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SINGULARITIES OF TANGENT SURFACES IN CARTAN’S SPLIT
G2-GEOMETRY∗

GOO ISHIKAWA† , YOSHINORI MACHIDA‡ , AND MASATOMO TAKAHASHI§

Abstract. In the split G2-geometry, we study the correspondence found by E. Cartan between
the Cartan distribution and the contact distribution with Monge structure on spaces of five variables.
Then the generic classification is given on singularities of tangent surfaces to Cartan curves and to
Monge curves via the viewpoint of duality. The present paper completes the generic classification of
singularitites for simple Lie algebras of rank 2, namely, for A2, C2 = B2 and G2.
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1. Introduction. In this paper we present a duality of certain singularities ap-
pearing in the correspondence for split G2-geometry found by E. Cartan and formu-
lated by R. L. Bryant [7]. The complex simple Lie algebras are classified by Dynkin
diagrams through root systems and in the case of rank 2, there are exactly three cases,
namely A2, C2 = B2, and G2.

Fig. 1. Dynkin diagrams of types A2, C2 and G2

We associate an explicit pair of fibrations with each type A2, C2 or G2:

Y
ΠY←−−− Z

ΠX−−−→ X.

The fibration induces canonical geometric structures on the three spaces Z, Y,X in
each case. In particular the completely non-integrable plane field E = Ker(ΠY ∗) ⊕
Ker(ΠX∗) on Z is associated. Then parametrized integral curves f : I → Z of the
plane field E project to curves ΠY ◦ f and ΠX ◦ f in Y and X respectively. Moreover
each curve ΠY ◦f (resp. ΠX ◦f) is embedded in a surface ruled by the “tangent lines”
ΠY Π

−1
X ΠX(f(t)) (resp. ΠXΠ−1

Y ΠY (f(t))), t ∈ I, which we call the tangent surface.
Note that both two curves Π−1

X ΠX(f(t0)) and f have tangent lines in the plane Ef(t0)

at t = t0, therefore ΠY Π
−1
X ΠX(f(t0)) is tangent to ΠY ◦ f at t = t0 at least if ΠY ◦ f

is immersive at t0. The tangent surfaces naturally appear in the G2-geometry and
they are regarded as solutions for certain involutive systems of partial differential
equations (see [8][16][23]). It is classically known that the tangent surfaces necessarily
have singularities (see [16]). However the singularities appearing in such surfaces had
never been studied in detail.
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In this paper, for the G2 case, we describe the duality explicitly and provide
generic classification results on tangent surfaces, or more exactly, the tangent map-
pings which parametrize tangent surfaces, under local diffeomorphisms using singu-
larity theory of mapping. Then, as a result, we have three classes of singularities
of tangent surfaces on Y and X respectively. Moreover we observe the manner of
appearing generic singularities turns out to be reflected by the underlying geometric
structures (Theorem 1.3). Note that, to perform the natural classification by local
transformations which preserve associated G2-Cartan structures, first we must estab-
lish the more basic classification by local diffeomorphisms. We do establish it in this
paper.

To do exact analysis of singularities, we provide, in this paper, certain local
coordinates on Z and local projective coordinates on Y,X which are compatible with
the double fibration, so that any fiber of one projection and its another projection
become lines in terms of the coordinates. Then, for a curve in a projective space or
a space with a flat projective structure [18], we define a strictly increasing sequence
of positive integers, called the type, using the leading terms in an appropriate system
of projective coordinates at each point of the curve (see §6 for the exact definition).
The type is a local projective invariant of the curve and plays an important role as
a characteristic describing the singularities we are going to treat in this paper. In
fact we classify singularities of tangent surfaces to ΠY ◦ f and to ΠX ◦ f , or their
parametrizations, for a generic integral curve f .

For A2, as a real and non-oriented version, we take the flag manifold

Z = Z(A2) := {(V1, V2) | V1 ⊂ V2 ⊂ R3, dimV1 = 1, dimV2 = 2},
which is of dimension 3. The canonical projections ΠY : Z → Y = Y (A2) = P (R3)
and ΠX : Z → X = X(A2) = P (R3∗) form the double fibration

P (R3)
ΠY←−−− Z

ΠX−−−→ P (R3∗).

We set G = G(A2) = PGL(R3). Then G acts naturally on Z, Y,X transitively and
ΠY ,ΠX are G-equivariant. The ΠY -fibers project by ΠX to projective lines on P (R3∗)
and the ΠX -fibers project by ΠY to projective lines on P (R3). The canonical contact
structure E(A2) ⊂ TZ is defined by E = Ker(ΠY ∗) ⊕ Ker(ΠX∗). Then the classical
projective duality on planar curves (see for instance [5]) is well-described in terms of
Legendre curves in the contact manifold (Z,E) = (Z(A2), E(A2)).

We recall the assertion on related singularities to the double fibration:

Theorem 1.1. For a generic Legendre curve f : I → Z(A2) in C∞ topology from
an open interval I and for any t0 ∈ I the pair of types of curves ΠY ◦ f and ΠX ◦ f
at t0 is given by one of the following three cases:

I : ((1, 2), (1, 2)), II : ((1, 3), (2, 3)), III : ((2, 3), (1, 3)).

Moreover, in each case, the pair of diffeomorphism classes of tangent mappings to
ΠY ◦ f,ΠX ◦ f is given by

I : (fold, fold),

II : (beak-to-beak, Whitney cusp),

III : (Whitney cusp, beak-to-beak).
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Here we call a Legendre curve generic if it belongs to an open dense subset which
is given beforehand in the space of Legendre curves endowed with C∞ topology.

A curve in P (R3) or in P (R3∗) is called an ordinary point (resp. an inflection
point, an cusp point) if it is of type (1, 2) (resp. (1, 3), (2, 3)). The tangent lines to
a curve form a map-germ (R2, 0) → (R2, 0), called the tangent mapping, in terms
of projective local coordinates. A map-germ is called a fold (resp. beak-to-beak,
Whitney cusp) if it is diffeomorphic (right-left equivalent) to

(x, t) �→ (x, t2 − 2xt), (resp. (x, 2t3 − 3xt2), (x, t3 − 6xt)).

See Figure 2.

Fig. 2. Singularities of tangent mappings associated to the A2-double fibration

For C2, we take the flag manifold, on the symplectic vector space V = R4,

Z = Z(C2) := {(V1, V2) | V1 ⊂ V2 ⊂ V, dimV1 = 1, dimV2 = 2, V2 is a Lagrangian plane},

which is of dimension 4. The canonical projections ΠY : Z → Y = Y (C2) = P (R4)
and ΠX : Z → X = X(C2) = LG(R4) form the double fibration

P (R4)
ΠY←−−− Z

ΠX−−−→ LG(R4).

Here LG(R4) is the Lagrange-Grassmann manifold. We set G = G(C2) = Sp(R4),
the symplectic group. Note that G is isomorphic the spinor group Spin(R2,3). Then
G acts naturally on Z, Y,X transitively and ΠY ,ΠX are G-equivariant. Moreover
Y = P (R4) has the G-invariant canonical contact structure, while X = LG(R4)
has the G-invariant quadratic cone structure. We call ΠX -projections of ΠY -fibers
null lines in LG(R4) and ΠY -projections of ΠX -fibers Legendre lines in P (R4). Thus
X = LG(R4) is identified with the space of Legendre lines and Y = P (R4) is identified
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with the space of null lines. The canonical Engel structure E(C2) ⊂ TZ is defined
by E(C2) = Ker(ΠY ∗) ⊕ Ker(ΠX∗) as well. A curve f : I → Z(C2) from an open
interval I is called an Engel integral curve if f∗(TI) ⊂ E. Then the curve ΠY ◦ f is
associated with Legendre tangent lines, while ΠX ◦ f is associated with null tangent
lines. Thus we have the tangent surfaces, which are non-smooth in general, ruled by
Legendre tangent lines in Y and by null tangent lines in X respectively. In fact the
tangent surfaces are obtained just from the double fibration by considering the set
ΠY Π

−1
X ΠXf(I) and ΠXΠ−1

Y ΠY f(I).

An analogous result to the classical projective duality is given in terms of Engel
integral curves:

Theorem 1.2. ([15]) For a generic Engel integral curve f : I → Z(C2) in the
Lagrange flag manifold Z(C2), in C∞ topology, the pair of types of ΠY ◦f and ΠX ◦f
at any point t0 ∈ I is given by one of the following three cases:

I : ((1, 2, 3), (1, 2, 3)), II : ((1, 3, 4), (2, 3, 4)), III : ((2, 3, 5), (1, 3, 5)).

The pair of diffeomorphism classes of tangent surfaces to ΠY ◦ f and to ΠX ◦ f is
given by one of the following three cases:

I : (cuspidal edge, cuspidal edge),

II : (Mond surface, swallowtail),

III : (generic folded pleat, Shcherbak surface).

Fig. 3. Singularities of tangent surfaces associated to the C2-double fibration
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A parametrized surface in a 3-dimensional space is called a cuspidal edge (resp.
Mond surface, swallowtail, generic folded pleat, Shcherbak surface) if it is locally
diffeomorphic to the germ of parametrized surface (R2, 0) → (R3, 0) explicitly given
by

cuspidal edge : (x, t) �→ (x, t2 − 2xt, 2t3 − 3xt2),

Mond surface : (x, t) �→ (x, 2t3 − 3xt2, 3t4 − 4xt3),

swallowtail : (x, t) �→ (x, t3 − 6xt, t4 − 4xt2),

generic folded pleat : (x, t) �→ (x, 4t3 + 3t4 − 12x(2t+ t2), 6t5 + 5t6 − 5x(4t3 + 3t4)),

Shcherbak surface : (x, t) �→ (x, 2t3 − 3xt2, 4t5 − 5xt4).

Note that each of the above explicit form provides the tangent surface or tangent
developable to the curve give by putting x = t in Euclidean three space. For the
computer aided graphics of those singularities, see Figure 3 and [15].

The main purpose of this paper is to give a precise real model of the double
fibration

Y (G2)
ΠY←−−− Z(G2)

ΠX−−−→ X(G2),

for G2 type, following Bryant’s construction [7]. Here Z(G2) is a kind of flag manifold
over the split octonion and it is of dimension 6, while dimY (G2) = dimX(G2) = 5.

The Engel distribution E ⊂ TZ(G2) over Z(G2) is defined by E := Ker(ΠY ∗) ⊕
Ker(ΠX∗).

