ξf⊗n = symm(ξf ⊗ f⊗(n−1)) for f ∈ OX . Note the identities ξf (f) = 0 and
ξfi = if i−1ξf . Thus, for all i ≥ 1,

symm(ξfi ⊗ 1⊗(n−1)) · symm(f⊗(n−i−1) ⊗ 1⊗(i+1))

=
i

n
symm(ξfi ⊗ f⊗(n−i−1) ⊗ 1⊗i)

+
n− i

n
symm(ξfi+1 ⊗ f⊗(n−i−2) ⊗ 1⊗(i+1)). (7.2)

The LHS is inH(X)·DX , and the RHS terms, taken over all i ≥ 1, generate symm(ξf⊗
f⊗(n−1)), as desired.

(ii) It is evident that, if a vector field preserves a top polyvector field Ξ on X ,
then it also preserves ∧nΞ on SnX .

(iii) Similarly, if a vector field ξ preserves a divergence function D, i.e., D(ξ) = 0,
then also it preserves the induced divergence function on SnX , i.e., the induced
divergence function on SnX by definition also kills ξ, viewed as a vector field on
SnX .

(iv) Similarly, given a vector field ξ ∈ Vect(X), we can take the sum
∑n

i=1 ξ
i ∈

Vect(Xn) which descends to Vect(SnX).

Remark 7.3. Note that the isomorphism of (i) does not extend, in general, to
the cases of top polyvector fields. For instance, when X is symplectic, then by part
(i), viewed as a Poisson variety, H(SnX) and H(X) determine the same D-module,
which is holonomic since SnX has finitely many symplectic leaves (the images of
the diagonal embeddings). However, since the singular locus of SnX is infinite for
n ≥ 2, by Corollary 3.36, H(SnX,∧nvol−1

X ) does not have finitely many leaves, and
by Corollary 3.37 the associated D-module is not holonomic.
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7.2. Diagonal embeddings. Let Δi : X → X i be the standard diagonal em-
beddings for all i ≥ 1. Let prn : Xn → SnX be the projection. Recall that a partition
λ of n, which we denote by λ � n, is a tuple (λ1, . . . , λk) with λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1
and λ1 + · · ·+ λk = n. In this case the length, |λ|, of λ is defined by |λ| := k. Given
a partition λ � n, define the product of diagonal embeddings

Δλ := Δλ1 × · · · ×Δλ|λ|
: X |λ| → Xn.

Now, composing with prn, we obtain a map X |λ| → SnX . On the complement
of diagonals in X |λ|, this is a covering onto its image whose covering group is the
subgroup Sλ < S|λ| preserving the partition λ. Explicitly, Sλ = Sr1 ×· · ·×Srk where,
for all j,

λr1+···+rj > λr1+···+rj+1 = λr1+···+rj+2 = · · · = λr1+···+rj+rj+1 .

7.3. A morphism of graded algebras. Consider the canonical morphism of
graded algebras

Φ : Sym(t · ((OX)∗)v[t]) →
⊕
n≥0

((OSnX)∗)v, (7.4)

given by the formula

Φ(tr1φ1 ⊗ · · · ⊗ trkφk)(f1 ⊗ · · · ⊗ fr1+···+rk) =

k∏
i=1

φi(fr1+···+ri−1+1 · · · fr1+···+ri).

Let us explain the graded algebra structures in (7.4). First, the grading is by degree
in t on the left-hand side and by degree in n on the right-hand side. The algebra
structure on the left-hand side is as in a symmetric algebra. The algebra structure on
the right-hand side is obtained from the natural inclusions

OSn+m(X) ↪→ OSn(X) ⊗OSm(X).

In other words, the above maps are the symmetrization maps,

(f1 ⊗ · · · ⊗ fm+n) �→
m!n!

(m+ n)!

∑
I⊆{1,...,m+n}

fI ⊗ fIc ,

where fI :=
∏

i∈I fi, and Ic is the complement of I.
This induces a coproduct on

⊕
n≥0 OSnX and hence an algebra structure on⊕

n≥0 O∗
SnX . The v-invariants form a subalgebra.

