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Abstract. In this paper, we give proofs of the family index formula and the equivariant family
index formula by the Greiner’s approach to heat kernel asymptotics. We compute equivariant family
JLO characters. We also define the equivariant eta form and give a proof of its regularity.
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1. Introduction. The first success of proving the Atiyah-Singer index theorem
directly by heat kernel method was achieved by Patodi [Pa], who carried out the “fan-
tastic cancellation” (cf. [MS]) for the Laplace operators and who for the first time
proved a local version of the Gauss-Bonnet-Chern theorem. After that several differ-
ent direct heat kernel proofs of the Atiyah-Singer index theorem for Dirac operators
appeared independently: Bismut [Bil], Getzler [Gel], [Ge2] and Yu [Yu], Ponge [Pol].
All the proofs have their own advantages. Motivated by the problem of generalizing
the heat kernel proofs of the index theorem to prove a local index theorem for families
of elliptic operators, Quillen [Qu] introduced the concept of superconnections, which
was developed by Bismut to give a heat kernel representation for the Chern character
of families of first order elliptic operators. Then using his probabilitistic method, Bis-
mut [Bi2] obtained a proof of the local index theorem for families of Dirac operators.
In [BV1],[Dol], they gave two different proofs of local index theorem for families of
Dirac operators. Using the method of Yu, Zhang gave another proof of the local index
theorem for families of Dirac operators in [Zh1]. The first purpose of this paper is to
give another proof of the local index theorem for families of Dirac operators by the
Ponge’s method in [Pol].

The Atiyah-Bott-Segal-Singer index formula is a generalization of the Atiyah-
Singer index theorem to the case with group actions. In [BV2], Berline and Vergne
gave a heat kernel proof of the Atiyah-Bott-Segal-Singer index formula. In [LYZ], Laf-
ferty, Yu and Zhang presented a very simple and direct geometric proof for equivariant
index of the Dirac operator. In [PW], Ponge and Wang gave a different proof of the
equivariant index formula by the Greiner’s approach of the heat kernel asymptotics.
In [LM], in order to prove family rigidity theorems, Liu and Ma proved the equivari-
ant family index formula. The second purpose of this paper is to give another proof
of the local equivarint index theorem for families of Dirac operators by the Greiner’s
approach of the heat kernel asymptotics.

It is known, due to Connes [Co] and an equivalent but convenient version due
to Jaffe, Lesniewski and Osterwalder, also known as a JLO formula [JLO], that the
Chern character of a #-summable Fredholm module (H, D) over a unital C*-algebra
A, takes value in the entire cyclic cohomology of A. JLO characters were computed in
[CM1] and [BIF]. An explicit formula of an equivariant JLO character, associated to
the invariant Dirac operator, in the presence of a countable discrete group action on
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a smooth compact spin Riemannian manifold, was given by Azmi, [Az1]. Moreover,
in [Az1] it was shown that this equivariant cocycle is an element of the delocalized
cohomology, and it can be paired with an equivariant K-theory idempotent. In the
case when G is a compact Lie group, Chern and Hu [CH] gave an explicit formula
of an equivariant Chern-Connes character, associated to a G-equivariant f-summable
Fredholm module. In [PW], Ponge and Wang computed equivariant Chern-Connes
characters by the Greiner’s approach of the heat kernel asymptotics.

On the other hand, Wu [Wu] constructed a bivariant Chern-Connes character
for (a special class of) # summable modules, by incorporating the JLO formula and
the superconnectiom formalism of Quillen. Wu’s bivariant character takes values in
the bivariant cyclic theory described by Lott [Lo|, who constructed it as a combina-
tion of entire cyclic (co)homology and noncommutative de Rham homology of graded
differential algebra. Then by adopting Wu’s method and employing Bismut’s super-
connection together with the canonical order calculus developed by Simon in [CFKB],
Azmi [Az2] expressed the local formula for families in terms of differential forms on
the base and the Chern roots of the fibration. In [Zh2], Zhang announced a different
method to compute the family JLO characters by developing the family version of
the method in [CH] and [Fe]. In the third part of this paper, we give details of the
announcement in [Zh2] and compute the equivariant family JLO characters.

In [APS], Atiyah, Patodi and Singer proved the Atiyah-Patodi-Singer index theo-
rem for manifolds with boundary and they introduced the eta invariants. Bismut and
Freed gave a simple proof of the regularity of eta invariants in [BiF]. In [Po2], Ponge
gave another proof of the regularity of eta invariants using the method in [Pol]. Bis-
mut and Cheeger generalized the Atiyah-Patodi-Singer index theorem to the family
case in [BC1,2]. They used the eta form for families of Dirac operators. The reg-
ularity of the eta form was proved by the probabilistic method in [BiGS]. Donnelly
generalized the Atiyah-Patodi-Singer index theorem to the equivariant case and in-
troduced the equivariant eta invariant in [Do2]. Zhang proved the regularity of the
equivariant eta invariant by the Clifford asymptotics in [Zh3]. In this paper, we firstly
prove the regularity of the equivariant eta invariant by a similar method in [PW] and
by introducing the Grassmann variable. Then we define the equivariant eta form and
prove its regularity.

Using the approach of Ponge and Ponge-Wang to give new proofs of the equiv-
ariant family index theorem and the regularity of equivariant eta forms has two ad-
vantages. One is using the Volterra pseudodifferential calculus to get the heat kernel
asymtotic expansion instead of heat equation discussions as in [Yu], [Zhl], [BGV,
Chapter 2]. In [LYZ] and [Zh3], for proving the equivariant local index theorem and
the regularity of the equivariant eta invariants, transformed formulas between normal
and tubular coordinates are needed. In [LM], Liu and Ma used the finite propaga-
tion speed method in [Bi3] to prove the equivariant family index theorem. The other
advantage is that the transformed formulas between normal and tubular coordinates
are the consequence of a standard change of variable formula for pseudodifferential
symbols.

This paper is organized as follows: In Section 2, we give another proof of the local
index theorem for families of Dirac operators by the Ponge’s method. In Section 3, we
give another proof of the local equivarint index theorem for families of Dirac operators
by the Greiner’s approach of the heat kernel asymptotics. In Section 4, we compute
the equivariant family JLO characters. In Section 5, we define the equivariant eta
form and prove its regularity.
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2. The local index theorem for families of Dirac operators.

2.1. The Greiner’s approach of heat kernel asymptotics with form co-
efficients. In [Gr],[BGS], Greiner and Beals-Greiner-Stanton defined Volterra pseu-
dodifferential operators and gave the heat kernel asymptotics by Volterra pseudod-
ifferential calculus. A good summary on the Greiner’s approach of the heat kernel
asymptotics was given in [Pol]. In [Pol], Ponge gave a proof of the local index the-
orem by the Greiner’s approach of the heat kernel asymptotics. In this section, we
shall extend Volterra pseudodifferential calculus to the case with form coeffcients, i.e.
the family case. A local family index theorem was proved originally by Bismut in
[Bi2]. A superconnection due to Bismut played an important role in the proof of the
local family index theorem.

