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ON ASYMPTOTIC PLATEAU’S PROBLEM FOR CMC

HYPERSURFACES ON RANK 1 SYMMETRIC SPACES OF

NONCOMPACT TYPE
∗

JEAN-BAPTISTE CASTERAS† AND JAIME B. RIPOLL‡

Abstract. Let Mn, n ≥ 3, be a Hadamard manifold with strictly negative sectional curvature
KM ≤ −α, α > 0. Assume that M satisfies the strict convexity condition at infinity according
to [18] (see also the definition below) and, additionally, that M admits a helicoidal one parameter
subgroup {ϕt} of isometries (i.e. there exists a geodesic γ of M such that ϕt (γ(s)) = γ(t + s) for
all s, t ∈ R). We then prove that, given a compact topological {ϕt}−starshaped hypersurface Γ in
the asymptotic boundary ∂∞M of M (that is, the orbits of the extended action of {ϕt} to ∂∞M

intersect Γ at one and only one point), and given H ∈ R, |H| < √α, there exists a complete properly
embedded constant mean curvature (CMC) H hypersurface S of M such that ∂∞S = Γ.

This result extends Theorem 1.8 of B. Guan and J. Spruck [11] to more general ambient spaces,
as rank 1 symmetric spaces of noncompact type, and allows Γ to be starshaped with respect to more
general one parameter subgroup of isometries of the ambient space. For example, in Hn, Γ can be
starshaped with respect to a family of loxodromic curves (that includes, in particular, the radial
one parameter subgroup of conformal diffeormophisms of ∂∞Hn considered in [11]). A fundamental
result used to prove our main theorem, which has interest on its own, is the extension of the interior
gradient estimates for CMC Killing graphs proved in Theorem 1 of [7] to CMC graphs of Killing
submersions.

Key words. Hadamard manifolds, Killing graphs, asymptotic Dirichlet problem, asymptotic
Plateau problem.
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1. Introduction. Let Mn be a Cartan-Hadamard manifold (namely a simply
connected, complete Riemannian manifold with nonpositive sectional curvature) of
dimension n ≥ 3.

The asymptotic boundary ∂∞M of M is defined as the set of all equivalence
classes of unit speed geodesic rays in M ; two such rays γ1, γ2 : [0,∞) → M are
equivalent if supt≥0 d (γ1(t), γ2(t)) < ∞, where d is the Riemannian distance in M.

The so called geometric compactification M of M is then given by M := M ∪ ∂∞M,
endowed with the cone topology (see [9] or [19], Ch. 2). For any subset S ⊂ M , we
define ∂∞S = ∂∞M ∩ S.

The asymptotic Plateau problem for k (≥ 2) dimensional area minimizing sub-
manifolds in M consists in finding, for a given a k−1 dimensional, closed, topological
submanifold Γ of ∂∞M , a locally area minimizing, complete submanifold Sk of M
such that ∂∞S = Γ.

By using methods from the Geometric Measure Theory, this problem was first
studied in the hyperbolic space by M.T. Anderson [2] and his results extended to
Gromov hyperbolic manifolds by U. Lang and V. Bangert ([3], [13], [14]).

Within the framework of the classical Plateau problem, the second author of the
present paper with F. Tomi [20] study the asymptotic problem for minimal disk type
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surfaces in a general Hadamard manifold M .

In codimension 1, given H ∈ R, we may consider the asymptotic Plateau’s prob-
lem for the constant mean curvature (CMC) H hypersurface in M, namely, given a
compact topological hypersurface Γ ⊂ ∂∞M, find a complete CMC H hypersurface S
ofM (H−hypersurface, for short) such that ∂∞S = Γ. This problem has also attracted
the attention of many mathematicians more recently. The results of M.T. Anderson
[2] have been extended to the CMC case by Y. Tonegawa [21] and H. Alencar and H.
Rosenberg in [1].

Both Geometric Measure theory and Plateau’s technique are methods that lead, in
general, to the existence of hypersurfaces with singularities. Thus, a natural question,
raised by B. Guan and J. Spruck in [11], asks about the existence of a smooth constant
mean curvature hypersurface asymptotic to Γ at infinity in H

n. This problem in fact
had already been studied earlier in the minimal case by F. H. Lin [15].

A way to obtain smooth solutions is by finding a suitable system of coordinates
in order to write the hypersurface as a graph, and then to use standard elliptic PDE
methods. In [15], F.H. Lin represented the hypersurfaces in the half space model of
H

n as vertical graphs, that is, in the usual way of Rn
+ when using the cartesian system

of coordinates.

