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WEAK HOPF QUASIGROUPS∗
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Abstract. In this paper we introduce the notion of weak Hopf quasigroup as a generalization
of weak Hopf algebras and Hopf quasigroups. We obtain its main properties and we prove the
fundamental theorem of Hopf modules for these algebraic structures.
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1. introduction. The notion of Hopf algebra and its generalizations appeared as
useful tools in relation with many branch of mathematics such as algebraic geometry,
number theory, Lie theory, Galois theory, quantum group theory and so on. A common
principle for obtaining generalizations of the original notion of Hopf algebra is to
weaken some of its defining axioms. For example, if one does not force the coalgebra
structure to respect the unit of the algebra structure, one is lead to weak Hopf algebras.
In a different way, the weakening of the associativity leads to Hopf quasigroups and
quasi-Hopf algebras.

Weak Hopf algebras (or quantum groupoids in the terminology of Nikshych and
Vainerman [12]) were introduced by Böhm, Nill and Szlachányi [4] as a new general-
ization of Hopf algebras and groupoid algebras. A weak Hopf algebra H in a braided
monoidal category [2] is an object that has both, monoid and comonoid structure,
with some relations between them. The main difference with other Hopf algebraic
constructions is that weak Hopf algebras are coassociative but the coproduct is not
required to preserve the unit, equivalently, the counit is not a monoid morphism.
Some motivations to study weak Hopf algebras come from the following facts: firstly,
as group algebras and their duals are the natural examples of Hopf algebras, groupoid
algebras and their duals provide examples of weak Hopf algebras and, secondly, these
algebraic structures have a remarkable connection with the theory of algebra exten-
sions, important applications in the study of dynamical twists of Hopf algebras and
a deep link with quantum field theories and operator algebras [12], as well as being
useful tools in the study of fusion categories in characteristic zero [6]. Moreover,
Hayashi’s face algebras (see [7]) are particular instances of weak Hopf algebras, whose
counital subalgebras are commutative, and Yamanouchi’s generalized Kac algebras
[17] are exactly C∗-weak Hopf algebras with involutive antipode.

On the other hand, Hopf quasigroups are a generalization of Hopf algebras in the
context of non associative algebra. Like in the quasi-Hopf setting, Hopf quasigroups
are not associative but the lack of this property is compensated by some axioms
involving the antipode. The concept of Hopf quasigroup is a particular instance of
the notion of unital coassociative H-bialgebra introduced in [15]. It includes the

∗Received February 25, 2014; accepted for publication April 2, 2015.
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example of an enveloping algebra of a Malcev algebra (see [11] and [14]) when the
base ring has characteristic not equal to 2 nor 3, and in this sense Hopf quasigroups
extend the notion of Hopf algebra in a parallel way that Malcev algebras extend the
one of Lie algebra. On the other hand, it also contains as an example the notion of
quasigroup algebra of an I.P. loop. Therefore, Hopf quasigroups unify I.P. loops and
Malcev algebras in the same way that Hopf algebras unify groups and Lie algebras.
Actually, Hopf quasigroups in a category of vector spaces were introduced by Klim
and Majid in [11] in order to understand the structure and relevant properties of the
algebraic 7-sphere.

The main purposes of this paper are to introduce the notion of weak Hopf quasi-
group as a new Hopf algebra generalization that encompass weak Hopf algebras and
Hopf quasigroups and to prove that the more relevant properties of these algebraic
structures can be obtained under a unified approach, that is, we show that the fun-
damental assertions proved in [4] and [2] about weak Hopf algebras and in [11] for
Hopf quasigroups can be obtained in this new setting. Also, we construct a fam-
ily of examples working with bigroupoids, i.e. bicategories where every 1-cell is an
equivalence and every 2-cell is an isomorphism. The organization of the paper is the
following. After this introduction, in Section 2 we introduce weak Hopf quasigroups
and we explain in detail how the first non-trivial examples of this algebraic structures
can be obtained considering bigroupoids. In Section 3 we discuss the consequences
of the definition of weak Hopf quasigroups obtaining the first relevant properties of
this objects. Finally, Section 4 is devoted to prove the fundamental theorem of Hopf
modules associated to a weak Hopf quasigroups.

2. Definitions and examples. Throughout this paper C denotes a strict
monoidal category with tensor product ⊗ and unit object K. For each object M
in C, we denote the identity morphism by idM : M → M and, for simplicity of nota-
tion, given objects M , N , P in C and a morphism f : M → N , we write P ⊗ f for
idP ⊗ f and f ⊗ P for f ⊗ idP .

From now on we assume that C admits split idempotents, i.e. for every morphism
∇Y : Y → Y such that ∇Y = ∇Y ◦ ∇Y there exist an object Z and morphisms
iY : Z → Y and pY : Y → Z such that ∇Y = iY ◦ pY and pY ◦ iY = idZ . There is
no loss of generality in assuming that C admits split idempotents, taking into account
that, for a given category C, there exists an universal embedding C → Ĉ such that Ĉ
admits split idempotents, as was proved in [9].

Also we assume that C is braided, that is: for all M and N objects in C, there
is a natural isomorphism cM,N : M ⊗ N → N ⊗ M , called the braiding, satisfying
the Hexagon Axiom (see [8] for generalities). If the braiding satisfies cN,M ◦ cM,N =
idM⊗N , the category C will be called symmetric.

Definition 2.1. By a unital magma in C we understand a triple A = (A, ηA, μA)
where A is an object in C and ηA : K → A (unit), μA : A ⊗ A → A (product) are
morphisms in C such that μA ◦ (A⊗ ηA) = idA = μA ◦ (ηA ⊗A). If μA is associative,
that is, μA ◦ (A ⊗ μA) = μA ◦ (μA ⊗ A), the unital magma will be called a monoid
in C. Given two unital magmas (monoids) A = (A, ηA, μA) and B = (B, ηB , μB),
f : A → B is a morphism of unital magmas (monoids) if μB ◦ (f ⊗ f) = f ◦ μA and
f ◦ ηA = ηB .

By duality, a counital comagma in C is a triple D = (D, εD, δD) where D is an
object in C and εD : D → K (counit), δD : D → D ⊗D (coproduct) are morphisms
in C such that (εD ⊗D) ◦ δD = idD = (D ⊗ εD) ◦ δD. If δD is coassociative, that is,
(δD ⊗D) ◦ δD = (D ⊗ δD) ◦ δD, the counital comagma will be called a comonoid. If
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D = (D, εD, δD) and E = (E, εE , δE) are counital comagmas (comonoids), f : D → E
is a morphism of counital comagmas (comonoids) if (f ⊗f)◦ δD = δE ◦f and εE ◦f =
εD.

If A, B are unital magmas (monoids) in C, the object A ⊗ B is a unital magma
(monoid) in C where ηA⊗B = ηA⊗ηB and μA⊗B = (μA⊗μB)◦(A⊗cB,A⊗B). In a dual
way, if D, E are counital comagmas (comonoids) in C, D ⊗E is a counital comagma
(comonoid) in C where εD⊗E = εD ⊗ εE and δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

Finally, if D is a comagma and A a magma, for two morphisms f, g : D → A with
f ∗ g we will denote its convolution product in C, that is

f ∗ g = μA ◦ (f ⊗ g) ◦ δD.

Definition 2.2. A weak Hopf quasigroup H in C is a unital magma (H, ηH , μH)
and a comonoid (H, εH , δH) such that the following axioms hold:

(a1) δH ◦ μH = (μH ⊗ μH) ◦ δH⊗H .
(a2) εH ◦ μH ◦ (μH ⊗H) = εH ◦ μH ◦ (H ⊗ μH)

= ((εH ◦ μH)⊗ (εH ◦ μH)) ◦ (H ⊗ δH ⊗H)
= ((εH ◦ μH)⊗ (εH ◦ μH)) ◦ (H ⊗ (c−1

H,H ◦ δH)⊗H).
(a3) (δH ⊗H) ◦ δH ◦ ηH = (H ⊗ μH ⊗H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH))

= (H ⊗ (μH ◦ c−1
H,H)⊗H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH)).

(a4) There exists λH : H → H in C (called the antipode of H) such that, if we
denote the morphisms idH ∗ λH by ΠL

H (target morphism) and λH ∗ idH by
ΠR

H (source morphism):
(a4-1) ΠL

H = ((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H).
(a4-2) ΠR

H = (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)).
(a4-3) λH ∗ΠL

H = ΠR
H ∗ λH = λH .

(a4-4) μH ◦ (λH ⊗ μH) ◦ (δH ⊗H) = μH ◦ (ΠR
H ⊗H).

(a4-5) μH ◦ (H ⊗ μH) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H) = μH ◦ (ΠL
H ⊗H).

(a4-6) μH ◦ (μH ⊗ λH) ◦ (H ⊗ δH) = μH ◦ (H ⊗ΠL
H).

(a4-7) μH ◦ (μH ⊗H) ◦ (H ⊗ λH ⊗H) ◦ (H ⊗ δH) = μH ◦ (H ⊗ΠR
H).

Note that, if in the previous definition the triple (H, ηH , μH) is a monoid, we
obtain the notion of weak Hopf algebra in a braided category introduced in [1] (see
also [2]). Under this assumption, if C is symmetric, we have the monoidal version of
the original definition of weak Hopf algebra introduced by Böhm, Nill and Szlachányi
in [4]. On the other hand, if εH and δH are morphisms of unital magmas, ΠL

H =
ΠR

H = ηH ⊗ εH and, as a consequence, we have the notion of Hopf quasigroup defined
by Klim and Majid in [11] ( note that in this case there is not difference between the
definitions for the symmetric and the braided settings).

Example 2.3. In this example we will show that it is possible to obtain non-
trivial examples of weak Hopf quasigroups working with bicategories in the sense of
Bénabou [3]. A bicategory B consists of :

(b1) A set B0, whose elements x are called 0-cells.
(b2) For each x, y ∈ B0, a category B(x, y) whose objects f : x → y are called

1-cells and whose morphisms α : f ⇒ g are called 2-cells. The composition
of 2-cells is called the vertical composition of 2-cells and if f is a 1-cell in
B(x, y), x is called the source of f , represented by s(f), and y is called the
target of f , denoted by t(f).
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(b3) For each x ∈ B0, an object 1x ∈ B(x, x), called the identity of x; and for each
x, y, z ∈ B0, a functor

B(y, z)× B(x, y) → B(x, z)

which in objects is called the 1-cell composition (g, f) 	→ g ◦ f , and on arrows
is called horizontal composition of 2-cells:

f, f ′ ∈ B(x, y), g, g′ ∈ B(y, z), α : f ⇒ f ′, β : g ⇒ g′

(β, α) 	→ β • α : g ◦ f ⇒ g′ ◦ f ′

(b4) For each f ∈ B(x, y), g ∈ B(y, z), h ∈ B(z, w), an associative isomorphisms
ξh,g,f : (h ◦ g) ◦ f ⇒ h ◦ (g ◦ f); and for each 1-cell f , unit isomorphisms
lf : 1t(f) ◦ f ⇒ f , rf : f ◦ 1s(f) ⇒ f , satisfying the following coherence
axioms:

(b4-1) The morphism ξh,g,f is natural in h, f and g and lf , rf are natural in
f .

