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HARMONIC MAPS WITH POTENTIAL FROM R
2 INTO S2∗

RUIQI JIANG†

Abstract. We study the existence problem of harmonic maps with potential from R2 into S2.
For a specific class of potential functions on S2, we give the sufficient and necessary conditions for
the existence of equivariant solutions of this problem. As an application, we generalize and improve
the results on the Landau-Lifshitz equation from R

2 into S2 in [7] due to Gustafson and Shatah.
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1. Introduction. Let (M, g) and (N, h) be two Riemannian manifolds. A map
u0 : M → N is called a harmonic map iff it is critical with respect to the energy
functional E(u). See [5] for the precise definitions. The notion of harmonic maps
with potential is first suggested by Ratto ([11]). Given a smooth ”potential” function
H : N → R, a map u0 : M → N is called a harmonic map with potential H iff it is
critical with respect to the functional

F (u) ≡ E(u) +

∫
M

H(u)dVg .

In this paper, we consider the existence problem of harmonic maps with potential
in the special case where (M, g) is the Euclidean 2-plane R

2, and (N, h) is the unit
2-sphere S2 in R

3, i.e.

S2 = {x ∈ R
3 : |x|2 = 1}.

Then, if we set u = (u1, u2, u3) ∈ R
3, the energy is simply

E(u) =
1

2

∫
R2

|∇u|2dx,

where

|∇u|2 =

3∑
i=1

|∇ui|2.

Also, we will assumeH(u) = G(d(u)) for a function G : [0, π] → R, where d(u) denotes
the geodesic distance from u ∈ S2 to the north pole P = (0, 0, 1). This assumption on
H enables us to seek for solutions which are equivariant with respect to the S1 = O(2)
actions on both the domain R

2 and the target S2. If we identify the (x1, x2)-plane
with the complex plane C, and consider R3 = C⊕ R

1, then a m-equivariant map

u takes the following form:

u(r, θ) = sinh(r)eimθ + cosh(r) · e3 (1.1)
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where (r, θ) denotes the polar coordinates in R
2, h : [0,∞) → R

1 with h(0) = 0, m is
a non-zero integer, and e3 = (0, 0, 1) is the unit vector. For such m-equivariant maps,
the energy F reduces to a functional on the function h as follows. (We omit the factor
2π in the integrals.)

J(h) =
1

2

∫ ∞

0

(
h′2 +

m2

r2
sin2 h

)
rdr +

∫ ∞

0

G(h) rdr. (1.2)

Moreover, if h is a critical point of J , then the map u defined in (1.1) is a critical
point of F , hence a harmonic map with potential for the chosen potential function
H . Thus, the question of finding harmonic maps with potential is reduced to solving
the following O.D.E., which is the Euler-Lagrange equation of J(h), with suitable
boundary conditions at r = 0 and r = ∞.

h′′ +
1

r
h′ − m2

r2
sinh cosh = g(h) (1.3)

where g(·) = G′(·). The boundary conditions we assume will be

h(0) = 0, h(∞) = π. (1.4)

Such a problem has been considered by some authors in connection with Landau-
Lifshitz type equations. Gustafson and Shatah [7], in order to look for the periodic
solutions to certain Landau-Lifshitz type equation, studied the above problem with
g(h) = λ sinh cosh + ω sinh. Their result shows that, if λ > 0, and ω > 0 is small,
then the problem admits a solution which has finite energy and increases monotonely
from 0 to π. In [8], Hang and Lin also considered (1.3) with g(h) = −λ sinh cosh,
but the condition (1.4) at infinity is replaced by h(∞) = π/2. They proved that for
each λ > 0 there exists a unique solution of infinite energy for the problem.

Another reason for studying such a problem is that the Q-solitons arised in the
O(3) sigma model, some properties of which were discussed in [14] by qualitative
analysis techniques and numerical computation method. Indeed, such Q-solitons are
exactly the m-equivariant critical points of the functional F (u) with H(u) = V (u3)−
1
2 (1 − u2

3), where V is a smooth real function on R. It’s easy to verify that, to look
for Q-solitons, one only needs to solve the equation (1.3) with boundary conditions:
h(0) = 0, h(∞) = (2k + 1)π, k ∈ Z. For more details, readers can refer to [14].

In this paper, we will consider a class of functions g(·) in (1.3) for which the
solvability question of problem (1.3)-(1.4) with 0 ≤ h(r) ≤ π in the interval [0,∞)
can be completely answered. The functions g(·) in this class satisfy the following three
conditions.

(i) There exists ξ ∈ (0, π) such that⎧⎨⎩
g(0) = g(ξ) = g(π) = 0,
g(x) > 0, x ∈ (0, ξ),
g(x) < 0, x ∈ (ξ, π);

(ii)
∫ π

0
g(x)dx > 0;

(iii) g′(π) > 0.
We choose the potential function G in (1.2), which is a primitive of g, to be

G(x) = −
∫ π

x

g(t)dt, (1.5)
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so that G(π) = 0 and G(0) < 0.
Notice that, the function g in [7] falls into our class. Hence, our result is a

generalization and improvement of [7].

Remark 1. It is worth to point out that the condition (iii) can guarantee the
solutions converge to π exponentially as r → ∞, the condition (i) and (ii) are quite
natural since they are almost necessary conditions on solvability of the problem (1.3)-
(1.4) with 0 ≤ h(r) ≤ π in the interval [0,∞).

Indeed, under the assumption on the potential function H, it is easy to verify that
∇H(·) vanish on the north pole and the south pole. It implies that G′(0) = G′(π) = 0,
i.e.

g(0) = g(π) = 0.

The usual (Derrick) scaling argument shows that any harmonic map with potential
H must satisfy the following identity∫

R2

H(u)dx = 0,

which is equivalent to ∫ ∞

0

G(h)rdr = 0. (1.6)

Obviously, the finiteness of the integral
∫∞

0 G(h)rdr implies that

G(π) = 0.

Hence, for x ∈ [0, π], there holds that

G(x) = −
∫ π

x

g(t)dt.

For the purpose of finding solutions to the problem (1.3)-(1.4), by the identity
(1.6), we know that G(·) must change sign in the interval [0, π]. It implies that the
function g(·) = G′(·) also has to change sign in the interval [0, π], otherwise G(·) ≥ 0
or G(·) ≤ 0 in the interval [0, π]. For technical reasons, we only consider the case that
the function g(·) has only one zero point ξ in the interval (0, π), i.e.

g(ξ) = 0.

That’s to say, the function g(·) only changes sign once in the interval [0, π].
On the other hand, from the results in [9](see Lemma 2.1 and Theorem 2.3), we

know that if there exists a solution h(r) to the equation (1.3) with g′(π) < 0 and
lim
r→∞

h(r) = π, then h(r) will oscillate around π as r → ∞ and∫ ∞

R0

[h′2 +
m2

r2
sin2 h]rdr = +∞

for some R0 > 0. So, in order to find the solutions of finite energy to the problem
(1.3)-(1.4) with 0 ≤ h(r) ≤ π, we assume in this paper

g′(π) > 0.
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Since the function g(·) has only one zero point ξ in the interval (0, π) and g′(π) > 0,
we can deduce that

g(x) > 0, x ∈ (0, ξ) and g(x) < 0, x ∈ (ξ, π).

Therefore, the fact that the function G(·) changes sign in the interval [0, π] implies
G(0) = − ∫ π

0 g(t)dt < 0, i.e. ∫ π

0

g(t)dt > 0.

Remark 2. For the convenience of readers, we emphasize some properties of
the potential G(·). Firstly, G(·) increases monotonically in the interval (0, ξ) and de-
creases monotonically in the interval (ξ, π). Secondly, there exists an absolute positive
constant C such that on the interval [ξ, π] there holds

C−1(x − π)2 ≤ G(x) ≤ C(x − π)2.

It is well known that, when g ≡ 0 in (1.3), there is a family of solutions ϕλ to
(1.3)-(1.4) which corresponds to a family of harmonic maps from R

2 onto S2 of degree
m > 0. These solutions have the following explicit expression.

ϕλ(r) = 2 arctan[(λr)m], λ > 0.

Now we can state our main result.

Theorem 1.1. Assume that the function g ∈ C∞([0, π]) satisfies (i) − (iii),
m 
= 0 is an integer and that G is as in (1.5). The problem (1.3)-(1.4) admits a
solution with 0 ≤ h(r) ≤ π on (0,∞) if and only if there holds

0 <

∫ ∞

0

G(ϕ1(r)) rdr ≤ ∞.

Moreover, the solutions we obtain satisfy h′(r) > 0 on (0,∞) and converge to π
exponentially as r → ∞.

Remark 3. Since∫ ∞

0

G(ϕλ(r)) rdr =
1

λ2

∫ ∞

0

G(ϕ1(r)) rdr,

we can replace ϕ1(r) by ϕλ(r) for λ > 0.

Remark 4. In fact, in Theorem 1.1 and throughout the paper, we only need to
assume that g ∈ Cα(m)([0, π]), where α(m) = max{1, |m| − 2}, if m 
= 0 is fixed.

