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Abstract. In this paper, we develop several related finite dimensional variational principles
for discrete optimal transport (DOT), Minkowski type problems for convex polytopes and dis-
crete Monge-Ampere equation (DMAE). A link between the discrete optimal transport, the discrete
Monge-Ampere equation and the power diagram in computational geometry is established.
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1. Introduction.

1.1. Statement of results. The classical Minkowski problem for convex body
has influenced the development of convex geometry and differential geometry through-
out the twentieth century. In its simplest form, it states,
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Fig. 1. Minkowski problem

Problem 1 (Minkowski problem for compact polytopes in Rn). Suppose

n1, ..., nk are unit vectors which span Rn and A1, ..., Ak > 0 so that
∑k

i=1 Aini = 0.
Find a compact convex polytope P ⊂ Rn with exactly k codimension-1 faces F1, ..., Fk

so that ni is the outward normal vector to Fi and the area of Fi is Ai.

Minkowski’s famous solution to the problem says that the polytope P exists and is
unique up to parallel translation. Furthermore, Minkowski’s proof is variational and
suggests an algorithm to find the polytope. The Minkowski problem was generalized
to the smooth case by Alexandrov where the area function is given by the Gauss
curvature. Alexandrov [2] himself solved this generalized problem. The generalized
Minkowski problem reduces to solving some Monge-Ampere equation. The regularity
of the solution was studied by Pogorelov [12], Nirenberg [9] and Cheng and Yau [6].
In [6], Cheng and Yau gave a complete proof for the higher-dimensional Minkowski
problem in Euclidean spaces.
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Fig. 2. Discrete Optimal Transport Mapping (left to right): map Wi to pi. Discrete Monge-
Ampere equation (right to left): vol(Wi) is the discrete Hessian determinant of pi.

Minkowski problem for unbounded convex polytopes was considered and solved
by A.D. Alexandrov and his student A. Pogorelov. Unlike the bounded case, one needs
to deal with the infinite area unbounded faces. Their solutions are to prescribe the
hyperplanes which contain the unbounded faces and phrase the Minkowski problem
for bounded faces. Alexandrov solved the case where all unbounded faces are parallel
to a given line and Pogorelov solved the remaining case in which the unbounded
polytope contains a cone. In his influential book on convex polyhedra [1], Alexandrov
proved the following fundamental theorem (Theorem 7.3.2 and theorem 6.4.2) which
is one of the main foci of our investigation.

Theorem 1.1. (Alexandrov) Suppose Ω is a compact convex polytope with non-
empty interior in Rn, p1, ..., pk ⊂ Rn are distinct k points and A1, ..., Ak > 0 so that∑k

i=1 Ai = vol(Ω). Then there exists a vector h = (h1, ..., hk) ∈ Rk, unique up to
adding the constant (c, c, ..., c), so that the piecewise linear convex function

u(x) = max
1≤i≤k

{x · pi + hi}

satisfies vol({x ∈ Ω|∇u(x) = pi}) = Ai.

Note that Alexandrov stated his theorem in terms of the geometric language. The
above theorem is stated in terms of convex functions. We call the functions u and
�u(x) in the theorem the Alexandrov potential and the Alexandrov map. Alexandrov’s
proof is non-variational and non-constructive. Producing a variational proof of it was
clearly in his mind. Indeed, on page 321 of [1], he asked if one can find a variational
proof. One of the main results of the paper (theorem 1.2) gives a (finite dimensional)
variational proof Alexandrov’s Theorem 1.1. Indeed, we give a variational proof of
a general version of Theorem 1.1 (Theorem 1.2 below) and produce an algorithm for
finding the function u. Furthermore, our variational principle gives a new proof of
the infinitesimal rigidity result of Alexandrov (corollary 3.2).

In recent surge of study on optimal transport, Theorem 1.1 is reproved and is
a very special case of the work of Brenier [5] (see also for instance [15], Theorem
2.12(ii), and Theorem 2.32). Brenier proved, among other things, that the function
�u minimizes the quadratic cost

∫
Ω
|x−T (x)|2dx among all measure preserving maps

(transport maps) T : (Ω, dx) → (Rn,
∑k

i=1 Aiδpi). Here δp is the Dirac measure

supported at the point p. In this special case of finite image measures
∑k

i=1 Aiδpi , an
excellent proof that �u minimizes the quadratic cost can also be found in ([4] Lemma
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1). We reproduce their proof in §3.6 for completeness. Thus our work produces a finite
dimensional variational principle and an algorithm for finding optimal transport maps
with finite images.

1.2. Variational principles. Here is a simple framework which we will use to
establish variational principles for solving equations in this paper. Suppose X ⊂ Rk

is a simply connected open set and A(x) = (A1(x), ..., Ak(x)) : X → Rk is a smooth

function so that ∂Ai(x)
∂xj

=
∂Aj(x)
∂xi

for all i, j. Then for any given B = (B1, ..., Bk) ∈ Rk,

solutions x of the equation A(x) = B are exactly the critical points of the function

E(x) =
∫ x

a

∑k
i=1(Ai(x) − Bi)dxi. Indeed, the assumption ∂Ai(x)

∂xj
=

∂Aj(x)
∂xi

says the

differential 1-form ω =
∑k

i=1(Ai(x)−Bi)dxi is closed in the simply connected domain
X. Therefore the integral E(x) =

∫ x

a
ω is well defined independently of the choice of

the path from a to x. By definition, ∂E(x)
∂xi

= Ai(x) − Bi, i.e., �E(x) = A(x) − B.
Thus A(x) = B is the same as �E(x) = 0.

We will use the above framework to give a variational proof of Alexandrov’s
theorem. The paper will mainly deal with piecewise linear (PL) convex functions.
Here are the notations. Given p1, ..., pk ∈ Rn and h = (h1, ..., hk) ∈ Rk, we use
u(x) = uh(x) to denote the PL convex function

uh(x) = max
i

{x · pi + hi}.

