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FUNCTIONS DIVIDING THEIR HESSIAN DETERMINANTS AND
AFFINE SPHERES∗

DANIEL J. F. FOX†

Abstract. The nonzero level sets of a homogeneous, logarithmically homogeneous, or transla-
tionally homogeneous function are affine spheres if and only if the Hessian determinant of the function
is a multiple of a power or an exponential of the function. In particular, the nonzero level sets of a
homogeneous polynomial are proper affine spheres if some power of it equals a nonzero multiple of
its Hessian determinant. The relative invariants of real forms of regular irreducible prehomogeneous
vector spaces yield many such polynomials which are moreover irreducible. For example, the nonzero
level sets of the Cayley hyperdeterminant are affine spheres.
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1. Introduction. Let ∇̂ be the standard flat affine connection on Rn+1 and fix
a ∇̂-parallel volume form Ψ. Elements of the subgroup of the group Aff(n + 1,R)

of affine transformations of Rn+1 (comprising the automorphisms of ∇̂) preserving
the tensor square Ψ2 are called unimodular or equiaffine. For F ∈ Ck(Rn+1) let

Fi1...ik = ∇̂i1 . . . ∇̂ik−1
dFik , and let gij = (HessF )ij = Fij = ∇̂idFj be the Hes-

sian of F . Here, as generally in what follows, the abstract index and summation
conventions are employed. As detHessF and Ψ2 are 2-densities, it makes sense to de-
fine the Hessian determinant H(F ) of a C2 function F by detHessF = H(F )Ψ2.

In coordinates x1, . . . , xn such that the coframe dx1, . . . , dxn+1 is ∇̂-parallel and

Ψ = dx1 ∧ · · · ∧ dxn+1, H(F ) = det ∂2F
∂xi∂xj . The adjugate tensor U ij of Fij is the

symmetric bivector satisfying U ipFpj = H(F )δj
i. Where H(F ) 6= 0, gij is a pseudo-

Riemannian metric with inverse symmetric bivector gij = H(F )−1U ij . Define

U(F ) = U ijFiFj = H(F )|dF |2g =

∣∣∣∣Fij 0
Fj |dF |2g

∣∣∣∣ = −
∣∣∣∣Fij Fi
Fj 0

∣∣∣∣ , (1.1)

where |dF |2g = gijFiFj is not necessarily positive, since gij is not necessarily positive
definite. Consider the problem of finding a smooth function F on an open domain of
Rn+1 such that one or both of H(F ) or U(F ) is constant along the level sets of F , or,
what is almost the same, there is a function φ(r) or ψ(r) defined for r in some open
connected subset of R such that

H(F ) = φ(F ), or U(F ) = ϕ(F ). (1.2)

Interesting choices for φ and ϕ include polynomials, rational powers, and exponentials.
For F ∈ C∞(Rn+1) and g ∈ Aff(n + 1,R) define (g · F )(x) = F (g−1x). Let

` : Aff(n + 1,R) → GL(n + 1,R) be the projection onto the linear part. Because of
the identities

g · H(F ) = det 2`(g)H(g · F ), g · U(F ) = det 2`(g)U(g · F ), (1.3)
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(the second follows from 1.1), the equations (1.2) are affinely covariant in the sense
that F solves (1.2) for some φ or ϕ if and only if its precomposition with an affine
transformation solves the same equation for some positive constant multiple of φ
or ϕ. In particular, it is natural to consider solutions of (1.2) up to unimodular
affine equivalence. Moreover, the affine covariance suggests also that properties of the
equations (1.2) should be reflected in the unimodular affine geometry of the level sets
of F . This suggests that when F is replaced by ψ ◦F for some C2 function ψ on some
interval I ⊂ R intersecting the image of F , then ψ ◦ F should also solve equations of
the form (1.2), as the level sets of ψ ◦ F are the same as those of F , only differently
parameterized. While because of the identities

H(ψ ◦ F ) = ψ̇n+1(1 + (ψ̈/ψ̇)|dF |2g)H(F ), U(ψ ◦ F ) = ψ̇n+2U(F ), (1.4)

in complete generality this need not be the case, if the form of either ψ or F is
restricted, then it will sometimes be so, e.g. if F has some kind of homogeneity.

It is an interesting general problem to determine up to affine equivalence all
sufficiently smooth solutions of (1.2) on a domain Ω ⊂ Rn+1 for particular choices of
φ or ϕ, e.g. when φ or ϕ is a power or an exponential, and for particular choices of Ω.
Of particular interest are solutions which are entire, meaning defined on all of Rn+1,
and domains which are cones, meaning etx ∈ Ω whenever x ∈ Ω and t ∈ R. One aim
in what follows is to identify some special cases of (1.2) admitting nice solutions that
can serve as candidates for answers to such characterization questions. A particularly
interesting case of (1.2) is the equation expressing that the Hessian determinant of
a rational or polynomial function equal a multiple of a power of the function. The
relative invariants of certain prehomogeneous vector spaces give many examples, as
is explained later in the introduction.

The first result explicitly linking the equiaffine geometry of the level sets of F
with (1.2) is Theorem 1.1 below that shows that any solution of (1.2) with φ or ψ a
constant multiple of a power or an exponential and F having appropriate homogeneity
yields a one-parameter family of affine spheres. The precise statement requires some
notation and terminology. An affine dilation is an affine transformation mapping
every line into a parallel line. An affine transformation is a dilation if and only if its
linear part is a nonzero multiple of the identity, in which case it is a composition of a
central homothety and a translation (which is regarded as a homothety with center at
infinity). A one-parameter subgroup comprising affine dilations with a fixed center is
either a one-parameter family x→ eλt(x− v) + v of central homotheties with center
v, or a one-parameter family x → x + αtw of translations. A function F ∈ C0(Ω) is
affinely homogeneous on Ω if there are one-parameter subgroups φt ∈ Aff(n + 1,R)
and ψt ∈ Aff(1,R) of affine dilations with fixed center such that F ◦φt(x) = ψt ◦F (x)
whenever x and φt(x) are in Ω. Necessarily ψt has the form ψt(r) = eλt(r−r0)+r0+αt
where λα = 0; that is, at least one of λ and α is 0. Affine homogeneity is an affinely
invariant condition in the sense that F is affinely homogeneous if and only if g · F
is affinely homogeneous for all g ∈ Aff(n + 1,R). There are essentially four kinds of
affinely homogeneous functions depending on whether each of φt and ψt comprises
central homotheties or translations. When both φt and ψt comprise translations, the
affine homogeneity simply means that the restriction of F to any line with a given
direction is an affine map. In this case the Hessian of F is degenerate in the given
direction, so this case requires a different treatment.

Let Ω ⊂ Rn+1 be an open subset, and for F ∈ C0(Ω), let Σr(F,Ω) = {x ∈
Ω : F (x) = r}. For λ, α ∈ R and ε ∈ {0, 1} define Aλ,εα (Ω) to comprise those
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F ∈ C0(Ω) ∩ C∞(Ω \ Σ−α/λ(F,Ω)) for which there exists a v ∈ Rn+1 such that

F ((1− ε)(et(x− v) + v) + ε(x+ tv)) = eλtF (x) +αt for all t ∈ R and x ∈ Ω such that
(1−ε)(et(x−v)+v)+ε(x+tv) ∈ Ω. When λ = 0, Σ−α/λ(F,Ω) is by convention empty.

Sometimes there will be written simply F ∈ Aλ,εα ; in this case it is to be understood
that F is a C∞ smooth function having the indicated homogeneity property on some
open domain in Rn+1. Since F ∈ Aλ,0α satisfies F (x) = F (e−tet(x − v) + v) =
F (x) + α(e−λt − 1)t, the condition defining Aλ,0α is vacuous unless αλ = 0, that is,

unless at least one of α and λ is 0. An element of Aλ,00 is positively homogeneous of
degree λ (with center v), an element of A0,0

α is α-logarithmically homogeneous (with

center v), and an element of Aλ,10 is λ-translationally homogeneous (with axial center
v). As remarked above, the Hessian of an element of A0,1

α is necessarily degenerate.
However, since the exponential of an element of A0,1

α is an element of Aα,10 , there is
no need to consider the class A0,1

α as such. For the centrally homogeneous cases, it is
often convenient to regard the center v of the dilations as the origin 0 in Rn+1. If 0
is fixed initially, this can always be arranged by precomposing F with translation by
−v.

Let Σ be a co-orientable immersed hypersurface in Rn+1. Via the splitting
TRn+1 = TΣ ⊕ 〈N〉 determined by a vector field N transverse to Σ, the connec-

tion ∇̂ induces on Σ a connection ∇, a symmetric covariant two tensor h representing
the second fundamental form, a shape operator S ∈ Γ(End(TΣ)), and the connec-

tion one-form τ ∈ Γ(T ∗Σ); these are defined by ∇̂XY = ∇XY + h(X,Y )N and

∇̂XN = −S(X) + τ(X)N , where X and Y are tangent to Σ. Tensors on Σ are
labeled using capital Latin abstract indices. That Σ be nondegenerate means that
the second fundamental form of Σ, equivalently hIJ , is nondegenerate. Since by as-
sumption Σ is co-oriented, it is orientable, and the interior multiplication ι(N)Ψ is a

volume form on Σ. Since ∇̂Ψ = 0, for X tangent to Σ, ∇̂Xι(N)Ψ = τ(X)ι(N)Ψ. Let
volh = qι(N)Ψ be the volume form induced on Σ by h and the orientation consistent
with ι(N)Ψ. Since vol2h = |deth|,

hPQ∇IhPQ = 2vol−1
h ∇Ivolh = 2

(
q−1dqI + τI

)
. (1.5)

Any other transversal to Σ has the form Ñ = a(N + Z) for a nowhere vanishing
function a and a vector field Z tangent to Σ. The second fundamental form h̃,
connection ∇̃, and connection one-form τ̃ determined by Ñ and ∇̂ are related to h,
∇, and τ by

h̃IJ = a−1hIJ , ∇̃ = ∇− hIJZK , τ̃I = τI + a−1daI + hIPZ
P . (1.6)

It follows from (1.5) and (1.6) that

nτ̃I + h̃PQ∇̃I h̃PQ = nτI + hPQ∇IhPQ + (n+ 2)ZPhIP , (1.7)

where hIJ and h̃IJ are the symmetric bivectors inverse to hIJ and h̃IJ . Since (1.7)
does not depend on a, the span of Ñ is determined by requiring nτ̃I = −h̃PQ∇̃I h̃PQ,
so that, by (1.5) and (1.7),

ZPhPI = − 1
n+2

(
nτI + hPQ∇IhPQ

)
= −τI − 2

n+2q
−1dqI = − 1

2h
PQ∇IhPQ + 1

n+2q
−1dqI .

(1.8)

Whatever is a, the resulting transversal Ñ is called an affine normal, and the line
field it spans is called the affine normal distribution of Σ. Since det h̃ = a−n deth,
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the equiaffine normal W = a(N + Z) is determined up to sign by requiring |volh̃| =

|ι(W)Ψ|. By (1.5), (n+ 2)τ̃I = 2τ̃I − h̃PQ∇̃I h̃PQ = 0, so for the equiaffine normal the
associated connection one-form vanishes.

Once a co-orientation has been fixed, the pseudo-Riemannian metric h and endo-
morphism S determined by the co-oriented equiaffine normal are called the equiaffine
metric and the equiaffine shape operator, respectively, and the affine mean curvature
is H = (1/n)SI

I . A co-orientable nondegenerate connected hypersurface Σ is an
affine sphere if and only if the shape operator determined by any affine normal is a
multiple of the identity; that is, SI

J = nHδI J . If Σ is an affine sphere, then the affine
mean curvature is constant, as follows from the traced form ∇QSI I = ∇ISQ I of the
Gauss-Codazzi equations ∇[ISJ]

K = 0 for the equiaffine normal. An affine sphere is
proper or improper according to whether its affine mean curvature is nonzero or zero.
Clearly Σ is an improper affine sphere if and only if the equiaffine normals are parallel.
In this case Σ is said to have center at infinity. Similarly, Σ is a proper affine sphere if
and only if the equiaffine normals meet in a point, the center. Precisely, if x ∈ Σ then
this point is v = Xx +H−1Wx, where X is the generates the radial dilations around
0, so that W = −HE where E = X− v.

Theorem 1.1 can be summarized imprecisely as saying that the level sets of an
affinely homogeneous function F with a given center v are affine spheres with center v
if and only if H(F ) is a function of F . Understood in the most liberal way the forward
implication of this statement is not strictly correct, because the level sets of F need
not be connected and a priori it is not obvious what it means for a disconnected
hypersurface to be an affine sphere.