In this paper we show the following classification result of singularities:

Theorem 1.3. For a generic Engel integral curve f : I → Z in the split G2 flag
manifold Z, in C∞ topology, the pair of types of ΠY ◦f and ΠX ◦f at any point t0 ∈ I
is given by one of the following three cases:

I : ((1, 2, 3, 4, 5), (1, 2, 3, 4, 5)),

II : ((1, 3, 4, 5, 7), (2, 3, 4, 5, 7)),

III : ((2, 3, 5, 7, 8), (1, 3, 5, 7, 8)).

The pair of diffeomorphism classes of tangent surfaces to ΠY ◦ f and to ΠX ◦ f is
given by one of the following three cases:

I : (cuspidal edge, cuspidal edge),

II : (open Mond surface, open swallowtail),

III : (open generic folded pleat, open Shcherbak surface).

A parametrized surface in a 5-dimensional space is called a cuspidal edge (resp.
open Mond surface, open swallowtail, open generic folded pleat, open Shcherbak sur-
face) if it is locally diffeomorphic to the germ of parametrized surface (R2, 0) →
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(R5, 0) explicitly given by

cuspidal edge : (x, t) �→ (x, t2 − 2xt, 2t3 − 3xt2, 3t4 − 4xt3, 4t5 − 5xt4),

∼ (x, t) �→ (x, t2 − 2xt, 2t3 − 3xt2, 0, 0),

open Mond surface : (x, t) �→ (x, 2t3 − 3xt2, 3t4 − 4xt3, 4t5 − 5xt4, 6t7 − 7xt6),

∼ (x, t) �→ (x, 2t3 − 3xt2, 3t4 − 4xt3, 4t5 − 5xt4, 0)

open swallowtail : (x, t) �→ (x, t3 − 6xt, t4 − 4xt2, 3t5 − 10xt3, 5t7 − 14xt5),

∼ (x, t) �→ (x, t3 − 6xt, t4 − 4xt2, 3t5 − 10xt3, 0),

open generic folded pleat : (x, t) �→ (x, 4t3 + 3t4 − 12x(2t+ t2),

6t5 + 5t6 − 5x(4t3 + 3t4),

120t7 + 105t8 − 56x(6t5 + 5t6),

408t8 + 476t9 + 102t10

−3x(384t6 + 408t7 + 85t8)),

∼ (x, t) �→ (x, 4t3 + 3t4 − 12x(2t+ t2),

6t5 + 5t6 − 5x(4t3 + 3t4),

5t7 − 14xt5, 3t8 − 8xt6),

open Shcherbak surface : (x, t) �→ (x, 2t3 − 3xt2, 4t5 − 5xt4, 6t7 − 7xt6, 7t8 − 8xt7),

∼ (x, t) �→ (x, 2t3 − 3xt2, 4t5 − 5xt4, 6t7 − 7xt6, 0).

Here we use ∼ for the diffeomorphism equivalence (right-left equivalence) of map-
germs to provide different representatives. See Figure 4 for the illustrations of these
singularities.

In §2, we recall the split octonions and G2, and in §3, we introduce the flag
manifold and the double fibration for the split G2 following [7]. Note that the same
construction has been analyzed and utilized in the problem of “rolling balls” ([1][4][3]).
From Theorems 1.1, 1.2 and 1.3, we observe that the tangent varieties for G2 case
project to that for C2 and to that for A2. We provide an explanation of this obser-
vation on the above classification results (Remark 4.7). In §4, we give the explicit
description of the double fibration and differential systems associated to it, in order
to find exact normal forms of singularities in the following sections. In fact in §5,
we provide explicit descriptions of tangent surfaces to ΠY ◦ f and to ΠX ◦ f for any
germ of Engel integral curve. Then we show a necessary codimension formula to get
the genericity result and the “Cartan-Monge duality”of Engel curves in §6, which is
analogous to the ordinal projective duality of plane curve singularities for A2, and to
the “contact-cone, Legendre-null”duality for C2 observed in [15]. We complete the
classification of singularities of tangent mappings in §7 to prove the main Theorem
1.3. In §8, as an appendix, we give a Lie theoretical explanation on the hierarchy of
double fibrations associated to simple Lie algebras of rank 2, in terms of root systems
of G2, C2 and A2.

Acknowledgment. The authors are grateful to Professor Hajime Sato who
showed them the references [9][19] and gave valuable comment, and to the referees for
their helpful comment to improve the paper.

2. The split octonions and the split G2. First recall the split octonion al-
gebra O′ = H(−), following [11]. Let H = {a = x + yi + zj + wk | x, y, z, w ∈ R}



SINGULARITIES OF TANGENT SURFACES IN G2-GEOMETRY 359

Fig. 4. Singularities of tangent surfaces associated to the G2-double fibration

be the Hamilton’s quaternion algebra endowed with the operation of conjugation

a = x−yi−zj−wk and the positive definite inner product (a|b) = Re(ab) =
1

2
(ab+ba).

Setting O′ = H⊕H as a vector space, define the multiplication on O′ by

(a, b)(c, d) = (ac+ db, da+ bc).

We set ε = (0, 1) and write (a, b) = a+ bε. Then we have ε2 = 1 and

a(dε) = (da)ε, (bε)c = (bc)ε, (bε)(dε) = db.

Remark that the octonion is a non-associative algebra. Moreover we define the con-
jugation on O′ by a+ bε = a− bε. Then the inner product on O′ is defined by

(a+ bε | c+ dε) = Re((a+ bε)(c+ dε)) = (a|c)− (b|d),
which is of index (4, 4). An element of O′ is uniquely expressed as

a+ bε = a1 + a2i+ a3j + a4k + b1ε+ b2iε+ b3jε+ b4kε.

We set

e0 = 1, e1 = 1
2 (i+ iε), e2 = 1

2 (j − jε), e3 = 1
2 (k − kε),

e4 = ε, e5 = 1
2 (k + kε), e6 = 1

2 (j + jε), e7 = 1
2 (i− iε).

Then we have the multiplication table (Table 1) with e0ei = eie0 = ei (0 ≤ i ≤ 7).
We call any basis of O′ possessing the same multiplication table with

e0, e1, e2, e3, e4, e5, e6, e7 an admissible basis of O′.
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e1 e2 e3 e4 e5 e6 e7

e1 0 0 0 e1 −e2 e3 − 1
2
(e0 − e4)

e2 0 0 e1 −e2 0 − 1
2
(e0 + e4) −e5

e3 0 −e1 0 −e3 − 1
2
(e0 + e4) 0 e6

e4 −e1 e2 e3 e0 −e5 −e6 e7
e5 e2 0 − 1

2
(e0 − e4) e5 0 −e7 0

e6 −e3 − 1
2
(e0 − e4) 0 e6 e7 0 0

e7 − 1
2
(e0 + e4) e5 −e6 −e7 0 0 0

Table 2.1

Multiplication table of the split octonions

For the inner product, we have that (ei|e8−i) =
1
2 (1 ≤ i ≤ 7, i �= 4), (e4|e4) =

−1, (e0|e0) = 1 and other pairings are all zero.
If we set c1 = 1

2 (e0 − e4), c2 = 1
2 (e0 + e4), c3 = e1, c4 = e6, c5 = e5, c6 = e7, c7 =

e2, c8 = e3, then the basis c1, c2, c3, c4, c5, c6, c7, c8 of O′ enjoy the multiplication table
shown in [12] p.105.

The split G2 group is defined as the automorphism group of the split octonion
algebra O′ and is denoted by G′2:

G′2 := {g ∈ GL(O′) | g preserves the multiplication of O′}.

Let V = Im(O′) be the imaginary part of O′. Then G′2 preserves V . For v ∈ V ,
we have v = −v. Moreover we have v2 = −(v|v). In fact, we see v2 ∈ R, since
v2 = v2 = v2. Therefore (v|v) = Re(vv) = −v2. Thus we see G′2 preserves the
conjugation and the inner product.

The associative 3-form φ ∈ ∧3V ∗ is defined by φ(u, v, w) = (uv|w). Then G′2
preserves the associative 3-form φ. The converse is true by the following result:

Theorem 2.1. ([6][11]) The group G′2 is represented as

G′2 = {g ∈ GL(V ) | g∗φ = φ}.

Corollary 2.2. The group G′2 acts transitively on the set of admissible bases of
the algebra O′.

Proof. Let e0, e1, e2, e3, e4, e5, e6, e7 be any admissible basis of O′. Then e =
(e1, e2, e3, e4, e5, e6, e7) is a basis of V and we have

φ = e∗1 ∧ e∗4 ∧ e∗7 − e∗2 ∧ e∗4 ∧ e∗6 − e∗3 ∧ e∗4 ∧ e∗5 − e∗1 ∧ e∗5 ∧ e∗6 + e∗2 ∧ e∗3 ∧ e∗7,

in terms of the dual basis e∗ = (e∗1, e
∗
2, e

∗
3, e

∗
4, e

∗
5, e

∗
6, e

∗
7) of the dual space V ∗ to the

basis e of V . Let (fj)0≤j≤7 be another admissible basis of O′. Then define g ∈ GL(V )
by g(fj) = ej (1 ≤ j ≤ 7). Then g∗φ = φ. Therefore, by Theorem 2.1, g ∈ G′2.

3. Flags and double fibration for the split G2. Let O′ be the split octonions
and G′2 the split G2 group (§2). Consider the 7-dimensional vector space V = Im(O′),
purely imaginary split octonions.

An element v ∈ V is called null if v2 = 0. This is equivalent to that (v|v) = 0. A
subspace W ⊂ V is called a null subalgebra if vw = 0 for any v, w ∈ W . We consider
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the flag manifold

Z = Z(G2) := {(V1, V2) | V1 ⊂ V2, V1 and V2 are oriented null subalgebras of V,

dimV1 = 1, dimV2 = 2}.

Moreover we set

Y = Y (G2) := {V1 | V1 is an oriented 1-dimensional null subalgebra in V },
X = X(G2) := {V2 | V2 is an oriented 2-dimensional null subalgebra in V }.

We call Z the null flag manifold, Y the null projective space and X the null Grass-
mannian in this paper. We denote by ΠY : Z → Y and ΠX : Z → X the canonical
projections.

Then we have

Proposition 3.1. The null flag manifold Z, the null projective space Y and the
null Grassmannian X are 6, 5 and 5 dimensional manifolds respectively. The group
G′2 acts transitively on Z, Y,X respectively such that ΠY ,ΠX are G′2-equivariant. In
fact Z ∼= G′2/B as G′2-manifolds for a Borel subgroup B of G′2, and Y ∼= G′2/P1, X ∼=
G′2/P2 for parabolic subgroups P1, P2 of G′2 containing B. Moreover Z (resp. X,Y )
is diffeomorphic to S3 × S3 (resp. to S2 × S3).

