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GENERALIZED NEWTON TRANSFORMATION AND ITS
APPLICATIONS TO EXTRINSIC GEOMETRY*
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Abstract. In this article we introduce a generalization of the Newton transformation to the case
of a system of endomorphisms. We show that it can be used in the context of extrinsic geometry of
foliations and distributions yielding new integral formulas containing generalized extrinsic curvatures.
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1. Introduction. Analyzing the study of Riemannian geometry we see that
its basic concepts are related with some operators, such as shape, Ricci, Schouten
operator, etc. and functions constructed of them, such as mean curvature, scalar
curvature, Gauss-Kronecker curvature, etc. The most natural and useful functions
are the ones derived from algebraic invariants of these operators, e.g., by taking trace,
determinant and in general the r-th symmetric functions o,. However, the case r > 1
is strongly nonlinear and therefore more complicated. The powerful tool to deal with
this problem is the Newton transformation T, of an endomorphism A (strictly related
with the Newton’s identities) which, in a sense, enables a linearization of o,

(r+1)o,y1 = tr (AT,).

Although this operator appeared in geometry many years ago (see, e.g., [23, 32]), there
is a continues increase of applications of this operator in different areas of geometry
in the last years (see, among others, [1, 2, 3, 9, 11, 18, 19, 25, 26, 27, 31]).

All these results cause a natural question, what happens if we have a family of
operatorsi.e. how to define the Newton transformation for a family of endomorphisms.
A partial answer to this question can be found in the literature (operator T, and the
scalar S, for even r [5, 16]), nevertheless, we expect that this case is much more
subtle. This is because in the case of family of operators we should obtain more
natural functions as in the case of one operator and consequently more information
about geometry. In order to do this, for any multi-index v and generalized elementary
symmetric polynomial o, we introduce transformations depending on a system of
linear endomorphisms. Since these transformations have properties analogous to the
Newton transformation (and in the case of one endomorphism coincides with it) we
call this new object generalized Newton transformation (GNT) and denote by T,,. The
concepts of GNT is based on the variational formula for the r—th symmetric function

d d
EO'T_;,_l(T) =1tr (TT . EA(T)) 5
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which is crucial in many applications and, as we will show, characterizes Newton’s
transformations. Surprisingly enough, according to knowledge of the authors, GNT
has never been investigated before.

The precise definition of GNT and its main properties are given in Sections 2
and 3. These sections seem to be of independent interest since they do not relate to
geometric picture. We show some algebraic relations between the trace of GNT and
algebraic invariants o, (Proposition 3.3). As a corollary we obtain generalizations
of Cayley—Hamilton theorem (Theorem 3.1) for a system of linear endomorphisms.
Moreover, we show that the operators T, and S, for even r, which appeared in the
literature, can be build of our operators T), and o, (Theorem 2.5).

Next, we consider GNT in the context of geometry of foliations (and distributions
in general), however we think that GNT has fine algebraic properties, which enable fur-
ther applications. To begin with, let us note that one of the interesting developments
in geometry of foliations during the last decades was the rise of integral formulas for
closed foliated manifolds. These formulas are of some interest, for example in several
geometric situations they provide obstructions to the existence of foliations with all
the leaves enjoying a given geometric property (see, [4, 6, 10, 27, 30, 28] and bibliogra-
phies therein). Such formulas have also applications in different areas of differential
geometry and analysis on manifolds (see, for example, [8, 13, 15, 29, 21]).

The most classical integral formula, in fact the first one known, is due to Reeb
[22]. He proved that for codimension—one foliation of closed Riemannian manifold M

one has
/ H =0,
M

where H is the mean curvature of the leaves. In the early 80’s there was obtained
a notable result by Brito, Langevin and Rosenberg [12] (see also [7]). The authors
considered codimension—one foliations of a closed space form MP*1(k). They showed
that the integral of r-th basic symmetric function of the shape operator of a foliation
F (i.e. r-th mean curvature) depends only on geometry of M not F. More precisely,
they proved that

P
(1.1) / o K2 <§)v01(M) for p, r even,
M 0 for p or r odd.

A generalization of the above result to the case of arbitrary closed manifold has
been recently obtained in [4, 5]. The authors applied the r—th Newton transformation
T, of the shape operator of the foliation F (r = 0,1,...,p = dim¥). Computing the
divergence of the vector field

(12) TT (VNN)+O'T+1N,

where N denotes the unit vector field orthogonal to F, and using the Stokes theorem
they obtained system of integral formulas which, in the special case of a closed space
form, reduce to (1.1).

Although, all of the mentioned approaches possess a generalization to the case of
arbitrary codimension, that is integral formulas containing higher order mean curva-
tures S, for r even, we believe that in codimension grater than one we should have
more extrinsic curvatures and, globally defined, (normal) vector fields which can give
an additional information about geometry of foliations and distributions.
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Since, the bundle P = O(D*) or P = SO(D') of orthonormal (oriented, re-
spectively) frame fields perpendicular to D codes information on extrinsic geometry
of distribution D, Section 4 is devoted to the fiber bundle approach to the extrinsic
geometry of distributions. Using integration on these bundles we define generalized

mean curvatures o, (see (4.2)) for distributions and total extrinsic curvatures o

(see (4.3)). Moreover, we define a new set of global vector fields Y, generalizing (1.2),
obtained from sections Y, (see (4.4)), by integrating over the fibers of P. These fields
are crucial in the study of geometry of D and D+ .

In Section 5 we compute the divergence of Y, and, as a result, we get new inte-
gral formulas (Theorem 5.2) containing o, together with some terms build of second
fundamental form and curvature.

The next section contains some consequences and presents our results in some
special cases. We obtain a generalization of the classical formula obtained by Walczak
[33] (Corollary 6.1). Moreover, in the case of constant sectional curvature and totally
geodesic distribution Dt we obtain recurrence formula for ¢ which implies that
it does not depend on the geometry of distribution D. Using relationships between
o, and S, we give another proof of the theorem obtained by Brito and Naveira
[14]. Moreover, we show that when multi-index has only one nonzero element then
our formulas reduce to ones obtained in [26] and in the case of codimension one to
formulas obtained in [4].

Finally, since we could not find suitable references and to make the paper more
self-sufficient, Appendix contains proofs of some essential formulas concerning differ-
entiation and integration on principal bundles.

Throughout the paper everything (manifolds, distribution, foliations, etc.) is
assumed to be smooth and oriented and we will use the following index convention:
n =p-+ q and

i7j7k:17"'7p; O‘uﬁu/y:lu"wq'

2. Generalized Newton transformation (GNT). In this section we define
and state fundamental properties of Newton transformation associated with an or-
dered system of endomorphisms. We call these new transformations generalized New-
ton transformation. First, we give relevant facts about classical Newton transforma-
tions (for more details see [25]).

Let A be an endomorphism of a p-dimensional vector space V. The Newton
transformation of A is the system T = (T} )r—o.1,... of endomorphisms of V' given by
the recurrence relations:

TO = 1Va
Trzdrlv—ATr_l, 7‘:1,2,...