(b4-2) Pentagon axiom: ξk,h,g◦f ◦ξk◦h,g,f = (idk •ξh,g,f)◦ξk,h◦g,f ◦(ξk,h,g • idf).
(b4-3) Triangle axiom: rg • idf = (idg • lf) ◦ ξg,1t(f),f .

A bicategory is normal if the unit isomorphisms are identities. Every bicategory is
biequivalent to a normal one. A 1-cell f is called an equivalence if there exists a 1-cell
g : t(f) → s(f) and two isomorphisms g ◦ f ⇒ 1s(f), f ◦ g ⇒ 1t(f). In this case we
will say that g ∈ Inv(f) and, equivalently, f ∈ Inv(g).

A bigroupoid is a bicategory where every 1-cell is an equivalence and every 2-cell
is an isomorphism. We will say that a bigroupoid B is finite if B0 is finite and B(x, y)
is small for all x, y. Note that if B is a bigroupoid where B(x, y) is small for all x, y
and we pick a finite number of 0-cells, considering the full sub-bicategory generated
by these 0-cells, we have an example of finite bigroupoid.

Let B be a finite normal bigroupoid and denote by B1 the set of 1-cells. Let F be
a field and FB the direct product

FB =
⊕

f∈B1

Ff.

The vector space FB is a unital nonassociative algebra where the product of two 1-
cells is equal to their 1-cell composition if the latter is defined and 0 otherwise, i.e.
g.f = g ◦ f if s(g) = t(f) and g.f = 0 if s(g) 
= t(f). The unit element is

1FB =
∑

x∈B0

1x.

Let H = FB/I(B) be the quotient algebra where I(B) is the ideal of FB generated
by

h− g ◦ (f ◦ h), p− (p ◦ f) ◦ g,

with f ∈ B1, g ∈ Inv(f), and h, p ∈ B1 such that t(h) = s(f), t(f) = s(p). In what
follows, for any 1-cell f we denote its class in H by [f ].

If there exists a 1-cell f in B(x, y) such that [f ] = 0 and we pick g ∈ Inv(f)
we have that [1x] = [g.f ] = [g].[f ] = 0 and [1y] = [f.g] = [f ].[g] = 0. Conversely, if
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[1x] = 0 or [1y] = 0 we have that [f ] = 0 because f.1x = 1y.f = f . Therefore, the
following assertion holds: There exists a 1-cell f in B(x, y) such that [f ] = 0 if and
only if [h] = 0 for all 1-cell h in B(x, y). Moreover, let x, y, z, w be 0-cells. If there
exists a 1-cell f ∈ B(x, y) satisfying that [f ] = 0 we have that [1y] = 0 and then
[h] = 0 for all 1-cell h in B(y, z). As a consequence, [1z] = 0 and this clearly implies
that [p] = 0 for all 1-cell p in B(z, w). Thus, if there exists a 1-cell f such that [f ] = 0
we obtain that [h] = 0 for all h ∈ B1. According to this reasoning, there exists a 1-cell
f such that [f ] = 0 if and only if I(B) = FB. Equivalently, H is not null, if and only
if [f ] 
= 0 for all f ∈ B1.

Then, in the remainder of this section, we assume that I(B) is a proper ideal.
Under this condition if f ∈ B1 and g, h ∈ Inv(f) we have

[g] = [g.(f.g)] = [g.1y] = [1x.g] = [(h.f).g] = [h].

Moreover, for all f, f ′ ∈ B1 such that [f ] = [f ′], the following holds: if s(f) 
= s(f ′)
we have

[f ] = [f.1s(f)] = [f ].[1s(f)] = [f ′].[1s(f)] = [f ′.1s(f)] = 0.

In a similar way, if t(f) 
= t(f ′) we obtain that [f ] = 0. Thus, [f ] = [f ′], clearly forces
that f and f ′ are 1-cells in B(s(f), t(f)). Moreover, if f, f ′ are 1-cells in B(x, y) such
that [f ] = [f ′] and g ∈ Inv(f), g′ ∈ Inv(f ′) we have

[g′] = [1x.g
′] = [(g.f).g′] = ([g].[f ]).[g′] = ([g].[f ′]).[g′] = [(g.f ′).g′] = [g].

Then, for a 1-cell f we denote by [f ]−1 the class of any g ∈ Inv(f). Note that, in the
previous equalities, we proved that [f ]−1 is independent of the choices of g ∈ Inv(f)
and f ′ such that [f ] = [f ′].

Therefore, the vector space H with the product μH([g]⊗ [f ]) = [g.f ] and the unit

ηH(1F) = [1FB] =
∑

x∈B0

[1x]

is a unital magma. Also, it is easy to show that H is a comonoid with coproduct
δH([f ]) = [f ] ⊗ [f ] and counit εH([f ]) = 1F. Moreover, the morphism λH : H → H ,
λH([f ]) = [f ]−1 is well-defined and H = (H, ηH , μH , εH , δH , λH) is a weak Hopf
quasigroup. Indeed: First note that, for all 1-cells f, g we have

(δH ◦ μH)([g]⊗ [f ]) = [g.f ]⊗ [g.f ]

if s(g) = t(f) and 0 otherwise. On the other hand,

((μH ⊗ μH) ◦ δH⊗H)([g]⊗ [f ]) = (μH([g]⊗ [f ])⊗ μH([g]⊗ [f ])) = [g.f ]⊗ [g.f ]

if s(g) = t(f) and 0 otherwise because cH,H([g] ⊗ [f ]) = [f ]⊗ [g]. Therefore, (a1) of
Definition 2.2 holds.

If f, g, h are 1-cells we have the following equalities:

(εH ◦ μH ◦ (μH ⊗H))([h]⊗ [g]⊗ [f ]) = 1F = (εH ◦ μH ◦ (H ⊗ μH))([h]⊗ [g]⊗ [f ])

when s(h) = t(g), s(g) = t(f) and

(εH ◦ μH ◦ (μH ⊗H))([h]⊗ [g]⊗ [f ]) = 0 = (εH ◦ μH ◦ (H ⊗ μH))([h] ⊗ [g]⊗ [f ])
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otherwise. Also,

(((εH ◦ μH)⊗ (εH ◦ μH)) ◦ (H ⊗ δH ⊗H))([h] ⊗ [g]⊗ [f ])

= ((εH ◦ μH)([h]⊗ [g]))⊗ ((εH ◦ μH))([g]⊗ [f ])) = 1F

if s(h) = t(g), s(g) = t(f) and

(((εH ◦ μH)⊗ (εH ◦ μH)) ◦ (H ⊗ δH ⊗H))([h]⊗ [g]⊗ [f ]) = 0

otherwise. Then (a2) of Definition 2.2 holds because in this case cH,H = c−1
H,H and

δH ◦ cH,H = δH (i.e. H is cocommutative).
To prove (a3) first note that

((δH ⊗H) ◦ δH ◦ ηH)(1F) =
∑

x∈B0

[1x]⊗ [1x]⊗ [1x].

Then (a3) holds because:

((H ⊗ μH ⊗H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH)))(1F ⊗ 1F)

= (H ⊗ μH ⊗H)(
∑

x∈B0

[1x]⊗ [1x]⊗
∑

y∈B0

[1y]⊗ [1y])

=
∑

x,y∈B0

[1x]⊗ [1x.1y]⊗ [1y] =
∑

x∈B0

[1x]⊗ [1x]⊗ [1x].

To prove the antipode identities first note that

ΠL
H([f ]) = [1t(f)], ΠR

H([f ]) = [1t(s)] (1)

for all 1-cell f .
Then, (a4-1) and (a4-2) hold because, for all 1-cell f ,

(((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H))([f ])

= (((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H))(
∑

x∈B0

[1x]⊗ [1x]⊗ [f ])

=
∑

x∈B0

εH([1x.f ])⊗ [1x] = [1t(f)]

and, by a similar calculus,

((H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)))([f ]) = [1s(f)].

Also, if f ∈ B1, by (1),

(λH ∗ΠL
H)([f ]) = [f ]−1.[1t(f)] = [f ]−1 = λH([f ]),

(ΠR
H ∗ λH)([f ]) = [1s(f)].[f ]

−1 = [f ]−1 = λH([f ])

and then (a4-3) holds.
The proof for (a4-4) is the following: It follows easily that for two 1-cells f, h we

have that

(μH ◦ (ΠR
H ⊗H))([h]⊗ [f ]) = [f ]
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if s(h) = t(f) and 0 otherwise. On the other hand,

(μH ◦ (λH ⊗ μH) ◦ (δH ⊗H))([h]⊗ [f ]) = μH([h]−1 ⊗ [h.f ])

if s(h) = t(f) and 0 otherwise. Therefore, if m ∈ Inv(h) and s(h) = t(f) the equality

μH([h]−1 ⊗ [h.f ]) = [m.(h.f)] = [f ]

holds and thus (a4-4) holds.
If f , h are 1-cells we have

(μH ◦ (ΠL
H ⊗H))([h]⊗ [f ]) = [f ]

if t(h) = t(f) and 0 otherwise. Moreover, let m ∈ Inv(h), then

(μH ◦ (H ⊗ μH) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H))([h]⊗ [f ])

= μH([h]⊗ [m.f ]) = [h.(m.f)] = [f ]

if t(h) = t(f) and 0 otherwise. Therefore, (a4-5) holds.
The proofs for (a4-6) and (a4-7) are similar and the details are left to the reader.
Note that, in this example, if B0 = {x} we obtain that H is a Hopf quasigroup.

Moreover, if |B0| > 1 and the product defined in H is associative we have an example
of weak Hopf algebra.

3. Basic properties for weak Hopf quasigroups. In this section we will show
the main properties of weak Hopf quasigroups. First, note that by the naturality of
the braiding, for the morphisms target and source the following equalities hold:

ΠL
H = ((εH ◦ μH ◦ c−1

H,H)⊗H) ◦ (H ⊗ (δH ◦ ηH))

= (H ⊗ (εH ◦ μH)) ◦ ((c−1
H,H ◦ δH ◦ ηH)⊗H),

(2)

ΠR
H = (H ⊗ (εH ◦ μH ◦ c−1

H,H)) ◦ ((δH ◦ ηH)⊗H)

= ((εH ◦ μH)⊗H) ◦ (H ⊗ (c−1
H,H ◦ δH ◦ ηH)).