Let us recall the definition of superconnection due to Bismut. Let M be an n+¢q
dimensional compact connected manifold and B be a ¢ dimensional compact con-
nected manifold. We assume that 7 : M — B is a submersion of M onto B, which
defines a fibration of M with fibre Z. For y € B, 7~ !(y) is then a submanifolds M, of
M. Denote by T'Z the n-dimensional vector bundle on M whose fibre T, M, is the
tangent space at x to the fibre My (,). We assume that M and B are oriented. We
take a smooth horizontal subbundle TH M of TM. Vector fields X € I'(B, T B) will be
identified with their horizontal lifts X € T'(M, T* M). Moreover T/ M is isomorphic
to Ty (B via m.. We take a Riemannian metric on B and then lift the Euclidean
scalar product g of TB to TH M. We further assume that 77 is endowed with a
scalar product gz. Thus we can introduce on T'M a new scalar product gp @ gz, and
denote by V¥ the Levi-Civita connection on T'M with respect to this metric. Set
V2 denote the Levi-Civita connection on T'B and we still denote by VZ the pullback
connection on TH M. Let VZ = Pz(VE) where Pz denotes the orthogonal projection
to TZ. Set V¥ = VB & VZ and S = VL — V¥ and T be the torsion tensor of V.
Denote by SO(T'Z) the SO(n) bundle of oriented orthonormal frames in TZ. Now
we assume that bundle T'Z is spin. Denote by S(7Z) the associated spinor bundle
and VZ can be lifted to a connection on S(T'Z). Let D be the Dirac operator in the
tangent direction defined by D = >~ c(e}) i( 2) where VS(T2) is a spin connec-
tion on S(TZ). Set E be the vector bundle 7 (AT*B) ® S(T'Z). This bundle carries
a natural action mg of the degenerate Clifford module denoted as Clo(M). The Clif-
ford action of a horizontal cotangent vector a € I'(M, T}, M) is given by the exterior
multiplication mg(a) = e(«) acting on the first factor A T7; M in E, while the Clifford
action of a vertical cotangent vector simply is its Clifford action on S(T'Z). Define
the connection by ([BGV])

VE® = VEBe1+10 V7, (2.1)

w(X)(Y,Z) = g(V&Y, Z) — g(V}Y, 2), (2:2)
1

VO =vEe 4 50w (X)), (2.3)

for X,Y,Z € T(M,TM). Then the Bismut connection acting on I'(M, A(7*T*B) ®
S(TZ)) is defined by

n q
B=> c(ef)VE" + Z c(fIVE". (2.4)

i=1 =1
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Then by Proposition 10.15 in [BGV], B = D + A, where A,y is an operator with
coefficients in 2>1(B). By Theorem 10.17 in [BGV], we have

n n 1
F=B=-% (VP2 +) Vi, + =D+ Py, (2.5)
i=1 i=1 ‘

where r is the scalar curvature of fibres. Let /g be the k-simplex defined by
{(c0,++ yo6)|loo+ -0, =1, 0<0; <1}.
For a fixed t > 0, define the operator e~ by
e tF = emtD% 4 Z(—t)klk, (2.6)
k>0

where

I, = / eiUOtDZFH_]eiUltDQFH_] s eigk’ltDzFH_]eigktDde’, (2.7)
Ag

and where the sum is finite (see [BGV, p. 312]). Then

(% +Fe ™ =0, Fe ' = 'F. (2.8)

In the following, we formulate the Greiner’s approach of heat kernel asymptotics with
coefficients in ATZ B as in [Gr] and [BeGS]. Let Q¢ be given by

(Qou)(x,s) = /000 e Flu(x,t —s)]dt, ueT (M, xR,S(TM.))@AT:B. (2.9)

The operator Qo maps continuously from u to D'(M, x R, S(T'M,)) ® AT} B which
is the dual space of T'.(M, x R, S(T'M.)) ® AT B. By (2.8), we have

(F + %)Qou = Qu(F + %)u =u, w€l (M, xR,S(TM,))ANT;B, (2.10)
We define the operator
— O 1 _ (2, 9\ kip2 ., 91 2, O\ 1k
Q=(F+-)"'=(D*+5) +,§J( DHD? + 2 Fg (D + 571 (210)
where (D? + %)_1 is the Volterra inverse of D? + % as in [BeGS]. Then
Fr0-1-r: oqr+2y-1-r (2.22)
ot - 1, ot - 2, .

where Ry, Ro are smoothing operators. Let Kq,(x,y,t — s) be the distribution kernel
of Qp. That is

(Qou)(z,t) = /M . Ko, (z,y,t — s)u(y, s)dyds, (2.23)

and let k;(z,y) be the heat kernel of e~*¥. Similar to the discussions in [BeGS p.363],
we get

ky(x, when t > 0,
Ko(ayy = { 00 et =0 (224)
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DEFINITION 2.1. The operator P is called a Volterra WDO if (i) P has the
Volterra property, i.e. it has a distribution kernel of the form Kp(x,y,t — s) where
Kp(z,y,t) vanishes on the region t < 0.

(ii) The heat operator P + % is parabolically homogeneous, i.e. the homogeneity with
respect to the dilations of R™ x R is given by

- (6,7) = (M N7), (6, 7) eER™" xRY, X #0. (2.25)

In the sequel for g € S(R™*1) and A # 0, we let g) be the tempered distribution
defined by

(ga(& ), u(€, 7)) = A7 (g(6,7), u(ATHEATPT)), we SR (2.26)

DEFINITION 2.2. A distribution g € S(R™*1) is parabolic homogeneous of degree
m, where m € Z, if for any A # 0, we have gy = A\™g.

Let C_ denote the complex halfplane {Im7 < 0} with closure C_. Then:

LEMMA 2.3 ([BeGS, Prop. 1.9]). Let q(¢,7) € C((R™ x R)\0) @ AT;B be a
parabolic homogeneous symbol of degree m such that:
(i) q extends to a continuous function on (R™ x C_)\0 in such way to be holomorphic
in the last variable when the latter is restricted to C_.
Then there is a unique g € S(R"™1) @ AT* B agreeing with q on R"\0 so that:
(ii) g is homogeneous of degree m;
(iii) The inverse Fourier transform §(x,t) vanishes for t < 0.

Let U be an open subset of R™. We define Volterra symbols and Volterra ¥ DOs
on U x R"*1/0 as follows.

DEFINITION 2.4. The set SH(U x R"™) @ AT?B, m € Z , consists of smooth
functions q(z,&,7) on U x R™ x R with an asymptotic expansion q ~ ijo Gm—j,
where:

-q € C®(U x [(R™ x R)\0]) @ AT!B is a homogeneous Volterra symbol of degree L,
i.e. q 1s parabolic homogeneous of degree | and satisfies the property (i) in Lemma
2.3 with respect to the last n + 1 variables;

- The sign ~ means that, for any integer N and any compact K C U, there is a
constant Cxgapr > 0 such that for x € K and for |€| + |7z > 1 we have

1020205 (g = >~ ;) (2,6, 7)|| < Crvrapr(|€] + || 2)m—N1PI=2k - (2.97)
J<N

For ¢ = >, quw' where ¢ € SP(U x R"™) and w' € A'T?B, we define ||q|| =
S lal|lw!]] and ||w!|| is the norm of w! in (AT B, gT'P).

DEFINITION 2.5. The set W{H(U x R,ATZB), m € Z , consists of continuous
operators @Q from C°(Uy X Ry, AT B) to C°(U, x Ry, AT B) such that:
(i) Q has the Volterra property;
(ii) @ = q(x, Dy, D)+ R for some symbol q in ST/ (U xR, AT B) and some smoothing
operator R.
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In the sequel if Q is a Volterra DO, we let Kg(z,y,t —s) denote its distribution
kernel, so that the distribution K¢q(z,y,t) vanishes for ¢ < 0.