Our method for the proof is basically a combination of the shooting method for
O.D.E.’s, the variational method for obtaining solutions to certain boundary value
problems and the blow-up analysis for determining the behavior of solutions with
large initial data. We will repeatedly use a Pohozaev type identity in our analysis.
(The name “Pohozaev” usually means such an identity can be obtained by a domain
variation along a conformal vector field, and in our case the vector field is r ∂

∂r
.)
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In the next section we would consider an initial value problem of O.D.E. (1.3)
with the singularity at r = 0 and prove its existence, uniqueness and continuous
dependence on initial data. In Section 3, by qualitative analysis, we will establish
a series of lemmas to characterize the behavior of solutions of O.D.E. (1.3) under
suitable assumptions. In Section 4 we discuss the existence of the boundary value
problems of O.D.E. (1.3) by variational methods. In Section 5, we give the proof
of Theorem (1.1) by shooting method. Finally, we apply our result to certain
Landau-Lifshitz type equations in section 6.

Convention: For convenience, we always assume that m > 0 without further com-
ment.

2. The existence of solutions to the initial value problems. In this section,
we consider the initial value problem of O.D.E. (1.3) with the singularity at r = 0 and
prove its existence, uniqueness and the continuous dependence on the initial data.

For simplicity, we rewrite (1.3) as following form:

h′′ +
1

r
h′ − m2

r2
sinh cosh− g(h) = 0.

Let us consider the following initial value problem:

h′′ +
1

r
h′ − m2

r2
sinh cosh− g(h) = 0, r ∈ (0,+∞) (2.1)

h(0) = 0, h(m)(0) = m!a, (2.2)

where g(x) ∈ C∞(R), ‖g‖C1 ≤ C < ∞, a ∈ R and h(m) denotes the m-order derivative
of h.

Definition 2.1. If h(r) ∈ Cm[0,+∞) ∩ C∞(0,+∞) satisfies (2.1)-(2.2), then
h(r) is called a solution to (2.1)-(2.2).

Remark 5. If h(r) is a solution of (2.1)-(2.2), by substituting the asymptotic
expansion of h(r) at r = 0 to the equation (2.1), we see that k-th derivative of h(r)
evaluated at the point 0 with k � m− 1 is zero, i.e.

h(k)(0) = 0, 0 � k � m− 1.

So the initial value (2.2) is given reasonably for (2.1).

We shall employ the contraction map principle, which is different from the method
of upper and lower solutions in [6] and the variational method in [8], to address the
problem of existence and uniqueness of local solutions to (2.1)-(2.2). Then, by means
of the standard existence and uniqueness theory on ordinary differential equation, we
can extend the local solution to the whole interval [0,+∞).

It is easy to see that (2.1) can be rewritten in the following form:

(rh′)′ =
m2

r
sinh cosh+ g(h)r. (2.3)

Hence, the problem (2.1)-(2.2) can be expressed in the following integral equation:

h(r) =

∫ r

0

1

s

∫ s

0

(
m2

2t
sin 2h+ g(h)t)dtds. (2.4)
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Let

h(r) = arm + rm+2φ (2.5)

and substitute it into (2.4), then we get

φ =
1

rm+2

{∫ r

0

1

s

∫ s

0

[m2

2t
sin 2(atm + tm+2φ) + g(atm + tm+2φ)t

]
dtds− arm

}
.

Define a map

T : C[0, δ] → C[0, δ]

by

T (φ) (2.6)

=
1

rm+2

{∫ r

0

1

s

∫ s

0

[m2

2t
sin 2(atm + tm+2φ) + g(atm + tm+2φ)t

]
dtds− arm

}
,

where δ would be determined later.
First, we need to verify that T is well defined. Since, for any fixed continuous

function φ, there holds true∣∣∣∣∫ r

0

1

s

∫ s

0

[m2

2t
sin 2(atm + tm+2φ) + g(atm + tm+2φ)t

]
dtds

∣∣∣∣
≤

∫ r

0

1

s

∫ s

0

[m2

2t
2(|a| tm + tm+2 |φ|) + C(|a| tm + tm+2 |φ|)t]dtds

≤ C(|a|+ ‖φ‖C[0,δ])

∫ r

0

1

s

∫ s

0

(tm−1 + tm+3)dtds

≤ C(|a|+ ‖φ‖C[0,δ])(r
m + rm+4)

≤ C(|a|+ ‖φ‖C[0,δ])(δ
m + δm+4) < +∞, (2.7)

where C is independent of φ, therefore we know that T (φ)( · ) is continuous on (0, δ].
The remaining work is to verify that T (φ)( · ) is also continuous at r = 0. Indeed,

lim
r→0

T (φ) = lim
r→0

∫ r

0
1
s

∫ s

0
[m

2

2t sin 2(atm + tm+2φ) + g(atm + tm+2φ)t]dtds− arm

rm+2

= lim
r→0

1
r

∫ r

0 [m
2

2t sin 2(atm + tm+2φ) + g(atm + tm+2φ)t]dt −marm−1

(m+ 2)rm+1

= lim
r→0

∫ r

0 [m
2

2t sin 2(atm + tm+2φ) + g(atm + tm+2φ)t]dt −marm

(m+ 2)rm+2

= lim
r→0

m2

2r sin 2(arm + rm+2φ) + g(arm + rm+2φ)r −m2arm−1

(m+ 2)2rm+1

= lim
r→0

m2

2 sin 2(arm + rm+2φ) + g(arm + rm+2φ)r2 −m2arm

(m+ 2)2rm+2

=

⎧⎨⎩
1
9 (φ(0) − 2

3a
2 + g′(0)a), m = 1,

1
(m+2)2 [m

2φ(0) + g′(0)a], m ≥ 2.
(2.8)
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Next, we turn to discuss when T is a contraction mapping. We compute

|T (φ1)− T (φ2)| ≤ 1

rm+2

∫ r

0

1

s

∫ s

0

{m
2

2t

∣∣sin 2(atm + tm+2φ1)− sin 2(atm + tm+2φ2)
∣∣

+
∣∣g(atm + tm+2φ1)− g(atm + tm+2φ2)

∣∣ t}dtds
≤ 1

rm+2

∫ r

0

1

s

∫ s

0

{m
2

2t
2tm+2 |φ1 − φ2|+ Ctm+3 |φ1 − φ2|}dtds

≤ 1

rm+2
‖φ1 − φ2‖C[0,δ]

∫ r

0

1

s

∫ s

0

{m2tm+1 + Ctm+3}dtds

≤ 1

rm+2
‖φ1 − φ2‖C[0,δ]

(
m2

(m+ 2)2
rm+2 +

C

(m+ 4)2
rm+4

)
≤

(
m2

(m+ 2)2
+

C

(m+ 4)2
δ2
)
‖φ1 − φ2‖C[0,δ] ,

where C is a positive constant independent of φ. It’s easy to see that T is a contraction
mapping if δ is chosen such that

m2

(m+ 2)2
+

C

(m+ 4)2
δ2 < 1. (2.9)

Thus there exists a unique fixed point φ∗ ∈ C[0, δ] such that T (φ∗) = φ∗. So,

h(r) = arm + rm+2φ∗

satisfies (2.1). Moreover, by a simple calculation, we can verify that h(r) also satisfies
(2.2). This means that h(r) is a local solution to (2.1)-(2.2). Then, by a standard
argument we can extend the local solution to a global solution. Thus, the following
theorem holds true.

Theorem 2.1. Assume that g(x) ∈ C∞(R) satisfies ‖g‖C1(R) < ∞. Then,
(2.1)-(2.2) always admits a unique global solution.

For simplicity, we denote the solution of (2.1)-(2.2) by ha(r) to emphasize the
dependence on the initial value a. Now, let us consider the continuous dependence
on the initial data of these obtained solutions. We need to establish the following
theorem.

Theorem 2.2. Assume that g(x) ∈ C∞(R) satisfies ‖g‖C1(R) < ∞. If ha0
(r) is

the solution of (2.1)-(2.2), then, ∀R > 0, ∀ε > 0, there exists η = η(a0, ε, R) > 0 such
that, for |a− a0| < η, there holds

‖ha(r)− ha0
(r)‖C1[0,R] ≤ ε. (2.10)

Proof. By the standard O.D.E. theory on continuous dependence on the initial
data, we only need to prove the theorem in the case R = δ, which has been determined
in (2.9).