(3)

Proposition 3.1. Let H be a weak Hopf quasigroup. The following equalities
hold:

ΠL
H ∗ idH = idH ∗ΠR

H = idH , (4)

ΠL
H ◦ ηH = ηH = ΠR

H ◦ ηH , (5)

εH ◦ΠL
H = εH = εH ◦ΠR

H . (6)

Proof. By the definition of ΠL
H and (a1) of Definition 2.2 we have

ΠL
H ∗idH = (εH⊗H)◦μH⊗H ◦((δH ◦ηH)⊗δH) = (εH ⊗H)◦δH ◦μH ◦(ηH⊗H) = idH .

We can now proceed analogously to the proof of idH ∗ΠR
H = idH . Finally (5) and (6)

follow easily from the definitions of ΠL
H and ΠR

H .
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Proposition 3.2. The antipode of a weak Hopf quasigroup H is unique and
leaves the unit and the counit invariant, i.e. λH ◦ ηH = ηH and εH ◦ λH = εH .

Proof. Let λH , sH : H → H two morphisms satisfying (a4) of Definition 2.2.
Then,

sH = (sH ∗H)∗sH = (λH ∗H)∗sH = μH ◦(μH⊗sH)◦(λH⊗δH)◦δH = λH ∗ΠL
H = λH ,

where the first and the last equalities follow by (a4-3) of Definition 2.2, the second
one by (a4-2) of Definition 2.2, the third one by the coassociativity of δH and the
fourth one by (a4-6) of Definition 2.2.

On the other hand, by (a4-3), (a3) of Definition 2.2, the naturality of the braiding
and (5), we have

λH ◦ ηH = (ΠR
H ∗ λH) ◦ ηH

= μH ◦ (H ⊗ (εH ◦ μH ◦ c−1
H,H)⊗ λH) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH))

= μH ◦ (((H ⊗ εH) ◦ δH)⊗ λH) ◦ δH ◦ ηH

= ΠL
H ◦ ηH

= ηH .

The proof for the equalities involving the counit follows a similar pattern but
using (a2) of Definition 2.2 and (6) instead of (a3) and (5) respectively.

Definition 3.3. Let H be a weak Hopf quasigroup. We define the morphisms

Π
L

H and Π
R

H by

Π
L

H = (H ⊗ (εH ◦ μH)) ◦ ((δH ◦ ηH)⊗H),

and

Π
R

H = ((εH ◦ μH)⊗H) ◦ (H ⊗ (δH ◦ ηH)).

Proposition 3.4. Let H be a weak Hopf quasigroup. The morphisms ΠL
H , ΠR

H ,

Π
L

H and Π
R

H are idempotents.

Proof. First, by (2) and (a3) of Definition 2.2 we have that

ΠL
H ◦ΠL

H

= ((εH ◦ μH ◦ c−1
H,H)⊗ (εH ◦ μH ◦ c−1

H,H)⊗H) ◦ (H ⊗ (δH ◦ ηH)⊗ (δH ◦ ηH))

= ((εH ◦ μH ◦ c−1
H,H)⊗ εH ⊗H) ◦ (H ⊗ ((δH ⊗H) ◦ δH ◦ ηH))

= ΠL
H .

With the same reasoning but using (3) instead of (2) we prove that ΠR
H is an

idempotent morphism. Finally, by (a3) of Definition 2.2, Π
L

H ◦ Π
L

H = Π
L

H and Π
R

H ◦

Π
R

H = Π
R

H .

Proposition 3.5. Let H be a weak Hopf quasigroup. The following identities
hold:

μH ◦ (H ⊗ΠL
H) = ((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H), (7)
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μH ◦ (ΠR
H ⊗H) = (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH), (8)

μH ◦ (H ⊗Π
L

H) = (H ⊗ (εH ◦ μH)) ◦ (δH ⊗H), (9)

μH ◦ (Π
R

H ⊗H) = ((εH ◦ μH)⊗H) ◦ (H ⊗ δH). (10)

Proof. We first prove (7).

μH ◦ (H ⊗ΠL
H)

= (εH ⊗H) ◦ δH ◦ μH ◦ (H ⊗ΠL
H)

= (εH ⊗H) ◦ μH⊗H ◦ (δH ⊗ δH) ◦ (H ⊗ (((εH ◦ μH ◦ c−1
H,H)⊗H) ◦ (H ⊗ (δH ◦ ηH))))

= ((((εH ◦ μH)⊗ (εH ◦ μH)) ◦ (H ⊗ (c−1
H,H ◦ δH)⊗H))⊗ μH)

◦(H ⊗H ⊗ cH,H ⊗H) ◦ (H ⊗ cH,H ⊗H ⊗H)

◦(δH ⊗ c−1
H,H ⊗H) ◦ (H ⊗H ⊗ (δH ◦ ηH))

= ((εH ◦ μH ◦ (μH ⊗H))⊗ μH) ◦ (H ⊗H ⊗ cH,H ⊗H)

◦(H ⊗ cH,H ⊗ cH,H) ◦ (δH ⊗ (δH ◦ ηH)⊗H)

= ((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H) ◦ ((μH⊗H ◦ (δH ⊗ δH))⊗H) ◦ (H ⊗ ηH ⊗H)

= ((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H).

In the last identities, the first one follows by the properties of the counit, the
second one follows by (2) and (a1) of Definition 2.2. The third and the fifth ones rely
on the naturality of c. The fourth equality is a consequence of (a2) of Definition 2.2
and finally the last one follows by (a1) of Definition 2.2 and the properties of the unit.

The proof for (8) is similar but in the second step we must use (3) instead of (2).
To finish the proof we show that (9) holds. The proof for (10) is similar.

μH ◦ (H ⊗Π
L

H)

= (εH ⊗H) ◦ δH ◦ μH ◦ (H ⊗Π
L

H)

= (μH ⊗ (εH ◦ μH)⊗ (εH ◦ μH)) ◦ (δH⊗H ⊗H ⊗H) ◦ (H ⊗ (δH ◦ ηH)⊗H)

= (μH ⊗ (((εH ◦ μH)⊗ (εH ◦ μH)) ◦ (H ⊗ δH ⊗H))) ◦ (δH⊗H ⊗H) ◦ (H ⊗ ηH ⊗H)

= (μH ⊗ (εH ◦ μH ◦ (μH ⊗H))) ◦ (δH⊗H ⊗H) ◦ (H ⊗ ηH ⊗H)

= (H ⊗ (εH ◦ μH)) ◦ (((δH ◦ μH) ◦ (H ⊗ ηH))⊗H)

= (H ⊗ (εH ◦ μH)) ◦ (δH ⊗H).

The first equality follows by the counit properties, the second and the fifth ones by
(a1) of Definition 2.2, the third one follows from the coassociativity of δH , the fourth
one by (a2) of Definition 2.2, and the sixth one by the properties of the unit.

Remark 3.6. Note that if we compose with εH in the equalities (7), (8), (9) and
(10) we obtain

εH ◦ μH ◦ (H ⊗ΠL
H) = εH ◦ μH , (11)

εH ◦ μH ◦ (ΠR
H ⊗H) = εH ◦ μH , (12)
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εH ◦ μH ◦ (H ⊗Π
L

H) = εH ◦ μH , (13)

εH ◦ μH ◦ (Π
R

H ⊗H) = εH ◦ μH . (14)

Proposition 3.7. Let H be a weak Hopf quasigroup. The following identities
hold:

(H ⊗ΠL
H) ◦ δH = (μH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H), (15)

(ΠR
H ⊗H) ◦ δH = (H ⊗ μH) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)), (16)

(Π
L

H ⊗H) ◦ δH = (H ⊗ μH) ◦ ((δH ◦ ηH)⊗H), (17)

(H ⊗Π
R

H) ◦ δH = (μH ⊗H) ◦ (H ⊗ (δH ◦ ηH)). (18)

Proof. The proof for (15) is the following:

(μH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H)

= (((H ⊗ εH) ◦ δH ◦ μH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H)

= (μH ⊗ (εH ◦ μH)⊗H) ◦ (H ⊗ cH,H ⊗ cH,H) ◦ (δH ⊗ cH,H ⊗H) ◦ ((δH ◦ ηH)⊗ δH)

= (H ⊗ (((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))) ◦ (((μH ⊗H)

◦(H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H))⊗H) ◦ δH

= ((μH ◦ c−1
H,H)⊗ (((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H))) ◦ (H ⊗ ((H ⊗ δH)

◦δH ◦ ηH)⊗H) ◦ δH

= ((μH ◦ c−1
H,H)⊗ (εH ◦ μH)⊗H) ◦ (H ⊗H ⊗ (μH ◦ c−1

H,H)⊗ cH,H)

◦(H ⊗ (δH ◦ ηH)⊗ (δH ◦ ηH)⊗H) ◦ δH

= (μH ⊗ (((εH ◦ μH ◦ (μH ⊗H))⊗H) ◦ (H ⊗H ⊗ cH,H)

◦(H ⊗ cH,H ⊗H) ◦ ((δH ◦ ηH)⊗H ⊗H))) ◦ δH⊗H ◦ (ηH ⊗H)

= (μH ⊗ (((εH ◦ μH ◦ (H ⊗ μH))⊗H) ◦ (H ⊗H ⊗ cH,H)

◦(H ⊗ cH,H ⊗H) ◦ ((δH ◦ ηH)⊗H ⊗H))) ◦ δH⊗H ◦ (ηH ⊗H)

= (H ⊗ΠL
H) ◦ (μH ⊗ μH) ◦ δH⊗H ◦ (ηH ⊗H)

= (H ⊗ΠL
H) ◦ δH .