DEFINITION 2.6. Let ¢y (7,&,7) € C(U x (R"T1\0)) ® AT B be a homogeneous
Volterra symbol of order m and let g, € C*(U)@S' (R" )@ AT B denote its unique
homogeneous extension given by Lemma 2.53. Then:

- gm(x,y,t) is the inverse Fourier transform of g, (x,&,7) in the last n+ 1 variables;
- gm(x, Dy, Dy) is the operator with kernel ¢, (x,y — x,t).

The composition of ordinary Volterra symbols naturally extends to a composition
of Volterra symbols with form coefficients. Let Q and Q' be in U{}' (U x R, NT7 B)
and U7 (U x R, A\'T7 B) with the symbols q and q’. Let the composition of Q and
Q’ have the symbol qoq’, then

q5q' =wi Awas ®qoq (2.28)

where q = w1q, @' = wsq¢’ and ¢ o ¢’ is the ordinary composition of symbols corre-
sponding to the Volterra ¥ DO algebra multiplication ([Gr, BeGs|). Thus we have

UP(U x R,NTEB) x U2 (U x RyATEB) — U T72(U x R AYTIB). (2.29)

PROPOSITION 2.7. The following properties hold.
1) Composition. Let Q; € ¥ (U x R)@ AT; B, j = 1,2 have symbol q; and suppose
that Q1 or Qs is properly supported (see [Ta, p. 43]). Then Q1Q2 is a Volterra VDO
of order my + mo with symbol ¢15g2 ~ > iag‘qng‘qg.
2) Parametrices. Let Q = Q™+ Q<™ where Q™ is in V(U xR) (an order m Volterra
U DO without form coefficients in AT B) and Q<™ is in V3™ (U x R) @ ANT*B. We
assume that there is an operator P in W, (U x R) such that

Q"P=1-Ry, PQ™=1-R, (2.30)

where Ri, Ry are smoothing operators in W, (U x R). let

Q=P+> (-1)FPR="PI, (2.31)
k>0
then
QQ=1-R;, QQ=1-Rs (2.32)

where Ry, Ry are smoothing operators in U, (U x R) ® AT} B.

Proof. The claim 1) comes from (2.28) and 1) of Proposition 1 in [Pol]. By (2.30)
and (2.31) and direct computations, we get (2.32). O

By (2.11) and the fact that (D? + 9;)~! is a Volterra WDO of order —2 and that
Fiy is a first order Volterra DO, we get

PROPOSITION 2.8. The differential operator F + O is invertible and its inverse
(F +0;)~ is a Volterra DO of order —2.

Let Q € ¥}(U xR, AT} B) have symbol ¢ ~ Y~ ¢pm—j and gm—; = Zil Gm—j,sw*

where gp,—js € S™ (U x R) and w® € AT*B. We define the inverse Fourier trans-

form of gy—; by Gm—j; = Ziq:l Gm—j,sw®. Then we have
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LEMMA 2.9 (Compare with Lemma 2 in [Pol]). Let @ € ¥{}(U x R, AT B), we
have in local coordinates

KQ(IaIat) —GHED Ztl(I2 3] 2l xz, O 1) (233)
>0

Proof. Let Q = Eil Qrw, where Q, € ¥ (U x R) and w, € A"T*B. We note
that the leading symbol of Q, is probably zero. We set that the symbol ¢l of @, has

an asymptotic expansion ¢l"l ~ 37 >0 qLTl] ;- By Lemma 2 in [Pol], we have

Ko, (z,2,t) ~ t=EFEHD Y g[]ml_zl(x,o,n. (2.34)
1>0
By the equality
27
Ko(z,z,t) = ZKQT (2,2, t)wy, (2.35)
r=1

and the definition of the inverse Fourier transform of g,,—;, we get (2.33). O
By (2.24) and Proposition 2.8 and Lemma 2.9, we get
THEOREM 2.10 (Compare with Theorem 1.6.1 in [Gr]). In

C*(M,,End(S(T(M.)))) @ \NT} B,
we have

(z,2) ~t7 2 Ztlal ,t—= 0" @(F)(x) =G_2-2(z,0,1), (2.36)
>0

where q_o_o1(x,&,7) is the —21 —2 order symbol of (0; + F)~1 and the second equality
in (2.36) holds in local coordinates.

By the same reason with Lemma 2.9 and Proposition 2 in [Pol], we have

PrOPOSITION 2.11 (Compare with Proposition 2 in [Pol]).  Let P
C*®(M,,S(TM.,)) = C>*(M,,S(TM.)) be a differential operator of order m and let
hi(z,y) denote the distribution kernel of Pe ', Then in C>(M,,End(S(TM,))) ®
AT B, we have

he(z,2) ~ t~ %) +H)Zt bi(F)(x), t = 0%, bi(x) = Gopm)—a—m(,0,1),  (2.37)
>0

where qopm)—o—o(x,&,7) is the 2[%] — 21 — 2 order symbol of P(d; + F)~" and the
second equality in (2.37) holds in local coordinates.

2.2. The local family index formula. In [Bi2],[BV1],[Dol],[Zh1], several dif-
ferent proofs of the local index theorem for families of Dirac operators were given. In
this section, we shall give a new proof of the local family index formula by using the
Greiner’s approach of the heat kernel asymptotics with form coefficients. Comparing
with previous proofs, we use the Volterra calculus with form coefficients instead of
heat equation discussions to get the family heat kernel asymototics as in [Pol].
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Let us introduce some notations. For z € DB, denote by D, the re-
striction of D to the fiber acting on I'(M,,S(T'M.)). We set that the di-
mension n of fibre to be even. Then I'(M.,S(TM,.)) has a splitting as a
sum of I't(M,,S(TM.)) and I'"(M,,S(TM.)). The operator D, interchanges
't (M,,S(TM,)) and T~ (M., S(TM,)). Let D,y, D, _ be the restrictions of D,
to I'"(M,, S(T'M.,)) and I'~ (M, S(T'M.,)) respectively. By Chapter 9 in [BGV], the
difference bundle [kerD, ;| — [kerD, _] over B is well defined in the sense of K-
theory. The family index theorem presents a calculation of the Chern character of
the difference bundle as a differential form over B explicitly. We change the nor-
malization constant in the definition of the Chern character. Namely, for a vector
bundle V' with connection form 7 and curvature C, we set Ch(V) = Tr(exp(—C)).
Let A\(RTZ) — det? (%) and sz denote the integral along the fibre. Then

we have
THEOREM 2.12 (Atiyah-Singer [AS]). It holds that the form
(2im)"% [ A(RT?) (2.38)
M.

is a representative of Ch([kerD, 4] — [kerD, _]).

Let F be a complex vector bundle on M and sz be the twisted Dirac operator
along the fibre. Denote by ch(F') the Chern character of F', we can get a twisted index
bundle and the twisted family index theorem:

THEOREM 2.13 (Atiyah-Singer [AS]). It holds that the form
(2im) "% / A(RT?)ch(F) (2.39)
M

is a representative of Ch([kerDE ] — [kerDL _]).

We shall prove Theorem 2.12 and Theorem 2.13 similarly as follows. For ¢t > 0,
we set that S, is the spinor space on T, (M) and

1
Vi

For w € A(T;B) and A € Hom(Sy, Sz ), we define Trg(wA) = wTrs(A). By Proposition
4.1 in [Z1], we get

PROPOSITION 2.14 ([Bi2, Z1]). For ¢t > 0,

Y+ Hom(Sy, S2)® A (TFB) — Hom(S,, S,)@ A (TS B) hdye — —=hdy,. (2.40)

wt/ Trokf (z, x)dx
M

z

is a representative of Ch(lkerD, 4] — [kerD, _]).