From the proof of Theorem 2.1, we know that ha has the following form:

ha(r) = arm + rm+2φa. (2.11)
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In order to get (2.10), we need to estimate the size of ‖φa(r) − φa0
(r)‖C[0,R] . Indeed,

|φa − φa0
|

= |T (φa)− T (φa0
)|

≤ 1

rm+2

∫ r

0

1

s

∫ s

0

{m
2

2t

∣∣(sin 2(atm + tm+2φa)− sin 2(a0t
m + tm+2φa0

)− 2(a− a0)t
m
∣∣

+
∣∣g(atm + tm+2φa)− g(a0t

m + tm+2φa0
)
∣∣ t}dtds

≤ 1

rm+2

∫ r

0

1

s

∫ s

0

{m
2

2t
[2tm+2 |φa − φa0

|+ (C + (a− a0)
2)t2m

+ (C + |φa − φa0
|2)t2m+4] + C(|a− a0| tm+1 + tm+3 |φa − φa0

|)}dtds

≤ 1

rm+2

{
‖φa − φa0

‖C[0,δ]

(
m2

(m+ 2)2
+ Cδ2

)
rm+2

+C |a− a0| 1

(m+ 2)2
rm+2

}
≤ ‖φa − φa0

‖C[0,δ]

(
m2

(m+ 2)2
+ Cδ2

)
+ C |a− a0| 1

(m+ 2)2
,

where C is a positive constant depending only on m and a0. By choosing smaller δ,
there holds

m2

(m+ 2)2
+ Cδ2 < 1,

Hence, we obtain

‖φa − φa0
‖C[0,δ] ≤ C |a− a0| , (2.12)

where C is a positive constant depending on m and a0. It follows that

|ha(r) − ha0
(r)| ≤ |a− a0| rm + rm+2 |φa − φa0

|
≤ |a− a0| δm + Cδm+2 |φa − φa0

|
≤ C |a− a0| , (2.13)

and∣∣h′
a(r)− h′

a0
(r)

∣∣ ≤ 1

r

∫ r

0

{m
2

2t

∣∣(sin 2(atm + tm+2φa)− sin 2(a0t
m + tm+2φa0

)
∣∣

+
∣∣g(atm + tm+2φa)− g(a0t

m + tm+2φa0
)
∣∣ t}dt

≤ 1

r

∫ r

0

{m
2

2t
[2 |a− a0| tm + 2tm+2 |φa − φa0

|]

+C(|a− a0| tm+1 + tm+3 |φa − φa0
|)}dt

≤ 1

r

{
|a− a0|

(
mrm + C

1

(m+ 2)2
rm+2

)
+ ‖φa − φa0

‖C[0,δ] (
m2

m+ 2
rm+2 +

C

m+ 4
rm+4)

}
≤ C |a− a0| , (2.14)
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where C is a positive constant depending only on m and a0. Thus, we obtain the
desired estimate:

‖ha(r) − ha0
(r)‖C1[0,δ] ≤ C |a− a0| .

Remark 6. By the standard elliptic regularity theory, it is not difficult to see that,
the conclusions in Theorem 2.1 and Theorem 2.2 also hold true, when g ∈ Cα(m)(R),
where α(m) = max{1, |m| − 2}.

3. Qualitative Analysis of the O.D.E. In this section, we will establish a
series of lemmas to characterize the behavior of solutions to (2.1) under some suitable
assumptions on the function g.

First, let us recall the Pohozaev identity of (2.1). By multiplying the both sides of
equation (2.3) by rh′(r) and integrating from s to r, we obtain the Pohozaev identity

(rh′(r))
2 − (sh′(s))

2
= m2[sin2 h(r)− sin2 h(s)] + 2

∫ r

s

g(h(t))h′(t)t2dt, (3.1)

or

(rh′(r))
2 − (sh′(s))

2
= m2[sin2 h(r) − sin2 h(s)] + 2[G(h(r))r2 −G(h(s))s2]

−4

∫ r

s

G(h(t))tdt, (3.2)

where

G(x) = −
∫ π

x

g(t)dt.

Lemma 3.1. Assume that g(x) ∈ C∞([0, π]) satisfies condition (i) and h(r)
satisfies (2.1). If there exists r0 ∈ (0,+∞) such that

0 ≤ h(r0) < min{π − ξ, ξ} and h′(r0) > 0, (3.3)

then there exists r1 ∈ (r0,∞) such that

h(r1) = ξ and h′(r) > 0, ∀r ∈ [r0, r1].

Proof. By the Pohozaev identity, we have

(rh′(r))
2
= (r0h

′(r0))
2
+m2[sin2 h(r)− sin2 h(r0)] + 2

∫ r

r0

g(h(t))h′(t)t2dt. (3.4)

Set

r∗ = sup{s ∈ [r0,+∞) | h′(r) > 0, ∀r ∈ [r0, s)}.

It is easy to see that r0 < r∗ ≤ +∞, since h′(r0) > 0.
We claim that

h(r∗) > ξ. (3.5)
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If this was false, there holds that

0 ≤ h(r0) ≤ h(r) < ξ, ∀r ∈ [r0, r
∗). (3.6)

Since h(r) increases monotonically in the interval [r0, r
∗) and h(r0) < min{π − ξ, ξ},

we obtain

sin2 h(r) ≥ sin2 h(r0), ∀r ∈ [r0, r
∗). (3.7)

As g(x) > 0, ∀x ∈ (0, ξ), there holds

g(h(r)) ≥ 0, ∀r ∈ [r0, r
∗). (3.8)

Combining (3.4), (3.7) and (3.8) we obtain

rh′(r) ≥ r0h
′(r0) > 0, ∀r ∈ [r0, r

∗). (3.9)

It follows that

h(r) =

∫ r

r0

h′(t)dt+ h(r0) ≥ r0h
′(r0)

∫ r

r0

1

t
dt+ h(r0).

This implies that r∗ < +∞. Otherwise, we would deduce that h(r) is unbounded in
the interval [r0,+∞), which contradicts the fact (3.6).By the definition of r∗, we get
h′(r∗) = 0 which contradicts (3.9). Hence, we prove our claim.

Finally, we can choose r1 ∈ (r0, r
∗) such that h(r1) = ξ. By the definition of r∗,

we get

h′(r) > 0, ∀r ∈ [r0, r1].

Corollary 3.2. Suppose that g(x) satisfies condition (i). If ha(r) is the so-
lution of (2.1)-(2.2) with a > 0, there exists sa ∈ (0,+∞) such that h(r) increases
monotonically from 0 to ξ on the interval [0, sa].

Lemma 3.3. Suppose that g(x) satisfies conditions (i) and (iii). If h(r), which
is not a constant function, satisfies (2.1) on the interval (r0,+∞), ξ ≤ h(r) ≤ π for
any r ∈ [r0,+∞) and lim

r→∞
h(r) = l > ξ, then, there hold that for any r ∈ [r0,+∞)

h′(r) > 0 and l = π.

Moreover, h(r) converges to π exponentially as r → +∞.

Proof. As π is a trivial solution of equation (2.1) and h(r) is not a constant
function, we have

h(r) < π, r ∈ (r0,+∞). (3.10)

In fact, if there exists a r1 ∈ (r0,+∞) such that h(r1) = π, by the condition of
ξ ≤ h(r) ≤ π for any r ∈ [r0,+∞), we get h′(r1) = 0. The uniqueness of solutions to
initial value problem tells that h(r) ≡ π, which contradicts the fact that h(r) is not a
constant function.
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Since lim
r→∞

h(r) = l > ξ and g′(π) > 0, there exists r1 ∈ [r0,+∞) such that, for

any r ∈ [r1,+∞), we have

m2

r2
sinh(r) cosh(r) + g(h(r)) < 0. (3.11)

Indeed, if l < π, we have

lim
r→∞

m2

r2
sinh(r) cosh(r) + g(h(r)) = g(l) < 0,

if l = π, there exist R > 0 and ε > 0 such that, for any (r, x) ∈ [R,∞) × [π − ε, π),
there holds

m2

r2
sinx cos x+ g(x) ≤ 1

2
g′(π)(x − π) < 0.

Hence (3.11) follows.
From (2.3) we have that, for r1 ≤ s ≤ r < +∞,

rh′(r) = sh′(s) +

∫ r

s

[
m2

t2
sinh cosh+ g(h)

]
tdt (3.12)

and

h(r) = h(s) +

∫ r

s

h′(t)dt. (3.13)

Since ξ ≤ h(r) ≤ π for any r ∈ [r0,+∞), (3.13) implies that there exists C > 0 and
rk → +∞ such that

−h′(rk) ≤ C

rk
.

Set

A(r) =

∫ r

s

[
m2

t2
sinh cosh+ g(h)

]
tdt,

it follows from (3.12) that A(rk) ≥ −C. On the other hand, A(r) is decreasing and
negative since the integrand is negative on the interval [r1,+∞), we see that lim

r→∞
A(r)

exists. It implies that

lim
r→∞

m2

r2
sinh cosh+ g(h) = g(l) = 0.

Then we get l = π.
By (3.12) we infer that lim

r→∞
rh′(r) = l0 exists. Then, we can easily see that l0

is zero. Otherwise, h(r) would be unbounded by (3.13). Let r → +∞ in (3.12) and
replace s by r, we get

rh′(r) = −
∫ +∞

r

[
m2

t
sinh cosh+ g(h)t

]
dt. (3.14)
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From (3.14) and (3.11) we can deduce that for any r ∈ [r1,+∞)

h′(r) > 0.

