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SADDLE TOWERS IN HEISENBERG SPACE∗

SÉBASTIEN CARTIER†

Abstract. We construct most symmetric Saddle towers in Heisenberg space i.e. periodic minimal
surfaces that can be seen as the desingularization of vertical planes intersecting equiangularly. The
key point is the construction of a suitable barrier to ensure the convergence of a family of bounded
minimal disks. Such a barrier is actually a periodic deformation of a minimal plane with prescribed
asymptotic behavior. A consequence of the barrier construction is that the number of disjoint minimal
graphs supported on domains is not bounded in Heisenberg space.
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1. Introduction. The study of periodic surfaces has recently encountered new
developments in homogeneous 3-spaces. In H2 × R, new examples have been con-
structed such as for instance doubly periodic minimal surfaces by Mazet, Rodŕıguez
and Rosenberg [12] or genus one constant mean curvature 1/2 surfaces by Plehn-
ert [19]. Other examples are involved in important results such as the resolution
of Alexandrov problem in a quotient space of H2 × R by Menezes [15] or the fact
the Calabi-Yau conjectures do not hold for embedded minimal surface in H2 × R by
Rodŕıguez and Tinaglia [21]. In Heisenberg space, new examples are mostly of Scherk
type like the Jenkins-Serrin theorem for compact domains obtained by Pinheiro [18].

The present paper deals with the construction of another kind of Scherk type
surfaces, called most symmetric Saddle towers, in Heisenberg space. A Saddle tower
is a minimal surface that can be thought of as the desingularization of n vertical
planes, n � 2, intersecting along a vertical geodesic; in particular it is a complete
embedded minimal surface with 2n planar ends. Historically, they were first found by
Scherk [23] for n = 2 in Euclidean space R3 — a Saddle tower with n = 2 is usually
called a singly periodic Scherk surface — and (more than) a century and half later
Karcher [8] generalized the construction to any n � 2. Another couple of decades
later, Morabito and Rodŕıguez [17] and Pyo [20] constructed Saddle towers in H2×R.
Recently, Menezes [16] constructed the singly (and doubly) periodic Scherk surfaces
in semi-direct product spaces, including Heisenberg space.

We use a classical method to construct Saddle towers in Heisenberg space (see
Section 4). We first construct a sequence of embedded minimal disks — by solving
Plateau problems on suitable Jordan curves — such that it converges to an embedded
minimal surface bordered by horizontal geodesic arcs, which we call the fundamental
piece. Reflecting the fundamental piece along the geodesics in its boundary, we get
the desired Saddle tower:

Theorem 4.1. For any n � 2 and a > 0, there exists a properly embedded singly
periodic minimal surface of genus zero with 2n planar ends distributed at constant
angle π/n. We call it a most symmetric Saddle tower.
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Since the Saddle tower is composed of reflections of the fundamental piece, its
ends must be equiangularly distributed to ensure the embeddedness of the surface.
Note that Morabito and Rodŕıguez [17] constructed non equiangular Saddle towers
with a conjugate Plateau technique, which does not apply in Heisenberg space.

The key step is to prove the convergence of the sequence of minimal disks, which is
done by using a suitable barrier. We construct that barrier in Section 3 by deforming
a minimal plane so that we control the asymptotic behavior of the deformed minimal
surfaces. The deformation technique is based on the existence of an elliptic operator,
called the compactified mean curvature operator, containing information on both the
asymptotic behavior and the mean curvature. This technique has already been used
by the author and Hauswirth [3] for surfaces in H

2 × R of constant mean curvature
1/2.

It is an immediate consequence of Weierstrass representation that the construc-
tion of such surfaces is not possible in Euclidean space since — under reasonable
assumptions on the total curvature — minimal ends are asymptotically rotational.
The present barrier construction highlights another difference with Euclidean case:

Theorem 3.9. In Heisenberg space, the number of disjoint domains supporting
minimal vertical graphs is unbounded.

2. Preliminaries. We recall basic definitions and properties on Heisenberg
space and fix classic notations.

2.1. A model for Heisenberg space. 3-dimensional Heisenberg space Nil3 is
a nilpotent Lie group which is usually represented in GL3(R) by:

Nil3 =

⎧⎨⎩
⎛⎝1 a c
0 1 b
0 0 1

⎞⎠
∣∣∣∣∣∣ a, b, c ∈ R

⎫⎬⎭ ,

and its Lie algebra nil3 can be seen as the subset of M3(R):

nil3 =

⎧⎨⎩
⎛⎝0 a c
0 0 b
0 0 0

⎞⎠
∣∣∣∣∣∣ a, b, c ∈ R

⎫⎬⎭ .

In this paper we use the parametrization of Nil3 induced by the exponential map:

exp :

⎛⎝0 x1 x3

0 0 x2

0 0 0

⎞⎠ ∈ nil3 �→

⎛⎜⎝1 x1 x3 +
x1x2

2
0 1 x2

0 0 1

⎞⎟⎠ ∈ Nil3.

With these notations, Nil3 identifies with R3 and the group law is:

(x1, x2, x3) ∗ (y1, y2, y3) =

(
x1 + y1, x2 + y2, x3 + y3 +

x1y2 − x2y1
2

)
.