By Proposition 2.14, in order to prove Theorem 2.12, we only need to prove the
following local family index formula:

THEOREM 2.15([AS]). We have

limy_, 01y / Trokf (z, z)dx = (2in)~ 2 / A(RT?). (2.41)

z
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In order to prove Theorem 2.15, let us recall the symbol map and the Getzler
order, then we compute the symbol map of the heat kernel. Let n be even and
End(S(T'M.)) is a bundle of algebras over M, isomorphic to the Clifford bundle
Cl(M.), whose fiber Cl,(M,) at © € M, is the complex algebra generated by 1 and
elements of 1) M, with relations

E-n+n-&=-2(mn), &neT;M.. (2.42)

Recall that the quantization map ¢ : AT (M,) — C1(M) and the symbol map o = ¢!

satisfy
o(c()en)) = EAn— (&) (2.43)
So, for £ and 7 in ATE(M.) we have
o(c(€)e(n?)) = €V An P mod A2 TE(M.), (244)

where ¢() denotes the component in AT (DM,) of & € AT(M,). Since we compute
the local index in a fixed fibre M., so we use an observation due to Getzler as in the

case of a single manifold. If e, --- ,e, is an orthonormal frame of T, M, then
i i1 J 0 if k#n
Tl“s[c(e L) -ecfe ’“)] = { (_21.)% . (2.45)

We shall prove (2.41) at a fixed point xg € M. Using normal coordinates centered at
xo in M, and paralleling 0; at xo along geodesics through ¢, we get the orthonormal
frame ey, -+ ,e,. By

k7(0,0) = K5(0,0,t) + O(t>) as t — 0%,
and by (2.45), we get

T oty /M Tk (2, 2)da = (—24) 3limy g / o[ Ko(0,0,8)].  (2.46)

z

We define the Getzler order in [Pol] as follows:
1 .
degd; = idegat = dege(dz;) = dege(dy;) = —dega’ = 1. (2.47)
Let Q € ¥}, (R"” x R, S(T'M.) ® A*T7 B) have symbol
JI 57 Z qul X 57 7 (248)

k<m’ =1

where wll € A'T*B and gy (z, &, 7) is an order k symbol. Then taking components in
each subspace AJT*M, and using Taylor expansions at # = 0 give formal expansions

. T .
U[q(.’L’7§,T)] ~ ZO’[qu(,’E,g’T)](J)wU] ~ Z Ja[axaqk,l(ovguT)](])w[l]' (249)
gkl gkl

The symbol —,0[80‘% 1(0,€, )] Nl is Getzler homogeneous of order k + j + 1 — |a.
So we can expand o[q(z, &, T)] a

1' 57 ZQm J) xz 57 ’ d(m) 7é 0, (250)

7=>0



768 Y. WANG

where q(,,—j) is a Getzler homogeneous symbol of degree m — j.

DEFINITION 2.16 ([Pol]). The integer m is called the Getzler order of Q. The
symbol q(,,) is the principle Getzler homogeneous symbol of ). The operator Q(,,) =
q(m) (@, Dz, Dy) is called the model operator of Q.

Denote by O(tg) a Laurant expansion about t2 whose lowest degree about t is %

LEMMA 2.17. Let Q € U3 (R” x R, S(T(M.)) @ N*T}B) have Getzler order m
and model operator Q). Then ast — 0" we have:

j—n—m-—2 j—n—m-—1

o[ Kg(0,0,8)]9) =wedOot™— = )+ 0@t = ), if m—j isodd;

j—m—m-—2 j—m—m-—1

o[ Kg(0,0,)]9) =t 2" Kq,, (0,0,1)9 +wtMO(E—= ) + O(t

j—n—m

);

if m—j is even, where [Kg(0,0,t)]Y) denotes the degree j form component in M,
and w°d, w9 are in A°YYT*B) @ A(T*(M,)). In particular m = —2 and j = n is
even, we get

o Kq(0,0,0)]™ = Ko, (0,0,1)™ + O(t). (2.51)

Proof. By (1.7) in [Pol], we get
Ko(0,0,6)~ S 3t o (0,0, 1)wl? (2.52)
mo—jo even [
where mg is the operator order of ). And then
oltiKQ(0,0.0]Y ~ > ST T ol (0,0, D]Vwl. (2.53)
mo—jo even [
Let L =mo — jo +j + 1. By @ having the Getzler order m, then L < m. Then
ol kQ(0,0,6)] ~ 3 ST S T T T 0l joa(0,0, D]Vl (2.54)
mo—jo even | L<m

We note that the leading term degree is L = m and mo —jo+1=m—j. When m —j
is odd, since mgy — jo is even, then [ is odd, then we get

j—m—m-—2 j—m—m-—1

o[ Ko(0,0,1)]9) =weddo™— =)+ 0@ = ). (2.55)

When L =m and m — j are even, [ is even. In this case, the leading coefficient is

U[(j(m) (07 07 1)](j) = Z U[ij—j—lJ(Ov 07 1)](j)w[l] = KQ(m) (0’ O’ 1)(].)' (2'56)
l

In the next term, L = m —1 and m — j are even and mg — jo +1+j = m— 1, then [ is
odd, so m —j—1is odd and ¢,,—;_1.4(0,0,1) = 0. Then the next term is Ot~z .0

In the sequel we say that a symbol or a ¥DO is Og(m) if it has Getzler order
< m. Similar to Lemma 4 in [Pol], we have:
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LEMMA 2.18. For j = 1,2, let Q; € UV (R" x R,S(T(M.)) ® N*TsB) have
Getzler order mj; and model operator Q(m,) and assume that either Q1 or Q2 1is
properly supported. Then we have:

Q1Q2 = [Q(m,)Q(my)] + Oc(mi +ma —1). (2.57)

Proof. Let Q; = w]@] for j = 1,2 where w; € /\lf(TZ*B) and @j € Ui (R™ x
R, S(T(M.)) has the Getzler order m; — I;. Then
Q1Q2 = w1 Aw2Q1Qs. (2.58)

By Lemma 4 in [Pol], we have

Q1Q2 = c|Qm, 1)@y 1)) + Oc(mi +ma — Iy — s — 1). (2.59)
By (2.58) and (2.59), we get (2.57). O

In the following, we compute the model operator of F in (2.5). Let xg,z € M,
and 7 (xo, ) be the parallel transport map in the bundle 7* A* (T} B) ® S(TM,)
along the geodesic from z to g, defined with respect to the Clifford connection V0.
Using this map, we can trivialize the bundle 7* A* (T¥B) @ S(T'M,). We note that
€1, ,en is the parallel transport frame with respect to V7'# and so mg(e;) is not a
constant matrix under above trivialization. But we have

LEMMA 2.19. ([BGV Lemma 10.25]) If ¢ is the Clifford action of the cotangent
vector dx; acting on E at x¢ and € is multiplication by f< in the exterior algebra
N (T¥B), we have

(e =c" + Zugsa; mo(f%) = &%, (2.60)
where ul, are smooth functions on U satisfying u' (x) = O(|z|).

