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GAGE’S ORIGINAL NORMALIZED CSF CAN ALSO YIELD THE

GRAYSON THEOREM∗

LAIYUAN GAO† AND SHENGLIANG PAN‡

Abstract. Mimicking Andrews-Bryan’s argument, it is proved in this note that Gage’s original
normalized curve shortening flow can also yield the Grayson theorem.
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1. Introduction. Let X0 be a simple, closed and smooth curve in a Euclidean
plane R

2. In the 1980s, Gage ([4, 5]) and Gage-Hamilton ([7]) investigated the fol-
lowing curve shortening flow (CSF):⎧⎨⎩

∂X̃
∂τ

(ϕ, τ) = κ̃(ϕ, τ)N(ϕ, τ), (ϕ, τ) ∈ S1 × (0, ω̃),

X̃(ϕ, 0) = X0(ϕ), ϕ ∈ S1,

(1.1)

where κ̃(ϕ, τ) is the curvature of the evolving curve and N(ϕ, τ) its unit normal
vector field. They proved that if the initial curve is strictly convex then the evolving
curve shrinks to a “round” point in a finite time. In 1987, Grayson showed in [8]
that an embedded curve evolving under CSF can be deformed into a convex one that
ultimately shrinks to a point.

In the 1990s, Hamilton ([9]) and Huisken ([10]) gave estimates of some geometric
quantities of the evolving curve and showed that the type II singularities will not occur
if a simple curve evolves under the CSF. By quoting the classification of self-similar
solutions of the CSF given by Abresch-Langer ([1]), both Huisken and Hamilton gave
new proofs of Grayson’s theorem. In 2011, Andrews-Bryan ([2]) proposed an original
proof of Grayson’s theorem which is based on a refinement of isoperimetric arguments
of Huisken. They considered a normalized CSF so that the evolving curve has total
length 2π. They gave a new isoperimetric estimate and deduced that the curvature
converges exponentially to 1, which gives a self-contained proof of Grayson’s theorem.

In this note, we will imitate Andrews-Bryan’s argument to reconsider Gage’s
original normalization (see [5]) of the CSF so the bounded area equals π and give a
new proof of Grayson’s theorem. Comparing with Andrews-Bryan’s argument, the
asymptotic analysis of curvature is a bit more difficult. That is to say that the CSF
(1.1) is normalized by setting X : S1 × [0, ω) → R

2 as follows:

X(ϕ, t) =

√
π

Ã(τ)
X̃(ϕ, τ), t =

∫ τ

0

π

Ã(τ ′)
dτ ′, (1.2)
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where Ã(τ) is the area enclosed by the curve X̃(·, τ). Denote by A(t) the area enclosed
by X(·, t), then A(t) = π for every t. Under the normalization (1.2), X(ϕ, t) satisfies⎧⎪⎨⎪⎩

∂X
∂t

(ϕ, t) = κ(ϕ, t)N(ϕ, t) +X(ϕ, t), (ϕ, t) ∈ S1 × (0, ω),

X(ϕ, 0) =
√

π

Ã(0)
X0(ϕ), ϕ ∈ S1.

(1.3)

Direct calculations can imply that the curvature κ evolves as⎧⎨⎩
∂κ
∂t

= ∂2κ
∂s2

+ κ(κ2 − 1), (s, t) ∈ [0, L(t)]× (0, ω),

κ(s, 0) = κ0(s), s ∈ [0, L(0)],

(1.4)

here s stands for the arc length of the evolving curve X(·, t) and L(t) its length.
This paper is organized as follows. In section 2, Andrews-Bryan’s method of

distance comparison will be applied to study the flow (1.3). It is shown that κ(ϕ, t) is
bounded on S1× [0,+∞). And in Section 3 it is proved that κ converges to 1 as time
tends to infinity. It follows that the evolving curve converges modulo translations to
a unit circle. So there exists a positive number T0 such that the evolving curve X(·, t)
is strictly convex for t > T0.