We call canonical frame the frame (E1, E2, E3) which is the extension by left trans-
lation of the canonical frame of R3 at the origin i.e.:

E1 =
∂

∂x1
−

x2

2

∂

∂x3
, E2 =

∂

∂x2
+

x1

2

∂

∂x3
and E3 =

∂

∂x3
.
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Endowing Nil3 with the following left-invariant metric:

〈·, ·〉 = dx2
1 + dx2

2 +

(
1

2
(x2dx1 − x1dx2) + dx3

)2

,

makes the canonical frame orthonormal.
Heisenberg space is a riemannian fibration for the projection on the first two

coordinates π : (x1, x2, x3) ∈ Nil3 �→ (x1, x2) ∈ R2, which means that the isomorphism
dπ|(ker dπ)⊥ onto the Euclidean plane is an isometry. Given this structure, vector fields
spanned by (E1, E2) are referred to as horizontal and the direction E3 is said vertical.
In particular, a vertical graph in Nil3 is a complete immersion transverse to E3.

In the sequel, we mostly work in cylindrical coordinates (ρ, θ, x3) with ρ � 0 and
θ ∈ R such that:

x1 = ρ cos θ and x2 = ρ sin θ,

and we consider the cylindrical frame (Eρ, Eθ, E3) with:

Eρ = cos θE1 + sin θE2 = cos θ
∂

∂x1
+ sin θ

∂

∂x2

and Eθ = − sin θE1 + cos θE2 = − sin θ
∂

∂x1
+ cos θ

∂

∂x2
+

ρ

2

∂

∂x3
.

The cylindrical frame is also orthonormal and the Levi-Civita connection ∇ on Nil3
in terms of (Eρ, Eθ, E3) is given by:

∇Eρ
Eρ = 0 ∇Eθ

Eρ =
1

ρ
Eθ −

1

2
E3 ∇E3

Eρ = −
1

2
Eθ

∇Eρ
Eθ =

1

2
E3 ∇Eθ

Eθ = −
1

ρ
Eρ ∇E3

Eθ =
1

2
Eρ

∇Eρ
E3 = −

1

2
Eθ ∇Eθ

E3 =
1

2
Eρ ∇E3

E3 = 0

.

2.2. Model surface. The barrier constructed in Section 3 comes from a (suit-
able) deformation of a surface, labeled S0, to which we refer as the model surface.
In our model of Nil3, S

0 is nothing but the entire graph {x3 = 0}. It is a complete
embedded minimal surface, its tangent plane is spanned by the coordinate vector
fields:

∂

∂x1
= E1 +

x2

2
E3 and

∂

∂x2
= E2 −

x1

2
E3,

and has unit normal:

N0 =
1√

4 + ρ2
(ρEθ + 2E3).

The end of S0 is of annulus type and is vertical in the sense that the normal vector
N0 is asymptotically horizontal: 〈N0, E3〉 → 0 when ρ → +∞.

Consider a point x0 = (x0
1, x

0
2, x

0
3) in Nil3 and a unit vector V in the tangent space

Tx0Nil3 at x0, written V = R cosϕE1 + R sinϕE2 + γE3 with R � 0, ϕ, γ ∈ R and
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R2 + γ2 = 1. The geodesic passing through x0 and directed by V at x0 admits the
parametrization t ∈ R �→

(
x1(t), x2(t), x3(t)

)
by arc length with (see [11] for details):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = x0
1 +

R

2γ

(
sin(2γt+ ϕ)− sinϕ

)
x2(t) = x0

2 −
R

2γ

(
cos(2γt+ ϕ)− cosϕ

)
x3(t) = x0

3 −
R

4γ

[
x0
1

(
cos(2γt+ ϕ)− cosϕ

)
+ x0

2

(
sin(2γt+ ϕ)− sinϕ

)]
+
1+ γ2

2γ
t−

R2

4γ2
sin(2γt)

.

If x0 ∈ S0 and V = N0, meaning:

R =
ρ√

4 + ρ2
, ϕ = θ +

π

2
and γ =

2√
4 + ρ2

,

with x0
1 = ρ cos θ, x0

2 = ρ sin θ and x0
3 = 0, the parametrization writes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = ρ cos θ +
ρ

4

[
cos

(
4t√
4 + ρ2

+ θ

)
− cos θ

]

x2(t) = ρ sin θ +
ρ

4

[
sin

(
4t√
4 + ρ2

+ θ

)
− sin θ

]

x3(t) =
ρ2

16
sin

(
4t√
4 + ρ2

)
+

8 + ρ2

16

4t√
4 + ρ2

. (1)

Fixing t 
= 0 and letting (ρ, θ) vary, System (1) becomes a parametrization of the
equidistant surface to S0 at signed (normal) distance t. And making ρ → +∞, we see
that asymptotically the equidistant surface grows linearly with respect to ρ— namely,
the equidistant surface asymptotically behaves like the quadric:

t2x2
1 + t2x2

2 − 4x2
3 = t2

(
4−

t2

3

)
.

The growth of equidistant surfaces to the model surface is important in Section 3.
Indeed, the information we have on the asymptotic behavior of the deformations of
S0 is precisely the asymptotic normal signed distance to S0.

Definition 2.1. Consider a surface S which can be parametrized by:

(ρ, θ) �→
(
ρ cos θ, ρ sin θ, h(ρ, θ)

)
,

at least for ρ big enough and some θ ∈ R. When it exists, the asymptotic horizontal
signed distance of S to the model surface S0 in the direction θ is the quantity:

d∞(S, S0)(θ) = lim
ρ→+∞

2

ρ
h(ρ, θ),

the qualification “horizontal” coming from the fact that N0 is asymptotically hori-
zontal.



