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CHARACTERISTIC COHOMOLOGY OF THE INFINITESIMAL
PERIOD RELATION∗
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Abstract. The infinitesimal period relation (also known as Griffiths’ transversality) is the system
of partial differential equations constraining variations of Hodge structure. This paper presents a
study of the characteristic cohomology associated with that system of PDE.

Key words. Variation of Hodge structure, infinitesimal period relation (Griffiths’ transversal-
ity), characteristic cohomology, flag domain.

AMS subject classifications. 14D07, 32G20, 58A15, 58A17.

1. Introduction. Let Ď = GC/P be a (generalized) flag variety; here GC is a
complex, semisimple Lie group and P is a parabolic subgroup.1 The topic of this
paper is the characteristic cohomology associated with a differential system on Ď.
The differential system is given by the unique minimal GC–homogeneous bracket–
generating subbundle T1 ⊂ T Ď of the holomorphic tangent bundle. The equality T1 =
T Ď holds if and only if Ď admits the structure of a compact Hermitian symmetric
space. In all other cases, bracket–generation implies the distribution is as far from
integrable (or Frobenius) as it is possible to be.

A connected complex submanifold M ⊂ Ď is an integral submanifold (or solution)
of T1 if TxM ⊂ T1,x for all x ∈ M . Likewise, we will say that an irreducible variety
Y ⊂ Ď is a solution if TyY ⊂ T1,y for all smooth points y ∈ Y . Here, the case that Y
is a Schubert variety will be of particular interest.

Associated to this system is a differential ideal I ⊂ A in the ring of differential
forms with the property that M is a solution if and only if I|M = 0. Given any open
subset U ⊂ Ď, the de Rham complex (AU , d) induces a quotient complex, (AU/IU , d),
and the characteristic cohomology H•

I(U) = H•(AU/IU , d) is the cohomology of this
complex. We may think of the characteristic cohomology as the cohomology that
induces ordinary cohomology on integral manifolds M ⊂ U by virtue of their being
solutions of the system of differential equations.

As will be discussed below, the characteristic cohomology may be realized as the
cohomology of a complex of differential operators. Cohomology groups of this type
are of considerable interest (the salient questions including: When is the cohomology
finite dimensional? When does it vanish? When does a local Poincaré Lemma hold?);
see, for example, [1, 2, 7, 9, 10, 14, 21, 26, 27]. It should also be noted that the
characteristic cohomology considered here is closely related to the characteristic co-
homology of an exterior differential system (CCeds); indeed, we will be working with
the “Provisional Definition” of R. Bryant and P. Griffiths’s foundational [9].2
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1The notation Ď for GC/P comes from Hodge theory: we think of Ď as the compact dual of a

period domain (or, more generally, a Mumford–Tate domain).
2The inadequacy of the provisional definition from the perspective of exterior differential systems

is due to the necessity of considering derivatives all orders (notably for the purpose of identifying
conservation laws). For additional works on CCeds the reader is encouraged to consult [10, 16, 17].
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Characteristic cohomology on Ď. The first set of results address the case that
U = Ď. We begin with the observation that the characteristic cohomology is spanned
by the de Rham cohomology classes that are Poincaré–dual to the Schubert solutions
(Theorem 4.5). Next we show that that a homology class on Ď may be be represented
by a union of solutions if and only if it may be represented by a union of Schubert
solutions (Theorem 4.7). As a corollary we obtain a non-degenerate Poincaré–type
pairing between the characteristic cohomology and the I–homology (Corollary 4.9).

Characteristic cohomology on flag domains D ⊂ Ď. Motivated by Hodge
theory, we next turn to the case that D ⊂ Ď is a (generalized) flag domain; that
is, D is an open orbit of a real form GR of GC. When the isotropy group GR ∩ P
is compact, the flag domain may be realized as Mumford–Tate domain. The latter
generalize period domains and are the classification spaces for Hodge structures with
(possibly) additional symmetry; see [18] for details. When restricted to a flag do-
main D, the subbundle T1 is the infinitesimal period relation (also known as Griffiths’
transversality), the differential constraint governing variations of Hodge structure.3

Suppose that X ⊂ Γ\D is (the image of) a variation of Hodge structure; here Γ ⊂ GR

is a discrete subgroup acting properly discontinuously on D so that the quotient Γ\D
is a complex analytic variety, X is Kähler and algebraic, and the local lifts of X to
D are integral submanifolds of T1. The expectation is that Hodge structures on X
should arise universally; that is, should be induced from objects on Γ\D. (This is
why we take what Bryant and Griffiths term the “Provisional Definition” of charac-
teristic cohomology in [9].) For more on the distribution T 1 and the characteristic
cohomology H•

I(D) from the perspective of Hodge theory see J. Carlson, M. Green
and P. Griffiths’s recent [12] and the references therein. The invariant characteristic
cohomology H•

I(D)GR is studied in [28]; loosely speaking, this cohomology describes
the topological invariants of global variations of Hodge structure that can be defined
independently of the monodromy.

The main result of the paper for the characteristic cohomology on D is the iden-
tification of an integer ν > 0 with the property that Hk

I(U) � Hk(U) for all open
U ⊂ D and k < ν (Theorem 6.3 and (6.4)). Corollary to the result we find that (i) the
characteristic cohomology Hk

I(D) is finite dimensional for all k < ν (Corollary 6.5),
and (ii) a local Poincaré lemma holds for differential of the characteristic cohomology
in degree k < ν (Corollary 6.6). The integer ν is given by Kostant’s theorem on
Lie algebra cohomology. (A number of examples are discussed in Appendix A.) The
proof of Theorem 6.3 makes use of a realization of the characteristic cohomology on
D as the total cohomology of a double complex of GR–invariant differential opera-
tors (Theorem 5.30). The fact that the characteristic cohomology can be realized as
the cohomology of a complex of differential operators is not new; see, for example,
J. Daniel and X. Ma’s [14]. What is new in Theorem 5.30, and is essential for the ar-
guments establishing Theorem 6.3, is the explicit representation theoretic description
of the GR–homogeneous bundles and GR–invariant differential operators forming the
complex.

In the case that Γ is cocompact and neat, Griffiths [19, §III] conjectured that
Hk

I (X) has a weight k Hodge structure, for any k ≤ k0 with k0 the maximal dimension
of the ordinary integral elements of I. A natural approach to this conjecture is
to construct a characteristic Laplacian, and establish an isomorphism between the

3In general the IPR will not be bracket–generating; however, one may always reduce to this case
[28, Section 3.3].
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harmonic forms and the characteristic cohomology. Unfortunately, as shown by Daniel
and Ma [14] the characteristic Laplacian fails to be hypoelliptic in general. However,
their counter-examples to hypoellipticity are in degree k ≥ ν. So the approach may
be viable in degree k < ν; this will be investigated in the sequel.
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Simpson and Vladimı́r Souček; I thank them for their time and insight.

I gratefully acknowledge partial support through NSF grants DMS-1006353,
1309238. This work was completed while I was a member of the Institute for Ad-
vanced Study: I thank the institute for a wonderful working environment and the
Robert and Luisa Fernholz Foundation for financial support.

I also thank the referees for their valuable comments.

2. Flag varieties and flag domains. This section is a terse review of well–
established material, serving primarily to introduce notation and conventions. For
more detail see [15, 18].

A flag variety (or flag manifold) is a complex homogeneous space

Ď = GC/P

whereGC is a connected, complex semisimple Lie group and P is a parabolic subgroup.
A familiar example is the Grassmannian Gr(k,Cn) of k–planes in Cn; here the group
is GC � SLnC and P is the stabilizer of a fixed k–plane.

Let GR be a (connected) real form of GC. There are only finitely many GR–orbits
on Ď. An open GR–orbit

D = GR/V

is a flag domain. The stabilizer V ⊂ GR is the centralizer of a torus T ′ ⊂ GR, [15,
Corollary 2.2.3]. When D admits the structure of a Mumford–Tate domain, there
exists a compact maximal torus T ⊂ GR such that T ′ ⊂ T ⊂ V . We will assume this
to be the case throughout.4 In particular,

dimRT = rank gC .

Throughout we identify o ∈ D with both V/V ∈ GR/V and P/P ∈ GC/P .

2.1. Lie algebra structure. Let t ⊂ v ⊂ gR be the Lie algebras of T ⊂ V ⊂ GR.
Given a subspace s ⊂ gR, let sC denote the complexification. Then h = tC is a Cartan
subalgebra of gC. Let Δ = Δ(gC, h) ⊂ h∗ denote the roots of gC. Given a root α ∈ Δ,
let gα ⊂ gC denote the corresponding root space so that

gC = h ⊕
⊕
α∈Δ

gα . (2.1)

Since T is compact, the roots α ∈ Δ are pure imaginary on t ⊂ h. Therefore,

gα = g−α , (2.2)

where conjugation · on gC is defined with respect to the real form gR.

4In fact, if D is a Mumford–Tate domain, then V is compact. However, we will not need this.
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Given any subspace s ⊂ gC, let

Δ(s) = {α ∈ Δ | gα ⊂ s} .

Given a subspace s ⊂ gR, we will abuse notation by letting Δ(s) denote Δ(sC).
The facts that h = tC ⊂ vC and [h, vC] ⊂ vC imply that

vC = h ⊕
⊕

α∈Δ(vC)

gα .

As discussed above, vC is the centralizer of a subalgebra h′ = t′
C
⊂ h. Equivalently,

Δ(vC) = {α ∈ Δ | α(h′) = 0} .

In particular,

−Δ(vC) = Δ(vC) . (2.3)

A choice of simple roots Σ = {σ1, . . . , σr} ⊂ Δ is equivalent to a choice of positive
roots Δ+ ⊂ Δ. A choice of positive roots Δ+ is equivalent to a choice of Borel
subalgebra b ⊃ h of gC. Our convention is that Δ(b) = Δ+; that is,

b = h ⊕
⊕

α∈Δ+

gα . (2.4)

Define a parabolic subalgebra

p = vC + b . (2.5)

By (2.2) and (2.3),

p ∩ p = vC . (2.6)

2.2. Eigenspace decompositions. Let {S1, . . . , Sr} denote the basis of h dual
to the simple roots,

σi(S
j) = δji .