2. The bound of the curvature. Denote by κ and κ̃ the relative curvature
of X(·, t) and X̃(·, τ), respectively. Under the normalization (1.2), one has ds =√

π

Ã(τ)
ds̃, κ(ϕ, t) =

√
Ã(τ)
π

κ̃(ϕ, τ) and

∂X

∂t
=

∂τ

∂t

∂

∂τ

(√
π

Ã(τ)
X̃(ϕ, τ)

)

=
Ã(τ)

π

√
π

(
−1

2

)(
Ã(τ)

)− 3

2 (−2π)X̃(ϕ, τ) +
Ã(τ)

π

√
π

Ã(τ)
κ̃N

=

√
π

Ã(τ)
X̃(ϕ, τ) +

√
Ã(τ)

π
κ̃N = X(ϕ, t) + κN,

which is (1.3). The following two lemmata 2.1 and 2.2 will be used in the present
note.

Lemma 2.1 (Theorem 3.2.1 of Gage-Hamilton [7]). If a smooth and simple curve
evolves according to the CSF and curvature of the evolving curve is bounded in the
time interval [0, τ0] then the evolving curve is embedded for each τ < τ0.

Denote by L(t) the length of the evolving curve X(·, t). From Lemma 2.1 and the
classical isoperimetric inequality, it follows that

L(t) ≥ 2π, t ≥ 0. (2.1)

As done by Hamilton ([9]), Huisken ([10]) and Andrews-Byan ([2]), define the
chord length by d(p, q, t) = ‖X(q, t) − X(p, t)‖ and the arc length along the curve
X(·, t) by l(p, q, t) =

∫ q

p
ds, here p, q are the parameters of the arc length. Following

Andrews-Bryan’s idea, we use their mysterious function

f(x, t) = 2et arctan
(
e−t sin

x

2

)
, x ∈ [0, π], t ∈ R.
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It is easy to compute that

lim
t→+∞

f(x, t) = 2 sin
x

2
, lim

t→−∞
f(x, t) = 0,

∂f

∂x
=

cos x
2

1 + e−2t sin2 x
2

≤ 1,

and

∂f

∂t
= 2et

[
arctan

(
e−t sin

x

2

)
− e−t sin x

2

1 + e−2t sin2 x
2

]
� 2etg(e−t sin

x

2
),

here

g(z) = arctan z − z

1 + z2
.

Noticing that

g(0) = 0, g′(z) =
2z2

(1 + z2)2
> 0,

we have ∂f
∂t

> 0 for x > 0. The following function b(p, q, t) is also given by Andrews-
Bryan ([2]):

b(p, q, t) = inf

{
et̃
∣∣∣∣d(p, q, t) ≥ f(l(p, q, t),−t̃), 0 < l(p, q, t) ≤ π

}
.

By Lemma 2.1, one obtains that the evolving curve is embedded if the flow has no
singularity. So the above infimum in the definition of b(p, q, t) is always attained.
Since f and d are smooth, where 0 < l(p, q, t) < π, b(p, q, t) is also smooth and can
be defined by

d(p, q, t) = f(l(p, q, t),− ln(b)).

Lemma 2.2. (Lemma 2 of Andrews-Bryan [2]) For the function b(p, q, t) one has

lim
q→p

b(p, q, t) =

√
1

2
max {κ(p, t)2 − 1, 0} .

If one defines b(p, p, t) �
√

1
2 max{κ(p, t)2 − 1, 0} then, for each t, one gets a contin-

uous function b(p, q, ·) in the domain

{(p, q, ·)|0 ≤ l(p, q, ·) ≤ π}. (2.2)

By the continuity of b, the function b(t) � sup{b(p, q, t)|0 ≤ l(p, q, t) ≤ π} is bounded
if the normalised flow exists in the time interval [0, t].

From Lemma 2.2 it follows that

d(p, q, t) ≥ f(l(p, q, t),− ln b(p, q, t)) ≥ f(l(p, q, t), t−B) (2.3)

holds in the domain (2.2) for t = 0, here B = ln b(0). One can prove the inequality
(2.3) holds for all t > 0.
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Lemma 2.3. Let X(·) be a closed, embedded smooth curve in the plane. Denote by
e1, e2 the unit tangential vectors of the curve at the points X(p0) � P and X(q0) � Q,

separately. If p0 < q0, e1 = e2 and e1 makes an acute angle with
−−→
PQ, then the chord

L from P to Q has at least one other intersection X(s)(p0 < s < q0) with the curve.