SADDLE TOWERS IN HEISENBERG SPACE 633

2.3. Schwarz symmetrization. The classical Schwarz reflection for minimal
surfaces in Euclidean space states that if a minimal immersion contains a straight line
in its boundary, it can be smoothly extended across that line by the π-rotation about
the line. This result applies to Heisenberg space — and in general to homogeneous
3-spaces with 4-dimensional isometry group — if restricted to extensions across hori-
zontal or vertical geodesics (see [1] and details in [22, 10]). Moreover, in Heisenberg
space the geodesic reflection along a horizontal geodesic passing through the vertical
axis {x1 = x2 = 0} is exactly the euclidean π-rotation about the geodesic.

Consider a minimal surface Σ bordered only by horizontal and vertical geodesic
arcs. Then Σ can be extended to a smooth minimal surface Σ̂ by geodesic reflections
along each geodesic in the boundary of Σ. The boundary of Σ̂ also only contains
horizontal and vertical geodesic arcs and the extension process can be iterated. Note
that a meeting point of several geodesic arcs of the boundary of Σ is a removable
singularity of the extended surface Σ̂ and thus Σ̂ is smooth at this point (see [4, 7]).

We use Schwarz symmetrization in Section 4 to extend the fundamental piece to
a complete embedded smooth minimal surface with the desired symmetry properties.

2.4. Some notations. Let D =
{
z ∈ C

∣∣ |z| < 1
}
be the open unit disk, D ={

z ∈ C
∣∣ |z| � 1

}
its closure and (r, θ) the polar coordinates on D. The boundary ∂D

of D is identified with S
1.

The space Ck,α(D), with k � 0 and 0 < α < 1, is the usual Hölder space over D

and Ck,α
0 (D) is the subspace of Ck,α(D) of functions that are zero on the boundary of

D.
Finally, we consider the spaces L2(·) endowed with the natural scalar product

denoted 〈·, ·〉L2(·) and Hilbert norm | · |L2(·).

3. Barrier construction. The model surface S0 is an embedded disk. We de-
form it by mean of a differential operator taking into account both the asymptotic
behavior and the mean curvature. The construction of this operator is called a com-
pactification of the mean curvature since it is based on a conformal change of the
induced metric to extend it on the boundary of the parameterizing disk. To do so,
we need a conformal parametrization of S0 which writes (in polar coordinates):

X0 : (r, θ) ∈ D �→

(
4r

1− r2
cos θ,

4r

1− r2
sin θ, 0

)
.

We parametrize entire vertical graphs of Nil3 by:

Xη : (r, θ) ∈ D �→

(
4r

1− r2
cos θ,

4r

1− r2
sin θ, η(r, θ)

1 + r2

1− r2

)
,

for some map η : D → R. We call such a parametrization graph coordinates at infinity.
In the sequel, we are interested in graphs such that η ∈ C2,α(D) and we use

graph coordinates at infinity to compactify surfaces and quantify their asymptotic
behavior. Indeed, using Definition 2.1 a graph Xη with η ∈ C2,α(D) is at asymptotic
horizontal signed distance to the model surface d∞(Xη, S0)(θ) = η(1, θ). Surfaces are
thus considered as compact surfaces with boundary and we can apply the method first
developed by White [26]. Also note that the value η|∂D is invariant under vertical
translations.

3.1. Compactification of the mean curvature. From now on, to ease the
notations, we denote with indexes 1, 2 quantities related to coordinates r, θ respec-
tively.
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Theorem 3.1. For any entire graph admitting graph coordinates Xη with η ∈
C2,α(D), the mean curvature H(η) verifies:

2

r

√
|g(0)|H(η) =

∑
i,j

Aij(r, η,Dη)ηij +B(r, η,Dη), (2)

where |g(0)| is the determinant of the metric induced by X0, Aij and B are C0,α

functions on D which are real-analytic in their variables and A = (Aij) is a coercive
matrix on D.

Proof (See Appendix A for computation details). The definition of the mean
curvature of Xη is the following:

2H(η) =
∑
i,j

gij(η)〈∇Xη
i
Xη

j , N
η〉,

where Xη
1 (resp. Xη

2 ) is the derivative of Xη with respect to r (resp. θ), Nη is the
unit normal to Xη and

(
gij(η)

)
is the inverse matrix of the metric g(η) =

(
gij(η)

)
induced by Xη. Namely, we have:

Xη
1 (r, θ) =

4(1 + r2)

(1− r2)2
Eρ +

4r

(1− r2)2

(
η +

(1 + r2)η1
4r

(1 − r2)

)
E3

and Xη
2 (r, θ) =

4r

1− r2
Eθ −

8r2

(1− r2)2

(
1−

(1 + r2)η2
8r2

(1− r2)

)
E3,

with (Eρ, Eθ, E3) the cylindrical frame. The first fundamental form g(η) is:

g11(η) =
16(1 + r2)2

(1− r2)4

[(
1 +

r2η2

(1 + r2)2

)
+

rηη1
2(1 + r2)

(1− r2) +
η21
16

(1− r2)2
]
,

g12(η) = −
32r3

(1 − r2)4

[
η +

1 + r2

4r

(
η1 −

ηη2
2r

)
(1− r2)−

(1 + r2)2η1η2
32r3

(1 − r2)2
]

and g22(η) =
16r2(1 + r2)2

(1 − r2)4

[
1−

η2
1 + r2

(1− r2) +
η22
16r2

(1− r2)2
]
,

and its determinant |g(η)| writes:

|g(η)| =

(
16r(1 + r2)2

(1− r2)4
w(η)

)2

= |g(0)|w2(η),

with the following expression of w(η):

w(η) =

[
1−

η2
1 + r2

(1− r2) +

(
r2η2

(1 + r2)4
+

η22
16

)
(1− r2)2 +

rηη1
2(1 + r2)3

(1− r2)3

+
η21

16(1 + r2)2
(1− r2)4

]1/2

.

