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GENERALIZED NEWTON TRANSFORMATION AND ITS
APPLICATIONS TO EXTRINSIC GEOMETRY∗
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KAMIL NIEDZIA�LOMSKI§

Abstract. In this article we introduce a generalization of the Newton transformation to the case
of a system of endomorphisms. We show that it can be used in the context of extrinsic geometry of
foliations and distributions yielding new integral formulas containing generalized extrinsic curvatures.
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1. Introduction. Analyzing the study of Riemannian geometry we see that
its basic concepts are related with some operators, such as shape, Ricci, Schouten
operator, etc. and functions constructed of them, such as mean curvature, scalar
curvature, Gauss-Kronecker curvature, etc. The most natural and useful functions
are the ones derived from algebraic invariants of these operators, e.g., by taking trace,
determinant and in general the r-th symmetric functions σr. However, the case r > 1
is strongly nonlinear and therefore more complicated. The powerful tool to deal with
this problem is the Newton transformation Tr of an endomorphism A (strictly related
with the Newton’s identities) which, in a sense, enables a linearization of σr,

(r + 1)σr+1 = tr (ATr).

Although this operator appeared in geometry many years ago (see, e.g., [23, 32]), there
is a continues increase of applications of this operator in different areas of geometry
in the last years (see, among others, [1, 2, 3, 9, 11, 18, 19, 25, 26, 27, 31]).

All these results cause a natural question, what happens if we have a family of
operators i.e. how to define the Newton transformation for a family of endomorphisms.
A partial answer to this question can be found in the literature (operator Tr and the
scalar Sr for even r [5, 16]), nevertheless, we expect that this case is much more
subtle. This is because in the case of family of operators we should obtain more
natural functions as in the case of one operator and consequently more information
about geometry. In order to do this, for any multi–index u and generalized elementary
symmetric polynomial σu we introduce transformations depending on a system of
linear endomorphisms. Since these transformations have properties analogous to the
Newton transformation (and in the case of one endomorphism coincides with it) we
call this new object generalized Newton transformation (GNT) and denote by Tu. The
concepts of GNT is based on the variational formula for the r–th symmetric function

d

dτ
σr+1(τ) = tr

(
Tr ·

d

dτ
A(τ)

)
,
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which is crucial in many applications and, as we will show, characterizes Newton’s
transformations. Surprisingly enough, according to knowledge of the authors, GNT
has never been investigated before.

The precise definition of GNT and its main properties are given in Sections 2
and 3. These sections seem to be of independent interest since they do not relate to
geometric picture. We show some algebraic relations between the trace of GNT and
algebraic invariants σu (Proposition 3.3). As a corollary we obtain generalizations
of Cayley–Hamilton theorem (Theorem 3.1) for a system of linear endomorphisms.
Moreover, we show that the operators Tr and Sr for even r, which appeared in the
literature, can be build of our operators Tu and σu (Theorem 2.5).

Next, we consider GNT in the context of geometry of foliations (and distributions
in general), however we think that GNT has fine algebraic properties, which enable fur-
ther applications. To begin with, let us note that one of the interesting developments
in geometry of foliations during the last decades was the rise of integral formulas for
closed foliated manifolds. These formulas are of some interest, for example in several
geometric situations they provide obstructions to the existence of foliations with all
the leaves enjoying a given geometric property (see, [4, 6, 10, 27, 30, 28] and bibliogra-
phies therein). Such formulas have also applications in different areas of differential
geometry and analysis on manifolds (see, for example, [8, 13, 15, 29, 21]).

The most classical integral formula, in fact the first one known, is due to Reeb
[22]. He proved that for codimension–one foliation of closed Riemannian manifold M
one has ∫

M

H = 0,

where H is the mean curvature of the leaves. In the early 80’s there was obtained
a notable result by Brito, Langevin and Rosenberg [12] (see also [7]). The authors
considered codimension–one foliations of a closed space form Mp+1(κ). They showed
that the integral of r-th basic symmetric function of the shape operator of a foliation
F (i.e. r-th mean curvature) depends only on geometry of M not F. More precisely,
they proved that

(1.1)

∫
M

σr =

⎧⎨⎩ κ
r
2

(p
2
r
2

)
vol(M) for p, r even,

0 for p or r odd.

A generalization of the above result to the case of arbitrary closed manifold has
been recently obtained in [4, 5]. The authors applied the r–th Newton transformation
Tr of the shape operator of the foliation F (r = 0, 1, . . . , p = dimF). Computing the
divergence of the vector field

(1.2) Tr (∇NN) + σr+1N,

where N denotes the unit vector field orthogonal to F, and using the Stokes theorem
they obtained system of integral formulas which, in the special case of a closed space
form, reduce to (1.1).

Although, all of the mentioned approaches possess a generalization to the case of
arbitrary codimension, that is integral formulas containing higher order mean curva-
tures Sr, for r even, we believe that in codimension grater than one we should have
more extrinsic curvatures and, globally defined, (normal) vector fields which can give
an additional information about geometry of foliations and distributions.
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Since, the bundle P = O(D⊥) or P = SO(D⊥) of orthonormal (oriented, re-
spectively) frame fields perpendicular to D codes information on extrinsic geometry
of distribution D, Section 4 is devoted to the fiber bundle approach to the extrinsic
geometry of distributions. Using integration on these bundles we define generalized
mean curvatures σ̂u (see (4.2)) for distributions and total extrinsic curvatures σM

u

(see (4.3)). Moreover, we define a new set of global vector fields Ŷu generalizing (1.2),
obtained from sections Yu (see (4.4)), by integrating over the fibers of P . These fields
are crucial in the study of geometry of D and D⊥.

In Section 5 we compute the divergence of Yu and, as a result, we get new inte-
gral formulas (Theorem 5.2) containing σu together with some terms build of second
fundamental form and curvature.

The next section contains some consequences and presents our results in some
special cases. We obtain a generalization of the classical formula obtained by Walczak
[33] (Corollary 6.1). Moreover, in the case of constant sectional curvature and totally
geodesic distribution D⊥ we obtain recurrence formula for σM

u which implies that
it does not depend on the geometry of distribution D. Using relationships between
σu and Sr we give another proof of the theorem obtained by Brito and Naveira
[14]. Moreover, we show that when multi–index has only one nonzero element then
our formulas reduce to ones obtained in [26] and in the case of codimension one to
formulas obtained in [4].

Finally, since we could not find suitable references and to make the paper more
self–sufficient, Appendix contains proofs of some essential formulas concerning differ-
entiation and integration on principal bundles.

Throughout the paper everything (manifolds, distribution, foliations, etc.) is
assumed to be smooth and oriented and we will use the following index convention:
n = p+ q and

i, j, k = 1, . . . , p; α, β, γ = 1, . . . , q.

2. Generalized Newton transformation (GNT). In this section we define
and state fundamental properties of Newton transformation associated with an or-
dered system of endomorphisms. We call these new transformations generalized New-
ton transformation. First, we give relevant facts about classical Newton transforma-
tions (for more details see [25]).

Let A be an endomorphism of a p–dimensional vector space V . The Newton
transformation of A is the system T = (Tr)r=0,1,... of endomorphisms of V given by
the recurrence relations:

T0 = 1V ,

Tr = σr1V −ATr−1, r = 1, 2, . . .

Here σr’s are elementary symmetric functions of A. If r > p we put σr = 0. Equiva-
lently, each Tr may be defined by the formula

Tr =

r∑
j=0

(−1)jσr−jA
j .

Observe that Tp is the characteristic polynomial of A. Consequently, by Hamilton–
Cayley Theorem Tp = 0. It follows that Tr = 0 for all r ≥ p.

The Newton transformation satisfies the following relations [23]:
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(N1) Symmetric function σr is given by the formula

rσr = tr (ATr−1).

(N2) Trace of Tr is equal

trTr = (p− r)σr .

(N3) If A(τ) is a smooth curve in End (V ) such that A(0) = A, then

d

dτ
σr+1(τ)τ=0 = tr (

d

dτ
A(τ)τ=0 · Tr), r = 0, 1, . . . , p.

Condition (N3) is the starting point to define generalized Newton transformation.
Let V be a p–dimensional vector space (over R) equipped with an inner product

〈 , 〉. For an endomorphism A ∈ End (V ), let A� denote the adjoint endomorphism,
i.e. 〈Av,w〉 = 〈v,A�w〉 for every v, w ∈ V . The space End (V ) is equipped with an
inner product

〈〈A,B〉〉 = tr (A�B), A,B ∈ End (V ).

Let N denote the set of nonnegative integers. By N(q) denote the set of all
sequences u = (u1, . . . , uq), with uj ∈ N. The length |u| of u ∈ N(q) is given by
|u| = u1 + . . . + uq. Denote by End q(V ) the vector space End (V ) × . . . × End (V )
(q–times). For A = (A1, . . . , Aq) ∈ End q(V ), t = (t1, . . . , tq) ∈ Rq and u ∈ N(q) put

tu = tu1
1 . . . tuq

q ,

tA = t1A1 + . . .+ tqAq.

By the Newton polynomial of A we mean the polynomial PA : Rq → R of the
form PA(t) = det(1V + tA). Expanding PA we get

PA(t) =
∑
|u|≤p

σut
u,

where the coefficients σu = σu(A) depend only on A. Observe that σ(0,...,0) = 1. It
is convenient to put σu = 0 for |u| > p.