Let Wi(h) = {x ∈ Rn| � u(x) = pi} = {x|x · pi + hi ≥ x · pj + hj for all j} be the
closed convex polytope. Note that Wi(h) may be empty or unbounded. One of the
main result we will prove is,

Theorem 1.2. Let Ω be a compact convex domain in Rn, {p1, ..., pk} be a set of
distinct points in Rn and σ : Ω → R be a positive continuous function. Then for any
A1, ..., Ak > 0 with

∑k
i=1 Ai =

∫
Ω
σ(x)dx, there exists b = (b1, ..., bk) ∈ Rk, unique

up to adding a constant (c, ..., c), so that
∫
Wi(b)∩Ω

σ(x)dx = Ai for all i. The vectors

b are exactly minimum points of the convex function

(1) E(h) =

∫ h

0

k∑
i=1

∫
Wi(h)∩Ω

σ(x)dxdhi −
k∑

i=1

hiAi

on the open convex set H = {h ∈ Rk |vol(Wi(h) ∩ Ω) > 0 for all i}. Furthermore,
∇ub minimizes the quadratic cost

∫
Ω
|x − T (x)|2σ(x)dx among all transport maps

T : (Ω, σdx) → (Rn,
∑k

i=1 Aiδpi
).

We remark that Alexandrov’s theorem corresponds to σ ≡ 1. The existence and
the uniqueness of Theorem 1.2 are special case of the important work of Brenier
[5] on optimal transport. Our main contribution is the variational formulation. The
Hessian of the function E(h) has a clear geometric meaning and is easy to compute (see
equation (6)) based on the so-called power diagram from computational geometry [4],
which enables one to efficiently compute the Alexandrov map ∇ub using the Newton’s
method. See [14, 16, 7] for the applications of this algorithm in computer vision,
computer graphics and visualization. Furthermore, as a consequence of our proof, we
obtain a new proof of the infinitesimal rigidity theorem of Alexandrov that∇E : H0 →
A = {(A1, ..., Ak) ∈ Rk|Ai > 0,

∑k
i=1 Ai =

∫
Ω
σ(x)dx} is a local diffeomorphism (see

Corollary 3.2). We remark that Aurenhammer et al. [4] also noticed the convexity
of the function E, and they gave an elegant and simple proof of �ub minimizing
quadratic cost.
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1.3. Discrete Monge-Ampere equation (DMAE). Closely related to the
optimal transport problem is the Monge-Ampere equation (MAE). Let Ω be a compact
domain in Rn, g : ∂Ω → R and A : Ω ×R ×Rn → R be given. Then the Dirichlet
problem for MAE is to find a function w : Ω → R so that

(2)

{
det(Hess(w))(x) = A(x,w(x),�w(x))

w|∂Ω = g

where Hess(w) is the Hessian matrix of w. There are vast literature and deep re-
sults known on the existence, uniqueness and regularity of the solution of MAE. We
are interested in solving a discrete version of MAE in the simplest setting where
A(x,w,�w) = A(x) : Ω → R so that A(Ω) is a finite set. By taking Fenchel-
Lengendre dual of the Alexandrov potential function u, we produce a finite dimen-
sional variational principle for solving a discrete Monge-Ampere equation.

In the discrete setting, one of the main tasks is to define the discrete Hessian
determinant for piecewise linear function. We define,

Definition 1.3. Suppose (X, T ) is a domain in Rn with a convex cell decom-
position T and w : X → R is a convex function which is linear on each cell (a PL
convex function). Then the discrete Hessian determinant of w assigns each vertex
v of T the volume of the convex hull of the gradients of w at top-dimensional cells
adjacent to v.

One can define the discrete Hessian determinant of any piecewise linear function
by using the signed volumes. This will not be discussed here. With the above def-
inition of discrete Hessian determinant, following Pogorelov [11], one formulates the
Dirichlet problem for discrete MAE (DMAE) as follows.

Problem 2 (Dirichlet problem for discrete MAE (DMAE)). Suppose Ω =
conv(v1, ..., vm) is the convex hull of v1, ..., vm in Rn. Let p1, ..., pk be in int(Ω).
Given any g1, ..., gm ∈ R and A1, ..., Ak > 0, find a convex subdivision T of Ω with
vertices exactly {v1, ..., vm, p1, ..., pk} and a PL convex function w : Ω → R which is
linear on each cell of T so that

(a) (Discrete Monge-Ampere Equation) the discrete Hessian determinant of w at
pi is Ai,

(b) (Dirichlet condition) w(vi) = gi.

In [11], Pogorelov solved the above problem affirmatively. He showed that the PL
function w exists and is unique. However, his proof is non-variational. We improve
Pogorelov’s theorem to the following.

Theorem 1.4. Suppose Ω = conv(v1, ..., vm) is an n-dimensional compact convex
polytope in Rn so that vi /∈ conv(v1, ..., vi−1, vi+1, ..., vk) for all i and p1, ..., pk are in
the interior of Ω. For any g1, ..., gk ∈ R and A1, ..., Ak > 0, there exists a convex cell
decomposition T having vi and pj as vertices and a piecewise linear convex function
w : (Ω, T ) → R so that w(vi) = gi, i = 1, ...,m and the discrete Hessian determinant
of w at pj is Aj, j = 1, ..., k. In fact, the solution w is the Legendre dual of max{x ·
pj + hj , x · vi − gi|j = 1, ..., k, i = 1, ...,m} and h is the unique minimal point of a
strictly convex function.

The paper is organized as follows. In §2, we recall briefly some basic properties
of piecewise linear convex functions, their dual and power diagrams. Theorems 1.2
and 1.4 are proved in §3 and §4.
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2. Preliminary on PL convex functions, their duals and power dia-
grams. We collect some well known facts about PL convex functions, their Legendre-
Fenchel duals and their relations to power diagrams in this section. Most of the proofs
are omitted. See Aurenhammer [3], Passera and Rullg̊ard [10], Siersmas and van Ma-
nen [13] for details.