The results of F.H. Lin [15] were extended to the CMC case by B. Nelli and J.
Spruck in [16] where they proved the existence of a smooth CMC |H | < 1 hypersurface
in the hyperbolic space Hn with sectional curvature −1 if Γ is assumed to be convex
and compact. Later, also using PDE’s techniques, B. Guan and J. Spruck [11] (see
also [8] for a different approach based on a variational method) improved the convexity
condition by requiring a starshaped property of Γ. We refer the reader to the nice
survey of B. Coskunuzer [5], where the references of many other closely related papers
to this subject can be found.

In both papers [16] and [11] the authors used the underlying Euclidean structure
of the half space model for Hn to state the convexity and starshaped properties of Γ.
However, although the convexity is not an intrinsic notion of the hyperbolic geometry,
the starshapness of Γ is. It can be formulated in intrinsic terms using the conformal
structure of H

n
by requiring Γ to be “circle shaped”, meaning that there are two

points p1, p2 ∈ S
n−1 = ∂∞H

n such that any arc of circle from p1 to p2 intersects
Γ at one and only one point. A limit starshaped condition, where p1 = p2, was
also introduced and used by the second author in [17] to ensure the existence of a
smooth CMC hypersurface having Γ as asymptotic boundary (see the Introduction
and Theorem 6 of [17] for a detailed description of this case).

In the present paper we extend Theorem 1.8 of [11] in two directions. First, we
allow Γ to be “starshaped” with respect to a more general one parameter subgroup
of conformal diffeomorphisms of Sn−1 = ∂∞H

n. Secondly, we allow the ambient space
to be any rank 1 symmetric space of noncompact type. Both results are consequences
of a more general theorem that holds in a Hadamard manifold endowed with some
special Killing field.

As we shall see in the proof ahead, the Killing field allows to introduce a special
system of coordinates which is quite suitable for using standard elliptic PDE tech-
niques. To write down precise statements we first introduce some general notions and
terminology.

Let γ : (−∞,∞) → M be an arc length geodesic. We say that a one parameter
subgroup of isometries {ϕγ

t } ofM associated to γ is helicoidal if ϕγ
t (γ (s)) = γ (t+ s))

for all s, t ∈ R. In the sequel, since there is no possibility of confusion, we shall omit
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the dependance of {ϕγ
t } with respect to the geodesic γ.

Let us illustrate the previous definition with a simple case that justifies this
terminology: If M = R

3 then any helicoidal one parameter subgroup of isometries,
up to a conjugation, is of the form

ϕt (x, y, z) =

([
cos at sin at
− sinat cos at

] [
x
y

]
, z + t

)

for some a ∈ R. When a = 0, {ϕt} is a one parameter subgroup of transvections
along the z−axis. More generally, a one parameter subgroup of transvections along a
geodesic in a symmetric space (see [12]) is a particular case of helicoidal one parameter
subgroup of isometries.

Since the equivalence relation between geodesics and convergent sequences are
preserved under isometries, the action of {ϕt} on M extends to the compactification
M of M and the extended action is continuous. The orbits of {ϕt} are the curves
O(x) := {ϕt(x) | t ∈ R} where x ∈ M. Observe that {ϕt} has two singular orbits in
M, namely, O (γ (±∞)) , where γ is the geodesic translated by {ϕt} .

Finally, we will also need to use the Strictly Convexity Condition (“SC condition”)
introduced in [20]. We say that M satisfies the SC condition if, given x ∈ ∂∞M and
a relatively open subset W ⊂ ∂∞M containing x, there exists a C2 open set Ω ⊂ M
such that x ∈ Int(∂∞Ω) ⊂ W and M\Ω is convex, where Int(∂∞Ω) stands for the
interior of ∂∞Ω in ∂∞M .

We are now in position to state our main result :

Theorem 1. Let M be a Hadamard manifold with sectional curvature KM ≤ −α,
for some α > 0, satisfying the SC condition. Let {ϕt} be a helicoidal one parameter

subgroup of isometries of M . Let Γ ⊂ ∂∞M be a compact topological embedded hyper-

surface of ∂∞M and assume that any nonsingular orbit of {ϕt} in ∂∞M intersects Γ
at one and only one point. Then, given H ∈ R, |H | < √

α, there exists a complete,

properly embedded H−hypersurface S of M such that ∂∞S = Γ. Moreover any orbit

of {ϕt} intersects S at one and only one point.