By the Pohozaev identity (3.2), we have that, for r0 ≤ s ≤ r < +∞,

(rh′(r))
2 − (sh′(s))

2
= m2[sin2 h(r) − sin2 h(s)] + 2[G(h(r))r2 −G(h(s))s2]

−4

∫ r

s

G(h(t))tdt. (3.15)

Since h(r) converges to π exponentially as r → ∞(the fact will be proved in the
following) and Remark 2, we get

lim
r→∞

G(h(r))r2 = 0 and 0 <

∫ +∞

s

G(h(t))tdt < +∞.

Letting r → +∞ in (3.15) and then replacing s by r, we obtain

(rh′(r))
2
= m2 sin2 h(r) + 2G(h(r))r2 + 4

∫ +∞

r

G(h(t))tdt.

Since ξ ≤ h(r) < π for r ∈ [r0,+∞), from the above identity, we get h′(r) 
= 0 for any
r ∈ [r0,+∞). As h′(r) is continuous on the interval [r0,+∞) and h′(r) > 0 for any
r ∈ [r1,+∞), we obtain h′(r) > 0 for any r ∈ [r0,+∞).

Now, we are in the position to prove that h(r) converges to π exponentially as
r → +∞. Let

h̃(r) = π − h(r).

Then, h̃(r) > 0 on (r1,+∞) satisfies the following equation

h̃′′ +
1

r
h̃′ =

m2 sin 2h̃

2r2
− g(π − h̃). (3.16)

Let f(r) = be−εr. Then, it is easy to verify that f(r) satisfies the following equation

f ′′ +
1

r
f ′ = (ε2 − ε

r
)f. (3.17)

Denote

β(r) = f(r)− h̃(r).

Then, it follows from (3.16) and (3.17)

β′′ +
1

r
β′ = (ε2 − ε

r
)f − m2 sin 2h̃

2r2
+ g(π − h̃).

Since lim
r→+∞

h̃(r) = 0, we choose R0 > 0 such that

g(π − h̃(r)) < −1

2
g′(π)h̃(r), r ≥ R0.
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By choosing ε =
√

1
2g

′(π) and b = b0 such that

β(R0) = b0e
−εR0 − h̃(R0) > 0,

we have that, for r ≥ R0,

β′′ +
1

r
β′ = (ε2 − ε

r
)f − m2 sin 2h̃

2r2
+ g(π − h̃) <

1

2
g′(π)β

i.e.

β′′ +
1

r
β′ − 1

2
g′(π)β < 0, r ∈ [R0,+∞).

Since β(R0) > 0 and lim
r→+∞

β(r) = 0, by the maximum principle we have β(r) > 0 as

r ≥ R0, i.e.

0 < h̃(r) = π − h(r) < b0e
−
√

1
2
g′(π)r, r ∈ [R0,+∞).

Thus, we complete the proof.

Lemma 3.4. Suppose that g(x) ∈ C∞([0, π]) satisfies condition (i). If h(r)
satisfies (2.1) on the interval (s, μ) with ξ = h(s) ≤ h(r) ≤ π = h(μ), r ∈ (s, μ), then
there holds true

h′(r) > 0, r ∈ [s, μ].

Proof. Since π is a trivial solution to (2.1), we get

h(r) < π, r ∈ (s, μ) and h′(μ) > 0.

By the Pohozaev identity, we have that, for r ∈ [s, μ],

(rh′(r))
2
= (μh′(μ))

2
+m2 sin2 h(r) + 2G(h(r))r2 + 4

∫ μ

r

G(h(t))tdt.

Since G(x) ≥ 0 for any x ∈ [ξ, π], we have h′(r) 
= 0 for any r ∈ [s, μ]. As h′(r) is
continuous on the interval [s, μ] and h′(μ) > 0, we obtain h′(r) > 0 for any r ∈ [s, μ].

Lemma 3.5. Suppose that g(x) satisfies condition (i). Let hi(r), i = 1, 2, be two
increasing functions satisfying (2.1). If they intersect at two different points in the
domain (0,+∞)× [ξ, π], then h1 ≡ h2 on the interval (0,+∞).

Proof. If this lemma is false, without loss of generality, we assume there exist
0 < r1 < r2 < +∞ such that h1(ri) = h2(ri), where i = 1, 2, and

h1(r) > h2(r) ∀r ∈ (r1, r2). (3.18)

Then, we get

h′
1(r1) > h′

2(r1) ≥ 0 and 0 ≤ h′
1(r2) < h′

2(r2). (3.19)
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By the Pohozaev identity (3.2), for i = 1, 2, we have

(r2h
′
i(r2))

2 − (r1h
′
i(r1))

2
= m2[sin2 hi(r2)− sin2 hi(r1)] + 2[G(hi(r2))r

2
2

−G(hi(r1)r
2
1 ]− 4

∫ r2

r1

G(hi(t))tdt. (3.20)

Substituting h1(ri) = h2(ri), i = 1, 2, into the above identities, we can obtain

r22(h
′2
1 (r2)− h′2

2 (r2)) + r21(h
′2
2 (r1)− h′2

1 (r1)) = 4

∫ r2

r1

[G(h2(t))−G(h1(t))]tdt. (3.21)

(3.19) implies that the left hand side of (3.21) is negative. However, by (3.18) and
the fact G(x) is decreasing on the interval [ξ, π], we infer that the right hand side of
(3.21) is positive. There exists a contradiction. The lemma is proved.

4. The Solvability of the boundary value problem of O.D.E.. In order to
prove Theorem 1.1, we need to study the solvability of the boundary value problem
of (2.1) to look for some comparison functions in this section. We will employ the
variational method to approach the existence of such a boundary value problem. The
following argument is the key ingredient of the proof of Theorem 1.1.

For 0 < s < μ < +∞, we consider the following two problems:

Ps

⎧⎪⎨⎪⎩ (rh′)′ =
m2

r
sinh cosh+ g(h)r, ξ ≤ h(r) ≤ π, r ∈ (s,+∞),

h(s) = ξ, lim
r→+∞

h(r) = π,

and

Q(s,μ)

⎧⎨⎩ (rh′)′ =
m2

r
sinh cosh+ g(h)r, ξ ≤ h(r) ≤ π, r ∈ (s, μ),

h(s) = ξ, h(μ) = π.

Theorem 4.1. Suppose that g(x) ∈ C∞([0, π]) satisfies conditions (i) and (iii).

Then,there exists a unique solution h̃(r) to Ps. Moreover, h̃′(r) > 0, ∀r ∈ [s,+∞).

Proof. Step 1. First, we consider the functional Js given by

Js(h) =
1

2

∫ +∞

s

[
(h′(r))2 +

m2

r2
sin2 h(r)

]
rdr +

∫ +∞

s

G(h(r))rdr,

which is defined on the space Xs given by

Xs = {h(r) | π − h(r) ∈ H1([s,+∞), rdr), ξ ≤ h(r) ≤ π, h(s) = ξ}.

From the Remark 2, we know that there exists a constant C > 0 such that

C−1G(x) ≤ (π − x)2 ≤ CG(x), x ∈ [ξ, π].

Hence, we know Js is well defined in the space Xs.
It is easy to see that, for any h(r) ∈ Xs, h(r) is continuous on the interval [s,+∞)

and lim
r→∞

h(r) = π. Moreover, the fact that G(h(r)) ≥ 0 for any r ∈ [s,+∞) implies

Js(h(r)) ≥ 0.
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Choose a minimizing sequence {hk} ⊆ Xs such that

inf
Xs

Js = lim
k→∞

Js(hk).

Since ∫ +∞

s

[((π − hk)
′)2 + (π − hk)

2]rdr =

∫ +∞

s

[(h′
k)

2 + (π − hk)
2]rdr

≤
∫ +∞

s

(h′
k)

2rdr + C

∫ +∞

s

G(hk)rdr

≤ CJs(hk) ≤ C, (4.1)

where C is independent of k, up to a subsequence, there exists π − h̃ ∈
H1([s,+∞), rdr) such that

π − hk → π − h̃ weakly in H1([s,+∞), rdr), (4.2)

and

∀R ∈ (s,+∞), π − hk → π − h̃ in C[s,R]. (4.3)

By (4.3), we get h̃(s) = ξ and lim
k→∞

hk(r) = h̃(r) for any r ∈ [s,+∞). So h̃ ∈ Xs. By

(4.2), we obtain ∫ +∞

s

(h̃′)2rdr ≤ lim
k→∞

∫ +∞

s

(h′
k)

2rdr.

By Fatou’s lemma and lim
k→∞

hk(r) = h̃(r) for any r ∈ [s,+∞), we have

0 ≤
∫ +∞

s

m2

r2
sin2 h̃(r)rdr ≤ lim

k→∞

∫ +∞

s

m2

r2
sin2 hk(r)rdr,

0 ≤
∫ +∞

s

G(h̃)rdr ≤ lim
k→∞

∫ +∞

s

G(hk)rdr.

Immediately, from the above three inequalities we obtain

Js(h̃) ≤ lim
k→∞

Js(hk) = inf
Xs

Js.

Since h̃ ∈ Xs, we know that h̃ is a minimal point of Js in Xs, i.e.

Js(h̃) = inf
Xs

Js.