The following notations will be used. For u, v, p1, ..., pk ∈ Rn, we use u·v to denote
the dot product of u, v and conv(p1, ..., pk) to denote the convex hull of {p1, ..., pk} ⊂
Rn. A convex polyhedron is the intersection of finitely many closed half spaces. A
convex polytope is the convex hull of a finite set. The relative interior of a compact
convex set X will be denoted by int(X).

2.1. Legendre-Fenchel dual and PL convex functions. The domain of a
function f : Rn →(−∞,∞], denoted by D(f), is the set {x ∈ Rn|f(x) < ∞}. A
function f is called proper if D(f) �= ∅. For a proper function f : Rn → (−∞,∞],
the Legendre-Fenchel duality (or simply the dual) of f is the proper function f∗ :
Rn →(−∞,∞] defined by

f∗(y) = sup{x · y − f(x)|x ∈ Rn}.

It is well known that f∗ is a proper, lower semi continuous convex function provided
f a proper convex function. For instance, for the linear function f(x) = a · x+ b, its
dual f∗ has domain D(f∗) = {a} so that f∗(a) = −b. The Legendre-Fenchel duality
theorem says that for a proper lower semi continuous convex function f , (f∗)∗ = f .

For P = {p1, ..., pk} ⊂ Rn and h = (h1, ..., hk) ∈ Rk, we define the piecewise
linear (PL) convex function uh(x) to be

(3) u(x) = uh(x) = uh,P (x) = max{pi · x+ hi|i = 1, ..., k}

The domain D(u∗) of the dual u∗ is the convex hull conv(p1, ..., pk) so that

(4) u∗(y) = min{−
k∑

i=1

tihi|ti ≥ 0,

k∑
i=1

ti = 1,

k∑
t=1

tipi = y}

(See theorem 2.2.7 of Hörmander’s book on Notions of Convexity [8]). In particular,
u∗ is PL convex in the domain D(u∗). For instance if h = 0, then u∗(y) = 0 for all
y ∈ D(u∗). Another useful consequence is,

Corollary 2.1. If pi /∈ conv(p1, ..., pi−1, pi+1, ..., pk), then

(5) u∗(pi) = −hi.

Indeed, the only way to express pi as a convex combination of p1, ..., pk is pi = 1·pi.
Thus (5) holds.

2.2. PL convex functions, convex subdivisions and power diagrams. A
PL convex function f defined on a closed convex polyhedron K produces a convex
subdivision (called natural subdivision) T of K. It is the same as the power diagram
used in computational geometry. Let us recall briefly the definition (see for instance
[10]). A convex subdivision of K is a collection T of convex polyhedra (called cells)
so that (a) K = ∪σ∈T σ, (b) if σ, τ ∈ T , then σ ∩ τ ∈ T , and (c) if σ ∈ T and τ ⊂ σ,
then τ ∈ T if and only if τ is a face of σ. The collection T is determined by its
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Fig. 3. PL-convex function and its induced convex subdivision.

top-dimensional cells. The set of all zero-dimensional cells in T , denoted by T 0, is
called the vertices of T .

If f is a PL convex function defined on a convex polyhedronK, the natural convex
subdivision T of K associated to f is the subdivision whose top-dimensional cells in
T are the largest convex subsets on which f are linear. The vertices of f are defined
to be the vertices of T . Suppose {v1, ..., vm} is the set of all vertices of f . Then f is
determined by its vertices {vi} and the values at the vertices {f(vi)}. Indeed the graph
of f over K is the lower boundary of the convex hull conv((v1, f(v1)), ..., (v,f(vm)))
in Rn ×R. Recall that if P is a convex polyhedron in Rn ×R, then the lower faces
of P are those faces F of P so that if x ∈ F , then x − (0, ..., 0, λ) is not in P for all
λ > 0. The lower boundary of P is the union of all lower faces of P . One can also
describe T by using the epigraph. The epigraph {(x, t) ∈ K × R|t ≥ f(x)} of f is
naturally a convex polyhedron. Each cell in T is the vertical projection of a lower
face of the epigraph.

Since the dual function f∗ is also PL convex on its domain D(f∗), there is the
associated convex subdivision T ∗ of D(f∗). These two subdivisions (D(f), T ) and
(D(f∗), T ∗) are dual to each other in the sense that there exists a bijective map
T → T ∗ denoted by σ → σ∗ so that (a) σ, τ ∈ T with τ ⊂ σ if and only if σ∗ ⊂ τ∗

and (b) if τ ⊂ σ in T , then the cone(τ, σ) is dual to cone(σ∗, τ∗). Here the cone
cone(τ, σ) = {t(x− y)|x ∈ σ, y ∈ τ, t ≥ 0} and dual of a cone C is {x ∈ Rn| y · x ≤ 0
for all y ∈ C}. See proposition 1 in section 2 of Passera and Rullg̊ard [10].

For the PL convex function uh(x) given by (3), define the convex polyhedronWi =
Wi(h) = {x ∈ Rn| x·pi+hi ≥ x·pj+hj for all j}. (Note thatWi may be the empty set.)
By definition, the convex subdivision T of Rn associated to uh is the union of all Wi’s
and their faces. Identity (4) for u∗ says that the graph {(y, u∗(y))|y ∈ conv(p1, ..., pk)}
of u∗ is the lower boundary of the convex hull conv((p1,−h1), ..., (pk,−hl)).

We summarize the convex subdivisions associated to PL convex functions as fol-
lows,

Proposition 2.2. (a) If int(Wi(h)) �= ∅ and p1, ..., pk are distinct, then
int(Wi(h)) = {x ∈ Rn|x · pi + hi > maxj �=i{x · pj + hj}}.

(b) If pi /∈ conv(p1, ..., pi−1, pi+1, ..., pk), then int(Wi(h)) �= ∅ and Wi(h) is un-
bounded.

(c) If conv(p1, ..., pi−1, pi+1, ..., pk) is n-dimensional and pi ∈
int(conv(p1, ..., pi−1, pi+1, ..., pk)), then Wi(h) is either bounded or empty.