Also the expression of the unit normal Nη is:

Nη =
1√
|g(η)|

Xη
1 ×Xη

2 =
1

w(η)

[
−

r(1 − r2)

(1 + r2)2

(
η +

(1 + r2)η1
4r

(1 − r2)

)
Eρ

+
2r

1 + r2

(
1−

(1 + r2)η2
8r2

(1 − r2)

)
Eθ +

1− r2

1 + r2
E3

]
.



SADDLE TOWERS IN HEISENBERG SPACE 635

The computation detailed in Appendix A gives the expression (2) with the desired
regularity and:

A11 = 1+O(1− r2), A12 = A21 =
η

2
+O(1− r2) and A22 = 1+

η2

4
+O(1− r2),

which shows that A is coercive on D.

We call such a process a compactification of the mean curvature since the quantity
r−1

√
g(0)H(η) can be extended to the boundary ∂D. It is also strongly linked with

the compactification of the induced metric g(η) by the following equality:

A−1 =

(
1 + η2/4 η/2

η/2 1

)
+O(1 − r2) =

1√
|g(0)|

g(η) +O(1 − r2).

From now on, we denote H the operator:

H : η ∈ C2,α(D) �→ H(η) ∈ C0,α(D),

where H(η) is the mean curvature of Xη, and we call it the mean curvature operator.
Using Theorem 3.1, we define the compactified mean curvature operator to be:

H : η ∈ C2,α(D) �→
2

r

√
|g(0)|H(η) ∈ C0,α(D).

The compactified Jacobi operator is L = DH(0) : C2,α(D) → C0,α(D). We get
that:

L =

√
|g(0)|

r
L,

where L is the Jacobi operator of S0, since it is a standard fact that:

∀η ∈ C2,α(D), DH(0) · η =
1

2
Lη.

Furthermore, conducting the computation in Appendix A more carefully, we get an
explicit expression of L:

∀η ∈ C2,α(D), Lη = Δη +
8η

(1 + r2)2
,

where Δ stands for the usual flat laplacian.
We highlight two immediate consequences. First, the vertical coordinate ϕ0 of

N0 — meaning ϕ0 = 〈N0, E3〉 — is in the kernel of L i.e. Lϕ0 = 0. And second, L
verifies the following Green identity:

∀u, v ∈ C2,α(D),

∫
D

(
uLv − vLu

)
dA =

∫ 2π

0

(
u
∂v

∂r
− v

∂u

∂r

)∣∣∣∣
r=1

dθ, (3)

with dA the Lebesgue measure on D. We deduce the following lemma:

Lemma 3.2. There is no solution u ∈ C2,α(D) to the equation:{
Lu = 0 on D

u|∂D = 1
.
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Proof. By contradiction, suppose such a u exist and apply the Green identity (3)
to ϕ0 and u:

0 =

∫
D

(
ϕ0Lu− uLϕ0

)
dA =

∫ 2π

0

(
ϕ0 ∂u

∂r
− u

∂ϕ0

∂r

)∣∣∣∣
r=1

dθ

=

∫ 2π

0

dθ = 2π,

since:

ϕ0|r=1 =
1− r2

1 + r2

∣∣∣∣
r=1

= 0 and
∂ϕ0

∂r

∣∣∣∣
r=1

= −
4r

(1 + r2)2

∣∣∣∣
r=1

= −1.

This is impossible.

Consider the restriction L0 of L to C2,α
0 (D) and K = kerL0. We use the inclusions

C2,α
0 (D) ⊂ C0,α(D) ⊂ L2(D) and denote K⊥ the orthogonal to K in C0,α(D) for the

natural scalar product of L2(D) and K⊥
0 = K⊥ ∩ C2,α

0 (D).
A standard result states that the restriction L0 is a Fredholm operator with index

zero (see [6]) and furthermore K = Rϕ0 and L0

(
C2,α
0 (D)

)
= K⊥.

3.2. Deformations of the model surface. Let μ : C2,α(S1) → C2,α(D) be the
operator such that μ(γ) is the harmonic function on D (for the flat laplacian) with
value γ on the boundary ∂D. In the sequel, we decompose C2,α(D) into C2,α(S1) ×
R×K⊥

0 , meaning that any η ∈ C2,α(D) is in one-to-one correspondence with a triple
(γ, λ, σ) ∈ C2,α(S1)× R×K⊥

0 such that:

η = μ(γ) + λϕ0 + σ.

Consider ΠK and ΠK⊥ , the orthogonal projections onK andK⊥ respectively. We
follow White [26] and define a suitable map to apply the Implicit Function Theorem:

Lemma 3.3. Let Φ : C2,α(S1)× R×K⊥
0 → K⊥ be the map defined by:

Φ(γ, λ, σ) = ΠK⊥ ◦H
(
μa(γ) + λϕa + σ

)
.