Step 2. Next, we need to verify that h̃ is just the solution to the boundary value
problem Ps. Obviously, h̃ satisfies the boundary conditions of Ps, now we turn to
prove h̃ satisfies (2.1) on the interval (s,+∞).

We say ϕ ∈ C∞
0 (s,+∞) is an admissible variational function for h̃, if there exists

ε > 0 such that h̃+ tϕ ∈ Xs, t ∈ [0, ε).
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Since h̃ is the minimal point of Js( · ), then, for any admissible variational function
ϕ, we have

d

dt
Js(h̃+ tϕ)

∣∣∣∣
t=0

≥ 0. (4.4)

More precisely,∫ +∞

s

(h̃′ϕ′ +
m2

r2
sin h̃ cos h̃ϕ)rdr +

∫ +∞

s

g(h̃)ϕrdr ≥ 0. (4.5)

(i). If ξ < h̃ < π, r ∈ (r1, r2), where s ≤ r1 < r2 ≤ +∞, by (4.5), it’s easy to

check h̃ satisfies (2.1) on the interval (r1, r2).

(ii). We claim that h̃(r) < π for any r ∈ (s,+∞).
If the assertion were false, define

r∗ = inf{r ∈ (s,+∞)| h̃(r) = π}.
From the definition of Xs we can easily see that s < r∗ < +∞. Moreover, let’s define
the following continuous function

ĥ(r) =

{
h̃(r), r < r∗,
π, r ≥ r∗.

Obviously, ĥ ∈ Xs. It is easy to see that, if ĥ 
= h̃, from the definition of Js and ĥ we
infer

Js(ĥ) < Js(h̃).

This contradicts the fact Js(h̃) = inf
Xs

Js. This means that ĥ ≡ h̃.

By the definition of r∗, we choose small δ > 0 such that

h̃(r) < π, ∀r ∈ [r∗ − δ, r∗).

So, by the conclusion of (i), we obtain that h̃(r) satisfies (2.1) in the interval (r∗−δ, r∗)
and

h̃′(r∗−) = lim
r→r∗

−

h̃′(r) > 0.

Let’s choose ϕ ∈ C∞
0 [r∗ − δ, r∗ + δ] such that ϕ ≤ 0, ϕ(r∗) = −1. Then ϕ is an

admissible variational function for h̃. By (4.5), we have

0 ≤
∫ +∞

s

(h̃′ϕ′ +
m2

r2
sin h̃ cos h̃ϕ)rdr +

∫ +∞

s

g(h̃)ϕrdr

=

∫ r∗

r∗−δ

(h̃′ϕ′ +
m2

r2
sin h̃ cos h̃ϕ)rdr +

∫ r∗

r∗−δ

g(h̃)ϕrdr

= h̃′(r)ϕ(r)r
∣∣∣r∗
r∗−δ

+

∫ r∗

r∗−δ

[−(rh̃′)′ +
m2

r
sin h̃ cos h̃+ g(h̃)r]ϕdr

= −h̃′(r∗−)r
∗ < 0, (4.6)
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there exists a contradiction. So, h̃(r) < π for any r ∈ (s,+∞).

(iii). We claim that h̃(r) > ξ, r ∈ (s,+∞).

If there exists r ∈ (s,+∞) such that h̃(r) = ξ, then we define

r̂ = sup{r ∈ (s,+∞) | h̃(r) = ξ},
and obtain s < r̂ < +∞.

By the definition of r̂ and the conclusion of (ii), we get

ξ < h̃(r) < π, r ∈ (r̂,+∞).

So, by the conclusion of (i), we know that h̃(r) satisfies (2.1) in the interval (r̂,+∞).

Since lim
r→∞

h̃(r) = π, by Lemma 3.3, we obtain

h̃′(r̂+) = lim
r→r̂+

h̃′(r) > 0.

In the following, we need to consider two cases:
Case I: There exists small δ > 0 such that

h̃(r) ≡ ξ, ∀r ∈ [r̂ − δ, r∗).

For this case, let’s choose ϕ ∈ C∞
0 [r̂ − δ, r̂ + δ] such that 0 ≤ ϕ ≤ 1, ϕ(r̂) = 1. Then

ϕ is an admissible variational function for h̃. By (4.5),

0 ≤
∫ +∞

s

(h̃′ϕ′ +
m2

r2
sin h̃ cos h̃ϕ)rdr +

∫ +∞

s

g(h̃)ϕrdr

=

∫ r̂

r̂−δ

m2

r2
sin h̃ cos h̃ϕrdr + h̃′(r)ϕ(r)r

∣∣∣r̂+δ

r̂

= m2 sin ξ cos ξ

∫ r̂

r̂−δ

ϕ

r
dr − h̃′(r̂+)r̂

≤ m2 log
r̂

r̂ − δ
− h̃′(r̂+)r̂. (4.7)

we can choose δ small enough such that

m2 log
r̂

r̂ − δ
− h̃′(r̂+)r̂ < 0.

Obviously, there exists a contradiction.
Case II: There exists small δ > 0 such that

ξ < h̃(r) < π, ∀r ∈ [r̂ − δ, r̂).

For this case, by the conclusion of (i), we obtain that h̃(r) satisfies (2.1) in the interval

(r̂ − δ, r̂). Moreover, h̃′(r̂−) = lim
r→r̂−

h̃′(r) ≤ 0.

We can choose ϕ ∈ C∞
0 [r̂− δ, r̂+ δ] such that 0 ≤ ϕ ≤ 1, ϕ(r̂) = 1. Then ϕ is an

admissible variational function for h̃. By (4.5),

0 ≤
∫ +∞

s

(h̃′ϕ′ +
m2

r2
sin h̃ cos h̃ϕ)rdr +

∫ +∞

s

g(h̃)ϕrdr

= h̃′(r)ϕ(r)r
∣∣∣r̂
r̂−δ

+ h̃′(r)ϕ(r)r
∣∣∣r̂+δ

r̂

= (h̃′(r̂−)− h̃′(r̂+))r̂ < 0, (4.8)
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there exists a contradiction.
Since Case I and Case II cannot happen and h̃(r) ≥ ξ , we know that there

always holds true h̃(r) > ξ for any r ∈ (s,+∞).

Combining (i), (ii) and (iii), we have that h̃(r) satisfies (2.1) in the interval
(s,+∞). Moreover, there holds

ξ < h̃(r) < π, ∀r ∈ (s,+∞).

Step 3. By Lemma 3.3, we immediately know that there holds true

h̃′(r) > 0

for r ∈ [s,+∞).

The remaining work is to prove the uniqueness of the solution to Ps. Assume h̃1(r)

and h̃2(r) are two different solutions of Ps. By the uniqueness of initial value problem,

we obtain h̃′
1(s) 
= h̃′

2(s). Without loss of generality, we assume h̃′
1(s) > h̃′

2(s).
By Lemma 3.5, we get

h̃1(r) > h̃2(r), r ∈ (s,+∞). (4.9)

By the Pohozaev identity (3.2), for i = 1, 2, we have(
sh̃′

i(s)
)2

= m2 sin2 ξ + 2G(ξ)s2 + 4

∫ +∞

s

G(h̃i(t))tdt. (4.10)

Hence, from (4.9) and (4.10) we deduce that

0 <
(
sh̃′

1(s)
)2

−
(
sh̃′

2(s)
)2

= 4

∫ +∞

s

[G(h̃1)−G(h̃2)]tdt. (4.11)

However, since G(x) is decreasing on the interval [ξ, π], by (4.9) we know the right
hand side of (4.11) is negative. This is a contradiction. So, the solution of Ps is
unique.

Theorem 4.2. Suppose that g(x) ∈ C∞([0, π]) satisfies condtions (i) and (iii).
Then, the problem Q(s,μ) admits a unique solution h(r). Moreover, h′(r) > 0 for any
r ∈ [s, μ].

Proof. By replacing +∞ by μ, and Xs by Ys, where

Ys = {h(r) | π − h(r) ∈ H1([s, μ], rdr), ξ ≤ h(r) ≤ π, h(s) = ξ and h(μ) = π},

in the proof of Theorem 4.1, we can address the existence of solution to the problem
Q(s,μ).

By Lemma 3.4, we get h′(r) > 0, r ∈ [s, μ]. By Lemma 3.5, we get the uniqueness
of solution to the problem Q(s,μ).

5. The proof of Theorem 1.1. In [1, 2], Ding has employed a mini-max ar-
gument to obtain the existence and uniqueness of equivariant harmonic maps from
a sphere into another sphere. However, for our present case it seems that Ding’s
method is not valid. Here, we will employ the shooting target method to prove Theo-
rem 1.1. To achieve this goal, we need to characterize the behavior ha(r), the solution
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of (2.1)-(2.2) with a > 0. Concretely, we need to establish some lemmas on when ha(r)
increases monotonically from 0 to π on a finite interval. For simplicity, we would like
to call such increasing ha(r) as “solution of type (I)” (see the following definition 5.1).
We will employ the blow-up analysis to show that ha is actually a solution of type (I)
as a > 0 is small enough. As a > 0 is large enough, we combine the blow-up analysis
and the Pohozaev identities to characterize the behaviors of ha which is completely
different from the case that a > 0 is small.