Proof. This lemma is an understanding of the proof of Theorem 1 in Andrews-
Bryan’s paper [2]. Let us choose X(p0) as the origin, e1 as the positive direction of
the x-axis and the normal vector at X(p0) as the positive direction of the y-axis. In
this Cartesian coordinate system, one has a graph presentation

{f(x)|x ∈ (−ε1, ε1)}

of the curve near the origin:

{X(p)|p ∈ (p0 − ε0, p0 + ε0)},

here ε0, ε1 > 0. By the assumption, one obtains that f(0) = 0, f ′(0) = 0. Now, define

g(x) � r −
√
r2 − x2 − f(x),

here r is a positive constant. If |x| is small then

g(x) =
1

2

(
1

r
− f ′′(0)

)
x2 +O(x3).

Thus one can choose a proper r such that g(x) ≥ 0, x ∈ (−r, r) and g(x) = 0 if and
only if x = 0. Since the positive direction of the y-axis is the normal vector at X(p0),
one can choose r small enough such that the interior of the circle {(x, y)|x2+(y−r)2 =
r2} is contained in the interior of the domain enclosed by the curve X . Therefore,
there is a point (near the origin X(p0)) on the chord L lying in the interior of the
domain enclosed by X .

Noticing that the angle from
−−−→
Q0P0 to e2 is obtuse, one can show that there is

a point (near the point X(p0)) on the chord L lying in the exterior of the domain
enclosed by X . By the Jordan Theorem of simple closed curves, there exists at least
one other intersection X(s)(p0 < s < q0) where the chord L meets the curve X .

Define a function by

Z(p, q, t) = d(p, q, t)− f(l(p, q, t), t−B),

here 0 ≤ l(p, q, t) ≤ π. Z(p, q, t) is continuous in the domain

{(p, q, t)|0 ≤ l(p, q, ·) ≤ π, t ∈ [0, T ), T > 0}.

And Z is smooth where p 	= q. We will prove that Zε = Z + εe2t is positive in its
domain of definition for all ε > 0. If t = 0 then Zε ≥ ε > 0 by Lemma 2.2. If there

exists a t0 ∈ (0, t1] and p0 	= q0, l(p0, q0, t0) ∈ (0, L(t0)
2 ] such that

Zε(p0, q0, t0) = 0 = inf

{
Zε(p, q, t)

∣∣∣∣l(p, q, t) ∈ (
0,

L(t)

2

]}
,

then ∂Zε

∂t
= ∂Z

∂t
+εe2t ≤ 0 at the point (p0, q0, t0). If Zε(p, q, t0) > 0 for 0 ≤ l(p, q, t0) ≤

π then we have done. Otherwise, we will consider the case 0 ≤ l(p0, q0, t0) ≤ π.
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For arbitrary ξ, η ∈ R, let σ(u) = (p0 + ξu, q0 + ηu, t0). Then one has

∂

∂u
Z(σ(u)) = ξ(−〈w, e1〉+ f ′) + η(−〈w, e2〉 − f ′),

where

e1 =
∂X

∂s
(p0, t0), e2 =

∂X

∂s
(q0, t0), f ′ =

∂f

∂x
, w(p, q, t) =

X(q, t)−X(p, t)

d(p, q, t)
.

Since the first derivative of Zε vanishes at (p0, q0, t0), one gets that f ′ = 〈w, e1〉 =
〈w, e2〉. So there are two possibilities: either e1 = e2 or w bisects e1 and e2.

By using Lemma 2.3, one can exclude the first case, i.e. e1 = e2 as Andrews-
Bryan did in [2]. Also one can mimic the proof in Andrews-Bryan’s paper to exclude
the second case. Thus one can conclude the following theorem.

Theorem 2.4. The inequality (2.3) holds in the domain (2.2) for all t ≥ 0.

3. Proof of the Grayson theorem. In this section, we will first give a uniform
curvature bound of the evolving curve for t ∈ [0,∞). Then we will show that the
curvature converges to 1 as time tends to infinity.