LEMMA 2.20 ([BGV Lemma 10.26]). In the trivialization of E over U induced by
the parallel tmnsport map 7F (29, ), the connection VEO equals d + O, where

=—- Z R(0;,0))eaq, ep) m*mPa? + wab ymm® + g;(z); (2.61)
J;U«<b a<b
here m® represents ¢t or €* and fiqp = O(|2|?) and g;(x) = O(|z]).
By (2.5) and Lemma 2.19 and Lemma 2.20, we get

PRrROPOSITION 2.21. In the trivialization of E over U induced by the parallel
transport map 7F (29, x) and the normal coordinates, the model operator of F is

n 1 n
Foy=—Y (0~ 3> ayz;)’,  ay=(RT70:,,9;). (2.62)
=1 j=1

We note that lim; ot fM Trskf (z, z)dz does not depend on the trivialization.
Using the same discussions with Lemma 5 and Lemma 6 in [Pol], we get

LEMMA 2.22. Let Q be a Volterra paramatrixz for F + 0;. Then @ has the model
operator (Fioy + 9;) ™" and

K (g, +0,-1(0,0,1) = (47) "% A(RT?). (2.63)
y (2.46), (2.51) and Lemma 2.22, we proved Theorem 2.15.
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3. The local equivariant family index theorem. In [LM], Liu and Ma gave
a proof of the local equivariant family index theorem by the finite propagation speed
method in [B3]. In [PW], a new proof of the local equivariant index theorem was
given by the Volterra calculus. In this section, we shall give a new proof of the local
equivariant family index theorem by the Volterra calculus.

Let us give the fundamental setup. We assume that M and T'Z are oriented
and G is a compact Lie group which is a fiberwise isometry on M and preserves the
orientation of T'Z. Then G acts as identity on B. We also assume that the action of G
lifts to S(T'Z) and that the G-action commutes with D. By Proposition 1.1 in [LM],
we know that IndDY € K (B). Now let us calculate the equivariant Chern character
chy(Ind(D%)) in terms of the fixed point data of ¢ € G. Set M?¢ = {x € M, ¢z = x}.
Then 7 : M? — B is a fibration with compact fibre M?. By [BGV, Proposition 6.14],
TZ? is naturally oriented in M?. Let N denote the normal bundle of M ¢ then N =
TZ/TZ%. We fixed a fibre M, and denote by ¢ the lift of ¢ which maps S(T'(M,).) to
S(T(My)gz). We denote by M the fixed-point set of ¢, and for a = 0,--- ,n, we let
M? =Upcgen M j’ o» where M?  is an a-dimensional submanifold. Given a fixed-point
Zo in a component Mjfa, consider some local coordinates z = (z,--- , %) around .
Setting b = n—a, we may further assume that over the range of the domain of the local
coordinates there is an orthonormal frame e (z),- - - , ep(x) of N?. This defines fiber
coordinates v = (v1,--- ,v). Composing with the map (z,v) € N2(g9) — exp,(v)
we then get local coordinates x!,---, 2% v!, .- v® for M, near the fixed point z.
We shall refer to this type of coordinates as tubular coordinates. Then N?(gq) is

homeomorphic with a tubular neighborhood of M?. We have

THEOREM 3.1 ([LM]). For any t > 0, the form Str[grexp(—tF)] is closed and
its de-Rham cohomology class in B is independent of t and represents chy(Ind(D%))
in the de-Rham cohomology of B.

We shall use Theorem 3.1 to find a local index formula for chy(Ind(D%)) by
estimating Str[gyexp(—tF)]. By the Mckean-Singer formula, we have

Str[grexp(—tF)] = / Str[gk? (z, ¢(x))]dx

z

= | SUlBK ey 0(a), D] (3.1)

Let Q = (F +0;)72. Forx € M? and t > 0 set

Ig(z,t) := ¢(z) ! /N¢( )g(expmv)KQ(expmv,expm(d(x)v),t)dv. (3.2)

Here we use the trivialization of S(TM,) about the tubular coordinates. Using the
tubular coordinates, then

IQ(x,t)—/|< g(x,O)flg(x,v)KQ(x,v;x,gb/(:z)v;t)dv. (3.3)

Let
gl _ (v €, v57) = d(,0) 7 (@, 0) g (2,03 €, 15 7). (3.4)

Using the same proof as Lemma 2.9, we obtain the following proposition by Lemma
8.2 and Lemma 8.3 in [PW]
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PROPOSITION 3.2. Let Q € ¥}(M. x R, E), m € Z. Uniformly on each compo-
nent Mﬁa

ay

~ > GFEIID (2) as t— 0T, (3.5)
7=>0
where I]Q(:v) is defined in tubular coordinates by
. \%
@)= > / Os b ayiial) (@0:0,(1—¢'@)v; dv.  (3.6)
|o] <m—[%]425

By Proposition 8.7 in [PW] and Proposition 3.2 and the definition of )¢, we have

PROPOSITION 3.3. Let P : C®(M,,7m* NT;B ® S(T(M,))) — C>®(M,, 7" A
T*B® S(T(M,))) be a differential opemtor of order m.
(1 )Umformly on each component M?,,,

Ip(pyo,-—1(x,t) ~ Zt_(%+[%])+jlg()F+at),l(x) as t— 0T, (3.7)
Jj=0

(2)As t — 0T, we have

YiStr[pPe T~ Y ZZt (5+31+2)+ / . Str{gI i o)1 (@)]dz,  (3.8)

0<a<n 720 =1 z,a
where TY ()F+8 )-1 1 (x) denotes the l-degree component of Il(f()F+at),l(x) m AT, B.
Let
~ RTZ¢/2 ¢ 1 N9
ARTZ") =det? | ———L2— |1 vp(RN") i=det™2(1—¢e B ). (3.9
( ) € Sinh(RTZ¢/2) Ud’( ) € ( (b € ) ( )

For a top degree form w € C’OO( 20 NTH(B) @ N*T* M, o) in M, , with coefficients
in AT#(B), we denote by |w|(®) the Berezin integral which in AT}(B), ie. its
inner-product with the volume form of M, ,.

THEOREM 3.4 (Local equivariant family index theorem). Let xg € M?, then

~ n ~ (a)
lim¢_,0Str (ZS(;CO)th(FJ,-Bt)*l(xOut)} — ()% (2m) % |A(RT? )wy(RNT)| . (3.10)

REMARK. It is easy to generalize Theorem 3.4 to the twisted ¢-complex vector
bundle case.

By (3.1) and Lemma 8.1 in [PW], as t — 0T
" / SO (G (001 (2, (), )] d = i / Str(dlo(@, (x), O]de,  (3.11)
M. M,

By Theorem 3.1, Theorem 3.4 and (3.1), (3.11), we get a representative of ch,(Ind D).
In order to prove Theorem 3.4, we shall compute ¢ in tubular coordinates. Let
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€1,...,e, be an oriented orthonormal basis of Ty, M, such that eq, - - - , e, span TIOMj’
and eg+1,- -+ , €, Span Nfo . This provides us with normal coordinates (x1,- - ,x,) —
exp,, (zte; + -+ + 2"e,). Moreover using parallel translation enables us to construct
a synchronous local oriented tangent frame ey (), ..., e, (z) such that eq(z), -, eq(z)
form an oriented frame of TM?, and eqy1(x),- -+ ,e,(x) form an (oriented) frame
N? (when both frames are restricted to M?). This gives rise to trivializations of the
tangent and spinor bundles. Write

v (10
0=y v )
Let A(n) = AER™ be the complexified exterior algebra of R . We shall use the following
gradings on A(n),
Ny = €D N (n) = @ ¥ (n),

1<j<n E<a
1<b

I/\ I/\

where A/ (n) is the space of forms of degree j and /\k’z(n) is the space of forms dz™ A

S Adr' T with 1 <ip < - <ip <aanda+1 <ippy <--- < iy <M Given a form
w € A(n) we shall denote by w) (resp., w®1) its component in A7(n) (resp.,A"!(n)
). We denote by |w|(®?) the Berezin integral [w(*?)|(¢:0) of its component w*°) in
A0 (n). Then we have

LEMMA 3.5 ([PW,Lemma 9.5]). Let S, be the spinor space associated to R™ and
A € End(S,), then

StrlgA] = (=20)#27 2 det? (1 - ¢")[o(A4)|*
( )% Z | ((b)(O,b)O_(A)(a,bfb’)|(n). (312)
0<b'<b
Similar to Proposition 2.21, we get the same expression of the model operator of
F in the trivialization of E over U induced by the parallel transport map 7(z¢, )

about V74 and the normal coordinate. We will compute the local index in this
trivialization.