We know that there exists λ0 > 0 such that ϕλ0
(r) = 2 arctan[(λ0r)

m], cor-
responding to the equivariant harmonic map with degree m, satisfies the following
initial value problem:⎧⎨⎩h′′ +

1

r
h′ − m2

r2
sinh cosh = 0, r ∈ (0,+∞),

h(0) = 0, h(m)(0) = m!.

(5.1)

For the sake of convenience, we denote ϕλ0
by φ. As φ is increasing monotonically

from 0 to π, then there exists a unique rξ ∈ (0,+∞) such that φ(rξ) = ξ.
Define

φs(r) = φ
(rξ
s
r
)
.

Then φs(s) = ξ and φs(r) also satisfies the following equation

h′′ +
1

r
h′ − m2

r2
sinh cosh = 0, r ∈ (0,+∞). (5.2)

Lemma 5.1. Suppose that g(x) ∈ C∞([0, π]) satisfies (i) − (iii). If h̃s is the
solution of Ps, then, for any r ∈ (s,+∞) there holds true

φs(r) < h̃s(r).

Proof. By the Pohozaev identity (3.1), we have that, for r ∈ [s,+∞),(
rh̃′

s(r)
)2

= m2 sin2 h̃s(r)− 2

∫ +∞

r

g(h̃s(t))h̃
′
s(t)t

2dt (5.3)

and

(rφ′
s(r))

2
= m2 sin2 φs(r). (5.4)

By Theorem 4.1, we have h̃′
s(r) > 0 for any r ∈ [s,+∞). Hence, we have, for

r ∈ [s,+∞),

−2

∫ +∞

r

g(h̃s(t))h̃
′
s(t)t

2dt > 0,

here we also use the fact g(x) ≤ 0 for any x ∈ [ξ, π]. Since h̃s(s) = φs(s) = ξ, by
comparing (5.3) and (5.4) we obtain that

φ′
s(s) < h̃′

s(s).
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In fact, there holds true that, for any r ∈ (s,+∞),

φs(r) < h̃s(r).

If the above inequality fails, we define

r∗ = sup{r ∈ (s,+∞) | h̃s(t) > φs(t), ∀t ∈ (s, r)}
and obtain

s < r∗ < +∞.

By the definition of r∗, we have

φs(r) < h̃s(r), ∀r ∈ (s, r∗) and φs(r
∗) = h̃s(r

∗).

This implies that

φ′
s(r

∗) ≥ h̃′
s(r

∗).

However, from (5.3) and (5.4) we infer that

φ′
s(r

∗) < h̃′
s(r

∗),

as φs(r
∗) = h̃s(r

∗). A contradiction is derived. Thus, we complete the proof of the
lemma.

Let ha be the solution of (2.1)-(2.2) with a > 0. By Corollary 3.2, we know there
exists sa ∈ (0,+∞) such that ha(r) increases monotonically from 0 to ξ in the interval
[0, sa]. Then,we have the following lemma.

Lemma 5.2. Suppose that g(x) ∈ C∞([0, π]) satisfies (i) − (iii) and ha is a
solution of (2.1)-(2.2) with a > 0, which increases monotonically from 0 to ξ on the
interval [0, sa]. Then, there holds true φsa(r) > ha(r) for any r ∈ (0, sa).

Proof. The proof is analogous to the proof of Lemma 5.1. We omit it.

Lemma 5.3. Suppose that g(x) ∈ C∞([0, π]) satisfies (i) − (iii). If h̃s is the
solution of Ps and h satisfies (2.1) on the interval (s,+∞) with h(s) = ξ, then, there
exists r1 ∈ (s,+∞) such that h(r) increases monotonically from ξ to π on the interval

[s, r1] if and only if h′(s) > h̃′
s(s).

Proof. (1). If h′(s) < h̃′
s(s), there does not exist r1 ∈ (s,+∞) such that h(r)

increases monotonically from ξ to π on the interval [s, r1]. Otherwise, h will intersect

h̃s at two different points in the domain [s,+∞)× [ξ, π] which contradicts Lemma 3.5.

(2). If h′(s) = h̃′
s(s), by the uniqueness of initial value problem, we get h ≡ h̃s.

As h̃s increases monotonically from ξ asymptotically to π on the interval [s,+∞),
we can’t pick r1 ∈ (s,+∞) such that h(r) increases monotonically from ξ to π in the
interval [s, r1].

(3). For simplicity, let h(r, a) be the solution of the following problem:⎧⎨⎩ (rh′)′ =
m2

r
sinh cosh+ g(h)r, r ∈ (s,+∞)

h(s) = ξ, h′(s) = a.
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Then, we have h(r, h̃′
s(s)) ≡ h̃s(r).

Define

A = {a ∈ R |h(r, a) increases monotonically from ξ to π in finite interval}.

By Theorem 4.2, we know that A is a non-empty set. Moreover, by the continuous
dependence of the solutions on the initial data and Lemma 3.4, we know A is a
non-empty open set. From the argument in (1) and (2), we get

inf{a | a ∈ A} ≥ h̃′
s(s) > 0.

For any ā ∈ ∂A (the boundary of A) and ā < +∞, we can choose a sequence
{ak} ⊆ A such that

lim
k→∞

ak = ā.

Let rk be the minimal number r ≥ s such that h(r, ak) = π. Then, we have

lim
k→∞

rk = +∞.

Otherwise, by the continuous dependence of the solutions on the initial data, we have
ā ∈ A which contradicts the fact A is an open set. By the continuous dependence of
the solutions on the initial data again, we have that, for any r ∈ [s,+∞),

h′(r, ā) ≥ 0 and ξ ≤ h(r, ā) ≤ π.

It implies that

lim
r→∞

h(r, ā) = l > ξ.

By Lemma 3.3, we obtain

ξ < h(r, ā) < π, r ∈ (s,+∞) and l = π.

It means that h(r, ā) is also a solution of problem Ps. By the uniqueness of solution

to the problem Ps, we get ā = h̃′
s(s). So, we get A = (h̃′

s(s),+∞). The proof of the
lemma is completed.

Definition 5.1. ha is called a solution of type (I) to (2.1)-(2.2) if there exists
ra ∈ (0,+∞) such that ha increases monotonically from 0 to π in the interval [0, ra].

Remark 7. By Corollary 3.2 and Lemma 3.4, if ha is a solution to type (I) to
(2.1)-(2.2) and increases monotonically from 0 to π in the interval [0, ra], then

h′(r) > 0, ∀r ∈ (0, ra].

Let ha be the solution of problem (2.1)-(2.2) with a > 0. By Corollary 3.2, let
sa be the minimal positive number such that ha(s) = ξ. Then we have

(a). sa → +∞ as a → 0.
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(b). By the Pohozaev identity

(rh′
a(r))

2
= m2 sin2 ha(r) + 2G(ha(r))r

2 − 4

∫ r

0

G(ha(t))tdt, (5.5)

we get

(h′
a(r))

2 ≤ 1

r2
{m2 sin2 ha(r) + 2G(ξ)r2 − 4

∫ r

0

G(0)tdt}

≤ m2 sin
2 ha(r)

r2
+ 2(G(ξ)−G(0)).

On the other hand, by (5.5) and Lemma 5.2, we have

(h′
a(sa))

2 ≥ 1

sa2
{m2 sin2 ξ + 2G(ξ)sa

2 − 4

∫ sa

0

G(φsa(t))tdt}

≥ 2G(ξ)− 4
1

r2ξ

∫ rξ

0

G(φ(t))tdt > 0.

Combining the above two inequalities with the properties of ha near r = 0 (cf. Section
2), we have that there exists positive constant c0 and c1 such that, if a ≤ 1, then

0 < h′
a(r) ≤ c1, ∀r ∈ (0, sa] and 0 < c0 ≤ h′

a(sa) ≤ c1.

Lemma 5.4. Suppose that g(x) ∈ C∞([0, π]) satisfies (i) − (iii) and ha is a
solution to (2.1)-(2.2). Then, there exists a positive number b > 0 such that, if a > 0
is small enough, then, we have

(h′
a(sa))

2 ≥ 2G(ξ) + b.

Proof. Let ai be any sequence such that ai > 0 and ai → 0. For simplicity, we
denote hi = hai

and si = sai
→ +∞.

Set

ui(r) = hi(r + si).

Then, we have that, on (−si, 0],

u′′
i +

1

r + si
u′
i −

m2

(r + si)2
sinui cosui = g(ui).

Note that we have ui(0) = ξ, c0 ≤ u′
i(0) ≤ c1,

0 < ui(r) ≤ ξ and 0 < u′
i(r) ≤ c1, ∀r ∈ (−si, 0].