(d) If p1, ..., pk are distinct so that int(Wi(h)) �= ∅ for all i, then the top-
dimensional cells of T associated to uh are exactly {Wi(h)|i = 1, ..., k}, vertices of u∗
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and the dual subdivision T ∗ of conv(p1, ..., pk) are exactly {p1, ..., pk}.
(e) For any distinct p1, ..., pk ∈ Rn, there is h ∈ Rk so that int(Wi(h)) �= ∅ for

all i.

Proof. To see (a), by definition {x ∈ Rn|x · pi + hi > maxj �=i{x · pj + hj}} is
open and is in Wi(h). Hence it is included in the interior int(Wi(h)). Let Lj(x) =
x · pj + hj . By definition, Li(x) ≥ Lj(x) for all x ∈ Wi(h). It remains to show for
each p ∈ int(Wi), Li(p) > Lj(p) for j �= i. Take a point q ∈ int(Wi(h)) so that
Li(q) > Lj(q) (this is possible since Li �= Lj for j �= i). Choose a line segment I from
q to r in int(Wi(h)) so that p ∈ int(I). Then using Li(q) > Lj(q), Li(r) ≥ Lj(r),
p = tq + (1 − t)r for some t ∈ (0, 1) and linearity, we see that Li(p) > Lj(p). This
establishes (a).

To see part (b) that int(Wi) �= ∅, by the identity (4) for u∗
h,P ′ with P ′ =

{p1, ..., pk} − {pi}, we have u∗
h,P ′(pi) = ∞. But u∗

h,P ′(pi) = sup{x · pi − uh,P ′(x)|x ∈
Rn}. Hence there exists x so that x · pi + hi > uh,P ′(x) = maxj �=i(x · pj + hj),
i.e., int(Wi(h)) �= ∅. Furthermore, u∗

h,P ′(pi) = ∞ implies Wi(h) is non-compact, i.e.,
unbounded.

To see (c), suppose otherwise. Then the set Wi(h) contains a ray {tv + a|t ≥ 0}
for some non-zero vector v. Therefore, (tv + a) · pi + hi ≥ (tv + a) · pj + hj for all
j �= i. Divide the inequality by t and let t → ∞, we obtain v · pi ≥ v · pj for all j �= i.
This shows that the projection of pi to the line {tv|t ∈ R} is not in the interior of the
convex hull of the projections of {p1, ..., pk} − {pi}. This contradicts the assumption
that pi is in the interior of the n-dimensional convex hull.

The first part of (d) follows from the definition. The duality theorem (proposition
1 in section 2 of [10]) shows the second part.

To see part (e), let us relabel the set p1, ..., pk so that for all i if j > i then pj is
not in the convex hull of {p1, ..., pi}. This is always possible due to the assumption
that p1, ..., pk are distinct. Indeed, choose a line L so that the orthogonal projection
of pi’s to L are distinct. Now relabel these points according to the linear order of the
projections to L.

For this choice of ordering of p1, ..., pk, we construct h1, ..., hk inductively so that
Wi(h) contains a non-empty open set. Let h1 = 0, since p2 �= p1, for any choice
of h2, both vol({x| � u(h1,h2)(x) = pi}) > 0 for i = 1, 2. Inductively, suppose
h1, ..., hi have been constructed so that vol({x| � u(h1,...,hi)(x) = pj}) > 0 for all
j = 1, 2, ..., i. To construct hi+1, first note that since pi+1 is not in the convex
hull of p1, ..., pi, by part (a), for any choice of hi+1, vol(Wi+1(h1, ..., hi+1)) > 0 and
Wi+1(h1, ..., hi+1) is unbounded. Now by choosing hi+1 very negative, we can make
all vol(Wj(h1, ..., hi+1)) > 0 for all j = 1, 2, ..., i+ 1.

It is known that convex subdivisions associated to a PL convex function uh(x)
on Rn are exactly the same as the power diagrams. See for instance [3], [13]. We
recall briefly the power diagrams. Suppose P = {p1, ..., pk} is a set of k points
in Rn and w1, ..., wk are k real numbers. The power diagram for the weighted
points {(p1, w1), ..., (pk, wk)} is the convex subdivision T defined as follows. The
top-dimensional cells are Ui = {x ∈ Rn||x− pi|2+wi ≤ |x− pj |2+wj for all j}. Here
|x|2 = x ·x is the square of the Euclidean norm and |x−pi|2+wi is the power distance
from x to (pi, wi). If all weights are zero, then T is the Voronoi decomposition associ-
ated to P . Since |x−pi|2+wi ≤ |x−pj |2+wj is the same as x ·x−2x ·pi+ |pi|2+wi ≤
x·x−2x·pj+|pj |2+wj which is the same as x·pi− 1

2 (|pi|2+wi) ≥ x·pj− 1
2 (|pj |2+wj).

We see that Ui = {x ∈ Rn|x ·pi+hi ≥ x ·pj +hj for all j} where hi = − 1
2 (|pi|2+wi).

This shows the well known fact that,
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Fig. 4. Power diagram and its dual weighted Delaunay triangulation.

Proposition 2.3. The power diagram associated to {(pi, wi)|i = 1, ..., k} is
the convex subdivision associated to the PL convex function uh defined by (3) where

hi = − |pi|2+wi

2 .

2.3. Variation of the volume of top-dimensional cells. The following is
the key technical proposition for us to establish variational principles.

Proposition 2.4. Suppose σ : Ω → R is continuous defined on a compact convex
domain Ω ⊂ Rn. If p1, ..., pk ∈ Rn are distinct and h ∈ Rk so that vol(Wi(h)∩Ω) > 0
for all i, then wi(h) =

∫
Wi(h)∩Ω

σ(x)dx is a differentiable function in h. Furthermore,

if Wi(h) ∩ Ω and Wj(h) ∩ Ω for j �= i share a codimension-1 face F , then we have

(6)
∂wi(h)

∂hj
= − 1

|pi − pj |

∫
F

σ|F (x)dA

where dA is the area form on F , and otherwise this partial derivative is zero. In
particular, for any i, j

∂wi(h)

∂hj
=

∂wj(h)

∂hi
.