In the last equalities the first one follows by the counit properties, the second
one by (a1) of Definition 2.2 and the naturality of c. In the third one we used the
naturality of c and the coassociativity of δH . The fourth and the sixth ones are
consequence of the equality

(μH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H)

= ((μH ◦ c−1
H,H)⊗H) ◦ (H ⊗ (δH ◦ ηH))

(19)

and the fifth one follows by (a3) of Definition 2.2. The seventh one relies on (a2) of
Definition 2.2, the eight one follows by the naturality of c and the last one by the unit
properties.
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The proof for (16) is similar but using

(H ⊗ μH) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH))

= (H ⊗ (μH ◦ c−1
H,H)) ◦ ((δH ◦ ηH)⊗H)

(20)

instead of (19).
Moreover, (17) holds because

(Π
L

H ⊗H) ◦ δH

= (Π
L

H ⊗H) ◦ δH ◦ μH ◦ (ηH ⊗H)

= (Π
L

H ⊗H) ◦ (μH ⊗ μH) ◦ δH⊗H ◦ (ηH ⊗H)

= (H ⊗ (εH ◦ μH ◦ (H ⊗ μH))⊗ μH) ◦ ((δH ◦ ηH)⊗ (δH⊗H ◦ (ηH ⊗H)))

= (H ⊗ (((εH ◦ μH)⊗ (εH ◦ μH)) ◦ (H ⊗ δH ⊗H))⊗ μH)

◦((δH ◦ ηH)⊗ (δH⊗H ◦ (ηH ⊗H)))

= (H ⊗ (εH ◦ μH)⊗ ((εH ⊗H) ◦ δH ◦ μH)) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH)⊗H)

= (H ⊗ εH ⊗ μH) ◦ (((δH ⊗H) ◦ δH ◦ ηH)⊗H)

= (H ⊗ μH) ◦ ((δH ◦ ηH)⊗H).

The first equality follows by the unit properties, the second one by (a1) of Defini-

tion 2.2 and the third one by the definition of Π
L

H . The fourth equality relies on (a2)
of Definition 2.2. The fifth one is a consequence of the coassociativity of δH and the
sixth one follows by (a3) of Definition 2.2. Finally the last one holds by the properties
of the counit.

The proof of (18) is similar to the developed for (17) and we leave it to the reader.

Remark 3.8. Note that if we compose with ηH in the equalities (15), (16), (17)
and (18) we obtain

(H ⊗ΠL
H) ◦ δH ◦ ηH = δH ◦ ηH , (21)

(ΠR
H ⊗H) ◦ δH ◦ ηH = δH ◦ ηH , (22)

(Π
L

H ⊗H) ◦ δH ◦ ηH = δH ◦ ηH , (23)

(H ⊗Π
R

H) ◦ δH ◦ ηH = δH ◦ ηH . (24)

As a consequence of Propositions 3.5 and 3.7 we can get other useful identities.

Proposition 3.9. Let H be a wek Hopf quasigroup. The following identities
hold:

ΠL
H ◦ μH ◦ (H ⊗ΠL

H) = ΠL
H ◦ μH , (25)

ΠR
H ◦ μH ◦ (ΠR

H ⊗H) = ΠR
H ◦ μH , (26)
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(H ⊗ΠL
H) ◦ δH ◦ΠL

H = δH ◦ΠL
H , (27)

(ΠR
H ⊗H) ◦ δH ◦ΠR

H = δH ◦ΠR
H . (28)

Proof. The equality (25) holds because:

ΠL
H ◦ μH ◦ (H ⊗ΠL

H)

= ((εH ◦ μH)⊗ΠL
H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= ((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H) ◦ (((H ⊗ΠL
H) ◦ δH)⊗H)

= ((εH ◦ μH ◦ (μH ⊗H))⊗H) ◦ (H ⊗H ⊗⊗cH,H) ◦ (H ⊗ cH,H ⊗H)

◦((δH ◦ ηH)⊗H ⊗H)

= ((εH ◦ μH ◦ (H ⊗ μH))⊗H) ◦ (H ⊗H ⊗⊗cH,H) ◦ (H ⊗ cH,H ⊗H)

◦((δH ◦ ηH)⊗H ⊗H)

= ΠL
H ◦ μH .

In the previous equalities, the first one follows by (7), the second and the fifth ones
by the naturality of c, the third one by (15) and the fourth one by (a2) of Definition
2.2.

The proof for (25) is similar. To finish we will show that (27) holds (using the
same reasoning we obtain (28)). Indeed:

(H ⊗ΠL
H) ◦ δH ◦ΠL

H

= (μH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗ΠL
H)

= ((μH ◦ (H ⊗ΠL
H))⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H)

= ((((εH ◦ μH)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H)

= δH ◦ΠL
H .

The first and the third equalities follow by (15) and the second one by the natu-
rality of c. Finally, the last one relies on the naturality of c and the coassociativity of
δH .

Remark 3.10. By the equalities contained in Remark 3.8 and using similar
arguments to the ones utilized in the previous Proposition we have that

Π
L

H ◦ μH ◦ (H ⊗ΠL
H) = Π

L

H ◦ μH , (29)

Π
R

H ◦ μH ◦ (ΠR
H ⊗H) = Π

R

H ◦ μH , (30)

(ΠR
H ⊗H) ◦ δH ◦Π

L

H = δH ◦Π
L

H , (31)

(H ⊗ΠL
H) ◦ δH ◦Π

R

H = δH ◦Π
R

H . (32)

Proposition 3.11. Let H be a weak Hopf quasigroup. The following identities
hold:

ΠL
H ◦Π

L

H = ΠL
H , ΠL

H ◦Π
R

H = Π
R

H , (33)
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Π
L

H ◦ΠL
H = Π

L

H , Π
R

H ◦ΠL
H = ΠL

H , (34)

ΠR
H ◦Π

L

H = Π
L

H , ΠR
H ◦Π

R

H = ΠR
H , (35)

Π
L

H ◦ΠR
H = ΠR

H , Π
R

H ◦ΠR
H = Π

R

H . (36)

Proof. We only check (33) and (34). The proof for the other equalities can be
verified in a similar way. Taking into account the equalities (2) and (a2) of Definition
2.2 we have

ΠL
H ◦Π

L

H

= (H ⊗ (εH ◦ μH)⊗ (εH ◦ μH)) ◦ ((c−1
H,H ◦ δH ◦ ηH)⊗ (δH ◦ ηH)⊗H)

= (H ⊗ (εH ◦ μH)) ◦ ((c−1
H,H ◦ δH ◦ ηH)⊗ (μH ◦ (ηH ⊗H)))

= ΠL
H ,

and composing with εH ⊗H in (32) we obtain ΠL
H ◦Π

R

H = Π
R

H . Also, composing with

ηH ⊗H in (29) we have the equality Π
L

H ◦ΠL
H = Π

L

H .
Finally, by the usual arguments

Π
R

H ◦ΠL
H

= ((εH ◦ μH ◦ c−1
H,H)⊗ (εH ◦ μH)⊗H) ◦ (H ⊗ (δH ◦ ηH)⊗ (δH ◦ ηH))

= ((εH ◦ μH ◦ c−1
H,H)⊗ ((εH ⊗H) ◦ δH)) ◦ (H ⊗ (δH ◦ ηH))

= ΠL
H .

Proposition 3.12. Let H be a weak Hopf quasigroup. The following identities
hold:

ΠL
H ◦ λH = ΠL

H ◦ΠR
H = λH ◦ΠR

H , (37)

ΠR
H ◦ λH = ΠR

H ◦ΠL
H = λH ◦ΠL

H , (38)

ΠL
H = Π

R

H ◦ λH = λH ◦Π
L

H , (39)

ΠR
H = Π

L

H ◦ λH = λH ◦Π
R

H . (40)

Proof. As in the previous Proposition, it is sufficient to check (37) and (39). The
proof for the other equalities can be verified in a similar way.

The equalities of (37) hold because by (a4-3) of Definition 2.2 and (25) we have

ΠL
H ◦ λH = ΠL

H ◦ (λH ∗ΠL
H) = ΠL

H ◦ΠR
H

and by (28)

λH ◦ΠR
H = (ΠR

H ∗ λH ) ◦ΠR
H = ΠL

H ◦ΠR
H .
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On the other hand, by (a4-3) of Definition 2.2, (30) and (34) we obtain

Π
R

H ◦ λH = Π
R

H ◦ (ΠR
H ∗ λH) = Π

R

H ◦ΠL
H = ΠL

H .

Moreover, by (31) and (33)

λH ◦Π
L

H = (ΠR
H ∗ λH) ◦Π

L

H = ΠL
H ◦Π

L

H = ΠL
H ,

and then (39) holds.

Proposition 3.13. Let H be a weak Hopf quasigroup. Put HL = Im(ΠL
H) and

let pL : H → HL and iL : HL → H be the morphisms such that ΠL
H = iL ◦ pL and

pL ◦ iL = idHL
. Then,

� �
�HL H H ⊗H

iL
δH

(H ⊗ ΠL
H) ◦ δH

is an equalizer diagram and

�
� �

μH

μH ◦ (H ⊗ΠL
H)

pL
H ⊗H H HL

is a coequalizer diagram. As a consequence, (HL, ηHL
= pL ◦ ηH , μHL

= pL ◦ μH ◦
(iL ⊗ iL)) is a unital magma in C and (HL, εHL

= εH ◦ iL, δH = (pL ⊗ pL) ◦ δH ◦ iL)
is a comonoid in C.

Proof. Composing with iL in the equality (27), we have that iL equalizes δH and
(H⊗ΠL

H)◦δH . Now, let t : B → H be a morphism such that (H⊗ΠL
H)◦δH ◦t = δH ◦t.

If v = pL ◦ t, since ΠL
H ◦ t = t we have iL ◦ v = t. Trivially the morphism v is unique

and therefore, the diagram is an equalizer diagram. In a similar way we can prove
that the second diagram is a coaqualizer diagram using (25) instead of (27). Finally,
note that the morphisms ηHL

and μHL
are the factorizations, through the equalizer

iL, of the morphisms ηH and μH ◦ (iL ⊗ iL) and then it is an easy exercise to show
that (HL, ηHL

, μHL
) is a unital magma in C. The proof for the comonoid structure it

is similar and we leave it to the reader.

Example 3.14. If H is the weak Hopf quasigroup defined in Example 2.3 note
that HL = 〈[1x], x ∈ B0〉. Then, in this case we have that HL is a monoid because
its induced product μHL

is associative because [1x].([1y].[1z]) and ([1x].[1y]).[1z ] are
equal to [1x] if x = y = z and 0 otherwise.

Note that if we denote by HR = Im(ΠR
H) and pR : H → HR and iR : HR → H

are the morphisms such that ΠR
H = iR ◦ pR and pR ◦ iR = idHR

, in this example
HL = HR.

Remark 3.15. By the second equality of (34) it is easy to show that

� �
�HL H H ⊗H

iL
δH

(H ⊗ Π
R

H) ◦ δH

is an equalizer diagram in C. Analogously, by (33),
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�
� �

μH

μH ◦ (H ⊗Π
L

H)

pL
H ⊗H H HL

is a coequalizer diagram in C.