By a diagonal subsequence argument, there exists a subsequence of {ui}, still denoted
by ui, such that ui converges uniformly in C2([−R, 0]), for any given R > 0, to some
u ∈ C2

loc(−∞, 0]). The limit u satisfies the following equation on (−∞, 0]

u′′ = g(u), (5.6)

with c0 ≤ u′(0) ≤ c1. Moreover, for any r ∈ (−∞, 0] there holds true

0 ≤ u(r) ≤ ξ = u(0) and 0 ≤ u′(r) ≤ c1.
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Hence, we conclude that there exists 0 ≤ l ≤ ξ such that

lim
r→−∞

u(r) = l.

Since u′′ = g(u) ≥ 0, it is easy to see that there exists μ ∈ [0, c1] such that

lim
r→−∞

u′(r) = μ.

On the other hand, we also have∫ 0

−∞

u′(r)dr ≤ ξ.

Hence, we infer that u′(r) → 0 as r → −∞, i.e. μ = 0. It follows that∫ 0

−∞

u′′(r)dr = u′(0).

As u′′ ≥ 0, from the integrability of u′′ on (−∞, 0] we conclude that

lim
r→−∞

u′′(r) = lim
r→−∞

g(u(r)) = g(l) = 0.

Hence, l = 0 or ξ. But, since u is increasing function on (−∞, 0] with u(0) = ξ and
u′(0) ≥ c0 > 0, we have l < ξ. Hence, l = 0.

By integrating the two sides of (5.6) we obtain

u′(r)2 = 2G(u(r)) + C, (5.7)

where C = (u′(0))2 − 2G(ξ). Let r → −∞ in (5.7), we deduce

u′(0)2 = 2G(ξ)− 2G(0). (5.8)

Notice that, the solution u of (5.6) with initial data u(0) = ξ and u′(0) =√
2G(ξ)− 2G(0) is unique. The uniqueness implies that, if we denote ua(r) =

ha(r + sa), there holds true
ua(r) → u(r) uniformly in C2([−R, 0]) for any R > 0,

as a → 0. Then, by (5.8), we obtain that, as a → 0, there holds

h′
a(sa)

2 → 2G(ξ)− 2G(0).

If we first take b = −G(0), then let a > 0 be small enough, then the desired conclusions
follow. Thus we complete the proof.

Theorem 5.5. Suppose that g(x) ∈ C∞([0, π]) satisfies (i) − (iii). If ha is the
solution of (2.1)-(2.2) with a > 0, then, there exists ε > 0 such that for any a ∈ (0, ε),
ha is a solution of type (I).

Proof. By Corollary 3.2, for any a > 0 there exists sa ∈ (0,+∞) such that
ha(r) increases monotonically from 0 to ξ on the interval [0, sa] with h(sa) = ξ and
h′(sa) > 0.

Let h̃sa be the solution of the problem Ps with s = sa. Then, by Lemma 5.3, ha

is a solution of type (I) if and only if h′
a(sa) > h̃′

sa
(sa). So, to prove the theorem, it

suffices to prove that there exists ε > 0 such that, for all a ∈ (0, ε),

h′
a(sa) > h̃′

sa
(sa).
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By Theorem 4.1, we know h̃sa minimizes the functional Jsa on space Xsa . Let

θ(r) =

{
(π − ξ)(r − sa) + ξ, r ∈ [sa, sa + 1],
π, r ∈ (sa + 1,+∞)

then, θ ∈ Xsa . It follows that Jsa(h̃sa) ≤ Jsa(θ). Hence, we have∫ +∞

sa

G(h̃sa)tdt ≤ Jsa(h̃sa) ≤ Jsa(θ)

≤ 1

2

∫ sa+1

sa

[(π − ξ)2 +
m2

r2
]rdr +

∫ sa+1

sa

G(ξ))rdr

≤ C

{
(sa +

1

2
) + log

sa + 1

sa

}
, (5.9)

where C is a positive constant independent of sa.
On the other hand, by the Pohozaev identity we have

(sah̃
′
sa
(sa))

2 = m2 sin2 ξ + 2G(ξ)sa
2 + 4

∫ +∞

sa

G(h̃sa(t))tdt. (5.10)

Combining (5.9) and the above identity we obtain

(h̃′
sa
(sa))

2 ≤ 1

s2a

{
m2 sin2 ξ + 2G(ξ)sa

2 + 4C((sa +
1

2
) + log

sa + 1

sa
)

}
. (5.11)

Hence, it follows

lim
a→0

(h̃′
sa
(sa))

2 ≤ 2G(ξ).

Combining the last inequality with Lemma 5.4, there exists ε > 0 such that for all
a ∈ (0, ε),

h′
a(sa) > h̃′

sa
(sa).

Then the proof of the theorem is completed.

Theorem 5.6. Suppose that g(x) ∈ C∞([0, π]) satisfies (i)− (iii). Let φ be the
solution of the problem (5.1).
(1). If

−∞ <

∫ +∞

0

G(φ)rdr ≤ 0,

then ha is a solution of type (I) to (2.1)-(2.2) for all a > 0.
(2). If

0 <

∫ +∞

0

G(φ)rdr ≤ +∞,

then there exists a0 > 0 such that ha is not a solution of type (I) to (2.1)-(2.2) for
a > a0.
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Proof. By Corollary 3.2, for a > 0, there exists sa ∈ (0,+∞) such that ha(r)
increases monotonically from 0 to ξ in the interval [0, sa] with h(sa) = ξ and h′(sa) >

0. Let h̃sa be the solution of problem Ps with s = sa. Then, by the Pohozaev identity,
we have

(sah
′
a(sa))

2 = m2 sin2 ξ + 2G(ξ)sa
2 − 4

∫ sa

0

G(ha(t))tdt, (5.12)

(sah̃
′
sa
(sa))

2 = m2 sin2 ξ + 2G(ξ)sa
2 + 4

∫ +∞

sa

G(h̃sa(t))tdt. (5.13)

Now we discuss the case (1). By Lemma 5.3, ha is a solution of type (I) if and
only if

h′
a(sa) > h̃′

sa
(sa).

Comparing (5.12) and (5.13), it suffices to prove that, for a > 0, the following in-
equality is true ∫ sa

0

G(ha(t))tdt+

∫ +∞

sa

G(h̃sa(t))tdt < 0. (5.14)

Since G(x) is increasing on the interval [0, ξ] and decreasing on the interval [ξ, π], by
Lemma 5.2 and Lemma 5.1, we derive that, as a > 0,∫ sa

0

G(ha(t))tdt <

∫ sa

0

G(φsa(t))tdt =
s2a
r2ξ

∫ rξ

0

G(φ(t))tdt, (5.15)∫ +∞

sa

G(h̃sa(t))tdt <

∫ +∞

sa

G(φsa (t))tdt =
s2a
r2ξ

∫ +∞

rξ

G(φ(t))tdt. (5.16)

Combining (5.15) and (5.16), we get that, for a > 0, there holds∫ sa

0

G(ha(t))tdt +

∫ +∞

sa

G(h̃sa(t))tdt <
s2a
r2ξ

∫ +∞

0

G(φ(t))tdt.

So, when

−∞ <

∫ +∞

0

G(φ)rdr ≤ 0,

(5.14) follows and the conclusion stated in (1) is true.

We turn to the discussion of the case (2). If the conclusion stated in (2) fails, then
there exists a sequence ai → +∞ such that hai

is a solution of type (I) to (2.1)-(2.2).
Set

�i(ai
1
m r) ≡ hai

(r).

Then �i(r) is the solution of the following problem:⎧⎨⎩�
′′
i (r) +

1

r
�
′
i(r) −

m2

r2
sin �i(r) cos �i(r) − ai

− 2
m g(�i(r)) = 0.

�i(0) = 0, �
(m)
i (0) = m!

(5.17)
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Let si be the minimal positive number s > 0 such that �i(s) = π. Comparing the
problem (5.17) with the problem (5.1), we conclude that, for any R > 0, �i converges
to φ uniformly in C1[0, R] as ai → +∞. Notice that, φ increases monotonically from
0 asymptotically to π, then, we have

lim
i→+∞

si = +∞.

By the Pohozaev identity, we have

(si�
′
i(si))

2 = −4ai
− 2

m

∫ si

0

G(�i)rdr.

Since �
′
i(si) > 0, we get ∫ si

0

G(�i)rdr < 0. (5.18)

On the other hand, since

0 <

∫ +∞

0

G(φ)rdr ≤ +∞,

we can pick R0 > 0 such that φ(R0) > ξ and∫ R0

0

G(φ)rdr > 0. (5.19)

Hence, ∫ R0

0

G(φ)rdr = lim
i→+∞

∫ R0

0

G(�i)rdr ≤ lim
i→∞

∫ si

0

G(�i)rdr ≤ 0,

which contradicts (5.19). So, if

0 <

∫ +∞

0

G(φ)rdr ≤ +∞,

there always exists a0 > 0 such that, for a > a0, ha is not a solution of type (I) to
(2.1)-(2.2).

Now, we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. Let φ be the solution of problem (5.1). From the Remark
3, we can replace ϕ1 by φ. Since φ increases from 0 asymptotically to π and G(x) ≥ 0
for x ∈ [ξ, π], we have

−∞ <

∫ +∞

0

G(φ)rdr ≤ +∞.