We point out that the SC condition is satisfied by a large class of manifolds.
For example, if the sectional curvature is bounded from above by a strictly negative
constant and decreases at most exponentially (see Theorem 14 of [18]) then the SC
condition is satisfied. In particular, it is satisfied by any rank 1 symmetric spaces of
noncompact type. Therefore, as an immediate consequence of the previous theorem,
we obtain:

Corollary 2. Assume that M is a rank 1 symmetric space of noncompact type

and assume that the sectional curvature of M is bounded by −α, α > 0. Let {ϕt}
be a one parameter of transvections of M . Let Γ ⊂ ∂∞M be a compact embedded

topological hypersurface of ∂∞M that intersects any nonsingular orbit of {ϕt} at one

and only one point. Then, given H ∈ R, |H | < √α, there exists a complete, properly

embedded H−hypersurface S of M such that ∂∞S = Γ. Moreover any orbit of {ϕt}
intersects S at one and only one point.

Finally we point out an interesting corollary of Theorem 1 in the case where
M = H

n, the hyperbolic space of constant sectional curvature −1. Recalling that a
loxodromic curve is a curve in S

n−1 that intersects with a constant angle θ any arc of
circle of Sn−1 connecting two fixed points of Sn−1 (see [22]). These curves are induced
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by one-parameter subgroups of isometries of Hn of helidoidal type. For example, in
the half space model z > 0 of H3, up to conjugation, they are of the form

ϕt (x, y, z) = et
([

cos θt sin θt
− sin θt cos θt

] [
x
z

]
, z

)
.

Corollary 3. Let 0 ≤ θ < π/2 and p1, p2 ∈ S
n−1 = ∂∞H

n be two distinct points

of Sn−1. Let Lθ be the family of loxodromic curves that intersects any arc of circle

from p1 to p2 with a constant angle θ. Let Γ ⊂ S
n−1 be a compact embedded topological

hypersurface of Sn−1 that intersects any curve of Lθ at one and only one point. Then,

given H ∈ R, |H | < 1, there exists a complete, properly embedded H−hypersurface S
of Hn such that ∂∞S = Γ.

We notice that, taking θ = 0 in the previous corollary, we recover Theorem 1.8
of [11]. Theorem 1.8 also follows from Corollary 2 since radial graphs (considered in
[11]) are transvections along a geodesic of Hn.

A fundamental result for proving the above theorems, which has interest on its
own, are the interior gradient estimates of the solutions of the CMC H graph PDE
for Killing submersions (see Theorem 4 below). It extends Theorem 1 of [7].

2. Proofs of the results. In what follows we use most of the nomenclature and
the results proved by M. Dajczer and J. H. de Lira in [6]. However, we introduce the
notion of a Killing graph on a manner slightly different from the one considered in
[6].

For the next result we allow M be any Riemannian manifold and Y a Killing
field in M without singularities. Denote by O (x) the integral curve (which we also
call orbit) of Y through a point x ∈ M. By a complete Y− Killing section (we shall
refer only to a Killing section because Y will be fixed throughout the text) we mean
a complete up to the boundary (possibly empty) hypersurface P of M such that any
orbit O (p) of Y through a point p of P intersects P only at p and the intersection is
transversal. We call Ω := P\∂P a Killing domain. If P = Ω is a hypersurface of class
C2,α in M then we say that Ω is a C2,α Killing domain.

If u is a function defined on a subset T of P , the Killing graph of u is given by

Gr (u) = {ϕ (u (p) , p) | p ∈ T }
where ϕ(s, x) = ϕs(x) is the flow of Y. In the sequel, s will stand for the flow param-
eter. We also set

ΓT = {ϕ(s, x) | x ∈ T and s ∈ R} .
Next, we denote by Π : M → P the projection defined by Π(x) = O (x) ∩ P . In

all the sequel, we endow P with the Riemannian metric 〈 , 〉Π such that Π becomes a
Riemannian submersion.

Assume that Ω is a C2,α Killing domain. Given H ∈ R, it is not difficult to show
that Gr (u) has CMC H with respect to the unit normal vector field η to Gr (u) such
that 〈Y, η〉 ≤ 0 if and only if u satisfies a certain second order quasi-linear elliptic
PDE QH [u] = 0 on M in terms of the metric 〈 , 〉Π in P (for details, including an
explicit expression of QH , see Section 2.1 of [6] or the short revision done below).