Here o,’s are elementary symmetric functions of A. If » > p we put o, = 0. Equiva-
lently, each T, may be defined by the formula

T

T, =Y (-1) 0, ;A

=0

Observe that Tj, is the characteristic polynomial of A. Consequently, by Hamilton—
Cayley Theorem T}, = 0. It follows that T, = 0 for all » > p.
The Newton transformation satisfies the following relations [23]:
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(N1) Symmetric function o, is given by the formula
ro, =tr (AT,_1).
(N2) Trace of T is equal
trT. = (p—r)or.
(N3) If A(7) is a smooth curve in End (V') such that A(0) = A, then

%0}4_1(7')7—:0:tr(%A(T)TZQ-TT), T:O,l,...,p.
Condition (N3) is the starting point to define generalized Newton transformation.
Let V be a p—dimensional vector space (over R) equipped with an inner product
(,). For an endomorphism A € End (V), let AT denote the adjoint endomorphism,
ie. (Av,w) = (v, ATw) for every v,w € V. The space End (V) is equipped with an
inner product

(A,B) =tr(A"B), A,BcEnd(V).

Let N denote the set of nonnegative integers. By N(g) denote the set of all
sequences u = (uq,...,uy), with u; € N. The length |u| of u € N(g) is given by
|u| = w1 + ...+ uy. Denote by End %(V') the vector space End (V) x ... x End (V)
(g-times). For A = (Aq,...,A4;) € End?(V), t = (t1,...,t) € R? and u € N(¢) put

=yt
tA =t A1+ ...+t Ay
By the Newton polynomial of A we mean the polynomial Ps : R? — R of the
form Pa(t) = det(1y + tA). Expanding Pa we get
Pa(t) = > out",
lul<p

where the coefficients o, = 0, (A) depend only on A. Observe that o
is convenient to put o, = 0 for |u| > p.

Consider the following (music) convention. For a we define functions of : N(¢q) —
N(q) and a; : N(q) — N(q) as follows

AF (i1, yig) = (i1, yia—1yia + Lydatt, -« ig),

Oéb(il,.. .,iq) = (il,. .. ,Z.afl,ia — 1,ia+1,. .. ,iq),

i.e. of increases the value of the a—th element by 1 and «, decreases the value of a—th
element by 1. It is clear that of is the inverse map to a,.

Now, we may state the main definition. The generalized Newton transformation of
A = (A1,...,A;) € End?(V) is the system of endomorphisms T, = T,,(A), u € N(q),
satisfying the following condition (generalizing (N3)):

For every smooth curve 7 — A(7) in End ?(V') such that A(0) = A

g Ou(T)r=0= D 4 Aa(m)r=0) [Ty
= Ztr (j]_Aa(T)T—O ' Tab(u)> .

(GNT)
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From the above definition it is not clear that generalized Newton transformation
exists. In order to show the existence of generalized Newton transformation, we
introduce the following notation.

For ¢, s > 1 let N(g, s) be the set of all ¢ x s matrices, whose entries are elements of
N. Clearly, the set N(1, s) is the set of multi-indices i = (i1, ...,4s) with i1, ...,is € N,
hence N(s) = N(1,s). Moreover, every matrix i = (i) € N(g, s) may be identified

with an ordered system i = (i',...,i9) of multi-indices i* = (i%,...,i%).

If i = (i1,...,is) € N(s) then its length is simply the number |i| = i;+...+1is. For
i=(i',...,i%) € N(g, s) we define its weight as an multi-index |i| = (|i],...,]i]) €
N(g). By the length ||i]| of i we mean the length of |i], i.e., ||i|| =, [t%] = Za_lif‘.

Denote by I(g,s) a subset of N(g,s) consisting of all matrices i satisfying the
following conditions:
1. every entry of i is either 0 or 1,
2. the length of i is equal to s,
3. in every column of i there is exactly one entry equal to 1, or equivalently
T =(1,...,1).
We identify I(g,0) with a set consisting of the zero vector 0 = [0,...,0] .
Let A € End’(V), A = (Ay,...,A,), and i € N(g,s). By Al we mean an
endomorphism (composition of endomorphisms) of the form

;4

1 2 I . 1
_ATAT AT AR A Al AT
In particular, A? = 1y.

THEOREM 2.1. For every system of endomorphisms A = (Ai,...,A,), there
exists the unique generalized Newton transformation T = (T, : u € N(q)) of A.
Moreover, each T, is given by the formula

Jul
(2.1) T.=> Z 1l ;AT
s=01 ]I

where 0, _j;) = 0u—j;) (A).

The proof will be divided into steps. The following two technical lemmas are well
known.

LEMMA 2.2. Let A € End?(V). There exists € > 0 such that for every t € RY
with [t| < e, 1y +tA is an isomorphism of V' and its inverse is given by the formula

(lv +tA)7 P =) "(=1)7 Y Al
s=0 i€l(q,s)

LEMMA 2.3. If 7 — A(7) is a smooth curve in End (V) such that A(0) = 1y,
then

(2.2) dilT (det A(7))._, = tr <A(T)T_O) .

Moreover, we have the following result.
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PROPOSITION 2.4. Consider a curve T — A(71) in End (V). Put A(0) = A and
A" = L A(7),—9. Then there exists e > 0 such that for every t € R? with |t| < e, we
have

(2.3) %PA(T)(t)T:(J:tr tA’> (=1)* Y AT Pa(t).

5=0 i€l(q,s)

Proof. By Lemma 2.2, there exists £ > 0 such that for every ¢t € R? with [t| < &
the endomorphism 1y + tA is invertible. For fixed ¢t € RY, |t| < &, consider a curve
B(1) = (1y +tA(7))(1y + tA)~t. Clearly B is smooth and satisfies the assumptions
of Lemma 2.3. Moreover

Pa (t)

and the denominator in the above fraction does not depend on 7. Therefore, applying
Lemma 2.3, we have

det B(1) =

%PA(T)(t)T:O =tr (%B(T)T—()) Pa(t).

On the other hand, applying Lemma 2.2, one can get

d o s i A
—B(1)r=0 =tA ;(—1) > Al

i€l(q,s)
Combining above two equalities lemma holds. O
Proof of Theorem 2.1.

Ezistence. Let 7 + A(7) be a curve in End?(V) such that A(0) = A. By
Proposition 2.4 there exists € > 0 such that for every ¢ € R? with |¢| < ¢, (2.3) holds.
Denote by L and R the left hand and the right hand side of (2.3), respectively. Then

R=tr tdiTA(T)T_og(—l)s ST Al Pa(r)

i€l(q,s)

d oo o oo
=tr td—TA(T)T:();(—l)S Z thl Al Zoat“

i€l(q,s) |a|=0

cir (1AM S T (1), Al

s=0|a|=0i€l(g,s)
d 0o oo . .
- = af(lil+a)(_q1)s
= Ztr dTAa(T)T:O Z Z Z e T (—1)%0, A
a =0 |a|=01i€l(q,s)
Put u = o¥(]i| + a) € N(q). Then a;(u) = |i| + a. Hence

||

R=3 Yt [ L Aumem Y 30 (1)l Al £

[ul=1 o s=0i€l(q,s)
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On the other hand

Pa(t) = Y ou(m)t"
|u|=0
Thus
= /d

Since L = R for every |t| < €, comparing appropriate monomials, we get

d
d u T O—Ztr <_ @ ‘r OTab(u)>

where T),’s are given by (2.1). Hence, the system T' = (T, u € N(q)) is the generalized
Newton transformation of A.