Then

vC = h′ ⊕ vssC ,

where h′ = spanC{S
i | i ∈ s+} is the center of vC, and vss

C
= [vC, vC] is the semisimple

subalgebra with simple roots

Σ(vC) = Σ ∩ Δ(vC) . (2.7)

Let

s+ = s+(vC,Σ) = {i | σi 
∈ Δ(vC)}
(2.6)
= {i | − σi 
∈ Δ(p)} .

index the simple roots of gC that are not roots of vC. (Equivalently, g
σi 
⊂ vC.) Define

E = E(vC,Σ) =
∑
i∈s+

S
i . (2.8)
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Remark 2.9. The endomorphism E is a grading element. Grading elements may
be viewed as infinitesimal Hodge structures, see [28, Section 2.3] for a discussion.

As an element of h, E is semisimple. Therefore, every gC–module decomposes into
a direct sum of E–eigenspaces. Given a module U, let Λ(U) denote the weights of U.
Then the E–eigenvalues of U are {λ(E) | λ ∈ Λ(U)}. If U = gC, then Λ(U) = Δ and
the eigenvalues are integers. Let

gC =
⊕
�∈Z

g� (2.10a)

be the E–eigenspace decomposition of gC; explicitly,

g� = {X ∈ gC | [E, X ] = �X} . (2.10b)

In terms of the root space decomposition (2.1) of gC, we have

g� =
⊕

α(E)=�

gα , for � 
= 0 ,

g0 = h ⊕
⊕

α(E)=0

gα .

Then (2.2) implies

g� = g−� . (2.11)

From (2.6) and (2.11) we see that

vC = g0 . (2.12)

Let

g+ =
⊕
�>0

g� and g− =
⊕
�>0

g−� .

Then (2.5) implies

p = g≥0 = g0 ⊕ g+ . (2.13)

The Jacobi identity yields

[g�, gm] ⊂ g�+m . (2.14)

The property (2.14) implies both g± are nilpotent, and that each

g� is a g0–module. (2.15)

The Killing form B : gC × gC → C yields a g0–module identification

g∗� � g−� . (2.16)

3. The infinitesimal period relation and characteristic cohomology.
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3.1. The infinitesimal period relation. The holomorphic tangent space at
o ∈ Ď is identified with gC/p, as a p–module, and the holomorphic tangent bundle is
the GC–homogeneous bundle

T Ď = GC ×P (gC/p) .

The equations (2.13) and (2.14) imply that g≥−1/p is a p–module. The homogeneous
subbundle

T1 = GC ×P (g≥−1/p)

is the holomorphic infinitesimal period relation on Ď.
Let T Ď denote the (real) tangent space, and TCĎ its complexification, so that

T Ď ⊕ T Ď = TCĎ .

The complexified infinitesimal period relation is

T1,C = T1 ⊕ T1 ⊂ TCĎ .

Finally,

T1 = T1,C ∩ T Ď

is the (real) infinitesimal period relation (IPR).
A variation of Hodge structure (VHS) is a solution of the IPR. By this we mean

either: (i) a connected complex submanifold M ⊂ Ď with the property that TM ⊂
T1|M ; or (ii) irreducible variety Y ⊂ Ď such that TyY ⊂ T1,y for all smooth y ∈ Y .
(Equivalently, the smooth locus M = Y 0 is a solution in the first sense.)

3.2. Bracket–generation. The eigenspace decomposition (2.10) satisfies

g�+1 = [g�, g1] and g−�−1 = [g−�, g−1] for any � > 0 , (3.1)

cf. [11, Proposition 3.1.2]. Equivalently, the subbundles T1 ⊂ TD and T1 ⊂ T D are
bracket–generating.

Remark 3.2. In general, the IPR, as it arises in Hodge theory, will not be
bracket–generating. However, for the purpose of studying the IPR, we may reduce to
the case that it is, cf. [28, Section 3.3].

3.3. Characteristic cohomology. Given an open subset U ⊂ Ď, letAU denote
the graded ring of smooth, complex–valued differential forms on U , and let IU ⊂
AU be the graded, differential ideal generated by the smooth sections ϕ : U →
Ann(T1,C)|U and their exterior derivatives dϕ. By construction IU is differentially
closed:

dIU ⊂ IU .

Whence the de Rham complex (AU , d) induces a quotient complex (AU/IU , d). The
characteristic cohomology of the IPR on U ⊂ Ď is the associated cohomology

H•

I(U) = H•(AU/IU , d) .

Note thatM ⊂ U is a VHS if and only if IU |M = 0. (For this reason, we also call I the
infinitesimal period relation.) Therefore, the characteristic cohomology pulls–back to
de Rham cohomology on M ; that is, there exists a natural map H•

I(U) → H•(M,C).
This is the sense in which the characteristic cohomology induces ordinary cohomology
on solutions.
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4. Characteristic cohomology on the compact dual. In this section we
consider the global characteristic cohomology; that is, we fix U = Ď. Through out this
section we simplify notation by writing A and I for AĎ and IĎ, respectively. We will
see that the Schubert varieties Xw ⊂ Ď and their homology classes xw ∈ H•(Ď,Z)
play a key rôle here. The terminology Schubert VHS indicates a Schubert variety
that is also a VHS (Section 3.1). The three main results of this section are as follows:
First, the characteristic cohomology is spanned by the cohomology classes dual to
the Schubert VHS (Theorem 4.5). Second, a homology class y ∈ H•(Ď,Z) may be
represented by a union Y1 ∪ · · · ∪ Ys of VHS if and only if it may be represented by
a union of Schubert VHS (Theorem 4.7). As a corollary to these two theorems, we
obtain the third result, an I–de Rham theorem (Corollary 4.9). Schubert varieties
and the characterization of Schubert VHS are briefly reviewed in Sections 4.1 and 4.2.

4.1. Schubert varieties. This section does little more than establish notation
for our discussion of Schubert varieties. The reader interested in greater detail is
encouraged to consult [28] and the references therein.

Given simple root σi ∈ Σ, let (i) ∈ Aut(h∗) denote the corresponding simple
reflection. The Weyl group W ⊂ Aut(h∗) of gR is the group generated by the simple
reflections {(i) | σi ∈ Σ}. A composition of simple reflections (i1) ◦ (i2) ◦ · · · ◦ (it),
which are understood to act on the left, is written (i1i2 · · · it) ∈ W . The length of a
Weyl group element w is the minimal number

|w| = min{� | w = (i1i2 · · · i�)}

of simple reflections necessary to represent w.
Let Wp ⊂ W be the subgroup generated by the simple reflections {(i) | i 
∈ s+}.

Then Wp is naturally identified with the Weyl group of g0. The rational homogeneous
variety G/P decomposes into a finite number of B–orbits

G/P =
⋃

Wpw∈Wp\W

Bw−1o

which are indexed by the right cosets Wp\W . The B–Schubert varieties of G/P are
the Zariski closures

Xw = Bw−1o .

Let

xw = [Xw] ∈ H•(Ď,Z)

denote the homology class represented by the Schubert variety. Borel [6] showed that
the Schubert classes form a free additive basis of the integral homology

H•(Ď,Z) = spanZ{xw | w ∈ W p} .

Since GC is path connected, any GC–translate gXw satisfies [gXw] = xw. We will
refer to any of these translates as a Schubert variety (of type Wpw).

Each right coset Wp\W admits unique representative of minimal length; let

W p � Wp\W

be the set of minimal length representatives. (See Appendix B for a terse discussion of
how W p is determined.) For a minimal representative w ∈ W p, the Schubert variety
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wXw is the Zariski closure of Nw · o, where Nw ⊂ G is a unipotent subgroup with
nilpotent Lie algebra

nw =
⊕

α∈Δ(w)

g−α ⊂ g− (4.1)

given by

Δ(w) = Δ+ ∩ w(Δ−) . (4.2)

Moreover, Nw · o is an affine cell isomorphic to nw, and dimXw = dim nw = |Δ(w)|.
Indeed

ToXw = nw .

For any w ∈ W p we have

|w| = |Δ(w)| = dimXw . (4.3)

4.2. Schubert VHS. A Schubert variety Xw is a VHS if and only if Δ(w) ⊂
Δ(g1), where Δ(w) is given by (4.2), cf. [28, Theorem 3.8]. A convenient way to test
for this condition is as follows. Let

ρ =

r∑
i=1

ωi = 1
2

∑
α∈Δ+

α

be the sum of the fundamental weights (which is also half the sum of the positive
roots). Define

ρw = ρ − w(ρ) =
∑

α∈Δ(w)

α . (4.4)

(See [22, (5.10.1)] for the second equality.) Then

|w| ≤ ρw(E) ∈ Z ,

and equality holds if and only if Δ(w) ⊂ Δ(g1); equivalently, Xw is a variation of
Hodge structure if and only if ρw(E) = |w|. See [28, Section 3.5] for details. Let

Wvhs = {w ∈ W p | ρw(E) = |w|}

be the set indexing the Schubert variations of Hodge structure.5

4.3. Characteristic cohomology. Let xw ∈ H•(Ď,Z) denote the cohomology
classes dual to the Schubert classes xw (Section 4.1). Roughly, the following theo-
rem asserts that the characteristic cohomology is spanned by the classes dual to the
Schubert VHS.

Theorem 4.5. Let pI : H•(Ď) → H•

I(Ď) be the ring homomorphism induced by
the natural map (A, d) → (A/I, d) of complexes. Then pI is surjective and

ker pI = span{xw | w ∈ W p\Wvhs} .

5The sets Wvhs ⊂ W p are denoted by Wϕ
I

⊂ Wϕ in [28].
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In particular, the map pI is given by

c =
∑

w∈Wp

cwx
w �→ cI ≡

∑
w∈Wvhs

cwx
w .

Thus, H•

I(Ď) ≡ span{xw | w ∈ Wvhs}.

Above, we use ≡ (in place of =) to emphasize that cI ∈ H•(Ď)/ker pI .

Proof. Given [28, (4.5)], this follows from the same arguments in [28, Sections
4.1.3–4.1.5] which establish [28, Theorem 4.1].

4.4. Homology of VHS. We next identify the homology classes y ∈ H•(Ď,Z)
that may be represented by a union of VHS. First, by Borel’s result (Section 4.3), the
homology class represented by a subvariety Y ⊂ GC/P is a linear combination of the
form

[Y ] =
∑

w∈Wp

nwxw , (4.6)

with nonnegative coefficients 0 ≤ nw ∈ Z. We will show that a homology class may
be represented by a (union of) VHS if and only if it may be represented by a union
of Schubert VHS.