Also, by a similar proof to the one used in Proposition 3.13, we obtain that
HR = Im(ΠR

H) is a unital magma in C with structure (HR, ηHR
= pR ◦ ηH , μHR

=
pR ◦ μH ◦ (iR ⊗ iR)) and it is a comonoid in C where εHR

= εH ◦ iR and δHR
=

(pR ⊗ pR) ◦ δH ◦ iR. Moreover,

� �
�HR H H ⊗H

iR
δH

(ΠR
H ⊗H) ◦ δH

� �
�HR H H ⊗H

iR
δH

(Π
L

H ⊗H) ◦ δH

are equalizer diagrams and

�
� �

μH

μH ◦ (ΠR
H ⊗H)

pR
H ⊗H H HR

�
� �

μH

μH ◦ (Π
R

H ⊗H)

pR
H ⊗H H HR

are coequalizer diagrams.

Proposition 3.16. Let H be a weak Hopf quasigroup. The following identities
hold:

μH ◦ (μH ⊗H) ◦ (H ⊗ ((ΠL
H ⊗H) ◦ δH))

= μH = μH ◦ (μH ⊗ΠR
H) ◦ (H ⊗ δH),

(41)

μH ◦ (ΠL
H ⊗ μH) ◦ (δH ⊗H)

= μH = μH ◦ (H ⊗ (μH ◦ (ΠR
H ⊗H))) ◦ (δH ⊗H),

(42)

μH ◦ (λH ⊗ (μH ◦ (ΠL
H ⊗H))) ◦ (δH ⊗H)

= μH ◦ (λH ⊗H) = μH ◦ (ΠR
H ⊗ (μH ◦ (λH ⊗H))) ◦ (δH ⊗H),

(43)

μH ◦ (μH ⊗H) ◦ (H ⊗ ((λH ⊗ΠL
H) ◦ δH))

= μH ◦ (H ⊗ λH) = μH ◦ (μH ⊗H) ◦ (H ⊗ ((ΠR
H ⊗ λH) ◦ δH)).

(44)
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Proof. Let us first prove (41). By (a1) of Definition 2.2 and (7) we have

μH = (εH ⊗H) ◦ δH ◦ μH = ((εH ◦ μH)⊗ μH) ◦ δH⊗H

= μH ◦ (μH ⊗H) ◦ (H ⊗ ((ΠL
H ⊗H) ◦ δH)).

On the other hand, by the coassociativity of δH , (a4-6) and (a4-7) of Definition
2.2,

μH ◦ (μH ⊗ΠR
H) ◦ (H ⊗ δH)

= μH ◦ (μH ⊗H) ◦ (μH ⊗ λH ⊗H) ◦ (H ⊗⊗H ⊗ δH) ◦ (H ⊗ δH)

= μH ◦ (μH ⊗H) ◦ (μH ⊗ λH ⊗H) ◦ (H ⊗ δH ⊗H) ◦ (H ⊗ δH)

= μH ◦ (μH ⊗H) ◦ (H ⊗ ((ΠL
H ⊗H) ◦ δH)).

The proof for (42) is similar but we must use (8), (a4-5) and (a4-4) of Definition
2.2 instead of (7), (a4-6) and (a4-7) respectively.

To prove (43) first note that by (a4-5), (a4-4) of Definition 2.2 and the coassocia-
tivity of δH we have:

μH ◦ (λH ⊗ (μH ◦ (ΠL
H ⊗H))) ◦ (δH ⊗H)

= μH ◦ (λH ⊗ (μH ◦ (H ⊗ μH) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H))) ◦ (δH ⊗H)

= μH ◦ (λH ⊗ μH) ◦ (δH ⊗H) ◦ (H ⊗ (μH ◦ (λH ⊗H))) ◦ (δH ⊗H)

= μH ◦ (ΠR
H ⊗ (μH ◦ (λH ⊗H))) ◦ (δH ⊗H).

On the other hand, by (15), the naturality of c, the coassociativity of δH and (a1)
of Definition 2.2 we also have the following identity:

(μH ⊗ (μH ◦ (H ⊗ΠL
H))) ◦ δH⊗H = (μH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H). (45)

Therefore,

μH ◦ (ΠR
H ⊗ (μH ◦ (λH ⊗H))) ◦ (δH ⊗H)

= (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ ((δH ◦ μH) ◦ (λH ⊗H))) ◦ (δH ⊗H)

= (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (((μH ⊗ μH) ◦ δH⊗H)

◦(λH ⊗H))) ◦ (δH ⊗H)

= (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (((μH ⊗ (ΠL
H ◦ μH)) ◦ δH⊗H)

◦(λH ⊗H))) ◦ (δH ⊗H)

= (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (((μH ⊗ (ΠL
H ◦ μH ◦ (H ⊗ΠL

H)))

◦δH⊗H) ◦ (λH ⊗H))) ◦ (δH ⊗H)

= (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (((μH ⊗ (μH ◦ (H ⊗ΠL
H)))

◦δH⊗H) ◦ (λH ⊗H))) ◦ (δH ⊗H)

= (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (((μH ⊗H) ◦ (H ⊗ cH,H)

◦(δH ⊗H)) ◦ (λH ⊗H))) ◦ (δH ⊗H)

= μH ◦ (((H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH))⊗H)

◦(H ⊗ λH ⊗H) ◦ (δH ⊗H)

= μH ◦ ((ΠR
H ∗ λH)⊗H)

= μH ◦ (λH ⊗H).
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In the last calculus the first and the eight equalities are consequence of (8). In
the second one we used (a1) of Definition 2.2. The third and the fifth ones follow by
(11), the fourth one by (25) and the sixth one by (45). The seventh one relies on the
naturality of c and the last one follows by (a4-3) of Definition 2.2.

By a similar reasoning but using that

((μH ◦ (ΠR
H ⊗H))⊗ μH) ◦ δH⊗H = (H ⊗ μH) ◦ (cH,H ⊗H) ◦ (H ⊗ δH) (46)

instead of (45) we obtain that (44) holds.

Remark 3.17. Note that as a consequence of (41) or (42) we have

ΠL
H ∗ idH = idH = idH ∗ΠR

H . (47)

Proposition 3.18. Let H be a weak Hopf quasigroup. The following identities
hold:

μH ◦ (ΠL
H ⊗ΠR

H) = μH ◦ c−1
H,H ◦ (ΠL

H ⊗ΠR
H), (48)

(ΠL
H ⊗ΠR

H) ◦ δH = (ΠL
H ⊗ΠR

H) ◦ c−1
H,H ◦ δH , (49)

μH ◦ (ΠR
H ⊗ΠL

H) = μH ◦ cH,H ◦ (ΠR
H ⊗ΠL

H), (50)

(ΠR
H ⊗ΠL

H) ◦ δH = (ΠR
H ⊗ΠL

H) ◦ cH,H ◦ δH , (51)

Proof. The equalities (50) and (51) can be obtained from (48) and (49) composing
with cH,H . Then we only need to prove (48) and (49). Note that, by (2), (3) and (a3)
of Definition 2.2 we have:

μH ◦ (ΠL
H ⊗ΠR

H)

= ((εH ◦ μH ◦ c−1
H,H)⊗H ⊗ (εH ◦ μH ◦ c−1

H,H)) ◦ (H ⊗ ((H ⊗ μH ⊗H)

◦((δH ◦ ηH)⊗ (δH ◦ ηH))) ⊗H)

= ((εH ◦ μH ◦ c−1
H,H)⊗H ⊗ (εH ◦ μH ◦ c−1

H,H))

◦(H ⊗ ((H ⊗ (μH ◦ c−1
H,H)⊗H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH))) ⊗H)

= μH ◦ c−1
H,H ◦ (ΠL

H ⊗ΠR
H).

Therefore, (48) holds. The proof for (49) is similar using (a2) of Definition 2.2 instead
of (a3).

Theorem 3.19. Let H be a weak Hopf quasigroup. The antipode of H is antim-
ultiplicative and anticomultiplicative, i.e. the following equalities hold:

λH ◦ μH = μH ◦ cH,H ◦ (λH ⊗ λH), (52)

δH ◦ λH = (λH ⊗ λH) ◦ cH,H ◦ δH , (53)

Proof. We will prove (52). The proof for (53) is similar and we leave the details
to the reader.
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λH ◦ μH

= (λH ∗ΠL
H) ◦ μH

= μH ◦ ((λH ◦ μH)⊗ (ΠL
H ◦ μH)) ◦ δH⊗H

= μH ◦ ((λH ◦ μH)⊗ (ΠL
H ◦ μH ◦ (H ⊗ΠL

H)) ◦ δH⊗H

= μH ◦ (λH ⊗ΠL
H) ◦ (μH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ (μH ⊗ λH) ◦ (λH ⊗ δH) ◦ (μH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ ((μH ◦ (λH ⊗H))⊗ λH) ◦ (((μH ⊗H) ◦ (H ⊗ cH,H)

◦(δH ⊗H))⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ ((μH ◦ (λH ⊗H))⊗ λH) ◦ (((μH ⊗ (μH ◦ (H ⊗ΠL
H)))

◦δH⊗H)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ ((μH ◦ (λH ⊗H))⊗ λH) ◦ (((μH ⊗ (μH ◦ (μH ⊗ λH) ◦ (H ⊗ δH)))

◦δH⊗H)⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ ((μH ◦ (λH ⊗ μH) ◦ (δH ⊗H))⊗H) ◦ (μH ⊗ λH ⊗H)

◦(H ⊗ δH ⊗ λH) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ ((μH ◦ (ΠR
H ⊗H))⊗H) ◦ (μH ⊗ λH ⊗H) ◦ (H ⊗ δH ⊗ λH)

◦(H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ ((μH ◦ (ΠR
H ⊗H))⊗H) ◦ ((μH ◦ (ΠR

H ⊗H))⊗ λH ⊗H)

◦(H ⊗ δH ⊗ λH) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ ((μH ◦ (ΠR
H ⊗H))⊗H) ◦ (((H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H)

◦(H ⊗ δH))⊗ λH ⊗H) ◦ (H ⊗ δH ⊗ λH) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ (((μH ◦ (λH ⊗ μH) ◦ (δH ⊗H))⊗H) ◦ (((H ⊗ (εH ◦ μH))

◦(cH,H ⊗H) ◦ (H ⊗ δH))⊗ λH ⊗H) ◦ (H ⊗ δH ⊗ λH) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ (μH ⊗H) ◦ (H ⊗ μH ⊗H) ◦ (λH ⊗ ((H ⊗ (εH ◦ μH))

◦(cH,H ⊗H) ◦ (H ⊗ δH))⊗ λH ⊗ λH) ◦ (cH,H ⊗ δH ⊗H)

◦(H ⊗ δH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ (μH ⊗H) ◦ (H ⊗ μH ⊗H) ◦ (λH ⊗ ((μH ◦ (ΠR
H ⊗H)))⊗ λH

⊗λH) ◦ (cH,H ⊗ δH ⊗H) ◦ (H ⊗ δH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ (μH ⊗H) ◦ (λH ⊗ ((μH ◦ (ΠR
H ⊗ΠL

H)))⊗ λH) ◦ (cH,H ⊗H ⊗H)

◦(H ⊗ δH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ (μH ⊗H) ◦ (λH ⊗ ((μH ◦ cH,H ◦ (ΠR
H ⊗ΠL

H)))⊗ λH)

◦(cH,H ⊗H ⊗H) ◦ (H ⊗ δH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)

= μH ◦ (μH ⊗H) ◦ (H ⊗ μH ⊗H) ◦ (((λH ⊗ΠL
H) ◦ δH)⊗ ((ΠR

H ⊗ λH) ◦ δH)) ◦ cH,H

= μH ◦ (μH ⊗H) ◦ (λH ⊗ ((ΠR
H ⊗ λH) ◦ δH)) ◦ cH,H

= μH ◦ cH,H ◦ (λH ⊗ λH).