The following simple example indicates the need for some care regarding connect-
edness. Let G(x) = x2

1−x2
2−x2

3. While F (x) = G(x)2 solves H(F )2 = 21232F 3, there
is no φ such that H(F ) = φ(F ) on all of Rn+1. On the other hand, on the open do-
mains Ω± = {x ∈ Rn+1 : ±G(x) > 0} the function F solves H(F ) = ±263F 3/2. Each
nonzero level set of F is a union of a two-sheeted hyperboloid and a one-sheeted hyper-
boloid. Although each connected component is a proper affine sphere, the equiaffine
metric of the two-sheeted hyperboloid is definite, while that of the one-sheeted hy-
perboloid is split. While it is reasonable to regard the two-sheeted hyperboloid as
a single disconnected affine sphere, it is not reasonable to regard the level set of F
containing them as a disconnected affine sphere, because its components are affine
spheres of different types.

The definition of a connected affine sphere does not require a choice of co-
orientation, but some coherence condition on co-orientations is necessary when there
are multiple connected components. The convention employed throughout this paper
is the following. A smoothly immersed hypersurface having more than one connected
component is an affine sphere if

(1) each connected component is an affine sphere and the centers of the different
components are all the same, meaning that either the affine normal lines all
meet in a common point, or are all parallel;

(2) there is a choice of co-orientations of the components so that for the equiaffine
normal consistent with this choice the affine mean curvatures and the signa-
tures modulo 4 of the equiaffine metrics of the different components are all
the same.

The signature of a nondegenerate symmetric bilinear form means the number of posi-
tive eigenvalues minus the number of negative eigenvalues. Over R two nondegenerate
symmetric bilinear forms have the same signature modulo 4 if and only if their deter-
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minants have the same sign. Notice that if a disconnected hypersurface is an affine
sphere with respect to a given choice of co-orientations of the components, it is an
affine sphere with respect to the opposite choice of co-orientations, but with respect
to no other choice of co-orientations. In this sense, the definition is consistent with
the definition for a connected hypersurface. With this definition the nonzero level
sets of G = x2

1 − x2
2 − x2

3 are affine spheres, while the nonzero level sets of F = G2

are not. The stipulation modulo 4 in the definition is necessary. For example, the
determinant P (X) of a 3 × 3 symmetric matrix X satisfies H(P ) = −16P 2 and the
level set P (X) = 1 is a disconnected affine sphere having connected components with
equiaffine metrics of signatures 5 and 1.

Write sgn(r) = r|r|−1 for the sign character of the group R× of nonzero real
numbers. Define the standard co-orientation of a connected component of a level set
of F to be that consistent with the vector field − sgn(|dF |2g)F i = − sgn(U(F )H(F ))F i,

where F i = gipFp.

Theorem 1.1. Let ε ∈ {0, 1} and let α and λ be real constants not both 0 such
that αλ = 0, αε = 0, and λ 6= 1 − ε. Let Ω ⊂ Rn+1 be a nonempty open subset, and
let I ⊂ R be a nonempty, connected, open subset such that λr + α 6= 0 for all r ∈ I.
For F ∈ Aλ,εα (Ω), let ΩI = F−1(I) ∩ Ω. Let v ∈ Rn+1 be the center or axial center of
F as ε = 0 or ε = 1. The conditions

(1) There is a nonvanishing function φ : I → R such that F solves H(F ) = φ(F )
on ΩI ;

(2) There is a nonvanishing function ψ : I → R such that F solves U(F ) = ψ(F )
on ΩI ;

are equivalent. If ε = 0 the conditions (1) and (2) are equivalent to the condition
(3) For all r ∈ I each level set Σr(F,ΩI), equipped with the co-orientation of

its components consistent with − sgn(U(F )H(F ))F i, is a proper affine sphere
with center v,

while if ε = 1 the conditions (1) and (2) are equivalent to the condition
(4) For all r ∈ I each level set Σr(F,ΩI), equipped with the co-orientation of its

components consistent with − sgn(U(F )H(F ))F i, is an improper affine sphere
with equiaffine normal equal to cv for a constant c depending only on r (and
not the connected component).

When these conditions hold, there is a nonzero constant B such that φ and ψ have
the forms

φ(r) = B|r|(n+1)(λ−2)/λ and ψ(r) = λ
λ−1rφ(r) if α = 0, ε = 0

φ(r) = Be−2(n+1)r/α and ψ(r) = −αφ(r) if λ = 0, ε = 0,

φ(r) = Brn+1 and ψ(r) = rφ(r) if α = 0, ε = 1

(1.9)

and the affine mean curvature of Σr(F,ΩI) is

sgn(λr)|λ− 1|−1/(n+2)|λ|−(n+1)/(n+2)|B|1/(n+2)|r|(λ−2)/λ−(n+1)/(n+2) if α = 0, ε = 0;

sgn(α)|α|−(n+1)/(n+2)|B|1/(n+2)e−2(n+1)r/α(n+2) if λ = 0, ε = 0,

(1.10)

or 0 if α = 0 and ε = 1.

The elementary proof of Theorem 1.1 is given at the end of section 2. If both
U(F ) and H(F ) (equivalently H(F ) and |dF |2g) are constant along the level sets of
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F then the external reparameterization ψ ◦ F will have the same properties with no
further restrictions on the form of F besides obvious regularity assumptions. Recall
that a function on a Riemannian manifold is isoparametric if its Laplacian and the
squared-norm of its differential are both constant along its level sets (see e.g. [5] or
[28]). The equations (1.2) have a form similar to the classical isoparametric condition,
though with the Laplacian replaced by the Hessian, and the squared Euclidean norm
of the differential replaced by U(F ). Lemma 2.5 shows that an F solving (1.2) is
in fact isoparametric with respect to the metric g. Lemmas 2.3 and 2.4 show that
there hold the two equations (1.2) on some open subset on which g is nondegenerate
if and only if the vector field W formed by affine normals to the level sets of F has
the properties that its flow preserves the level sets of F and its integral curves are
contained in straight lines. If F is moreover homogeneous, then the equations (1.2)
are redundant, and the level sets of F must be affine spheres.

Although no regularity assumptions are made on the functions φ and ψ in (1) and
(2), such conditions follow automatically from the supposed affine homogeneity of F .
This hypothesis is stronger than it may appear, and it would be interesting to deduce
the conclusion of Theorem 1.1 from milder hypotheses. Note that in the convex case
results with a similar flavor characterizing ellipsoids and elliptic paraboloids have been
obtained by D.-S. Kim and Y. H. Kim in [17] and [18].

An unsatisfying aspect of Theorem 1.1 is the assumption in (3) and (4) that
the centers of the affine spheres coincide with the dilation center of F . While it is
reasonable to assume that level sets have a common center, that it coincides with that
of F should be a conclusion of the theorem.

The example G = x2
1 − x2

2 − x2
3 shows the importance of the choice of domain in

Theorem 1.1. For this G, conclusion (1) of the theorem is true on the domains Ω±,
but not on all of Rn+1, because the hypothesis (3) is satisfied on Ω± = {x ∈ Rn+1 :
±G(x) > 0}, but not on all of Rn+1.

Theorem 1.1 raises the question of the existence and uniqueness of solutions to
(1.2) for φ and ψ as in Theorem 1.1. In a setting where H need not be elliptic, or Ω
need not be convex, it seems even precise questions are lacking. On the other hand,
while much remains to be said in the nonelliptic/nonconvex case, in the elliptic/convex
case there is an extensive general theory for (1.2), and the convex affine spheres are
constructed in full generality due principally to work of S. Y. Cheng and S. T. Yau
in [6, 7, 8] (see also [25] and the surveys [11], [20], and [29]). A cone is proper if it
is nonempty and its closure contains no complete affine line. The group Aut(Ω) ⊂
Aff(n + 1,R) of affine automorphisms of an open subset Ω ⊂ Rn+1 comprises those
g ∈ Aff(n + 1,R) such that gΩ ⊂ Ω. An open Ω is affinely homogeneous if Aut(Ω)
acts transitively on Ω. A convex affine sphere is hyperbolic if its affine mean curvature
is negative.

Theorem 1.2 (S. Y. Cheng and S. T. Yau). A proper open convex cone Ω ⊂ Rn+1

is foliated in a unique way by hyperbolic affine spheres asymptotic to its boundary.
More precisely, there exists a unique smooth convex function F : Ω → R solving
H(F ) = e2F , tending to +∞ on the boundary of Ω, such that gij = ∇̂idFj is a complete
Riemannian metric on Ω, and such that the level sets of F are properly embedded
hyperbolic affine spheres foliating Ω. Moreover, (g · F )(x) = F (x) + log det `(g) for
all g ∈ Aut(Ω), so that gij is Aut(Ω) invariant and F is −(n + 1)-logarithmically
homogeneous.

By Theorem 1.2, a geometric picture that holds for a homogeneous convex cone
and its characteristic function holds for a general proper convex cone provided that
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the solution of H(F ) = e2F is used in place of the characteristic function. As will
be explained next, together Theorem 1.3 and Theorem 1.5, showing that interesting
explicit polynomial solutions of (1.2) arise as the relative invariants of certain preho-
mogeneous vector spaces, provide a supply of explicit solutions of (1.2) in both the
convex and nonconvex cases. In particular, the open orbits of real forms of certain
prehomogeneous vector spaces are foliated by proper affine spheres arising as the level
sets of a solution of a Monge-Ampère equation, and this is the homogeneous geometric
picture on which should be modeled an analogue of Theorem 1.2 applying to some
class of nonconvex cones.

Let Polk(Rn+1) denote the space of degree k homogeneous polynomials on Rn+1.
Let k > 1 be an integer that divides (n + 1)(k − 2), or, what is the same, divides
2(n+ 1). For a sufficiently smooth function F on Rn+1 consider the equation

H(F ) = cFm, m = (n+ 1)(k − 2)/k, (1.11)

for a nonzero constant c. The exponent in (1.11) is explained by the observation that

since H(P ) ∈ Pol(n+1)(k−2)(Rn+1), for P to solve H(P ) = cPm with c 6= 0, it must be
that km = (n+ 1)(k − 2).

Theorem 1.3. If P ∈ Polk(Rn+1) solves (1.11) for a nonzero constant c, then, for
nonzero r, each connected component of the level set Σr = {x ∈ Rn+1 : P (x) = r} is a
proper affine sphere. Conversely, if for each nonzero r each level Σr of a homogeneous
polynomial P ∈ Polk(Rn+1) is an affine sphere, then P solves (1.11).

Proof. That the nonzero level sets of a polynomial solving (1.11) are proper affine
spheres is immediate from Theorem 1.1. Suppose that P ∈ Polk(Rn+1) and for each
nonzero r each connected component of Σr(P ) is a proper affine sphere centered on
the origin. By Lemma 2.6, H(P ), U(P ), and P i do not vanish on Σr(P ). Let Σ
be a connected component of Σr(P ). Let Σt be the image of Σ under dilation by
a factor of et around the origin. It is a connected component of Σektr(P ). By the
tubular neighborhood theorem the union Ω = ∪t∈RΣt is an open cone on which the
hypotheses of (1) of Theorem 1.1 are satisfied for the polynomial P , and so there is
a constant B 6= 0 such that, on Ω, H(P ) = B|P |m, where m = (n + 1)(k − 2)/k.
Since H(P ) is a polynomial, m must be an integer, so that there is a nonzero constant
c (equal to ±B) such that H(P ) = cPm on Ω. Since the homogeneous polynomial
H(P )− cPm vanishes on the open set Ω, it is identically zero.

The conditions that P be homogeneous, that c be nonzero, and that the affine
spheres be proper are necessary in Theorem 1.3. The polynomial P = xn+1−

∑n
i=1 x

2
i

solves H(P ) = 0, and its nonzero level sets are paraboloids, which, although affine
spheres, are improper. More generally:

Lemma 1.4. Let P ∈ Pol2(Rn) be a nondegenerate quadratic form and let c =
H(P ) 6= 0. If l > 1 is an integer dividing n + 2 then Q = (xn+1 − P (x1, . . . , xn))l

solves H(Q) = (−1)nln+1(l − 1)cQn+1−(n+2)/l. However, Q is not affinely equivalent
to a homogeneous polynomial.

Proof. That Q solves the equation H(Q) = κQn+1−(n+2)/l with κ = (−1)nln+1(l−
1)c is a straightforward calculation. Were there g ∈ Aff(n+ 1,R) such that g ·Q were
homogeneous, then since, by (1.3), g · Q would solve H(g · Q) = κ(det `(g))−2(g ·
Q)n+1−(n+2)/l, by Theorem 1.3, the nonzero level sets of g ·Q would be proper affine
spheres. However, the nonzero level sets of Q are contained in graphs of functions of
the form P + c, with c a constant, and these are improper affine spheres.