Theorem 4.7. A homology class y ∈ H•(Ď,Z) may be represented by a union
of VHS if and only if

y =
∑

w∈Wvhs

nwxw with 0 ≤ nw ∈ Z . (4.8)

The I–homology of the IPR is the homology

H•,I(Ď) = span{[Y ] ∈ H•(Ď) | Y is a VHS} .

From Theorems 4.5 and 4.7 we obtain

Corollary 4.9 (The I–de Rham theorem for the compact dual). The Poincaré
pairing

H•,I(Ď) × H•

I(Ď) → C

is nondegenerate.

Proof of Theorem 4.7. Of course the implication (⇐=) is trivial: given (4.8), the
homology class y is represented by

Y =
∑

w∈Wvhs

nwXw .

For the converse (=⇒) we may assume that y = [Y ] with Y an irreducible VHS.
The coefficients of (4.6) are given by

nw =

∫
Y

xw , (4.10)
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with |w| the (complex) dimension of Y . Recall (Section 3.3) that a subvariety Y ⊂ Ď
is a VHS if and only if I vanishes when pulled-back to the smooth locus of Y . Suppose
that w ∈ W p\Wvhs indexes a Schubert variety that is not a VHS. Then xw admits a
representative that is contained in the ideal I (Lemma 4.11). Whence, (4.8) follows
from (4.10) and the hypothesis that Y is a VHS.

Lemma 4.11. The cohomology class xw admits a representative (which we may
take to be invariant with respect to a compact real form K of GC) that is contained in
the ideal I if and only if w ∈ W p\Wvhs indexes a Schubert variety that is not a VHS.

Proof. Suppose that the cohomology class xw admits a representative φ ∈ I.
Then φ vanishes on every VHS. In particular, φ vanishes on Xv for all v ∈ Wvhs.
Since φ does not vanish on the Schubert variety Xw, it follows that w 
∈ Wvhs and
Xw is not a VHS.

The converse is a consequence of Kostant’s [24] and the description of the Schubert
VHS in Section 4.1. Kostant exhibits a K–invariant differential form ωw representing
a (positive) multiple of the class xw, cf. [24, Theorem 6.15]. Let sw = ωw

o denote
the form at o ∈ Ď. Then a formula for sw is given by [24, Theorem 5.6]. From this
formula we see that ωw ∈ I if and only if w ∈ W p\Wvhs. So, if Xw is not a VHS,
then ωw ∈ I.

5. A double complex on the flag domain. The main result of this section is
the identification of the characteristic cohomology H•

I(D) with the total cohomology
of a double complex of GR–invariant differential operators (Theorem 5.30). The fact
that the characteristic cohomology can be realized as cohomology on a complex of
vector bundles over D is well–understood, cf. [14]; the significance of Theorem 5.30 is
that it gives an explicit, representation theoretic description of the GR–homogeneous
vector bundles in the double complex. This provides the information necessary to
prove the results in Section 6 relating the characteristic cohomology to the de Rham
cohomology.

5.1. GR–homogeneous bundles on D. Recall (Section 3.1) that the holomor-
phic tangent space ToD � ToĎ � gC/p as a p–module. It follows from (2.12) and
(2.13) that ToD � g− as a V –module. Therefore, the holomorphic tangent bundle of
D is the GR–homogeneous vector bundle

T D = GR ×V g− . (5.1)

Likewise, the tangent bundle is aGR–homogeneous vector bundle, described as follows.
By (2.11) and (2.12),

v⊥ = (g− ⊕ g+) ∩ gR

is a real form of g− ⊕ g+. In particular,

gR = v ⊕ v⊥

is a V –module decomposition. So the tangent space ToD is naturally identified with
gR/v = v⊥, as a V –module. Moreover, the (real) tangent bundle TD is the GR–
homogeneous bundle

TD = GR ×V v⊥ .
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Given � > 0, (2.11) implies the subspace

v⊥� = (g� ⊕ g−�) ∩ gR

is a real form of g�⊕g−�. Additionally, (2.12) and (2.15) imply that v⊥� is a V –module.
So, for � > 0, we may define homogeneous sub-bundles

T� = GR ×V v⊥� .

Note that TD = ⊕� T�. The complexified tangent bundle is the GR–homogeneous
bundle

TCD = GR ×V (g− ⊕ g+) .

We have

TCD =
⊕
0<�

T�,C , (5.2)

where T�,C = GR ×V (g−� ⊕ g�) is the complexification of T�.
The complexified cotangent bundle is

T ∗
CD = GR ×V (v⊥C )

∗ � ⊕� (T�,C)
∗ ,

Let Ann(v⊥1,C) ⊂ (v⊥
C
)∗ denote the annihilator of v⊥1,C. Then the annihilator of T1,C is

Ann(T1,C) = GR ×V Ann(v⊥1,C) . (5.3)

Let

∧k
D =

∧kT ∗
CD = GR ×V

∧k(v⊥C )
∗

denote the k–th exterior power, so that Ak
D is the space of smooth sections of

∧k
D.

Define GR–homogeneous bundles

∧p,q
D = GR ×V

(∧pg∗−)⊗ (
∧qg∗+)

)
� GR ×V (

∧pg+)⊗ (
∧qg−)) . (5.4)

Note that

T ∗D =
∧1,0

D and T ∗D =
∧0,1

D , (5.5)

and

∧k
D =

⊕
p+q=k

∧p,q
D

as V –modules. Given an open subset U ⊂ D, let Ap,q
U denote the smooth, complex–

valued sections U →
∧p,q

D ; that is, Ap,q
U is the space of smooth, complex–valued

(p, q)–forms on U . We have

d = ∂ + ∂̄

with

∂ : Ap,q
U → Ap+1,q

U and ∂̄ : Ap,q
U → Ap,q+1

U .
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5.2. Outline of the proof of Theorem 5.30. For the remainder of Section 5
we simplify notation by writing A and I for AD and ID, respectively. Recall (Section
3.3), that I is the differential ideal generated by the smooth sections of (5.3). In
Section 5.3 we will show that the ideal I is the space of sections of a homogeneous
sub-bundle I ⊂

∧
•

D. From the structure of the bundle I we will obtain Theorem 5.30,
which asserts that the characteristic cohomology may be realized as the cohomology of
the total complex (C•,d) associated with a double complex (C•,•, δ, δ̄) of GR–invariant
differential operators. The theorem is proved in Sections 5.3–5.6.

Before launching into the details of the proof, I will sketch the argument. First,
we show that there exists a VC–submodule i ⊂

∧
•(v⊥

C
)∗ such that I is the space of

smooth sections of the homogeneous subbundle I = GR ×V i ⊂
∧

•

D, cf. (5.16).

Since V is reductive, there exists a V –submodule i⊥ such that
∧

•(v⊥
C
)∗ = i⊕ i⊥.

Let C ⊂ A be the smooth sections of the homogeneous bundle I⊥ = GR ×V i⊥. The
decomposition

∧
•D = I ⊕ I⊥ then yields a natural projection

℘ : A → C , (5.6)

and

A/I � C . (5.7)

Second, a detailed description of the V –module structure of i⊥ will imply that C
inherits a bigrading from A•,•. That is,

C = ⊕Ck , where Ck = C ∩ Ak , and

Ck = ⊕p+q=k C
p,q , with Cp,q = Ck ∩Ap,q and Cp,q = Cq,p .

(5.8)

Let

d = ℘ ◦ d : Ck → Ck+1 ,

δ = ℘ ◦ ∂ : Cp,q → Cp+1,q , (5.9)

δ̄ = ℘ ◦ ∂̄ : Cp,q → Cp,q+1 .

Clearly, d = δ+δ̄. Additionally, dI ⊂ I implies 0 = d2, so that 0 = δ2 = δ̄2 = δ δ̄+δ̄ δ.
Since d, ∂ and ∂̄ are GR–invariant differential operators, and the projection ℘ is a
GR–module map, it follows that (C•,•, δ, δ̄) is a bigraded complex of GR–invariant
differential operators. Finally, (5.7) identifies the complex (A/I, d) defining the char-
acteristic cohomology with the total complex (C•,d). Thus,

H•

I(D) = H•(C,d) .

More generally, H•

I(U) = H•(CU ,d) for any open set U ⊂ D; though the differential
operators d, ∂, ∂̄ are no longer GR–equivariant when restricted to U � D (because GR

does not preserve U).

We now proceed with the details.

5.3. The ideal I as sections of a homogeneous sub-bundle . Let I1 ⊂ A
be the graded ideal generated by the smooth sections of Ann(T1,C). Then

I = I1 + dI1 .



CHARACTERISTIC COHOMOLOGY OF THE IPR 737

Observe that the ideal i1 ⊂
∧

•(v⊥
C
)∗ generated by Ann(v⊥1,C) is a V –module. From

(5.3) we see that the ideal I1 is naturally identified with the smooth sections of

I1 = GR ×V i1 .

It remains to account for dI1 modulo I1.

Remark 5.10 (Conventions). Throughout we will regard (v⊥1,C)
∗ as a subspace

of (v⊥
C
)∗ by identifying it with the annihilator of ⊕�≥2v

⊥
�,C. Then, by extension, we

will regard

i⊥1 =
∧

•(v⊥1,C)
∗

as a subspace of
∧

•(v⊥
C
)∗. Under this identification

∧
•(v⊥C )

∗ = i1 ⊕ i⊥1 (5.11)

is a V –module decomposition.

Claim. There is a V –module inclusion (v⊥2,C)
∗ ↪→

∧2(v⊥1,C)
∗.

Proof. To see this, let ξ ∈ (v⊥2,C)
∗ = (g−2 ⊕ g2)

∗ and x, y ∈ v⊥1,C = g−1 ⊕ g1. Then
[x, y] ⊂ g−2 ⊕ g0 ⊕ g2 by (2.14). Thus, ξ(x, y) = ξ([x, y]) defines a V –module map
(v⊥2,C)

∗ →
∧2(v⊥1,C)

∗. In fact,

the image of g∗±2 under (v⊥2,C)
∗ →

∧2(v⊥1,C)
∗ lies in

∧2g∗±1. (5.12)

It follows from (3.1) that (v⊥2,C)
∗ →

∧2(v⊥1,C)
∗ is injective.