Proof. The proof is based on the following simple lemma.

Lemma 2.5. Suppose X is a compact domain in Rn, f : X → R is a non-negative
continuous function and τ : {(x, t) ∈ X ×R|0 ≤ t ≤ f(x)} → R is continuous. For

each t ≥ 0, let ft(x) = min{t, f(x)}. Then W (t) =
∫
X
(
∫ ft(x)

0
τ(x, s)ds)dx satisfies

(7) lim
t→t+0

W (t)−W (t0)

t− t0
=

∫
{x|f(x)>t0}

τ(x, t0)dx

and

(8) lim
t→t−0

W (t)−W (t0)

t− t0
=

∫
{x|f(x)≥t0}

τ(x, t0)dx.

It is differentiable at t0 if and only if
∫
{x∈X|f(x)=t0} τ(x, t0)dx = 0.

Proof. Let Gt(x) =
∫ ft(x)

0
τ(x, s)ds and M be an upper bound of |τ(x, t)| in its

domain. Since |min(a, b)−min(a, c)| ≤ |b−c|, we have |ft(x)−ft′(x)| ≤ |t− t′|. Now,
for any t �= t′,
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hi ↑

πj πj
πiπi

wj

wi wi
wj

Fig. 5. Variation of the volume of top-dimensional cells

(9) |Gt(x)−Gt′(x)

t− t′
| = 1

|t− t′| |
∫ ft(x)

ft′ (x)
τ(x, s)ds| ≤ M

|t− t′| |ft(x)− ft′(x)| ≤ M.

Fix t0 and x ∈ X. If f(x) < t0, then for t very close to t0, Gt(x) =
∫ f(x)

0
τ(x, s)ds.

Hence limt→t0
Gt(x)−Gt0 (x)

t−t0
= 0. If f(x) > t0, then for t very close to t0, Gt(x) =∫ t

0
τ(x, s)ds. Hence limt→t0

Gt(x)−Gt0
(x)

t−t0
= limt→t0

1
t−t0

∫ t

t0
τ(x, s)ds = τ(x, t0).

If f(x) = t0, then the above calculations shows limt→t+0

Gt(x)−Gt0
(x)

t−t0
= 0 and

limt→t−0

Gt(x)−Gt0 (x)

t−t0
= τ(x, t0). Therefore, by Lebesgue’s dominated convergence

theorem, we have

(10) lim
t→t+0

W (t)−W (t0)

t− t0
= lim

t→t+0

∫
X

Gt(x)−Gt0(x)

t− t0
dx =

∫
{x|f(x)>t0}

τ(x, t0)dx

and

(11) lim
t→t−0

W (t)−W (t0)

t− t0
= lim

t→t−0

∫
X

Gt(x)−Gt0(x)

t− t0
dx =

∫
{x|f(x)≥t0}

τ(x, t0)dx

This establishes the lemma.

Fix a < b, we call the domain {(x, t) ∈ X ×R|a ≤ f(x), a ≤ t ≤ min(f(x), b)} a
cap domain with base {x|f(x) ≥ a} and top {x|f(x) ≥ b} of height (b− a) associated
to the function f .

To prove the proposition 2.4, let h′ = (h1, ..., hi−1, hi − δ, hi+1, ..., hk). For small
positive δ > 0, by definition, Wi(h

′) ⊂ Wi(h) and Wj(h) ⊂ Wj(h
′). If Wi(h)∩Wj(h)∩

Ω = ∅, then Wj(h)∩Ω = Wj(h
′)∩Ω for small δ. Hence

∂Wj(h)
∂hi

= 0. If Wi(h)∩Ω and
Wj(h)∩Ω share a codimension-1 face F , then the closure cl(Wj(h

′)∩Ω−Wj(h)∩Ω)
is a cap domain with base F associated to a convex function f defined on F . The
height of the cap domain is 1

|pi−pj |δ and f is PL convex so that the (n−1)-dimensional

Lebesgue measure of set of the form {x ∈ F |f(x) = t} is zero. Furthermore for δ > 0,
by definition

wj(h
′)− wj(h)

δ
=

1

δ

∫
Wj(h′)∩Ω−Wj(h)∩Ω

σ(x)dx

=
1

δ

∫
F

∫ ft(y)

0

τ(y, s)dsdy



392 X. GU, F. LUO, J. SUN, AND S.-T. YAU

where y ∈ F is the Euclidean coordinate and τ(y, s) is σ expressed in the new coor-
dinate. Thus, by lemma 2.5, we see

(12) lim
δ→0+

wj(h
′)− wj(h)

δ
=

∫
F

σ|F dA.

The same calculation shows that for δ < 0 and close to 0, using the fact that cl(Wj(h)∩
Ω−Wj(h

′)∩Ω) is cap with top F , we see that (12) holds as well. Finally, if Wi(h)∩Ω
and Wj(h) ∩ Ω share a face of dimension at most n − 2, then the same calculation
still works where the associate cap domain has either zero top area or zero base area.
Thus the result holds.

3. A proof of Theorem 1.2. Our proof is divided into several steps. In the
first step, we show that the set H = {h ∈ Rk|vol(Wi(h) ∩ Ω) > 0 for all i} is a
non-empty open convex set. In the second step, we show that

E(h) =

∫ h

a

k∑
i=1

∫
Wi(h)∩Ω

σ(x)dxdhi −
k∑

i=1

hiAi

is a well defined C1-smooth function on H so that ∂E(h)
∂hi

=
∫
Wi(h)∩Ω

σ(x)dx−Ai and

E(h + (c, ..., c)) = E(h) for all c. In the third step, we show that E(h) is convex in

H and is strictly convex in H0 = H ∩ {h|∑k
i=1 hi = 0}. In the fourth step, we show

that the map E has a minimum point in H by focusing on E|H0 . Finally, for the
completeness, we include a simple proof by Aurenhammer et al. (Lemma 1 in [4]) to
show that ∇ub is an optimal transport map minimizing the quadratic cost.