Moreover, replacing (OSnX)v by the derived pushforward π•M(SnX, v) for
π : SnX → pt the projection to a point, we obtain a bigraded algebra⊕

n≥0 π•M(SnX, v)∗, in de Rham and homological degrees. Then (7.4) becomes

Φ : Sym(t · π•M(X, v)∗[t]) →
⊕
n≥0

π•M(SnX, v)∗. (7.5)

Here, • is the homological degree, and the symmetric algebra is supersymmetric where
the parity is given by the homological degree (note that this differs from the de Rham
parity in the case that dimX is odd). By Proposition 2.36 and Example 2.37, in the
case that X is symplectic or Calabi-Yau, (7.5) can be restated as

Sym(t ·HdimX−•(X)∗[t]) →
⊕
n≥0

π•M(SnX, v)∗. (7.6)
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7.4. Quotients of M(SnX) supported on diagonals. For arbitrary (X, v),
since each Δλ is a closed embedding, one has a natural epimorphism

M(Xn, v) � (Δλ)∗M(X |λ|, v),

Next, note that M(Xn, v) is an Sn-equivariant D-module, and one has
(prn)∗M(Xn, v)Sn ∼= M(SnX, v). The morphism above descends to a natural map

M(SnX, v) � (prn)∗(Δλ)∗M(X |λ|, v)Sλ .

Summing over λ, we obtain a natural map

M(SnX, v) →
⊕
λ�n

(prn)∗
(
(Δλ)∗M(X |λ|, v)

)Sλ (7.7)

In the case that X is symplectic or Calabi-Yau, by Proposition 2.36 and Example 2.37
(7.7) can be restated as

M(SnX, v) →
⊕
λ�n

(prn)∗
(
(Δλ)∗Ω

�|λ|
X

)Sλ . (7.8)

7.5. Main result.

Theorem 7.9.

(i) If X has pure dimension at least two and is locally conformally symplectic or
Calabi-Yau, then with v = H(X), (7.7) and (7.5) are isomorphisms.

(ii) If (X, v) is an (odd-dimensional) contact variety with v = H(X), or (X, v)
is connected, smooth, and positive-dimensional with v = Vect(X), then
M(SnX, v) = 0.

For the case where X is a Calabi-Yau curve, v is one-dimensional, and M(SnX, v)
is not holonomic for n > 1.

Remark 7.10. In the symplectic and Calabi-Yau cases, one can alternatively
consider H(SnX), LH(SnX), and P (SnX), where now SnX is viewed as either a
Poisson variety (when X is symplectic) or as a variety equipped with a top polyvector
field (when X is even-dimensional Calabi-Yau) or more generally one can consider
H(SnX,D) and P (SnX,D) when X is odd-dimensional and equipped with a diver-
gence function on TSnX = T Sn

Xn obtained from the Calabi-Yau divergence function on
Xn. It is easy to see that the image of the map in (7.6) is invariant under all of these,
since on each leaf, i.e., the complement in a diagonal prn ◦Δλ(X

|λ|) of smaller diago-
nals, the image of the corresponding functionals on the left-hand side are supported
on this diagonal and invariant under all vector fields that preserve the given structure.
Moreover, in the symplectic case, using H(SnX) (and hence LH(SnX)) must give
the same result by Proposition 7.1.(i) (as already noticed in [ES13]). This recovers
the main result of [ES13] (where this observation was also used in the proof).

In the Calabi-Yau case, one can replace v on the RHS of (7.6) by P (SnX), since
here one also has P (X) ⊆ P (SnX), so the isomorphism factors through the same
expression with P (SnX)-invariants.