Uniqueness. Suppose (S,,u € N(q)) is another generalized Newton transforma-
tion of A. We will show that T, = S, for every multi-index u. Consider a curve
A(r) = (A1 + 7(Ty — Su) ", As,..., Ay). Then LA(T),—0 = (Tu — Su)",0,...,0).
Since Ty, and S, are generalized Newton transformations, putting & = 1 in (GNT), we
get (T — SulTu) = L0 (7)r=0 = (T — Su|Su.)). Therefore, (T, — Su|T\ — Su)) =0
Since ((, )) is an inner product, T,, = S,,. O

At the end of this section we want to compare generalized Newton transformation
with the one considered in the literature introduced by Reilly [24] and considered
further, for example, by Cao and Li [16]. These transformations, T;. and T)%, , are

defined for r even and aw = 1,...,¢q. Namely, in coordinates,
1 o
(Tr)ij = F Z 6;1,:3:217 Z (Aal)iljl (AOtl )izjz tee (AOZ% )lT—17T—1 (AOZ% )%Jy
’ Q1seees ir A1y
NARTERDS Jr
and
T o 1 5i1,...71r+1 i A
(T)is = 'l Z 1, 7J7+17J( o)ir1dri
T, i1
VARTEES Ir+1
Z (Aal)iljl (Aal )i2j2 s (Aag )ir—ljr—l (Aag )i'r‘JT7

where 5“ JT is the generahzed Kronecker symbol, which is +1 or —1 according as the
i’s are dlstlnct and the j’s are an even or odd permutation of the i’s, and which is 0
in all other cases. Moreover, we define functions S, for r even in the following way

1 T
Sy = rl . Z 5]'1,...,]‘7‘ Z (Aal)iljl (Aal)i2j2 e '(A(l )ir—ljr—l (AOt )irjr'
J1seesdr

These transformations satisfy the same relations as Newton transformations.
Namely, for r even, we have [16, 4]



300 K. ANDRZEJEWSKI, W. KOZLOWSKI, AND K. NIEDZIALOMSKI

(R1) T =S, 1 =% T 1 Aa, To = 1,
(R2) tr T, = (p—1r)Sy,
(R3) L (S:(7),_g = Zatr (2LA(T)r=0 - T",), where A4(T) is a curve such
that A4,(0) = A,.
Moreover, condition (R3) is equivalent to the definition of T, ;.
It turns out that these transformations are linear combinations of generalized
Newton transformation T,. First adopt the following notation. For a multi-index
u € N(q) of length r let

r r! r!
ul = uylug! .. ug!  and = — =

u ul  uglug!. L ug!”

Let 2N(g) denote the set of all multi-indices v € N(g) such that each uq,...,uq is
even.

THEOREM 2.5. For r even

(2.4) =Y (5> <Z>1Tu, T =Y (%) <Z>1Tm<u>

u
we2N(q) 2 wE2N(q)
[ul=r [ul=r
and
- -1
5 T
_ E 2
(2.5) S’r - u Uua
) u
wE2N(q)
|u|=r
u __ (u1 Uq
where § = (%-,...,5).

Before we turn to the proof of (2.4) and (2.5) recall the properties of the gener-
alized Kronecker symbol. One can show that

(2.6) Y di= 2

il,...,’LT

and

ERR RN (p— 5)! i1
(2.7) Z Oy vinin s = (p— )l Z 5 e

Now we are able to derive the exact formula for o, = 0, (A41,..., 4y).

PROPOSITION 2.6. For any indices o, . .., a, we have

1 o
(2.8) Outoat 0y = o D O (A Jings - (Ao, )i
where u = ot ... a4(0,...,0).

Proof. By the definition of symmetric functions o, we have

det(1+tA) = > out" = Y out}" .. th.

[u[<p |u[<p
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On the other hand, by the formula for the determinant

1 7 [
detA:H Z O Ay Ay,

J1s--50p
i1.ip
NARTERT) Jp
we have
det(1 + tA) = Z pirin (511 +Ztal(Am)iljl)... (5;; +Zt%(A%)ipjp).
,,,,, aq Qp
.71; 7]1)
By (2.7) it follows that
c
Tat  al(0,..,0) = ] Z 5“1_11—:(%1&1)1-13-1 oo (Aa, i,
e
for a constant c¢ independent of the system of matrices A,,...,A,. Hence, taking
Ay =...=A,=1Dby (2.6) we get
. £ Zl....,ir . C
(2.9) Tot b (0,00 (Lo n 1) = I Z 05y i “ -

Moreover, using multinomial theorem,

det((14t1 + .. Z > pi!tul Al

— )y
r=0u;+...+tug=r (p ’f‘) w

Therefore

p!

2.10 1,...,1) = ————.
( ) U(ul »»»»» Uq)( ? ) ) (p—r)'u'

By (2.9) and (2.10) we have &

o= = L, hence (2.8) holds. O
Proof of Theorem 2.5. Any multi-index u € 2N(q) of length r is of the form
u= ()2, .. (au%)Q(O, ..., 0) for some indices a1, ...,ar. For such a multi-index, by

Proposition 2.6, we have

Ou = ! Z 6;1,:;: (Aal)iljl (Aal)i2j2 s (Aa§>ir71jrfl(Aag)i7‘jr
dtde
Moreover, observe that there are (E) indices a1,...,az which give u. Thus (2.5)
2

holds. Relations (2.4) follow immediately from the properties (R1) and (R3) of trans-
formations 7, and T} ;. O

3. Properties of generalized Newton Transformation.

THEOREM 3.1 (Generalized Hamilton—Cayley Theorem). Let T = (T}, : u €
N(q)) be the generalized Newton transformation of A. Then for every u € N(q) of
length greater or equal to p we have T, = 0.
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Proof. Fix a multi-index u = (u1,...,uq) with |u] > p. We may assume that
u; > 0. Take a = 1. Consider the curve A = (A; + 7T, 0 () 0,...,0). Then

LA(T)r—0 = (Toj—ﬁ(u)v 0,...,0). Moreover, since |u| > p, then |af(u)| > p. Therefore,
Out(w)(7) = 0 for every 7. Consequently, by the definition of generalized Newton
transformation we obtain

0= % gasiuy(7)rmo = (TulTu).

Since ((,)) is the inner product, we get T,, = 0. O

THEOREM 3.2. The generalized Newton transformation T = (Ty, : u € N(q)) of
A satisfies the following recurrence relations:
(3.1) To = 1y, where 0 = (0,...,0),

Ty =o0,ly — ZAaTa.,(u)

(3.2) ° where |u| > 1.
=oylyv — ZTab(u)Aaa

Proof. Equality (3.1) is obvious. Assume u € N(¢) and |u| = s+ 1, s > 0. We
show the first identity of (3.2). A proof of the second one is analogous.

For every matrix i = (if*) € I(q, s) and every 8 define a matrix foi € I(¢g,s + 1)
by

(Boi)y =83, (Boi)f =if,, 2<I<s+L.

It is easy to observe that I(g, s+ 1) can be expressed as the following sum of pairwise
disjoint sets

I(g,s+1) Uﬂo]lq,

Moreover, for every i € (g, s), |3 oi| = 8%(]i]) and A%°1 = AzAl. We have

s+1

:ZZ il Al

s+1

=ouly + Z Z Z ||f301|| \Boi\AﬁOi

=1 B i€l(q,l—1)

=o,ly + Z Z Z 1+H ” (u)_mAﬁAi

1=0 B i€l(q,l)

=oulv =Y Ag (Y > opw-A
E

1=0 i€l(q.0)

=ouly — Z AsTp, (u),
3

for s = |B,(u)|. O
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Now we state and prove the fundamental properties of generalized Newton trans-
formation.