3.1. Convexity of the domain H. We begin with a simple observation that
a compact convex set X ⊂ Rn has positive volume if and only if X contains a non-
empty open set, i.e., X is n-dimensional. Therefore, vol(Wi(h) ∩ Ω) > 0 is the same
as Wi(h)∩Ω contains a non-empty open set in Rn. The last condition, by the above
proposition 2.2(a), is the same as there exists x ∈ Ω so that x·pi > maxj �=i{x·pj+hj}.

Now to see that H is convex, since H = ∩k
i=1Hi where Hi = {h ∈ Rk|vol(Wi(h)∩

Ω) > 0}, it suffices to show that Hi is convex for each i. To this end, take α, β ∈ Hi

and t ∈ (0, 1). Then there exist two vectors v1, v2 ∈ Ω so that v1 ·pi+αi > v1 ·pj +αj

and v2·pi+βi > v2·pj+βj for all j �= i. Therefore, (tv1+(1−t)v2)·pi+(tαi+(1−t)βi) >
(tv1 + (1− t)v2) · pj + (tαj + (1− t)βj) for all j �= i. This shows that tα+ (1− t)β is
in Hi. Furthermore, each Hi is non-empty. Indeed, given h1, ..., hi−1, hi+1, ..., hk, by
taking hi very large, we see that h = (h1, ..., hk) is in Hi. Also, from the definition,
Hi is an open set. Therefore, to show H is an open convex set, it remains to show
that H is non-empty.

To see H �= ∅, it suffices to show that there exists h so that vol(Wi(h)) > 0 (which
could be ∞) for all i. Indeed, after a translation, we may assume that 0 is in the
interior of Ω. Since uλh(x) = λuh(x/λ) and Wi(λh) = Wi(h)/λ, if vol(Wi(h)) > 0 for
all i, then for λ > 0 large, vol(Wi(λh) ∩ Ω) > 0. Now by proposition 2.2(e), we can
find h so that vol(Wi(h)) > 0 for all i. Thus H �= ∅.

3.2. The function E(h) and its gradient. By proposition 2.4, we see that

the differential 1-form η =
∑k

i=1

∫
Wi(h)∩Ω

σ(x)dxdhi −
∑k

i=1 Aidhi is a closed 1-form

defined on the simply connected open set H. Therefore its integral E(h) =
∫ h

a
η is

a well defined C1-smooth function independent of the choice of the path from a to
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h in H. Furthermore, by definition, ∂E(h)
∂hi

=
∫
Wi(h)∩Ω

σ(x)dx − Ai. The condition

E(h+ (c, ..., c)) = E(h) follows from the definition since Wi(h+ (c, ..., c)) = Wi(h).
It can be shown that there is a constant C so that

E(h) =

∫
Ω

uh(x)σ(x)dx−
k∑

i=1

Aihi + C.

3.3. The convexity of E(h). We will show that the Hessian matrix of E(h)
is positive semi-definite and has a 1-dimensional null space spanned by the vector
(1, 1, ..., 1). This implies that E is convex in H and is strictly convex when restricted
to H0.

Let wi(h) =
∫
Wi(h)∩Ω

σ(x)dx. By the calculation above, ∂E(h)/∂hi = wi(h)−Ai

and
∑k

i=1 wi(h) =
∫
Ω
σ(x)da. Therefore

∑k
i=1 ∂

2E/∂hi∂hj = 0 for each j. By

proposition 2.4, for i �= j, ∂wi(h)
∂hj

≤ 0. Furthermore, if Wi(h) and Wj(h) share a

codimension-1 face F in Ω, then ∂wi(h)
∂hj

= − 1
|pi−pj |

∫
F
σ|F (x)dA < 0. This implies

that the Hessian matrix Hess(E) = [∂wi(h)
∂hj

] is diagonally dominated and therefore

positive semi-definite (i.e., all diagonal entries are positive and all off diagonal entries
are non-positive so that the sum of entries of each row is zero). Hence E(h) is convex
in H.

Corollary 3.1. The Hessian matrix Hess(E) of E(h) is positive semi-definite
with 1-dimensional null space generated by (1, 1, .., 1). In particular, E|H0

: H0 = {h ∈
H|∑k

i=1 hi = 0} → R is strictly convex and its gradient �(E|H0
) is a diffeomorphism.

Proof. To see that E|H0
is strictly convex, we show that the null space of the

Hessian Hess(E) = [∂wi(h)
∂hj

] = [aij ] is generated by (1, ..., 1). Obviously (1, ..., 1) is in

the null space. To see that the null space is 1-dimensional, suppose v = (v1, ..., vk) is
a non-zero vector so that Hess(E)vt = 0 (vt is the transpose of v). Let us assume
without loss of generality that |vi1 | = maxi{|vi|} and vi1 > 0. Using ai1i1vi1 =∑

j �=i1
ai1jvj and ai1i1 = −∑

j �=i1
|ai1j |, we see that vj = vi1 for all indices i with

ai1j �= 0. It follows that index set I = {i|vi = maxj{|vj |}} has the following property.
If i1 ∈ I and ai1i2 �= 0, then i2 ∈ I. We claim that I = {1, 2, ..., k}, i.e., v =
v1(1, 1, ..., 1). Indeed, for any two indices i �= j, since Ω is connected and Wr(h) are
convex, there exists a sequence of indices i1 = i, i2, ..., im = j so that Wis(h) ∩Ω and
Wis+1(h)∩Ω share a codimension-1 face for each s. Therefore aisis+1 �= 0. Translating
this to the Hessian matrix Hess(E) = [aij ], it says that for any two diagonal entries
aii and ajj , there exists a sequence of indices i1 = i, i2, ..., im = j so that aisis+1

<
0. This last condition together with the property of I imply I = {1, 2, ..., k}, i.e.,
dim(Ker(Hess(E))) = 1.