However, in the Calabi-Yau case, one cannot replace the RHS with H(SnX) or
LH(SnX)-invariants, since H(X) is not contained in these in general. In fact, for
n ≥ 2, these invariants are infinite-dimensional: already when X = A2 equipped
with the standard volume form, S2A2 ∼= (A2/(Z/2)) × A2, so the coinvariants
(OS2A2)H∧2Ξ(S

2A2) = (OS2A2)LH∧2Ξ(S
2A2) are infinite-dimensional by Remark 3.40.
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Remark 7.11. Theorem 7.9 may generalize in some form to the case where X
is not necessarily transitive, but has a finite degenerate locus. As a first step, in
[ES12], the authors prove that, when X ⊆ A3 is a quasihomogeneous isolated surface
singularity and v = H(X), then abstractly one still has an isomorphism

Sym(t · ((OX)∗)v[t]) ∼=
⊕
n≥0

((OSnX)∗)v, (7.12)

but only as algebras graded by symmetric power degree, not by the weight degree
in OX . (To correct this, one can assign t weight degree −d, where the hypersurface
cutting out X has weight d (note that here OX has nonnegative weight and (OX)∗

has nonpositive weight). Then one does obtain an isomorphism of graded algebras.)

Question 7.13. Does the abstract algebra isomorphism (7.12), graded only by
symmetric power degree, extend to the case where X ⊆ An is an arbitrary quasi-
homogeneous complete intersection with an isolated singularity, equipped with its top
polyvector field from Example 3.39? Can it be corrected to an abstract bigraded iso-
morphism by assigning t the appropriate weight?

Question 7.14. Does the abstract algebra isomorphism (7.12) extend to the case
of arbitrary (not necessarily quasihomogeneous) complete intersections with isolated
singularities? What about if the complete intersection condition is dropped?

Finally, we remark that, even as nonequivariant D-modules, the two sides of (7.7)
are not in general isomorphic, because M(SnX, v) is not in general semisimple.

In the case of the du Val singularities, the two sides of (7.7) are only abstractly
isomorphic as non-Gm-equivariant D-modules, by [ES13, §1.3]. One can introduce a
correction analogous to the above one to the RHS which makes the two sides isomor-
phic as Gm-equivariant D-modules, but we do not know of any natural isomorphism
between the two.

7.6. Smooth and contact varieties. By Theorem 7.9, in the case that (X, v)
is either (X,Vect(X)) for smooth X , or (X,H(X)) for X an odd-dimensional contact
variety, then M(SnX, v) = 0 for all n ≥ 0. However, it turns out that M(Xn, v)
itself is nonzero when n > dimX . Moreover, this can be explicitly computed as an
Sn-equivariant D-module.

We first construct some canonical quotients M(Xn,Vect(X)) � (Δn)∗ΩX . Let
d := dimX . We can identify global sections of (Δn)∗ΩX with OΔn(X)-linear polydif-

ferential operators ÔXn,Δn(X) → ΩΔn(X). Then, we consider the operator

(f1 ⊗ · · · ⊗ fn) �→ fd+2 · · · fn
∑

σ∈Sd+1

1

(d+ 1)!
sign(σ)fσ(1)dfσ(2) ∧ · · · ∧ dfσ(d+1).

We can see that this is OΔn(X)-linear (to ensure this, we had to skew-symmetrize over
Sd+1 rather than Sd). Moreover, the k[Sn]-orbit is actually spanned by k[Sn−1], and
as a representation of Sn−1, is

Ind
Sn−1

Sd×Sn−d−1
(sign�k).

Thus, it has dimension
(
n−1
d

)
. Let Ln be the Sn-equivariant local system supported

on Δn(X) of rank
(
n−1
d

)
corresponding to this quotient (as a nonequivariant local
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system, it is ((Δn)∗ΩX)⊕(
n−1
d )). More generally, given a decomposition {1, . . . , n} =

P1
· · ·
Pm into cells, let LP1 � · · ·�LPm
denote the corresponding tensor product of

local systems L|Pi| in the components Pi (i.e., these are all obtained by permutation
of components from the local system L|P1| � · · ·�L|Pm|). Note that this is nonzero if
and only if |Pi| > d for all i.

Theorem 7.15. Suppose that (X, v) is either (X,Vect(X)) for smooth X, or
(X,H(X)) for X an odd-dimensional contact variety. Then, we have an isomorphism

M(Xn, v) =
⊕

m≥1,P1�···�Pm={1,...,n}

LP1 � · · ·� LPm
. (7.16)

7.7. Quasi-locality and a generalization of Theorem 7.9.

Definition 7.17. Say that (X, v) is quasi-local if, for every n-tuple of distinct
points x1, . . . , xn ∈ X , and every choice of positive integers m1, . . . ,mn−1 ≥ 1, the
subspace of v of vector fields vanishing to orders mi at xi for all 1 ≤ i ≤ n − 1
topologically span v|X̂xn

.