PROPOSITION 3.3. The generalized Newton transformation T = (T, : u € N(q))
of A satisfies the following conditions:
(GN1) Symmetric functions o, are given by the formula

|u|au = Z tr (AaTa.,(u))-

(GN2) The trace of Ty, equals
tr Ty, = (p — |ul)oy.

(GN3) Symmetric functions o, satisfy the following recurrence relation

Dt (AadpTha, ) = —lulow + Y (tr Aa)oa, (w)-
o, «

Proof of (GN1). Consider a curve A(r) = (1 4+ 7)A. Then A(0) = A and
L A(7);—0 = A. Expanding the polynomial Pa,)(t) it is easy to see that o, (7) =
(1+ 7)o, where o, is a symmetric function of A. Thus

a4
dr

0 (T)r=0 = |uloy.
Hence by (GNT)
ulow = > tr (AaTa, (w))-

Proof of (GN2). Follows directly by (3.2) and (GN1).
Proof of (GN3). By (3.2) we have

Tﬁb(u) = Uﬁb(u)lv - ZAaTﬁb%(u)'

Therefore

Ty=oulv =Y <%(u)1v - ZAaTmauu))

5
=ouly =Y 0s,mAs+ Y AsAaTs,0,)-
B a,p

Taking the trace, using (GN2) and the fact that «, and 3, commute we get (GN3). O

COROLLARY 3.4. Let T'= (T, : u € N(q)) be the generalized Newton transforma-
tion of A. If every matriz A, is self-adjoint, i.e. Al = Aq, then T, is self-adjoint
for every u € N(q).

Proof. We apply induction with respect to k& = |u|. Obviously, if k¥ = 0, then
uw = 0 and Ty is self-adjoint. Take k > 1 and assume T, is self-adjoint for every
multi-index w of length |w| = k — 1. Let u be of length k. Applying (3.2) we get

T] =ouly =Y T (AL = 0uly = 3 ToyyAa = Tu

Induction completes the proof. O
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4. Extrinsic curvatures for distributions of arbitrary codimension. Let
(M, g) be an oriented Riemannian manifold, D a p-dimensional (transversally ori-
ented) distribution on M. Let ¢ denotes the codimension of D. For each X € T, M
there is unique decomposition

X=X"+X"*

where XT € D, and X" is orthogonal to D,. Denote by D+ the bundle of vectors
orthogonal to D. Let V be the Levi-Civita connection of g. V induces connections
VT and V* in vector bundles D and D+ over M, respectively.

Let m : P — M be the principal bundle of orthonormal frames (oriented or-
thonormal frames, respectively) of D+. Clearly, the structure group G of this bundle
is G = O(q) (G = SO(q), respectively). We define a Riemannian metric on P by
inducing the metric from M and an invariant inner product ((, )) on the Lie algebra
g of G,

(A, B) = —tr (AB), A,Beq.

In particular, the projection 7 : P — M is a Riemannian submersion.

Adopt the notation from the Appendix.

Every element (z,e) = (e1,...,eq) € Py, x € M, induces the system of endomor-
phisms A(z,e) = (Ai(z,e),..., Aqg(z,e)) of D, where A, (z,e) is the shape operator
corresponding to (z,e), i.e.

Ag(z,e)(X) = —(Vxea)', X e D,.
Let T'(z,e) = (Tu(w,€))uen(q be the generalized Newton transformation associated
with A(z,e).

The bundle 7 : P — M and the vector bundles TM — M, D — M, D+ — M
induce the pull-back bundles

E=7"'TM, E'=x"'D and E”"=7"'D%t over P,

cach with a fiber (7T M),y = ToM, (77 'D)(y,e) = Dy and (77 'D+)(, ) = Dy,
respectively. We have

E=F oL

Moreover, the connections V, VT, V1 of g induce pull-back connections V¥, V¥ " and
VE" in E, E" and E", respectively (see Appendix).

PROPOSITION 4.1.
1. Let Y € T'(E") and X € D,, x € M. Then, for every w € P,

(VEY) () = (VEIY) (@) = Ay (X),

where An(X) = —(VxN)T denotes the shape operator.
2. Let Y €T(E') and X € D, x € M. Then, for w € P,

(VEY) () = (VEY) () + (VxV)* (@).
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Proof. Since V¥ and VE" are connections, the operator
S(X,Y) = (VE.Y) (w) - (VX/;,Y) (w)

is tensorial, hence does not depend on the extension of a vector Y (w) to a section of
E. Thus, we may assume Y = Y o7, where Yy € I'(T'M). Then

S(X,Y) = (VxYo) (z) — (VxY0) (&) = (VxY0)" (2) = — Ay, () (X) = — Ay (u)(X),

which completes the proof of (1). The proof of (2) is similar. O

Let End(E’) denotes the bundle of endomorphisms of E’, i.e. the fiber End(E’),
over & € M is End(D,). The connection V¥  defines a connection in End(E").

Each T, belongs to I'(End(E’)) and o, is a smooth function on P. By the
definition of generalized Newton transformation we conclude that

(4.1) Z(0) = ((vg’A)a -Tab(u)) . Zel(P),

where
(vg’A)a X = VE (4,(X)) — A, (vg’x) — Agsr, (X), X€EFE.

Applying the notation from Appendix, we have

(4.2) a;(x):/P Uu(a:,e)de—/cau(a:,eoa)da,

x

where (, ¢g) is a fixed element of P,.. We call @,,’s extrinsic curvatures of a distribution
D. Moreover, we define total extrinsic curvatures

(4.3) oM = /M ou(z) du.

Since the projection 7 in the bundle P is a Riemannian submersion, then by Fubini
theorem (7.5)

oM = /P ooz, €) d(z, ).

REMARK 4.2. Notice that some of total extrinsic curvatures are equal zero. For
indices 1 < ag < ... <oy < g, let Fy, . o, be a transformation which maps vector
€q,; Of a basis (z,e) to —eq,,, ¢ = 1,...,k. Then, by the use of the characteristic
polynomial of the generalized Newton transformation, we get

ou(Foy,..on (T, €)) = (_1)ua1+...+u% ou(z,e).

Hence, if u; + ... + uy, is odd and Fi, .., leaves P invariant, i.e. maps positively
oriented bases to positively oriented bases, then o, = 0, so Ufy = 0. Thus, the
following two conditions hold:

1. if G = O(q) and at least one of indices (u1,...,u,) is odd, then o =0,

2. if G = SO(q) and there is one index odd and one even, then o = 0.

w =
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Define the section Y, € I'(E), u € N(q) as follows

(44) Yu (Ia 6) = Z T,Bboq, (u) (Ia 6) (Vea eﬁ)T + Z O, (u) ({E, e)ea

Observe that the first component of Y, is a section of E', whereas the second compo-
nent is a section of E”. The section Y, and the vector field ¥, € (T M) obtained from
Y., by integration on the fibers of P play a fundamental role in our considerations.
We will start by proving necessary technical results. The divergence of Y, and
consequences of obtained formula are contained in subsequent sections.
Let Rxy : D — D, X,Y € I'(T'M) be an endomorphism given by

RX,YZ = (R(ZvX)Y)Tv AS Da

where R denotes the curvature tensor of V. For fixed indices «, 8 we define a section
R,.3 of End(E’) by

Rap(x,€) = Re, ey : Dy — Dy
Similarly, we define A, € I'(End(E’)) by
Ay(zye) = A, : Dy — D,.