510 D. J. F. FOX

By (1.3), if F solves (1.11) for the constant c then g · F solves (1.2) for the
constant c det−2 `(g), so while the value of c has no affinely invariant significance,
its sign has. In the simplest case of (1.11), when m = 0, an entire locally uniformly
convex solution of (1.11) with c > 0 is a quadratic polynomial ([15, 2, 22]). According
to Remark (ii) following Theorem 4.4 of [29], the local uniform convexity is not
necessary for the conclusion. On the other hand, if c < 0, any function of the form
F (x1, . . . , xn+1) = (−c)1/2x1xn+1 + f(x1) + 1

2

∑n
i=2 x

2
i with f ∈ C2(R) solves (1.11)

with m = 0 on all of Rn+1. For m > 0 the situation is more complicated in that there
is an abundance of homogeneous polynomial solutions of (1.11) having degree at least
3. The homogeneous polynomials of two variables solving an equation of the form
(1.11) with c 6= 0 are distinguished up to affine equivalence by degree, signature of
the Hessian, and the sign of c; all are products of powers of linear forms and quadratic
polynomials. Similarly, a ternary cubic polynomial solving H(P ) = cP for c 6= 0 is
affinely equivalent to a product of linearly independent linear forms if c > 0, and to a
product of a linear form and degenerate quadratic form if c < 0. Among other things,
this implies that a cubic ternary polynomial solution of (1.11) is necessarily reducible
and decomposable as a product of lower dimensional solutions. In general, products
of appropriate powers of polynomial solutions of (1.11) for some m and c are again
solutions, for some other m and c. In particular, a product of powers of linear forms
and quadratic polynomials solves an equation of the form (1.11). While this shows that
equations of the form (1.11) admit solutions of arbitrarily many variables and arbitrary
degrees, it also suggests that polynomial solutions of (1.11) are most interesting when
they are irreducible as polynomials. As is explained precisely in section 3, a large
class of irreducible polynomials solving (1.11) is given by the relative invariants of
irreducible regular real prehomogeneous vector spaces, (note that irreducible is used
here with two different meanings).

Theorem 1.5.
(1) Given a real form of a regular irreducible complex prehomogeneous vector

space (G,V, ρ), the restriction P to the real points VR of V of an appropriate
scaling of the relative invariant of (G,V, ρ) is an irreducible homogeneous real
polynomial solving (1.11). A connected component of a nonzero level set of
such a P is a homogeneous affine sphere.

(2) If the complex polynomial P is the relative invariant of a regular irreducible
complex prehomogeneous vector space (G,V, ρ) then the real polynomial |P |2 =
PP̄ solves (1.11). A connected component of a nonzero level set of |P |2 is a
homogeneous affine sphere.

An affine sphere is homogeneous if it is contained in an orbit of some group of affine
transformations. The conclusion of Theorem 1.5 is valid under a hypothesis milder
than the irreducibility of (G,V, ρ), namely that the singular set of (G,V, ρ) be an
irreducible hypersurface. The result is proved in this generality as Theorem 3.2.

In conjunction with the Sato-Kimura classification of irreducible regular complex
prehomogeneous vector spaces, Theorems 1.3 and 1.5 give many explicit examples of
affine spheres and solutions of (1.11). Among the simplest examples are the nonzero
level sets of the discriminant,

P = x2
2x

2
3 + 18x1x2x3x4 − 4x1x

3
3 − 4x3

2x4 − 27x2
1x

2
4, (1.12)

of the binary cubic form f(u, v) = x1u
3 + x2u

2v + x3uv
2 + x4v

3. This solves
H(P ) = 2435P 2. The action of GL(2,R) on S3(R2) is irreducible and prehomoge-
neous, and has P as relative invariant, so by Theorem 1.5, the nonzero level sets of P
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are proper affine spheres homogeneous for the induced action of SL(2,R). In this case
the Hessian metric g has split signature, and so the equiaffine metrics of the resulting
three-dimensional affine spheres have indefinite signature. A more impressive example
comes from the prehomogeneous action of the real form GL(1,R)×E6(6) on the 3× 3
Hermitian matrices over the split octonions. The relative invariant is the cubic form
stabilized by E6(6) and can be identified with P (X,u, v) = Pf(X) + utXv where X is

a 6×6 skew-symmetric matrix and u, v ∈ R6. Then P ∈ Pol3(R27) solves H(P ) = 2P 9.
For illustration, an incomplete list of examples obtained in this way is given in section
3; the preceding examples are entries 6 and 12. A perusal of the examples shows that
most can be realized as level sets of determinants, Pfaffians, or discriminants (in the
sense of [12]). For example, the Cayley hyperdeterminant ([4]) of a covariant 3-tensor
on a two-dimensional complex vector space V arises as the relative invariant for the
irreducible action of GL(2,C)×GL(2,C)×GL(2,C) on ⊗3V∗. This action has seven
orbits, so Theorem 1.5 applies. If X ∈ ⊗3V∗ is written as the polynomial

X = x1u
3 + x2u

2v + x3uvu+ x4vu
2 + x5uv

2 + x6vuv + x7v
2u+ x8v

3, (1.13)

in noncommuting variables u and v, then its hyperdeterminant is

P (X) = DetX = (x2
1x

2
8 + x2

2x
2
7 + x2

3x
2
6 + x2

4x
2
5) + 4(x1x5x6x7 + x2x3x4x8)

− 2(x1x2x7x8 + x1x3x6x8 + x1x4x5x8

+ x2x3x6x7 + x2x4x5x7 + x3x4x5x6).

(1.14)

The polynomial (1.14) solves H(P ) = 283P 4, and a nonzero level set of (1.14) in ⊗3R2

is a proper affine sphere, homogeneous for the induced action of SL(2,R)×SL(2,R)×
SL(2,R), and with induced metric of maximally mixed signature. More generally,
Corollary 3.3 shows that if the action ρ of G = GL(k1 + 1,C)×· · ·×GL(kr + 1,C) on
the dual W of the outer tensor product of the standard representations of its factors
is prehomogeneous, then the hyperdeterminant of format (k1 + 1, . . . , kr + 1) is the
fundamental relative invariant for this action, and hence its nonzero levels over the real
field are proper affine spheres. In general the prehomogeneous vector space (G, ρ,W)
is not reduced, and Lemma 3.4 shows that in this case the hyperdeterminant of format
(k1 + 1, . . . , kr + 1) can be obtained via castling from a standard determinant of a
square matrix, the hyperdeterminant of format (2, 2, 2), or the hyperdeterminant of
format (3, 3, 2).

By Theorem 1.1, the level sets of a translationally homogeneous function F satis-
fying H(F ) = cFn+1 are improper affine spheres. The equation H(F ) = cFn+1 results
from (1.11) when the homogeneity degree k tends to ∞, so in some formal sense the
analogue for this equation of degree k homogeneous polynomial solutions of (1.11)
should be functions that somehow can be regarded as polynomials homogeneous of
infinite degree. It turns out that this makes sense if one regards a translationally
homogeneous exponential of a weighted homogeneous polynomial as having infinite
homogeneity degree. Precisely, there can be constructed translationally homogeneous
solutions F of H(F ) = cFn+1 having the form F = eP where the weighted homoge-
neous polynomial P is the characteristic polynomial of a left symmetric algebra for
which the right trace form is nondegenerate, the left multiplication operators are tri-
angular in some basis, and the derived Lie subalgebra has codimension one. The level
sets of P are homogeneous improper affine spheres. The simply-connected solvable
Lie group corresponding to the underlying Lie algebra acts with an open orbit equal
to the complement of the zero set of its relative invariant P , and so these examples
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fit into a common framework with the homogeneous proper affine spheres described
above. However, since recounting the background on left symmetric algebras nec-
essary to prove these claims takes considerable space, these results will be reported
elsewhere.

2. Auto-isoparametric conditions and the proof of Theorem 1.1. Lemma
2.1 gives an explicit formula for the affine normal of a level set that coincides with
that of Theorem 1 of [13], modulo differences in notation.

Lemma 2.1 (J. Hao and H. Shima, [13]). Let F be a C∞ function defined on some

open subset of Rn+1 and let gij = ∇̂idFj. Let Ω be a (Euclidean) connected component
with nonempty interior of the region on which F , dF , H(F ), and U(F ) are nonvan-
ishing. For r ∈ R let Σr(F,Ω) = {x ∈ Ω : F (x) = r}. By assumption H(F ) does not
change sign on Σr(F,Ω) and F i = gijFj is nonzero on Ω, so is transverse to Σr(F,Ω),
which is therefore co-orientable. Let µ = (n+ 2)−1d logU(F ) and A(F ) = 1− F pµp.
The equiaffine normal of Σr(F,Ω) consistent with the co-orientation determined by
− sgn(H(F )U(F ))F i = − sgn(|dF |2g)F i has the explicit expression

Wi = −|U(F )|1/(n+2)
(
U(F )−1H(F )A(F )F i + µi

)
= g̃ip

(
A(F )|ν|−2

g̃ νp − µp
)
, (2.1)

where the the equiaffine conormal one-form νi = −|U(F )|−1/(n+2)Fi annihilates the
tangent space to Σr(F,Ω) and satisfies νiW

i = 1, the equiaffine metric of Σr(F,Ω)
equals the restriction of

g̃ij = |U(F )|−1/(n+2)gij = −∇̂iνj − µiνj , (2.2)

and g̃ij is the symmetric bivector inverse to g̃ij. Moreover, dν = ν ∧ µ.

The co-orientation convention in Lemma 2.1 is such that for a locally uniformly
convex hypersurface the equiaffine normal points to the convex (interior) side of the
surface.

Proof. Let h and τ be respectively the second fundamental form and con-
nection one-form on Σr(F,Ω) determined by the transversal N i = H(F )F i, and
let W = a(N + Z) be the equiaffine normal. For X tangent to Σr(F,Ω), 0 =

dF (X) = (∇̂XdF )(N) = dU(F )(X)− U(F )τ(X), so τI = U(F )−1U(F )I = (n+ 2)µI .
Note that this equality refers only to the tangential directions. For X and Y
tangent to Σr(F,Ω), g(X,Y ) = (∇̂XdF )(Y ) = −U(F )h(X,Y ), so that hij =
−U(F )−1

(
gij − H(F )U(F )−1FiFj

)
satisfies F phip = 0 and restricts on Σr(F,Ω) to

the second fundamental determined by N i. Let X1, . . . , Xn be h-orthogonal vector
fields tangent to Σr(F,Ω) such that |h(XI , XI)| = 1, so that |volh(X1, . . . , Xn)| = 1.
Since |g(XI , XI)| = |U(F )| and |g(N,N)| = |H(F )U(F )|, by the definition of the
volume density volg of the metric gij ,

|Ψ(N,X1, . . . Xn)| = |H(F )|−1/2|volg(N,X1, . . . , Xn)| = |U(F )|(n+1)/2, (2.3)

so that q = |volh/ι(N)Ψ| = |U(F )|−(n+1)/2 and 2q−1dqI = −(n + 1)τI . In (1.8) this
yields ZPhPI = −(n+2)−1τI = −µI and |a| = |U(F )|−(n+1)/(n+2). Since Z is tangent
to Σr(F,Ω), for X tangent to Σr(F,Ω) there holds g(Z,X) = −U(F )h(Z,X) = (n+
2)−1XIU(F )I . Consequently the vector field Zi = U(F )(gij − U(F )−1H(F )F iF j)µj
equals ZI along each level set Σr(F,Ω), and it follows that the equiaffine normal
on Σr(F,Ω) consistent with the co-orientation determined by − sgn(H(F )U(F ))F i is
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given by the first equality of (2.1). The claims involving g̃ij follow straightforwardly.
Skew-symmetrizing (2.2) shows dν = ν ∧ µ.

Lemma 2.2. With the setup as in Lemma 2.1, the mean curvature of Σr(F,Ω)

with respect to ∇̂ and the transversal F i equals −n−1(n+ 2)A(F ).

Proof. Define τ̃i = |dF |−2
g

(
di|dF |2g − Fi

)
and

S̃i
j = −∇̂iF j + τ̃iF

j = −δi j + Fip
jF p + |dF |−2

g

(
di|dF |2g − Fi

)
F j

= −δi j + Fip
jF p −

(
di logH(F )− (n+ 2)µi + |dF |−2

g Fi
)
F j .

(2.4)

From di|dF |2g = 2Fi − FipqF
pF q, it follows that FjS̃i

j = 0, so it makes sense to

speak of the restriction S̃I
J of S̃i

j to the tangent bundle of Σr(F,Ω), and S̃I
I = S̃i

i.
It follows from (2.4) that S̃I

J is the shape operator associated with the transversal
F i. Hence the mean curvature with respect to F i is S̃I

I = S̃p
p = −(n + 2) +

F pdp logH(F ) + F pdp log |dF |2g = −(n+ 2)A(F ).

By (1.4), the condition that U(F ) be a function of F is preserved when F is
replaced by an external reparameterization ψ ◦F by a C1 function ψ. In short, this is
really a condition about the geometry of the level sets of F , rather than about F per
se. Lemma 2.3 shows that the local constancy of U(F ) on the levels of F is equivalent
to the preservation of the levels of F by the flow generated by their affine normals.