Let

T ′ ⊂
∧2D

be the corresponding GR–homogeneous sub-bundle. Let C∞(T ′) denote the space of
smooth sections. We will show that

d C∞(Ann(T1,C)) ≡ C∞(T ′) mod I1 . (5.13)

First we note some consequences of the equation. Let I ′ ⊂ A be the ideal generated
by the smooth sections of T ′. Then

I = I1 + I ′ . (5.14)

Let i′ ⊂
∧

•(v⊥1,C)
∗ be the ideal generated by (v⊥2,C)

∗ ↪→
∧2(v⊥1,C)

∗. By (5.11)

i = i1 ⊕ i′ (5.15)

is a direct sum. Note also that i is an ideal of
∧

•(v⊥
C
)∗. Let I = G ×V i ⊂

∧
•D be

the corresponding homogeneous vector bundle.

The ideal I is the space of smooth sections of I. (5.16)

Proof of (5.13). Let ϕ ∈ C∞(Ann(T1,C)), and let X,Y be smooth complex vector
fields (sections of TCD). Then

dϕ(X,Y ) = Xϕ(Y ) − Y ϕ(X) − ϕ([X,Y ]) . (5.17)
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Since we are computing dϕ modulo I1, we may assume that X,Y are sections of
T1,C. Since ϕ annihilates T1,C, we have ϕ(X) = ϕ(Y ) = 0. Moreover, (2.14) and the
definition of T�,C (Section 5.1) imply [X,Y ] is a section of T1,C ⊕ T2,C. Let [X,Y ]2
denote the component of [X,Y ] taking values in T2,C. Again, since ϕ annihilates T1,C,
we have ϕ([X,Y ]) = ϕ([X,Y ]2). These observations, along with (5.17), yield

dϕ(X,Y ) = −ϕ([X,Y ]2) . (5.18)

Note that every element ψ ∈ C∞(T ′
C
) is of the form ψ(X,Y ) = ψo([X,Y ]) where

ψo ∈ A1 is a 1-form annihilating T�,C for all � 
= 2. Equation (5.18) asserts that dϕ =
ψ, modulo C∞(Ann(T1,C)), where ψo is defined by ψo|T2,C

= − ϕ|T2,C
. This establishes

the containment ⊂ in (5.13). Conversely, ψ ≡ −dψo modulo C∞(Ann(T1,C)). This
establishes (5.13).

5.4. The complimentary sub-module i⊥ ⊂
∧

•(g− ⊕ g+)∗ . Since VC is
reductive and i ⊂

∧
•(v⊥

C
)∗ is a V –submodule, there exists a V –module i⊥ such that

i ⊕ i⊥ =
∧

•(v⊥C )
∗ . (5.19)

Assertions (5.6) and (5.7) of the outline (Section 5.2) now follow. The second step
towards Theorem 5.30 is to identify the complement i⊥. From (5.11) and (5.15) we
see that i⊥ ⊂ i⊥1 =

∧
•(v⊥1,C)

∗, and

i′ ⊕ i⊥ =
∧

•(v⊥1,C)
∗ .

By (5.12), g∗−2 ↪→
∧2g∗−1. Let j ⊂

∧
•g∗−1 denote the ideal generated by g∗−2 ⊂

∧2g∗−1. Note that j is a homogeneous graded ideal; precisely, j = ⊕ j� where j� =

j∩
∧�g∗−1. Equation (2.11) implies that the conjugate j ⊂

∧
•g∗1 is the ideal generated

by g∗2 ⊂
∧2g∗1. Note that both j and j are V –modules. Moreover, (5.12) implies that

the homogeneous component (i′)k of i′ in

∧k(v⊥1,C)
∗ �

⊕
p+q=k

(∧pg∗−1

)
⊗

(∧qg∗1
)
.

is

(i′)k �
∑

p+q=k

(
jp ⊗

∧qg∗1
)
+

(∧pg∗−1 ⊗ jq
)
.

(The latter is not a direct sum, as the distinct summands may have nontrivial inter-
sections.) In particular, i′ � (j ⊗

∧
•g∗1) + (

∧
•g∗−1 ⊗ j). Therefore, if j⊥ ⊂

∧
•g∗−1 is a

V –module complement to j, then

i⊥ = j⊥ ⊗ j⊥ . (5.20)

The submodule j⊥ is identified in [28] using Kostant’s theorem on Lie algebra coho-
mology.

5.5. Lie algebra cohomology. Lie algebra cohomology was introduced by
Chevalley and Eilenberg [13]. Given a Lie algebra a defined over C define ε :

∧�a∗ →
∧�+1a∗ by

(εφ)(A0, . . . , Ak) =
∑
i<j

(−1)i+jφ
(
[Ai, Aj ], A0, . . . , Âi, . . . , Âj , . . . , A�

)
(5.21)
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for any φ ∈
∧�a∗ and (� + 1)–tuple A0, . . . , A� ∈ a. It is straightforward to confirm

that ε2 = 0. Let

H�(a,C) =
ker{ε :

∧�a∗ →
∧�+1a∗}

im{ε :
∧�−1a∗ →

∧�a∗}
(5.22)

denote the corresponding Lie algebra cohomology (with coefficients in the trivial rep-
resentation).

If a = g±, then ε is a VC–module map, and H•(g±,C) is a VC–module. Since
E ∈ g0 is semisimple, it follows that the cohomology decomposes into E–eigenspaces.
From the definition (5.22), we see that the E–eigenvalues of H�(g−,C) are integers
≥ �; that is,

H�(g−,C) = H�
� ⊕ H�

�+1 ⊕ H�
�+2 ⊕ · · · (5.23)

where H�
m ⊂ H�(g−,C) is the E–eigenspace with E–eigenvalue m.6 In [28, §4.2] it is

shown that H�
� is the V –module complement to j� in

∧�g∗−1, and

j⊥ =
⊕
�≥0

H�
� . (5.24)

Before continuing with the proof of Theorem 5.30, we make two observations that
will be useful later. First, (2.11) and (2.16) imply that

H•(g+,C) = H•(g−,C) = H•(g−,C)
∗ (5.25)

and the E–eigenvalues of H�(g+,C) are −�,−�− 1,−�− 2, . . . Second,

H1(g−,C) = H1
1 ; (5.26)

equivalently, H1
m = 0 if m > 1. This is a consequence of Kostant’s description [23,

Theorem 5.14] of the VC–module structure of H•(g−,C). Given i ∈ s+, let H(i) be
the irreducible VC–module of highest weight σi. Then Kostant’s theorem asserts that

H1(g−,C) =
⊕
i∈s+

H(i) .

Since H(i) is irreducible, and E lies in the center of the reductive g0 = vC, E necessarily
acts by a scalar, which must be σi(E) = 1 by (2.8). Thus (5.26) holds.

5.6. The complimentary sub-bundle I⊥ ⊂
∧

•D . Equations (5.20) and
(5.24) yield

i⊥ = ⊕ i⊥k with i⊥k =
⊕

p+q=k

Hp
p ⊗ Hq

q . (5.27)

Define GR–homogeneous holomorphic vector bundles

H
�
m = GR ×V H�

m ,

H
� = GR ×V H�(g−,C) = H

�
� ⊕ H

�
�+1 ⊕ H

�
�+2 ⊕ · · · .

(5.28)

6Examples of the eigenspace decomposition (5.23) are given in Appendix A.
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By (5.25)

H� � GR ×V H�(g+,C) .

Set

I⊥k =
⊕

p+q=k

H
p
p ⊗H

q
q and I⊥ =

⊕
k

I⊥k ,

and let

C = C∞(I⊥) , Ck = C∞(I⊥k ) and Cp,q = C∞(Hp
p ⊗H

q
q) (5.29)

denote the smooth sections. Equation (5.27) yields (5.8). The remainder of the
Section 5.2 outline follows, and we have established

Theorem 5.30. The characteristic cohomology H•

I(D) of the infinitesimal period
relation is the cohomology H•(C,d) of the total complex associated with the double
complex (C•,•, δ, δ̄) of GR–invariant differential operators.

Remark 5.31. Likewise, H•

I(U) = H•(CU ,d) for any open subset U ⊂ D;
however, the operators d, ∂, δ̄ are no longer GR–invariant if U � D.

Define

μ = max{p | Hp
p 
= 0} . (5.32)

The double complex of Theorem 5.30 is as displayed in Figure 1. The integer μ is
identified in the examples of Appendix A.

Fig. 1. The double complex of Theorem 5.30.

0 0 0 0
↑ δ̄ ↑ δ̄ ↑ δ̄ ↑ δ̄

C0,μ δ
−→ C1,μ δ

−→ C2,μ δ
−→ · · ·

δ
−→ Cμ,μ δ

−→ 0
↑ δ̄ ↑ δ̄ ↑ δ̄ ↑ δ̄

...
...

...
...

↑ δ̄ ↑ δ̄ ↑ δ̄ ↑ δ̄

C0,2 δ
−→ C1,2 δ

−→ C2,2 δ
−→ · · ·

δ
−→ Cμ,2 δ

−→ 0
↑ δ̄ ↑ δ̄ ↑ δ̄ ↑ δ̄

C0,1 δ
−→ C1,1 δ

−→ C2,1 δ
−→ · · ·

δ
−→ Cμ,1 δ

−→ 0
↑ δ̄ ↑ δ̄ ↑ δ̄ ↑ δ̄

C0,0 δ
−→ C1,0 δ

−→ C2,0 δ
−→ · · ·

δ
−→ Cμ,0 δ

−→ 0

Remark 5.33. By [28, Theorem 3.12], any variation of Hodge structure has
dimension at most μ.
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6. Comparison of de Rham and characteristic cohomology. Recall (5.23)
and define

ν = max{� | H�(g−,C) = H�
�} . (6.1)

By (5.26)

ν > 0 .

The main result of this section is Theorem 6.3 and its corollary (6.4) which estab-
lishes (i) the finite dimensionality of the characteristic cohomology in degree k < ν
(Corollary 6.5), and (ii) a local Poincaré lemma for the characteristic cohomology
differential (Corollary 6.6).