Then D3Φ(γ
a, 0, 0) : K⊥

0 → K⊥ is an isomorphism.

Proof. We compute that D3Φ(γ
a, 0, 0) = ΠK⊥ ◦ L0|K⊥

0
and we know K⊥ is the

range of L0, which means D3Φ(γ
a, 0, 0) : K⊥

0 → K⊥ is an isomorphism.

Therefore, we can apply the Implicit Function Theorem to Φ, which states that
there exist an open neighborhood U of (0, 0) in C2,α(S1) × R and a unique smooth
map σ : U → K⊥

0 such that:

∀(γ, λ) ∈ U, Φ
(
γ, λ, σ(γ, λ)

)
= 0.

Consequently, define smooth maps η : U → C2,α(D) and κ : U → K by:

η(γ, λ) = μ(γ) + λϕ0 + σ(γ, λ) and κ(γ, λ) = ΠK ◦H
(
η(γ, λ)

)
.

If an entire graph admits Xη(γ,λ) as graph coordinates at infinity, we say that {γ, λ}
are the data of the surface and that γ is the value at infinity.

Lemma 3.4. The map η has the following properties:
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1. η(0, 0) = 0.
2. ∀(γ, λ) ∈ U, η(γ, λ)|∂D = γ.
3. D2η(0, 0) : λ ∈ R �→ λϕ0 ∈ C2,α(D).

Proof. Point 1 is a direct consequence of the uniqueness in the Implicit Function
Theorem. For Point 2 compute:

η(γ, λ)|∂D = μ(γ)|∂D + λϕ0|∂D + σ(γ, λ)|∂D = γ.

And for Point 3, we only have to show D2σ(γ
a, 0) = 0. To do so, compute:

0 =
d

dt

∣∣∣∣
t=0

Φ
(
0, t, σ(0, t)

)
= ΠK⊥ ◦ L

(
ϕ0 +D2σ(0, 0) · 1

)
= ΠK⊥ ◦ L0

(
ϕ0 +D2σ(0, 0) · 1

)
= ΠK⊥ ◦ L0

(
D2σ(0, 0) · 1

)
= L0

(
D2σ(0, 0) · 1

)
.

Thus, D2σ(0, 0) · 1 ∈ K ∩K⊥
0 = {0} i.e. D2σ(0, 0) = 0.

Remark 3.5. Lemma 3.4 Point 2 shows that the value at infinity of a surface
Xη(γ,λ) does not depend on λ, meaning that given a value at infinity γ there exists
a 1-parameter family of surfaces all with value at infinity equals to γ. Moreover, it
can be shown that any two surfaces in this family are congruent only up to a vertical
translation. Indeed, from the half-space theorem of Daniel, Meeks and Rosenberg [5],
we know that the difference of heights of two entire minimal graphs diverges unless the
graphs differ from each other by a vertical translation. In our case, if (γ, λ), (γ, λ′) ∈ U
then:

η(γ, λ) − η(γ, λ′) = O(1 − r2),

and the difference of heights is bounded.

The values of the mean curvature of deformations Xη(γ,λ) of S0 are determined
by κ. Indeed, for (γ, λ) ∈ U , we have Φ

(
γ, λ, σ(γ, λ)

)
= 0 and:

H
(
η(γ, λ)

)
= κ(γ, λ) + Φ

(
γ, λ, σ(γ, λ)

)
= κ(γ, λ). (4)

Consider U = κ−1({0}) ∩ U . The fact that the parameter λ is associated to verti-
cal translations means that we can write U = Γ × R, with Γ a subset of C2,α(S1).
Furthermore, since the construction is local, we can suppose Γ connected.

Proposition 3.6. Γ is a codimension 1 smooth submanifold of C2,α(S1) and is
a subset of: {

γ ∈ C2,α(S1)

∣∣∣∣∫ 2π

0

γ dθ = 0

}
.

Proof. We show that κ is a submersion at (0, 0). From Equation (4) compute:

D2κ(0, 0) · 1 =
d

dt

∣∣∣∣
t=0

κ(0, t) =
d

dt

∣∣∣∣
t=0

H
(
η(0, t)

)
= L

(
D2η(0, 0) · 1

)
= L0(ϕ

0) = 0,
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using Lemma 3.4 Point 3 and that ϕ0 ∈ K. Moreover, D1κ(0, 0) · 1 is not identically
zero. Indeed, using (4):

D1κ(0, 0) · 1 =
d

dt

∣∣∣∣
t=0

κ(t, 0) =
d

dt

∣∣∣∣
t=0

H
(
η(t, 0)

)
= L

(
D1η(0, 0) · 1

)

= 0,

using Corollary 3.2 with
(
D1η(0, 0) · 1

)
|∂D = 1 deduced from Lemma 3.4 Point 2.

Since Dκ is continuous and non zero at (0, 0), there exists an open neighborhood of
(0, 0) in C2,α(S1) × R on which κ is a submersion. Therefore, up to a restriction on
Γ, we can suppose κ is a submersion on Γ× {0}, which implies Γ is a submanifold of
C2,α(S1) of codimension 1.