3.4. Existence of minimal points for E(h). By the variational framework,
the critical points of E(h) in H are the solutions b in theorem 1.2. To show that E(h)
has critical points in H, due to the convexity of E and E(h + (c, ..., c)) = E(h), it
suffices to show that E(h) has a minimal points in H0.

First we claim that H0 is bounded. Otherwise, there exists a sequence of vectors

h(m) in H0 so that limm→∞ h
(m)
i = ∞ and limm→∞ h

(m)
j = −∞ for some indices i, j.

Since Ω is compact, we see that for m large, for all points x ∈ Ω,

x · pi + h
(m)
i > x · pj + h

(m)
j .
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This shows that Wj(h
(m))∩Ω = ∅ which contradicts the assumption that h(m) ∈ H0.

The function E(h) can be extended continuously to the compact closure X of H0

using the same expression. Therefore, it has a minimal point q ∈ X. We claim that
q ∈ H0. If otherwise, q ∈ ∂X, i.e., there are indices j so that vol(Wj(q) ∩ Ω) = 0, we
derive a contraction as follows.

Due to convexity, there exists a non-zero vector v ∈ Rk so that q + tv ∈ H0 for
small t > 0. Now for any c ∈ R, we have q + t(v + c(1, ..., 1)) ∈ H for small t > 0.
Therefore, by taking c large, we may assume that all vi > 0 and q + tv ∈ H for small
t > 0. Define δ ∈ Rk so that

δi = vi

if wi(q) = 0 and

δi = 0

if wi(q) > 0. Note that vi ≥ δi for all i. We claim that for small t > 0, q + tδ ∈ H,
i.e., wi(q + tδ) > 0 for all i. Indeed, if wi(q) > 0, then wi(q + tδ) > 0 for small
t > 0 due to continuity. Next, if wi(q) = 0, we claim Wi(q + tv) ⊂ Wi(q + tδ). This
implies wi(q + tδ) > 0 since wi(q + tv) > 0. To see the claim, take x ∈ Wi(q + tv) =
{x|x ·pi+(qi+ tvi) ≥ x ·pj +(qj + tvj), all j}. Then x ·pi+ qi+ tδi = x ·pi+ qi+ tvi ≥
x · pj + qj + tvj ≥ x · pj + qj + tδj , i.e., x ∈ Wi(q + tδ).

Since E(h+(c, ..., c)) = E(h) and every point x ∈ H is of the form h+(c, ..., c) for
some h ∈ H0, c ∈ R, the point q is also a minimal point of E defined on the closure
of H. Now by the construction of δ, we have E(q + tδ) ≥ E(q) for small t > 0. By
taking derivative with respect to t at t = 0, we obtain, �E(q) · δ ≥ 0, i.e.,

(13)
∑
i=1

(wi(q)−Ai)δi ≥ 0.

But by the construction of δ, the right-hand-side above is −∑
i∈J Aivi < 0 where

J = {i|wi(q) = 0} and Ai > 0. The contradiction shows that q is in H0.

3.5. Infinitesimal rigidity. With above preparations, we now show the map
gradient map sending h to Φ(h) = (w1(h), ..., wk(h)) is a diffeomorphism fromH0 onto

A = {(A1, ..., Ak) ∈ Rk|Ai > 0,
∑k

i=1 Ai =
∫
Ω
σ(x)dx}. Indeed, by the calculation

above, Φ(h) is ∇˜E|H0
where Ẽ(h) = E(h) +

∑k
i=1 Aihi is a strictly convex function

with positive definite Hessian on H0. In particular, its gradient Φ is an injective local
diffeomorphism from H0 to A. On the other hand, for any choice of A ∈ A, the
existence of critical points of Ẽ(h)−∑k

i=1 Aihi proved in §3.4 shows that Φ is onto.

As a consequence of the proof, we obtained a new proof of the infinitesimal rigidity
theorem of Alexandrov.

Corollary 3.2. (Alexandrov) The map �Ẽ : H0 → W sending the normalized
heights h to the area vector (w1(h), ..., wk(h)) is a local diffeomorphism.

3.6. ∇ub is an optimal transport map. We reproduce the elegant proof by
Aurenhammer et al. [4] here for completeness. Notice the quadratic transport cost

of ∇ub is
∑k

i=1

∫
Wi

|pi − x|2σ(x)dx. From Proposition 2.3, {W1, ...,Wk} is the power

diagram associated to {(pi, wi = |pi|2 − 2bi)} in Rd. Suppose {U1, ..., Uk} is any
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partition of Rd so that
∫
Ui

σ(x)dx =
∫
Wi

σ(x)dx, i = 1, 2, · · · , k. By the definition of
the power diagram, we have

k∑
i=1

∫
Wi

(|x− pi|2 + wi)σ(x)dx =

k∑
i,j=1

∫
Wi∩Uj

(|x− pi|2 + wi)σ(x)dx

≤
k∑

i,j=1

∫
Wi∩Uj

(|x− pj |2 + wj)σ(x)dx =

k∑
j=1

∫
Uj

(|x− pj |2 + wj)σ(x)dx.

Using
∫
Wi

σ(x)dx =
∫
Ui

σ(x)dx, we have

k∑
i=1

∫
Wi

|x− pi|2σ(x)dx) ≤
k∑

i=1

∫
Ui

|x− pi|2σ(x)dx.

This shows that ∇ub minimizes the quadratic transport cost.

4. A proof of Theorem 1.4. We fix g1, ..., gm throughout the proof. For sim-
plicity, let pk+j = vj and hk+j = −gj for j = 1, ...,m and let

Wi(h) = {x ∈ Rn|x · pi + hi ≥ x · pj + hj , j = 1, ..., k +m}.

Define

H = {h ∈ Rk|vol(Wi(h)) > 0, i = 1, ..., k +m}.

Lemma 4.1. (a) H is a non-empty open convex set in Rk.
(b) For each h ∈ H and i = 1, ..., k and j = 1, ...,m, Wi(h) is a non-empty

bounded convex set and Wk+j(h) is a non-empty unbounded set.