Consider the following (music) convention. For α we define functions α� : N(q) →
N(q) and α� : N(q) → N(q) as follows

α�(i1, . . . , iq) = (i1, . . . , iα−1, iα + 1, iα+1, . . . , iq),

α�(i1, . . . , iq) = (i1, . . . , iα−1, iα − 1, iα+1, . . . , iq),

i.e. α� increases the value of the α–th element by 1 and α� decreases the value of α–th
element by 1. It is clear that α� is the inverse map to α�.

Now, we may state the main definition. The generalized Newton transformation of
A = (A1, . . . , Aq) ∈ End q(V ) is the system of endomorphisms Tu = Tu(A), u ∈ N(q),
satisfying the following condition (generalizing (N3)):

For every smooth curve τ �→ A(τ) in End q(V ) such that A(0) = A

d

dτ
σu(τ)τ=0 =

∑
α

〈〈(
d

dτ
Aα(τ)τ=0)

�|Tα�(u)〉〉

=
∑
α

tr

(
d

dτ
Aα(τ)τ=0 · Tα�(u)

)
.

(GNT)
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From the above definition it is not clear that generalized Newton transformation
exists. In order to show the existence of generalized Newton transformation, we
introduce the following notation.

For q, s ≥ 1 let N(q, s) be the set of all q×s matrices, whose entries are elements of
N. Clearly, the set N(1, s) is the set of multi–indices i = (i1, . . . , is) with i1, . . . , is ∈ N,
hence N(s) = N(1, s). Moreover, every matrix i = (iαl ) ∈ N(q, s) may be identified
with an ordered system i = (i1, . . . , iq) of multi–indices iα = (iα1 , . . . , i

α
s ).

If i = (i1, . . . , is) ∈ N(s) then its length is simply the number |i| = i1+. . .+is. For
i = (i1, . . . , iq) ∈ N(q, s) we define its weight as an multi–index |i| = (|i1|, . . . , |iq|) ∈
N(q). By the length ‖i‖ of i we mean the length of |i|, i.e., ‖i‖ =

∑
α |iα| =

∑
α,l i

α
l .

Denote by I(q, s) a subset of N(q, s) consisting of all matrices i satisfying the
following conditions:

1. every entry of i is either 0 or 1,
2. the length of i is equal to s,
3. in every column of i there is exactly one entry equal to 1, or equivalently

|i�| = (1, . . . , 1).
We identify I(q, 0) with a set consisting of the zero vector 0 = [0, . . . , 0]�.

Let A ∈ End q(V ), A = (A1, . . . , Aq), and i ∈ N(q, s). By Ai we mean an
endomorphism (composition of endomorphisms) of the form

Ai = A
i11
1 A

i21
2 . . . A

iq1
q A

i12
1 . . . A

iq2
q . . . A

i1s
1 . . . A

iqs
q .

In particular, A0 = 1V .

Theorem 2.1. For every system of endomorphisms A = (A1, . . . , Aq), there
exists the unique generalized Newton transformation T = (Tu : u ∈ N(q)) of A.
Moreover, each Tu is given by the formula

(2.1) Tu =

|u|∑
s=0

∑
i∈I(q,s)

(−1)‖i‖σu−|i|A
i,

where σu−|i| = σu−|i|(A).

The proof will be divided into steps. The following two technical lemmas are well
known.

Lemma 2.2. Let A ∈ End q(V ). There exists ε > 0 such that for every t ∈ Rq

with |t| < ε, 1V + tA is an isomorphism of V and its inverse is given by the formula

(1V + tA)−1 =
∞∑
s=0

(−1)s
∑

i∈I(q,s)

t|i|Ai.

Lemma 2.3. If τ �→ A(τ) is a smooth curve in End (V ) such that A(0) = 1V ,
then

(2.2)
d

dτ
(detA(τ))τ=0 = tr

(
d

dτ
A(τ)τ=0

)
.

Moreover, we have the following result.
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Proposition 2.4. Consider a curve τ �→ A(τ) in End q(V ). Put A(0) = A and
A′ = d

dτA(τ)τ=0. Then there exists ε > 0 such that for every t ∈ Rq with |t| < ε, we
have

(2.3)
d

dτ
PA(τ)(t)τ=0 = tr

⎛⎝tA′
∞∑
s=0

(−1)s
∑

i∈I(q,s)

t|i|Ai

⎞⎠PA(t).

Proof. By Lemma 2.2, there exists ε > 0 such that for every t ∈ Rq with |t| < ε
the endomorphism 1V + tA is invertible. For fixed t ∈ Rq, |t| < ε, consider a curve
B(τ) = (1V + tA(τ))(1V + tA)−1. Clearly B is smooth and satisfies the assumptions
of Lemma 2.3. Moreover

detB(τ) =
PA(τ)(t)

PA(t)

and the denominator in the above fraction does not depend on τ . Therefore, applying
Lemma 2.3, we have

d

dτ
PA(τ)(t)τ=0 = tr

(
d

dτ
B(τ)τ=0

)
PA(t).

On the other hand, applying Lemma 2.2, one can get

d

dτ
B(τ)τ=0 = tA′

∞∑
s=0

(−1)s
∑

i∈I(q,s)

t|i|Ai.

Combining above two equalities lemma holds.

Proof of Theorem 2.1.

Existence. Let τ �→ A(τ) be a curve in End q(V ) such that A(0) = A. By
Proposition 2.4 there exists ε > 0 such that for every t ∈ Rq with |t| < ε, (2.3) holds.
Denote by L and R the left hand and the right hand side of (2.3), respectively. Then

R = tr

⎛⎝t
d

dτ
A(τ)τ=0

∞∑
s=0

(−1)s
∑

i∈I(q,s)

t|i|Ai

⎞⎠PA(t)

= tr

⎛⎝t
d

dτ
A(τ)τ=0

∞∑
s=0

(−1)s
∑

i∈I(q,s)

t|i|Ai

⎞⎠ ∞∑
|a|=0

σat
a

= tr

⎛⎝t
d

dτ
A(τ)τ=0

∞∑
s=0

∞∑
|a|=0

∑
i∈I(q,s)

t|i|+a(−1)sσaA
i

⎞⎠
=

∑
α

tr

⎛⎝ d

dτ
Aα(τ)τ=0

∞∑
s=0

∞∑
|a|=0

∑
i∈I(q,s)

tα
�(|i|+a)(−1)sσaA

i

⎞⎠ .

Put u = α�(|i|+ a) ∈ N(q). Then α�(u) = |i|+ a. Hence

R =

∞∑
|u|=1

∑
α

tr

⎛⎝ d

dτ
Aα(τ)τ=0

|u|∑
s=0

∑
i∈I(q,s)

(−1)‖i‖σα�(u)−|i|A
i

⎞⎠ tu.
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On the other hand

PA(τ)(t) =

∞∑
|u|=0

σu(τ)t
u.

Thus

L =

∞∑
|u|=0

(
d

dτ
σu(τ)τ=0

)
tu.

Since L = R for every |t| < ε, comparing appropriate monomials, we get

d

dτ
σu(τ)τ=0 =

∑
α

tr

(
d

dτ
Aα(τ)τ=0Tα�(u)

)
,

where Tu’s are given by (2.1). Hence, the system T = (Tu, u ∈ N(q)) is the generalized
Newton transformation of A.

Uniqueness. Suppose (Su, u ∈ N(q)) is another generalized Newton transforma-
tion of A. We will show that Tu = Su, for every multi–index u. Consider a curve
A(τ) = (A1 + τ(Tu − Su)

�, A2, . . . , Aq). Then d
dτA(τ)τ=0 = ((Tu − Su)

�, 0, . . . , 0).
Since Tu and Su are generalized Newton transformations, putting α = 1 in (GNT), we
get 〈〈Tu−Su|Tu〉〉 =

d
dτ
σu(τ)τ=0 = 〈〈Tu −Su|Su〉〉. Therefore, 〈〈Tu −Su|Tu−Su〉〉 = 0.

Since 〈〈, 〉〉 is an inner product, Tu = Su.

At the end of this section we want to compare generalized Newton transformation
with the one considered in the literature introduced by Reilly [24] and considered
further, for example, by Cao and Li [16]. These transformations, Tr and Tα

r+1, are
defined for r even and α = 1, . . . , q. Namely, in coordinates,

(Tr)ij =
1

r!

∑
i1,...,ir
j1,...,jr

δi1,...,ir ,ij1,...,jr ,j

∑
α1,...,α r

2

(Aα1)i1j1(Aα1)i2j2 . . . (Aα r
2
)ir−1jr−1 (Aα r

2
)irjr

and

(Tα
r+1)ij =

1

r!

∑
i1,...,ir+1

j1,...,jr+1

δ
i1,...,ir+1,i
j1,...,jr+1,j

(Aα)ir+1jr+1

·
∑

α1,...,α r
2

(Aα1)i1j1(Aα1 )i2j2 . . . (Aα r
2
)ir−1jr−1(Aα r

2
)irjr ,

where δi1...irj1...jr
is the generalized Kronecker symbol, which is +1 or −1 according as the

i’s are distinct and the j’s are an even or odd permutation of the i’s, and which is 0
in all other cases. Moreover, we define functions Sr for r even in the following way

Sr =
1

r!

∑
i1,...,ir
j1,...,jr

δi1,...,irj1,...,jr

∑
α1,...,α r

2

(Aα1)i1j1(Aα1 )i2j2 . . . (Aα r
2
)ir−1jr−1 (Aα r

2
)irjr .