Proposition 3.1 is stated in [7]. Refer [2] for the case over algebraically closed fields
(see also [10], §23.3). We give a proof that G′2 acts transitively on Y,X and Z, in the
real case, to make sure: First we remark that Y is a connected 5-dimensional manifold.
In fact, the inner product on V is of index (3, 4) and we see that Y is diffeomorphic
to S2 × S3. Since G′2/P1 is embedded in Y as a closed set and dim(G′2/P1) = 5,
we have that Y ∼= G′2/P1 as G′2-manifolds. Moreover we see that ΠY : Z → Y is
an S1-fibration. Therefore Z is a connected 6-dimensional manifold. Since G′2/B is
embedded in Z as a closed set and dim(G′2/B) = 6, we have that Z ∼= G′2/B as G′2-
manifolds. Since ΠX : Z → X is a S1-bundle, we see X is a connected 5-dimensional
manifold. Since G′2/P2 is embedded in X as a closed set and dim(G′2/P2) = 5, we
have that X ∼= G′2/P2 as G′2-manifolds. Therefore G′2 acts on transitively on the
double fibration Y ← Z → X. For the explicit proof of the last part, see [9][19]. In
[3], the transitivity of G′2-action on Z is proved using the notion “null triples”. See
also [4][1] and §8.

Now we give the concrete description of the double fibration which is needed to
obtain the exact and explicit classification results on singularities in the following
sections.

Let ΠY : Z → Y and ΠX : Z → X be natural projections. Note that both ΠY

and ΠX are fibrations with S1-fibers. Consider the double fibrations

Z(G2)

ΠY ↙ ↘ ΠX

Y (G2) X(G2).

For each U ∈ X, we consider a one dimensional submanifold

[U ] := P̃ (U) = {� ∈ Y | (�, U) ∈ Z} = ΠY (Π
−1
X (U))
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of Y , where P̃ (U) is the double cover of the projective space P (U). We call [U ] ⊂ Y
a Cartan line or a C-line associated to the null plane U . Later we see that [U ] is a
projective line for a projective structure on Y . The set of Cartan lines is identified
with the null Grassmannian X.

For each � ∈ Y , we consider a one dimensional submanifold

[�] := {U ∈ X | (�, U) ∈ Z} = ΠX(Π−1
Y (�))

of X. We call [�] ⊂ X a Monge line or an M-line associated to the null line �. Later
we see that [�] is a projective line for a projective structure on X. The set of Monge
lines is identified with the null projective space Y .

On Z we define the distribution E ⊂ TZ of rank 2 by

E := Ker(ΠY ∗)⊕Ker(ΠX∗).

We call E the Engel distribution, or G2-Engel distribution to distinguish with the
C2-case.

For each (�, U) ∈ Z, we set [[U ]] = T�[U ] ⊂ T�Y and [[�]] = TU [�] ⊂ TUX. Then
we have

E(�,U) = {v ∈ T(�,U)Z | ΠY ∗v ∈ [[U ]]} = T(�,U)(Π
−1
Y (ΠY (Π

−1
X (U)))

= {v ∈ T(�,U)Z | ΠX∗v ∈ [[�]]} = T(�,U)(Π
−1
X (ΠX(Π−1

Y (�)))).

The big (or strong) (resp. the small (or weak)) derived systems Ei (resp. E(i)) of
E are defined by E1 = E(1) = E and

E i := E i−1 + [E i−1, E i−1], (resp. E(i) := E(i−1) + [E , E(i−1)]),

in terms of sheaves. Note that E(i) ⊆ E i. Then, in §4, we will see that E(i) and Ei are
subbundles of TZ, rank(E(i)) = i+ 1, i = 2, 3, 4, 5, while rank(E2) = 3, rank(E3) = 4
but rank(E4) = 6. Therefore, for the “vector” counting ranks of small or big derived
systems, we obtain:

Lemma 3.2. E ⊂ TZ is a G′2-invariant distribution with the small growth vector
(2, 3, 4, 5, 6) and the big growth vector (2, 3, 4, 6).

Remark 3.3. The system E ⊂ TZ is locally isomorphic to the system associated
to the Hilbert-Cartan equation (see [22]).

For each � ∈ Y , we set

H� := {w ∈ V | vw = 0, for any v ∈ �},
Then we see that H� is a 3-dimensional subspace of V . Moreover any line in H� is a
null line (a 1-dimensional null subalgebra). (See §4.) Therefore the projective plane
P (H�) of P (V ) is contained in Y . We define a distribution D ⊂ TY on Y of rank 2
by

D� := T�P (H�) ⊂ T�Y, � ∈ Y.

Then we have:

Lemma 3.4. D ⊂ TY is a G′2-invariant Cartan distribution with the big and
small growth vector (2, 3, 5).
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The derived system D2 of D is obtained by

(D2)� = T�P (H⊥
� ) ⊂ T�Y, � ∈ Y,

which is of rank 3. Here H⊥
� is the orthogonal space of H�:

H⊥
� = {w ∈ V | (v|w) = 0, for any v ∈ H�}.

Then we have, for any v ∈ TZ, v ∈ E2 if and only if ΠY ∗(v) ∈ D, and v ∈ E3 if and
only if ΠY ∗(v) ∈ D2.

Remark 3.5. A Cartan line is an abnormal (or a singular) curve of the distribu-
tion D on Y . Moreover X is identified with the set of abnormal (or singular) curves
of D (see [4][17]).

We define a field of two dimensional cones C ⊂ TX on X as follows: Let U ∈ X.
Consider the Schubert variety

SU := {U ′ ∈ X | U ′ ∩ U �= {0}} = ΠX(Π−1
Y (ΠY (Π

−1
X (U)))).

Then the cone CU ⊂ TUX is defined as the tangent cone of SU at U . Moreover we
define the contact distribution D′ ⊂ TX as the linear hull of the cone field C. Note
that Z is identified with the oriented projective bundle P̃ (D) and E is identified with

the prolongation of D ⊂ TY . On the other hand Z is identified with the set P̃ (C)
of generating oriented lines of the cone field C and E is the “prolongation” or, the
(double cover of) “resolution” of C.

In the next section we give the explicit descriptions of E,D,C and D′.

Remark 3.6. As is stated in §1, we observe that we have the Cartan structure on
Y (G2), which is a G′2-invariant distribution with big and small growth vector (2, 3, 5),
while on Y (C2) we have a projective contact structure with big and small growth
vector (2, 3) and on Y (A2) we have just a projective structure. On X(G2) we have a
G′2-homogeneous contact structure with big and small growth vector (4, 5) and a cubic
Lagrange cone field in it, while on X(C2) we have a Lagrange-Grassmann structure or
an indefinite conformal structure, which is given by a quadratic cone field. On Z(G2)
we have the G2-Engel distribution with small growth vector (2, 3, 4, 5, 6) and with big
growth vector (2, 3, 4, 6), while on Z(C2) we have the Engel structure with big and
small growth vector (2, 3, 4) and on Z(A2) we have a projective contact structure with
big and small growth vector (2, 3).

To the double fibration (Y,D)
πY←−− (Z,E)

πX−−→ (X,C) in the case G2, we naturally
associate some classes of curves:

Definition 3.7. Let I be an open interval.
A curve f : I −→ (Z,E) is called an Engel curve or an E-curve if f∗(TI) ⊂ E(⊂

TZ).
A curve g : I −→ (Y,D) is called a Cartan curve or a C-curve if g∗(TI) ⊂ D(⊂

TY ).
A curve h : I −→ (X,C) is called a Monge curve or an M-curve if h∗(TI) ⊂ C(⊂

TX).

If f is an Engel curve, then ΠY ◦f is a Cartan curve and ΠX ◦f is a Monge curve.
An Engel curve f is called transversal if it is transversal to any ΠY -fibre Π

−1
Y (�), � ∈ Y



364 G. ISHIKAWA, Y. MACHIDA, AND M. TAKAHASHI

and ΠX -fibre Π−1
X (U), U ∈ X. Then ΠY ◦ f is a Cartan immersion and ΠX ◦ f is a

Monge immersion.
A curve f : I → Z, V1(t) ⊂ V2(t) (t ∈ I) is an Engel curve if and only if V ′1(t) ⊂

V2(t), V
′
2(t) ⊂ HV1(t) = V3(t). Then V ′3(t) ⊂ V3(t)

⊥, V ′′3 (t) ⊂ V2(t)
⊥, V ′′′3 (t) ⊂ V1(t)

⊥.
Here, for instance, V ′1(t) means the subspace generated by the derivative v′(t), with
respect to a fixed basis of V , for any C∞ section v(t) ∈ V1(t) together with V1(t).

A curve g : I → Y, g(t) = V1(t) (t ∈ I) is a Cartan curve if and only if V ′1(t) ⊂
HV1(t). V2(t) = V1(t)+V ′1(t) is a null plane in HV1(t) if g is a Cartan immersion. Then
we have V ′2(t) ⊂ HV1(t) and g lifts uniquely to an Engel immersion f : I → Z.

A curve h : I → X,h(t) = V2(t) (t ∈ I) is a Monge curve if and only if there
exists V1(t) ⊂ V2(t) such that V ′1(t) ⊂ V2(t), V

′
2(t) ⊂ HV1(t). Then h lifts to an Engel

curve f : I → Z uniquely.

4. Explicit description of double fibration and differential systems. We
introduce certain charts on X,Z and on Y which are compatible with the double

fibration Y
ΠY←−−− Z

ΠX−−−→ X.
For a subset S ⊂ V , we define

HS := {w ∈ V | vw = 0, for any v ∈ S},
S⊥ := {w ∈ V | (v|w) = 0, for any v ∈ S}.

Then, for each (V1, V2) ∈ Z, we obtain canonically the complete flag in V :

V1 ⊂ V2 ⊂ V3 := HV1
⊂ V4 := V ⊥3 ⊂ V5 := V ⊥2 ⊂ V6 := V ⊥1 ⊂ V.

Thus we have an embedding of Z into the complete flag manifold F1,2,3,4,5,6(V ).
Now, fix (�0, U0) ∈ Z. Then we have the complete flag of V :

�0 ⊂ U0 ⊂ H�0 ⊂ H⊥
�0 ⊂ U⊥0 ⊂ �⊥0 ⊂ V.