It is also worth to notice, that e, is identified with a section e, € I'(E"), which
assigns to a basis (z,e) its a—th component. Hence, a local orthonormal basis e =
(e1,...,¢eq) is considered as a local section of P.

LEMMA 4.3. Fizz € M. Let e = (e1,...,eq) be a local orthonormal frame field
in the neighborhood of x such that (Vte,)(z) = 0 for all a. Estend e to a local
orthonormal basis (f1,..., fp,€1,...,eq) of TM such that (V' f;)(z) = 0 for all i.
Then, at x we have

ea((Aplijoe) = (Aa Aﬁ)ij06+(Ra glijoe—g(V(Ve.en), f))
"’Zg eae'y ) (fjv( eveﬁ)T)-

where ();; denotes the (i,j)—th component with respect to the basis (f;).
Proof. Differentiating g(es, f;) = 0 twice, we get

=9(VVe,es, i) +9(Ve,es, Vi f5) +9(Viep, Ve, fi) + 9les, Vi Ve, fi)-

Thus, at a point x

(45) g(vfiVGQeﬁvfj) = _g(eﬁvvfiVGij)'
Moreover
(Ap)ij o e = —g(Vy.es, fj),
(Aadp)oe = Zg Viea, fr)g(Vices, f),
k

(Rap)ij o e = g(R(fi,ea)es, fj)-
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Put
L=eq((Ap)ijoe) — (Aadp)ijoe— (Rap)ijoe.

Then, at a point x

L=eag(es, Vi fi) = Y 9(Viea 1)a(Viep, f3) + 9(R(firea) f, )
k

==Y 9(Vsear [1)9(V e £i) + 9(V Ve fises) = 9(Vigeafises)
k
= - Zg(vﬁeau fk)g(vfkeﬁv f]) + g(v,fz'VEafj? 66)

k
- Zg([fla ea]a fk)g(vfkfj7 eﬁ) - Zg([flv 606]7 67)g(Vevfj, eﬁ)

k
= g(vfiveafjaeﬁ) + Zg(veafiaev)g(vewfjueﬂ)-

5

Thus by (4.5)

L=—-g(VVeies fi)+ > 9(Veo firey)9(Ve, fiep)
Y

=—g(Vi V. es i)+ Y 9(fi, VI e)g(f5, V. ep),
Y

which completes the proof. O

5. Integral formulas. Adopt the notation from the previous section and from
the Appendix. The main result of this section is the integral formula for the total
extrinsic curvatures. This formula is derived by computation of the divergence of
vector field Y,, corresponding to the section Y,, defined by (4.4).

First, recall that the divergence of a (1, m)-tensor S on M is a (1, m — 1)-tensor
divS of the form

(leS)(Xl, e 7Xm71) = Z(VGHS)(G#, Xl, BN 7Xm71)7
p=1

where (e,,) is any local orthonormal basis of T'M. Considering only the basis adapted
to a distribution D, we define analogously the divergence div 'S with respect to D.

For a linear map S : D, — D, let S* : D, — D, denotes the operator adjoint to
S, ie., g(SX,Y) =g(X,5*Y) for X,Y € D,. Let S: D — D be a tensor field on M.
Then one can prove the following relations

(5.1) VSt = (Vy9),
(5.2) g(div §*,Y) =div' (SY) = > g(S*f;, V}Y),
where (f;) is a local orthonormal basis of D, X € TM,Y € D.

We will use the following notation: if X € T'(TM) and Z € T'(E’) then g(X, Z)
denotes the function on P of the form ¢(X, Z)(z, e) = (X4, Z(z, €)), where (z,€) € P.
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LEMMA 5.1. The divergence of Yy is given by the formula

diveY, = —[uloy + 3 [tr (Ra 5T, )) + 9(AVE TS, o (s (Venes) )
P

—9(Hpe, Tp,a,(u)(Ven8) ") + Zg Veaer) ' Tpa, () (Veveﬁ)T)},
where Hp. denotes the mean curvature vector of the distribution D*.

Proof. By (7.7), (4.1) and Proposition 4.1 we have

divg (Z Uab(“)ea> = Z 62 (0%(“)) + Z divg(eq) - Oy, (u)

= Ztr (V5 A)s - Tp,apw) + ZQ(V?},%’ fiom)oa, ()

a,t

+ Zg them €p o F)Uab(u)

= Z tI‘ Veh A Tﬁbab u)) Z tr (Aa)oab(“)

«

+ Zg Veg €a,€p O W)Uab(u),
a,f

where (f;) is an orthonormal basis of D and (eg) an orthonormal basis of D+. More-
over, again by Proposition 4.1,

dive [ > Thaw (Veaes) | = Q(VﬁnTmauu)(Veaeﬁ)T,fi o)
o, a,B,i

+ Z g(vewTﬁbab(u)(veaeﬁ)Tv €y 0 7T)'
a, B,y

Fix v € M. Let e = (e1,...,eq) be a local orthonormal frame field in a neigh-
borhood of x such that (V+e,)(z) = 0. Extend e to a local orthonormal basis
(fiy- s for€1,-..,6q) of TM such that (V' f;)(x) = 0. Then, by above formulas,
(7.2) and Lemma 4.3 we have at a point (x,e) (we omit composition with a basis e
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and the projection 7)

divgY, = Ztr VT Aﬁ) 'TBbab(u)) — Ztr (Aa)aab(u)

[e3

+ Z eIT,@boq,(u (vfiaeﬁ) ,61') + Z g(ve—yTBbab(u)(vfiaeﬁ)Tae’)’)

«,B,i a, B,y
= —Ztr 0y T Y, (€alAp)is)(Ta,a, )i
a,B3,1,j
+ Z g(veiTﬁbab(u)(VGa eB)Tv ei) - Z g(Tﬁb%(u)(VGaer@)T’ vae'Y)
«o,B,i a, By
= — Ztr U%(u Ztr A ABTﬁ,,ab u) Ztr BTﬁb% u))
a,p
= Y 9V (Vewen) s ) (Thyap )i
a,B,i,3
+ Z veae’y fi)g(fjv (veweﬂ)T)(Tﬁbab(u))ji
a,B,7,4,5
+ Z diVT(Tﬁbab(u) (Vea GB)T) — g(HDJ. s Tﬁb%(u) (Veae,@)T)'
a,B

By Proposition 3.3 (GN3) we obtain

diveYy = —|ulow + > tr (RagTp,0,w) = O, 9V (Vewes) s (Tsa,w)iifi)

a,f a,B,i,5
+ > 9(Vewer) T, £)9(Tp,apw)sifi V. €5)
a,B,7,1
+ Z diVT (TBbOﬂ,(u) (vﬁa eﬁ)T) - g(HDJ‘ ) Tﬂ\,ab (u) (Vea eﬁ)T)
a,f
= —|ulow + th (Ra,8T 5,0 () — Z 9V 5.(Vewes) Th ) f1)
a,f a,B,i
+ Y 9(Veuer) s 19T, 0 fis VL €8)
a, B,
+ Z div " (Ts,a, (w) (Venes) ) = 9(Hpr, Tgap ) (Vea€) ).
a,B

Putting Y = (Ve eg)" and S = Tj, o, () in (5.2) we get
g(diVTTgb%(u), (VEG eB)T) =div' (Tﬁbab(“)(v%eﬁ Zg Tﬁbab(u)f“ vfl( eaeﬁ)T)-

Hence

divgY, = —|ulo, + Ztr (Ra,8T 8,0, () + Zg(diVTTB*bab(u)? (Veaes)")
o, o,

+ 3 9((T5 0y ) (Vewe) T (Veyes) ) = 9(Hp, Tg,a, ) (Venes) -
a,Byy
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- T rse T .
Morefovner7 by Proposition 7.4 div Tﬁ ay(w) = leE'TEW.,@)a which completes the
proof.