The first equality follows by (a4-3) of Definition 2.2, the second one by (a1) of
Definition 2.2 and the third one by (25). The fourth and seventh ones relies on (45).
The fifth, eighth and sixteenth ones are consequence of (a4-6) of Definition 2.2. In the
sixth, ninth and eighteenth equalities we used the naturality of c and the equalities
tenth and thirteenth follow by (a4-4) of Definition 2.2. By (26) we obtain the eleventh
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equality and the twelfth and fifteenth ones are consequence of (8). The naturality of
c and the coassociativity of δH imply the fourteenth equality and the seventeenth one
follows by (48). Finally, the nineteenth equality relies on (43) and the last one on
(44).

A general notion of dyslexia was introduced by Pareigis in [13]. The following
definition is the weak Hopf quasigroup version of dyslexia introduced by us in the weak
Hopf algebra setting [2]. As application of (52) and (53) we obtain a generalization
of the main result about (co)dyslexia contained in [2].

Definition 3.20. Let H be a weak Hopf quasigroup. We will say that H is

n-dyslectic if μH ◦ cnH,H = μH where cnH,H = cH,H◦
n)
· · · ◦cH,H . When cnH,H ◦ δH = δH

we will say that H is n-codyslectic.

Proposition 3.21. Let H be a weak Hopf quasigroup. If λn
H = idH , then H is

n-dyslectic and n-codyslectic.

Proof. By (52), we have that

μH = λn
H ◦ μH = λn−1

H ◦ λH ◦ μH = λn−1
H ◦ μH ◦ (λH ⊗ λH) ◦ cH,H

= λn−2
H ◦ λH ◦ μH ◦ (λH ⊗ λH) ◦ cH,H = λn−2

H ◦ μH ◦ (λ2
H ⊗ λ2

H) ◦ c2H,H

= · · · = μH ◦ (λn
H ⊗ λn

H) ◦ cnH,H = μH ◦ cnH,H .

Analogously, if we use (53), with a similar calculation, we obtain that H is n-
codyslectic.

Theorem 3.22. If H is a weak Hopf quasigroup (co)commutative then the an-
tipode λH satisfies λ2

H = idH .

Proof. If we assume that H is commutative (μH ◦ cH,H = μH , equivalently,

μH ◦ c−1
H,H = μH), by (2) ΠL

H = Π
R

H . Analogously, by (3), ΠR
H = Π

L

H . Then

λH ◦ λH = λH ◦ (λH ∗ΠL
H)

= (λH ◦ λH) ∗ (λH ◦ΠL
H)

= (λH ◦ λH) ∗ (λH ◦Π
R

H)

= (λH ◦ λH) ∗ΠR
H

= μH ◦ (μH ⊗H) ◦ ((λH ◦ λH)⊗ λH ⊗H) ◦ (H ⊗ δH) ◦ δH

= ((λH ◦ λH) ∗ λH) ∗ idH

= (λH ◦ΠR
H) ∗ idH

= (λH ◦Π
L

H) ∗ idH

= ΠL
H ∗ idH = idH .

The first equality follows by (a4-3) of Definition 2.2, the second and seventh ones
by (52) and the commutativity of μH , the third and eight ones by the commutativity
of μH and the fourth one by (40). The fifth equality relies on (a4-7) of Definition 2.2
and the sixth one follows by the coassociativity of δH . In the ninth one we used (39)
and finally the last one follows by (47).

The proof for a cocommutative weak Hopf quasigroup is similar using that ΠL
H =

Π
L

H and ΠR
H = Π

R

H .
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4. The fundamental theorem of Hopf modules. In the following definition
we introduce the notion of right-right H-Hopf module for a weak Hopf quasigroup
H . Note that if H is a Hopf quasigroup and C is the symmetric monoidal category
F− V ect, we get the notion defined by Brzeziński in [5].

Definition 4.1. Let H be a weak Hopf quasigroup and M an object in C. We
say that (M,φM , ρM ) is a right-right H-Hopf module if the following axioms hold:

(c1) The pair (M,ρM ) is a rightH-comodule, i.e. ρM : M → M⊗H is a morphism
such that (M ⊗ εH) ◦ ρM = idM and (ρM ⊗H) ◦ ρM = (M ⊗ δH) ◦ ρM .

(c2) The morphism φM : M ⊗H → M satisfies:
(c2-1) φM ◦ (M ⊗ ηH) = idM .
(c2-2) ρM ◦φM = (φM⊗μH)◦(M⊗cH,H⊗H)◦(ρM⊗δH), i.e. φM is a morphism

of right H-comodules with the codiagonal coaction on M ⊗H .
(c3) φM ◦ (φM ⊗ λH) ◦ (M ⊗ δH) = φM ◦ (M ⊗ΠL

H).
(c4) φM ◦ (φM ⊗H) ◦ (M ⊗ λH ⊗H) ◦ (M ⊗ δH) = φM ◦ (M ⊗ΠR

H).
(c5) φM ◦ (φM ⊗H) ◦ (M ⊗ΠL

H ⊗H) ◦ (M ⊗ δH) = φM .

Remark 4.2. Obviously, if H is a weak Hopf quasigroup, the triple (H,φH =
μH , ρH = δH) is a right-right H-Hopf module. Moreover, if (M,φM , ρM ) is a right-
right H-Hopf module, the axiom (c5) is equivalent to

φM ◦ (φM ⊗ΠR
H) ◦ (M ⊗ δH) = φM . (54)

because by (c3) and (c4) of Definition 4.1 we have that

φM ◦ (φM ⊗ΠR
H) ◦ (M ⊗ δH)

= φM ◦ (φM ⊗H) ◦ (M ⊗ΠL
H ⊗H) ◦ (M ⊗ δH).

(55)

Also, composing in (c2-2) with M ⊗ ηH and M ⊗ εH we have that

φM ◦ (M ⊗ΠR
H) ◦ ρM = idM . (56)

Finally, by (c5) and (54) we obtain

φM ◦ (φM ⊗H) ◦ (M ⊗ΠL
H ⊗H) ◦ (M ⊗ (δH ◦ ηH)) = idM , (57)

φM ◦ (φM ⊗ΠR
H) ◦ (M ⊗ (δH ◦ ηH)) = idM . (58)

Proposition 4.3. Let H be a weak Hopf quasigroup and (M,φM , ρM ) a right-
right H-Hopf module. The endomorphism qM := φM ◦ (M ⊗ λH) ◦ ρM : M → M
satisfies

ρM ◦ qM = (M ⊗ΠL
H) ◦ ρM ◦ qM (59)

and, as a consequence, is an idempotent. Moreover, if M coH (object of coinvariants)
is the image of qM and pM : M → M coH , iM : M coH → M the morphisms such that
qM = iM ◦ pM and idMcoH = pM ◦ iM ,

� �
�M coH M M ⊗H

iM
ρM

(M ⊗Π
R

H) ◦ ρM
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is an equalizer diagram.

Proof. The equality (59) holds because

ρM ◦ qM = (φM ⊗ μH) ◦ (M ⊗ cH,H ⊗H) ◦ (ρM ⊗ (δH ◦ λH)) ◦ ρM

= (φM ⊗ μH) ◦ (M ⊗ cH,H ⊗H) ◦ (ρM ⊗ ((λH ⊗ λH) ◦ cH,H ◦ δH)) ◦ ρM

= ((φM ◦ (M ⊗ λH))⊗ΠL
H) ◦ (M ⊗ (cH,H ◦ δH)) ◦ ρM

= ((φM ◦ (M ⊗ λH))⊗ (ΠL
H ◦ΠL

H)) ◦ (M ⊗ (cH,H ◦ δH)) ◦ ρM

= (M ⊗ΠL
H) ◦ ρM ◦ qM

where the first equality follows by (c2-2) of Definition 4.1, the second one by (53),
the third one relies on (c1) of Definition 4.1 as well as the naturality of the braiding,
the fourth one is a consequence of the properties of ΠL

H and the last one uses the
arguments of the three first identities but in the inverse order.

On the other hand, qM is an idempotent. Indeed,

qM ◦ qM = φM ◦ (M ⊗ λH) ◦ ρM ◦ qM

= φM ◦ (M ⊗ (λH ◦ΠL
H)) ◦ ρM ◦ qM

= φM ◦ (M ⊗ (λH ◦Π
R

H ◦ΠL
H)) ◦ ρM ◦ qM

= φM ◦ (M ⊗ΠR
H ) ◦ ρM ◦ qM

= qM .

In the last equalities, the first one follows by definition, the second one by (59), the
third one by (34), the fourth one by (40) and (59) and the last one by (56).

Finally, by (40) and (56)

φM ◦ (M ⊗ (λH ◦Π
R

H)) ◦ ρM = φM ◦ (M ⊗ΠR
H)) ◦ ρM = idM .

Then,

� �
�M coH M M ⊗H

iM
ρM

(M ⊗Π
R

H) ◦ ρM

is a split cofork [10] and thus an equalizer diagram.

Remark 4.4. Note that, in the conditions of Proposition (4.3), by (33) and (34),
we obtain that

� �
�M coH M M ⊗H

iM
ρM

(M ⊗ΠL
H) ◦ ρM

is also an equalizer diagram.
Moreover, by the comodule condition and (c4) of Definition 4.1 we have

φM ◦ (qM ⊗H) ◦ ρM = idM . (60)

Finally, the following identities hold:

ρM ◦ φM ◦ (iM ⊗H) = (φM ⊗H) ◦ (iM ⊗ δH), (61)
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pM ◦ φM ◦ (iM ⊗H) = pM ◦ φM ◦ (iM ⊗ΠL
H), (62)

pM ◦ φM ◦ (iM ⊗H) = pM ◦ φM ◦ (iM ⊗Π
L

H). (63)

Indeed:

ρM ◦ φM ◦ (iM ⊗H)

= (φM ⊗ μH) ◦ (M ⊗ cH,H ⊗H) ◦ ((ρM ◦ iM )⊗ δH)

= (φM ⊗ μH) ◦ (M ⊗ cH,H ⊗H) ◦ (((M ⊗Π
R

H) ◦ ρM ◦ iM )⊗ δH)

= (φM ⊗ (μH ◦ (Π
R

H ⊗H))) ◦ (M ⊗ cH,H ⊗H) ◦ ((ρM ◦ iM )⊗ δH)

= (φM ⊗ (εH ◦ μH)⊗H) ◦ (M ⊗ cH,H ⊗ δH) ◦ ((ρM ◦ iM )⊗ δH)

= (((M ⊗ εH) ◦ ρM ◦ φM )⊗H) ◦ (iM ⊗ δH)

= (φM ⊗H) ◦ (iM ⊗ δH).