Lemma 2.3. Suppose given connected open subsets Ω ⊂ Rn+1 and I ⊂ R and a
function F ∈ C∞(Ω) such that neither H(F ) nor U(F ) vanishes on ΩI = F−1(I)∩Ω.
Then the following are equivalent:

(1) U(F ) is locally constant on Σr(F,ΩI) for each r ∈ I.
(2) The equiaffine normal Wi is a multiple of F i.
(3) The equiaffine conormal one-form ν is closed, dν = 0.
(4) There holds LWν = 0.
(5) The flow generated by the equiaffine normal preserves the level sets of F .

If there hold (1)-(5), then the affine mean curvature of Σr(F,ΩI) is the restriction of

n−1(n+ 2) sgn(U(F ))H(F )|U(F )|−(n+1)/(n+2)A(F ), (2.5)

where A(F ) is defined in Lemma 2.1, and the tensor Si
j defined by

Si
j = −∇̂iWj + sgn(U(F ))U(F )−(n+1)/(n+2)H(F )A(F )νiW

j

= sgn(U(F ))H(F )|U(F )|−
n+1
n+2

(
δi
j − Fip jF p

+
(
di logH(F ) + U(F )−1H(F ) ((n+ 2)A(F )− (n+ 1))Fi

)
F j
)
,

(2.6)

satisfies FjSi
j = 0, so restricts along Σr(F,ΩI) to the equiaffine shape operator of

Σr(F,ΩI).

Proof. By the assumption that U(F ) does not vanish on ΩI , F
i is transverse to

Σr(F,Ω) for r ∈ I. The flow of a smooth vector field X preserves a codimension one
smooth foliation of an open manifold M if and only if β∧LXβ = 0 for any one-form β
annihilating the tangent distribution of the foliation. In particular, (5) is equivalent
to ν ∧ LWν = 0. By the definition of ν, (1) holds if and only if dν = µ ∧ ν = 0, and
by (2.1), this holds if and only if Wi = − sgn(U(F ))H(F )|U(F )|−(n+1)/(n+2)F i. This
shows (1)⇐⇒ (3)⇐⇒ (2). From dν = ν∧µ there follow LWν = ι(W)dν = µ−µ(W)ν
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and ν ∧ LWν = ν ∧ µ = dν, which yield the implications (3) =⇒ (4) =⇒ (5) =⇒ (3).
Lemma 2.2 gives the mean curvature of a level set of F with respect to the transversal
F i. Rescaling a transversal by ef multiplies the corresponding shape operator by ef .
With this observation, (2) and Lemma 2.2 imply that the affine mean curvature of
Σr(F,ΩI) is (2.5). Likewise, applying this observation to (2.4), and simplifying using
µi = |dF |−2

g (1− A(F ))Fi yields the second equality of (2.6). That FjSi
j = 0 follows

from FjS̃i
j = 0. The first equality of (2.6) follows from (2.1) and (2.2).

A vector field X is projectively geodesic with respect to the torsion-free affine
connection ∇ if its integral curves are projective (unparameterized) geodesics of ∇,
that is, if X ∧ ∇XX = 0. If X̃ = cX and ∇̃ = ∇ + 2γ(iδj)

k then X̃ ∧ ∇̃X̃X̃ =
c3X ∧ ∇XX, so this condition depends only on the span of X and the projective
equivalence class [∇] of ∇. Consequently, it makes sense to say that a line field is
projectively geodesic with respect to [∇] if any local section X of the line field is
projectively geodesic with respect to any representative ∇ ∈ [∇]. For example, for F
with dF and H(F ) nonvanishing, the line field spanned by F i is always projectively
geodesic with respect to the g-conjugate connection ∇̄ = ∇ + Fij

k. That the affine

normal distribution be projectively geodesic with respect to ∇̂ means that the images
of the integral curves of W are contained in straight lines.

Lemma 2.4. Suppose given connected open subsets Ω ⊂ Rn+1 and I ⊂ R and a
function F ∈ C∞(Ω) such that neither H(F ) nor U(F ) vanishes on ΩI = F−1(I) ∩
Ω, and U(F ) is locally constant on Σr(F,ΩI) for r ∈ I. Let D be the Levi-Civita
connection of gij. Then the following are equivalent:

(1) The affine normal distribution is projectively geodesic with respect to ∇̂.
(2) The affine normal distribution is projectively geodesic with respect to D.
(3) The affine normal distribution is projectively geodesic with respect to every

member of the affine line in the space of of connections passing through ∇̂
and D.

(4) H(F ) is locally constant on the level sets Σr(F,ΩI) for r ∈ I.

Proof. By Lemma 2.3 the affine normal distribution is spanned by F i and there
holds (2.6), so for Xi tangent to Σr(F,ΩI) there holds

0 = sgn(U(F ))H(F )−1|U(F )|(n+1)/(n+2)FjX
i∇̂iWj

= Fj
(
Xj − Fpq jXqF q +Xpdp logH(F )F j

)
=
(
|dF |2gdj logH(F )− FpqjF pF q

)
Xj ,

=
(
|dF |2gdj logH(F ) + 2F pDpFj

)
Xj ,

(2.7)

in which the last equality follows from 2F pDpFi = di|dF |2g = 2Fi −FipqF pF q. Equa-

tion (2.7) implies that d logH(F ) ∧ dF = 0 if and only if F ] ∧DF ]F
] = 0, where F ]

means F i. This shows the equivalence of (2) and (4). By the affine line of connec-

tions determined by ∇̂ and D is meant the one-parameter family of affine connections
∇̃ = ∇+ tFij

k. The cases t = 1/2 and t = 1 yield, respectively, D and the connection

∇̄ that is g-conjugate to ∇. Since F p∇̃qF i = F i + (t − 1)F pF qFpq
i, for t 6= 1 there

holds F ] ∧ ∇̃F ]F ] = 0 if and only if there holds F[iFj]pqF
pF q = 0. Since F ] is always

projectively geodesic for ∇̄, this shows the equivalence of (1), (2), and (3).

Say that F is locally auto-isoparametric on ΩI if ∆gF = gijDiFj and |dF |2g are
locally constant on Σr(F,ΩI) for each r ∈ I; that is, F is an isoparametric function
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with respect to gij .

Lemma 2.5. Suppose given connected open subsets Ω ⊂ Rn+1 and I ⊂ R and a
function F ∈ C∞(Ω) such that neither H(F ) nor U(F ) vanishes on ΩI = F−1(I)∩Ω.
Suppose that U(F ) and H(F ) are locally constant on Σr(F,ΩI) for each r ∈ I. Then
F is locally auto-isoparametric on ΩI .

Proof. The hypotheses mean d logH(F ) ∧ dF = 0 and µ ∧ dF = 0, so, by (1.1),
d|dF |2g ∧dF = 0. Since di|dF |2g = 2Fi−FipqF pF q, there is a smooth function b on ΩI
such that FipqF

pF q = bFi. Differentiating ∆gF = n+ 1− (1/2)F pdp logH(F ) yields

− 2di∆gF = di logH(F ) + F p∇̂idp logH(F )− Fip qF pdq logH(F ). (2.8)

There is a smooth function a on ΩI such that di logH(F ) = aFi. Since

∇̂idj logH(F ) = agij + aiFj is symmetric there is a smooth function c on ΩI such
that ai = cFi. In (2.8) this yields

− 2di∆gF = aFi + F p(agip + cFiFp)− aFipqF pF q = (a(2− b) + c|dF |2g)Fi, (2.9)

which proves that dF ∧ d∆gF = 0.

The remainder of this section is devoted to the proof of Theorem 1.1. Let λ, α ∈ R
and ε ∈ {0, 1} and suppose λα = 0, εα = 0, and λ 6= 1 − ε. A function F ∈
C∞(Ω \ Σ−α/λ(F,Ω)) ∩ C0(Ω) is in Aλ,εα if and only if there is a v ∈ Rn+1 such

that EpFp = λF + α, where Ei = (1 − ε)Xi + (2ε − 1)vi. Since ∇̂iEj = (1 − ε)δi j ,
differentiating EpFp = λF + α yields EpFpi1...ik = (λ + k(ε − 1))Fi1...ik . Then, for
F ∈ Aλ,εα there hold

(λ− 1 + ε)F i = Ei, (λ− 1 + ε)U(F ) = (λF + α)H(F ). (2.10)

Tracing EpFijp = (λ− 2 + 2ε)Fij and combining the result with (2.10) yields

EpH(F )p = H(F )EpFpq
q = (n+ 1)(λ− 2 + 2ε)H(F ), A(F ) = n(1−ε)

(n+2)(λ−1+ε) . (2.11)

Lemma 2.6. Given an open domain Ω ⊂ Rn+1 and constants λ, α, r ∈ R and
ε ∈ {0, 1} such that λα = 0, εα = 0, and λr + α 6= 0, the level set Σr(F,Ω) of
F ∈ Aλ,εα (Ω) is smoothly immersed and transverse to Ei = (1 − ε)Xi + (2ε − 1)vi for
some v ∈ Rn+1. If, moreover, λ 6= 1− ε, then the level set Σr(F,Ω) is nondegenerate
if and only if H(F ) does not vanish on Σr(F,Ω), in which case dF and U(F ) do not
vanish on Σr(F,Ω), and the equiaffine normal Wi of Σr(F,Ω) is

Wi =− 1
(n+2)(λ−1+ε)

∣∣∣ (λF+α)H(F )
λ−1+ε

∣∣∣1/(n+2)

×
(
n(1−ε)+λ
λF+α Ei + (λ− 1 + ε)(d logH(F ))i

)
.

(2.12)

Proof. By assumption there is v ∈ Rn+1 such that EiFi(x) = λF (x) + α, where
Ei = (1 − ε)Xi + (2ε − 1)vi. Since for x ∈ Σr(F,Ω), EiFi(x) = λr + α 6= 0, dF
does not vanish on Σr(F,Ω) and so the level set Σr(F,Ω) is smoothly immersed;
moreover, the vector field E is transverse to Σr(F,Ω). Let h be the corresponding
second fundamental form. For X and Y tangent to Σr(F,Ω) there hold

HessF (X,Y ) = (∇̂XdF )(Y ) = −dF (E)h(X,Y ) = −(λr + α)h(X,Y ),

HessF (X,E) = (λ− 1 + ε)dF (X) = 0,

HessF (E,E) = (∇̂EdF )(E) = (λ− 1 + ε)(λr + α),

(2.13)
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along Σr(F,Ω). If λ 6= 1 − ε and λr + α 6= 0, it follows from (2.13) that h is
nondegenerate if and only if HessF is nondegenerate on Σr(F,Ω), or, equivalently,
H(F ) does not vanish along Σr(F,Ω). In this case, since H(F ) does not vanish on
Σr(F,Ω) it follows from (2.10) and λr + α 6= 0 that neither dF nor U(F ) vanishes
there. Substituting (2.10) and (2.11) into (2.1) yields (2.12).

Proof of Theorem 1.1. The equivalence of (1) and (2) of Theorem 1.1, and that
in this case that ψ is related to φ as indicated in (1.9), are immediate from (2.10) and
(2.11).

Suppose there holds (3) or (4) of Theorem 1.1. That is, F ∈ Aλ,εα (Ω) and there is a
connected open interval I ⊂ R\{−α/λ} such that for all r ∈ I each level set Σr(F,ΩI),
equipped with the co-orientation of its components consistent with − sgn(|dF |2g)F i,
is an affine sphere with center v and affine mean curvature H, if ε = 0, or is an
affine sphere with affine normal parallel to v, if ε = 1. Because by assumption each
connected component of Σr(F,ΩI) is nondegenerate, Lemma 2.6 implies that neither
H(F ) nor U(F ) vanishes on Σr(F,ΩI). A posteriori, this justifies assigning to each
component the co-orientation given by − sgn(|dF |2g)F i.