THEOREM 5.2. Assume M is closed. Then, for any u € N(q), the total extrinsic

curvature oM satisfies

uloy! = Z/P (tr (Re5T 5,0, (w) + 9(diver Tj oy, (Vene8) ")
(5.3) “

- g(HDJ-uTﬁba.,(u) (veaeﬁ)—r) + Zg((Tgbab(u) (vﬁae’Y)T7 (vﬁweﬁ)—r))7
Y

where Hp1 denotes the mean curvature vector of distribution D.
Proof. Follows immediately by Lemma 5.1 and Proposition 7.3. O

By Theorem 5.2, we have in particular

M
T04(0,...,0) — 0

and

(54) 20M 0. ):/;D((RiCD)Q)B—g(HDL,(VeQEﬁ)T)

+Zg eae'Y ’ Veveﬁ)—r))a

where (Ricp)a,s = Ricp(ea,es) and Ricp is the Ricci curvature operator in the
direction of D, i.e.,

Ricp(X,Y) = Zg (fi, XY, fa),

where (f;) is an orthonormal basis of D.

Notice that in Theorem 5.2 total extrinsic curvature o is expressed by the
generalized Newton transformations T, g, () of lower order and by its divergences.
On the other hand, we have a recurrence formula (3.2) for the generalized Newton
transformation. We derive the recurrence formula for the divergence of T} and finally
the explicit formula for divg/ T}

From Codazzi formula, if (VN)t =0, where N € T'(D4), it follows that

(5.5) (VXAN)Y = (VyAN)X = —~(R(X,Y)N) " + (Vixy N) T

for X,Y € D.

ProrosiTioN 5.3. The divergence divg/ T

. u € N(q), satisfies the recurrence
formula

diveT; =Y (trD(R(ea,T;b(u)-)-)T — A% (dive T, (u)))

(03

- Z(AB - AE)TOQ,(’U.) (veg ea)T-
B
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Proof. By (3.2) we have T}j = o -idp — }_, AZT, (- Since dive (idp) = 0, by
(7.8) and (7.9) we get
(5.6)  diveT; =m(gradpron) — Y (V5 A*)( (i) = > AL(IVETS (),

i

where (f;) is a local orthonormal basis of D, D" denotes the horizontal lift of D,
D" = {X" | X € D}, and gradp.(0,) denotes the D"-component of gradient of o,.
Fix 2 € M. Let e = (e1,...,e4) be a local section of P such that (Vte,)(z) = 0.
Then, for any vector X € D,

g(m. (gradpn), X) = X (0, 0 )
and, by Proposition 7.4, (5.5) and (5.1)

(Z(vthz;)( (i Zg VT2 oy fir X)
—Zg a,,(u f17 Vj a)X)
—Zg o fis (Ve Aa) fi)
+Zg oy fis = (B(fi, X)ea) T + (Vg x10€a) ")
— Ztr (ViAo Toyw) = D 9(R(ea T2, ) fi) fis X)
+ zg(T;b(u)fi, (Vi x)o€a) )

Hence, by (4.1)

(5.7) m.(gradpnoy) —Z( th*)( o, () fi)

a,i

= ZQ(R(EOH ay ( u).fl flv Zg ab(u fla [fi, X]ieOt)T)'

o,

Moreover
> 9T b (Vigxgrea)) =D g(Th o fir (Vesea) Dales, Vi, X = Vx fi)
i B,i
(58) = Zg fiu ayp (u) (vegea)T)g(X7 (A,@ - Ag)fl)

- Zg A,B - A,@) ay, (u) (VGBGQ)T)'

y (5.6)—(5.8) the Proposition follows. O
COROLLARY 5.4. The divergence divg/ T of T can be expressed as follows

-
dive T = Z Z VAL AL (trDR(eas’T(Es)b...(al)b(u)')')

1<s<|u| o155

= 3 Y (AL AL (As — AB) T () (Vesar) ).

1<s<|u| a1,..., aj,fB
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Proof. Follows by induction with respect to |u| and the recurrence formula for
divg/T,; in Proposition 5.3. O

6. Consequences and special cases. In this section we show some applica-
tions of the formula for the total extrinsic curvatures. We derive the generalization
of the Walczak formula [33]. Moreover, we compute total extrinsic curvatures for fo-
liations with integrable and totally geodesic normal bundle. We conclude by showing
that in the case of one shape operator the results agree with the ones obtained in [26]
and in the codimension one with the formulas in [4].

We adopt notation from the previous section.

6.1. Generalization of the Walczak formula. Let D be a p-dimensional
distribution on a (p + ¢)-dimensional Riemannian manifold (M, g). By Proposition
3.3(GN1) and (GN3) we have

(Jul = Dfulow =D (tr (Aa)tr (AT, () — tr (AaAsTs,a,w)) -
B

Together with (5.3) we obtain the following result.

COROLLARY 6.1. Assume M is closed. For any multi-index u € N(q), |u| > 1,
we have the following integral formula

=2, /p (b (B 500 0) + 9(div T 191 (V) ")
(6.1) —9UHp., Toson () (Veo eB)T) + Z g(Tgbab(u) (Ve ev)—ru (vew eB)T)
.
ST (tr (Aa)tr (AT, 0, w) — tr (A AsTh, 0, () )

Formula (6.1) is a generalization of the Walczak formula [33]. Indeed, to state
and prove the Walczak formula let us now introduce some necessary definitions. The
second fundamental form Bp and integrability tensor Tp of a distribution D are
bilinear forms symmetric and skew—symmetric, respectively, given by the formulas

Bp(X,Y) = (VxY + VyX)"
Tp(X,Y)=(VxY —VyX)" = [X,Y]*, X,YeD.
Moreover, the mized scalar curvature in the direction of D and D™ is defined as follows

D .Dl ZK fz7ea Zg fzuea eoufz ZtrRa s

where (f;) and (e,) are orthonormal basis of D and D=, respectively. Then, the
Walczak formula is the following

©2) [ (K(D.DY) = |Hol = |Hps + |Bof +|Bys = ITof?  [Tp. ) =
M

Any multi-index w of length 2 with even coordinates is of the form u =
a*af(0,...,0). For such a multi-index formula (6.1) reduces to (see also (5.4))

O—Z/ tI‘Raa— (Hpi, (Ve €q) +Zg eae'y V ))

— (trAg)? + tr (Ai)).