Theorem 3.1. The flow (1.3) has a smooth solution in the time interval [0,+∞).

Proof. By the inequality (2.3), one gets d(p, q, t) ≥ f(l(p, q, t), t − B) for t ≥ 0,
here B is a positive constant dependent on the initial curve. If −t̃ ≤ t − B then
d(p, q, t) ≥ f(l(p, q, t),−t̃). Therefore, if 0 < l ≤ π, then

b(p, q, t) = inf

{
et̃
∣∣∣∣d(p, q, t) ≥ f(l(p, q, t),−t̃)

}
≤ inf

{
et̃
∣∣∣∣− t̃ ≤ t− B

}
= eB−t.

Now letting q tends to p (i.e., l → 0) can give us (by Lemma 2.2)√
1

2
max {κ(p, t)2 − 1, 0} ≤ eB−t,

which yields

κ(p, t)2 ≤ 1 + 2e2(B−t), (p, t) ∈ [0, L(t)]× [0,∞). (3.1)

By the standard bootstrapping argument, one can show that all derivatives of curva-
ture are bounded in any finite time interval. So we can draw our conclusion.

In order to prove Grayson’s theorem, it suffices to show that the curvature κ
becomes a positive function as times goes. If we can show that κ tends to a constant
1 as t → ∞, then we have done.

Denote by g, L, {T,N} and κ by the metric (i.e., g = 〈∂X
∂ϕ

, ∂X
∂ϕ

〉 1

2 ), the length,
the Frenet frame and the curvature of the evolving curve, respectively. By direct



790 L. GAO AND S. PAN

calculations one has the following equations under the flow (1.3):

∂g

∂t
=

(
1− κ2

)
g,

∂L

∂t
= L−

∫ L

0

κ2ds,

∂

∂t

∂

∂s
= (κ2 − 1)

∂

∂s
+

∂

∂s

∂

∂t
,

∂T

∂t
=

∂κ

∂s
N,

∂N

∂t
= −∂κ

∂s
T,

∂κ

∂t
=

∂2κ

∂s2
+ κ(κ2 − 1). (3.2)

Remark 1. If the initial curve X0 is strictly convex then Gage’s inequality (see
Inequality B of [4]) implies that the length L(t) is monotonically decreasing. However,
Gage’s inequality does not always hold for general simple closed plane curves (one can
find a counterexample given by Jacobowitz in [4]).

Since L(t) is not monotonic, its boundedness needs more careful work. On this
occasion, since we do not know whether L(t) converges to 2π or not, the trick used
in [2] to prove the convergence of Andrews-Bryan’s normalized flow does not work
for the flow (1.3). In the following, we will borrow techniques from PDEs to show
that the curvature of the evolving curve indeed converges to 1. And this convergence
property of κ immediately implies Grayson’s convergence result of the CSF.

From now on, we use the subindex of a function to stand for its derivative. For

example, κt = ∂κ
∂t
, κs = ∂κ

∂s
, κss = ∂2κ

∂s2
, . . . . By the evolution equation (3.2), one

obtains that

(κ2)t = 2κ(κss + κ3 − κ) = (κ2)ss − 2(κs)
2 + 2κ2(κ2 − 1),

(κs)t = (κ2 − 1)κs + (κt)s = (κ2 − 1)κs + κsss + 3κ2κs − κs

= κsss + 4κ2κs − 2κs.

Let f = (κs)
2 + 4κ2 + 8(1 + e2B)e2(B−t) − εt, then from (3.1) we get

ft = fss − 2(κss)
2 + 8κ2(κs)

2 − 4(κs)
2 − 8(κs)

2 + 8κ2(κ2 − 1)− 16(1 + e2A)e2(A−t) − ε

≤ fss + 8(κs)
2

(
κ2 − 3

2

)
+ 8κ2(κ2 − 1)− 16(1 + e2B)e2(B−t) − ε

≤ fss + 8(κs)
2

(
κ2 − 3

2

)
− ε.

And also from (3.1) it follows that there exists a T1 > 0 such that κ2 − 3
2 < 0 for

t > T1. Thus

ft ≤ fss − ε.