The first equality follows from (c2-2) of Definition 4.1, the second one by Propo-
sition 4.3 and the third one by the naturality of the braiding. The fourth equality is
a consequence of (10). In the fifth one we used the coassociativity of δH and (c2-2)
of Definition 4.1. The last one follows by (c1) of Definition 4.1.

On the other hand, by (61) and (a4-6) of Definition 2.2 we have

pM ◦ φM ◦ (iM ⊗H) = pM ◦ qM ◦ φM ◦ (iM ⊗H)

= pM ◦ φM ◦ (M ⊗ λH) ◦ ρM ◦ φM ◦ (iM ⊗H)

= pM ◦ φM ◦ (φM ⊗ λH) ◦ (iM ⊗ δH)

= pM ◦ φM ◦ (iM ⊗ΠL
H).

Finally, composing with M coH ⊗Π
L

H in (62) and using (33) we obtain (63).

Proposition 4.5. Let H be a weak Hopf quasigroup, (M,φM , ρM ) a right-right
H-Hopf module. The endomorphism

∇M := (pM ⊗H) ◦ ρM ◦ φM ◦ (iM ⊗H) : M coH ⊗H → M coH ⊗H

is an idempotent and the equalities

∇M = ((pM ◦ φM )⊗H) ◦ (iM ⊗ δH), (64)

(M coH ⊗ δH) ◦ ∇M = (∇M ⊗H) ◦ (M coH ⊗ δH). (65)

∇M = (M coH ⊗ μH) ◦ ((∇M ◦ (M coH ⊗ ηH))⊗H). (66)

hold.

Proof. Trivially, by (60) we have that

∇M ◦ ∇M = (pM ⊗H) ◦ ρM ◦ φM ◦ (qM ⊗H) ◦ ρM ◦ φM ◦ (iM ⊗H) = ∇M .

The equality (64) follows from (61) and (65) is a consequence of (64) and the coasso-
ciativity of δH . Finally, (66) holds because, by (64), (17) and (63) we have

(M coH ⊗ μH) ◦ ((∇M ◦ (M coH ⊗ ηH))⊗H)
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= ((pM ◦ φM ◦ (M ⊗Π
L

H)) ⊗H) ◦ (iM ⊗ δH) = ∇M .

Remark 4.6. In the conditions of Proposition 4.5 we define the morphisms

ωM : M coH ⊗H → M, ω′
M : M → M coH ⊗H

by ωM = φM ◦ (iM ⊗ H) and ω′
M = (pM ⊗ H) ◦ ρM . Then, ωM ◦ ω′

M = idM and
∇M = ω′

M ◦ ωM . Also, we have a commutative diagram

�
�
�
�
��� �

�
���

�
�
�
��� �

�
���

M coH ⊗H M coH ⊗H

M

M coH ×H

ωM
ω′
M

pMcoH⊗H iMcoH⊗H

∇M

where M coH × H denotes the image of ∇M and pMcoH⊗H , iMcoH⊗H are the mor-
phisms such that pMcoH⊗H ◦ iMcoH⊗H = idMcoH×H and iMcoH⊗H ◦ pMcoH⊗H = ∇M .
Therefore, the morphism αM = pMcoH⊗H ◦ω′

M is an isomorphism of right H-modules
(i.e. ρMcoH×H ◦ αM = (αM ⊗ H) ◦ ρM ) with inverse α−1

M = ωM ◦ iMcoH⊗H . The
comodule structure of M coH ×H is the one induced by the isomorphism αM and it
is equal to

ρMcoH×H = (pMcoH⊗H ⊗H) ◦ (M coH ⊗ δH) ◦ iMcoH⊗H .

Proposition 4.7. Let H be a weak Hopf quasigroup and (M,φM , ρM ),
(N,φN , ρN ) right-right H-Hopf modules. If there exists a right H-comodule isomor-
phism α : M → N , the triple (M,φα

M = α−1 ◦ φN ◦ (α ⊗ H), ρM ) is a right-right
H-Hopf module.

Proof. The proof follows easily because, if α is a right H-comodule isomorphism,
ρM = (α−1 ⊗H) ◦ ρN ◦ α holds.

Proposition 4.8. Let H be a weak Hopf quasigroup, (M,φM , ρM ) a right-right
H-Hopf module. The triple (M coH ×H,φMcoH×H , ρMcoH×H) where

φMcoH×H = pMcoH⊗H ◦ (M coH ⊗ μH) ◦ (iMcoH⊗H ⊗H),

and ρMcoH×H is the coaction defined in Remark 4.6, is a right-right H-Hopf module.

Proof. By Remark 4.6 we have that (M coH ×H, ρMcoH×H) is a right H-comodule
and it is clear that (c2-1) of Definition 4.1 holds. On the other hand, by (65),

ρMcoH×H ◦ φMcoH×H = (pMcoH⊗H ⊗H) ◦ (M coH ⊗ (δH ◦ μH)) ◦ (iMcoH⊗H ⊗H).

Moreover, by (65), the properties of ∇M and (a1) of Definition 2.2 we obtain

(φMcoH×H ⊗ μH) ◦ (M coH ×H ⊗ cH,H ⊗H) ◦ (ρMcoH×H ⊗ δH)
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= ((pMcoH⊗H ◦ (M coH ⊗ μH))⊗H) ◦ (∇M ⊗H ⊗ μH)

◦(M coH ⊗H ⊗ cH,H ⊗H) ◦ (M coH ⊗ δH ⊗ δH) ◦ (iMcoH⊗H ⊗H)

= (pMcoH⊗H ⊗H) ◦ (M coH ⊗ ((μH ⊗ μH) ◦ δH⊗H)) ◦ ((∇M ◦ iMcoH⊗H)⊗H)

= (pMcoH⊗H ⊗H) ◦ (M coH ⊗ (δH ◦ μH)) ◦ (iMcoH⊗H ⊗H)

and then (c2-2) of Definition 4.1 holds.
The proof for (c3) of Definition 4.1 is the following:

φMcoH×H ◦ (φMcoH×H ⊗ λH) ◦ (M coH ×H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ (δH ◦ μH)⊗ λH) ◦ (iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ ((μH ⊗ μH) ◦ δH⊗H)⊗ λH)

◦(iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM ◦ (iM ⊗ μH))⊗ (μH ◦ (H ⊗ΠL
H)))

◦(M coH ⊗ δH⊗H) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ((pM ◦ φM ◦ (iM ⊗ μH))⊗H) ◦ (M coH ⊗H ⊗ cH,H)

◦(M coH ⊗ δH ⊗H) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ((pM ◦ φM ◦ (iM ⊗ (ΠL
H ◦ μH)))⊗H) ◦ (M coH ⊗H ⊗ cH,H)

◦(M coH ⊗ δH ⊗H) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ((pM ◦ φM ◦ (iM ⊗ μH))⊗H) ◦ (M coH ⊗H ⊗ cH,H)

◦(M coH ⊗ δH ⊗H) ◦ (iMcoH⊗H ⊗ΠL
H)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ (((εH ◦ μH)⊗H ⊗H)

◦(H ⊗ cH,H ⊗H) ◦ (δH ⊗ cH,H) ◦ (δH ⊗H))) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ (((εH ◦ μH)⊗ δH)

◦(H ⊗ cH,H) ◦ (δH ⊗H))) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ (δH ◦ μH ◦ (H ⊗ΠL
H))) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ∇M ◦ (M coH ⊗ (μH ◦ (H ⊗ΠL
H))) ◦ (iMcoH⊗H ⊗H)

= φMcoH×H ◦ (M coH ×H ⊗ΠL
H).

The first and tenth equalities follow by (64), the second one by (a1) of Definition
2.2 and the third one by the coassociativity of δH and (a4-6) of Definition 2.2. In
the fourth one we used (45). The fifth equality relies on (62) and the sixth one
follows by (25) and (62). The seventh one is a consequence of the naturality of the
braiding and (7). The eighth equality follows by the naturality of the braiding and
the coassociativity of δH . Finally, the ninth equality follows by (7) and the last one
relies on the properties of ∇M .

We continue in this fashion proving (c4) of Definition 4.1. Indeed:

φMcoH×H ◦ (φMcoH×H ⊗H) ◦ (M coH ×H ⊗ λH ⊗H) ◦ (M coH ×H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ (δH ◦ μH ◦ (H ⊗ λH))⊗H)

◦(iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ ((μH ⊗ μH) ◦ δH⊗H

◦(H ⊗ λH))⊗H) ◦ (iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM ◦ (M ⊗ΠL
H))⊗ μH) ◦ (iM ⊗ ((μH ⊗ μH)

◦δH⊗H ◦ (H ⊗ λH))⊗H) ◦ (iMcoH⊗H ⊗ δH)
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= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ [((εH ◦ μH)⊗ (εH ◦ μH)⊗H

⊗μH) ◦ (H ⊗ δH ⊗ cH,H ⊗H ⊗H) ◦ (H ⊗ cH,H ⊗ cH,H ⊗H)

◦((δH ◦ ηH)⊗ δH ⊗ (δH ◦ λH))]⊗H) ◦ (iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ (ΠL
H ⊗ ((εH ⊗H) ◦ δH ◦ μH))

⊗H) ◦ (M coH ⊗ δH ⊗ λH ⊗H) ◦ (iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗H ⊗ μH ⊗H)

◦(M coH ⊗ δH ⊗ λH ⊗H) ◦ (iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ δH ⊗ΠR
H) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ (M coH ⊗ μH) ◦ ((∇M ◦ iMcoH⊗H)⊗ΠR
H)

= φMcoH×H ◦ (M coH ×H ⊗ΠR
H).

The first and eighth equalities follow by (64), the second one by (a1) of Definition
2.2 and the third one by (62). In the fourth one we used the naturality of the braiding
and (a2) of Definition 2.2. The fifth one is a consequence of the naturality of the
braiding, the coassociativity of δH and (a1) of Definition 2.2. The sixth equality
follows from the counit properties and (62) and the seventh one by (a4-7) of Definition
2.2. Finally, the last equality is a consequence of the properties of ∇M .