(6.3)



GENERALIZED NEWTON TRANSFORMATION & ITS APPLICATIONS 313

Moreover, we have

Z (tr Ay) Zg leea,fl —Z (ea;HD)2: |HD|2

[e3

and

Ztl‘(A2 Zg A fzafz Zg(AafiuAZfi)

a,t

= Z 9(Aafis [)9(Aaf, i)

= > g(ea, Bo(fi, f;) + To(fi, £;)9(ea Bo(fi, f3) = To(fis f))
«,1,]
= |Bp|* — |Tp|?

and

Zg eae'y »(Ve, ea)®)

= Zg Bpi(eq,ey) +Tpi(ea,ey),Bpi(ey,ea) +Tpi(ey,eq))
ay
= Bps [~ [Tpu [

Using above equalities and the fact that all obtained functions are constant on the
fibers P, formula (6.3) for |u| = 2 reduces to the Walczak formula (6.2).

2. Distributions with totally geodesic and integrable normal bundle.
Following [24, 16] we define the r—th mean extrinsic curvatures S, and give the integral
formulas for these quantities. Next, we compute total extrinsic curvatures o in
the case of a distribution with integrable and totally geodesic normal bundle on a
Riemannian manifold of constant sectional curvature and show that obtained result
implies the formula for S, obtained by Brito and Naveira [14].

Let D be a distribution on M. For r even define the r—th mean extrinsic curvature

S, by

Sr = l Z 5;?1;: Z (AOtl )iljl (AOtl )izjz e '(Aa

i ai,.az

where 5;1;: is a generalized Kronecker symbol (see Section 2) and A;; denotes the
coefficients of an endomorphism A with respect to an orthonormal basis. One can
show that S, does not depend on the choice of orthonormal basis, hence is a well

defined function on M. By Theorem 2.5 we get

X ()~

u€2N(q)
|u|=r

Hence, by Theorem 5.2, we get the integral formula for S,
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COROLLARY 6.2. The r—th mean extrinsic curvature S, on closed Riamannian
manifold satisfies the following integral formula

. -1
Ny o
6= 2 (i> <u> Z/p (tr (RasT,0,(w) + 9(diver T o, )y (Veaes) ')
o

uweaN(q) N2
ul=r

- g(HDJ”Tﬁb%(u) (vea eB)T) + Zg((TEbab(u)(vea eV)Tv (vew eB)T))v
Y

where Hp1 denotes the mean curvature vector of D*.

Let D be a distribution such that the bundle D+ is totally geodesic and integrable.
Then (VxY)' =0 for any X,Y € D+,

COROLLARY 6.3. Assume M is closed. Then, for any u € N(q), total extrinsic
curvature oM of a distribution D with totally geodesic and integrable normal bundle
is of the form

|u|01jy :Z‘/Ptr(RaﬁTﬁb%(u))'
a,f

Assume additionally that (M, g) is of constant sectional curvature x. Then R, g3 =
Ko 3, Where 64 5 is the Kronecker symbol. Therefore, by Proposition 3.3 (GN2) and
Corollary 6.3, we have

M __
ol =w 3 L

(6.4) = HZ/ — [ul +2)002 )

This, together with
U(IV[OW)O) =vol(P) and 0(%(07“.)0) =0
gives the recurrence relation for total extrinsic curvatures.

COROLLARY 6.4. Assume (M, g) is closed and of constant sectional curvature k.
Let F be a foliation on M with totally geodesic and integrable normal bundle F+. Then
the total extrinsic curvatures of F depend on k, the volume of M and the dimension
of F only.

Now, we show that (6.4) implies the formula for S, obtained by Brito and Naveira
[14]. Notice that
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Hence, by (6.4),

Sy

SIS
N—
Y
e 3
N—
L
Q
RS

>

w€2N(q)
lu[=r

/\l\?

o= +2) r T (e = Dua(a2(w)!
= Z Zua<f ) 7! b Ué\‘%(u)

ueaN(q) o

|u|=r
r—2 2
_k(p—r+2) 7\ W) M
= (7‘ — 1)7‘ Z Z af(u) (7‘ — 2)! (ua - 1)Ua§(u).
u‘€2IN_(Q) o 2

Notice that any multi-index u € 2N(q) of length r — 2 is obtained from ¢ multi-indices
(19)2(u), ..., (¢*)*(u) of length r by the maps u — af(u), o = 1,...,q, respectively.
Since

((aﬁ)Q(u))a = Ug + 2,

then (for |u] = r — 2)
> (@), =1) =l +a=a+r=2

Finally,

k(p—r+2)(g+r—2)
(r—1)r

This recurrence relation implies the formula [5]

Sy = Sr_a.

(2) (77 )(ﬁ:% 1) k2vol(M) for p even and ¢q odd
%

ya
2
3 3
/MST: 2" (( ))7 (%+ - )(%)/{VOI(M) for p and ¢ even )
2
0 otherwise

which is the formula of Brito and Naveira [14].

[SIRIVE]

6.3. Foliations. Assume the distribution D is integrable, hence induces foliation
F. Then the shape operators A, are self-adjoint, i.e., A? = A,. Therefore, by
Proposition 3.4 the generalized Newton transformations T, are self-adjoint. Thus

COROLLARY 6.5. Assume M is closed. Then, for any u € N(q), total extrinsic
curvature oM of a foliation F is of the form

uloy! = Z/P(tr (Ra5Tp,0,(w) + 9(dive Ts,a, (w), (Ve,ep) ")
a,p

- g(HfTJ- 5 T,@boq,(u) (Vea 65 + Z g T,Bboq,(u) (Vea e’Y>T7 (Ve‘veﬁ)—r))a
vy
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where Hy. denotes the mean curvature vector of distribution F-. Moreover, the
divergence divg/T,, satisfies the recurrence relation

divg/T, = Z (tI‘ g‘(R(ea, TO%(U)-)')T — A, (diVE’Ta,,(u)))

[e3

and can be expressed explicitly

diVE/Tu = Z Z (—1)8_1Aa1 e Aa571 (tl" DR(easvT(as)b...(oq).,(u)')')—r .

1<s<|u| @1,.--,s

6.4. Reduction to the case of one shape operator. In [26] the author con-
sidered the case of a distribution D of arbitrary codimension with the only one shape
operator Ay, where N is a unit normal vector field to D. To get rid of the choice of
N, the following operator is introduced

A= AN dN,
St

where S+ C D+ is the bundle of unit vectors orthogonal to D. This approach is similar
to the one considered in this paper with a system of endomorphisms (Axn,0,...,0).
Thus, we compute extrinsic curvatures of the form U(I\I{,O,...,o)’ where k£ € N.

Put for simplicity

Tiko,..00 =Ths  Oro0,..0) =0k, e1=N, Z=(VyN)', Ry=Rnn.

Then, by Theorem 5.2

kop! = / (tr (RNTk—2) + g(dive/ T} 5, Z) — g(Hp, Ty —2Z)
P

30T o (Vrey) L (Ve, N)T)).

~

Notice that oy, T} etc. depend only on N, i.e., oi(z,e) = 0p(N), Ti(z,e) = Ti(N)
etc. Let H =0(q—1) (resp. H=S0(q—1)). Then H is a closed subgroup of G and
G/H = S%7!, where S9=! denotes the unit (¢ — 1)-dimensional sphere. Moreover, the
G—invariant measure on G/H is just a Lebesgue measure A on the unit sphere. By
Fubini theorem (see for example [20, 17] or (7.5))

o' = | ox(we)d(z,e)

or(x,e0g) dg dx

I

S

/ or(x,e0g) dgdXdx
H

qg—1

o1 (N, ) ANN) d

q—1

on(N) dA(N) dz,
S+
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where e is a fixed basis of D}, N,, denotes the coordinates of N with respect to
basis eg and S; is the set of unit vectors in D;-.