LEMMA 3.6. Let the operator Q € ¥, (R" x R, S) @ A(T}B) have the Getzler
order m and model operator Q (). Then ast — OﬂL

]ma

(1) ot Ig(0,1)]9) = weddO(t )OI if m— g s odd.
(2) o[l (0,6)]D = Ot ) Ig(m) (0, 1) —I—w"ddO( T o)
if m—j is even.
In particular, for m = —2 and j = a we get
(eI (0,8)] 0 = T_5(0,1)*0) + O(t3). (3.13)

Proof. By the change of variable formula for symbol, similar to (9.23) in [PW],
we have

q

2 —
j lal+|B8l=|y|=l=1=(a+2) (4
o0, 1)) ~ > Xt : 1 (314
la +[B] = |v[ — I even =1
I<m/, 2| <|B




VOLTERRA CALCULUS, FAMILY INDEX THEOREM e

where m/ is the operator order of ) and
e o A\ V
L = / 4, 1(0,0) 1 (02016 DLy 19) (0,00,(1 = ™ (0))os Dydu?, (3.15)

where ag_ ;(2',v) are smooth functions such that ag j(z) =1 when 8 =~ = 0. Since

@ has the Getzler order m, then all the coefficients If(j)ﬁ’y , with I+j+1—|a] >m are
\ H\ﬁ\*\ﬂ*l—f—(w&)

j—m—a—2 )

zero. So, 1fl+]+l—|a|<mand 2|v] < 18|, then isO(t™ =
and even is o(t™ 7 ) if we have [ +j +1 — |a| < m or (B,7) # (0,0).

Observe that terms in asymptotic (3.14) containing integer powers (resp. half
integer powers) of ¢ when [ is even (resp. odd) since a is even. When m — j is odd,

the leading term is O(tjimzjaf2 ) which is a half integer, so its coefficient is in Q°4(B)
and (1) is verified. When m — j is even, similar discussions show that

=)+ WMo T T )y ot
Then similar to the discussions in [PW], we prove (2). O

By (3.12) and Lemma 3.6 (2) and (3.13) and Lemma 9.13 in [PW], we get
Theorem 3.4.

o[t Ig(0,4)]9) = werO(t™ ). (3.16)

4. The equivariant JLO character for a family of the Dirac operators.
In [CH], Chern and Hu computed the equivariant JLO characters for invariant Dirac
operators. In [Az2], Azmi computed the JLO characters for a family of Dirac opera-
tors. In [Az3], Azmi constructed an equivariant bivariant cyclic theory, as a combina-
tion of equivariant cyclic and noncommutative de Rham theories for unital G-Banach
algebras, where G is a compact Lie group. By incorporating the JLO formula and
the superconnection formalism of Quillen, an equivariant bivariant JLO character of
Kasparov’s G-bimodule is defined, with values in the bivariant cyclic theory. In this
section, following the ideas in [CH], [Zh2] and [Fe], we compute the equivariant JLO
characters for a family of the Dirac operators.

Let C*(M) be the Banach algebra which is the completion of C°°(M) with re-

spect to the norm |f| := ||f]| + |[D, f]l|, for f € C>*(M). The commutator [D, f]
extends to a bounded operator on H = L?*(M,S(TZ)). The algebra C*(M) acts on
L(H)

(bounded operators on H) by multiplication. Denote by A the projective tensor prod-
uct of the Banach algebras C1(M) and C*(B), i.e A = C®(B)®C*(M), with the
projective tensor product norm.

Let M = AB® H be a A — C°°(B) bimodule, where A acts on the left of M
by letting C°°(B) act on A(B) by multiplication by left and C'(M) acts on H while
C*°(B) acts on M by multiplication from right. There is a continuous C*°(B)-valued
inner product on M. There is an obvious continuous action of ¢ € G' on M, by let-
ting ¢ act on H via ¢ and on AB via the identity map. Let B; = v/t;(B) be the
rescaled Bismut’ superconnection with the rescaled curvature F; = B? = ti;(F). If
hi® f; € A, 0 <i <2k are operators on M, we define the equivariant bivariant JLO
character by:

Chor(B:)(0)(ho @ fo,- -+ s hor @ far)
- /A st [pidho© foen

(B, hy ® file 52 50F LB hop ® for]e M2 F | g, (4.1)
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where Aoy = {(51,-++ ,821)| 0 < 57 < -+ < 895, < 1} is the simplex in R2*. We will
compute

limy_,0Chag (B:) (o).

In the following, we give some estimates about Chay(B:)(¢). Since B is compact,
we can fix a fibre M, and estimate Chay(B;)(¢). Let H be a Hilbert space. For ¢ > 0,
denote by ||.||q the Schatten p-norm on the Schatten ideal LP. Denote by L(H) the
Banach algebra of bounded operators on H.

LeEMMA 4.1 ([Si]). (i) Tr(AB) = Tr(BA), for A, B € L(H) and AB, BA € L.
(ii) For A € L', we have |Tr(A)| < ||Al1, [|Al| < ||Al]1-
(iii) For A€ LT and B € L(H), we have: [[AB|lq < ||BI|||Allg, |BAll, < [[B[l[All4-
(iv) (Holder Inequality) ]f% = % + %, p,q,r >0, Ae LP, Be L9 then AB € L"
and || AB|[, < [|Allp]|Bllq-

LEMMA 4.2. For any u > 0, ¢ > 0 and ¢ is small and any order | fibrewise
differential operator B with form coefficients, we have:

tD

2] (4.2)

le™“F B||y-1 < Cru~ 7t (trfe”

Proof. By (2.7), we have
—utF o m —voutD? —viutD?
e Bllus = || 3 (e [ e e
m>0 m
. FH‘] oo e_vm71UtD2F[+]€_Umw£D2§d’U||u71, (43)

We estimate the term of m = 2 in the right hand of (4.3), other terms are similar.
We Split A(Q) = JO U Jl U JQ where Jl = {(’00,111,1)2) S A(2)|’Ul Z %}

(’U,t)2|| ’ e—vgutD2F[+]e—v1utD2 F[+]e—v2utD2§d,U| |u*1
0
<) [ 1lem " P gyt lle”F PT(1+ DA ||||(1+ D) F Fy(1+ D) F |

Jo
—vyutD? L1 12 —woutD? -
e Py (1 4+ D) F By (14 D)% [[le™ "2 || (g1 + D)~ B]|dv