The inclusion for Γ is actually equivalent to the nullity of the vertical flux of
an entire graph in Nil3. Consider a minimal surface admitting graph coordinates at
infinity Xη with η ∈ C2,α(D). As shown in [2], the vertical flux f3 of Xη is for any
R ∈ (0, 1):

f3 =

∫ 2π

0

〈
g22(η)√
|g(η)|

Xη
1 −

g12(η)√
|g(η)|

Xη
2 , E3

〉∣∣∣∣∣
r=R

dθ

=
4R2

(1 +R2)2

∫ 2π

0

η(R, θ)dθ +O(1 −R2)

=

∫ 2π

0

η|r=1dθ,

when taking the limit when R → 1. Hence, if Xη is an entire graph such that
η = η(γ, λ) for some data {γ, λ} with γ ∈ Γ, the flux f3 is zero and so is the mean of
γ.

Treibergs [25] showed that given a C2 curve γ : S1 → R, there exists a con-
stant mean curvature complete entire vertical graph in 3-dimensional Minkowski space
which is asymptotically at signed distance γ from the light cone. Proposition 3.6 is
actually a C2,α local version of this result in Nil3:

Theorem 3.7. Consider γ ∈ C2,α(S1) small enough for the C2,α-norm and with
zero mean. Then there exists a minimal complete entire vertical graph at asymptotic
horizontal signed distance γ from S0. Moreover, such a surface is unique up to vertical
translations.

Proof. For any γ sufficiently small in the C2,α norm, we have γ ∈ Γ and Xη(γ,0)

is a minimal entire graph admitting γ as value at infinity. And as in Remark 3.5,
uniqueness comes from Daniel, Meeks and Rosenberg half-space theorem [5].

3.3. Periodic deformations. In the sequel, we fix a natural n � 2 and a
parameter a > 0. To ease the writing, we denote θn = π/n and γk,u the horizontal
geodesic directed by cos(kθn)E1 + sin(kθn)E2 and passing through (0, 0, u) for any
k ∈ {0, . . . , n− 1} and u ∈ R. We are interested in rotationally symmetric solutions
to act as barriers in Section 4. They are constructed by the following result, which a
corollary of Theorem 3.7:

Proposition 3.8. There exist a minimal entire graph Sn such that:
1. For any k ∈ {0, . . . , n− 1}, Sn contains the horizontal geodesic γk,0 and is

invariant for the geodesic reflection along that geodesic.
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2. The height of Sn is nonnegative on the (open) angular sector {0 < θ < θn}.

Proof. For Point 1, fix ε > 0 small enough such that sn : θ �→ ε sin(nθ) is in Γ.
From Theorem 3.7, we know there exists a minimal entire graph Sn with Xη(sn,λ) as
graph coordinates at infinity, where the translation parameter λ is chosen so that Sn

contain the origin. Consider the map η′ ∈ C2,α(D) defined for some k ∈ {0, . . . , n− 1}
by:

η′(r, θ) = −η(sn, λ)(r, 2kθn − θ).

The surface Xη′

is the image of Xη(sn,λ) under the geodesic reflection along γk,0. The
value at infinity of η′ is:

η′|r=1(θ) = −η(γn, λ)|r=1(2kθn − θ) = − sin(2π − nθ) = sin(nθ) = sn(θ),

Using Remark 3.5, we know that Xη′

and Xη(sn,λ) differ by a vertical translation and
since Xη(sn,λ) contains the origin — which is fixed by the geodesic reflection along
γk,0 —, we get Xη′

= Xη(sn,λ).
For Point 2, consider the restriction of Sn to the angular sector {0 � θ � θn},

which we also denote Sn in the sequel. For any θ ∈ [0, θn], we have sn(θ) � 0 and
sn is positive in the interior. Hence, the height of Sn is bounded from below and
by vertical translation Th with positive h, we can make Th(Sn) and S0 disjoint on
{0 � θ � θn}. Now, suppose there exist a point inside the open angular sector at
which the height of Sn is negative. Translating back, we obtain a first interior contact
point between Th0

(Sn) and S0 for some h0 > 0, which is impossible by maximum
principle.

Given an open subset G of Rp, p � 2, a minimal hypersurface in Euclidean space
Rp+1 is said to be supported on G if it is the graph of a function that does not change
sign over G and is zero on the boundary ∂G. A question of Meeks and Rosenberg [13]
is to know if the number of disjoint domains supporting minimal graphs is bounded.
Li and Wang [9] proved it to be true in Euclidean space for any dimension and
Tkachev [24] refined the bounds.

In Nil3, we consider open subsets of R2 — where R2 is seen as the range of the
projection π — and vertical minimal graphs. The construction of surfaces Sn shows:

Theorem 3.9. In Heisenberg space, the number of disjoint domains supporting
minimal vertical graphs is unbounded.

4. Saddle towers in Heisenberg space. In this section, we use notations
introduced in Section 3.3. We build a Saddle tower with 2n ends distributed at
constant angle θn.

For any b > 0, consider the polygonal Jordan curve Γb which is the reunion of the
following geodesic segments:

h1(b) = {(t, 0, 0) | 0 � t � b} , h2(b) = {(t cos θn, t sin θn, 0) | 0 � t � b} ,

h̃1(b) = {(t, 0, a) | 0 � t � b} , h̃2(b) = {(t cos θn, t sin θn, a) | 0 � t � b} ,

v1(b) = {(b, 0, t) | 0 � t � a} and v2(b) = {(b cos θn, b sin θn, t) | 0 � t � a} .