The maximum principle implies that f ≤ max{f(s, t)|0 ≤ t ≤ T1}, i.e., f has an upper
bound which is independent of the time t. Since the constant ε can be arbitrarily
chosen, (κs)

2 has an upper bound independent of t.
Compute that

d

dt

∫ L

0

κ2ds = 2

∫ L

0

κ(κss + κ3 − κ)ds+

∫ L

0

κ2(1− κ2)ds

= −2

∫ L

0

(κs)
2ds+

∫ L

0

κ2(κ2 − 1)ds, (3.3)
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which, together with (3.1), gives us

d

dt

∫ L

0

κ2ds ≤ 2e2(B−t)

∫ L

0

κ2ds.

So one has an upper bound of
∫ L

0 κ2ds as∫ L

0

κ2ds ≤ exp(e2B)

∫ L0

0

(κ0)
2ds. (3.4)

Because

d

dt

∫ L

0

(κs)
2ds = −2

∫ L

0

(κss)
2ds+ 7

∫ L

0

κ2(κs)
2ds− 3

∫ L

0

(κs)
2ds,

one gets, for t > T1,

d

dt

(
5

∫ L

0

κ2ds+

∫ L

0

(κs)
2ds

)
≤ 7

∫ L

0

(κ2 − 13

7
)(κs)

2ds+ 5

∫ L

0

κ2(κ2 − 1)ds

≤ 10 exp(e2B)

∫ L0

0

(κ0)
2dse2(B−t).

Integrating this inequality with respect to t implies that
∫ L

0 (κs)
2ds has an upper

bound independent of t and so is d
dt

∫ L

0
(κs)

2ds. Since

d

dt

∫ L

0

κ4ds = 4

∫ L

0

κ3(κss + κ3 − κ)ds+

∫ L

0

κ4(1− κ2)ds

= −12

∫ L

0

κ2(κs)
2ds+

∫ L

0

κ4(κ2 − 1)ds ≤ 2e2(B−t)

∫ L

0

κ4ds,

one gets ∫ L

0

κ4ds ≤ exp(e2B)

∫ L0

0

(κ0)
4ds.

So d
dt

∫ L

0
κ4ds has an upper bound independent of t. Therefore we get

Lemma 3.2. Under the normalized flow (1.3), each of the following geometric
quantities has an upper bound independent of the time t,

(κs)
2,

∫ L

0

κ2ds,
d

dt

∫ L

0

κ2ds,

∫ L

0

(κs)
2ds,

d

dt

∫ L

0

(κs)
2ds,

∫ L

0

κ4ds,
d

dt

∫ L

0

κ4ds.

In fact, one can use the estimate (3.1) to obtain a better result.

Lemma 3.3. The integral
∫ t

0

∫ L

0 (κs)
2dsdt is bounded on the time interval [0,∞)

and furthermore

lim
t→∞

∫ L

0

(κs)
2ds = 0. (3.5)
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Proof. Integrating the both sides of (3.3) with respect to t can give us∫ L

0

κ2ds−
∫ L

0

κ2
0ds = −2

∫ t

0

∫ L

0

(κs)
2dsdt+

∫ t

0

∫ L

0

κ2(κ2 − 1)dsdt,

which can yield

2

∫ t

0

∫ L

0

(κs)
2dsdt ≤

∫ L0

0

κ2
0ds+

∫ t

0

(
e2(B−t)

∫ L

0

κ2ds

)
dt

≤
∫ L

0

κ2
0ds+ exp(e2B)

∫ L0

0

(κ0)
2ds

∫ t

0

e2(B−t)dt.

Therefore
∫ t

0

∫ L

0
(κs)

2dsdt is bounded on the time interval [0,∞). Since
∫ L

0
(κs)

2 is

non-negative and d
dt

∫ L

0 (κs)
2ds has an upper bound for t ∈ [0,∞), one gets the limit

in (3.5) immediately.

Now we give the convergence of the curvature.

Theorem 3.4. Under the normalized flow (1.3), the curvature κ tends to 1 as t
goes to infinity.