Suppose ε = 0. By assumption Wi = −HEi along Σr(F,ΩI). Comparing with
(2.12) shows that di logH(F ) is a multiple of Epgpi = (λ − 1)Fi, which implies that
H(F ) is locally constant on Σr(F,ΩI). Contracting −HEi with νi shows that, along
Σr(F,ΩI),

H = sgn(λr + α)|λ− 1|−1/(n+2)|λr + α|−(n+1)/(n+2)|H(F )|1/(n+2). (2.14)

Consequently, |H(F )| = sgn(λr+α)|λ−1|(λr+α)n+1Hn+2. The sign of H(F ) does not
change on each connected component of Σr(F,ΩI). By assumption the signatures of
the second fundamental forms of the connected components of Σr(F,ΩI) are the same
modulo 4, and by (2.13) this implies that the signatures of HessF on the different
connected components are the same modulo 4, and so the signs of H(F ) on the different
connected components must be the same. This means that |H(F )| can be replaced
coherently by one of ±H(F ) on all of Σr(F,ΩI). Since, also by assumption, the values
of H on the different connected components are the same, it follows that H(F ) is
constant on Σr(F,ΩI). Since this holds for each r ∈ I, there is a function φ defined
on I such that H(F ) = φ(F ) on ΩI . This proves the implication (3) =⇒ (1) of
Theorem 1.1. Now suppose ε = 1. Then, by assumption, W ∧ v = 0 along Σr(F,ΩI).
Comparing with (2.12) shows that di logH(F ) = cvi = cλFi for some c locally constant
on Σr(F,ΩI). Contracting with vi = λF i and using (2.11) yields (n+ 1)λ = cλ2F , so
that di logH(F ) = (n+1)F−1Fi. Hence F−n−1H(F ) is locally constant on Σr(F,ΩI).
As in the ε = 0 case the assumption that the signatures of the second fundamental
forms of the connected components of Σr(F,ΩI) are the same modulo 4 implies that
the sign of H(F ) is constant on Σr(F,ΩI). Since, by assumption, Wi = cvi for c
depending only on r and not the connected component of Σr(F,ΩI), it follows from
(2.12) that H(F ) is constant on Σr(F,ΩI).

The implications (1) =⇒ (3) and (1) =⇒ (4) of Theorem 1.1 are proved as follows.
Suppose λ 6= 1 − ε and λr + α 6= 0 for r ∈ I. If F ∈ Aλ,εα (Ω) solves H(F ) = φ(F )
on ΩI for some nonvanishing function φ : I → R, then by Lemma 2.6, each level
set Σr(F,ΩI) is nondegenerate and dF and U(F ) do not vanish on Σr(F,ΩI). In
particular, the equiaffine normal Wi is defined on ΩI . Since H(F ) is constant on
Σr(F,ΩI), there holds d logH(F )∧dF = 0 on ΩI . Hence, by (2.10), (d logH(F ))i is a
multiple of F i = (λ− 1 + ε)−1Ei. In (2.12) this shows that Wi is a multiple of Ei, so
that the connected components of Σr(F,ΩI) are affine spheres with a common center
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v, if ε = 0, or with affine normals parallel to v, if ε = 1. In the case ε = 0, there holds
(2.14) on each component of Σr(F,ΩI). Since by assumption H(F ) = φ(F ) depends
only on r, and not on the component, it follows that the affine mean curvatures of
different components of Σr(F,ΩI) are the same. In both cases, from the constancy
of H(F ) on each Σr(F,ΩI) and (2.13) it follows that the signatures of the distinct
connected components of Σr(F,ΩI) are the same modulo 4.

Suppose given F ∈ Aλ,εα (Ω), an open interval I ⊂ R \ {−α/λ}, and a function φ
defined on I such that H(F ) = φ(F ) for x ∈ ΩI . Since, by (2.11), H(F ) has positive
homogeneity (n + 1)(λ − 2 + 2ε), there holds φ(eλtr + αt) = e(n+1)(λ−2+2ε)tφ(r) for
r ∈ I and t sufficently small. In particular, this shows that φ is continuous on I.
Similarly, setting h(t) = (eλt − 1)r + αt,

lim
t→0

φ(r+h(t))−φ(r)
h(t) = lim

t→0

φ(eλtr+αt)−φ(r)
(λr+α)t

= lim
t→0

(e(n+1)(λ−2+2ε)t−1)
(λr+α)t φ(r) = (n+1)(λ−2+2ε)

λr+α φ(r),
(2.15)

so that φ is differentiable at r and φ′(r) = (n+1)(λ−2+2ε)
λr+α φ(r). When λ 6= 0, then

α = 0, and the general solution has the form φ(r) = B|r|(n+1)(λ−2+2ε)/λ for some
B 6= 0. If ε = 1, then this can be written φ(r) = Brn+1 for some B 6= 0. When λ = 0
and ε = 0 the general solution has the form Be−2(n+1)r/α for a nonzero constant
B. Hence φ must have one of the forms (1.9). That the affine mean curvature of
Σr(F,ΩI) has the form (1.10) follows upon substituting (1.9) in (2.14).

3. Relative invariants of prehomogeneous vector spaces. The theory of
prehomogeneous vector spaces is due to M. Sato. The background recalled below
is culled from [26], [27], and [19]. A triple (G,V, ρ) comprising a complex vector
space V, a connected complex linear algebraic group G, and a rational representation
ρ : G→ GL(V) is a prehomogeneous vector space if there is a proper algebraic subset
S ⊂ V, called the singular set, such that V \ S is a single (necessarily Zariski dense)
G orbit. While this definition can be extended to a not algebraically closed field such
as R, here it is more convenient to speak of a real form of a prehomogeneous vector
space than it is to speak directly of real prehomogeneous vector spaces.

A nonzero rational function Q on V is a relative invariant of (G,V, ρ) correspond-
ing to a rational character χ : G→ C× if ρ(g) ·Q = χ(g−1)Q for all g ∈ G. There hold
the following for relative invariants of a prehomogeneous vector space (see Proposition
2 in [27]):

(1) Any two relative invariants corresponding to a given rational character are
related by multiplication by a nonzero scalar.

(2) Any prime divisor of a relatively invariant polynomial is again a relative
invariant.

(3) A relative invariant is a homogeneous function.
There is a relative invariant corresponding to the rational character χ if and only

if kerχ contains the stabilizer in G of some (and hence any) v ∈ V\S (Proposition 4.19
of [26]). There exists a relative invariant of (G,V, ρ) if and only if S has an (Zariski)
irreducible component of codimension one (Corollary 4.6 of [26]). In this case each of
the irreducible components S1, . . . ,Sl of the codimension one part of S is the zero locus
of an irreducible polynomial Pi. The P1, . . . , Pl are algebraically independent relative
invariants and the multiplicative group of relative invariants is the free abelian group
they generate. That is, any relative invariant has the form λPn1

1 . . . Pnll for some
λ ∈ C and (n1, . . . , nl) ∈ Zl, and the group of characters corresponding to relative
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invariants is the rank l free abelian group generated by the rational characters χi
corresponding to the Pi. In particular, (G,V, ρ) has a relative invariant if and only if
S has an irreducible component of codimension one. In the case that S has a unique
codimension one irreducible component, every relative invariant is a constant multiple
of an integer power of the irreducible polynomial P defining that component. In this
case P is referred to as the relative invariant of (G,V, ρ), or the fundamental relative
invariant.

Given a complex prehomogeneous vector space (G,V, ρ), identify the complex
structure on V with an almost complex structure J , and let ∇ be the flat torsion-free
affine connection such that ∇J = 0 and the (1, 0) part ∇(1,0) of ∇ is the standard flat
holomorphic affine connection. Write d = ∂ + ∂̄ for the decomposition of the exterior
differential into its (1, 0) and (0, 1) parts. Then the complex algebraic Hessian of a
smooth function F is ∇(1,0)∂F . Define HC(F ) by det∇(1,0)∂F = H(F )Ψ2 where Ψ
is the parallel holomorphic volume form defined by the usual determinant, and Ψ2 is
its tensor square. Thus H(F ) is defined just as it was over the real field, though now
over the complex numbers. This construction works over any field of characteristic
zero and could be described in purely algebraic terms, although from the perspective
adopted here, in speaking of polynomials there is implicitly fixed a flat connection
(with respect to which the differentials of the variables constitute a parallel coframe).
If z1, . . . , zn (n = dim V) are coordinates such that dz1, . . . , dzn constitute a parallel

(complex) coframe, then H(F ) = det ∂2F
∂zi∂zj is the determinant of the matrix of second

partial (complex) derivatives of F . More generally, if X1, . . . , Xn is a frame in V such
that Ψ(X1, . . . , Xn)2 = 1, then H(F ) is the determinant of the matrix whose entries
are (∇dF )(2,0)(Xi, Xj). If, moreover, F is holomorphic, then (∇dF )(2,0) = ∇∂F .
When it is necessary to distinguish the real and complex versions of H(F ) they will
be written HR(F ) or HC(F ), but otherwise the superscript will be omitted, as the
interpretation should be clear from context.

A prehomogeneous vector space (G,V, ρ) is regular if there is a relative invariant
P such that H(P ) does not vanish identically. In this case H(P ) is also a relative
invariant, with the character (det−2 ρ)⊗ χdim V (where χ is the character of P ), for if
g ∈ G then

ρ(g) · H(P ) = (det ρ(g))2H(ρ(g) · P )

= (det ρ(g))2H(χ(g−1)P ) = (det ρ(g))2χ(g)− dim VH(P ).
(3.1)

Since H(P ) is a relative invariant, it has the form λPn1
1 . . . Pnll with nonnegative

exponents not all zero, and so it does not vanish on V \ S. The triple (G,V, ρ) is
irreducible if ρ is irreducible. If (G,V, ρ) is irreducible then, by Proposition 4.12 of
[26], there is up to multiplication by a constant factor at most one irreducible rel-
ative invariant polynomial P . In this case the degree k of the fundamental relative
invariant P divides 2 dim V, and it follows from (3.1) that the corresponding χ satis-
fies χ2 dim V/k = (det ρ)2. In particular, a regular irreducible prehomogeneous vector
space has a unique (up to multiplication by a nonzero constant) irreducible relatively
invariant polynomial P . What is essential here is the following consequence. Since
H(P ) is also relatively invariant, there must hold H(P ) = cPm for some c ∈ C× and
some nonnegative integer m. Note, however, that solutions of (1.11) have not yet
been obtained, since in general P has complex coefficients.

A real structure on a complex vector space V means a nontrivial antilinear involu-
tion τ : V→ V. The real points VR are those elements of V fixed by τ . There results an
identification V ' VR⊗R C. A real structure τ on V induces a real structure on End(V)
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defined by τ(ψ) = τ ◦ψ ◦ τ for ψ ∈ End(V). For the definition of a real structure on a
complex algebraic variety, and the corresponding notion of a real form of a complex
linear algebraic group, see [1]. A real form of (G,V, ρ) means a triple (GR,VR, ρ)
comprising a real form GR of G and a real form VR of V such that ρ : G → GL(V)
is an R-rational representation. In particular, ρ(GR) ⊂ ρ(G)R ⊂ GL(VR). Equiva-
lently, there are given real structures σ and τ on G and V, respectively, compatible
with ρ in the sense that ρ(σ(g)) = τ(ρ(g)) = τ ◦ ρ(g) ◦ τ for all g ∈ G, where
τ(ρ(g)) indicates the action on ρ(g) of the induced real structure on End(V), so that
ρ(σg) · v = τ(ρ(g)) · v = τ(ρ(g) · τ(v)). In this case the fixed point sets of σ and τ are
written GR and VR, and are called the real points of G and V, and (G,V, ρ) is said
to be defined over R. It is common in the literature to speak of the triple (G+

R , ρ,V),
where G+

R is the connected component of the identity in GR, as a real prehomogeneous
vector space. Although this has the virtue that it is the dense G+

R orbit that is most
directly the real form of the dense G orbit, here reference will only be made to the
real form (GR,VR, ρ) as just defined.

As G is by assumption linear algebraic, a complex prehomogeneous vector space
(G,V, ρ) can also be regarded as a real representation of the real Lie group underlying
G on the real vector space underlying V. For an irreducible real representation of a
real Lie algebra either its complexification is an irreducible complex representation or
it is the real representation underlying an irreducible complex representation admit-
ting no invariant complex structure. It follows that, modulo connectedness issues, an
irreducible real prehomogeneous vector space is either a real form of an irreducible
complex prehomogeneous vector spaces, or the real prehomogeneous vector space un-
derlying a complex prehomogeneous vector space. In either case, the relative invariant
of this associated complex prehomogeneous vector space yields the sought after solu-
tion of (1.11), in the manner stated in Theorem 1.5. Lemma 3.1 was communicated
to the author by Roland Hildebrand.

Lemma 3.1 (R. Hildebrand). Let P be a degree k homogeneous complex poly-
nomial P on the (n + 1)-dimensional complex vector space V and suppose P solves
HC(P ) = cPm for some c ∈ C×, where m = (n + 1)(k − 2)/k. Then the degree 2k
homogeneous real polynomial |P |2 = PP̄ solves

HR(|P |2) = (−4)n+1|c|2 1−2k
(k−1)2 |P |

2(n+1+m). (3.2)

Here the operator HC is defined with respect to the standard holomorphic volume form
Φ on V, while the operator HR is defined with respect to the real volume form Ψ =
(−2i)−n−1Φ ∧ Φ̄.