These transformations satisfy the same relations as Newton transformations.
Namely, for r even, we have [16, 4]
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(R1) Tr = Sr1−
∑

α Tα
r−1Aα, T0 = 1,

(R2) tr Tr = (p− r)Sr ,
(R3) d

dτ
(Sr(τ))τ=0 =

∑
α tr

(
d
dτ
Aα(τ)τ=0 · T

α
r−1

)
, where Aα(τ) is a curve such

that Aα(0) = Aα.
Moreover, condition (R3) is equivalent to the definition of Tα

r−1.
It turns out that these transformations are linear combinations of generalized

Newton transformation Tu. First adopt the following notation. For a multi–index
u ∈ N(q) of length r let

u! = u1!u2! . . . uq! and

(
r

u

)
=

r!

u!
=

r!

u1!u2! . . . uq!
.

Let 2N(q) denote the set of all multi–indices u ∈ N(q) such that each u1, . . . , uq is
even.

Theorem 2.5. For r even

(2.4) Tr =
∑

u∈2N(q)

|u|=r

(
r
2
u
2

)(
r

u

)−1

Tu, Tα
r+1 =

∑
u∈2N(q)

|u|=r

(
r
2
u
2

)(
r

u

)−1

Tα�(u)

and

(2.5) Sr =
∑

u∈2N(q)

|u|=r

( r
2
u
2

)(
r

u

)−1

σu,

where u
2 = (u1

2 , . . . ,
uq

2 ).

Before we turn to the proof of (2.4) and (2.5) recall the properties of the gener-
alized Kronecker symbol. One can show that

(2.6)
∑

i1,...,ir

δi1...iri1...ir
=

p!

(p− r)!

and

(2.7)
∑

i1,...,is

δ
i1...irir+1...is
j1...jrir+1...is

=
(p− s)!

(p− r)!

∑
i1,...,ir

δi1...irj1...jr
.

Now we are able to derive the exact formula for σu = σu(A1, . . . , Aq).

Proposition 2.6. For any indices α1, . . . , αr we have

(2.8) σα�
1...α

�
r(0,...,0)

=
1

u!

∑
i1,...,ir
j1,...,jr

δi1,...,irj1,...,jr
(Aα1)i1j1 . . . (Aαr )irjr ,

where u = α�
1 . . . α

�
r(0, . . . , 0).

Proof. By the definition of symmetric functions σu we have

det(1 + tA) =
∑
|u|≤p

σut
u =

∑
|u|≤p

σut
u1
1 . . . tuq

q .
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On the other hand, by the formula for the determinant

detA =
1

p!

∑
i1,...,ip

j1,...,jp

δ
i1,...,ip
j1,...,jp

Ai1j1 . . . Aipjp

we have

det(1 + tA) =
1

p!

∑
i1,...,ip

j1,...,jp

δ
i1,...,ip
j1,...,jp

(
δi1j1 +

∑
α1

tα1(Aα1)i1j1

)
. . .

(
δ
ip
jp

+
∑
αp

tαp(Aαp)ipjp

)
.

By (2.7) it follows that

σ
α�

1...α
�
r(0,...,0)

=
c

p!

∑
i1,...,ir
j1,...,jr

δi1,...,irj1,...,jr
(Aα1 )i1j1 . . . (Aαr )irjr

for a constant c independent of the system of matrices A1, . . . , Aq. Hence, taking
A1 = . . . = Aq = 1 by (2.6) we get

(2.9) σα�
1...α

�
r(0,...,0)

(1, . . . , 1) =
c

p!

∑
i1,...,ir

δi1,...,iri1,...,ir
=

c

(p− r)!
.

Moreover, using multinomial theorem,

det((1 + t1 + . . .+ tq)1) =

p∑
r=0

∑
u1+...+uq=r

p!

(p− r)!u!
tu1
1 . . . tuq

q .

Therefore

(2.10) σ(u1,...,uq)(1, . . . , 1) =
p!

(p− r)!u!
.

By (2.9) and (2.10) we have c
p! =

1
u! , hence (2.8) holds.

Proof of Theorem 2.5. Any multi–index u ∈ 2N(q) of length r is of the form

u = (α�
1)

2 . . . (α�
r
2
)2(0, . . . , 0) for some indices α1, . . . , α r

2
. For such a multi–index, by

Proposition 2.6, we have

σu =
1

u!

∑
i1,...,ir
j1,...,jr

δi1,...,irj1,...,jr
(Aα1)i1j1(Aα1)i2j2 . . . (Aα r

2
)ir−1jr−1(Aα r

2
)irjr

Moreover, observe that there are
( r

2
u
2

)
indices α1, . . . , α r

2
which give u. Thus (2.5)

holds. Relations (2.4) follow immediately from the properties (R1) and (R3) of trans-
formations Tr and Tα

r−1.

3. Properties of generalized Newton Transformation.

Theorem 3.1 (Generalized Hamilton–Cayley Theorem). Let T = (Tu : u ∈
N(q)) be the generalized Newton transformation of A. Then for every u ∈ N(q) of
length greater or equal to p we have Tu = 0.
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Proof. Fix a multi–index u = (u1, . . . , uq) with |u| ≥ p. We may assume that
u1 > 0. Take α = 1. Consider the curve A = (A1 + τT�

α�(u), 0, . . . , 0). Then
d
dτ
A(τ)τ=0 = (T�

α�(u), 0, . . . , 0). Moreover, since |u| ≥ p, then |α�(u)| > p. Therefore,

σα�(u)(τ) = 0 for every τ . Consequently, by the definition of generalized Newton
transformation we obtain

0 =
d

dτ
σα�(u)(τ)τ=0 = 〈〈Tu|Tu〉〉.

Since 〈〈, 〉〉 is the inner product, we get Tu = 0.

Theorem 3.2. The generalized Newton transformation T = (Tu : u ∈ N(q)) of
A satisfies the following recurrence relations:

T0 = 1V , where 0 = (0, . . . , 0),(3.1)

Tu = σu1V −
∑
α

AαTα�(u)

= σu1V −
∑
α

Tα�(u)Aα,
where |u| ≥ 1.(3.2)

Proof. Equality (3.1) is obvious. Assume u ∈ N(q) and |u| = s + 1, s ≥ 0. We
show the first identity of (3.2). A proof of the second one is analogous.

For every matrix i = (iαl ) ∈ I(q, s) and every β define a matrix β ◦ i ∈ I(q, s+ 1)
by

(β ◦ i)α1 = δαβ , (β ◦ i)αl = iαl−1, 2 ≤ l ≤ s+ 1.

It is easy to observe that I(q, s+1) can be expressed as the following sum of pairwise
disjoint sets

I(q, s+ 1) =
⋃
β

β ◦ I(q, s).

Moreover, for every i ∈ I(q, s), |β ◦ i| = β�(|i|) and Aβ◦i = AβA
i. We have

Tu =

s+1∑
l=0

∑
i∈I(q,l)

(−1)‖i‖σu−|i|A
i

= σu1V +

s+1∑
l=1

∑
β

∑
i∈I(q,l−1)

(−1)‖β◦i‖σu−|β◦i|A
β◦i

= σu1V +

s∑
l=0

∑
β

∑
i∈I(q,l)

(−1)1+‖i‖σβ�(u)−|i|AβA
i

= σu1V −
∑
β

Aβ

⎛⎝ s∑
l=0

∑
i∈I(q,l)

σβ�(u)−|i|A
i

⎞⎠
= σu1V −

∑
β

AβTβ�(u),

for s = |β�(u)|.
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Now we state and prove the fundamental properties of generalized Newton trans-
formation.

Proposition 3.3. The generalized Newton transformation T = (Tu : u ∈ N(q))
of A satisfies the following conditions:
(GN1) Symmetric functions σu are given by the formula

|u|σu =
∑
α

tr (AαTα�(u)).

(GN2) The trace of Tu equals

tr Tu = (p− |u|)σu.

(GN3) Symmetric functions σu satisfy the following recurrence relation∑
α,β

tr (AαAβTβ�α�(u)) = −|u|σu +
∑
α

(trAα)σα�(u).

Proof of (GN1). Consider a curve A(τ) = (1 + τ)A. Then A(0) = A and
d
dτA(τ)τ=0 = A. Expanding the polynomial PA(τ)(t) it is easy to see that σu(τ) =

(1 + τ)|u|σu, where σu is a symmetric function of A. Thus

d

dτ
σu(τ)τ=0 = |u|σu.

Hence by (GNT)

|u|σu =
∑
α

tr (AαTα�(u)).

Proof of (GN2). Follows directly by (3.2) and (GN1).

Proof of (GN3). By (3.2) we have

Tβ�(u) = σβ�(u)1V −
∑
α

AαTβ�α�(u).

Therefore

Tu = σu1V −
∑
β

(
σβ�(u)1V −

∑
α

AαTβ�α�(u)

)
= σu1V −

∑
β

σβ�(u)Aβ +
∑
α,β

AβAαTβ�α�(u).

Taking the trace, using (GN2) and the fact that α� and β� commute we get (GN3).

Corollary 3.4. Let T = (Tu : u ∈ N(q)) be the generalized Newton transforma-
tion of A. If every matrix Aα is self–adjoint, i.e. A�

α = Aα, then Tu is self–adjoint
for every u ∈ N(q).

Proof. We apply induction with respect to k = |u|. Obviously, if k = 0, then
u = 0 and T0 is self–adjoint. Take k ≥ 1 and assume Tw is self–adjoint for every
multi–index w of length |w| = k − 1. Let u be of length k. Applying (3.2) we get

T�
u = σu1V −

∑
α

T�
α�(u)

A�
α = σu1V −

∑
α

Tα�(u)Aα = Tu.

Induction completes the proof.