By (5.29), Cp,0 is the space of smooth sections of Hp
p. Note that the differential

δ preserves holomorphic sections, yielding a complex

0 → O(H0
0)

δ
→ O(H1

1)
δ
→ O(H2

2)
δ
→ · · ·

δ
→ O(Hμ

μ) → 0 . (6.2)

Given an open subset U ⊂ D, let H•(U,H∗
∗) denote the hypercohomology of the

complex (6.2). (See [20, §3.5] for a discussion of hypercohomology.)

Theorem 6.3. Let U ⊂ D be an open set. (a) There exist identifications

Hk(U,C) = Hk(U,H∗
∗) for all k < ν .

(b) There exists an inclusion

Hν(U,C) ↪→ Hν(U,H∗
∗) .

The cokernel of the inclusion admits an identification

Hν(U,H∗
∗)/H

ν(U,C) = ker{d‡ν+1 : H0(U,Hν) → Hν+1(U,C)} .

(c) There exist filtrations †F •H•(U,H∗
∗) and F •H•

I(U) of the hypercohomology and
characteristic cohomology, respectively, such that the associated graded decompositions
satisfy the following. There exist identifications

†Gr•Hk(U,H∗
∗) = Gr•Hk

I (U) for all k < ν .

For k = ν we have

†GrpHν(U,H∗
∗) = GrpHν

I (U) for all p 
= 0 ,
†Gr0Hν(U,H∗

∗) ↪→ Gr0Hν
I (U) .

(d) In the case that U = D, each of the identifications, inclusions and filtrations

above are as GR–modules, and the map d‡ν+1 is GR–equivariant.

The theorem is proved in Section 6.5. A discussion of the inclusion †Gr0Hν(U,H∗
∗) ↪→

Gr0Hν
I (U) in Theorem 6.3(c) is given in Remark 6.37. Together (a) and (c) of Theo-

rem 6.3 yield (graded) identifications

Hk(U,C) � Hk
I(U) for k < ν . (6.4)
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This implies two corollaries. First,

Corollary 6.5 (Finite–dimensionality). The characteristic cohomology Hk
I (D)

is finite–dimensional for k < ν, and zero when k < ν is odd.

Proof. This follows from the identification (6.4) and [15, Proposition 4.3.5].

Second, from (6.4) and the local exactness of the de Rham complex we obtain

Corollary 6.6 (d–Poincaré lemma). The operator d : Ck → Ck+1 is locally
exact for 0 < k < ν. That is, if φ ∈ Ck is d–closed, then locally there exists ψ ∈ Ck−1

such that dψ = φ.

Remark 6.7 (Relationship to the Bryant–Griffiths characteristic cohomology).
Equation (6.4) and Corollary 6.6 are very like results of Bryant and Griffiths on the
(prolonged) characteristic cohomology of an involutive exterior differential system,
cf. Theorem 1 of §6.1 and Theorem 2 of §4.2 in [9], respectively. Given this similarity,
it is natural to ask: what is the relationship between our ν and their n − �? The
question is not investigated here, but would like to observe that these integers agree
when the IPR is a contact distribution, cf. Section A.1 of this paper and Example 1
of [9, §6.3]

The following Theorems 6.9 and 6.11 will be used in the proof of Theorem 6.3.
Given an open subset U ⊂ D, let

Hp(H∗
∗(U), δ) =

ker{δ : OU (H
p
p) → OU (H

p+1
p+1)}

im{δ : OU (H
p−1
p−1) → OU (H

p
p)}

(6.8)

denote the cohomology of the complex (6.2) on U .

Theorem 6.9. Let U ⊂ D be an open subset. (a) There exist identifications

Hp(U,C) = Hp(H∗
∗(U), δ) for all p < ν .

(b) There exists an inclusion

Hν(U,C) ↪→ Hν(H∗
∗(U), δ) .

The image is
⋂∞

i=2 ker∂i, where

∂2 : Hν(H∗
∗(U), δ) → ker{∂1 : OU (H

ν+1
ν+2) → OU (H

ν+2
ν+3)}

∂i+1 : ker ∂i → ker{∂1 : OU (H
ν+1
ν+i ) → OU (H

ν+2
ν+i+1)} , i ≥ 2 .

(c) When U = D, the identifications and inclusions above are as GR–modules, and
the maps ∂i are GR–equivariant.

The theorem is proved in Section 6.3. Theorem 6.9(a) and the local exactness of the
complex (Ω•, ∂) yield a holomorphic Poincaré lemma for the operators δ : O(Hp

p) →

O(Hp+1
p+1).

Corollary 6.10 (Holomorphic δ–Poincaré lemma). The operator δ : O(Hp
p) →

O(Hp+1
p+1) is locally exact for 0 < p < ν. That is, if φ ∈ O(Hp

p) is δ–closed, then locally

there exists ψ ∈ O(Hp−1
p−1) such that δψ = φ.

Let Hq(U,Hp
p) denote the cohomology of the sheaf of holomorphic sections of Hp

p.
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Theorem 6.11. Let U ⊂ D be an open subset. (a) There exist identifications

Hq(U,Hp
p) = Hq(Cp,•

U , δ̄) for all q < ν .

(b) There exists an inclusion

Hν(U,Hp
p) ↪→ Hν(Cp,•

U , δ̄) .

The image is
⋂∞

i=2 ker ∂̄i, where

∂̄2 : Hν(Cp,•
U , δ̄) → ker{∂̄1 : C∞

U (Hp
p ⊗H

ν+1
ν+2) → C∞

U (Hp
p ⊗H

ν+2
ν+3)}

∂̄i+1 : ker ∂̄i → ker{∂̄1 : C∞
U (Hp

p ⊗H
ν+1
ν+i ) → C∞

U (Hp
p ⊗H

ν+2
�+i+1)} , i ≥ 2 ,

(c) When U = D, the identifications and inclusions above are as GR–modules, and
the maps ∂̄i are GR–equivariant.

The theorem is proved in Section 6.4. Theorem 6.11(a) and the local exactness of the
Dolbeault resolution of Hp

p yield a Poincaré lemma for the operators δ̄.

Corollary 6.12 (δ̄–Poincaré lemma). The operator δ̄ : C•,q → C•,q+1 is locally
exact for 0 < q < ν. That is, if φ ∈ C•,q is δ̄–closed, then locally there exists ψ ∈ C•,q−1

such that δ̄ψ = φ.

Taking conjugates we obtain

Corollary 6.13 (δ–Poincaré lemma). The operator δ : Cp,• → Cp+1,• is locally
exact for 0 < p < ν. That is, if φ ∈ Cp,• is δ–closed, then locally there exists ψ ∈ Cp−1,•

such that δψ = φ.

To emphasize the GR–module structure we will prove the results of Section 6 for

U = D .

The results for arbitrary open sets U ⊂ D follow by identical arguments.

6.1. Representation theoretic lemma. We will need Lemma 6.14 in the spec-
tral sequence arguments that follow.

Lemma 6.14. If � < ν, then H�(g−,C) = H�
� .

From (5.28) we see that Lemma 6.14 is equivalent to H
� = H

�
� for all � < ν.

Proof. Kostant’s description [23, Theorem 5.14] of the Lie algebra cohomology
H•(g,C) implies that the E–eigenvalues of H�(g−,C) are {ρw(E) | w ∈ W p , |w| = �}.
So

H�(g−,C) = H�
� if and only if ρw(E) = |w| for all w ∈ W p of length |w| = �.

As noted in Section 4.2, ρw(E) = |w| is equivalent to Δ(w) ⊂ Δ(g1). Thus
H�(g−,C) = H�

� if and only if Δ(w) ⊂ Δ(g1) for all w ∈ W p of length |w| = �.
Let w,w′ ∈ W . Given a root α ∈ Δ+, let rα ∈ W denote the associated reflection.

Write w
α
→ w′ if |w′| = |w| + 1 and w′ = rαw. The Bruhat order is a partial order

on W defined by w ≤ w′ if either w = w′ or there is a chain w
α1→ w1

α2→ · · ·
αn→ w′.

Given w ∈ W p of length � < ν, there exists α and w′ ∈ W p such that w
α
→ w′, cf. [11,

§3.2.15]. So to prove the lemma, it suffices to show that Δ(w′) ⊂ Δ(g1) implies
Δ(w) ⊂ Δ(g1). In fact, the stronger Lemma 6.15 holds.
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Lemma 6.15. If w′ ∈ Wvhs and w
α
→ ω′, then Δ(w) ⊂ Δ(w′) (which implies

w ∈ Wvhs).

This generalizes [28, Lemma 8.2].

Proof. By [11, (3.9)] we have

Δ(w′) = {α} ∪ (Δ(w) ∩Δ(rα)) ∪ rα (Δ(w)\Δ(rα)) . (6.16)

So to prove the lemma it suffices to show that

rα (Δ(w)\Δ(rα)) = Δ(w)\Δ(rα) . (6.17)

To that end fix β ∈ Δ(w)\Δ(rα). Then (6.16) asserts α, rαβ ∈ Δ(w′) ⊂ Δ(g1).
Therefore,

α(E) = (rαβ)(E) = 1 .

On the other hand rαβ = β − kα for some k ∈ Z. So 1 = β(E) − k. Note that
β ∈ Δ(w) ⊂ Δ(g+) implies β(E) ≥ 1. Therefore k ≥ 0.

If k = 0 we are done: rαβ = β ∈ Δ(w)\Δ(rα). So suppose that k > 0. Then
β − α ∈ Δ(g+). From [11, Proposition 3.2.14] we see that: (i) α 
∈ Δ(w), and (ii)
α + (β − α) ∈ Δ(w) forces β − α ∈ Δ(w). Moreover, rα(β − α) = β − kα + α ∈ Δ+

so that β − α ∈ Δ(w)\Δ(rα). Now induct to obtain rα(β) ∈ Δ(w)\Δ(rα).

6.2. Weighted filtration of forms. The basic idea underlying the proofs of
Theorems 6.9 and 6.11 is presented in this section. The spectral sequences that arise
are induced by filtrations that are variants of the basic filtration (6.20) introduced
here. For each of these variants we will have analogs of Lemma 6.24 and Corollary
6.25, and the theorems are essentially these analogs.

Recall the definition (5.1). Define a splitting

T D =
⊕
�>0

T� by T� = G×V g−� ,

and a filtration

F�(T D) = T1 ⊕ T2 ⊕ · · · ⊕ T� .