Proof. Let∇ be the standard flat holomorphic affine connection on V preserving Φ.
Let X be the position vector in VR, so that dP (X) = ∂P (X(1,0)) = kP . Let X1, . . . , Xn

be vectors in VR that with X span V over C and satisfy Φ(X(1,0), X
(1,0)
1 , . . . , X

(1,0)
n ) = 1,

and write X0 = X. Since P is holomorphic, ∇dP = ∇∂P has type (2, 0). By

definition HC(P ) is the determinant of the matrix with entries (∇∂P )(X
(1,0)
i , X

(1,0)
j ) =

(∇∂P )(Xi, Xj), 0 ≤ i, j ≤ n. Hence HC(P ) equals the product of k(k − 1)P =
(∇dP )(X,X) with det(∇∂P )(XI , XJ), where 1 ≤ I, J ≤ n. That is

det(∇∂P )(XI , XJ) = HC(P )/(∇dP )(X,X) = c
k(k−1)P

m−1. (3.3)

By definition Ψ(X
(1,0)
0 , . . . , X

(1,0)
n , X

(0,1)
0 , . . . , X

(0,1)
n ) = (−2i)−n−1, so

(−4)−n−1HR(|P |2) is the determinant of the matrix with four blocks con-

taining entries of the forms (∇d|P |2)(X
(1,0)
i , X

(1,0)
j ), (∇d|P |2)(X

(1,0)
i , X

(0,1)
j ),
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(∇d|P |2)(X
(0,1)
i , X

(1,0)
j ), and (∇d|P |2)(X

(0,1)
i , X

(0,1)
j ), where 0 ≤ i, j ≤ n. Because

∂̄P = 0, ∇d|P |2 = P̄∇(1,0)∂P +P∇(0,1)∂̄P̄ +∂P ⊗ ∂̄P̄ + ∂̄P̄ ⊗∂P . It can be supposed

that X
(1,0)
1 , . . . , X

(1,0)
n span the complex kernel of dP . Since d|P |2(X) = 2k|P |2 and

d|P |2(JX) = 0,

(∇d|P |2)(X(1,0),X(1,0)) = P̄ (∇dP )(X,X)

= k(k − 1)|P |2 = (∇d|P |2)(X(0,1),X(0,1)),

(∇d|P |2)(X(1,0),X(0,1)) = (∇d|P |2)(X(0,1),X(1,0)) = k2|P |2,

(∇d|P |2)(X
(1,0)
I , X

(0,1)
J ) = dP (XI)dP̄ (XJ) = 0.

(3.4)

Calculating using (3.3) and (3.4) yields

(−4)−n−1HR(|P |2)

= k2(1− 2k)|P |4 det(∇d|P |2)(X
(1,0)
I , X

(1,0)
J ) det(∇d|P |2)(X

(0,1)
I , X

(0,1)
J )

= k2(1− 2k)|P |2(n+2)|det(∇dP )(XI , XJ)|2 = |c|2 1−2k
(k−1)2 |P |

2(n+1+m).

(3.5)

Theorem 3.2. Let (G,V, ρ) be a regular complex prehomogeneous vector space
such that the codimension one part of its singular set is an irreducible hypersurface
in V. Then:

(1) Given a real form of (G,V, ρ), the restriction P to the real points VR of V of
an appropriate scaling of the relative invariant of (G,V, ρ) is an irreducible
homogeneous real polynomial solving (1.11). A connected component of a
nonzero level set of such a P is a homogeneous affine sphere.

(2) The real polynomial |P |2 = PP̄ solves (1.11) on V viewed as a real vector
space. A connected component of a nonzero level set of |P |2 is a homogeneous
affine sphere.

Proof. The assumption means that (G,V, ρ) has a fundamental relatively invariant
polynomial P that solves H(P ) = cPm for some c 6= 0, where m = (n + 1)(k −
2)/k and n + 1 = dim V. By Lemma 1.1 of [27], the restriction to the real points
VR of V of P is a complex multiple of a polynomial with coefficients in R, and the
corresponding character χ is defined over R. Normalizing P to have real coefficients,
it is straightforward to see that H(P ) has real coefficients as well, so in the equality
H(P ) = cPm, c can be taken to be real. Here H(P ) means the operator HC(P ) over C.
However, since P is holomorphic, ∇dP = ∇(1,0)∂P , so if X1, . . . , Xn+1 (n+1 = dim V)
is a basis of VR, then (∇dP )(Xi, Xj) = (∇(1,0)∂P )(Xi, Xj), and so HR(P ) = HC(P ).
Hence the restriction to VR of P solves (1.11), and so, by Theorem 1.3, the connected
components of the nonzero level sets of P are affine spheres. By construction the
connected component G0

R of the identity of the real group GR acts transitively on
each connected component of the complement VR \ {x ∈ VR : P (x) = 0}, each of
which is an open cone, and so its unimodular subgroup SG0

R = G0
R∩SL(n+1,R) acts

transitively on each connected component of a level set of P , showing that these level
sets are homogeneous. This shows (1). By Lemma 3.1 the degree 2k homogeneous
real polynomial |P |2 solves (3.2), and so, by Theorem 1.3, the connected components
of its level sets are affine spheres. The subgroup SG = {g ∈ G : |χ(g)| = 1}, where χ
is the character associated with P , acts transitively on each connected component of
a level set of |P |2. This shows (2).
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Proof of Theorem 1.5. By Proposition 4.12 of [26] an irreducible complex pre-
homogeneous vector space admits (up to multiplication by a nonzero scalar) at most
one irreducible relative invariant. Consequently, a regular irreducible complex pre-
homogeneous vector space has a unique (up to scalars) irreducible relative invariant,
and so Theorem 1.5 follows from Theorem 3.2.

Different real forms of (G,V, ρ) can give rise to affinely inequivalent P . For an
example, let V = C3 and let G = GL(1,C) × GL(1,C) × GL(1,C), acting on C3 by
scaling in each coordinate. Then S = {z ∈ C3 : P (z) = 0} where P (z) = z1z2z3.
Note that HC(P ) = 2P . The usual complex conjugation gives a real structure for
which the resulting real polynomial is P (x) = x1x2x3. Another real structure is
given by σ(z1, z2, z3) = (z̄1, z̄3, z̄2) and σ(ρ(g)z) = ρ(σ(g))σ(z). The real points VR

have the form (x1, x2 + ix3, x2 − ix3) for x ∈ R3, and the restriction to VR of P
is x1(x2

2 + x2
3), which is not (real) affinely equivalent to x1x2x3. It can be shown

that any solution P ∈ Pol3(R3) of H(P ) = cP with c 6= 0 is affinely equivalent to
x1x2x3 or x1(x2

2 + x2
3), according to the sign of c. Note that, in conjunction with

Lemma 3.1, P (z) = z1z2z3 yields a third solution of (1.11). Namely, the polynomial
|P |2 = (x2

1 + y2
1)(x2

2 + y2
2)(x2

3 + y2
3) solves H(|P |2) = 320|P |8.

There need not be a real form (GR,VR, ρ) of the prehomogeneous vector space
(G,V, ρ) corresponding to a real form GR of G, because it need not be the case that
there be a real structure on V compatible with that on G. Let dρ : g → V be the
induced representation of the Lie algebra g of G. By a theorem of E. Cartan (Theorem
1.1 of [26]) the image dρ(g) ⊂ gl(V) is reductive with one-dimensional center. Let GR

be a real form of G and let gR be its Lie algebra. Then dρ(gR) is a real form of dρ(GR)
and its semisimple part s is a real form of the semisimple part of dρ(g). If s is a split
real form there is always a corresponding real form of (G,V, ρ). On the other hand, in
the case that s is compact, there need not be a corresponding real form of (G,V, ρ).
If there is a real structure VR on V such that (GR,VR, ρ) is a real form of (G,V, ρ),
then ρ(GR) has one-dimensional center and its semisimple part S is compact. The
restriction to VR of the relative invariant P of (G,V, ρ) is invariant along the orbits of S,
which foliate an open subset of VR. Since S is compact it preserves a positive definite
inner product and so these orbits lie in spheres. In general this is incompatible with the
relative invariance of the restriction of P to VR unless P has degree 2. For a concrete
example, consider the prehomogeneous action ρ of GL(2,C) on V = S3(C2) induced by
the standard representation. The relative invariant P is given by (1.12) (viewed as a
complex polynomial). An element z1u

3 + z2u
2v+ z3uv

2 + z4v
3 of S3(C2) is identified

with the vector z = (z1, z2, z3, z4)t. The real structure on C2 defined by τz = z̄
induces the real structures on S3(C2) and GL(2,C) given by complex conjugation of
the coefficients and the corresponding (split) real form is that of example 6 in the list
below. The complexification of the quaternions H is isomorphic to the endomorphism
algebra of C2 and so the group GL(1,H) of invertible quaternions is a different real
form of GL(2,C). An identification of H with C2 induces an identification of the
simple part of GL(1,H) with a copy of SU(2) embedded in GL(2,C). Via ρ, GL(1,H)
acts on V. Suppose VR were a real form of V so that (GL(1,H),VR) were a real form of
(GL(2,C),V). Then P would be invariant under the induced action of SU(2) on VR.
Since SU(2) leaves invariant a quadratic form E on VR, if x ∈ VR is a generic point
for the action then there is a constant such that P (x) = cE2(x). By homogeneity,
P − cE2 vanishes on an open subset of VR, so is identically zero. This contradicts the
irreducibility of P .
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3.1. If 1 ≤ n < dim V = m then the tensor product of (G,V, ρ) with the standard
representation of GL(n,C) is prehomogeneous if and only if the tensor product of the
contragredient triple (G, ρ∗,V∗) with the standard representation of GL(m − n,C)
is prehomogeneous (see section 2 of [26] and section 7.1 of [19]). This is because
the Grassmannian Gr(n,V) of n-dimensional subspaces of V is isomorphic to the
Grassmannian Gr(m − n,V∗), and the conditions are respectively equivalent to G
having a Zariski open orbit in Gr(n,V) or Gr(m−n,V∗). Two prehomogeneous vector
spaces are castling transforms of one another when there is a triple (G,V, ρ) such that
one is isomorphic to the tensor product of (G,V, ρ) with the standard representation
of GL(n,C) and the other is isomorphic to the tensor product of the contragredient
triple (G, ρ∗,V∗) with the standard representation ofGL(m−n,C). A prehomogeneous
vector space is reduced if its dimension is minimal among those prehomogeneous vector
spaces in its castling class, and Proposition 2.12 of [26] shows that each castling
class contains a reduced triplet, unique up to equivalence of prehomogeneous vector
spaces. Two prehomogeneous vector spaces (G,V, ρ) and (G′, ρ′,V′) are said to be
equivalent if there is a linear isomorphism τ : V→ V′ and a rational group isomorphism
σ : ρ(G) → ρ′(G′) such that τ ◦ ρ(g) = (σρ(g)) ◦ τ for all g ∈ G. The essential point
here is that the images ρ(G) and ρ′(G′) are locally the same. The basic example is
that (SL(2,C)× SL(2,C), ρ× ρ,C2 ⊗C2) and (SO(4,C), ρ,C4) are equivalent, where
in both cases ρ indicates the standard representation, because SL(2,C) × SL(2,C)
and SO(4,C) are locally isomorphic, although not isomorphic.

Sato and Kimura classified the reduced irreducible complex prehomogeneous vec-
tor spaces up to equivalence. There are 29 that are regular, a unique one that is
not regular though admitting a relative invariant, and several that admit no relative
invariants (see section 7 of [26] or the appendix to [19]). Interesting examples of solu-
tions of (1.11) are obtained via Theorem 1.5 from the real forms of the regular spaces
appearing in the classification. The nonregular cases are not of interest here, because
they do not yield solutions to (1.11).

In order to summarize the Sato-Kimura classification conceptually, two special
classes of prehomogeneous vector spaces are described now. A prehomogeneous vector
space is said to be trivial if it has the form (G×GL(m,C), ρ⊗ ω,Cn ⊗Cm), where ω
is the standard representation of GL(m,C), and ρ is an n-dimensional representation
of the semisimple algebraic group G. As is commented after Definition 3.5 in [26], a
trivial prehomogeneous vector space is reduced unless G = SL(n,C) with m > n >
m/2, in which case the castling transform is reduced. By Proposition 5.1 of [26], a
trivial prehomogeneous vector space is regular if and only if m = n.

Let G be a connected, simply-connected simple complex Lie group with Z-graded
Lie algebra g = ⊕kgk. The connected subgroup G0 of G with Lie algebra g0 is
reductive and gradation preserving. By [32], the action of G0 on g1 induced from
the adjoint action of G on g has only finitely many orbits, so is prehomogeneous.
A prehomogeneous vector space equivalent to one of the form (G0, adG, g1) is said
to be parabolic and to have the type which G has in the classification of simple Lie
algebras. This notion is due to H. Rubenthaler in [23], where the irreducible regular
prehomogeneous vector spaces of parabolic type are classified.