Define

A = {a > 0 | ha is a solution of type (I) to (2.1)-(2.2)}.
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By the continuous dependence of the solutions on the initial data (cf. Theorem 2.2),
Corollary 3.2 and Lemma 3.4, we know A is an open set. By Theorem 5.5, we derive
that A is a non-empty open set.

We need only to consider the following two cases:

Case One. If

−∞ <

∫ +∞

0

G(φ)rdr ≤ 0,

Theorem 5.6 tells us that A = (0,+∞). It means that all solutions of (2.1)-(2.2)
with a > 0 increase from 0 to π on finite interval. So the problem (1.3)-(1.4) with
0 ≤ h(r) ≤ π on (0,∞) does not admit any solution.

Case Two. If

0 <

∫ +∞

0

G(φ)rdr ≤ +∞,

set

a∗ = sup{a ∈ A},

by Theorem 5.6 we have 0 < a∗ < +∞. We claim that ha∗ is a solution of (1.3)-(1.4)
with 0 < h(r) < π on (0,∞).

In the following, we always assume a ∈ A. Let ra ∈ (0,+∞) such that ha increases
monotonically from 0 to π on the interval [0, ra]. Then, we have lim

a→a∗

ra = +∞.

Otherwise, there exists a sequence ak → a∗ such that

lim
ak→a∗

rak
= r∗

where r∗ ∈ (0,+∞). By continuous dependence on initial data of the problem (2.1)-
(2.2), we have that ha∗ is also a solution of type (I), which contradicts the definition
of a∗.

As lim
a→a∗

ra = +∞, we can infer that

h′
a∗(r) ≥ 0 and 0 ≤ ha∗(r) ≤ π, r ∈ (0,+∞).

Then, we have

lim
r→+∞

ha∗(r) = l.

By Corollary 3.2 and the fact that π is a trivial solution of equation (2.1), we have
that

0 < ha∗(r) < π for any r ∈ (0,+∞) and ξ < l ≤ π.

By Lemma 3.3, we have that l = π and ha∗(r) converges to π exponentially as
r → +∞. Hence ha∗(r) is a solution of (1.3)-(1.4) with 0 < h(r) < π on (0,∞).
Thus, we complete the proof of the theorem.
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6. Applications to the equations of Landau-Lifshitz type. In this section,
we will generalize and improve the results due to Gustafson and Shatah in [7] as an
application of Theorem 1.1. First we recall the Landau-Lifshitz equation

∂tu = u×Δu,

where u : M ×R → S2 and “×” denotes the cross product in R
3 (see [10]). We would

like to consider the Schrödinger flows for maps u : M ×R → S2 corresponding to the
functional

F̃ (u) =

∫
M

|∇u|2dM +

∫
M

H̃(u)dM

in the sense of [3], where H̃ ∈ C∞(S2,R). The equation of flows can be expressed as

ut = u× (Δu−∇H̃(u)). (6.1)

The stationary solutions of this equation satisfy

Δu + |∇u|2u = ∇H̃(u).

This is just the elliptic system of harmonic maps with potential H̃(u) from M into S2.

When M is a compact Riemann surface satisfying some symmetry and H̃ ≡ 0, Ding
and Yin have studied the existence of special periodic solutions to the Landau-Lifshitz
equation. For details readers can refer to [4]. Such a special class of periodic solutions

is called ”geometric solitons” in [12, 13]. For the case M ≡ R
2 and H̃(u) ≡ G̃(d(u)),

where d(u) denotes the geodesic distance from u ∈ S2 to the north pole P = (0, 0, 1),
we would like to consider the equivariant solutions to (6.1) written by

u(x, t) = (sinh(r) cos(mθ + wt), sin h(r) sin(mθ + wt), cosh(r)), (6.2)

where (r, θ) is the polar coordinates on R
2 and m ∈ Z\{0}. Substituting (6.2) into

(6.1), we obtain

h′′ +
1

r
h′ − m2

r2
sinh cosh = g̃(h) + ω sinh (6.3)

where g̃(·) = G̃′(·).
Set

g(h) = g̃(h) + ω sinh,

then equation (6.3) is of the same form as (1.3).
In particular, the following equation of Landau-Lifshitz type has strong physical

background

∂tu = u× (Δu+ λu3k̂), (6.4)

where

u(x, t) : R2 × R → S
2, k̂ = (0, 0, 1), λ > 0.

For more details readers can refer to [7] and the references therein. The equation (6.4)
is of a Hamiltonian structure and its Hamiltonian energy functional is:

E = Ee + λEa.
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Here, the exchange energy Ee and the anisotropy energy Ea are defined respectively
by

Ee =
1

2

∫
R2

|∇u|2 and Ea =
1

2

∫
R2

1− u2
3.

It is worth to point out that, when λ 
= 0, the static solutions with finite energy to
(6.4) are ruled out by Pohozaev identity.

Gustafson and Shatah in [7] considered the existence of such equivariant solutions
to (6.4) as (6.2). In the present case, the corresponding equation reads

h′′ +
1

r
h′ − m2

r2
sinh cosh− g(h) = 0, (6.5)

where

g(h) = (ω + λ cosh) sinh.

Note (6.5) is a special case of the equation (1.3). By variational methods, Gustafson
and Shatah in [7] obtained the following results.

Proposition 6.1. For any m ∈ Z\{0} there exists a positive number ω0 with
0 < ω0 ≤ 1

|m| such that, if 0 < ω < ω0λ, the equation (6.4) with λ > 0 admits a

solution of form (6.2) with h(r) which increases monotonically from 0 asymptotically
to π on (0,∞).

A natural problem is whether or not ω0 can be accurately determined. On the
other hand, one also wants to know whether or not the equation (6.4) admits a solution
of form (6.2) as ω /∈ (0, ω0λ). In other words, when g(h) = (ω + λ cosh) sinh, where
ω /∈ (0, ω0λ), is the problem (1.3)-(1.4) solvable? As a direct application of Theorem
1.1, we can completely answer the above questions. More precisely, we have the
following more general results:

Theorem 6.2. Let (M, g) be the Euclidean 2-plane R2. Assume that the potential

function H̃(u) = G̃(d(u)) : S2 → R with

G̃′(·) = g(·)− ω sin(·),
where g( · ) satisfies (i) − (iii). Then the equation (6.1) admits a solution of form
(6.2) with h(r) satisfying h(0) = 0 ≤ h(r) ≤ π = h(∞) on (0,∞) if and only if G,
which is defined by G(x) = − ∫ π

x
g(t)dt, satisfies

0 <

∫ ∞

0

G(ϕ1(r)) rdr ≤ ∞.

Moreover, the solution we obtain satisfies h′(r) > 0 on (0,∞) and converges to π
exponentially as r → ∞.

Especially, for the equation (6.4) with λ > 0 we have the following theorem.

Theorem 6.3. For any m ∈ Z\{0} the equation (6.4) with λ > 0 admits a
solution of form (6.2) with h(r) satisfying h(0) = 0 ≤ h(r) ≤ π = h(∞) on (0,∞) if
and only if

0 < ω <
λ

|m| .
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Moreover, the solution we obtain satisfies h′(r) > 0 on (0,∞) and converges to π
exponentially as r → ∞.

Proof. In order to prove the theorem, we only need to show the solvability of
(1.3)-(1.4) with

g(h) = (ω + λ cosh) sinh.

If the problem (1.3)-(1.4) with g(h) as above admits a solution h(r), by Pohozaev
identity, we get ∫ +∞

0

G(h(r))rdr = 0,

where

G(h) =
λ

2
sin2 h− ω(1 + cosh).

Obviously, when ω
λ

≤ 0, there holds true G(x) ≥ 0 for any x ∈ [0, π]. On the
other hand, when ω

λ
≥ 1 we have G(x) ≤ 0 for any x ∈ [0, π]. No matter which case

happens, for any function h(r) with 0 ≤ h(r) ≤ π on (0,∞) there holds true∫ +∞

0

G(h(r))rdr = 0,

if and only if

G(h) ≡ 0.

This implies h ≡ π or 0, since π is the only zero point of G(x) on the interval [0, π]
as ω

λ
< 0 or ω

λ
≥ 1 while there exist two zero points of G(x) on the interval [0, π] in

the case ω
λ
= 0, i.e. 0 and π. Hence the problem (1.3)-(1.4) doesn’t admit a solution

with h(0) = 0 ≤ h(r) ≤ π = h(∞) on (0,∞) with ω
λ
≤ 0 or ω

λ
≥ 1.

So, it suffices to consider the case 0 < ω
λ

< 1. For this case, it’s easy to check
g(x) satisfies the conditions (i)− (iii).

By a direct calculation, we have∫ +∞

0

G(ϕ1)rdr =

{
+∞, |m| = 1,(

λ
|m| − ω

)
C0, |m| ≥ 2.

Here

C0 =
1

|m|B
(

1

|m| , 1−
1

|m|
)

and B(x, y) is the Beta function and ϕ1 = 2 arctan(rm). So, the conclusions of Theo-
rem 6.3 follow directly from Theorem 1.1.
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