Equivalently, as stated in the beginning of the section, the evaluation of v at every
subscheme supported at a finite subset S ⊆ X is the direct sum of its evaluations at
each connected component of S (i.e., at each subscheme of S supported on a point of
Sred).

Proposition 7.18. If (X, v) is quasi-local, then the leaves of (SnX, v) are the
images of the products of leaves of X under prn. In particular, if (X, v) has finitely
many leaves, so does (SnX, v), and the latter is holonomic.

Proof. At each point prn ◦Δλ(x1, . . . , x|λ|) for distinct x1, . . . , x|λ|,

v|prn ◦Δλ(x1,...,x|λ|)
∼= (TΔλ(x1,...,x|λ|)X

n)Sλ . (7.19)

Therefore, along each diagonal, the flow of v is transitive along the images of the
products of leaves of X .

Proposition 7.20. If X is Jacobi or equipped with a top polyvector field, then
(X,H(X)) is quasi-local. Similarly, (X,Vect(X)) is quasi-local.

Proof. We first consider the Jacobi case. Given points x1, . . . , xn ∈ X , and any
orders m1, . . . ,mn−1 ≥ 1, we can consider functions which vanish up to order mi at
xi for 1 ≤ i ≤ n − 1. Since the xi are distinct, these functions topologically span
ÔX,xn

. Therefore, the Hamiltonian vector fields of such functions topologically span

all Hamiltonian vector fields in the formal neighborhood X̂xn
.

Next consider the Calabi-Yau case. This is similar: we replace functions which
vanish up to order mi at xi for 1 ≤ i ≤ n−1 by (dimX−2)-forms with this vanishing
property. Again, these topologically span ΩX̂xn

, and we conclude the result.

For the case of all vector fields, this is immediate.

Theorem 7.21. Suppose that (X, v) is transitive and quasi-local and that X has
pure dimension at least 2.

(i) If v flows incompressibly, then (7.7) is an isomorphism if and only if:
(*) For all n, and any (or every) x ∈ X, the space of v-invariant polydif-

ferential operators Symn ÔX,x → ÔX,x is spanned by the multiplication
operator.
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(ii) If v does not flow incompressibly, then M(SnX, v) = 0 for all n ≥ 1 if
and only if, for all n ≥ 1, there are no v-invariant polydifferential operators
Symn ÔX,x → ΩX̂x

.

We will prove this theorem as a consequence of a further generalization (Theorem
7.24) which relaxes condition (*) below (and this result will be further generalized
from Symn X to Xn in Theorem 7.29). But, first, we explain why this theorem
implies Theorem 7.9:

Proposition 7.22.

(i) Let (X,H(X)) be locally conformally symplectic or Calabi-Yau of pure di-
mension at least two. Then (*) of Theorem 7.21 is satisfied.

(ii) In the case where (X, v) is either an odd-dimensional contact variety with
v = H(X), or smooth with v = Vect(X), then for all x ∈ X, all v-invariant
polydifferential operators Ô⊗n

X,x → ΩX̂,x are spanned over k[Sn] by the operator

(f1 ⊗ · · · ⊗ fn) �→ f1 · · · fn−dimXdfn−dimX+1 ∧ · · · ∧ dfn.

In particular there are no symmetric such operators.

Proof. (i) This relies on the Darboux theorem, following [ES13, Lemma 2.1.8]. In
a formal neighborhood X̂x, we can reduce to the case of the standard symplectic or
Calabi-Yau structure, since in the locally conformally symplectic case, H(X̂x) equals
H(X̂x, ω0), where ω0 is a standard symplectic structure, as explained in Example
3.25.