Note that h̃1(b), h̃2(b) are horizontal lifts of h1(b), h2(b) respectively.
Since the (euclidean) convex hull Hb of Γb is mean-convex, we know from Meeks

and Yau [14] that the Plateau problem with boundary Γb is solvable, meaning there
exists an embedded minimal disk Σb ⊂ Hb bordered by Γb (see Figure 1).
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Fig. 1. Plateau solution Σb bordered by Γb for some b > 0.

To ensure the convergence of a subsequence of the family (Σb) when b → +∞,
we only need barriers from below and above and such barriers are the surfaces Sn

and a − Sn respectively as constructed in Proposition 3.8. Hence, there exists an
embedded minimal surface Σ∞ bordered by Γ∞ which is the reunion of the horizontal
geodesic rays:

h1 = {(t, 0, 0) | t � 0} , h2 = {(t cos θn, t sin θn, 0) | t � 0} ,

h̃1 = {(t, 0, a) | t � 0} and h̃2 = {(t cos θn, t sin θn, a) | t � 0} .

The surface Σ∞ is the fundamental piece we are looking for. Extending Σ∞ by
recursive geodesic reflections along the geodesics in its boundary.

Theorem 4.1. For any natural n � 2 and any a > 0, there exists a properly
embedded minimal surface S(a, n) in Nil3 of genus zero, invariant by the rotation of
angle 2θn and axis {x1 = x2 = 0} and by the vertical translation of parameter 2a.
Moreover, for any k ∈ {0, . . . , n− 1}, S(a, n) contains the geodesics γk,0 and γk,a and
is asymptotic — away from {x1 = x2 = 0} — to the vertical plane containing γk,0.
We call S(a, n) a most symmetric Saddle tower.

Appendix A. Proof of Theorem 3.1. Consider a map η ∈ C2,α(D) for some
α ∈ (0, 1) — where C2,α(D) denotes the usual Hölder space over D — and let Xη :
D → Nil3 be the immersion given by:

Xη(r, θ) =

(
4r

1− r2
cos θ,

4r

1− r2
sin θ, η

1 + r2

1− r2

)
,

where (r, θ) are the polar coordinates on D. Denoting by indexes 1, 2 the derivatives
with respect to r, θ respectively, the first derivatives of Xη are:

Xη
1 (r, θ) =

4(1 + r2)

(1− r2)2
Eρ +

4r

(1− r2)2

(
η +

(1 + r2)η1
4r

(1 − r2)

)
E3

and Xη
2 (r, θ) =

4r

1− r2
Eθ −

8r2

(1− r2)2

(
1−

(1 + r2)η2
8r2

(1− r2)

)
E3,

with (Eρ, Eθ, E3) denoting the cylindrical orthonormal frame in Nil3 and defined at
generic point (x1 = ρ cos θ, x2 = ρ sin θ, x3) by:

Eρ = cos θ
∂

∂x1
+ sin θ

∂

∂x2
, Eθ = − sin θ

∂

∂x1
+ cos θ

∂

∂x2
+

ρ

2

∂

∂x3
and E3 =

∂

∂x3
.



SADDLE TOWERS IN HEISENBERG SPACE 641

We then compute the first fundamental form g(η) =
(
gij(η)

)
:

g11(η) =
16(1 + r2)2

(1− r2)4

[(
1 +

r2η2

(1 + r2)2

)
+

rηη1
2(1 + r2)

(1− r2) +
η21
16

(1− r2)2
]
,

g12(η) = −
32r3

(1− r2)4

[
η +

1 + r2

4r

(
η1 −

ηη2
2r

)
(1 − r2)−

(1 + r2)2η1η2
32r3

(1− r2)2
]

and g22(η) =
16r2(1 + r2)2

(1− r2)4

[
1−

η2
1 + r2

(1 − r2) +
η22
16r2

(1 − r2)2
]
.

And the determinant |g(η)| of the first fundamental form writes:

|g(η)| =

(
16r(1 + r2)2

(1− r2)4
w(η)

)2

= |g(0)|w2(η),

with the following expression of w(η):

w(η) =

[
1−

η2
1 + r2

(1 − r2) +

(
r2η2

(1 + r2)4
+

η22
16

)
(1− r2)2 +

rηη1
2(1 + r2)3

(1 − r2)3

+
η21

16(1 + r2)2
(1 − r2)4

]1/2

.

We also get the unit normal Nη to Xη:

Nη =
1√
|g(η)|

Xη
1 ×Xη

2 =
1

w(η)

[
−

r(1 − r2)

(1 + r2)2

(
η +

(1 + r2)η1
4r

(1− r2)

)
Eρ

+
2r

1 + r2

(
1−

(1 + r2)η2
8r2

(1− r2)

)
Eθ +

1− r2

1 + r2
E3

]
.

Recall that the Levi-Civita connection ∇ on Nil3 is given in the cylindrical frame
(Eρ, Eθ, E3) by:

∇Eρ
Eρ = 0 ∇Eθ

Eρ =
1

ρ
Eθ −

1

2
E3 ∇E3

Eρ = −
1

2
Eθ

∇Eρ
Eθ =

1

2
E3 ∇Eθ

Eθ = −
1

ρ
Eρ ∇E3

Eθ =
1

2
Eρ

∇Eρ
E3 = −

1

2
Eθ ∇Eθ

E3 =
1

2
Eρ ∇E3

E3 = 0

.
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We compute the conormal derivatives:

∇X
η
1
X

η
1 =

8r(3 + r2)

(1− r2)3
Eρ −

16r(1 + r2)

(1− r2)4

(
η +

(1 + r2)η1
4r

(1− r
2)