304 K. ANDRZEJEWSKI, W. KOZ�LOWSKI, AND K. NIEDZIA�LOMSKI

4. Extrinsic curvatures for distributions of arbitrary codimension. Let
(M, g) be an oriented Riemannian manifold, D a p–dimensional (transversally ori-
ented) distribution on M . Let q denotes the codimension of D. For each X ∈ TxM
there is unique decomposition

X = X� +X⊥,

where X� ∈ Dx and X⊥ is orthogonal to Dx. Denote by D⊥ the bundle of vectors
orthogonal to D. Let ∇ be the Levi–Civita connection of g. ∇ induces connections
∇� and ∇⊥ in vector bundles D and D⊥ over M , respectively.

Let π : P → M be the principal bundle of orthonormal frames (oriented or-
thonormal frames, respectively) of D⊥. Clearly, the structure group G of this bundle
is G = O(q) (G = SO(q), respectively). We define a Riemannian metric on P by
inducing the metric from M and an invariant inner product 〈〈 , 〉〉 on the Lie algebra
g of G,

〈〈A,B〉〉 = −tr (AB), A,B ∈ g.

In particular, the projection π : P → M is a Riemannian submersion.
Adopt the notation from the Appendix.
Every element (x, e) = (e1, . . . , eq) ∈ Px, x ∈ M , induces the system of endomor-

phisms A(x, e) = (A1(x, e), . . . , Aq(x, e)) of Dx, where Aα(x, e) is the shape operator
corresponding to (x, e), i.e.

Aα(x, e)(X) = − (∇Xeα)
�
, X ∈ Dx.

Let T (x, e) = (Tu(x, e))u∈N(q) be the generalized Newton transformation associated
with A(x, e).

The bundle π : P → M and the vector bundles TM → M , D → M , D⊥ → M
induce the pull–back bundles

E = π−1TM, E′ = π−1D and E′′ = π−1D⊥ over P ,

each with a fiber (π−1TM)(x,e) = TxM , (π−1D)(x,e) = Dx and (π−1D⊥)(x,e) = D⊥
x ,

respectively. We have

E = E′ ⊕ E′′.

Moreover, the connections ∇,∇�,∇⊥ of g induce pull–back connections ∇E ,∇E′ and
∇E′′ in E, E′ and E′′, respectively (see Appendix).

Proposition 4.1.

1. Let Y ∈ Γ(E′′) and X ∈ Dx, x ∈ M . Then, for every w ∈ Px(
∇E

XhY
)
(w) =

(
∇E′′

XhY
)
(w) −AY (w)(X),

where AN (X) = −(∇XN)� denotes the shape operator.
2. Let Y ∈ Γ(E′) and X ∈ D⊥

x , x ∈ M . Then, for w ∈ Px(
∇E

XhY
)
(w) =

(
∇E′

XhY
)
(w) + (∇XY )

⊥
(x).
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Proof. Since ∇E and ∇E′′ are connections, the operator

S(X,Y ) =
(
∇E

XhY
)
(w)−

(
∇E′′

XhY
)
(w)

is tensorial, hence does not depend on the extension of a vector Y (w) to a section of
E. Thus, we may assume Y = Y0 ◦ π, where Y0 ∈ Γ(TM). Then

S(X,Y ) = (∇XY0) (x) −
(
∇⊥

XY0

)
(x) = (∇XY0)

�
(x) = −AY0(x)(X) = −AY (w)(X),

which completes the proof of (1). The proof of (2) is similar.

Let End(E′) denotes the bundle of endomorphisms of E′, i.e. the fiber End(E′)x
over x ∈ M is End(Dx). The connection ∇E′ defines a connection in End(E′).

Each Tu belongs to Γ(End(E′)) and σu is a smooth function on P . By the
definition of generalized Newton transformation we conclude that

(4.1) Z(σu) =
∑
α

tr
((

∇E′

Z A
)
α
· Tα�(u)

)
, Z ∈ Γ(P ),

where (
∇E′

Z A
)
α
X = ∇E′

Z (Aα(X))−Aα

(
∇E′

Z X
)
−A∇E′′

Z eα
(X), X ∈ E′.

Applying the notation from Appendix, we have

(4.2) σ̂u(x) =

∫
Px

σu(x, e) de =

∫
G

σu(x, e0a) da,

where (x, e0) is a fixed element of Px. We call σ̂u’s extrinsic curvatures of a distribution
D. Moreover, we define total extrinsic curvatures

(4.3) σM
u =

∫
M

σ̂u(x) dx.

Since the projection π in the bundle P is a Riemannian submersion, then by Fubini
theorem (7.5)

σM
u =

∫
P

σu(x, e) d(x, e).

Remark 4.2. Notice that some of total extrinsic curvatures are equal zero. For
indices 1 ≤ α1 < . . . < αk ≤ q, let Fα1,...,αk

be a transformation which maps vector
eαi of a basis (x, e) to −eαi , i = 1, . . . , k. Then, by the use of the characteristic
polynomial of the generalized Newton transformation, we get

σu(Fα1,...,αk
(x, e)) = (−1)uα1+...+uαkσu(x, e).

Hence, if u1 + . . . + uk is odd and Fα1,...,αk
leaves P invariant, i.e. maps positively

oriented bases to positively oriented bases, then σ̂u = 0, so σM
u = 0. Thus, the

following two conditions hold:
1. if G = O(q) and at least one of indices (u1, . . . , uq) is odd, then σM

u = 0,
2. if G = SO(q) and there is one index odd and one even, then σM

u = 0.
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Define the section Yu ∈ Γ(E), u ∈ N(q) as follows

(4.4) Yu(x, e) =
∑
α,β

Tβ�α�(u)(x, e)(∇eαeβ)
� +

∑
α

σα�(u)(x, e)eα.

Observe that the first component of Yu is a section of E′, whereas the second compo-
nent is a section of E′′. The section Yu and the vector field Ŷu ∈ Γ(TM) obtained from
Yu by integration on the fibers of P play a fundamental role in our considerations.

We will start by proving necessary technical results. The divergence of Yu and
consequences of obtained formula are contained in subsequent sections.

Let RX,Y : D → D, X,Y ∈ Γ(TM) be an endomorphism given by

RX,Y Z = (R(Z,X)Y )�, Z ∈ D,

where R denotes the curvature tensor of ∇. For fixed indices α, β we define a section
Rα,β of End(E′) by

Rα,β(x, e) = Reα,eβ : Dx → Dx.

Similarly, we define Aα ∈ Γ(End(E′)) by

Aα(x, e) = Aeα : Dx → Dx.

It is also worth to notice, that eα is identified with a section eα ∈ Γ(E′′), which
assigns to a basis (x, e) its α–th component. Hence, a local orthonormal basis e =
(e1, . . . , eq) is considered as a local section of P .

Lemma 4.3. Fix x ∈ M . Let e = (e1, . . . , eq) be a local orthonormal frame field
in the neighborhood of x such that (∇⊥eα)(x) = 0 for all α. Extend e to a local
orthonormal basis (f1, . . . , fp, e1, . . . , eq) of TM such that (∇�fi)(x) = 0 for all i.
Then, at x we have

eα((Aβ)ij ◦ e) = (AαAβ)ij ◦ e + (Rα,β)ij ◦ e− g(∇fi(∇eαeβ)
�, fj)

+
∑
γ

g((∇eαeγ)
�, fi)g(fj , (∇eγ eβ)

�).

where ( )ij denotes the (i, j)–th component with respect to the basis (fi).

Proof. Differentiating g(eβ, fj) = 0 twice, we get

0 = g(∇fi∇eαeβ, fj) + g(∇eαeβ ,∇fifj) + g(∇fieβ,∇eαfj) + g(eβ,∇fi∇eαfj).

Thus, at a point x

(4.5) g(∇fi∇eαeβ , fj) = −g(eβ,∇fi∇eαfj).

Moreover

(Aβ)ij ◦ e = −g(∇fieβ, fj),

(AαAβ) ◦ e =
∑
k

g(∇fieα, fk)g(∇fkeβ, fj),

(Rαβ)ij ◦ e = g(R(fi, eα)eβ, fj).
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Put

L = eα((Aβ)ij ◦ e)− (AαAβ)ij ◦ e− (Rα,β)ij ◦ e.

Then, at a point x

L = eαg(eβ,∇fifj)−
∑
k

g(∇fieα, fk)g(∇fkeβ, fj) + g(R(fi, eα)fj , eβ)

= −
∑
k

g(∇fieα, fk)g(∇fkeβ, fj) + g(∇fi∇eαfj , eβ)− g(∇[fi,eα]fj, eβ)

= −
∑
k

g(∇fieα, fk)g(∇fkeβ, fj) + g(∇fi∇eαfj , eβ)

−
∑
k

g([fi, eα], fk)g(∇fkfj , eβ)−
∑
γ

g([fi, eα], eγ)g(∇eγfj , eβ)

= g(∇fi∇eαfj , eβ) +
∑
γ

g(∇eαfi, eγ)g(∇eγfj, eβ).

Thus by (4.5)

L = −g(∇fi∇eαeβ, fj) +
∑
γ

g(∇eαfi, eγ)g(∇eγfj , eβ)

= −g(∇fi∇
�
eα
eβ, fj) +

∑
γ

g(fi,∇
�
eα
eγ)g(fj ,∇

�
eγ
eβ),

which completes the proof.

5. Integral formulas. Adopt the notation from the previous section and from
the Appendix. The main result of this section is the integral formula for the total
extrinsic curvatures. This formula is derived by computation of the divergence of
vector field Ŷu corresponding to the section Yu defined by (4.4).