We may then refer to the CMC H Dirichlet problem in a Killing domain Ω ⊂M
and for a given boundary data φ ∈ C0 (∂Ω) as the PDE boundary problem{

QH [u] = 0 in Ω u ∈ C2,α (Ω) ∩ C0
(
Ω
)

u|∂Ω = φ.
(1)
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We begin by obtaining interior gradient estimates for the solutions of (1). Our
result generalizes Theorem 1 of [7] to the case of CMC H graph PDE of Killing
submersions.

Fix a point o ∈ Ω and let r > 0 be such that r < i(o), the injectivity radius of M
at o. We obtain the following result :

Theorem 4. Let Ω be a Killing domain in M. Let o ∈ Ω and r > 0 such that the

open geodesic ball Br (o) is contained in Ω. Let u ∈ C3 (Br (o)) be a negative solution

of Q[u] = 0 in Br (o) . Then there is a constant L depending only on u(o), r, |Y | and
H such that |∇u (o)| ≤ L.

Before proving the above theorem, we review the nomenclature and some facts of
[6].

We fix a local reference frame v1, . . . , vn on Ω and we set σij = 〈vi, vj〉Π. We
will now define a local frame in M . We denote by D1, . . . , Dn the basic vector fields
Π-related to v1, . . . , vn. The frame D0, . . . , Dn, we considered on M , is defined by

D0 = f
1

2 ∂s, where f =
1

|Y |2 , (∂s(q) = ϕ∗(s, p)∂s(p)), and Di(q) = ϕ∗(s, p)Di(p),

where q = ϕ(s, p), p ∈ P . We point out that the unit normal vector field to Gr(u)
pointing upward is given by

N =
1

W
(f

1

2D0 − ûjDj), (2)

where ûj = σijDi(u− s) and W 2 = f + ûiûi = f +σij û
iûj . We notice that ûi and W

are not depending on s and therefore can be seen as function defined on P . Finally,
using the previous notation, the operator Q (defined in (1)) can be written as

QH [u] =
1

W
(Aij ûj;i − (f +W 2)

W 2

〈
Π∗∇̄D0

D0, Du
〉
)− nH,

where ûi;j =
〈∇̄Di

∇̄(u− s), Dj

〉
, Du = Π∗∇(u− s) and Aik = σik − ûiûk

W 2
.

Proof of Theorem 4. The proof will follow closely the one of Theorem 1 in [7].
Let p ∈ Br(o) be an interior point where h = ηW attains its maximum, where η is
a smooth function with support in Br(o) which will be determined in the sequel. In
all this section, the computations will be done at the point p. Let v1, . . . , vn be an
orthonormal tangent frame at p ∈ Br(o). Then we have hi = 0 (where the derivative
is taken with respect to vi). This implies that

ηiW = −ηWi. (3)

We also have, since
Aij

W
is definite positive, that

0 ≥ 1

W
Aijhij =

1

W
Aij(Wηi;j + 2ηiWj + ηWi;j).

Using (3), the previous inequality can be rewritten as

Aijηi;j +
η

W 2
Aij(WWi;j − 2WiWj) ≤ 0. (4)

From (2), we have

Nk = − ûk

W
. (5)
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Derivating W , we find

Wi =
fi
2W

+
ûkûk;i

W
=

fi
2W

−Nkûk;i.

From (5), we get

Nk
;j = −

ûk
;j

W
+

ûkWj

W 2
.

Using the previous inequalities, we have

Wi;j =
fi;j
2W

− fiWj

2W 2
−Nk

;jûk;i −Nkûk;ij

=
fi;j
2W

+
ûk
;j ûk;i

W
− ûkûk;iWj

W 2
− fiWj

2W 2
−Nkûk;ij

=
fi;j
2W

+
ûk
;j ûk;i

W
− WiWj

W
−Nkûk;ij

=
fi;j
2W

+
Akl

W
ûl;jûk;i +

fifj
4W 3

− 1

2W 2
(Wifj +Wjfi)−Nkûk;ij .