Proof. The proof of convexity of H is exactly the same as that of §2.1. We
omit the details. Also, by definition H is open. To show that H is non-empty, using
proposition 2.2(e), there exists h̄ ∈ Rk so that for all i = 1, ..., k, vol(Wi(h̄)) > 0.
We claim for t > 0 large the vector h = h̄ + (t, ..., t) ∈ H. Indeed, let B be a large
compact ball so that B ∩Wi(h̄) �= ∅ for all i = 1, ..., k. Now choose t large so that

min
x∈B

{x · pi + hi|i = 1, 2, ..., k} > max
x∈B

{x · vj + gj |j = 1, ...,m}.

For this choice of h, by definition, Wi(h̄) ∩B ⊂ Wi(h).
Part (b) follows from proposition 2.2 (b) and (c).

For h ∈ H and i = 1, ..., k, let wi(h) = vol(Wi(h)) > 0. For each h ∈ H,
by proposition 2.4 applied to a large compact domain X whose interior contains
∪k
i=1Wi(h), we see that wi(h) is a differentiable function so that ∂wi

∂hj
=

∂wj

∂hi
for all

i, j = 1, ..., k. Thus the differential 1-form η =
∑k

i=1 wi(h)dhi is a closed 1-form on the
open convex set H. Since H is simply connected, there exists a C1-smooth function
E(h) : H → R so that ∂E

∂hi
= wi(h).

Lemma 4.2. The Hessian matrix Hess(E) of E is positive definite for each
h ∈ H. In particular, E is strictly convex and �E : H → Rk is a smooth embedding.

Proof. By the same proof as in §2.3, we have for i �= j, ∂wi(h)/∂hj =
− 1

|pi−pj |Area(F ) < 0 if Wi(h) and Wj(h) share a codimension-1 face F and it is
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zero otherwise. Furthermore, for each j = 1, ..., k,
∑k

i=1 ∂wi/∂hj =
∂(

∑k
i=1 wi(h))

∂hj
> 0

if Wj(h) and one of Wμ+k(h) share a codimension-1 face. It is zero otherwise. This
shows the Hessian matrix Hess(E) = [aij ] is diagonally dominated so that aij ≤ 0
for all i �= j and aii ≥

∑
j �=i |aij |. Thus Hess(E) is positive semi-definite. To show

that it has no kernel, we proceed with the same argument as in the proof of corollary
3.1. The same argument shows that if b = (b1, ..., bk) is a null vector for [aij ], then
b1 = b2 = ... = bk. On the other hand, there is an index i so that Wi(h) and one of

Wj+k(h) share a codimension-1 face, i.e, aii >
∑k

i=1 |aij |. Using
∑k

j=1 aijb1 = 0, we
see that b1 = 0, i.e., b = 0. This establishes the lemma.

Now we prove theorem 1.4 as follows. Let A = {A = (A1, ..., Ak)|Ai > 0}
and consider the strictly convex function E(h) : H → R with ∂E(h)/∂hi = wi(h).

Our goal is to prove that E(h) − ∑k
i=1 Aihi has a minimal point in H by showing

A = �E(h) for some h ∈ H.
Let Φ = �E : H → A be the gradient map. By lemma 4.2, Φ is an injective

local diffeomorphism from H to A. In particular, due to dim(H) = dim(A), Φ(H)
is open in A. To finish the proof that Φ(H) = A, since A is connected, it suffices
to prove that Φ(H) is closed in A. Take a sequence of points h(i) in H so that
Φ(h(i)) converges to a point a ∈ A. We claim that a ∈ Φ(H). After taking a
subsequence, we may assume that h(i) converges to a point in [−∞,∞]k. We first
show that {h(i)} is a bounded set in Rk. If otherwise, there are three possibilities:

(a) there is j so that h
(i)
j → −∞ as i → ∞, (b) there are two indices j1 and j2 so

that limi→∞ h
(i)
j1

= ∞ and {h(i)
j2
} is bounded, and (c) for all indices j, limi→∞ h

(i)
j =

∞. In the first case (a), due to pj ∈ int(conv(v1, ..., vm)) and h
(i)
j is very negative,

x · pj + h
(i)
j < max{x · vj′ + gj′ |j′ = 1, ...,m} for i large for all x. This implies for i

large Wj(h
(i)) = ∅ which contradicts the assumption that limi Φ(h

(i)) = a ∈ A. In

the case (b) that {h(i)
j2
} is bounded, then Wj2(h

(i)) lies in a compact set B. For i

large, x · pj1 + h
(i)
j1

≥ max{x · vj + gj , x · pj2 + h
(i)
j2
)} for all x ∈ B. This implies that

Wj2(h
(i)) = ∅ for large i which contradicts the assumption that limi Φ(h

(i)) = a ∈ A.

In the last case (c), since for each j, limi→∞ h
(i)
j = ∞, for any compact set B,

there is an index i so that B ⊂ ∪k
μ=1Wμ(h

(i)). This implies that the sum of the

volumes
∑k

μ=1 vol(Wμ(h
(i)) tends to infinity which again contradicts the assumption

limi Φ(h
(i)) = a ∈ A.

Now that h(i) is convergent to a point h in Rk, by the continuity of the map
sending h to (w1(h), ..., wk(h)) on Rk, we see that Φ(h) = a. This shows h ∈ H and
a ∈ Φ(H), i.e., Φ(H) is closed in A.

Hence, given any (A1, ..., Ak) ∈ A, there exists a unique h ∈ H so that Φ(h) =
(A1, ..., Ak). Let u = max{x · pi + hi|i = 1, ..., k + m} be the PL convex function
on Rn and w be its dual. By corollary 2.1, we conclude that the vertices of w are
exactly {vi, pj |i, j} with w(vi) = gi and w(pj) = −hj so that the discrete Hessian of
w at pi, which is wi(h) = Ai. Furthermore, by proposition 2.2, the associated convex
subdivision of w on Ω has exactly the vertex set {v1, ..., vk, p1, ..., pk}.
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