The only point remaining is (c5) of Definition 4.1. This equality holds because:

φMcoH×H ◦ (φMcoH×H ⊗H) ◦ (M coH ×H ⊗ΠL
H ⊗H) ◦ (M coH ×H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ (δH ◦ μH ◦ (H ⊗ΠL
H))⊗H)

◦(iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ ((μH ⊗ μH) ◦ δH⊗H ◦ (H ⊗ΠL
H))

⊗H) ◦ (iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗ μH) ◦ (iM ⊗ ((μH ⊗ (μH ◦ (H ⊗ΠL
H)))

◦δH⊗H ◦ (H ⊗ΠL
H))⊗H) ◦ (iMcoH⊗H ⊗ δH)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ ((ΠL
H ⊗H) ◦ μH⊗H

◦(δH ⊗ ((ΠL
H ⊗H) ◦ δH)))) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ ((ΠL
H ◦ μH ◦ (H ⊗ΠL

H))⊗ μH)

◦δH⊗H) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ ((ΠL
H ⊗H) ◦ δH ◦ μH))

◦(iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ((pM ◦ φM )⊗H) ◦ (iM ⊗ (δH ◦ μH)) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ∇M ◦ (M coH ⊗ μH) ◦ ◦(iMcoH⊗H ⊗H)

= φMcoH×H .

The first equalitiy follows by (64), the second one by (a1) of Definition 2.2 and
the third one by (27). In the fourth one we used (45) as well as (62). The fifth one
relies on the naturality of the braiding and the sixth one is a consequence of (25) and
(a1) of Definition 2.2. The seventh one follows by (62) and the eighth one by 64.
Finally, the last one follows by the properties of ∇M .

Proposition 4.9. Let H be a weak Hopf quasigroup, (M,φM , ρM ) be a right-
right H-Hopf module and αM : M → M coH × H be the isomorphism of right H-
comodules defined in Remark 4.6. Then, for the action φαM

M introduced in Proposition
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4.7, the triple (M,φαM

M , ρM ) is a right-right H-Hopf module with the same object of
coinvariants of (M,φM , ρM ). Moreover, the identity

φαM

M = φM ◦ (qM ⊗ μH) ◦ (ρM ⊗H) (67)

holds and qαM

M = qM where qαM

M = φαM

M ◦ (M ⊗λH) ◦ ρM is the idempotent morphism
associated to the Hopf module (M,φαM

M , ρM ). Finally, if for the triple (M,φαM

M , ρM ),
∇αM

M denotes the idempotent morphism defined in Proposition 4.5, we have that

∇αM

M = ∇M (68)

and then, for (M,φαM

M , ρM ), the associated isomorphism between M and M coH ×H
defined in Remark 4.6 is αM . Finally,

(φαM

M )αM = φαM

M (69)

holds.

Proof. By Proposition 4.7 we obtain that (M,φαM

M , ρM ) is a right-right H-Hopf
module and by the equalizer diagram of Proposition 4.3 the object of coinvariants of
(M,φαM

M , ρM ) is equal to the one of (M,φM , ρM ). Also, by (60) we have

φM ◦ (iM ⊗H) ◦ ∇M = φM ◦ (iM ⊗H) (70)

and

∇M ◦ (pM ⊗H) ◦ ρM = (pM ⊗H) ◦ ρM . (71)

Then, (67) holds because

φαM

M = α−1
M ◦ φMcoH×H ◦ (αM ⊗H)

= φM ◦ (iM ⊗H) ◦ ∇M ◦ (M coH ⊗ μH) ◦ ((∇M ◦ (pM ⊗H) ◦ ρM )⊗H)

= φM ◦ (qM ⊗ μH) ◦ (ρM ⊗H).

On the other hand, by (67), the coassociativity of δH , (c1), (c4) of Definition 4.1
and (54) we obtain:

qαM

M = φM ◦ (qM ⊗ μH) ◦ (ρM ⊗ λH) ◦ ρM

= φM ◦ (φM ⊗H) ◦ ((((φM ◦ (M ⊗ λH))⊗H) ◦ (M ⊗ δH))⊗ λH)

◦(M ⊗ δH) ◦ ρM

= φM ◦ ((φM ◦ (M ⊗ΠR
H))⊗ λH) ◦ (M ⊗ δH) ◦ ρM

= φM ◦ ((φM ◦ (M ⊗ΠR
H) ◦ ρM )⊗ λH) ◦ ρM

= qM .

Then, iM = iαM

M and pM = pαM

M and, as a consequence, ωαM ′
M = (pM ⊗H) ◦ ρM =

ω′
M . Moreover, by (c2-1) of Definition 4.1, (66) and (70)

ωαM

M = φαM

M ◦ (iM ⊗H)

= φM ◦ (qM ⊗ μH) ◦ ((ρM ◦ iM )⊗H)

= φM ◦ (iM ⊗ μH) ◦ (∇M ⊗H) ◦ (M coH ⊗ ηH ⊗H)

= φM ◦ (iM ⊗H) ◦ ∇M
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= ωM .

Therefore, ∇αM

M = ∇M and then, for (M,φαM

M , ρM ), the associated isomorphism be-
tween M and M coH ×H is αM .

Finally, by (66)

(φαM

M )αM = φM ◦ (qM ⊗ μH) ◦ ((ρM ◦ qM )⊗ μH) ◦ (ρM ⊗H)

= φM ◦ (iM ⊗ μH) ◦ ((∇M ◦ (pM ⊗ ηH))⊗ μH) ◦ (ρM ⊗H)

= φM ◦ (iM ⊗H) ◦ ∇M ◦ (pM ⊗ μH) ◦ (ρM ⊗H)

= φαM

M

and (69) holds.

Remark 4.10. Let H be a weak Hopf quasigroup. The triple (H,φH = μH , ρH =
δH) is a right-right H-Hopf module and φαH

H = φH because by (42),

φαH

H = μH ◦ (ΠL
H ⊗ μH) ◦ (δH ⊗H) = μH = φH .

Definition 4.11. Let H be a weak Hopf quasigroup and let (M,φM , ρM ) and
(N,φN , ρN ) be right-right H-Hopf modules. A morphism in C f : M → N is said to
be H-quasilineal if the following identity holds

φαN

N ◦ (f ⊗H) = f ◦ φαM

M . (72)

A morphism of right-right H-Hopf modules between M and N is a morphism f :
M → N in C such that is both a morphism of right H-comodules and H-quasilineal.
The collection of all right H-Hopf modules with their morphisms forms a category
which will be denoted by MH

H .

Proposition 4.12. Let H be a weak Hopf quasigroup and let (M,φM , ρM ) be an
object in MH

H . Then, for (M coH ×H,φMcoH×H , ρMcoH×H) the identity

φ
α

McoH×H

McoH×H
= φMcoH×H (73)

holds.

Proof. First note that, by (65) we have

qMcoH×H = pMcoH⊗H ◦ (M coH ⊗ ΠL
H) ◦ iMcoH⊗H (74)

and, as a consequence, by (67), the equality

φ
α

McoH×H

McoH×H
= pMcoH⊗H ◦ (M coH ⊗ μH) ◦ ((∇M ◦ (M coH ⊗ ΠL

H))⊗ μH)

◦ (M coH ⊗ δH ⊗H) ◦ (iMcoH⊗H ⊗H).
(75)

holds.
Then,

φ
α

McoH×H

McoH×H

= pMcoH⊗H ◦ (pM ⊗ μH) ◦ ((ρM ◦ φM ◦ (iM ⊗ΠL
H))⊗ μH)

◦(M coH ⊗ δH ⊗H) ◦ (iMcoH⊗H ⊗H)
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= pMcoH⊗H ◦ (pM ⊗ μH) ◦ ((ρM ◦ φM ◦ (φM ⊗ λH) ◦ (iM ⊗ δH))⊗ μH)

◦(M coH ⊗ δH ⊗H) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ (pM ⊗ μH) ◦ ((ρM ◦ φM ◦ (φM ⊗ λH))⊗ μH)

◦(iM ⊗ ((H ⊗ δH) ◦ δH)⊗H) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ (pM ⊗ μH) ◦ ((ρM ◦ φM ◦ (M ⊗ λH))⊗ μH) ◦ (((M ⊗ δH)

◦ρM ◦ φM ◦ (iM ⊗H) ◦ iMcoH⊗H)⊗H)

= pMcoH⊗H ◦ (pM ⊗ μH) ◦ ((ρM ◦ qM )⊗ μH) ◦ ((ρM ◦ φM ◦ (iM ⊗H)

◦iMcoH⊗H)⊗H)

= pMcoH⊗H ◦ (pM ⊗ μH) ◦ ((ρM ◦ iM )⊗ μH) ◦ ((∇M ◦ iMcoH⊗H)⊗H)

= pMcoH⊗H ◦ (pM ⊗ μH) ◦ ((ρM ◦ iM )⊗ μH) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ (M coH ⊗ μH) ◦ ((∇M ◦ (M coH ⊗ ηH))⊗ μH) ◦ (iMcoH⊗H ⊗H)

= pMcoH⊗H ◦ ∇M ◦ (M coH ⊗ μH) ◦ (iMcoH⊗H ⊗H)

= φMcoH×H

where the first equality follows by (75) and the definition of ∇M , the second one by
(c3) of Definition 4.1, the third one by the coassociativity of δH and the fourth one
by (61). In the fifth equality we used (c1) of Definition 4.1 and the sixth and eighth
ones are consequence of the definition of ∇M . Finally, the seventh and the tenth one
rely on the properties of ∇M and the ninth one follows by (66).

Theorem 4.13. (Fundamental Theorem of Hopf modules) Let H be a weak Hopf
quasigroup and let (M,φM , ρM ) be an object in MH

H . Then, the right-right H-Hopf
modules (M,φM , ρM ) and (M coH ×H,φMcoH×H , ρMcoH×H) are isomorphic in MH

H .

Proof. By Remark 4.6 αM = pMcoH⊗H ◦ ω′
M is an isomorphism of right H-

comodules with inverse α−1
M = ωM ◦ iMcoH⊗H . To finish the proof we only need to

show that (72) holds. Indeed, by (73), (70) and (71) we have

α−1
M ◦ φ

α
McoH×H

McoH×H
◦ (αM ⊗H)

= φM ◦ (iM ⊗H) ◦ ∇M ◦ (M coH ⊗ μH) ◦ ((∇M ◦ (pM ⊗H) ◦ ρM )⊗H)

= φαM

M .
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[1] J. N. Alonso Álvarez, J. M. Fernández Vilaboa, and R. González Rodŕıguez, Weak
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