Now, given a polydifferential operator φ : Symn ÔX,x → ÔX,x, view it as a poly-

nomial function φ̄ : ÔX,x → ÔX,x on the pro-vector space ÔX,x. Then φ̄ is uniquely
determined by its restriction to functions with nonvanishing first derivative, since the
complement has codimension at least two. Let f ∈ ÔX,x be such a function. Let

GX,x be the formal group obtained by integrating H(X), which acts on ÔX,x. By the
Darboux theorem, there is a coordinate change by GX,x that takes f to a coordinate
function x1 of X . Now, if a polydifferential operator is invariant under H(X), it must
take x1 to a function invariant under the formal subgroup of GX,x preserving x1, i.e.,
to a polynomial in x1. Now, to be invariant under automorphisms in GX,x sending
x1 to λx1, φ must have the form x1 �→ c · xn

1 for some c ∈ k. It remains to note
that, if f, g ∈ ÔX,x are two functions with nonvanishing first derivative, again by the
Darboux theorem there is an automorphism of GX,x sending f to g so the constant
c must be independent of the choice of f . Therefore, φ̄(g) = cgn for all g. We can
easily see that this is v-invariant.

(ii) Restricting to X̂x, suppose first that v is arbitrary such that, in some co-
ordinate system, it contains the constant vector fields and an Euler vector field
Eu =

∑
imixi∂i for mi > 0. Let m :=

∑
imi. Let vol be the standard volume

form in this coordinate system. The polydifferential operators Ô⊗n
X,x → ΩX̂x

invariant
under the aforementioned vector fields are spanned by

(F1 ⊗ · · · ⊗ Fn) · vol, |F1|+ · · ·+ |Fn| = −m,

where each Fi is a constant-coefficient monomial in the ∂i, and here | · | denotes the
weighted degree with respect to Eu. This is a finite-dimensional vector space.

Now, in the case where v = Vect(X), in order to be invariant under all pos-
sible Euler vector fields, the operator must be a linear combination of terms such
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that F1 · · ·Fn is linear in each coordinate. Moreover, to be invariant under volume-
preserving linear changes of basis, i.e., under SL(TxX), we conclude that the operator
is spanned by images under Sn of (vol−1 ⊗ 1⊗(n−dimX)) · vol, as desired.

In the case v = H(X) and X is odd-dimensional contact variety, then we can take
Eu as in Example 3.24, so that F1 · · ·Fn must have total degree −(dimX + 1) (since
|xi| = |yi| = 1 and |t| = 2, and the partial derivatives have negative this degree).
Also, the polydifferential operator must be preserved by all linear changes of basis
preserving ∂t. In particular, since it is preserved by GL(〈∂xi

, ∂yi
〉), the operator must

be in the k[Sn]-span of

(
∧dimX−1〈∂xi

, ∂yi
〉 ⊗ ∂t ⊗ 1⊗(n−dimX)

)
· vol.

Since it is preserved by transformations xi �→ xi + λt for λ ∈ k, we conclude in fact
that it is in the k[Sn]-span of (vol−1 ⊗ 1⊗(n−dimX)) · vol, as desired.

7.8. General decomposition statement. First, we generalize Theorem 7.21
by replacing (*) by a general decomposition statement about M(SnX, v). Then (*)
becomes a multiplicity-one condition.

Definition 7.23. Given a smooth affine variety X and an integer m ≥ 1, let
PDiff(OX ,ΩX ,m+1) be the space of polydifferential operators O⊗m

X → ΩX of degree
m, i.e., linear maps which are differential operators in each component.

Note that there there is a natural action of Sm+1 on PDiff(OX ,ΩX ,m+1) given
by viewing these operators as distributions on the diagonal in Xm+1, i.e., as sections
of the DXm+1-module (Δm+1)∗ΩX , which has its natural Sm+1-action. The Sm action
is just by permutation of components, and the extension to Sm+1 is explicitly given by
the integration by parts rule. For example, when X = A1 with the standard volume,
this action restricted to the span of partial derivatives ∂1, . . . , ∂m is the reflection rep-
resentation of Sm+1 (viewed as a type Am Weyl group); explicitly this can be viewed
as the usual permutation action on ∂1, . . . , ∂m+1 where we set ∂m+1 = −

∑n
i=1 ∂i.

For all m ≥ 1, let Lm be the maximal quotient of M(SmX, v) supported on the
diagonal, i.e., Lm = (prm ◦Δm)∗(prm ◦Δm)∗M(SmX, v) (which at least makes sense
when M(SmX, v) is holonomic, as in the quasi-local transitive case).