First, recall that the divergence of a (1,m)–tensor S on M is a (1,m− 1)–tensor
divS of the form

(divS)(X1, . . . , Xm−1) =
n∑

μ=1

(∇eμS)(eμ, X1, . . . , Xm−1),

where (eμ) is any local orthonormal basis of TM . Considering only the basis adapted

to a distribution D, we define analogously the divergence div�S with respect to D.
For a linear map S : Dx → Dx let S∗ : Dx → Dx denotes the operator adjoint to

S, i.e., g(SX, Y ) = g(X,S∗Y ) for X,Y ∈ Dx. Let S : D → D be a tensor field on M .
Then one can prove the following relations

∇�
XS∗ =

(
∇�

XS
)∗

,(5.1)

g(div�S∗, Y ) = div�(SY )−
∑
i

g(S∗fi,∇
�
fi
Y ),(5.2)

where (fi) is a local orthonormal basis of D, X ∈ TM , Y ∈ D.
We will use the following notation: if X ∈ Γ(TM) and Z ∈ Γ(E′) then g(X,Z)

denotes the function on P of the form g(X,Z)(x, e) = g(Xx, Z(x, e)), where (x, e) ∈ P .
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Lemma 5.1. The divergence of Yu is given by the formula

divEYu = −|u|σu +
∑
α,β

[
tr (Rα,βTβ�α�(u)) + g(divE′T

∗
β�α�(u)

, (∇eαeβ)
�)

− g(HD⊥ , Tβ�α�(u)(∇eαeβ)
�) +

∑
γ

g((∇eαeγ)
�, Tβ�α�(u)(∇eγ eβ)

�)
]
,

where HD⊥ denotes the mean curvature vector of the distribution D⊥.

Proof. By (7.7), (4.1) and Proposition 4.1 we have

divE

(∑
α

σα�(u)eα

)
=

∑
α

ehα(σα�(u)) +
∑
α

divE(eα) · σα�(u)

=
∑
α,β

tr ((∇E′

ehα
A)β · Tβ�α�(u)) +

∑
α,i

g(∇E
fh
i
eα, fi ◦ π)σα�(u)

+
∑
α,β

g(∇E
ehβ
eα, eβ ◦ π)σα�(u)

=
∑
α,β

tr ((∇E′

ehα
A)β · Tβ�α�(u))−

∑
α

tr (Aα)σα�(u)

+
∑
α,β

g(∇E′′

ehβ
eα, eβ ◦ π)σα�(u),

where (fi) is an orthonormal basis of D and (eβ) an orthonormal basis of D⊥. More-
over, again by Proposition 4.1,

divE

⎛⎝∑
α,β

Tβ�α�(u)(∇eαeβ)
�

⎞⎠ =
∑
α,β,i

g(∇E′

fh
i
Tβ�α�(u)(∇eαeβ)

�, fi ◦ π)

+
∑
α,β,γ

g(∇eγTβ�α�(u)(∇eαeβ)
�, eγ ◦ π).

Fix x ∈ M . Let e = (e1, . . . , eq) be a local orthonormal frame field in a neigh-
borhood of x such that (∇⊥eα)(x) = 0. Extend e to a local orthonormal basis
(f1, . . . , fp, e1, . . . , eq) of TM such that (∇�fi)(x) = 0. Then, by above formulas,
(7.2) and Lemma 4.3 we have at a point (x, e) (we omit composition with a basis e
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and the projection π)

divEYu =
∑
α,β

tr ((∇�
eαAβ) · Tβ�α�(u))−

∑
α

tr (Aα)σα�(u)

+
∑
α,β,i

g(∇�
eiTβ�α�(u)(∇eαeβ)

�, ei) +
∑
α,β,γ

g(∇eγTβ�α�(u)(∇eαeβ)
�, eγ)

= −
∑
α

tr (Aα)σα�(u) +
∑

α,β,i,j

(eα(Aβ)ij)(Tβ�α�(u))ji

+
∑
α,β,i

g(∇�
ei
Tβ�α�(u)(∇eαeβ)

�, ei)−
∑
α,β,γ

g(Tβ�α�(u)(∇eαeβ)
�,∇eγ eγ)

= −
∑
α

tr (Aα)σα�(u) +
∑
α,β

tr (AαAβTβ�α�(u)) +
∑
α,β

tr (Rα,βTβ�α�(u))

−
∑

α,β,i,j

g(∇fi(∇eαeβ)
�, fj)(Tβ�α�(u))ji

+
∑

α,β,γ,i,j

g((∇eαeγ)
�, fi)g(fj , (∇eγ eβ)

�)(Tβ�α�(u))ji

+
∑
α,β

div�(Tβ�α�(u)(∇eαeβ)
�)− g(HD⊥ , Tβ�α�(u)(∇eαeβ)

�).

By Proposition 3.3 (GN3) we obtain

divEYu = −|u|σu +
∑
α,β

tr (Rα,βTβ�α�(u))−
∑

α,β,i,j

g(∇fi(∇eαeβ)
�, (Tβ�α�(u))jifj)

+
∑

α,β,γ,i

g((∇eαeγ)
�, fi)g((Tβ�α�(u))jifj ,∇

�
eγ
eβ)

+
∑
α,β

div�(Tβ�α�(u)(∇eαeβ)
�)− g(HD⊥ , Tβ�α�(u)(∇eαeβ)

�)

= −|u|σu +
∑
α,β

tr (Rα,βTβ�α�(u))−
∑
α,β,i

g(∇fi(∇eαeβ)
�, T ∗

β�α�(u)
fi)

+
∑

α,β,γ,i

g((∇eαeγ)
�, fi)g((T

∗
β�α�(u)

fi,∇
�
eγeβ)

+
∑
α,β

div�(Tβ�α�(u)(∇eαeβ)
�)− g(HD⊥ , Tβ�α�(u)(∇eαeβ)

�).

Putting Y = (∇eαeβ)
� and S = Tβ�α�(u) in (5.2) we get

g(div�T
∗
β�α�(u)

, (∇eαeβ)
�) = div�(Tβ�α�(u)

(∇eαeβ)
�)−

∑

i

g(T ∗
β�α�(u)

fi,∇
�
fi
(∇eαeβ)

�).

Hence

divEYu = −|u|σu +
∑
α,β

tr (Rα,βTβ�α�(u)) +
∑
α,β

g(div�T ∗
β�α�(u)

, (∇eαeβ)
�)

+
∑
α,β,γ

g((T ∗
β�α�(u)

(∇eαeγ)
�, (∇eγ eβ)

�)− g(HD⊥ , Tβ�α�(u)(∇eαeβ)
�).
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Moreover, by Proposition 7.4 div�T ∗
β�α�(u)

= divE′T
∗
β�α�(u)

, which completes the
proof.

Theorem 5.2. Assume M is closed. Then, for any u ∈ N(q), the total extrinsic
curvature σM

u satisfies

|u|σM
u =

∑
α,β

∫
P

(
tr (Rα,βTβ�α�(u)) + g(divE′T

∗
β�α�(u)

, (∇eαeβ)
�)

− g(HD⊥ , Tβ�α�(u)(∇eαeβ)
�) +

∑
γ

g((T ∗
β�α�(u)

(∇eαeγ)
�, (∇eγ eβ)

�)
)
,

(5.3)

where HD⊥ denotes the mean curvature vector of distribution D⊥.

Proof. Follows immediately by Lemma 5.1 and Proposition 7.3.

By Theorem 5.2, we have in particular

σM
α�(0,...,0) = 0

and

(5.4) 2σM
α�β�(0,...,0) =

∫
P

(
(RicD)α,β − g(HD⊥ , (∇eαeβ)

�)

+
∑
γ

g((∇eαeγ)
�, (∇eγ eβ)

�)
)
,

where (RicD)α,β = RicD(eα, eβ) and RicD is the Ricci curvature operator in the
direction of D, i.e.,

RicD(X,Y ) =
∑
i

g(R(fi, X)Y, fi),

where (fi) is an orthonormal basis of D.
Notice that in Theorem 5.2 total extrinsic curvature σM

u is expressed by the
generalized Newton transformations Tα�β�(u) of lower order and by its divergences.
On the other hand, we have a recurrence formula (3.2) for the generalized Newton
transformation. We derive the recurrence formula for the divergence of T ∗

u and finally
the explicit formula for divE′T

∗
u .

From Codazzi formula, if (∇N)⊥ = 0, where N ∈ Γ(D⊥), it follows that

(5.5) (∇�
XAN )Y − (∇�

Y AN )X = −(R(X,Y )N)� + (∇[X,Y ]⊥N)�

for X,Y ∈ D.

Proposition 5.3. The divergence divE′T
∗
u , u ∈ N(q), satisfies the recurrence

formula

divE′T
∗
u =

∑
α

(
trD(R(eα, T

∗
α�(u)

·)·)� −A∗
α(divE′T

∗
α�(u)

)
)

−
∑
α,β

(Aβ −A∗
β)Tα�(u)(∇eβ eα)

�.
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Proof. By (3.2) we have T ∗
u = σu · idD −

∑
α A∗

αT
∗
α�(u)

. Since divE′(idD) = 0, by

(7.8) and (7.9) we get

(5.6) divE′T
∗
u = π∗(gradDhσu)−

∑
α,i

(∇E′

fh
i
A∗

α)(Tα�(u)fi)−
∑
α

A∗
α(divE′T

∗
α�(u)

),

where (fi) is a local orthonormal basis of D, Dh denotes the horizontal lift of D,
Dh = {Xh | X ∈ D}, and gradDh(σu) denotes the Dh–component of gradient of σu.
Fix x ∈ M . Let e = (e1, . . . , eq) be a local section of P such that (∇⊥eα)(x) = 0.
Then, for any vector X ∈ Dx

g(π∗(gradDhσu), X) = X(σu ◦ e)

and, by Proposition 7.4, (5.5) and (5.1),

g(
∑
α,i

(∇E′

fh
i
A∗

α)(T
∗
α�(u)

fi), X) =
∑
α,i

g((∇�
fi
Aα)

∗T ∗
α�(u)

fi, X)

=
∑
α,i

g(T ∗
α�(u)

fi, (∇
�
fi
Aα)X)

=
∑
α,i

g(T ∗
α�(u)

fi, (∇
�
XAα)fi)

+
∑
α,i

g(T ∗
α�(u)

fi,−(R(fi, X)eα)
� + (∇[fi,X]⊥eα)

�)

=
∑
α

tr ((∇�
XAα · Tα�(u))−

∑
α,i

g(R(eα, T
∗
α�(u)

fi)fi, X)

+
∑
α,i

g(T ∗
α�(u)

fi, (∇[fi,X]⊥eα)
�).