‘ uv u(v1+v2)
S(ut)z/ (Tre_§D2) ’ (Tre_tD2) o (wvgt) ™%
Jo

_ 42
2

[(1 4+ D?) =% Fry(1+ D)= |[||(1 + D?) =% Fiyy(1 + D)2 |||l + D*)~# Bl|dv
<Cy (Tre52%) " up) 411 (4.4)

where we use F]y; is a fibrewise first order differential operator and the equality

l—ut

sup{(1+2)%e 2"} = (ut) 2™ = . (4.5)

In the above estimate, we omit the norm of coefficient forms since B is compact. For
Jp and Jo we have similar estimates. For the general m, we get

||(—’U,t)m /A e—voutDzFH_]e—'ulutDQF[H . e—’um,lutD2

m

m
2

. F[_,_]e_”’"“tDQEdeufl < Oy (Tre_%DQ) (ut)_%"'
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By (4.3) and (4.6), we get (4.2). O

LEMMA 4.3. Let By, Bj be positive order p, q fibrewise pseudodifferential oper-
ators with form coefficients respectively, then for any s, t >0, 0 < u <1, we have
the following estimate:

+ + tD?

|[Bre™ "t Bye= I—WstF|| < €, 57 2 72 (tr]e” "1 ))%. (4.7)

Proof. Similar to the proof of Lemma 4.2, we have when ¢ is small and u > %,

[(1+ D)~ fem (2 (14 D) E|| < Co; le 7| < @, (4.8)

where Cy, C; are constants which do not depend on ¢, u. When u > %, by Lemma 4.2
and (4.8), we have:

||§ efustFE 67(17u)stF| |571

< |[Bi(1+D*)2|[|(1+ D*)2em 2" (14 D*) 2|

1+ D) R (14 DAJ[(1 4 D) LByl
< Cp,qsf%fﬁ(tr[ %])5, (4.9)

where we use

(14 D)Ee 3 (14 D30 = [le 3 (14 D). (4.10)
When u < %, by Lemma 4.2, we have:

|[Bre~ustF Bye~(1-wstF|

< |[Bre "7 (1 4+ D)~ [|[| (1 + D?)E Bae™ #91F|| s [l v DotF)|
p+a p+q ( tD?

< prqsz trle” 1 ])%. (4.11)

By (4.9) and (4.11), we have proved this lemma. O

Let B be a fibrewise operator with form coefficients and [ be a positive interger.
Write

o1l

B" = rB" "

|, B = B.

LEMMA 4.4. Let B a finite order fibrewise differential operator with form coeffi-
cients, then for any s > 0, we have:

sBlesF 4 (—I)NSNE[N} (s), (4.12)

where B (s) is given by

BM(5) = / e~ PN = (—w)sF gy o duy. (4.13)
AN
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Proof. Here we use Lemma 1.9 in [BeC],
1
(A e F] = — / e=F[A, Fle~(1-9F g, (4.14)
0

then similar to Lemma 3 in [Fe|, we prove this lemma. O
For h; ® f;, we have
[B,h; @ fj] = dp(h; @ fj) N+h @ [D, f]. (4.15)

Write T is dg(h; @ fj)A or h® [D, f],1 < j <2k and Ty = ho @ fo. By Lemma 4.4,
we have:

ToefsltFT1€7(52751)tFT2 . 67(52;@752)6,1)tFTlef(lfsgk)tF

N-1 (=DMt A g M ,Sgikﬁﬁ---“%

= T T Ly, ekl o=t
L A o[+ [T
N-1 At Ay 14N M Ag=1 _NgAj+d Ay 14+N
(=)™ a1 TS s T sy T a-1 N
+ TO[TI][ 1]
1s§s:2k Al,»»»,zxq:l—o Arle Agal
o [Tq_l][/\qﬂ]{[Tq][N] (Sqt)}e—(sq+1—sq)tD2 o Type— (1s20)tF (4.16)

Since To[T1|M) - - [T,_1]Pa=1lis a Ay 4 - -+ + A\, order differential operator and by
Lemma 4.2 and Lemma 4.3, we get (see pp. 61-62 in [Fe])

||wt/A% Y

1<q<2k
N—1 M+AAg_1+N A1 Ag—1 (N A+ Ag1+N
(_1) 1 q—1 st 'Sq—l Sq A q—1 D]
< Nl T[]
A1y Ag1=0 1 q—1-

Ty ] ([T sgt) e 5D e (st gy |
2k+ N4+ +Agg—dimM

~ Ot : ). (4.17)

So we get
THEOREM 4.5. (1) if 2k < dimM, then

Char(B)(0)(ho ® fo,- -+ s har @ far)

dimM —2k (_1))\1+...+)\% Ak _ \ N .
—h > S GG TM - [T e+ OV,

(4.18)

with the constant
1 1 1
CMFIA A2 A Ao 2k

(2) if 2k > dimM, then
Char (Bi)(¢)(ho ® fo, -, har @ far) = 0. (4.20)

C (4.19)
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Write Py \ :=To [Ty [Ty ]2kl We will compute
limtﬁm1/)tt‘A|+kStr[(ng7)\eftF].
By Lemma 2.18 and Proposition 2.21, we have
0(Pix) = To[Flay, o(T0)|M -+ [Floy, o(Tor)|*2) + Oc (2N + 2k — 1), (4.21)
Direct computations show that
[Flay,0(Tj)] = 0c(2), Oc([Fa),o(Ty)]M) < 2X; + 1. (4.22)
Then when (A1, , Aog) # (0,---,0), then
Oc(Pe) = Oc(2IA| + 2k = 1); Oc(Pia(F +0;)7") = Oc(2A| + 2k — 3).  (4.23)
By Lemma 3.5 and Lemma 3.6 (1), we have
il (o)1 (0,)) "0 = w0 MR 2) 4 O IR, (4.24)
where w®dd € Q°44(B). So in this case,
limy_, o+ it N T Str[@ Py ne ] = 0. (4.25)

When (A1, ,A2%) = (0,---,0). Then Og(ToT1---Tor) = 2k and Og(Pp(F +

91)~!) = Og(2k—2). The model operator of Py x(F408;) ™" is Too (T1) - - - o(Tax ) (Fl2)+
9;)~!. By Lemma 3.6(2), we get

limy o+ t* ot p, | (pio,)-1(0,8)] " = Too(T1) - o (Tok) I(pg 400 -1 (0, 1)),
(4.26)
By (4.25) and (4.26) and the lemma 9.13 in [PW], we get

THEOREM 4.6. The following equality holds
lim; o+ Chax (B:)(¢)(ho ® fo, -+ s har @ far)

1 n L S .
= (Tk)!(_l)2 ;(27‘() 2 /M:f/B Too(Ty) - - o(Top) A(RE )%(RN ). (4.27)

5. The regularity of the equivariant eta form.

5.1. The regularity of the equivariant eta invariant. In [BiF], Bismut and
Freed gave a simple proof of the regularity of eta invariants. In [Po2], Ponge gave
another proof of the regularity of eta invariants using the method in [Pol]. Zhang
proved the regularity of the equivariant eta invariant by the Clifford asymptotics in
[Zh3]. In this section, we shall extend the approach of [Po2] to the equivariant setting
and prove the regularity of the equivariant eta invariant by this approach. Then we
define the equivariant eta form and prove its regularity.