Proof. By Theorem 3.1 and Lemma 3.2, one knows that both κ2 and (κs)
2 have

upper bound on the time interval [0,∞). So κ(·, t) has convergent subsequences. One
needs to show that any convergent subsequence of κ must converge to 1.

Since L(t) ≥ 2π, it suffices to show that L(t) has an upper bound for all t > 0.
Otherwise, there is an increasing sequence, denoted by {L(tj)}∞j=1, running to infinity
as tj → ∞. Since {tj} has a subsequence {tp} such that k(s, tp) is convergent as
tp → ∞. Denote by κ∞ the limit of k(s, tp). By (3.5), one obtains that

lim
t→∞

∫ ∞

0

(
∂κ∞

∂s

)2

ds = 0.

So κ∞ is a constant function. Noticing that
∫ L

0 κ2ds is bounded, one has∫ ∞

0

(κ∞)2ds < ∞,

which gives us κ∞ ≡ 0. So the limit curve is a part of a line. Since the evolving
curve becomes thinner and thinner and converges to a part of a line, there exist two
points X(s1, t) and X(s2, t) such that the distance between these two points tends to
0 as t → ∞ and |s1 − s2| always larger than a positive constant. This is impossible,
because the isoperimetric ratio d/l is invariable under rescarling and Huisken [10] has
proven that this ratio increases at its minimal value as time goes. Therefore, there
exists a positive constant C such that L(t) < C for all t > 0.

Combining the evolution equation (3.3) and that of L can give us∫ L

0

(κ2 − 1)2ds =

∫ L

0

κ4ds− 2

∫ L

0

κ2ds+ L

=
d

dt

∫ L

0

κ2ds+ 2

∫ L

0

(κs)
2ds+

∫ L

0

κ2ds− 2

∫ L

0

κ2ds+ L

=
d

dt

∫ L

0

κ2ds+ 2

∫ L

0

(κs)
2ds+

∂L

∂t
.
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Thus, we get∫ t

0

∫ L

0

(κ2 − 1)2dsdt =

∫ L

0

κ2ds−
∫ L0

0

κ2
0ds+

∫ t

0

2

∫ L

0

(κs)
2dsdt+ L− L0.

By Lemmata 3.2 and 3.3 and the above discussion, each of
∫ L

0 κ2ds,
∫ t

0

∫ L

0 (κs)
2dsdt

and L has an upper bound independent of the time t. So is
∫ t

0

∫ L

0 (κ2 − 1)2dsdt.
Noticing that

d

dt

∫ L

0

(κ2 − 1)2ds =
d

dt

∫ L

0

κ4ds− 2
d

dt

∫ L

0

κ2ds+
∂L

∂t

= −12

∫ L

0

κ2(κs)
2ds+

∫ L

0

κ4(κ2 − 1)ds

+2

∫ L

0

(κs)
2ds−

∫ L

0

κ2(κ2 − 1)ds+ L−
∫ L

0

κ2ds

≤ 2e2(B−t) exp(e2B)

∫ L0

0

(κ0)
4ds+ 2

∫ L

0

(κs)
2ds+ L,

one obtains that d
dt

∫ L

0 (κ2 − 1)2ds has an upper bound independent of t. Since the

integral
∫∞

0

∫ L

0 (κ2 − 1)2dsdt < ∞, one can get

lim
t→∞

∫ L

0

(κ2 − 1)2ds = 0. (3.6)

Now let us choose any convergent subsequence of curvature, denoted by k(s, ti),
here ti → ∞. Denote by κ∞ the limit of k(s, ti). Since L(ti) is bounded, there exists
a convergent subsequence, denoted by L(tp), p = 1, 2, . . . , tp → ∞. Let p tend to
infinity. Since k(s, ti) converges to κ∞ uniformly, by (3.6), one has∫ L∞

0

(κ2
∞ − 1)2ds = 0,

here L∞ is the limit of L(tp). Because κ∞ is smooth and the curve is positively
oriented, one can conclude that κ∞ ≡ 1. Hence the limit of the curvature is 1 as time
goes to infinity.

Remark 2. The above Theorem 3.4 implies that there exists a positive T0 such
that the evolving curve X(ϕ, t) is strictly convex for t > T0. This gives a proof of the
Grayson theorem.
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