)
Eθ

+
4

(1− r2)3
(
(1 + 3r2)η + 2rη1(1− r

2)
)
E3 +

(1 + r2)η11
1− r2

E3,

∇X
η
1
X

η
2 =

8r2

(1− r2)3

(
η +

(1 + r2)η1
4r

(1− r
2)

)
Eρ

+
4(1 + r2)3

(1− r2)4

(
1−

η2

2(1 + r2)
(1− r

2)

)
Eθ

−
8r(1 + r2)

(1− r2)3

(
1−

η2

2(1 + r2)
(1− r

2)

)
E3 +

(1 + r2)η12
1− r2

E3

and ∇X
η
2
X

η
2 = −

4r

(1− r2)3
(
(1 + 6r2 + r

4)− (1 + r
2)η2(1− r

2)
)
Eρ +

(1 + r2)η22
1− r2

E3.

The Weingarten operator of Xη is then determined by the following quantities:

〈∇Xη
1
Xη

1 , N
η〉 = −

32r2

w(η)(1 − r2)4

[
η +

1 + r2

4r

(
η1 −

ηη2
2r

)
(1 − r2)−

η1η2
8r

(1− r2)2

+R′
11(1− r2)4

]
+

η11
w(η)

,

with R′
11 = R′

11(r, η,Dη) defined on D, identically zero if η = 0 and real-analytic in
its variables. Also:

〈∇Xη
1
Xη

2 , N
η〉 =

32r3

w(η)(1 − r2)4

[
1−

(1 + r2)η2
4r2

(1− r2)

−
1

4

(
η2

(1 + r2)2
−

η22
4r2

)
(1 − r2)2 −

ηη1
8r(1 + r2)

(1 − r2)3 +R′
12(1− r2)4

]
+

η12
w(η)

,

again with R′
12 = R′

12(r, η,Dη) defined on D, zero if η = 0 and real-analytic in its
variables, and:

〈∇Xη
2
Xη

2 , N
η〉 =

32r4

(1 + r2)2w(η)(1 − r2)2

[
η +

1 + r2

4r

(
η1 −

ηη2
2r

)
(1− r2)

+R′
22(1− r2)4

]
+

η22
w(η)

,

with R′
22 = R′

22(r, η,Dη) defined on D, identically zero if η = 0 and real-analytic in
its variables.

We shall now compute the mean curvature itself. Denote:

Hij(η) = gij(η)〈∇Xη
i
Xη

j , N
η〉,
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where
(
gij(η)

)
is the inverse matrix of the metric g(η). We get:

H11(η) = −
2r2

(1 + r2)2w3(η)

[
η +

1 + r2

4r

(
η1 −

(1 + 10r2 + r4)ηη2
2r(1 + r2)2

)
(1 − r2)

−
3η2
8r

(
η1 −

ηη2
2r

)
(1− r2)2 +

η22
32r

(
3η1 −

ηη2
2r

)
(1 − r2)3

+R11(1− r2)4

]
+

g11(η)

w(η)
η11,

with R11 = R11(r, η,Dη) defined on D, identically zero if η = 0 and real-analytic in
its variables, also:

H12(η) =
4r4

(1 + r2)4w3(η)

[
η +

1 + r2

4r

(
η1 −

3ηη2
2r

)
(1− r2)

−
1

4

(
η3

(1 + r2)2
+

3η1η2
2r

−
3ηη22
4r2

)
(1− r2)2

−
3

16r

(
η2η1
1 + r2

−
η1η

2
2

2
−

η3η2
6r(1 + r2)

+
ηη32
12r

)
(1− r2)3+R12(1− r2)4

]
+

g12(η)

w(η)
η12,

with R12 = R12(r, η,Dη) defined on D, zero if η = 0 and real-analytic in its variables,
and:

H22(η) =
2r2(1− r2)2

(1 + r2)4w3(η)

[
η

(
1 +

r2η2

(1 + r2)2

)

+
r

2

(
η1 −

ηη2
2r

+
3η2η1

2(1 + r2)
−

η3η2
4r(1 + r2)

)
(1− r2) +R22(1− r2)2

]
+

g22(η)

w(η)
η22,

with R22 = R22(r, η,Dη) defined on D, zero if η = 0 and real-analytic in its variables.
Finally, we obtain a Taylor expansion of the mean curvature:

H(η) =
1

2

(
H11(η) + 2H12(η) +H22(η)

)
=

1

2w(η)|g(η)|

(
g22(η)η11 − 2g12(η)η12 + g11(η)η22

)
+R(1− r2)4, (5)

as before with R = R(r, η,Dη) defined on D, identically zero if η = 0 and real-analytic
in its variables.

Equation (5) can be written:

H(η) =
r√
|g(0)|

∑
i,j

Aij +
r√
|g(0)|

B,

with A11 =
1

2rw3(η)

g22(η)√
|g(0)|

=
1

2
+O(1 − r2),

A12 = A21 = −
1

2rw3(η)

g12(η)√
|g(0)|

=
η

4
+O(1 − r2)

and A22 =
1

2rw3(η)

g11(η)√
|g(0)|

=
1

2

(
1 +

η2

4

)
+O(1 − r2).
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Moreover, Aij = Aij(r, η,Dη) and B = B(r, η,Dη) are defined on D and real-analytic
in their variables, the matrix A = (Aij) is coercive on D, and B is zero when η = 0.
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