Implicit in Rubenthaler’s [23] and [24] is the reformulation of the Sato-Kimura
classification as stating that a reduced regular irreducible prehomogeneous complex
vector space for a complex linear algebraic group G is equivalent to one of one of the
following types:

(1) A trivial prehomogeneous vector space (G×GL(n,C), ρ⊗ω,Cn⊗Cn), where
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ρ is an n-dimensional irreducible representation of the semisimple algebraic
group G 6= SL(n,C).

(2) A prehomogeneous vector space of parabolic type.
(3) The prehomogeneous vector space obtained by restricting a parabolic preho-

mogeneous vector space (G0, adG, g1) to some subgroup H ⊂ G0.

The G = SL(n,C) case is excluded from (1) because this case is parabolic of type
A2n+1, so is included in (2). The spaces of type (3) are six in number, and arise from
inclusions as subgroups of larger orthogonal groups of various Spin groups and the
group G2; see Table 1 and Remark 8.2 in [24]. This version of the classification is
obtained a posteriori, by comparing the Sato-Kimura classification with that of the
parabolic prehomogeneous spaces.

While listing all the possible real forms is straightforward in principle, since there
are in general several real forms corresponding to each of the 29 entries in the Sato-
Kimura table, it did not seem useful to do so here. Instead an incomplete list is given,
with the intention of illustrating the possibilities and highlighting some interesting
examples. The explicit forms of the representation ρ and the character χ are omitted
in some cases, for which they should be clear, or for which their definitions would
occupy too much space. The number in parentheses at the end of each entry in
the list indicates the corresponding entry in table I of section 7 of [26]. When the
prehomogeneous vector space is a real form of a prehomogeneous vector space of
parabolic type, this is indicated.

(1) A real form of a regular trivial prehomogeneous vector space. GR = G ×
GL(n,R) where G is a real form of a connected semisimple algebraic Lie group
with irreducible action σ on Cn, VR = Rn ⊗ (Rn)∗, ρ(g1, g2)X = σ(g1)Xgt2,
χ(g1, g2) = det(σ(g1)) det(g2) = det(g2), and P (X) = detX. When G =
SL(n,R) this is parabolic of type A2n+1. (1).

(2) GR = GL(1,R) × SL(n,C), VR = {X ∈ Cn ⊗ (Cn)∗ : X̄t = X}, ρ(r, g)X =
rgXḡt, χ(r, g) = r2|det g|2, and P (X) = detX. Parabolic of type A2n+1.
(1).

(3) GR = GL(n,R), VR = {X ∈ Rn ⊗ (Rn)∗ : Xt = X}, ρ(g)X = gxgt, χ =
det2(g), and P (X) = detX. Parabolic of type Cn. (2).

(4) GR = GL(2n,R), VR = {X ∈ R2n ⊗ R2n ∗ : Xt = −X}, ρ(g)X = gXgt,
χ(g) = det g, and P (X) = Pf X is the Pfaffian of X. Parabolic of type D2n.
(3).

(5) GR = GL(1,R) × SL(n,H), n > 1, VR comprises the n × n quaternionic
Hermitian matrices, χ = |det |2, and P (X) = detX. Parabolic of type D2n.
(3).

(6) GR = GL(2,R), VR = S3(R2), χ = det6, the action of GR is that induced
from the standard representation, P is the discriminant (1.12) of a cubic
form. Parabolic of type G2. (4).

(7) GR = GL(m,R) and VR = Ω3(Rm), where m = 6, 7, 8. Parabolics of types
E6, E7, and E8. (5), (6), and (7).

(8) GR = SL(3,R) × SL(3,R) × GL(2,R) acting on R3 ⊗ R3 ⊗ R2 via the outer
tensor product of the standard representations, χ = det12, P is the hyperde-
terminant of format (2, 3, 3) described below. Parabolic of type E6. (12).

(9) GR = Sp(n,R) × GL(2m,R), 2 ≤ 2m ≤ n, VR = R2m ⊗ R2n ∗, ρ(g1, g2) =
g1Xg

t
2, χ = det⊗det, and P (X) = Pf(XtJX) where J is an almost complex

structure on R2n and Sp(n,R) = {A ∈ End(R2n) : AtJA = J}. Parabolic of
type Cn+m. (13).
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(10) GR = SO(p, n − p) × GL(m,R), n ≥ 2m ≥ 2, VR = Rm ⊗ Rn ∗, ρ(g1, g2) =
g1Xg

t
2, χ = det⊗det2, and P (X) = detXtEpX where SO(p, n− p) = {A ∈

End(Rn) : AtEpA = Ep}. Parabolic of type B(n−1)/2 or Dn/2. (15).
(11) GR = GL(1,R) × E6(−26), VR is the 27-dimensional real exceptional Jordan

algebra of 3× 3 Hermitian matrices over the octonions, with GL(1,R) acting
by scalar multiplication, and P is the invariant cubic form on VR given by the
determinant. Parabolic of type E7. (27).

(12) GR = GL(1,R)×E6(6), VR is the 27-dimensional space of 3×3 Hermitian ma-
trices over the split octonions, with GL(1,R) acting by scalar multiplication,
and P is the invariant cubic form on VR given by the determinant. Parabolic
of type E7. (27).

(13) GR = GL(1,R)×E7(7), VR is the 56-dimensional irreducible representation of
the split real form E7(7), with GL(1,R) acting by scalar multiplication, and
P is the invariant quartic form. Parabolic of type E8. (29).

The polynomial associated with the n = 3 cases of (2) and (5), as well as (11), has
the form

x1x2x3 − x1|z2|2 − x2|z3|2 − x3|z1|2 + z̄1(z̄2z3) + (z̄3z2)z1, (3.6)

in which the xi are real and the zi are complex numbers, quaternions, or octonions,
respectively. Examples (1) (with G = SL(n,R)) and (2) are real forms of the complex
prehomogeneous vector space (SL(n,C)×GL(n,C),Cn ⊗ Cn ∗, ρ(g1, g2)X = g1Xg

t
2).

Their n = 3 cases yield respectively x1x5x9 − x1x6x8 − x2x4x9 + x3x4x8 + x2x6x7 −
x3x5x7 and the polynomial (3.6) (with z1 = x4 + ix5, etc.), which solve (1.11) with
m = 3 and c = −2 and c = 128, respectively. Incidentally, this shows that these
polynomials are not affinely equivalent, for were they, by (1.3) they would solve (1.11)
with c of the same sign.

3.2. Interesting examples of affine spheres are obtained as the nonzero level
sets of certain hyperdeterminants, e.g. (1.14). While these examples arise as relative
invariants of prehomogeneous vector spaces, they merit separate mention because they
can be found by a different line of thought which is also suggestive. Let V(1), . . . ,V(r)
be complex vector spaces of dimensions k1 + 1, . . . , kr + 1. The hyperdeterminant
of format (k1 + 1, . . . , kr + 1) is by definition a polynomial defining the subvariety
of P((V(1) ⊗ . . .V(r))∗) dual to the image P(V(1)) × · · · × P(V(r)) under the Segre
embedding into P(V(1)⊗ . . .⊗V(r)). The hyperdeterminant is determined up to sign
by the requirement that its coefficients be integers and that it be irreducible over Z.
It is nontrivial exactly when the variety dual to the Segre variety is a hypersurface,
which holds if and only if kj ≤

∑r
i 6=j ki for all 1 ≤ j ≤ r (see Corollary 5.10 of chapter

1 and Theorem 1.3 of chapter 14 of [12]). Write Det(A) for the hyperdeterminant of
A ∈ V(1)∗ ⊗ . . .⊗ V(r)∗.

Corollary 3.3. Let k1, . . . , kr be positive integers satisfying kj ≤
∑r
i 6=j ki for

1 ≤ j ≤ r, let V(1), . . . ,V(r) be complex vector spaces of dimensions k1 +1, . . . , kr+1,
and write W = V(1)∗ ⊗ . . . ⊗ V(r)∗. Let G = GL(V(1)) × · · · × GL(V(r)) and let
ρ be the irreducible representation of G on W arising as the contragredient of the
outer product of the standard representations of the factors GL(V(j)). If (G, ρ,W) is
prehomogeneous, then it is regular with fundamental relative invariant given by the
hyperdeterminant Det, and so the Hessian determinant of Det is equal to a nonzero
scalar multiple of a power of Det. Consequently there hold the following.

(1) A nonzero level set of the hyperdeterminant Det in the set WR of real points
of any real form of (G, ρ,W) is a proper homogeneous affine sphere.
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(2) A nonzero level set in W of the polynomial |Det |2 is a proper homogeneous
affine sphere.

Proof. The assumption on the format guarantees that Det is nontrivial. By
construction, Det is a relative invariant for the irreducible representation ρ of G on
W. If (G, ρ,W) is prehomogeneous, then, since it is irreducible, it admits up to scalars
at most one irreducible relative invariant. Since the Hessian of a relative invariant
is again a relative invariant, it will be the case that the Hessian determinant of Det
is a nonzero multiple of a power of Det provided that the former is nonzero. This is
implicit in the proof that the dual variety of the Segre embedding is a hypersurface;
see section 5 of chapter 1 of [12], Theorems 5.1 and 5.3 in particular; alternatively,
by Proposition 4.25 of [26] it follows from the reductivity of the stabilizer in G of
a generic point of W. Thus when the format (k1 + 1) × · · · × (kr + 1) is such that
the hyperdeterminant exists and (G, ρ,W) is prehomogeneous, then (G, ρ,W) is regular
with fundamental relative invariant given by Det, and therefore Det solves an equation
of the form (1.11). The remaining claims follow as in the proof of Theorem 3.2.

It makes sense to speak of the product of the real general linear groups acting on
the real form of V(1)∗⊗ . . .⊗V(r)∗ under complex conjugation, and the restriction to
this real form of the hyperdeterminant. For this real form of (G, ρ,W), conclusion (1)
of Corollary 3.3 in conjunction with Theorem 1.5 yields that a connected component
of a nonzero level set in V(1)∗R⊗ . . .⊗V(r)∗R of the hyperdeterminant, is a homogeneous
proper affine sphere.

In general (G, ρ,W) need not be prehomogeneous. An obvious necessary condition
for there to be an open G orbit in W is that

∑r
i=1(ki + 1)2−

∏r
i=1(ki + 1) = dimG−

dim W ≥ r − 1. The r − 1 arises because the dilations in the r factors all induce
dilations on W.

Lemma 3.4. Let k1, . . . , kr be positive integers satisfying kj ≤
∑r
i 6=j ki for 1 ≤

j ≤ r and suppose that the representation ρ of G = GL(k1 +1,C)×· · ·×GL(kr+1,C)
on the dual W of the outer tensor product of the standard representations of its factors
is prehomogeneous. Then the hyperdeterminant is the relative invariant obtained via
castling transformations from one of the following polynomials.

(1) The determinant of an n×n matrix viewed as the fundamental relative invari-
ant of the irreducible reduced trivial prehomogeneous vector space (SL(n,C)×
GL(n,C), ρ,Cn ⊗ Cn).

(2) The Cayley hyperdeterminant of format (2, 2, 2) viewed as the fundamen-
tal relative invariant of the irreducible reduced prehomogeneous vector space
(SL(2,C)× SL(2,C)×GL(2,C), ρ,C2 × C2 × C2).

(3) The hyperdeterminant of format (3, 3, 2) viewed as the fundamental relative
invariant of the irreducible reduced prehomogeneous vector space (SL(3,C)×
SL(3,C)×GL(2,C), ρ,C2 × C2 × C2).

Proof. By Theorem 2 of [16] or Theorem 5 of [21], the action of G on W has
finitely many orbits exactly when the format (k1 + 1, . . . , kr + 1) is one of (a), (a, b),
(2, 2, c), or (2, 3, c) where c ≥ 3. That G have finitely many orbits in W implies that
(G, ρ,W) is prehomogeneous. For hyperdeterminants it is interesting only to consider
cases with r ≥ 3. In this case the only formats for which there exists a nontrivial
hyperdeterminant and G has finitely many orbits are (2, 2, 2), (2, 2, 3), (2, 3, 3), and
(2, 3, 4), and the hypotheses of Corollary 3.3 are satisfied for these hyperdeterminants.

The format (2, 2, 2) gives the Cayley hyperdeterminant (1.14). Since SL(2,C) ×
SL(2,C) is locally isomorphic to SO(4,C), this hyperdeterminant can also be seen
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as arising as the relative invariant associated with the action of SO(4,C)×GL(2,C)
on C4 ⊗ C2; this is a special case of item (15) in the Sato-Kimura list (see 10 in the
list above). Likewise the hyperdeterminant of format (2, 3, 3) corresponds directly to
entry (12) in the Sato-Kimura list; see 8 in the list above.