We shall give some notations. Let X be a compact oriented odd dimensional
Riemannian manifold without boundary with a fixed spin structure and S be the
bundle of spinor on X. Denote by D the associated Dirac operator on H = L?(X;S),
the Hilbert space of L2-sections of the bundle X. Suppose that ¢ acts on X by
orientation-preserving isometries and ¢ has a lift ¢ : T'(S) — T'(S) (see [LYZ]), then
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we have 5 commutes with the Dirac operator and qNS is a bounded operator. Then the
equivariant eta invariant is defined by

ng(D f/ T Tr[¢De 2% dt. (5.1)

We have
THEOREM 5.1 ([Zh3]). Ast — 07

Tr[¢DeP°] ~ O(t?). (5.2)

In order to prove Theorem 5.1, we introduce an auxiliary Grassmann variable z
as in [BiF], i. e. 22 = 0. The auxiliary Grassmann variable z may be considered
as one form on the base S! of the fibre bundle X x S* and set Og(z) = 1. By the
Duhamel principle, we have

exp(—t(D? — zD)) = exp(—tD?) + zt Dexp(—tD?). (5.3)
Set
)= 14 23 meled) (.4
xXr) = =z €Ty i)y .
27 2 cle
where (1, ,x,) is the normal coordinates under the parallel frame eq,- - , e, and
we consider h as hy where x is a cut function about (xy,- - ,x,). By [Zh3], we have
he(ei)h™ = c(e;) + Og(0); h(D? —zD)h™! = D? + zu, (5.5)

where Og(u) <0, wu contains no z and the equality
ztDexp(—tD?)(z,y) = h™ ' (x)exp(—t(D* + zu)(x,y))h(y) — exp(—tD?*)(x,y). (5.6)
Let
(D? +z2u)"t =D"%— 2D ?uD"2. (5.7)

We may consider D? + zu as the operator with 1-form coefficients on X x S*. Then
the Greiner’s approach of the heat kernel asymptotics with form coefficients in Section
2.1 works for D? + zu. By

(D? + zu+0;) "' = (D? +0;) ' — 2(D* 4+ 9;) 'u(D? +9,) . (5.8)

K(D2+zu+6t)*1(xa yvt) = K(D2+8t)*1(x7ya t) - ZK(D2+8t)*1u(D2+6t)*l(xvya t) (59)
Then

S(2)h ™ (@) K (D2 sy on -1 (2, 6(2), )h(¢(x))
= ¢(x)h (2) K (p2ra,)-1 (x,6(x), t)h(d(x))
t).

(
— 20(2) K (D210, 1u(D?10,) 1 (T, (), (5.10)
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Recall since the dimension n is odd, we have

. . 2[n/2] if k=0
Trle(e) - c(e™)] = 0 if0<k<n (5.11)
(—i)ln/2A+1g[n/2 if k=n.

Similar to Lemma 3.5, we have:

LEMMA 5.2. Let A € C1°Y(n) C End(S,,), then

+1 n—1

Tr[$pA] =(—i) "3 22 27 5 det? (1 — ¢™)[o(A4)| )

(=) T2 Y7 (@) o). (5.12)
0<b'<b

We know that Lemma 9.12 in [PW] also holds for the odd dimensional manifold
X and when a is odd. We know that (D? + 8;) "'u(D? 4+ 9;)~* has the Getzler order
—4 and odd Clifford elements. By Lemma 8.1 and Lemma 9.12 in [PW] and Lemma
5.2 for (D? + 0;) " tu(D? + 9,)~! and j > a, so

/X TBK 2 10,)-tu(p210p)-1 (@ &), O)]dz = O(t3). (5.13)

By equalities (5.10) and (5.13), in order to prove Theorem 5.1, we need to prove

a(x)hil(‘r)K(D2+3t)*l (LL', (b((E), t)h(¢(.’£)) = EZ\;(‘T)*KV(D2+(91:)71 (LL', (b((E), t) + O(tf ) )
5.14
This comes from the equality

n

h™H (@' v)e(e)h(z’, ¢/ (x)v) = c(eq) + 1ZC(ffi) Y [(¢'(x) = Dlje(e) — zai, (5.15)

2 .
j=a+1

and ¢ only contains the Clifford elements c(eqq1), - ,c(en).

5.2. The regularity of the equivariant eta form. In this section, the funda-
mental setup is the same as Section 2.1. But we assume the dimension n of the fibre
to be odd. Let ¢ be an isometry which acts fiberwise on M. We will consider that ¢
acts as identity on B. Let Tr®V®" be the trace on the coefficients of even forms on B.
We assume that kerD is a complex vector bundle. Then the equivariant eta form is
defined by

> ~dB;,
(¢) = /0 Tre"e“[qﬁd—;e_st]dt. (5.16)

Let T be the torsion tensor of V¥ and ¢(T) = 30 .\ pem dyadygc(T(%, &)).
Then

~ _ > even e C(T) —t
i0) = [ 5m a0+ e e (517)



780 Y. WANG

LEMMA 5.3. We assume that kerD is a complex vector bundle. Ast — 400, we
have

1 even e C(T) ¢ -3
2—\/ETK [1/Jt¢(D+T)e Fl~ o ?). (5.18)

Proof. Since 5 is a bounded operator, so the proof of Lemma 5.3 is the same as
the proof of Theorem 9.7 in [BGV]. O

Let e1(x), - - ep(x) denote the orthonormal frame of TZ. If A(Y) is any 0 order
operator depending linearly on Y € I'(M, T M), we define the operator (V,, + A(e;))?
as follows

n

(Ve + A€))® =Y (Veuw) + Alei(@))® = Vs v ey = AQ_ Veyey).  (5:21)
1 j

Then by [Bi2], we have

1 1
F=—(V7+ 5 < S(eej, fo > ejdya + 7 < S(ei) fa f5 > dyadys)® + 2 (5.22)

Set
1 n
h(z) =1+ idt;xiei. (5.23)
Then we have
1 1
he;h ™' = e; + dtLy; h(ieidt)h_l = seadt, (5.24)
1
VSR =V — gdtes +dtLs, (5.25)
1 1
h(§ < S(ei)ej, fa > ejdys)h™" = 3 < S(ei)ej, fo > €jdyq + dtLs, (5.26)
1 1
h( < S(ei)far 5 > dyadys)h™ = 3 < S(ei) fa, f5 > dyadys, (5.27)

where L1, Lo, L3 € Og(—1). By Proposition 2.10 in [BeGS], we have

) - (917 1 L (Stee fo) s

(S(e) s f3) duadys — gerdt)? +

F +dt(D +

0 , (5.28)

1=

By (5.24)-(5.28), we have

h[F + dt(D + @)]h—1 = F + dtu, (5.29)
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where O¢(u) < 0. By the Duhamel principle, we can get

tATE " [G(D + C(Z) Jexp(—tF)]
= Tr*"[gexp(—tF)] — Tr*V" [¢h~ exp(—t(F + dtu))h]. (5.30)
Then

tj%Trmn[q?(D + %)wteXP(_tF)]

_ Treven[&;wtexp(_tF)] — Tyeven [(;h_l’(/Jtexp(—t(F + dtu))h] (531)

We know that Lemma 3.6 is still correct. When we take Tr®V", the terms having
coefficients in °9¢ vanish. Similar to Section 5.1, we can get

THEOREM 5.4. Ast — 0T, we have

1y, g0 +

i Ye ] ~ O(t2). (5.32)

By Lemma 5.3 and Theorem 5.4, the equivariant eta form is well defined. When
n is even, we define

© dBp g
(9) ;:/0 Str[(bd—tte_sf]dt. (5.33)

Similarly, we may prove the regularity in this case.
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