The relation (2.14) yields

[Fa(T D), Fb(T D)] ⊂ Fa+b(T D) . (6.18)

Recall the definition (5.4) and equation (5.5). Define a splitting of T ∗D by

T ∗D =
∧1,0

D =
⊕
�

∧1,0
� , (6.19a)

where

∧1,0
� = G×V g∗−� � G×V g� , (6.19b)

and a filtration on
∧p,0

D by

F �(
∧p,0

D ) = im

⎧⎨
⎩

⊕
∑

bi≥�

∧1,0
b1

⊗ · · · ⊗
∧1,0

bp
→

∧p,0
D

⎫⎬
⎭ . (6.20)



CHARACTERISTIC COHOMOLOGY OF THE IPR 745

For example,

F �(
∧1,0

D ) =
∧1,0

� ⊕
∧1,0

�+1 ⊕
∧1,0

�+2 ⊕ · · ·

is the annihilator of F�−1(T D) in T ∗D =
∧1,0

D .
The filtration (6.20) induces a filtration F •(Ap,0) on the smooth (p, 0)–forms.

Moreover, (6.18) implies ∂ preserves the filtration

∂ F �(A•,0) ⊂ F �(A•,0) . (6.21)

Thus we obtain a spectral sequence {∂i : ◦E�,−m
i → ◦E�+i,1−m−i

i } abutting to the
cohomology of the complex (A•,0, ∂),

◦Ei =⇒ H(A•,0, ∂) .

Note that F �Ap,0 = Ap,0 if � ≤ p, so that the associated graded is

◦E�,−m
0 =

F �A�−m,0

F �+1A�−m,0
,

and the spectral sequence ‘lives’ in the lower–right quadrant, cf. Figure 2.

Fig. 2. The page ◦E�,−m
0 = A

�−m,0
�

.

A0 A1,0
1 A2,0

2 A3,0
3 A4,0

4 · · ·

↑ ∂0 ↑ ∂0 ↑ ∂0

0 0 A1,0
2 A2,0

3 A3,0
4 · · ·

↑ ∂0 ↑ ∂0

0 0 0 A1,0
3 A2,0

4 · · ·

↑ ∂0

0 0 0 0 A1,0
4 · · ·

...
...

...
...

...

Let

Ap,0
� � F �(Ap,0)/F �+1(Ap,0) = ◦E�,p−�

0

denote the smooth sections of

F �(
∧p,0

D )

F �+1(
∧p,0

D )
� im

⎧⎨
⎩

⊕
∑

bi=�

∧1,0
b1

⊗ · · · ⊗
∧1,0

bp
→

∧p,0
D

⎫⎬
⎭ =

∧p,0
� . (6.22)

It will be helpful to note that
∧p,0

� admits the following description as a GR–
homogeneous vector bundle. Let

∧pg∗− =
∧p

p g
∗
− ⊕

∧p
p+1 g

∗
− ⊕

∧p
p+2 g

∗
− ⊕ · · ·
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be the E–eigenspace decomposition of
∧pg∗−; here E acts on

∧p
� g

∗
− by the scalar �.

Then

∧p,0
� = GR ×V

∧p
� g

∗
− .

Given φ ∈
∧p

�g
∗
− and Xi ∈ g−ai

, with 0 < ai, observe that

φ(X1, . . . , Xp) 
= 0 only if
∑

ai = � . (6.23)

Lemma 6.24. The GR–module ◦E�,−m
1 is naturally identified with the space

of smooth sections of H
�−m
� . Moreover, (◦E•,0

1 , ∂1) = (C•,0, δ), so that ◦Ep,0
2 =

Hp(C•,0, δ) as GR–modules.

Proof. We will show that the vertical differential ∂0 is algebraic; in fact, it is
given (up to a sign) by the Lie algebra cohomology differential ε :

∧pg∗− →
∧p+1g∗−

of Section 5.5. This is seen as follows. Let ω denote the gC–valued left-invariant
Maurer-Cartan form on GR, and let ω− denote the g−–valued component. Given a
local section D → GR, we abuse notation and let ω and ω− also denote the pull-
backs to D. Locally, any φ ∈ Ap,0 is of the form φ = f(ω− ∧ · · · ∧ ω−) where
f : D →

∧pg∗− a smooth, locally defined function. Likewise, any φ ∈ Ap,0
� is of the

form φ = g(ω− ∧ · · · ∧ ω−) with g : D →
∧p

� g
∗
− is a smooth, locally defined function.

(To be precise, we regard g as a map to
∧qg∗− taking values in the annihilator of

⊕m 
=�

∧q
mg−.)

Fix φ ∈ Ap,0
� = ◦E�,p−�

0 . From (6.23) we see that to compute the differential

∂0φ ∈ Ap+1,0
� it suffices to compute (∂0φ)(ξ0, ξ1, . . . , ξp) where ξi is a smooth section of

Tai
and

∑
ai = �. Without loss of generality, we may assume that ω−(ξi) = Xi ∈ g−ai

is constant. Then

(∂0φ)(ξ0, ξ1, . . . , ξp) =
∑
i

(−1)iξi φ(ξ0, . . . , ξ̂i, . . . , ξp)

−
∑
i<j

(−1)i+jφ
(
[ξi, ξj ], ξ0, . . . , ξ̂i, . . . , ξ̂j , . . . , ξp

)
.

By (6.23), we have φ(ξ0, . . . , ξ̂i, . . . , ξp) = 0. Therefore,

(∂0φ)(ξ0, ξ1, . . . , ξp) = −
∑
i<j

(−1)i+jφ
(
[ξi, ξj ], ξ0, . . . , ξ̂i, . . . , ξ̂j , . . . , ξp

)

= −
∑
i<j

(−1)i+jf
(
[Xi, Xj], X0, . . . , X̂i, . . . , X̂j , . . . , Xp

)

= −(εf)(X0, . . . , Xp) .

Therefore, the differential ∂0 : Ap,0
� → Ap+1

� is the map naturally induced by restric-
tion of −ε :

∧pg∗− →
∧p+1g∗− to the E–eigenspace

∧p
� g

∗
− of eigenvalue �. It now follows

from (5.23) and (5.28) that ◦E�,−m
1 = C∞(H�−m

� ), establishing the first half of the

lemma. From the definition (5.29), we see that ◦E�,0
1 = C�,0. The final assertion that

∂1 = δ is straightforward definition chasing.

Corollary 6.25. (a) There exist GR–module identifications

Hp(A•,0, ∂) = Hp(C•,0, δ) for all p < ν .
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(b) There exists a GR–module inclusion

Hν(A•,0, ∂) ↪→ Hν(C•,0, δ) .

The image is
⋂∞

i=2 ker ∂i, where

∂2 : Hν(C•,0, δ) → ker{∂1 : C∞(Hν+1
ν+2) → C∞(Hν+2

ν+3)}

∂i+1 : ker∂i → ker{∂1 : C∞(Hν+1
ν+i ) → C∞(Hν+2

ν+i+1)} , i ≥ 2 .

and each ∂i is a GR–equivariant map.

Proof. Recall the definitions (5.28) and (6.1); together (??) and the identification

of ◦E�,−m
1 with C∞(H�−m

� ) by Lemma 6.24 imply that

◦E�,−m
1 = 0 , for all m > 0 and �−m ≤ ν ,

cf. Figure 3.

Fig. 3. The page ◦E�,−m
1 = C∞(H�−m

�
).

◦E0,0
1 · · · ◦Eν,0

1
◦Eν+1,0

1
◦Eν+2,0

1
◦Eν+3,0

1
◦Eν+4,0

1 · · ·

0 · · · 0 0 ◦Eν+2,−1
1

◦Eν+3,−1
1

◦Eν+4,−1
1 · · ·

0 · · · 0 0 0 ◦Eν+3,−2
1

◦Eν+4,−2
1 · · ·

0 · · · 0 0 0 0 ◦Eν+4,−3
1 · · ·

...
...

...
...

...
...

Since the spectral sequence abuts to the cohomology H(A•,0, ∂), we see that

◦Ep,0
∞ = Hp(A•,0, ∂) for all p ≤ ν .

In the case that p < ν, we have ◦Ep,0
∞ = ◦Ep,0

2 . This yields the first half of the
corollary.

In the case that p = ν, we see that

◦Eν,0
i+1 = ker{∂i :

◦Eν,0
i → ◦Eν+i,1−i

i } for all i ≥ 2 .

Thus,

◦Eν,0
∞ =

∞⋂
i=2

ker{∂i :
◦Eν,0

i → ◦Eν+i,1−i
i } ⊂ ◦Eν,0

2 ,

yielding the second half of the corollary.

Before continuing to the proofs of the theorems, we briefly discuss the conjugate
versions of the filtration (6.20), Lemma 6.24 and Corollary 6.25. By (2.11) and (5.4),

we have
∧0,q

D =
∧q,0

D . Given (6.20), we may define a filtration

F �(
∧0,q

D ) = F �(
∧q,0

D ) . (6.26)
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Let F �(A0,•) denote the corresponding filtration of A0,•. Note that F �(A0,q) =

F �(Aq,0). And so, by (6.21) the differential ∂̄ preserves the filtration

∂̄ F �(A0,•) ⊂ F �(A0,•) . (6.27)

Since (A0,•, ∂̄) is the Dolbeault resolution of O, we see that the filtration gives rise to

a spectral sequence {∂̄i :
�E�,−m

i → �E�+i,1−m−i
i } abutting to the sheaf cohomology

H•(D,O),

�Ei =⇒ H(A0,•, ∂̄) = H•(D,O) .

Lemma 6.28. The GR–module �E�,−m
1 is naturally identified with the smooth

sections of H�−m
� . Moreover, (�E•,0

1 , ∂̄1) = (C0,•, δ̄), so that �Eq,0
2 = Hq

(
C0,• , δ̄

)
as

GR–modules.

Proof. The proof is entirely analogous to that of Lemma 6.24: again, the vertical
differential ∂̄0 is algebraic, and given (up to a sign) by the Lie algebra cohomology
differential ε :

∧pg∗+ →
∧p+1g∗+. Details are left to the reader.

The identification of �E�,−m
1 with C∞(H�−m

� ) implies that the page �E1 is also of
the form depicted in Figure 3. Whence we obtain the following analog of Corollary
6.25.

Corollary 6.29. (a) There exist GR–module identifications

Hq(D,O) = Hq(C0,•, δ̄) for all q < ν .

(b) There exists a GR–module inclusion

Hν(D,O) ↪→ Hν(C0,•, δ̄) .