Multiplying by Aij the above equation and using (3), we find

AijWi;j =
Aijfi;j
2W

+
AijAkl

W
ûl;j ûk;i +

Aijfifj
4W 3

+
1

ηW
Aijηifj −AijNkûk;ij . (6)

In order to get rid of the term involving three derivatives of u in (6), we want to find
a commutation formula for ûk;ij . We recall (see equation (11) of [6]) that

ûk;i = uk;i − sk;i +
1

2
γki,

where γki = f
1

2 〈[Dk, Di], D0〉. We deduce from the previous equality that

ûk;ij = uk;ij − sk;ij +
1

2
(γki)j = ui;jk +Rl

kjiul − sk;ij +
1

2
(γki)j

= (ûj;i + sj;i − 1

2
γji)k +Rl

kjiul − sk;ij +
1

2
(γki)j

= ûj;ik + sj;ik − 1

2
(γji)k +Rl

kjiul − sk;ij +
1

2
(γki)j

= ûj;ik +Rl
kjiûl +Rl

kjisl + sj;ik − sk;ij +
1

2
((γki)j − (γji)k)

= ûj;ik +Rl
kjiûl + Cijk,

where Cijk = Rl
kjisl + sj;ik − sk;ij +

1

2
((γki)j − (γji)k) is not depending on u. Using

(1) and the commutation formula, the last term of (6) rewrites as

AijNkûk;ij = AijNkûj;ik −
AijRl

kjiûlû
k

W
− ûkAijCijk

W

= Nk(Aij ûj;i)k −NkAij
;kûi;j −

AijRl
kjiûlû

k

W
− ûkAijCijk

W

= nNk(WH)k +Nk

(
(f +W 2)

W 2

〈
Π∗∇̄D0

D0, Du
〉)

k

−NkAij
;kûj;i −

AijRl
kjiûlû

k

W
− ûkAijCijk

W
.
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Straightforward computations using (3) give

(WH)k =WkH +WHk =
W

η
(−ηkH + ηHk),

and

(
f +W 2

W 2
)k =

fk
W 2

− f

W 4
(fk + 2ûlûl;k) =

1

W 2
(fk + 2

fηk
η
). (7)

We also have, using (7),

(
(f +W 2)

W 2

〈
Π∗∇̄D0

D0, Du
〉)

k

=
(f +W 2)

2fW 2
[(
flfk
f
− fk;l)WN l + f lûl;k]

+
〈
Π∗∇̄D0

D0, Du
〉 1

W 2
(fk + 2

fηk
η
),

and

Aij
;k = −

1

W 2
(ûi

;kû
j + ûiûj

;k) +
1

W 4
(fk − 2WN lûl;k)û

iûj

=
1

W
(ûi

;k −N iN lûl;k)N
j +

1

W
(ûj

;k −N iN lûl;k)N
i +

1

W 2
fkN

iN j

=
1

W
Ailûl;kN

j +
1

W
Ajlûl;kN

i +
1

W 2
fkN

iN j .

Multiplying the previous equality by Nkûj;i, we find

NkAij
;kûj;i =

1

W
Nkûj;iûl;k(A

ilN j +AjlN i) +
1

W 2
fkN

iN jNkûj;i.

Recalling that

Nkûk;i =
fi
2W

+
Wηi
η

,

and

ûi;j = ûj;i + γij ,

we have

NkAij
;kûj;i =

1

W 2
fkN

kN i(
fi
2W

+
Wηi
η

) +
1

W
Ail(

fi
2W

+
Wηi
η

)Nk(ûk;l + γlk)

+
1

W
AjlNkN i(ûi;j + γji)(ûk;l + γlk)

=
1

W 2
fkN

kN i(
fi
2W

+
Wηi
η

) +
2

W
Ail(

fi
2W

+
Wηi
η

)(
fl
2W

+
Wηl
η

)

+
1

W
AjlNkN iγjiγlk +

3

W
Ail(

fi
2W

+
Wηi
η

)Nkγlk,

and

Nkflûl;k = Nkfl(ûk;l − γkl) =
f

2W
σkl fkfl

f
+

W

η
flη

l − γklN
kfl.
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Using the previous computations, we deduce that the last term of (6) can be rewritten
as

AijNkûk;ij = nNkW

η
(−ηkH + ηHk)− 2

W
Ail(

fi
2W

+
Wηi
η

)(
fl
2W

+
Wηl
η

)

− 1

W 2
fkN

kN i(
fi
2W

+
Wηi
η

)− 1

W
AjlNkN iγjiγlk

− 3

W
Ail(

fi
2W

+
Wηi
η

)Nkγlk −
AijRl

kjiûlû
k

W

− ûkAijCijk

W
+
〈
Π∗∇̄D0

D0, Du
〉 Nk

W 2
(fk + 2

fηk
η
)

+
(f +W 2)

2fW 2

[(
f

2W
σkl +WNkN l

)
fkfl
f
−WNkN lfk;l +

W

η
flη

l − γklN
kfl

]
.