Consider the open subset

O = {(�, U) ∈ Z | � ∩ �⊥0 = {0}, U ∩ U⊥0 = {0}, H� ∩H⊥
�0 = {0}}

of Z. Fix (�1, U1) ∈ O. Then we have the canonical decomposition of V into the
direct sum of lines:

V = �1 ⊕ (U1 ∩ �⊥0 )⊕ (H�1 ∩ U⊥0 )⊕ (H⊥
�1 ∩H⊥

�0)⊕ (U⊥1 ∩H�0)⊕ (�⊥1 ∩ U0)⊕ �0.

Since G′2 acts transitively on Z (Proposition 3.1), we can choose a basis
e1, e2, e3, e4, e5, e6, e7 of V satisfying

e1 ∈ �1, e2 ∈ U1∩�⊥0 , e3 ∈ H�1∩U⊥0 , e4 ∈ H⊥
�1∩H⊥

�0 , e5 ∈ U⊥1 ∩H�0 , e6 ∈ �⊥1 ∩U0, e7 ∈ �0

and e0 = 1, e1, e2, e3, e4, e5, e6, e7 form an admissible basis, enjoying the same multipli-
cation table (Table 1) and therefore the same inner product pairing with the standard
basis with e0 = 1 (cf. [2]).

Let (�, U) ∈ O. Then we fix the basis of U by

f1 = e1 + ye3 + xe4 + ve5 + ue6 + ke7, f2 = e2 + ze3 + �e4 + ae5 + be6 + ce7.

Then, from f1f2 = 0, f2
1 = 0, f2

2 = 0, we have

� = y, a = x, b = y2 − xz, k = x2 − yv, c = xy − zv − u.
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Thus we have a system of local coordinates x, y, z, u, v of X near U1. Then we have
a basis of � in the form f1 + λf2 for some λ ∈ R:

f1 + λf2 = e1 + λe2 + (y + λz)e3 + (x+ λy)e4 + (v + λx)e5 + (u+ λ(y2 − xz))e6

+(x2 − yv + λ(xy − zv − u))e7.

Note that (x, y, z, u, v) gives a chart on X.
A chart on Y is given as follows: Let

g = e1 + λe2 + νe3 + μe4 + τe5 + σe6 + ρe7

be a vector in V . Then (g|g) = ρ+ λσ + ντ − μ2. Therefore the condition that g is a
null vector is given by

ρ = −λσ − ντ + μ2.

Hence we can take (λ, μ, ν, τ, σ) as a chart on Y . Moreover we have a chart
(λ, x, y, z, u, v) on O ⊂ Z.

Thus the fibrations ΠY ,ΠX are described via the local coordinates by

ΠY (λ, x, y, z, u, v) =
(
λ, x+ λy, y + λz, v + λx, u+ λ(y2 − xz)

)
,

and

ΠX(λ, x, y, z, u, v) = (x, y, z, u, v).

In particular, the coordinate on ΠY -fiber is given by z and the coordinate on ΠX -fiber
is given λ.

Remark 4.1. As a chart on Z, also we can take (λ, μ, ν, τ, σ, z). Then the local
coordinate transformation for our chart (λ, x, y, z, u, v) is expressed by

(λ, μ, ν, τ, σ, z) �→ (λ, x, y, z, u, v)

= (λ, μ− λν + λ2z, ν − λz, z, σ − λν2 + (λμ+ λ2ν)z, τ − λμ+ λ2ν − λ3z).

We show the explicit local expressions of our differential systems:

Lemma 4.2. The G2-Engel differential system E on Z is given by

α1 := dy + λdz = 0, α2 := dx− λ2dz = 0,

α3 := dv + λ3dz = 0, α4 := du− (λ3z + 2λ2y + λx)dz = 0.

A local frame (ξ1, ξ2) of E is given by

ξ1 =
∂

∂λ
, ξ2 =

∂

∂z
− λ

∂

∂y
+ λ2 ∂

∂x
− λ3 ∂

∂v
+ (λ3z + 2λ2y + λx)

∂

∂u
.

Proof. For v ∈ TZ, take a curve (V1(t), V2(t)) on Z representing v at t = 0.
Suppose (V1(t), V2(t)) is given by a frame f1(t), f2(t). Then the condition that v ∈ E
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is given by f ′1(0) ∈ 〈f1(0), f2(0)〉. In terms of local coordinates, the condition is given
by

λ′ = p, (y + λz)′ = pz, (x+ λy)′ = py, (v + λx)′ = px,

(u+ λ(y2 − xz))′ = p(y2 − xz), (x2 − yv + λ(xy − zv − u))′ = p(xy − zv − u),

for some p ∈ R, at t = 0. Then p = λ′ and

(y + λz)′ = zλ′, (x+ λy)′ = yλ′, (v + λx)′ = xλ′,
(u+ λ(y2 − xz))′ = (y2 − xz)λ′, (x2 − yv + λ(xy − zv − u))′ = (xy − zv − u)λ′.

Then the condition is equivalent to α1(v) = α2(v) = α3(v) = α4(v) = α5(v) = 0,
where α5 = d(x2 − yv) + λd(xy − zv − u). Then we have

α5 = (−v + λx)α1 + (2x+ λy)α2 − (y + λz)α3 − λα4.

Thus we obtain the required consequence.

Remark 4.3. In each system of local coordinates (λ, x, y, z, u, v) of Z, we have
the family of G2-Engel transformations T = Tp0

: (R6, p0) → (R6, 0), depending on

p0 = (λ0, x0, y0, z0, u0, v0) ∈ R6, defined by (λ, x, y, z, u, v) �→ (λ̃, x̃, ỹ, z̃, ũ, ṽ),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̃ = λ− λ0,

z̃ = z − z0,

ỹ = y − y0 + λ0(z − z0),

x̃ = x− x0 + 2λ0(y − y0) + λ2
0(z − z0),

ṽ = v − v0 + 3λ0(x− x0) + 3λ2
0(y − y0) + λ3

0(z − z0),

ũ = u− u0 + x0(y − y0)− 2y0(x− x0) + z0(v − v0)

+λ0{(y − y0)
2 − (x− x0)(z − z0)}.

Note that Tp0(λ0, x0, y0, z0, u0, v0) = (0, 0, 0, 0, 0, 0). This shows explicitly the local
transitivity of G′2-action on Z (cf. Proposition 3.1). Also note that, if λ0 �= 0, then T
is neither a linear nor a projective transformation.

Lemma 4.4. The Cartan differential system D ⊂ TY is given, in terms of the
system of local projective coordinates (λ, μ, ν, τ, σ), by β1 = β2 = β3 = 0 where

β1 = −νdλ+λdν+dμ, β2 = (λν−μ)dλ−λ2dν+dτ, β3 = −ν2dλ+(λν+μ)dν+dσ.

The local frame of D is given by

η1 =
∂

∂λ
+ ν

∂

∂μ
− (λν − μ)

∂

∂τ
+ ν2

∂

∂σ
, η2 =

∂

∂ν
− λ

∂

∂μ
+ λ2 ∂

∂τ
− (λν + μ)

∂

∂σ
.

Proof. Let r0 = (λ0, μ0, ν0, τ0, σ0) ∈ Y . Then points (x, y, z, u, v) in the Monge
line ΠXΠ−1

Y (r0) are given by the conditions

y = ν0 − λ0z, x = μ0 − λ0ν0 + λ2
0z,

v = τ0 − λ0μ0 + λ2
0ν0 − λ3

0z, u = σ0 − λ0ν
2
0 + λ0(λ0ν0 + μ0)z.
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Then points (λ,M,N, T,Σ) in ΠY Π
−1
X ΠXΠ−1

Y (r0) are given by

M = μ0 + ν0(λ− λ0)− λ0(λ− λ0)z, N = ν0 + (λ− λ0)z,

T = τ0 − (λ0ν0 − μ0)(λ− λ0) + λ2
0(λ− λ0)z,

Σ = σ0 + ν20(λ− λ0)− (λ0ν0 + μ0)(λ− λ0)z.

By differentiating by λ, we have a family of tangent lines in Tr0Y with direction
vectors

(1, ν0 − λ0z, z, μ0 − λ0ν0 + λ2
0z, ν20 − (λ0ν0 + μ0)z).

Note that the family is linear in z and envelopes the tangent plane to
ΠY Π

−1
X ΠXΠ−1

Y (r0). We have three independent cotangent vectors

β1 = −ν0dλ+ λ0dν + dμ, β2 = (λ0ν0 − μ0)dλ− λ2
0dν + dτ,

β3 = −ν20dλ+ (λ0ν0 + μ0)dν + dσ,

from the condition to annihilate the family of lines, which define the differential system
D. The local frame is obtained easily. Note that

[η1, η2] = −2
(

∂

∂μ
+ 2λ

∂

∂τ
− 2ν

∂

∂σ

)
.

Lemma 4.5. The cone structure C ⊂ TX is a twisted cubic cone field given, in
terms of the system of local projective coordinates (x, y, z, u, v) and symmetric tensors,
by

dxdy − dzdv = 0, dxdz − (dy)2 = 0, (dx)2 − dydv = 0, du− 2ydx+ xdy + zdv = 0.

The linear hull of C is a contact structure D′ ⊂ TX given by

du− 2ydx+ xdy + zdv = 0.

Proof. Let q0 = (x0, y0, z0, u0, v0) ∈ X. The Cartan line ΠY Π
−1
X (q0) is given by

(λ, y0 + λz0, x0 + λy0, v0 + λx0, u0 + λ(y20 − x0z0)), (λ ∈ R).

Then the condition that a point (x, y, z, u, v) belongs to ΠXΠ−1
Y ΠY Π

−1
X (q0) is given

by

y+λz = y0+λz0, x+λy = x0+λy0, v+λx = v0+λx0, u+λ(y2−xz) = u0+λ(y20−x0z0),

for some λ ∈ R. Then

y = y0 − λ(z − z0), x = x0 + λ2(z − z0), v = v0 − λ3(z − z0).

Moreover

y2 − xz = y20 − x0z0 − (λ2z0 + 2λ2y0 + λx0)(z − z0),
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therefore

u− u0 = (λ3z0 + 2λ2y0 + λx0)(z − z0).

Hence the condition is reduced to

x− x0 = λ2(z − z0), y − y0 = −λ(z − z0), v − v0 = −λ3(z − z0),

u− u0 = 2y0(x− x0)− x0(y − y0)− z0(v − v0).

Thus we have a family of tangent lines in Tq0X parametrized by λ, which forms a
twisted cubic cone:

dx = λ2dz, dy = −λdz, dv = −λ3dz,

in the hyperplane {du = 2y0dx − x0dy − z0dv} ⊂ Tq0X. Eliminating λ, we obtain
the equations for C. Moreover we have that the linear hull D′q0 is given by D′q0 =
{du − 2y0dx + x0dy + z0dv = 0} ⊂ Tq0X. This completes the explicit expression of
our geometric structures.