The image is
⋂∞

i=2 ker ∂̄i, where

∂̄2 : Hν(C0,•, δ̄) → ker{∂̄1 : C∞(Hν+1
ν+2) → C∞(Hν+2

ν+3)}

∂̄i+1 : ker ∂̄i → ker{∂̄1 : C∞(Hν+1
ν+i ) → C∞(Hν+2

ν+i+1)} , i ≥ 2 ,

and each ∂̄i is a GR–equivariant map.

Note that Corollary 6.29 yields Theorem 6.11 in the case that p = 0.

6.3. Proof of Theorem 6.9. Let Ωp = O(
∧p,0

D ) denote the sheaf of holomor-
phic (p, 0)–forms, and note that the complex (Ω•, ∂) is a resolution of C. The fil-
tration (6.20) induces a filtration F •(Ωp), and (6.18) implies ∂ preserves the filtra-
tion ∂ F �(Ω•) ⊂ F �(Ω•). Thus we obtain a spectral sequence abutting to the sheaf
cohomology H•(D,C). Arguments identical to those establishing Lemma 6.24 and
Corollary 6.25 yield the theorem.

6.4. Proof of Theorem 6.11. Recall the definitions (5.4) and (5.28). Let
A0,q(Hp

p) denote the smooth sections of H
p
p ⊗

∧0,q, and note that the complex

(A0,•(Hp
p), ∂̄) is the Dolbeault resolution of the holomorphic sections O(Hp

p). Recall

the filtration (6.26), and define F �(Hp
p ⊗

∧0,q
D ) = H

p
p ⊗ F �(

∧0,q
D ). Let F �(A0,q(Hp

p))
denote the corresponding filtration of the smooth sections. By (6.27) the differen-
tial ∂̄ preserves the filtration F �(A0,•(Hp

p)). Whence we obtain a spectral sequence
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{∂̄i :
�E�,−m

i → �E�+i,1−m−i
i } abutting to sheaf cohomology H•(D,Hp

p). Keeping in

mind that Cp,q is the space of smooth sections of Hp
p ⊗ H

q
q , cf. (5.29), an argument

identical to that establishing Lemma 6.28 and Corollary 6.29 yields the theorem.
Details are left to the reader.

Remark 6.30. It is sometimes the case that a simple argument with the spectral
sequence {�Ei, ∂̄i} yields a significant strengthening of Theorem 6.11: under suitable
conditions on the set {(p, �) | Hp

� 
= 0} there exist differential operators ∇ : C∞(Hp
p ⊗

Hq) → C∞(Hp
p ⊗Hq+1) with the properties that

∇ = δ̄ for q < ν ,

and

0 → O(Hp
p) ↪→ C∞(Hp

p ⊗H0)
∇
−→ C∞(Hp

p ⊗H1)
∇
−→

· · ·
∇
−→ C∞(Hp

p ⊗Hd) −→ 0
(6.31)

is a resolution of the sheaf O(Hp
p) of holomorphic sections of Hp

p. (Note that the
definition (6.1) implies H

q = H
q
q for all q < ν.) For example, the resolution (6.31)

exists when T1 is a contact distribution (equivalently, Ď is an adjoint variety). This
and other examples are discussed in Appendix A.

It is interesting to compare the resolution (6.31) with the Dolbeault resolution
(A0,•(Hp

p), ∂̄). Both resolutions have the same length. The advantage of (6.31) is

that the vector bundles involved have smaller rank; that is, rankHq ≤ rank
∧0,q

D , and
this inequality is strict if and only if the containment T1 ⊂ TD is strict. However,
the price we pay for this reduction is that the operators ∇ will generally not be of
first-order.

The resolution (6.31) may be viewed as a Dolbeault analog of the (generalized)
Bernstein-Gelfand-Gelfand resolution of C by differential operators on Ď, cf. [3, 4, 25,
29].

6.5. Proof of Theorem 6.3. As we will see, the theorem follows from Corollary
6.10 and Theorem 6.11 via standard spectral sequence arguments.

A spectral sequence for the characteristic cohomology. Associated to the
double complex (C, δ, δ̄) are standard filtrations of C•, one of which is

F pCp+q =
⊕
i≥0

Cp+i,q−i .

It is straightforward to confirm that d preserves F pC•. Whence the filtration induces a
spectral sequence {di : E

p,q
i → Ep+i,q+1−i

i } abutting to the characteristic cohomology

Ei =⇒ H•(C,d) = H•

I(D) .

As is well known

Ep,q
0 = Cp,q with d0 = δ̄ ,

Ep,q
1 = Hq(Cp,•, δ̄) with d1 = δ , (6.32)

Ep,q
2 = Hp(Hq(C•,•, δ̄) , δ) .
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From (6.32) and Theorem 6.11 we see that

Ep,q
1 = Hq(D,Hp

p) for all q < ν . (6.33)

Visually, up to the q = ν− 1 level, the E1–page is given by sheaf cohomology, cf. Fig-
ure 4.

Fig. 4. The E1–page.

Hs(C0,•, δ̄)
δ
→ Hs(C1,•, δ̄)

δ
→ · · ·

δ
→ Hs(Cs,•, δ̄)

...
...

...

Hν(C0,•, δ̄)
δ
→ Hν(C1,•, δ̄)

δ
→ · · ·

δ
→ Hν(Cs,•, δ̄)

Hν−1(D,H0
0)

δ
→ Hν−1(D,H1

1)
δ
→ · · ·

δ
→ Hν−1(D,Hs

s)
...

...
...

H1(D,H0
0)

δ
→ H1(D,H1

1)
δ
→ · · ·

δ
→ H1(D,Hs

s)

H0(D,H0
0)

δ
→ H0(D,H1

1)
δ
→ · · ·

δ
→ H0(D,Hs

s)

Keeping (6.32) in mind and consulting Figure 4, we see that

Ep,q
2 = Hp(Hq(D,H∗

∗), δ) for all q < ν . (6.34)

Two spectral sequences for the hypercohomology. Let H• denote the co-
homology sheaves of (6.2). The two spectral sequences {d†i : †Ep,q

i → †Ep+i,q−i+1
i }

and {d‡i :
‡Ep,q

i → ‡Ep−i+1,q+i
i } associated with the hypercohomology satisfy

†Ep,q
2 = Hp(Hq(D,H∗

∗) , δ) and ‡Ep,q
2 = Hq(D,Hp) . (6.35)

Proof of Theorem 6.3(c). Equations (6.34) and (6.35) yield

†Ep,q
2 = Ep,q

2 for all q < ν . (6.36a)

Moreover, (6.35), Theorem 6.11 and (6.32) yield

†E0,ν
2 = H0(Hν(D,H∗

∗), δ) = ker{δ : Hν(D,H0
0) → Hν(D,H1

1)}

⊂ ker{δ : Hν(C0,•, δ̄) → Hν(C1,•, δ̄)} (6.36b)

= H0(Hν(C•,•, δ̄) , δ) = E0,ν
2 .

Visually, the inclusions †Ep,q
2 ⊆ Ep,q

2 of (6.36) are depicted in Figure 5. (The
asterisk denotes no inclusion relation.) From this we see that †Ep,q

∞ = Ep,q
∞ for all

q < ν and †E0,ν
∞ ⊂ E0,ν

∞ . This yields Theorem 6.3(c).

Remark 6.37. From (6.36), we see that the image of the inclusion
†Gr0Hν(D,H∗

∗) ↪→ Gr0Hν
I (D) in Theorem 6.3(c) may be described as follows. First

note that the inclusion of †E0,ν
1 = Hν(D,H0

0) into E0,ν
1 = Hν(C0,•, δ̄) is given by

Theorem 6.11(b). Second,

Gr0Hν
I (D) = E0,ν

∞ =

ν⋂
i=1

kerdi ,
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Fig. 5. The inclusions †Ep,q
2 ⊆ Ep,q

2 .

†E0,ν
2 ⊂ E0,ν

2 ∗ ∗

†E0,ν−1
2 = E0,ν−1

2
†E1,ν−1

2 = E1,ν−1
2

†E2,ν−1
2 = E2,ν−1

2 · · ·
...

...
...

†E0,1
2 = E0,1

2
†E1,1

2 = E1,1
2

†E2,1
2 = E2,1

2 · · ·

†E0,0
2 = E0,0

2
†E1,0

2 = E1,0
2

†E2,0
2 = E2,0

2 · · ·

where d1 is defined on E0,ν
1 , and each successive operator di+1 is defined on the kernel

of the previous. Third,

†Gr0Hν(D,H∗
∗) = †E0,ν

∞ = Hν(D,H0
0) ∩ E0,ν

∞ = Hν(D,H0
0) ∩ Gr0Hν

I (D) .

Proof of Theorem 6.3(a). Turning to the second spectral sequence ‡E, the
Poincaré lemma of Corollary 6.10 implies H0 = C and Hp = 0 for all 0 < p < ν.
Therefore,

‡Ep,q
2 =

{
Hq(D,C) , p = 0 ,
0 , 0 < p < ν ,

cf. Figure 6. (When considering Figure 6 it is important to recall that the differential

Fig. 6. The ‡E2–page of the hypercohomology spectral sequence.

...
...

...
...

...

H2(D,C) 0 · · · 0 H2(D,Hν) H2(D,Hν+1) · · ·

H1(D,C) 0 · · · 0 H1(D,Hν) H1(D,Hν+1) · · ·

H0(D,C) 0 · · · 0 H0(D,Hν) H0(D,Hν+1) · · ·

d‡i ‘points’ towards the northwest ↖, while all other spectral sequence differentials
considered in this paper ‘point’ towards the southeast ↘.) Theorem 6.3(a) follows.

Proof of Theorem 6.3(b). Again consulting Figure 6 we see that the terms
‡Ep,q

∞ with p+ q = ν are

‡E0,ν
∞ = Hν(D,C) ,

‡Ep,q
∞ = 0 for p, q > 0 ,

‡Eν,0
∞ = ker{d‡ν+1 : H0(D,Hν) → Hν+1(D,C)} .

Whence

‡Gr•Hν(D,H∗
∗) = Hν(D,C) ⊕ ker{d‡ν+1 : H0(D,Hν) → Hν+1(D,C)}
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and

Hν(D,C) ⊂ Hν(D,H∗
∗) .