Thus, from (6), we obtain

AijWij − 2

W
AijWiWj

=
3

4W 3
Aijfifj +

1

W
AijAklûl;jûk;i +

3

Wη
Aijfiηj +

1

2W
Aijfi;j

− nNkW

η
(−ηkH + ηHk) +

1

W 2
fkN

kN i(
fi
2W

+
Wηi
η

) +
1

W
AjlNkN iγjiγlk

+
3

W
Ail(

fi
2W

+
Wηi
η

)Nkγlk +
AijRl

kjiûlû
k

W

+
ûkAijCijk

W
− 〈

Π∗∇̄D0
D0, Du

〉 Nk

W 2
(fk + 2

fηk
η
)

− (f +W 2)

W 2

1

2f

[(
f

2W
σkl +WNkN l

)
fkfl
f
−WNkN lfk;l +

W

η
flη

l − γklN
kfl

]
.

Multiplying by
η

W
, we have

η

W
(AijWij − 2

W
AijWiWj)

≥
[
−nNkHk − fk

W 3
Nk

〈
Π∗∇̄D0

D0, Du
〉
+

1

2W 2
Aijfi;j

+
1

W 2
AjlNkN iγjiγlk +

3

2W 3
AilfiN

kγlk +
ûkAijCijk

W 2
+

AijRl
kjiûlû

k

W 2

− (f +W 2)

W 2

1

2f

[(
f

2W 2
σkl +NkN l

)
fkfl
f
−NkN lfk;l − 1

W
γklN

kfl

]]
η

+

[(
nH +

1

W 2
Nkfk − 2f

W 3

〈
Π∗∇̄D0

D0, Du
〉)

N i

+
3

W
AjlNkγlk +

(
3

W 2
Aij − (f +W 2)

W 2

1

2f
σij

)
fj

]
ηi.

Thus it is easy to see that there exists a constant M > 0, not depending on u, such
that

η

W 2
(WAijWij − 2AijWiWj) ≥ −Mη −Aiηi,
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where Ai is the coefficient of ηi. From (4), we deduce that

Aijηi;j −Mη −Aiηi ≤ 0. (8)

We are now ready to choose an explicit η. We take

η(x) = g(φ(x)) = eC1φ(x) − 1 = e
C1(1 − d2(x)

r2
+

u(x)

C
)+ − 1,

where C = − 1

2u(o)
. Straightforward computations give

ηi = g′(−r−2(d2)i + C(ui − si)) = g′(−r−2(d2)i + Cûi),

and

ηi;j = g′(−r−2(d2)i;j + Cûi;j) + g′′(−r−2(d2)i + Cûi)(−r−2(d2)j + Cûj).

We deduce from the two previous lines that

Aij(−r−2(d2)i + Cûi)(−r−2(d2)j + Cûj) ≥ C2f

W 2

(
|Du|2 − 2

Cr2
〈
Du,∇d2

〉)
,

and

Aij(−r−2(d2)i;j + Cûi;j) = −r−2Aij(d2)i;j

+ C

(
nWH +

f +W 2

W 2

〈
Π∗∇̄D0

D0, Du
〉
+Aijγij

)
,

where

Aij(d2)i;j = Δ(d2)− 1

W 2

〈∇Du∇d2, Du
〉
.

Inserting the previous expressions into (8), we have

C2f

W 2

(
|Du|2 − 2

Cr2
〈
Du,∇d2

〉)
g′′

+

[
C

(
nWH +

f +W 2

W 2

〈
Π∗∇̄D0

D0, Du
〉
+Aijγij

)

− r−2

(
Δ(d2)− 1

W 2

〈∇Du∇d2, Du
〉)]

g′

≤Mg +Ai(−r2(d2)i + Cûi)g
′.

Using the explicit expression of Ai, it is easy to see that CAiûi contains bounded
terms and the term

C

(
nWH +

f +W 2

W 2

〈
Π∗∇̄D0

D0, Du
〉)

.

Therefore, we conclude that

C2f

W 2
(|Du|2 − 2

Cr2
〈
Du,∇d2

〉
)g′′ + Pg′ −Mg ≤ 0,
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where P and M do not depend on u. Finally, it is easy to check that the coefficient

of g′′ is strictly positive if we assume that |Du| ≥ 16u0

r
. It implies that

W (p) ≤ C2 = sup
Br(o)

f +
16u0

r
.

Since p is the maximum point of h, this implies that

(e
C1

2 − 1)W (0) ≤ C2e
C1.