Remark 4.6. The tangent surfaces of Monge curves, namely integral curves to
the cone field C, are Legendre surfaces for the contact structure D′.

Remark 4.7. If we restrict the double fibration Y (G2) ← Z(G2) → X(G2)
to local coordinate neighborhoods OY ← O → OX , then there exist submersions
O → Z(C2), (λ, x, y, z, u, v) �→ (λ, x, y, z), OY → Y (C2), (λ, μ, ν, τ, σ) �→ (λ, μ, ν)
and OX → X(C2), (x, y, z, u, v) �→ (x, y, z), which are compatible with the double
fibration. Similarly if we restrict the double fibration Y (C2) ← Z(C2) → X(C2) to
some local coordinate neighborhoods O′Y ← O′ → O′X constructed in [15], then it is
submersed to Y (A2)← Z(A2)→ X(A2).

5. Explicit descriptions of tangent surfaces. Let f : (R, 0) → Z(G2) be a
germ of Engel curve and f(t) = (λ(t), x(t), y(t), z(t), u(t), v(t)) a local representation
of f in local coordinates of Z introduced in §4.

First we give a parametrization of the tangent surface to the curve ΠY ◦ f in Y .

Lemma 5.1. The tangent surface to ΠY ◦ f is parametrized by a map-germ
(R2, 0)→ (R5, 0) given by

(r, t) �→ (
r, x(t) + ry(t), y(t) + rz(t), v(t) + rx(t), u(t) + r(y(t)2 − x(t)z(t))

)
.

Proof. The curve γ = ΠY ◦ f is given by

γ(t) = (λ(t), x(t) + λ(t)y(t), y(t) + λ(t)z(t),

v(t) + λ(t)x(t), u(t) + λ(t)(y(t)2 − x(t)z(t))
)
.

Using the condition that f is an Engel integral curve (Lemma 4.2), we see that the
velocity vector of γ is given by

γ′(t) = λ′(t)
(
1, y(t), z(t), x(t), y(t)2 − x(t)z(t)

)
.
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For each t, we can take the vector w(t) =
(
1, y(t), z(t), x(t), y(t)2 − x(t)z(t)

)
as a

basis of the tangent line to γ at t. Hence the tangent map-germ of γ is given by

Tan(ΠY ◦ f) = Tan(γ)(s, t) := γ(t) + sw(t)

=
(
λ+ s, x+ λy + sy, y + λz + sz, v + λx+ sx, u+ λ(y2 − xz) + s(y2 − xz)

)
.

If we set r = λ(t) + s, then we see that the tangent map-germ FY = Tan(ΠY ◦ f) :
(R2, 0)→ (R5, 0) is given by

(r, t) �→ (
r, x(t) + ry(t), y(t) + rz(t), v(t) + rx(t), u(t) + r(y(t)2 − x(t)z(t))

)
,

up to parametrizations.

Remark 5.2. Consider the map-germ GY : (R2, 0)→ (R2, 0) define by

GY (r, t) = (G1(r, t), G2(r, t)) := (r, y(t) + rz(t)).

Define the sub-R-algebra RGY
of ER2,0 = Er,t by

RGY
:=

{
h ∈ Er,t | dh ∈ 〈dG1, dG2〉Er,t

}
=

{
h ∈ Er,t

∣∣ ∂
∂th = a ∂

∂t (y(t) + rz(t)) for some a ∈ Er,t
}
.

Here ER2,0 = Er,t means the R-algebra of all function-germs (R2, 0) → R. Then we
see that every components of the germ Tan(ΠY ◦ f) belong to RGY

. In fact we have

∂
∂t (x(t) + ry(t)) = −λ(t) ∂

∂t (y(t) + rz(t)), ∂
∂t (v(t) + rx(t)) = λ(t)2 ∂

∂t (y(t) + rz(t)),

∂
∂t (u(t) + r(y(t)2 − x(t)z(t)) = −(λ(t)2z(t) + 2λ(t)y(t) + x(t)) ∂

∂t (y(t) + rz(t)).

Hence we have F ∗Y (Eλ,μ,ν,τ,σ) ⊆ RGY
. Moreover, in fact, the object RG is defined for

any map-germ G : (Rn, 0)→ (Rm, 0) similarly to above and, for any diffeomorphism-
germs Σ : (Rn, 0)→ (Rn, 0), T : (Rm, 0)→ (Rm, 0), and for G′ = T ◦G ◦Σ, we have
RG′ = Σ∗(RG).

Second, we give a parametrization of the tangent surface to the curve ΠX ◦ f in
X.

Lemma 5.3. The tangent surface to ΠX ◦ f is parametrized by a map-germ
(R2, 0)→ (R5, 0) given by

(r, t) �→ (
x(t)− λ(t)2z(t) + rλ(t)2, y(t) + λ(t)z(t)− rλ(t), r,

u(t)− λ(t)3z(t)2 − 2λ(t)2y(t)z(t)− λ(t)x(t)z(t) + r(λ(t)3z(t)

+2λ(t)2y(t) + λ(t)x(t)), v(t) + λ(t)3z(t)− rλ(t)3
)
.

Proof. The curve γ∗ = ΠX ◦f is given by γ∗(t) = (x(t), y(t), z(t), u(t), v(t)). From
Lemma 4.2, the velocity vector of γ∗ is given by

γ∗′(t) = z′(t)
(
λ(t)2, −λ(t), 1, λ(t)3z(t) + 2λ(t)2y(t) + λ(t)x(t), −λ(t)3) .

Thus we have the tangent map-germ of γ∗ is given by

Tan(ΠX ◦ f)(s, t) = Tan(γ∗)(s, t)
:=

(
x(t) + sλ(t)2, y(t)− sλ(t), z(t) + s, u(t) + s(λ(t)3z(t)

+2λ(t)2y(t) + λ(t)x(t)), v(t)− sλ(t)3
)
.
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By setting r = z(t)+ s, we see that FX = Tan(ΠX ◦ f) : (R2, 0)→ (R5, 0) is given by

(r, t) �→ (
x− λ2z + rλ2, y + λz − rλ, r, u− λ3z2 − 2λ2yz − λxz

+r(λ3z + 2λ2y + λx), v + λ3z − rλ3
)
,

up to parametrizations.

Remark 5.4. Similarly to Remark 5.2, for the tangent surface to ΠX ◦ f , we set
GX : (R2, 0)→ (R2, 0) by

GX(r, t) = (G1(r, t), G2(r, t)) := (r, y(t) + λ(t)z(t)− rλ(t)).

Then every components of FX belong to RGX
. In fact,

∂
∂t (x(t)− λ(t)2z(t) + rλ2(t)) = −2λ(t) ∂

∂t (y(t) + λ(t)z(t)− rλ(t)),
∂
∂t (v(t) + λ(t)3z(t)− rλ(t)3) = 3λ(t)2 ∂

∂t (y(t) + λ(t)z(t)− rλ(t)),
∂
∂t

(
u(t)− λ(t)3z(t)2 − 2λ(t)2y(t)z(t)− λ(t)x(t)z(t)

+r(λ(t)3z(t)2λ(t)2y(t) + λ(t)x(t))
)

= −(3λ(t)2z(t) + 4λ(t)y(t) + x(t)) ∂
∂t (y(t) + λ(t)z(t)− rλ(t)).

Moreover we have F ∗X(Ex,y,z,u,v) ⊆ RGX
.

6. Cartan-Monge duality of Engel curves. Let f : (R, 0) → Z(G2) be a
germ of Engel curve. Let f(t) = (λ(t), x(t), y(t), z(t), u(t), v(t)) be a local representa-
tion of f in local coordinates centered at f(0) ∈ Z introduced in §4. Suppose

ord(λ) = m, ord(z) = n

at t = 0. Here the order means the degree of the leading term at t = 0. Then we have
that

ord(λ, y + λz, x+ λy, v + λx, u+ λ(y2 − xz)) = (m,m+ n, 2m+ n, 3m+ n, 3m+ 2n)

and

ord(z, y, x, v, u) = (n,m+ n, 2m+ n, 3m+ n, 3m+ 2n).

In general, let γ : I →MN be a C∞ curve in an N -dimensional manifold M with
a flat projective structure. We say that γ is of finite type at t = t0 ∈ I if there exist a
C∞ coordinate t on I centered at t0, t takes 0 at t0, and a local system of projective
coordinates (x1, . . . , xN ) of M centered at γ(t0) such that

x1 ◦ γ(t) = ta1 +O(ta1+1), · · · , xN ◦ γ(t) = taN +O(taN+1),

for some strictly increasing sequence of positive integers 1 ≤ a1 < · · · < aN . Then
(a1, . . . , aN ) is uniquely determined from the projective class of the germ of γ at t = t0,
and we say that γ is of type (a1, . . . , aN ) at t = t0. If we consider the (N×i)-Wronskian
matrices

Wi(t) =
(
γ′(t), γ′′(t), · · · , γ(i)(t)

)
, i = 1, 2, . . . ,

regarding γ(t) as a column vector, then we have

a1 = min{i | rank Wi(t0) = 1}, · · · , aN = min{i | rank Wi(t0) = N}.



SINGULARITIES OF TANGENT SURFACES IN G2-GEOMETRY 371

We will apply the above definition to the case N = 5.
We denote by Jr

E(I, Z) the r-jet space of Engel curves (E-integral curves) I →
(Z,E):

Jr
E(I, Z) = {jrf(t0) ∈ Jr(I, Z) | t0 ∈ I, f : (R, t0)→ Z is Engel}.

Lemma 6.1. Jr
E(I, Z) is a subbundle of Jr(I, Z) for the projection Π : Jr(I, Z)→

I × Z of codimension 4r.

Proof. It is sufficient to show that

Jr
E(1, 6) = {jrf(0) | f : (R, 0)→ (R6, 0) is Engel}

is a submanifold of Jr(1, 6) of codimension 4r. To show it, define the mapping Φ :
Jr(1, 6)→ (Λr−1

1 )4 by

Φ(jr(λ, x, y, z, u, v)(0)) = (jr−1(α1)(0), j
r−1(α2)(0), j

r−1(α3)(0), j
r−1(α4))(0)),

using the four 1-forms α1, α2, α3, α4 in Lemma 4.2 which define E ⊂ TZ. Here Λr−1
1

denotes the (r− 1)-jet space of 1-forms on (R, 0). Note that (Λr−1
1 )4 is diffeomorphic

to R4r. Then Φ is a submersion. Therefore Φ−1(0) = Jr
E(1, 6) is a submanifold of

Jr(1, 6) of codimension 4r.