Hence, by (4.1)

(5.7) π∗(gradDhσu)−
∑
α,i

(∇E′

fh
i
A∗

α)(Tα�(u)fi)

=
∑
α,i

g(R(eα, T
∗
α�(u)

fi)fi, X)−
∑
α,i

g(T ∗
α�(u)

fi, (∇[fi,X]⊥eα)
�).

Moreover∑
i

g(T ∗
α�(u)

fi, (∇[fi,X]⊥eα)
�) =

∑
β,i

g(T ∗
α�(u)

fi, (∇eβeα)
�)g(eβ ,∇fiX −∇Xfi)

=
∑
β,i

g(fi, Tα�(u)(∇eβeα)
�)g(X, (Aβ −A∗

β)fi)(5.8)

=
∑
β

g(X, (Aβ −A∗
β)Tα�(u)(∇eβ eα)

�).

By (5.6)–(5.8) the Proposition follows.

Corollary 5.4. The divergence divE′T
∗
u of T ∗

u can be expressed as follows

divE′T
∗
u =

∑
1≤s≤|u|

∑
α1,...,αs

(−1)s−1A∗
α1

. . . A∗
αs−1

(
trDR(eαs , T

∗
(αs)�...(α1)�(u)

·)·
)�

−
∑

1≤s≤|u|

∑
α1,...,αj ,β

(−1)s−1A∗
α1

. . . A∗
αs−1

(Aβ −A∗
β)T(αs)�...(α1)�(u)(∇eβ eαs)

�).
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Proof. Follows by induction with respect to |u| and the recurrence formula for
divE′T

∗
u in Proposition 5.3.

6. Consequences and special cases. In this section we show some applica-
tions of the formula for the total extrinsic curvatures. We derive the generalization
of the Walczak formula [33]. Moreover, we compute total extrinsic curvatures for fo-
liations with integrable and totally geodesic normal bundle. We conclude by showing
that in the case of one shape operator the results agree with the ones obtained in [26]
and in the codimension one with the formulas in [4].

We adopt notation from the previous section.

6.1. Generalization of the Walczak formula. Let D be a p–dimensional
distribution on a (p + q)–dimensional Riemannian manifold (M, g). By Proposition
3.3(GN1) and (GN3) we have

(|u| − 1)|u|σu =
∑
α,β

(
tr (Aα)tr (AβTβ�α�(u))− tr (AαAβTβ�α�(u))

)
.

Together with (5.3) we obtain the following result.

Corollary 6.1. Assume M is closed. For any multi–index u ∈ N(q), |u| > 1,
we have the following integral formula

0 =
∑
α,β

∫
P

(
tr (Rα,βTβ�α�(u)) + g(divE′T

∗
β�α�(u)

, (∇eαeβ)
�)

− g(HD⊥ , Tβ�α�(u)(∇eαeβ)
�) +

∑
γ

g(T ∗
β�α�(u)

(∇eαeγ)
�, (∇eγ eβ)

�)(6.1)

−
1

|u| − 1

(
tr (Aα)tr (AβTβ�α�(u))− tr (AαAβTβ�α�(u))

) )
.

Formula (6.1) is a generalization of the Walczak formula [33]. Indeed, to state
and prove the Walczak formula let us now introduce some necessary definitions. The
second fundamental form BD and integrability tensor TD of a distribution D are
bilinear forms symmetric and skew–symmetric, respectively, given by the formulas

BD(X,Y ) = (∇XY +∇Y X)
⊥
,

TD(X,Y ) = (∇XY −∇Y X)⊥ = [X,Y ]⊥, X, Y ∈ D.

Moreover, themixed scalar curvature in the direction ofD andD⊥ is defined as follows

K(D,D⊥) =
∑
i,α

K(fi, eα) =
∑
i,α

g(R(fi, eα)eα, fi) =
∑
α

trRα,α,

where (fi) and (eα) are orthonormal basis of D and D⊥, respectively. Then, the
Walczak formula is the following

(6.2)

∫
M

(
K(D,D⊥)− |HD|2 − |HD⊥ |

2 + |BD|2 + |BD⊥ |
2 − |TD|2 − |TD⊥ |

2
)
= 0.

Any multi–index u of length 2 with even coordinates is of the form u =
α�α�(0, . . . , 0). For such a multi–index formula (6.1) reduces to (see also (5.4))

0 =
∑
α

∫
P

(
trRα,α − g(HD⊥ , (∇eαeα)

⊥) +
∑
γ

g((∇eαeγ)
⊥, (∇eγ eα)

⊥)

− (trAα)
2 + tr (A2

α)
)
.

(6.3)
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Moreover, we have∑
α

(trAα)
2 =

∑
α,i

g(−∇fieα, fi)
2 =

∑
α

g(eα, HD)2 = |HD|2

and ∑
α

tr (A2
α) =

∑
α,i

g(Aα(Aαfi, fi) =
∑
α,i

g(Aαfi, A
∗
αfi)

=
∑
α,i,j

g(Aαfi, fj)g(Aαfj , fi)

=
∑
α,i,j

g(eα, BD(fi, fj) + TD(fi, fj))g(eα, BD(fi, fj)− TD(fi, fj))

= |BD|2 − |TD|
2

and ∑
α,γ

g((∇eαeγ)
⊥, (∇eγ eα)

⊥)

=
∑
α,γ

g(BD⊥(eα, eγ) + TD⊥(eα, eγ), BD⊥(eγ , eα) + TD⊥(eγ , eα))

= |BD⊥ |
2 − |TD⊥ |

2.

Using above equalities and the fact that all obtained functions are constant on the
fibers Px formula (6.3) for |u| = 2 reduces to the Walczak formula (6.2).

6.2. Distributions with totally geodesic and integrable normal bundle.
Following [24, 16] we define the r–th mean extrinsic curvatures Sr and give the integral
formulas for these quantities. Next, we compute total extrinsic curvatures σM

u in
the case of a distribution with integrable and totally geodesic normal bundle on a
Riemannian manifold of constant sectional curvature and show that obtained result
implies the formula for Sr obtained by Brito and Naveira [14].

Let D be a distribution on M . For r even define the r–th mean extrinsic curvature
Sr by

Sr =
1

r!

∑
i1,...,ir
j1,...,jr

δi1,...,irj1,...,jr

∑
α1,...,α r

2

(Aα1)i1j1(Aα1 )i2j2 . . . (Aα r
2
)ir−1jr−1 (Aα r

2
)irjr ,

where δi1,...,irj1,...,jr
is a generalized Kronecker symbol (see Section 2) and Aij denotes the

coefficients of an endomorphism A with respect to an orthonormal basis. One can
show that Sr does not depend on the choice of orthonormal basis, hence is a well
defined function on M . By Theorem 2.5 we get

Sr =
∑

u∈2N(q)

|u|=r

( r
2
u
2

)(
r

u

)−1

σu.

Hence, by Theorem 5.2, we get the integral formula for Sr.
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Corollary 6.2. The r–th mean extrinsic curvature Sr on closed Riamannian
manifold satisfies the following integral formula

rSr =
∑

u∈2N(q)

|u|=r

( r
2
u
2

)(
r

u

)−1 ∑
α,β

∫
P

(
tr (Rα,βTβ�α�(u)) + g(divE′T

∗
β�α�(u)

, (∇eαeβ)
�)

− g(HD⊥ , Tβ�α�(u)(∇eαeβ)
�) +

∑
γ

g((T ∗
β�α�(u)

(∇eαeγ)
�, (∇eγ eβ)

�)
)
,

where HD⊥ denotes the mean curvature vector of D⊥.

LetD be a distribution such that the bundle D⊥ is totally geodesic and integrable.
Then (∇XY )

�
= 0 for any X,Y ∈ D⊥.

Corollary 6.3. Assume M is closed. Then, for any u ∈ N(q), total extrinsic
curvature σM

u of a distribution D with totally geodesic and integrable normal bundle
is of the form

|u|σM
u =

∑
α,β

∫
P

tr (Rα,βTβ�α�(u)).

Assume additionally that (M, g) is of constant sectional curvature κ. Then Rα,β =
κδα,β , where δα,β is the Kronecker symbol. Therefore, by Proposition 3.3 (GN2) and
Corollary 6.3, we have

|u|σM
u = κ

∑
α

∫
P

tr (Tα2
�
(u))

= κ
∑
α

∫
P

(p− |u|+ 2)σα2
�
(u)

= κ(p− |u|+ 2)
∑
α

σM
α2

�
(u).

(6.4)

This, together with

σM
(0,...,0) = vol(P ) and σM

α�(0,...,0) = 0

gives the recurrence relation for total extrinsic curvatures.