For the proof of Theorem 1 we make use of the following lemma, which shows
that the SC condition implies an explicit mean convexity condition. Precisely:

Lemma 5. Assume M is a Hadamard manifold satisfying the strict convexity

condition and such that KM ≤ −α, for some constant α > 0. Then M satisfies the

h-mean convexity condition, for h <
√
α, that is, given x ∈ ∂∞M, a relatively open

subset W ⊂ ∂∞M containing x and h <
√
α, there exists a C2 open set Λ ⊂M such

that x ∈ Int(∂∞Λ) ⊂ W and the mean curvature of M\Λ with respect to the normal

vector pointing to M\Λ is bigger than or equal to h.

Proof. Given x ∈ ∂∞M and a relatively open subset W ⊂ ∂∞M containing x,
let Ω be a convex unbounded domain in M , given by the SC condition such that
x ∈ Int(∂∞Ω) ⊂ W . Denote by d : Ω → R the distance function to ∂Ω. Then the
hessian comparison theorem (see [4]) yields

Δd ≥ (n− 1)
√
α tanh(

√
αd),

i.e. the equidistant hypersurface Ωd of Ω is
√
α tanh(

√
αd)-convex. Since

tanh(
√
αd) −→

d→∞
1, we deduce that M also satisfies the h-mean convexity condition

for h <
√
α.

Proof of Theorem 1. Let γ : (−∞,∞)→M be the geodesic translated by Y. Set

P = expo {Y (o)}⊥ where o = γ (0) . Let p ∈ P and t ∈ R be given. We may write

p = expγ(s) u for some s ∈ R and u ∈ γ′ (s)
⊥
. Since γ̃(r) = expγ(s) (ru) , r ∈ [0, 1] , is

a geodesic and ϕt an isometry, β(r) := ϕt (γ̃(r)) is also a geodesic which, moreover,
satisfies the initial conditions

β(0) = ϕt(γ̃(0)) = ϕt(γ(s)) = γ (s+ t)

β′(0) = d (ϕt)γ(s) u =: v,

we have β(r) = expγ(s+t)(rv) by uniqueness. It follows that

ϕt(p) = β(1) = expγ(s+t) v.

Moreover, since

0 = 〈u, γ′(s)〉 =
〈
d (ϕt)γ(s) u, d (ϕt)γ(s) γ

′(s)
〉
= 〈v, γ′(s+ t)〉

we have v ∈ γ′ (s+ t)
⊥
and, as the normal exponential map of a geodesic in Hadamard

manifold is a diffeomorphism from the normal bundle of the geodesic ontoM, we have
ϕt (p) ∩ P �= ∅ if and only if t = 0.
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We now observe that Y is everywhere transversal to P . Indeed, assume by con-
tradiction that Y is not transversal to P at some point p ∈ P. Let d : N → R be the
distance function to P.We set f(t) = d (ϕ (t, p)) and observe that f(0) = 0. Moreover,
since ϕ(t, ·) is an isometry of N, we have, for any fixed t,

gradd (ϕ (t, p)) = dϕ (t, p)p (gradd (p)) .

Therefore, we obtain

f ′(t) =

〈
gradd,

∂ϕ (s, p)

∂s

∣∣∣∣
s=t

〉
= 〈gradd (ϕ (t, p)) , Y (ϕ (t, p))〉

=
〈
dϕ (t, p)p (gradd (p)) , dϕ (t, p)p (Y (p))

〉

= 〈gradd (p) , Y (p)〉 = 0.

This implies that f ≡ 0 and, in return, that ϕ (t, p) ∈ P for all t, which yields to a
contradiction. This proves that P is a Killing section.

Since any orbit of ϕ at ∂∞N intersects Γ at one and exactly one point, Γ is the
Killing graph of a function φ ∈ C0 (∂∞P ) . Let F ∈ C2,α(P )∩C0(P̄ ) (P̄ = P ∪ ∂∞P )
be such that F |∂∞P = φ.