Let a = (a1, a2, a3, a4, a5), b = (b1, b2, b3, b4, b5) be strictly increasing sequences
of positive integers. Then we set, for a sufficiently large r,

Σr
ΠY ,a := {jrf(t0) ∈ Jr

E(I, Z) | ΠY ◦ f : I → Y is of type a at t0 ∈ I},
Σr

ΠX ,b := {jrf(t0) ∈ Jr
E(I, Z) | ΠX ◦ f : I → X is of type b at t0 ∈ I}.

From the above calculation of orders, we have

Proposition 6.2. Let a = (a1, a2, a3, a4, a5), b = (b1, b2, b3, b4, b5) be strictly
increasing sequences of positive integers.

(1) (Codimension formula I)
Σr

ΠY ,a �= ∅ for a sufficiently large r, if and only if

a3 = a1 + a2, a4 = 2a1 + a2, a5 = a1 + 2a2.

Then the codimension of Σr
ΠY ,a is equal to a2 − 2.

(2) (Codimension formula II)
Σr

ΠX ,b �= ∅ for a sufficiently large r, if and only if

b3 = −b1 + 2b2, b4 = −2b1 + 3b2, b5 = −b1 + 3b2.

Then the codimension of Σr
ΠX ,b is equal to b2 − 2.

(3) (Duality formula)
Σr

ΠY ,a ∩Σr
ΠX ,b �= ∅ for a sufficiently large r if and only if the above conditions (1)(2)

are satisfied and

(b1, b2, b3, b4, b5) = (a2 − a1, a2, a3, a4, a5)

or equivalently

(a1, a2, a3, a4, a5) = (b2 − b1, b2, b3, b4, b5).



372 G. ISHIKAWA, Y. MACHIDA, AND M. TAKAHASHI

To obtain a generic classification we use the following transversality theorem:

Proposition 6.3. (Engel transversality theorem on open intervals) Let I ⊂ R
be an open interval and Q ⊂ Jr

E(I, Z) a submanifold of Engel jet space Jr
E(I, Z).

Then any Engel curve f : I → Z is approximated in C∞-topology by an Engel curve
f ′ : I → Z for which jrf ′ : I → Jr

E(I, Z) is transverse to Q.

Proof. The proof is achieved by the same method as the proof of [15] Proposition
4.2.

For any open sub-interval V ⊂ I and for any coordinate neighborhood O ⊂ Z,
we define a diffeomorphism

ϕ = ϕ(V,O) : J
r
E(V,O)→ V ×O × Jr(1, 2)

by ϕ(jrf(t0)) = (t0, f(t0), j
r((λ, z) ◦ T ◦ f(t + t0))(0)), using the family of Engel

transformations T = Tf(t0) defined in Remark 4.3. Note that Tf(t0)(f(t0)) = 0.

Let f : I → Z be an Engel curve. Suppose, as a special case, f(I) is in some
projective coordinate neighborhood O ⊂ Z. Then, by the ordinary transversality
theorem, (λ, z)-components of f are perturbed so that, for a perturbed f ′, ϕ ◦ jrf ′ is
transverse to ϕ(Q ∩ Jr

E(I,O)) ⊂ I ×O × Jr(1, 2). Then jrf ′ is transverse to Q.

In general case, there is a strictly increasing sequence {ti}i∈Z of points in I such
that f([ti, ti+1]) is contained in some projective coordinate neighborhood Oi. We set
Ki = [ti, ti+1] and take open intervals Wi ⊃ Ki such that also f(Wi) ⊂ Oi and that
Wi ∩Wj = ∅ if |i− j| ≥ 2.

First we perturb f over W0 into an Engel curve f0 : W0 → Z such that jrf0 is
transverse to Q over W0. In fact, similarly as in the special case, by the ordinary
transversality theorem via ϕ = ϕ(W0,O0), (λ, z)-components of f |W0

are perturbed so
that, for the perturbed f0, ϕ ◦ jrf0 is transverse to ϕ(Q ∩ Jr

E(W0, O0)) ⊂W0 ×O0 ×
Jr(1, 2). Then jrf0 is transverse to Q over W0.

Second we perturb f over W0∪W1 into an Engel integral curve f1 : W0∪W1 → Z
such that jrf1 is transverse to Q and f1|K0

= f0|K0
. This is achieved, under the

coordinates on O1, by

x(t) =

∫ t

t1

λ(t)2z′(t)dt+ x(t1),

y(t) = −
∫ t

t1

λ(t)z′(t)dt+ y(t1),

u(t) = −
∫ t

t1

λ(t)3z′(t)dt+ u(t1),

v(t) =

∫ t

t1

(λ(t)3z(t) + 2λ(t)2y(t) + λ(t)x(t))z′(t)dt+ v(t1),

perturbing λ(t), z(t) over W1 just outside of K0 ∩W1 and setting f1(t1) = f0(t1).

Third we perturb f over W0∪W1∪W2 into an Engel curve f2 : W0∪W1∪W2 → F̃
such that jrf2 is transverse to Q and f2|K0∪K1 = f1|K0∪K1 . Thus, by continuing this
procedure, we have a perturbation f ′ : ∪0≤iWi → Z of f such that jrf ′ is transverse
to Q.
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Finally we perturb f backward to an Engel curve f ′′ : I = ∪i∈ZWi → Z such
that jrf ′′ is transverse to Q, by perturbing λ(t), z(t) and using, for i ≤ 0,

x(t) = −
∫ ti

t

λ(t)2z′(t)dt+ x(ti),

y(t) =

∫ ti

t

λ(t)z′(t)dt+ y(ti),

u(t) = −
∫ ti

t

λ(t)3z′(t)dt+ u(ti),

v(t) = −
∫ t1

t

(λ(t)3z(t) + 2λ(t)2y(t) + λ(t)x(t))z′(t)dt+ v(ti).

Note that, on any compact K ⊂ ∪i∈ZWi, the perturbation is achieved just by a finite
number of steps. Therefore we can take transversal perturbations of f to Q which are
arbitrarily small in C∞ topology.

By Proposition 6.2 and by Proposition 6.3, we have

Theorem 6.4. For a generic Engel curve f : I → Z in the split G2-flag manifold
(Z,E), the pair of types (type(ΠY ◦ f)(t), type(ΠX ◦ f)(t)) at any point t ∈ I is given
by one of the following three cases:

I : ((1, 2, 3, 4, 5), (1, 2, 3, 4, 5)),

II : ((1, 3, 4, 5, 7), (2, 3, 4, 5, 7)),

III : ((2, 3, 5, 7, 8), (1, 3, 5, 7, 8)).

Proof. We apply Proposition 6.3 to Q = Σr
ΠY ,a. Then, generically jrf−1(Q) �= ∅

only if a2 − 2 ≤ 1, namely if a2 ≤ 3, so if a2 = 2, 3. If a2 = 2, then a1 = 1 and
(a1, a2, a3, a4, a5) = (1, 2, 3, 4, 5), while (b1, b2, b3, b4, b5) = (1, 2, 3, 4, 5). If a2 = 3, then
a1 = 1, 2. If a1 = 1, then (a1, a2, a3, a4, a5) = (1, 3, 4, 5, 7) while (b1, b2, b3, b4, b5) =
(2, 3, 4, 5, 7). If a1 = 2, then (a1, a2, a3, a4, a5) = (2, 3, 5, 7, 8) and (b1, b2, b3, b4, b5) =
(1, 3, 5, 7, 8).

7. Local classification of tangent surface singularities. In this section, first
we show

Proposition 7.1. The diffeomorphism class of tangent surfaces of curves of type
(1, 2, 3, 4, 5) (resp. (1, 3, 4, 5, 7), (2, 3, 4, 5, 7)) is uniquely determined. We call it the
cuspidal edge (resp. the open Mond surface, the open swallowtail).

Proof. To verify Proposition 7.1, we recall several basic construction from singu-
larity theory (See [14]).

Let γ = ΠY ◦ f : I → Y (resp. γ = ΠX ◦ f : I → X), and t0 ∈ I. Suppose the
type of γ at t = t0 is equal to (a1, a2, a3, a4, a5). Take a local affine representation
γ : (R, 0) → (R5, 0), γ(t) = (x1(t), x2(t), x3(t), x4(t), x5(t)), via a C∞ coordinate t
centered at t0 of I and some projective coordinates of Y (resp. X) centered at γ(t0)
such that

x1(t) = ta1 +O(ta1+1), · · · , x5(t) = ta5 +O(ta5+1).
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We may suppose x1(t) = ta1 , by an appropriate parameter t. The tangent surface to
γ is parametrized by a mapping F = Tan(γ) defined as

F (s, t) = (F1(s, t), . . . , F5(s, t)) =

(
xi(t) + s

1

α(t)
x′i(t)

)
1≤i≤5

,

where α(t) = ta1−1.
We define the map-germ g′ : (R2, 0) → (R2, 0) by g′ = (F1, F2). We denote by

En the R-algebra of function-germs (Rn, 0)→ R, and set

Rg′ := {h ∈ E2 | dh ∈ 〈dF1, dF2〉E2} .

Then we see that Rg′ is a module over the algebra g′∗E2 of composite functions of g′.
It is easy to verify that F3, F4, F5 ∈ Rg′ ([14], Lemma 4.5). Since F1(s, t) =

x1(t) + a1s is a regular function, we set u = F1(s, t) and regard it as an unfolding
parameter. Let (a1, a2) = (1, 2) (resp. (1, 3), (2, 3)). Then there exist diffeomorphism-
germ σ : (R2, 0)→ (R2, 0) and τ : (R2, 0)→ (R2, 0) such that σ is of form σ(u, t) =
(σ1(u), tσ2(u, t)) and g = τ ◦ g′ ◦ σ is equal to (u, t) �→ (u, t2 + ut) (resp. (u, t) �→
(u, t3 + ut2), (u, t) �→ (u, t3 + ut)). Then F3 ◦ σ, F4 ◦ σ, F5 ◦ σ ∈ Rg = σ∗Rg′ . It
is helpful to introduce the notion of openings ([14]). Then F ◦ σ is a versal opening
of g in each of three cases. Therefore the diffeomorphism class of F is unique by
Proposition 6.9 or Theorem 7.1 of [14]. This shows Proposition 7.1.

Next we show

Proposition 7.2. The diffeomorphism class of tangent surfaces of curves of type
(1, 3, 5, 7, 8) is uniquely determined. We call it the open Shcherbak surface.