Corollary 6.4. Assume (M, g) is closed and of constant sectional curvature κ.
Let F be a foliation on M with totally geodesic and integrable normal bundle F⊥. Then
the total extrinsic curvatures of F depend on κ, the volume of M and the dimension
of F only.

Now, we show that (6.4) implies the formula for Sr obtained by Brito and Naveira
[14]. Notice that

α2
� (u)! =

u!

(uα − 1)uα
and

( r−2
2

α2
�
(u)

2

)
=

uα

r

( r
2
u
2

)
.



GENERALIZED NEWTON TRANSFORMATION & ITS APPLICATIONS 315

Hence, by (6.4),

Sr =
∑

u∈2N(q)

|u|=r

( r
2
u
2

)(
r

u

)−1

σM
u

=
κ(p− r + 2)

r

∑
u∈2N(q)

|u|=r

(
r
2
u
2

)(
r

u

)−1 ∑
α

σM
α2

�
(u)

=
κ(p− r + 2)

r

∑
u∈2N(q)

|u|=r

∑
α

r

uα

( r−2
2

α2
�
(u)

2

)
(uα − 1)uα(α

2
� (u))!

r!
σM
α2

�
(u)

=
κ(p− r + 2)

(r − 1)r

∑
u∈2N(q)

|u|=r

∑
α

( r−2
2

α2
�
(u)

2

)
α2
� (u)!

(r − 2)!
(uα − 1)σM

α2
�
(u).

Notice that any multi–index u ∈ 2N(q) of length r−2 is obtained from q multi–indices
(1�)2(u), . . . , (q�)2(u) of length r by the maps u �→ α2

� (u), α = 1, . . . , q, respectively.
Since (

(α�)2(u)
)
α
= uα + 2,

then (for |u| = r − 2)∑
α

( (
(α�)2(u)

)
α
− 1

)
= |u|+ q = q + r − 2.

Finally,

Sr =
κ(p− r + 2)(q + r − 2)

(r − 1)r
Sr−2.

This recurrence relation implies the formula [5]

∫
M

Sr =

⎧⎪⎪⎨⎪⎪⎩
( p

2
r
2

)(
q+r−1

r

)( q+r−1
2
r
2

)−1

κ
r
2 vol(M) for p even and q odd

2r
((

r
2

)
!
)−1 ( q

2+
r
2−1
r
2

)( p
2
r
2

)
κ

r
2 vol(M) for p and q even

0 otherwise

,

which is the formula of Brito and Naveira [14].

6.3. Foliations. Assume the distribution D is integrable, hence induces foliation
F. Then the shape operators Aα are self–adjoint, i.e., A∗

α = Aα. Therefore, by
Proposition 3.4 the generalized Newton transformations Tu are self–adjoint. Thus

Corollary 6.5. Assume M is closed. Then, for any u ∈ N(q), total extrinsic
curvature σM

u of a foliation F is of the form

|u|σM
u =

∑
α,β

∫
P

(
tr (Rα,βTβ�α�(u)) + g(divE′Tβ�α�(u), (∇eαeβ)

�)

− g(HF⊥ , Tβ�α�(u)(∇eαeβ)
�) +

∑
γ

g((Tβ�α�(u)(∇eαeγ)
�, (∇eγ eβ)

�)
)
,
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where HF⊥ denotes the mean curvature vector of distribution F⊥. Moreover, the
divergence divE′Tu satisfies the recurrence relation

divE′Tu =
∑
α

(
tr F(R(eα, Tα�(u)·)·)

� −Aα(divE′Tα�(u))
)

and can be expressed explicitly

divE′Tu =
∑

1≤s≤|u|

∑
α1,...,αs

(−1)s−1Aα1 . . . Aαs−1

(
trDR(eαs , T(αs)�...(α1)�(u)·)·

)�
.

6.4. Reduction to the case of one shape operator. In [26] the author con-
sidered the case of a distribution D of arbitrary codimension with the only one shape
operator AN , where N is a unit normal vector field to D. To get rid of the choice of
N , the following operator is introduced

A =

∫
S⊥

AN dN,

where S⊥ ⊂ D⊥ is the bundle of unit vectors orthogonal toD. This approach is similar
to the one considered in this paper with a system of endomorphisms (AN , 0, . . . , 0).
Thus, we compute extrinsic curvatures of the form σM

(k,0,...,0), where k ∈ N.
Put for simplicity

T(k,0,...,0) = Tk, σ(k,0,...,0) = σk, e1 = N, Z = (∇NN)�, RN = RN,N .

Then, by Theorem 5.2

kσM
k =

∫
P

(
tr (RNTk−2) + g(divE′T

∗
k−2, Z)− g(HD⊥ , Tk−2Z)

+
∑
γ

g(T ∗
k−2(∇Neγ)

�, (∇eγN)�)
)
.

Notice that σk, Tk etc. depend only on N , i.e., σk(x, e) = σk(N), Tk(x, e) = Tk(N)
etc. Let H = O(q− 1) (resp. H = SO(q− 1)). Then H is a closed subgroup of G and
G/H = Sq−1, where Sq−1 denotes the unit (q− 1)–dimensional sphere. Moreover, the
G–invariant measure on G/H is just a Lebesgue measure λ on the unit sphere. By
Fubini theorem (see for example [20, 17] or (7.5))

σM
k =

∫
P

σk(x, e) d(x, e)

=

∫
M

∫
G

σk(x, e0g) dg dx

=

∫
M

∫
Sq−1

∫
H

σk(x, e0g) dg dλ dx

=

∫
M

∫
Sq−1

σk(Ne0 ) dλ(N) dx

=

∫
M

∫
S⊥x

σk(N) dλ(N) dx,
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where e0 is a fixed basis of D⊥
x , Ne0 denotes the coordinates of N with respect to

basis e0 and S⊥
x is the set of unit vectors in D⊥

x .
In the case of a codimension one and the integrability of the distribution the

formula for σM
k gives the formula obtained by K. Andrzejewski and P. Walczak [4].

Indeed, taking G = SO(1) = {1}, by above considerations we have

kσM
k =

∫
M

tr (RNTk−2) + g(div�Tk−2, Z),

which is the formula [4, Corollary 3.6].

7. Appendix – Differentiation and integration on principal bundles.
We derive useful formulas concerning the differential in the direction of a horizontal
vector field on a principal bundle. Lets first recall some basic facts about principal
bundles.

Let π : P → M be a principal fiber bundle with the structure group G. Let
V = kerπ∗ be the vertical distribution. Let H be a horizontal distribution of a fixed
connection on P . Then H is complementary to V, i.e. TP = V ⊕H. For any vector
X ∈ TxM and an element u ∈ Px = π−1(x) there is unique horizontal vectorXh

u ∈ Hu

called the horizontal lift of X .
Let s ∈ Γ(P ) be a section of P and f : P → R be a smooth function. Let x ∈ M

and assume s is parallel at x, i.e. s∗x(TxM) = Hx. Then s∗xX = Xh
s(x) for every

X ∈ TxM and consequently

(7.1) Xh
s(x)f = X(f ◦ s)

Let πV : V → M be a vector bundle with a fiber metric gV and the metric
connection ∇V . Let E = π−1V → P be the pull–back bundle, i.e. the bundle with a
fiber (π−1V )w = Vπ(w), w ∈ P . There is a unique connection ∇E in this bundle such
that [8]

∇E
Z (X ◦ π) =

(
∇V

π∗ZX
)
◦ π, X ∈ Γ(V ), Z ∈ Γ(TP ).

Let s ∈ Γ(P ) be a parallel section at a point x ∈ M and let Y ∈ Γ(E) be a section
of a pull–back bundle E. Let E1, . . . , Em be a local basis in V such that ∇V Ea = 0 at
x ∈ M . With respect to this basis Y =

∑
a ya(Ea ◦ π) for some functions ya : P → R.

By (7.1) we have(
∇E

XhY
)
◦ s =

∑
a

((
Xhya

)
◦ s

)
Ea =

∑
a

X(ya ◦ s)Ea = ∇V
X(Y ◦ s).

Hence, for every X ∈ TxM and s parallel at x

(7.2)
(
∇E

XhY
)
◦ s = ∇V

X(Y ◦ s).

Assume now that the group G is compact and let λG denote the Haar normalized
measure on G. Let f : P → R be a smooth function. We define the integral of f over
the fiber Px, x ∈ M , as follows∫

Px

f(w) dw =

∫
G

f(w0g)dλG(g),

where w0 ∈ Px is fixed and w0g denotes the right multiplication in P be element
g ∈ G. By the invariance of the Haar measure, it follows that the integral is well
defined.
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Function f : P → R induces a function f̂ : M → R by the formula

f̂(x) =

∫
Px

f(w) dw.

Proposition 7.1. Let X ∈ TxM and f : P → R be a smooth function. Then the
following formula holds

(7.3) Xf̂ = X̂hf, i.e. X

(∫
Px

f(w) dw

)
=

∫
Px

(Xhf)(w) dw.

Proof. Fix x ∈ M and let X ∈ TxM . Let γ be a curve on M such that γ(0) = x
and γ′(0) = X . Moreover fix w0 ∈ Px. Let γh be a horizontal lift of γ such that
γh(0) = w0. Then (γh)′(0) = Xh

w0
. Put wt = γh(t). Therefore,

Xf̂ =
d

dt
(f̂ ◦ γ(t))t=0

=
d

dt

(∫
G

f(wtg) dλG(g)

)
t=0

=

∫
G

d

dt
(f(wtg))t=0 dλG(g).