Theorem 7.24. Suppose that (X, v) is quasi-local and transitive and has pure
dimension at least two. Then, there is a canonical isomorphism

M(SnX, v) ∼→
⊕
λ�n

(prn)∗(Δλ)∗L
Sλ

λ , Lλ := Lλ1 � · · ·� Lλ|λ|
. (7.25)

Moreover, the rank of Lm is equal to the dimension of (PDiff(ÔX,x,ΩX̂x
,m)v)Sm .

The canonical isomorphism is given by the direct sum of the morphisms

M(SnX, v) � (prn)∗(Δλ)∗L
Sλ

λ , (7.26)

obtained by adjunction from the canonical quotients (prn ◦Δλ)
∗M(SnX, v) � LSλ

λ .
The theorem implies that composition factors from distinct leaves do not appear

in nontrivial extensions:

Corollary 7.27. In the situation of the theorem, M(SnX, v) is a direct sum of
intermediate extensions of local systems on the leaves (locally closed diagonals).
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Proof. For each diagonal Xλ := prn ◦Δλ(X
|λ|), let jλ : X◦

λ ↪→ Xλ be the open
embedding of the complement of smaller diagonals, i.e., such that X◦

λ is a leaf of SnX .

Let j̃λ : X̃◦
λ ↪→ Δλ(X) ⊆ Xn be the preimage of X◦

λ. Then, for each factor in (7.25),

j∗(prn)∗(Δλ)∗L
Sλ

λ
∼= (prn)∗j̃

∗
λ(Δλ)∗L

Sλ

λ .

Since prn is a covering of Y ◦
λ onto its image (with covering group Sλ), the above is a

local system on X◦
λ. It now suffices to prove that

(prn)∗(Δλ)∗L
Sλ

λ
∼= j!∗j

∗(prn)∗(Δλ)∗L
Sλ

λ . (7.28)

This follows because, since prn is finite, the singular support of (prn)∗(Δλ)∗L
Sλ

λ is
the closure of the conormal bundle of the leaf prn ◦Δλ((X

|λ|)◦), where (X |λ|)◦ is the
complement in X |λ| of the images of all diagonal embeddings of Xr for all r < |λ|.

We can make a similar statement about M(Xn, v) itself: Let L̃m =
(Δm)∗Δ

∗
mM(Xm, v) be the maximal quotient ofM(Xm, v) supported on the diagonal.

This is Sm-equivariant, and (L̃m)Sm = Lm.

Theorem 7.29. Let (X, v) be as in Theorem 7.24. Then, there is a canonical
isomorphism

M(Xn, v) ∼→
⊕
λ�n

Sn(L̃λ), L̃λ := L̃λ1 � · · ·� L̃λ|λ|
. (7.30)

Here, Sn(L̃λ) is the Sn-equivariant local system on the Sn-orbit of Δλ(X) whose
restriction to Δλ(X) is the NSn

(Sλ)/Sλ-equivariant local system L̃m.
Moreover, the rank of L̃m is the dimension of PDiff(ÔX,x,ΩX̂x

,m)v.

As in Corollary 7.27, it follows from this that the entire pushforward
(prn)∗M(Xn, v) on SnX is a direct sum of intermediate extensions of Sλ-equivariant
local systems on the diagonals corresponding to partitions λ � n.

7.9. Proof of Theorems 7.24 and 7.29. We will work with M(Xn, v). Since
this is Sn-equivariant and M(SnX, v) = (prn)∗M(Xn, v)Sn , this will also compute
the latter.