To show Proposition 7.2, we need the following:

Lemma 7.3. (cf. Lemma 2.4 of [13]) Let g : (R2, 0) → (R2, 0) be the map-germ
defined by g(u, t) = (u, t3 + ut2). We denote

R(2)
g :=

{
h ∈ t2E2 | dh ∈ t2〈dg1, dg2〉E2

}
= Rg ∩ t4E2.

We put T (u, t) = t3 + ut2, Ti(u, t) = 3
i+3 t

i+3 + 2
i+2ut

i+2, (i = 1, 2, 3, . . . ). Then we
have
(1) Let ι : (R, 0) → (R2, 0), ι(t) = (0, t). Then h1, . . . , h� ∈ R(2)

g generate R(2)
g as

E2-module via g∗ if and only if ι∗h1, . . . , ι
∗h� generate t5E1/t8E1 over R.

(2) R(2)
g is a finite E2-module via g∗ : E2 → E2 generated by T2, T

2, T4.

Proof. (1) is proved in Lemma 2.4 of [13]. Then T2, T
2, T4 belong to R(2)

g and

they satisfy the condition of (1). Therefore they generate R(2)
g as E2-module via g∗.

Proof of Proposition 7.2. Let γ : (R, 0)→ (R5, 0) be a curve of type (1, 3, 5, 7, 8).
Let

γ(t) = (t, t3 + ϕ(t), t5 + ψ(t), t7 + ρ(t), t8 + ε(t)),

with ϕ ∈ m4
1, ψ ∈ m6

1, ρ ∈ m8
1, ε ∈ m9

1. Then F = Tan(γ) is given by

F (s, t) =
(
t+ s, t3 + 3st2 +Φ(s, t), t5 + 5st4 +Ψ(s, t),

t7 + 7st6 +R(s, t), t8 + 8st7 + E(s, t)
)
,
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where Φ(s, t) = ϕ(t) + sϕ′(t),Ψ(s, t) = ψ(t) + sψ′(t), R(s, t) = ρ(t) + sρ′(t) and
E(s, t) = ε(t) + sε′(t). We set r = t+ s. Then

F (r, t) =
(
r, −2t3 + 3rt2 + Φ̃, −4t5 + 5rt4 + Ψ̃,

−6t7 + 7rt6 + R̃, −7t8 + 8rt7 + Ẽ
)
,

where Φ̃(r, t) = ϕ(t)+(r−t)ϕ′(t), Ψ̃(r, t) = ψ(t)+(r−t)ψ′(t), R̃(r, t) = ρ(t)+(r−t)ρ′(t)
and Ẽ(r, t) = ε(t) + (r − t)ε′(t).

From the determinacy of tangent varieties to curves of type (1, 3, 5) in R3 ([20],
[13]), there exist diffeomorphism-germ σ : (R2, 0) → (R2, 0) of form σ(r, t) =
(σ1(r), tσ2(r, t)) and a diffeomorphism-germ τ : (R5, 0)→ (R5, 0) such that

τ ◦ F ◦ σ(r, t) = (r, T (r, t), T2(r, t), T4(r, t) + S4(r, t), T5(r, t) + S5(r, t)) ,

with

T (r, t) = t3 + rt2, T2(r, t) =
3

5
t5 +

1

2
rt4, T4(r, t) =

3

7
t7 +

1

3
rt6, T5(r, t) =

3

8
t8 +

2

7
rt7,

S4, S5 ∈ R(2)
g , g = (r, t3 + rt2) = (r, T (r, t)), ι∗S4 ∈ m8

1, ι
∗S5 ∈ m9

1. Then we have, by
Lemma 7.3,

S4 = (A4◦g) T2+(B4◦g) T 2+(C4◦g) T4, S5 = (A5◦g) T2+(B5◦g) T 2+(C5◦g) T4,

for some A4, B4, C4, A5, B5, C5 ∈ E2. Comparing the orders of t at r = 0, we see
C4(0, 0) = 0. Define Ξ : (R5, 0)→ (R5, 0) by

Ξ(x1, x2, x3, x4, x5) =
(
x1, x2, x3, x4 +A4(x1, x2)x3 +B4(x1, x2)x

2
2 + C4(x1, x2)x4,

x5 +A5(x1, x2)x3 +B5(x1, x2)x
2
2 + C5(x1, x2)x4

)
.

Then the Jacobi matrix of Ξ at the origin is the unit matrix, so Ξ is a diffeomorphism-
germ and we have

Ξ−1 ◦ τ ◦ F ◦ σ = (r, T, T2, T4, T5).

Thus we see F is diffeomorphic to the unique normal form.

For the remaining case, in Theorem 6.4, that the Cartan curve ΠY ◦ f is of type
(2, 3, 5, 7, 8) on Y , we will give the differential normal form of the tangent map-germ
Tan(ΠY ◦ f) under an additional genericity condition:

Proposition 7.4. Let f : I → Z be a generic Engel curve. Let t0 ∈ I and f :
(R, 0)→ (R6, 0), f(t) = (λ(t), x(t), y(t), z(t), u(t), v(t)) be a local representation of the
germ of f at t0 in terms of coordinates introduced in §4. Suppose m = ord(λ(t)) = 2
and n = ord(z(t)) = 1. Then the tangent map-germ Tan(ΠY ◦ f) : (R2, 0)→ (R5, 0)
of the curve ΠY ◦ f of type (2, 3, 5, 7, 8) has the unique diffeomorphism class and it is
diffeomorphic to the open generic folded pleat given in Theorem 1.3.

By Lemma 5.1, up to right equivalence, we have

Tan(ΠY ◦ f)(r, t) = (λ, μ, ν, τ, σ) =
(
r, x+ ry, y + rz, v + rx, u+ r(y2 − xz)

)
.
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Now suppose that

λ =
1

2
t2, z = at+

b

2
t2 + κ(t),

for real numbers a, b with a �= 0 and a function κ ∈ m3
1. Then

y =

∫
(−λ)dz = −a

6
t3 − b

8
t4 + ϕ(t),

x =

∫
(λ2)dz =

a

20
t5 +

b

24
t6 + ψ(t),

v =

∫
(−λ3)dz = − a

56
t7 − b

64
t8 + ρ(t),

u =

∫
(λ3z + 2λ2y + λx)dz =

a2

120
t8 +

7ab

720
t9 + ε(t),

y2 − xz = −a2

45
t6 − ab

40
t7 + ζ(t),

with ϕ ∈ m5
1, ψ ∈ m7

1, ρ ∈ m9
1, ε ∈ m10

1 , ζ ∈ m8
1. Thus we have

y + rz = a(−1

6
t3 + rt) + b(−1

8
t4 +

1

2
rt2) + Φ(r, t),

x+ ry = a(
1

20
t5 − 1

6
rt3) + b(

1

24
t6 − 1

8
rt4) + Ψ(r, t),

v + rx = a(− 1

56
t7 +

1

20
rt5) + b(− 1

64
t8 +

1

24
rt6) +R(r, t),

u+ r(y2 − xz) = a2(
1

120
t8 − 1

45
rt6) + ab(

7

720
t9 − 1

40
rt7) + E(r, t),

where Φ(r, t) = ϕ(t) + rκ(t),Ψ(r, t) = ψ(t) + rϕ(t), R(r, t) = ρ(t) + rψ(t), E(r, t) =
ε(t) + rζ(t).

Now we suppose, as an additional generic condition, that b �= 0. Then, by the
linear right-left equivalence,

(r, t) �→ ((a/b)2r, (a/b)t),

(λ, μ, ν, τ, σ) �→ ((a/b)2λ, (a5/b4)μ, (a4/b3)ν, (a8/b7)τ, (a10/b8)σ),

we may suppose a = 1, b = 1.
Then we put

U(r, t) = −1

6
t3 + rt− 1

8
t4 +

1

2
rt2,

V (r, t) =
1

20
t5 − 1

6
rt3 +

1

24
t6 − 1

8
rt4,

W (r, t) = − 1

56
t7 +

1

20
rt5 − 1

64
t8 +

1

24
rt6,

S(r, t) =
1

120
t8 − 1

45
rt6 +

7

720
t9 − 1

40
rt7.

Then the tangent map-germ is diffeomorphic to FY : (R2, 0)→ (R5, 0) defined by

FY (r, t) = (r, U(r, t) + Φ(r, t), V (r, t) + Ψ(r, t), W (r, t) +R(r, t), S(r, t) + E(r, t)) .
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We set F ′Y : (R2, 0) → (R3, 0) by F ′Y (r, t) = (r, U(r, t) + Φ(r, t), V (r, t) + Ψ(r, t)).
As is proved in [15] by the infinitesimal method, there exist a diffeomorphism-germ
Σ : (R2, 0) → (R2, 0) of form Σ(r, t) = (Σ1(r), tΣ2(t)) and a diffeomorphism-germ
T ′ : (R3, 0)→ (R3, 0) such that

T ′−1 ◦ F ′Y ◦ Σ = (r, U(r, t), V (r, t)) .

We define a diffeomorphism-germ T : (R5, 0) → (R5, 0) by T (λ, ν, μ, τ, σ) =
(T ′(λ, ν, μ), τ, σ)). Then

FY = T−1 ◦ FY ◦ Σ =
(
r, U(r, t), V (r, t), pW̃ (r, t) + R̃(r, t), qS̃(r, t) + Ẽ(r, t)

)
,

for some p, q ∈ R, p �= 0, q �= 0, where

W̃ (r, t) :=

∫
t4(−1

2
t2 + r)dt = − 1

14
t7 +

1

5
rt5,

S̃(r, t) :=

∫
t5(−1

2
t2 + r)dt = − 1

16
t8 +

1

6
rt6,

and R̃(r, t), Ẽ(r, t) designate remaining higher order functions with respect to the
weight w(r) = 2, w(t) = 1.

Now we define a map-germ G : (R2, 0) → (R2, 0) by G(r, t) = (r, U(r, t)). Then
we introduce the following key algebraic object:

R(k)
G :=

{
h ∈ tkEr,t

∣∣∣∣ ∂h

∂t
∈ tk

∂U

∂t
Er,t

}
=

{
h ∈ tkEr,t

∣∣∣∣ ∂h

∂t
∈ tk(−1

2
t2 + r)Er,t

}
,

for k = 1, 2, 3, . . . , where Er,t is theR-algebra of function-germs on (r, t)-plane (R2, 0).
Then we see that

R(k)
G = RG ∩ tk+1Er,t.