If ab > c then the tensor product of format (a, b, c) is castling equivalent to
the tensor product of the format (a, b, c − ab). In particular the formats (2, 3, 4),
(2, 2, 3), and (1, 2, 2) are identified modulo castling and equivalence. The preho-
mogeneous vector space (GL(1,C) ⊗ GL(2,C) ⊗ GL(2,C), ρ,W = C ⊗ C2 ⊗ C2)
is equivalent to (SL(2,C) × GL(2,C), ρ,C2 ⊗ C2), which in turn is equivalent to
(GL(1,C)⊗ SO(4,C), ω,C4), where ω is the standard representation of SO(4,C) and
GL(1,C) acts by scalar multiplication. By Proposition 5.18 of [26] there is a one-to-
one correspondence between relative invariants of a prehomogeneous vector space and
relative invariants of its castling transform under which irreducible relative invariants
correspond to irreducible relative invariants. It follows that the hyperdeterminants of
formats (2, 3, 4) and (2, 2, 3) are obtained from each other via castling, and both are ob-
tained via castling from the fundamental invariant of (SL(2,C)×GL(2,C), ρ,C2⊗C2),
which is simply the determinant of 2× 2 matrices.

The correspondence between relative invariants of castling equivalent prehomo-
geneous vector spaces is given explicitly on pp.67− 68 of [26]. If (G×GL(n,C), ρ⊗
ω,V(m)⊗V(n)) and (G×GL(m−n,C), ρ∗⊗ωn,V(m)∗⊗V(m−n)) are castling equiva-
lent, then a relative invariant P of the first is given as a polynomial in the

(
m
n

)
minors

of an element of V(m)⊗ V(n), and the corresponding relative invariant of the second
prehomogeneous vector space is given by the same polynomial in the

(
m

m−n
)

minors of
V(m)∗⊗V(m−n). For example, the relative invariant ofGL(1,C)×GL(2,C)×GL(2,C)
acting on C2⊗C2 is given by the determinant P (x11, x12, x21, x22) = x11x22−x12x21.
For the castling equivalent space with GL(2,C) × GL(2,C) × GL(3,C) acting on
C2 ⊗ C2 ⊗ C3, take as coordinates the array xabi where a, b ∈ {1, 2} and i ∈ {1, 2, 3},
and regard these as the entries of a 4× 3 matrix, in which the expression 2a+ b− 2
in terms of the first two indices labels the row and the third index labels the column.
For 1 ≤ α < β < γ ≤ 4 let Xαβγ be the 3×3 minor of this 4×3 matrix corresponding
to the rows α, β, and γ. Then the relative invariant Q corresponding to P via castling
is Q(xabi) = X123X234 −X124X134. Modulo notation, this expression coincides with
that given in Example 3.8 of chapter 14 of [12] for the hyperdeterminant of format
(2, 2, 3).

The prehomogeneous vector space (G, ρ,W) is equivalent to (Ḡ, ρ,W) where Ḡ =
SL(k1 + 1,C)× · · ·×SL(kr−1 + 1,C)×GL(kr,C), because the images ρ(G) and ρ(Ḡ)
are the same. Note that (Ḡ, ρ,W) is a trivial prehomogeneous vector space if and only

if
∏r−1
i=1 (ki + 1) ≤ kr + 1. Since (Ḡ, ρ,W) is an irreducible prehomogeneous vector

space, it follows from Proposition 7.47 of [19] that it is reduced if and only if either it
is a trivial prehomogeneous vector space, or r ≤ 3 and, when r = 3, 2 ≤ k1 = k2 ≤ 3.
In the trivial case, for (SL(k1 + 1,C)×GL(k2 + 1,C), ρ,W) to be reduced and regular
it must be that k2 = k1; in this case the relative invariant is simply the determinant.
Suppose (Ḡ, ρ,W) is not trivial and is reduced. Then the format is either (2, 2, 2) or
(3, 3, 2). Together with Corollary 3.3 this completes the proof.

It would be interesting to explain what it means geometrically that affine spheres
arise as the level sets of a polynomial that is not reduced, and what is the geometric
relation between affine spheres arising as the level sets of polynomials related via
castling.

None of the preceding precludes the possibility that the Hessian determinant of a



HESSIAN DETERMINANTS AND AFFINE SPHERES 527

nontrivial hyperdeterminant, such as that of format (2, 2, 2, 2), is a multiple of a power
of the hyperdeterminant, although the underlying G action is not prehomogeneous.

3.3. Some of the examples of affine spheres obtained from relative invariants
of prehomogeneous vector spaces were already obtainable from other constructions.
The affine spheres given by Theorem 1.5 are necessarily homogeneous. All the locally
uniformly convex examples arising this way were obtainable by a construction of
Calabi. The characteristic function φΩ of a proper open convex cone Ω ⊂ Rn+1 is
the positive homogeneity −n− 1 real analytic function φΩ(x) =

∫
Ω∗ e

−xpypdy, where
Ω∗ = {y ∈ Rn+1 ∗ : xpyp > 0 for all x ∈ Ω̄ \ {0}}.

Theorem 3.5 (E. Calabi, [3]; T. Sasaki, [25]). If a closed subgroup G ⊂ GL(n+
1,R) acts transitively as automorphisms of a nonempty proper open convex cone Ω
then the orbit of any point of Ω under the action of the subgroup SG = G∩SL(n+1,R)
is a hyperbolic affine sphere, homogeneous under the action of SG, and contained in
a level set of the characteristic function of Ω.

Proof. Since g ·φΩ = det `(g)φΩ for g ∈ Aut(Ω), by (1.3), φ−2
Ω H(log φΩ) is Aut(Ω)

invariant, and so, because Ω is homogeneous, must equal a constant c ∈ R; because
Hess(log φΩ) is positive definite, c > 0. Since φΩ is homogeneous, this shows there
is a c > 0 such that H(log φΩ) = cφ2

Ω. By Theorem 1.1 the level sets of φΩ are the
proper affine spheres (of Theorem 1.2) foliating the interior of Ω. From the relative
invariance of φΩ it follows straightforwardly that the group Aut(Ω)∩SL(n+1,R) acts
transitively on the level sets of φΩ, so these are homogeneous proper affine spheres.

For example, the affine spheres determined by examples 2, 3, and 5 in the list
above, were found in [3] by applying Theorem 3.5. These three examples, and that
of 11, corresponding to the octonionic Hermitian matrices, are exactly the finite-
dimensional simple formally real Jordan algebras (see Theorem V.3.7 of [10]). As is
shown by Theorems 1.1 and 1.5, the convexity plays no essential role. By Theorem 2.3
of [9] there is a bijective correspondence associating with a semisimple real (necessar-
ily unital) Jordan algebra the symmetric cone comprising the connected component
containing the unit of the set of its invertible elements. This cone is the interior of
the cone of squares, and is acted on transitively by the identity component of the
structure group of the Jordan algebra, and so its complexification is a prehomoge-
neous vector space, which is irreducible if the Jordan algebra is simple. These are
the regular irreducible prehomogeneous vector spaces of commutative parabolic type.
The resulting Jordan algebra is either a real form of a simple complex Jordan algebra,
or the underlying real Jordan algebra of a simple complex Jordan algebra. Theorem
5.12 of R. Hildebrand’s [14] shows that the homogeneous affine spheres obtained from
simple real unital Jordan algebras via this observation and Theorem 1.5 are exactly
the affine spheres indecomposable with respect to the Calabi product and having cu-
bic form parallel with respect to the Levi-Civita connection of the equiaffine metric.
The simplest example given by Theorem 1.5 that does not arise from Jordan algebras
is (1.12).

To conclude, it is explained how to give sense to the statement that the complex-
ification of a homogeneous proper open convex cone Ω is a regular prehomogeneous
vector space, and, using this, to obtain the result of Vinberg that the square of its
characteristic function is a rational function. This yields an abundance of rational
solutions to an equation of the form (1.2). Since Ω is connected the connected com-
ponent Aut0(Ω) of the identity in Aut(Ω) also acts transitively on Ω. Since Ω is a
cone, Propositions I.13 and I.14 of [30], show that the normalizer in Aff(n + 1,R)
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of Aut0(Ω) is a linear algebraic group and its connected component of the identity
coincides with Aut0(Ω). Hence Aut(Ω) is a finite index subgroup of some linear al-
gebraic group G ⊂ GL(Rn+1). The orbits of G are finitely many disjoint images of
Ω. Hence the complexification GC of G acts on Cn+1 prehomogeneously, in such a
manner that the real points of the open orbit are the orbits of G. The action of G
need not preserve Ω. Rather, GΩ is a finite union of disjoint linear images of Ω by
elements of G. Let G0, . . . , Gr be the connected components of G, where G0 is the
component of the identity. For 1 ≤ i ≤ r there is gi ∈ Gi such that Gi = giG0.
Then Ωi = GiΩ = giG0Ω = giΩ is a linear copy of Ω. The different Ωi need not
be disjoint, but there are at most finitely many of them, Ω0 = Ω,Ω1, . . . ,Ωs. It fol-
lows from the definition that for any g ∈ aff(n + 1,R) fixing the vertex of Ω there
holds (g · φΩ)(x) = det `(g)φgΩ(x). Since G contains positive dilations, etgiΩ = Ωi,
and so, by replacing gi by etgi, it can be assumed that det `(gi) = ±1. Then
φΩi(gix) = φgiΩ(gix) = ±(gi · φΩ)(x). It follows that φ2

Ω extends coherently to
the union of the images Ωi. Since this extended function φ2

Ω is real analytic it can
be extended to a complex analytic function defined on the open orbit of GC, and
transforms in the manner necessary for it to be a relative invariant for the action of
GC. It needs to be shown that φ2

Ω is rational. By Proposition 2.11 of [19], the group of
characters of relative invariants of a complex prehomogeneous vector space (G,V, ρ)
is equal to the group of characters of G equal to 1 on the isotropy group of a point of
V in the open orbit of G. In the present setting, since the isotropy subgroup H in G
of x0 ∈ Ω coincides with the isotropy subgroup in Aut(Ω), and this group H preserves
the positive definite bilinear form given by the Hessian of log φΩ at x0, this group H is
contained in the kernel of the character det2 `(g) of G, and so its complexification HC,
which is the stabilizer in GC of x0, is likewise contained in the kernel of det2 `(g). It
follows that there is a relative invariant of (GC,Cn+1) corresponding to this character.
By homogeneity some nonzero multiple of φ2

Ω coincides with this relative invariant on
the open orbit, showing that φ2

Ω is rational. Since φΩ has nondegenerate Hessian on
Ω, the same is true for its extension to the complexification, and so this shows that
(GC,Cn+1) is a regular prehomogeneous vector space. In particular, the extension of
φ2

Ω is expressible as a constant multiple of a product of (possibly negative) integer
powers of irreducible polynomials defining the singular set of the action of GC. This
proves the following theorem due to Vinberg.

Theorem 3.6 (E. B. Vinberg; section III.4 of [30]). The square of the charac-
teristic function of a homogeneous proper open convex cone equals the restriction to
the cone of a rational function.

Since φ−2
Ω has positive homogeneity 2(n+ 1) and is rational, it is possible that it

is a polynomial, though it need not be so. For example, it follows from equation (1)
of section II.2 of [31] or the explicit formula (33) for φΩ in section III.4 of [30] that for
a self-dual homogeneous irreducible proper open convex cone Ω the function φ−2

Ω is a
polynomial. More precisely, in this case φ−2

Ω is a multiple of the determinant of the
quadratic representation of the Euclidean Jordan algebra having Ω as the interior of
its cone of squares (see Propositions III.4.2 and III.4.3 of [10]). On the other hand, in
[30], Vinberg constructed a 5-dimensional homogeneous irreducible convex cone not
linearly isomorphic to its dual, and the characteristic functions of this cone and its
dual can be computed explicitly and their squared reciprocals are rational but not
polynomial.
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MA, 1996, pp. 123–154.
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[15] K. Jörgens, Über die Lösungen der Differentialgleichung rt− s2 = 1, Math. Ann., 127 (1954),
pp. 130–134.

[16] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra, 64:1 (1980), pp. 190–213.
[17] D.-S. Kim and Y. H. Kim, Some characterizations of spheres and elliptic paraboloids, Linear

Algebra Appl., 437:1 (2012), pp. 113–120.
[18] , Some characterizations of spheres and elliptic paraboloids II, Linear Algebra Appl.,

438:3 (2013), pp. 1356–1364.
[19] T. Kimura, Introduction to prehomogeneous vector spaces, Translations of Mathematical Mono-

graphs, vol. 215, American Mathematical Society, Providence, RI, 2003.
[20] J. C. Loftin, Survey on affine spheres, Handbook of geometric analysis. Vol. II, Adv. Lect.

Math. (ALM), vol. 13, Int. Press, Somerville, MA, 2010, pp. 161–192.
[21] P. G. Parfenov, Orbits and their closures in the spaces Ck1 ⊗ · · · ⊗ Ckr , Mat. Sb., 192:1

(2001), pp. 89–112.
[22] A. V. Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata, 1:1

(1972), pp. 33–46.
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