By transitivity and quasi-locality, the closures of the leaves of M(Xn, v) are the
diagonals Δλ(X

|λ|) together with the diagonals obtained from these by the action
of Sn. Hence, M(Xn, v) is holonomic and its composition factors are intermediate
extensions of local systems on these leaves. Similarly to (7.26), one has canonical
surjections

M(Xn, v) � (Δλ)∗L̃λ, (7.31)

and similarly for the orbits of these under Sn (there is one of these for each coset
in Sn/(NSn

(Sλ)), and each is a local system on the image of Δλ(X
|λ|) under the

element of Sn which is equivariant under the corresponding conjugate of the subgroup
NSn

(Sλ) < Sn). It suffices to prove the following:
(i) The quotient (7.31) is the maximal quotient supported on Δλ(X

|λ|), i.e., it
is (Δλ)∗(Δλ)

∗M(Xn, v);
(ii) For distinct λ or distinct orbits for a fixed λ, that the above factors have no

nontrivial extensions (i.e., the Ext group of the two is zero).
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For (i), by restricting to a formal neighborhood of a generic point y = Δλ(x) of
Δλ(X

|λ|), it suffices to find an isomorphism

HomD̂Xn,y
(M(Xn, v)|

X̂n
y
, (Δλ)∗ΩX̂|λ|

x
) ∼=

|λ|⊗
i=1

PDiff(ÔX,x,ΩX̂x
, λi)

v.

By quasi-locality, it suffices to restrict to the case |λ| = 1 (for all n). For this, note
that there is a canonical isomorphism

(Δn)∗ΩX̂,x
∼= PDiff(ÔX,x, n).

Moreover, for any DXn -module N , we have a canonical isomorphism
Hom(M(Xn, v), N) ∼= Nv, by considering the image of the canonical generator
of M(Xn, v). Putting these together, we deduce part (i).

For (ii), note that the factors (Δλ)∗L̃λ, as well as their images under the action of
Sn, are local systems on smooth closed subvarieties of Xn. Moreover, the intersection
of two of these subvarieties has codimension a multiple of dimX in each, which in
particular is codimension at least 2. Thus, the result follows from the following basic
lemma:

Lemma 7.32. [ES13, Lemma 2.1.1] Suppose that Z is a smooth variety, and
Z1, Z2 ⊆ Z as well as Z1 ∩ Z2 are smooth closed subvarieties, all of pure dimension.
Let L1,L2 be local systems on Z1 and Z2, respectively, and let i1 : Z1 → Z and
i2 : Z2 → Z be the inclusions. Then,

Extj((i1)∗L1, (i2)∗L2) = 0,

for j < (dimZ1 − dimZ1 ∩ Z2) + (dimZ2 − dimZ1 ∩ Z2). (7.33)

7.10. Proof of Theorem 7.21. (i) If v flows incompressibly, then we have
an isomorphism of modules over the Lie algebra v, ÔX,x

∼→ ΩX̂x
, obtained from the

formal volume at x preserved by v. Therefore, in the theorem, we can replace the
polydifferential operators described by (PDiff(ÔX,x,ΩX̂x

, n+1)v)Sn . Then, the result
is almost immediate from Theorem 7.24, except Theorem 7.21 deals with Sn-invariant
polydifferential operators, whereas the multiplicity spaces of Theorem 7.24 are more
symmetric: they are (PDiff(ÔX,x,ΩX̂x

, n+ 1)v)Sn+1.
Thus, it suffices to show that, if such v-invariant Sn+1-invariant polydifferential

operators of degree n are spanned by the multiplication operator for all n, then the
same is true requiring only Sn-invariance.

For this, note that, given a v-invariant polydifferential operator φ on ÔX,x of
degree n, then the space of v-invariant polydifferential operators of degree n + 1

includes the space Ind
Sn+1

Sn×S1
〈φ�k〉 spanned over Sn+1 by the operator f�g �→ φ(f)·g

for all f ∈ Ô⊗n
X,x and g ∈ ÔX,x.

To proceed, we will need the following technical combinatorial result, which we
prove below:

Lemma 7.34. Suppose that φ generates a Sn+1-representation V , and that φ is

Sn-invariant but not Sn+1-invariant. Then the Sn+1-representation Ind
Sn+1

Sn×S1
(V |Sn

�

k) extends to a unique Sn+2-representation, up to isomorphism, and this has a nonzero
Sn+2-invariant vector.
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Let us use the lemma to finish the proof of the first statement. We conclude from
the lemma that there exists a Sn+2-invariant, v-invariant polydifferential operator φ
on ÔX,x of degree n+1. We claim that this is not the multiplication operator (up to
scaling). Indeed, we could have assumed that φ were homogeneous of positive order
(since v preserves the grading by order of differential operators), so the latter Sn+2-
operator can be assumed to have positive order. This contradicts our hypothesis.
Hence, (*) of Theorem 7.21 is indeed satisfied.