Let ρ be the geodesic distance in P to a fixed point o ∈ P . We denote by Bk, for
k = 2, 3, . . ., the geodesic ball in P centered in o and of radius k. We first show that,
for any k = 2, 3, . . ., there is a solution uk ∈ C2,α(B̄k) of{

QH [uk] = 0, on Bk

uk|∂Bk
= Fk = F |∂Bk

.
(9)

In order to prove the existence of the uk’s, we will need some a priori height estimate.
More precisely, we claim that given some k ≥ 2, there is a constant Cj depending
only on j such that if uk is a solution of (9) and j ≤ k then supBj

|uk| ≤ Cj . Let
us prove the claim. We choose two open subsets U± of γ (±∞) in ∂∞M . Using the
SC condition, we obtain the existence of two C2 convex subsets W± of M such that
∂∞W± ⊂ UK±

. Denote by K± the hypersurfaces K± = ∂W±. As observed in Lemma
5 and since |H | < √α, we may assume that K± are H0 mean convex with H0 ≥ H.
We then choose Cj such that the orbit of {ϕt} through a point of Bj intersects W±

for some t ≥ Cj . It is clear that we may assume that the Killing graph of F does not
intersect K±. The claim then follows from the tangency principle.

We have two important consequences of the previous height estimate. The first
one is that problem (9) is solvable for any k ≥ 2. In fact, the only missing hypothesis
to apply Theorem 1 of [6] to guarantee the solvability of (9) are on the Ricci curvature
of M and on the mean curvature of the Killing cylinder over the boundary of Bk (see
[6], Theorem 1). Concerning the hypothesis on the mean curvature of the Killing
cylinder over the boundary of Bk, we claim that it holds true in our setting. Indeed,
since the orbits of ϕt are equidistant curves of γ, it follows that the Killing cylinder
Kk over ∂Bk is an equidistant hypersurface of γ. Therefore the mean curvature HKk

of Kk with respect to the inner normal vector field of Kk coincides with the Laplacian
of the distance to γ. One may then apply the hessian comparison theorem to obtain

HKk
≥ √α tanh

(
k
√
α
) ≥ H

if k is large enough. Moreover, a direct inspection on the proof of Theorem 1 of [6]
shows that the hypothesis on the Ricci curvature is only used to obtain a priori height
estimates, which we just obtained above.
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Secondly, the a priori height estimates we obtained above, Theorem 4 and classical
Schauder estimate for linear elliptic PDE (see [10]) guarantee the compactness of the
sequence of solutions {uk} on compact subsets of M. Then, by the diagonal method,
the sequence {uk} contains a subsequence converging uniformally in C2 norm on
compact subsets ofM to a global solution u ∈ C∞ (P ) of QH [u] = 0, where |H | < √α.
It remains to show that u extends continuously to ∂∞P and that u|∂∞P = φ.

Let (xk)k be a sequence of points of P converging to x ∈ ∂∞P . Since P is
compact, there exists a subsequence ϕ(u(xkj

), xkj
) of ϕ(u(xk), xk) which converges to

z ∈ P . Since xk diverges and ϕ(u(xkj
), xkj

) ∈ Gr(u), we have that z ∈ ∂∞Gr(u). We
claim that z ∈ Gr(φ). To prove the claim, we will show that if z ∈ ∂∞M\Gr(φ) then
z /∈ ∂∞Gr(u). Let z ∈ ∂∞M\Gr(φ). Since Gr(φ) is compact and z /∈ Gr(φ), using
the SC condition, we can find an hypersurface E ⊂M such that ∂∞E separates z and
Gr(φ). Moreover, using Lemma 5, the mean curvature of E with respect to the unit
normal vector field pointing to the connected component U ofM\E whose asymptotic
boundary contains Gr(φ), is larger or equal to h for h <

√
α. Since uk|∂Bk

−→
k→∞

φ,

there exists k0 such that, for all k ≥ k0, ∂Gr(uk) ⊂ U and ∂Gr(uk) ∩ E = ∅. By
the tangency principle and using that |H | < √

α, we deduce that, for all k ≥ k0,
Gr(uk) ⊂ U . It follows that z /∈ ∂∞Gr(u). This proves the claim i.e. z ∈ Gr(φ). In
particular, it follows that u is bounded.

Now, since ∂∞Gr(u) ⊂ Gr(φ), there exists x0 ∈ ∂∞P such that z = ϕ(u(x0), x0).
Using that u is bounded, we deduce there exists a subsequence {u(xkji

)} which con-
verges to some t0 ∈ R. It follows from the fact that the extension of ϕt0 to P is
continuous that

z = lim
i→∞

ϕ(u(xkji
), xkji

) = ϕ(t0, x).

Since ϕ : R × ∂∞P → ∂∞M is injective, we deduce that t0 = φ(x0) and x0 = x.
Since this last fact holds true for every converging subsequences, we have proved that
u(xk) −→

k→∞
φ(x). This concludes the proof of Theorem 1.
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