In the case of a codimension one and the integrability of the distribution the
formula for o gives the formula obtained by K. Andrzejewski and P. Walczak [4].
Indeed, taking G = SO(1) = {1}, by above considerations we have

koM = / tr (RyTh_2) + g(div' Th_o, Z),
M

which is the formula [4, Corollary 3.6].

7. Appendix — Differentiation and integration on principal bundles.
We derive useful formulas concerning the differential in the direction of a horizontal
vector field on a principal bundle. Lets first recall some basic facts about principal
bundles.

Let # : P — M be a principal fiber bundle with the structure group G. Let
V = kerm, be the vertical distribution. Let H be a horizontal distribution of a fixed
connection on P. Then H is complementary to V, i.e. TP =V & H. For any vector
X € T,M and an element u € P, = 7~ (x) there is unique horizontal vector X" € 3¢,
called the horizontal lift of X.

Let s € I'(P) be a section of P and f: P — R be a smooth function. Let z € M
and assume s is parallel at z, i.e. $.,(ToM) = H,. Then s,, X = Xsh(w) for every
X € T, M and consequently

(7.1) Xt f=X(fos)

Let my : V. — M be a vector bundle with a fiber metric gy and the metric
connection V. Let E = 7~V — P be the pull-back bundle, i.e. the bundle with a
fiber (m=1V),, = Vi(w), w € P. There is a unique connection V¥ in this bundle such
that [8]

Vi(Xom) = (VY X)om, XeTI(V),ZeI(TP).

Let s € I'(P) be a parallel section at a point x € M and let Y € I'(E) be a section
of a pull-back bundle E. Let E1, ..., E,, be alocal basis in V such that VVE, = 0 at
x € M. With respect to this basis Y = > ya (£, o) for some functions y, : P — R.
By (7.1) we have

(VELY)os= Z (X"yq) 08) B, = ZX(ya 08)E, = V%(Y 0s).

Hence, for every X € T, M and s parallel at x
(7.2) (VELY)os=VX(Yos).

Assume now that the group G is compact and let Ag denote the Haar normalized
measure on G. Let f: P — R be a smooth function. We define the integral of f over
the fiber P,, x € M, as follows

[, sy = [ sungars(o)

where wy € P, is fixed and wpg denotes the right multiplication in P be element
g € G. By the invariance of the Haar measure, it follows that the integral is well
defined.
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Function f: P — R induces a function f: M — R by the formula

f@)y= | f(w)dw.

Py

ProPOSITION 7.1. Let X € T, M and f: P — R be a smooth function. Then the
following formula holds

(73  XF=X, e X(me<w>dw)= [ )

Proof. Fix x € M and let X € T,,M. Let v be a curve on M such that v(0) =z
and 7/(0) = X. Moreover fix wy € P,. Let " be a horizontal lift of v such that
7"(0) = wo. Then (v")(0) = X2 . Put w; = v"(t). Therefore,

XF= & (For(t)imo

- i ([rwoncw)

d
= [ G U)o dalo)
Furthermore
d d
E (f(wtg))tzo = i (f(Rg(wt)))t:o = (Rg*XZO)f = X’Z})ggf?

where Ry(w) = wyg is the right multiplication by g € G. Hence

=

Xf= /G Xt fddalg) = /P (X" f)(w) dw = X7,

Let Y € T'(E). Then Y is a mapping of bundles P and V' over the identity on M,
ie. Y:P, =V, x € M.Y induces a vector field Y € I'(T'M) as follows

@) = [ Yowde,

x

where the integral of Y is the integral of coordinates of Y and is independent on the
choice of point—wise basis in V.

PROPOSITION 7.2. Let X € T,M and Y € T'(E). Then the following formula
holds

(7.4) V)V(?:v/gh\i/, i.e. V}’(( Y (w) dw) :/ (VELY) dw.

x

Py

Proof. Proof is similar to the proof of (7.2). Let Ey,..., E,, be a local basis in
V such that VVE, = 0 at € M. With respect to this basis Y = Y y.(E, o) for
some functions y, : P — R. By Proposition 7.1 we have

VY =S (XG)E. =Y XtyuE, = VY. O
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Let gp be the Riemannian metric on P induced from the Riemannian metric g
on M and the invariant metric {(, )) on the Lie algebra g of the structure group G,

gp(X"Y") = g(X,Y),
gp(XY, A7) =0,
gp(A", B%) = (4, B)),

where X, Y are vectors on M and A*, B* fundamental vertical vector fields induced
by elements A, B € g. Then the projection 7w : P — M is a Riemannian submersion,
hence the Fubini theorem (see for example [17, 20])

(7.5) /f dw—/ (me(w)dw> do

holds.

Assume now that V' is a subbundle of a tangent bundle 7'M and the metric gy
is just a restriction of the Riemannian metric g.

Let Y € T'(E). The divergence divgY of a section Y is defined as follows

divgY =Y g(VE, Y, mEa),

where (E,) is a local orthonormal basis of P which projects on V. Notice that the
divergence divgY can be written in the following way

(7.6) divgY =Y " g(VRY, fiom),

where (f;) is a local orthonormal basis of V. By (7.6) it follows that
(7.7) dive(pY) = edivgY + Yhe,
where Y € I'(E) and ¢ is a smooth function on P.

PROPOSITION 7.3. The divergence divgY of a section Y € T'(E) and the diver-
gence divy'Y of a vector field Y € T'(V') are related as follows

/ divgY dw = / divy Y dz.
P M

In particular, if M is closed and V- =TM, then fP divgY dw = 0.
Proof. By Proposition 7.2 we have

diveY =3 g(VRY, fi) =3 g(ViV, fi) = divv .
Thus by Fubini theorem (7.5)

/divEde:/ @/dxz/ divy Y de. O
P M M

Let End(E) denote the bundle of endomorphisms of E, i.e., the fiber End(E),,
x € M, is End(V,). The connection V¥ induces the connection in End(E), namely

(VESYW =VESW) — S(VEW), S eT(End(E)),Z € T(P),W € I'(E).
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Then, the divergence divgS of S € I'(End(E)) is defined as follows

diVES = Z(Vga S) (W*Ea)u

E,

where (E,) is a local orthonormal basis of P which projects on V. Notice that divgS
can be written in the form

divgS = Z(Vﬁhs)(fz ° 77)7

where (f;) is a local orthonormal basis of V.

PROPOSITION 7.4. Let s € I'(P) be a parallel section at a point x € M, let
S e I'(End(E)) and X € T,M. Then

(VZrS) (s(2)) = (VX(S 0 5)) (x)

and
(divgsS) (s(x)) = (divy (S 0 s)) (z).

Proof. Follows immediately by (7.2). O
The following formulas hold

(7.8) divg(pS) = odivgS + S(m.grady ),
(7.9) divp(TS) = Z(vg T)(Sf;) 4+ T(divgs),

K2

for S,T € T(End(FE)), ¢ : P — R, where (f;) is a local orthonormal basis of V' and
grady . denotes the V"—component of the gradient of a function ¢.
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