Assertion (b) of Theorem 6.3 follows.

Appendix A. Examples. We have seen that the eigenspace decomposition
(5.23) plays a central role in the characteristic cohomology. Here we present a number
of examples illustrating the decomposition and the values μ and ν of (5.32) and (6.1),
respectively. The eigenspace decomposition is computed using Kostant’s theorem on
Lie algebra cohomology which is briefly reviewed in Appendix B.

This section contains several figures illustrating the decomposition, and I would
like to make two comments on the interpretation of those figures. First, the decompo-
sition (5.23) of H�(g−,C) lies on the �–th diagonal. Second, virtue of Lemma 6.24 and
its analogs (such as Lemma 6.28), these figures may be identified with those repre-
senting the spectral sequence pages ◦E1 (Figure 3), �E1 and their analogs in Sections
6.3 and 6.4.

A.1. Adjoint varieties. Consider the case that T1 ⊂ T Ď is a contact distribu-
tion. This is the case precisely when GC is simple and the minimal homogeneous em-
bedding of Ď is the GC–orbit of the highest root line g

α̃ ∈ PgC. These are the adjoint
varieties, the compact, simply connected, homogeneous complex contact manifolds
[5]. These examples are easily described by the geometry of the contact distribution;
it is not necessary to appeal to representation theory. In this case, the splitting (6.19)
is

T ∗D =
∧1,0

1 ⊕
∧1,0

2 , with dimC

∧1,0
1 = 2c and dimC

∧1,0
2 = 1 .

Note that
∧1,0

2 = Ann(T1).

Figures 7 and 8 depict the pages �E0 and �E1 of the spectral sequence introduced
in Section 6.2 (and generalized in Section 6.4). When considering Figure 7, recall

Fig. 7. The initial term �E�,−m
0 = A

0,�−m
�

in the case that Ď is an adjoint variety.

A0,0 A0,1
1 A0,2

2 A0,3
3 · · · A0,2c

2c 0 0

↑ ∂̄0 ↑ ∂̄0 ↑ ∂̄0

0 0 A0,1
2 A0,2

3 · · · A0,2c−1
2c A0,2c

2c+1 A0,2c+1
2c+2

that A0,�
� denotes the smooth sections of

∧0,�
� , and A0,�

�+1 denotes the smooth sections

of
∧0,�−1

� ⊗
∧0,1

2 , cf. (6.22). The nondegeneracy of the contact form implies that the

algebraic differential ∂̄0 : A0,�
�+1 → A0,�+1

�+1 is injective when � ≤ c + 1 and surjective
when � ≥ c+1. It follows from Lemma 6.28 that the �E1–term of the spectral sequence
is as depicted in Figure 8. Referring to the definitions (5.32) and (6.1) we see that

μ = ν = c .
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Fig. 8. The term �E�,−m
1 = C∞(H�−m

m ) in the case that Ď is an adjoint variety.

C∞(H0
0) · · · C∞(Hc

c) 0

0 C∞(Hc+1
c+2) · · · C∞(H2c+1

2c+2)

This is an example in which the resolution (6.31) of Remark 6.30 exists. Indeed
from Figure 8 we see that there exists a complex

0 → O ↪→ C∞(H0)
∇1

→ · · ·
∇1

→ C∞(Hc)
∇2

→ C∞(Hc+1)
∇1

→ · · ·
∇1

→ C∞(H2c+1) → 0 ,

where ∇a denotes an operator of order a. (This is the case p = 0 in (6.31).) To see
that the complex is exact, if suffices to recall that the spectral sequence {�Ep,q

i , ∂̄i}
converges to the Dolbeault cohomology. This resolution may be thought of as a
Dolbeault analog of the Rumin complex [8, 30]. A similar argument gives (6.31) for
p > 0.

A.2. Flag varieties Ď = Flag(a, b,C5) . If the compact dual is a Grass-
mannian, the IPR T1 = T Ď is trivial. So we will consider a examples of the form
Ď = Flag(a, b,C5). (The case that (a, b) = (1, 4) is omitted as the compact dual Ď is
an adjoint variety; see Section A.1.) For these varieties

E = S
a + S

b .

The nontrivial E–eigenspaces H�
m for these two compact duals are computed by (B.4);

see Figures 9–11. The values of μ and ν, determined by inspection of the figures, are
listed in Table A.1.

Table A.1

(ν, μ) values for Flag(a, b,C5)

Ď Flag(1, 2,C5) Flag(1, 3,C5) Flag(2, 3,C5)

(ν, μ) (1, 3) (2, 4) (1, 2)

Fig. 9. Nontrivial H�
m for Ď = Flag(1, 2,C5)

H0
0 H1

1 H2
2 H3

3 0 0 0 0 0 0 0

0 0 0 H2
3 H3

4 H4
5 0 0 0 0 0

0 0 0 0 0 H3
5 H4

6 H5
7 0 0 0

0 0 0 0 0 0 0 H4
7 H5

8 H6
9 H7

10

A.3. The exceptional group G2 . The compact dual Ď = G2(C)/P2 is an
adjoint variety (Section A.1), so here we will consider only the compact duals Q5 =
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Fig. 10. Nontrivial H�
m for Ď = Flag(1, 3,C5)

H0
0 H1

1 H2
2 H3

3 H4
4 0 0 0 0 0 0

0 0 0 0 H3
4 H4

5 H5
6 0 0 0 0

0 0 0 0 0 0 H4
6 H5

7 H6
8 H7

9 H8
10

Fig. 11. Nontrivial H�
m for Ď = Flag(2, 3,C5)

H0
0 H1

1 H2
2 0 0 0 0 0 0 0 0 0 0

0 0 0 H2
3 H3

4 0 0 0 0 0 0 0 0

0 0 0 0 0 H3
5 H4

6 H5
7 0 0 0 0 0

0 0 0 0 0 0 0 0 H5
8 H6

9 0 0 0

0 0 0 0 0 0 0 0 0 0 H6
10 H7

11 H8
12

G2/P1, which has grading element E = S
1; and G2/P1,2 = G2/B, which has grading

element E = S
1 + S

2. The nontrivial E–eigenspaces H�
m for these two compact duals

are computed by (B.4), and are depicted in Figures 12 and 13. From these figures we
see that

ν = 1

in both examples.

Fig. 12. Nontrivial H�
m for Ď = G2/P1

H0
0 H1

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 H2
4 0 0 0 0 0 0

0 0 0 0 0 0 H3
6 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 H4
9 H5

10

Consider the case that Ď = G2/P1. From Figure 12 we see that the resolution
(6.31) exists. In the case that p = 0 the resolution is of the form

0 → O ↪→ C∞(H0)
∇1

→ C∞(H1)
∇3

→ C∞(H2)
∇2

→ C∞(H3)

∇3

→ C∞(H4)
∇1

→ C∞(H5) → 0

with ∇a a GR–invariant differential operator of order a. (See [8, Section 5] for a
discussion of this resolution in a related setting.)
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Fig. 13. Nontrivial H�
m for Ď = G2/P1,2

H0
0 H1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 H2
3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 H2
5 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 H3
8 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 H4
11 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 H4
13 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H5
15 H6

16

Consider the case that Ď = G2/B. From Figure 13 we see that this is also an
example in which the resolution (6.31) exists. In the case that p = 0 the resolution is
of the form

0 → O ↪→ C∞(H0)
∇1

→ C∞(H1)
∇2

→ C∞(H2)
∇3

→ C∞(H3)

∇3

→ C∞(H4)
∇2

→ C∞(H5)
∇1

→ C∞(H6) → 0 .

Appendix B. Kostant’s Theorem. This section is a terse summary of
Kostant’s theorem on Lie algebra cohomology [23, Theorem 5.14]. We restrict the
discussion to cohomology with coefficients in the trivial representation C. (Kostant’s
theorem addresses the more general setting of coefficients in an arbitrary irreducible
gC–representation.) The theorem describes the g0–module structure of H•(g−,C) as
follows.

Let {ω1, . . . , ωr} ⊂ h∗ denote the fundamental weights of (gC,Σ). Let Λwt =
Λwt(gC) = spanZ{ω1, . . . , ωr} denote the weight lattice. Then a weight λ = niωi ∈ Λwt

is gC–dominant if ni ≥ 0 for all i. Similarly, a weight is g0–dominant if ni ≥ 0 for
all i 
∈ s+, cf. (2.7). Let Λ+

wt(gC) ⊂ Λ+
wt(g0) denote the respective sets of dominant

weights.
The Weyl group has the property that W (Λwt) = Λwt. The set W p indexing

Schubert varieties (Section 4.1) may be characterized by

W p = {w ∈ W | w(Λ+
wt(gC)) ⊂ Λ+

wt(g0)} ,

cf. [23, §5.13]. One of the simplest ways to determine the elements of W p is to use
the fact that they are in bijective correspondence with the orbit of

ρ0 =
∑
i∈s+

ωi

under the Weyl group W , via the assignment w �→ w−1ρ0. Let

W p(�) = {w ∈ W p | |w| = �}



756 C. ROBLES

denote the elements of length �.
Let

ρ =
∑
i

ωi ∈ Λwt .

Given w ∈ W define

ρw = ρ − w(ρ) ∈ Λwt . (B.1)

Then −ρw ∈ Λ+
wt(g0); let Hw denote the irreducible g0–module of lowest weight ρw.

(Equivalently, the dual H∗
w is the irreducible g0–module of highest weight −ρw.) By

Kostant’s [23, Theorem 5.14], the Lie algebra cohomology

H�(g−,C) =
⊕

w∈Wp(�)

Hw (B.2)

as a g0–module. Moreover, ρw = ρv if and only if w = v; that is, the multiplicity of
Hw in H•(g−,C) is one. Kostant’s (B.2) determines the E–eigenspace decomposition
(5.23) and the integer ν of (6.1) as follows. Precisely,

H�
m =

⊕
w ∈ Wp(�)
ρw(E) = m

Hw . (B.3)

Thus,

ν = max{� | ρw(E) = � , ∀ w ∈ W p(�)} . (B.4)

REFERENCES

[1] A. Andreotti, G. Fredricks, and M. Nacinovich, On the absence of Poincaré lemma in
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Gel′fand-Gel′fand resolution of a finite-dimensional, irreducible g-module, Trans. Amer.
Math. Soc., 262:2 (1980), pp. 335–366.
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