(ii) If v does not flow incompressibly, M(X, v) = 0, by Proposition 2.36. Next,
suppose that there existed an Sn-invariant, v-invariant polydifferential operator φ :
Ô⊗n

X,x → ΩX̂x
but not a Sn+1-invariant one. Again, we can form the polydifferential

operator (φ�1), sending f1⊗· · ·⊗fn+1 to φ(f1⊗· · ·⊗fn)fn+1. So as before, we would

obtain that, as Sn+1-representations, PDiff(ÔX,x,ΩX̂x
, n+ 2)v ⊇ Ind

Sn+1

Sn×S1
(kn

� k).
By the same argument as above, this would contain an Sn+2-invariant operator. Thus,
M(Sn+2X, v) �= 0. So, if M(SnX, v) = 0 for all n ≥ 1, then there are no Sn-invariant,
v-invariant polydifferential operators φ : Ô⊗n

X,x → ΩX̂x
, for all n. The converse is clear

from Theorem 7.24.

Proof of Lemma 7.34. Under the assumption, V must include a summand iso-
morphic to the reflection representation kn (V is either this or kn with a trivial
representation). As a representation of Sn, k

n is the standard representation.
Thus, we can assume that V = kn. As an Sn-representation, V ∼= kn−1⊕k. Then,

for n ≥ 3, one computes the decomposition into irreducible Sn+1-representations:

Ind
Sn+1

Sn×S1
V |Sn

� k ∼= ρ(1,1)[n+1] ⊕ ρ(2)[n+1] ⊕ kn ⊕ kn ⊕ k,

where, given a partition λ � n+ 1, the representation ρλ is the irreducible represen-
tation with Young diagram λ. Moreover, given λ′ � m, we let λ′[n + 1] denotes the
diagram obtained from λ′ by adding a new row on top with n + 1 −m boxes. Now,
if the Sn+1-structure above extends to a Sn+2-structure, then the decomposition into
irreducible Sn+2-representations (up to isomorphism) must be

ρ(1,1)[n+2] ⊕ ρ(2)[n+2] ⊕ k.

We conclude that Ind
Sn+1

Sn×S1
〈φ � k〉 must contain a Sn+2-fixed vector.

In the case that n = 2, the second decomposition (as Sn+2 = S4-representations)
above is still valid, so we still obtain the Sn+2-fixed vector.
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Pures Appl. (9), 57:4 (1978), pp. 453–488.
[MS96] B. Martin and T. Siebert, Graded Lie algebras and quasihomogeneous complete

intersection singularities, J. Algebra, 186:1 (1996), pp. 299–313.
[MS98] L. Mangiarotti and G. Sardanashvily, Gauge mechanics, World Scientific Publish-

ing Co. Inc., River Edge, NJ, 1998.
[MY82] J. N. Mather and Stephen S.-T. Yau, Classification of isolated hypersurface singu-

larities by their moduli algebras, Invent. Math., 69:2 (1982), pp. 243–251.
[Omo80] H. Omori, A method of classifying expansive singularities, J. Differential Geom., 15:4

(1980), pp. 493–512 (1981).
[Sei67] A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math.,

89 (1967), pp. 22–42.
[Sie96] T. Siebert, Lie algebras of derivations and affine algebraic geometry over fields of

characteristic 0, Math. Ann., 305:2 (1996), pp. 271–286.
[SP54] M. E. Shanks and Lyle E. Pursell, The Lie algebra of a smooth manifold, Proc.

Amer. Math. Soc., 5 (1954), pp. 468–472.
[Yau82] Stephen S. T. Yau, Various numerical invariants for isolated singularities, Amer. J.

Math., 104:5 (1982), pp. 1063–1100.



868 P. ETINGOF AND T. SCHEDLER



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Same as "Press Quality" except that Compatibility is set to Acrobat 8.0 \(PDF 1.7\))
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