Note that ∂U
∂t = (1 + t)(− 1

2 t
2 + r). We see that F∗Y Eλ,μ,ν,τ,σ ⊂ RG. We have the

sequence of F∗Y Eλ,μ,ν,τ,σ-modules:

Er,t ⊃ RG ⊃ R(1)
G ⊃ · · · ⊃ R(k)

G ⊃ · · · .
Moreover we have that

−1

6
t3 + rt ∈ RG, −1

8
t4 +

1

2
rt2 ∈ R(1)

G ,
1

20
t5 − 1

6
rt3 ∈ R(2)

G ,
1

24
t6 − 1

8
rt4 ∈ R(3)

G ,

W̃ ∈ R(4)
G , R̃ ∈ R(5)

G , S̃ ∈ R(5)
G , Ẽ ∈ R(6)

G .

The following is a version of [15], Lemma 6.8 without parameter:

Lemma 7.5. Let h1, . . . , hr be elements in R(k)
G . Then h1, . . . , hr generate

R(k)
G as G∗Eλ,ν-module if and only if their residue classes in tk+3Et/tk+7Et gener-

ate tk+3Et/tk+7Et via the inclusion ι : (R, 0)→ (R2, 0), ι(t) = (0, t).

By Lemma 7.5, we obtain an explicit system of generators of R(k)
G , for k = 4:

Lemma 7.6. We see that the four elements

W̃ , S̃, U3 + α r2V + β rUV, V 2
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generate R(4)
G as G∗Eλ,ν-module, for some α, β ∈ R.

Proof. The elements W̃ , S̃, V 2 ∈ R(4)
G and U3, r2V, rUV ∈ RG. We have

U3 + α r2V + β rUV ≡ (1− α
6 )r

3t3 + (3− α
8 − β

6 )r
3t4, (mod. t5Er,t).

Therefore if we set α = 6, β = 27
2 , we have that U3+α r2V +β rUV belongs to t5Er,t,

hence to R(4)
G . Note that U3 itself does not belong to R(4)

G . Since

ord(W̃ (0, t)) = 7, ord(S̃(0, t)) = 8,

ord((U3 + α r2V + β rUV )(0, t)) = 9, ord(V 2(0, t)) = 10,

W̃ (0, t), S̃(0, t), ((U3 + α r2V + β rUV )(0, t), V 2(0, t) generate t7Et/t11Et over R.
Therefore by Lemma 7.5, we have the required result.

Proof of Proposition 7.4. By Lemma 7.6, we have

R̃ = (A4 ◦G)W̃ + (B4 ◦G)S̃ + (C4 ◦G)(U3 + αr2V + βrUV ) + (D4 ◦G)V 2,

Ẽ = (A5 ◦G)W̃ + (B5 ◦G)S̃ + (C5 ◦G)(U3 + αr2V + βrUV ) + (D5 ◦G)V 2,

for some A4, B4, C4, D4, A5, B5, C5, D5 ∈ Eλ,ν . By setting r = 0 and by comparing of
orders on r, we see A4(0, 0) = 0, A5(0, 0) = 0, B5(0, 0) = 0.

Then define Ξ : (R5, 0)→ (R5, 0) by

Ξ(λ, ν, μ, τ, σ) := (λ, ν, μ, pτ +A4(λ, ν)τ +B4(λ, ν)σ

+C4(λ, ν)(ν
3 + αλ2μ+ βλνμ) +D4(λ, ν)μ

2,

qσ +A5(λ, ν)τ +B5(λ, ν)σ

+C5(λ, ν)(ν
3 + αλ2μ+ βλνμ) +D5(λ, ν)μ

2
)
.

We see that Ξ is a diffeomorphism-germ and that

Ξ−1 ◦ FY (r, t) = (r, U(r, t), V (r, t), W̃ (r, t), S̃(r, t)).

Therefore Ξ−1◦T−1◦FY ◦Σ = (r, U, V, W̃ , S̃). Thus we see that the tangent map-germ
of ΠX ◦f has the unique diffeomorphism type, under the generic condition b �= 0. The
first normal form of Theorem 1.3 is obtained by setting λ = 1

2 t
2, z = t+ 1

2 t
2, namely by

setting a = b = 1, κ(t) ≡ 0, calculating the exact components of Tan(πY ◦ f), without
omitting higher order terms, and by taking a diagonal linear transformation on R5

to make all coefficients integers. The second normal form is obtained of Theorem
1.3 just from the above normal form (r, U, V, W̃ , S̃) by taking a diagonal linear
transformation on R5.

8. Appendix: Simple Lie algebras of rank 2. Recall the basic theory of Lie
algebras briefly. Let g be a semi-simple Lie algebra over C. A Cartan sub-algebra h
of g is a commutative sub-algebra such that the normalizer of h coincides with h itself.
It is known that a Cartan sub-algebra h is unique up to inner automorphisms of g.
The rank of g is defined as dimC h. Let � be the rank of g. Fix a Cartan sub-algebra
h ⊂ g. For α ∈ h∗, we set

gα := {x ∈ g | [h, x] = α(h)x, (h ∈ h)}.
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α is called a root of g if α �= 0 and gα �= {0}. Then it is known that dimC gα = 1.
Moreover we have [gα, gβ ] ⊂ gα+β . The set of roots is called the root system of g and
is denoted by R = R(g). We have the root decomposition

g = g0 ⊕
(⊕

α∈R gα
)
.

Setting hR = {h ∈ h | α(h) ∈ R, (α ∈ R)}, we regard R as a subset of h∗R. The Killing
form on g induces a metric ( , ) on hR and therefore we can regard R ⊂ hR ∼= R�. Each

root α ∈ R defines the reflection sα : hR → hR by sα(h) := h − 2(h, α)

(α, α)
α, (h ∈ hR).

The Weyl group is generated by {sα | α ∈ R}.
We can choose a basis (α1, . . . , α�) of hR from R such that any α ∈ R is repre-

sented as α =
∑�

i=1 miαi with mi ∈ Z and all mi ≥ 0 or all mi ≤ 0, (1 ≤ i ≤ �).
We call Π = {α1, . . . , α�} ⊂ R a fundamental system (or a simple system) of R. The
fundamental system of the root system is unique up to the action of Weyl group on
hR.

Fig. 5. Root systems of types A2, C2 and G2

Fig. 6. Fundamental systems for root systems A2, C2 and G2

We fix a fundamental system Π = {α1, . . . , α�} ⊂ R. Let S ⊂ Π be any subset.
Then the root decomposition of g induces a grading g =

⊕
k∈Z gk of g, setting gk =⊕

α gα, for any non-zero integer k, and g0 = g0⊕
(⊕

α gα
)
, for k = 0. Here the direct

sum is taken over all α ∈ R such that k is equal to the sum of coefficients mi with
αi ∈ S of the unique expression α =

∑�
i=1 miαi.

Let g be a Lie algebra of type A2, C2 or G2. Then � = 2. Then we have three
non-trivial gradings of g in each case.
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In the case A2, for S = Π, we have the decomposition

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

such that the dimensions of components gk are 1, 2, 2, 2, 1 respectively. The negative
part g− = g−2 ⊕ g−1 with the 2-dimensional, bracket generating, subspace g−1 gen-
erates the 3-dimensional homogeneous contact structure. One of its global model is
given by the incidence manifold

Z = {([x], [y]) ∈ P2 ×P2∗ | x · y = 0} ⊂ P2 ×P2∗

of the projective duality between Y = P2 and X = P2∗. The 3-dimensional manifold
Z is identified with PT ∗(P2), as well as with PT ∗(P2∗), endowed with the canonical
contact structure. We can regard Z as a flag manifold, for a 3-dimensional vector
space W ,

Z = {V1 ⊂ V2 ⊂W | dimV1 = 1, dimV2 = 2}.
If S consists of one root from Π, then we have two different gradings of the same

type:

g = g−1 ⊕ g0 ⊕ g1

with dimensions of components, 2, 4, 2. The negative parts of the three gradings of g
are realized as tangent spaces to the PGL(3,C)-homogeneous double fibration

Y = P (W )
ΠY←−−− Z

ΠX−−−→ X = P (W ∗),

where ΠY and ΠX are canonical projections. Note that there exists the symmetry
exchanging Y and X, realizing the symmetry of A2 Dynkin diagram.

In the case C2, we have the grading, by S = Π = {α1, α2},

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3,

of g with dimensions of components 1, 1, 2, 2, 2, 1, 1. Suppose the square lengths of
α1 and α2 satisfy (α2, α2) = 2(α1, α1). The negative part of g provides an Engel
structure. For S = {α1}, then we have the grading

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

with dimensions of components 1, 2, 4, 2, 1. The negative part generates Sp(2,R)-
homogeneous space with an contact structure. For S = {α2}, then we have the
grading

g = g−1 ⊕ g0 ⊕ g1,

with dimensions of components 3, 4, 3. Though the negative part is not endowed
with any distribution canonically, however, from the double fibration, the associated
homogeneous space enjoys a geometric structure. We provide the double fibration

Y = P (V )
ΠY←−−− Z

ΠX−−−→ X = LG(V ),
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constructed from a symplectic vector space V of dimension 4, for the case C2 in [15].
In fact, Z is a flag manifold

Z = {V1 ⊂ V2 ⊂ V | dimV1 = 1, dimV2 = 2, V2 : Lagrangian}.
We have a projective contact structure on Y , while a Lagrange-Grassmann structure
(conformal structure) on X, which is given by a quadratic cone field.

In the case G2, we have three kinds of gradings, the negative nilpotent part
g− = ⊕k<0gk of which corresponds to the tangent space to Z, Y and X and of 5-steps,
3-steps, and 2-steps, respectively. See [21][22][23]. For the case S = R corresponding
to Z, then we have

g− = g−5 ⊕ g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1

= 〈e6〉 ⊕ 〈e5〉 ⊕ 〈e4〉 ⊕ 〈e3〉 ⊕ 〈e1, e2〉,
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5; [e2, e5] = e6, [e3, e4] = e6.

By the projection ΠY : Z → Y , the vector e2 is eliminated and we have the graded
Lie algebra of step 3:

g− = g−3 ⊕ g−2 ⊕ g−1

= 〈e5, e6〉 ⊕ 〈e4〉 ⊕ 〈e1, e3〉,
[e1, e3] = e4; [e1, e4] = e5, [e3, e4] = e6.

By the projection ΠX : Z → X, the vector e1 is eliminated and we have the graded
Lie algebra of step 2:

g− = g−2 ⊕ g−1

= 〈e6〉 ⊕ 〈e2, e3, e4, e5〉,
[e2, e5] = e6, [e3, e4] = e6.

For the G2 case, see also [10].

In particular, we observe that there exist graded Lie algebra epimorphisms

g−(G2) −→ g−(C2) −→ g−(A2),

which gives the Lie theoretic explanation of the local hierarchy of double fibrations.
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