Furthermore

d

dt
(f(wtg))t=0 =

d

dt
(f(Rg(wt)))t=0 = (Rg∗X

h
w0

)f = Xh
w0g

f,

where Rg(w) = wg is the right multiplication by g ∈ G. Hence

Xf̂ =

∫
G

Xh
w0g

f dλG(g) =

∫
Px

(Xhf)(w) dw = X̂hf.

Let Y ∈ Γ(E). Then Y is a mapping of bundles P and V over the identity on M ,

i.e. Y : Px → Vx, x ∈ M . Y induces a vector field Ŷ ∈ Γ(TM) as follows

Ŷ (x) =

∫
Px

Y (w) dw,

where the integral of Y is the integral of coordinates of Y and is independent on the
choice of point–wise basis in V .

Proposition 7.2. Let X ∈ TxM and Y ∈ Γ(E). Then the following formula
holds

(7.4) ∇V
X Ŷ = ∇̂E

XhY , i.e. ∇V
X

(∫
Px

Y (w) dw

)
=

∫
Px

(
∇E

XhY
)
dw.

Proof. Proof is similar to the proof of (7.2). Let E1, . . . , Em be a local basis in
V such that ∇V Ea = 0 at x ∈ M . With respect to this basis Y =

∑
a ya(Ea ◦ π) for

some functions ya : P → R. By Proposition 7.1 we have

∇V
X Ŷ =

∑
a

(Xŷa)Ea =
∑
a

X̂hyaEa = ∇̂XhY .
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Let gP be the Riemannian metric on P induced from the Riemannian metric g
on M and the invariant metric 〈〈 , 〉〉 on the Lie algebra g of the structure group G,

gP (X
h, Y h) = g(X,Y ),

gP (X
y, A∗) = 0,

gP (A
∗, B∗) = 〈〈A,B〉〉,

where X,Y are vectors on M and A∗, B∗ fundamental vertical vector fields induced
by elements A,B ∈ g. Then the projection π : P → M is a Riemannian submersion,
hence the Fubini theorem (see for example [17, 20])

(7.5)

∫
P

f(w) dw =

∫
M

(∫
Px

f(w) dw

)
dx

holds.
Assume now that V is a subbundle of a tangent bundle TM and the metric gV

is just a restriction of the Riemannian metric g.
Let Y ∈ Γ(E). The divergence divEY of a section Y is defined as follows

divEY =
∑
a

g(∇E
Ea

Y, π∗Ea),

where (Ea) is a local orthonormal basis of P which projects on V . Notice that the
divergence divEY can be written in the following way

(7.6) divEY =
∑
i

g(∇E
fh
i
Y, fi ◦ π),

where (fi) is a local orthonormal basis of V . By (7.6) it follows that

(7.7) divE(ϕY ) = ϕdivEY + Y hϕ,

where Y ∈ Γ(E) and ϕ is a smooth function on P .

Proposition 7.3. The divergence divEY of a section Y ∈ Γ(E) and the diver-

gence divV Ŷ of a vector field Ŷ ∈ Γ(V ) are related as follows∫
P

divEY dw =

∫
M

divV Ŷ dx.

In particular, if M is closed and V = TM , then
∫
P
divEY dw = 0.

Proof. By Proposition 7.2 we have

d̂ivEY =
∑
i

g(∇̂E
fh
i

Y , fi) =
∑
i

g(∇V
fi
Ŷ , fi) = divV Ŷ .

Thus by Fubini theorem (7.5)∫
P

divEY dw =

∫
M

d̂ivEY dx =

∫
M

divV Ŷ dx.

Let End(E) denote the bundle of endomorphisms of E, i.e., the fiber End(E)x,
x ∈ M , is End(Vx). The connection ∇E induces the connection in End(E), namely

(∇E
ZS)W = ∇E

Z (SW )− S(∇E
ZW ), S ∈ Γ(End(E)), Z ∈ Γ(P ),W ∈ Γ(E).
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Then, the divergence divES of S ∈ Γ(End(E)) is defined as follows

divES =
∑
Ea

(∇E
Ea

S)(π∗Ea),

where (Ea) is a local orthonormal basis of P which projects on V . Notice that divES
can be written in the form

divES =
∑
i

(∇E
fh
i
S)(fi ◦ π),

where (fi) is a local orthonormal basis of V .

Proposition 7.4. Let s ∈ Γ(P ) be a parallel section at a point x ∈ M , let
S ∈ Γ(End(E)) and X ∈ TxM . Then(

∇E
XhS

)
(s(x)) =

(
∇V

X(S ◦ s)
)
(x)

and

(divES) (s(x)) = (divV (S ◦ s)) (x).

Proof. Follows immediately by (7.2).

The following formulas hold

divE(ϕS) = ϕdivES + S(π∗gradV hϕ),(7.8)

divE(TS) =
∑
i

(∇E
fh
i
T )(Sfi) + T (divES),(7.9)

for S, T ∈ Γ(End(E)), ϕ : P → R, where (fi) is a local orthonormal basis of V and
gradV hϕ denotes the V h–component of the gradient of a function ϕ.

Acknowledgement. The authors would like to thank Pawe�l Walczak and Szy-
mon M. Walczak for helpful conversations and encouragement.

REFERENCES

[1] L. J. Alias and A. G. Colares, Uniqueness of spacelike hypersurfaces with constant higher

order mean curvature in generalized Robertson–Walker spacetimes, Math. Proc. Camb.
Phil. Soc., 143 (2007), pp. 703–729.

[2] L. J. Alias and J. M. Malacarne, Constant scalar curvature hypersurfaces with spherical

boundary in Euclidean space, Rev. Mat. Iberoamericana, 18 (2002), pp. 431–442.
[3] L. J. Alias, S. de Lira, and J. M. Malacarne, Constant higher-order mean curvature hy-

persurfaces in Riemannian spaces, J. Inst. of Math. Jussieu, 5:4 (2006), pp. 527–562.
[4] K. Andrzejewski and P. Walczak, The Newton transformations and new integral formulae

for foliated manifolds, Ann. Glob. Anal. Geom., 37 (2010), pp. 103–111.
[5] K. Andrzejewski and P. Walczak, Extrinsic curvatures of distributions of arbitrary codi-

mension, J. Geom. Phys., 60:5 (2010), pp. 708–713.
[6] K. Andrzejewski and P. Walczak, Conformal fields and the stability of leaves with constant

higher order mean curvature, Differential Geom. Appl., 29:6 (2011), pp. 723–729.
[7] D. Asimov, Average Gaussian curvature of leaves of foliations, Bull. Amer. Math. Soc., 84:1

(1978), pp. 131–133.
[8] P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, London

Mathematical Society Monograph (N.S.) No. 29, Oxford University Press, Oxford (2003).
[9] J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant r–mean cur-

vature, Ann. Global Anal. Geom., 15 (1997), pp. 277–297.



GENERALIZED NEWTON TRANSFORMATION & ITS APPLICATIONS 321

[10] J. L. M. Barbosa, K. Kenmotsu, and G. Oshikiri, Foliations by hypersurfaces with constant

mean curvature, Mat. Z., 207 (1991), pp. 97–108.
[11] A. Barros and P. Sousa, Compact graphs over a sphere of constant second order mean

curvature, Proc. Am. Math. Soc., 137:9 (2009), pp. 3105–3114.
[12] F. Brito, R. Langevin, and H. Rosenberg, Integrales de courbure sur des varits feuilletes,

J. Diff. Geom., 16 (1980), pp. 19–50.
[13] F. Brito, P. Chacon and A. M. Naveira, On the volume of unit vector fields on spaces of

constant sectional curvature, Comment. Math. Helv., 79 (2004), pp. 300–316.
[14] F. Brito and A. M. Naveira, Total extrinsic curvature of certain distributions on closed

spaces of constant curvature, Ann. Global Anal. Geom., 18 (2000), pp. 371–383.
[15] V. Brinzanescu and R. Slobodeanu, Holomorphicity and the Walczak formula on Sasakian

manifolds, J. Geom. Phys., 57:1 (2006), pp. 193–207.
[16] L. Cao and H. Li, r–Minimal submanifolds in space forms, Ann. Global Anal. Geom., 32

(2007), pp. 311–341.
[17] I. Chavel, Riemannian Geometry. A Modern Introduction, Cambridge Studies in Advanced

Mathematics, 98. Cambridge University Press, Cambridge (2006).
[18] X. Cheng and H. Rosenberg, Embedded positive constant r–mean curvature hypersurfaces in

M
m

× R, An. Acad. Brasil. Cienc., 77:2 (2005), pp. 183–199.
[19] M. Gursky and J. Viaclovsky, A new variational characterization of three-dimensional space

forms, Invent. Math., 145:2 (2001), pp. 251–278.
[20] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential opera-

tors, and spherical functions, American Mathematical Society, Providence, RI (2000).
[21] R. Langevin and P. Walczak, Conformal geometry of foliations, Geom. Dedicata, 132 (2008),

pp. 135–178.
[22] G. Reeb, Sur la courbure moyenne des varits intgrales dune quation de Pfaff ω = 0, C. R.

Acad. Sci. Paris, 231 (1950), pp. 101–102.
[23] R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in

space forms, J. Differential Geom., 8 (1973), pp. 465–477.
[24] R. Reilly, On the first eigenvalue the Laplacian for compact submanifolds of Euclidean space,

Comment. Math. Helvetici., 52 (1977), pp. 465–477.
[25] H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., 117

(1993), pp. 211–239.
[26] V. Rovenski, Integral formulae for a Riemannian manifold with two orthogonal distributions,

Cent. Eur. J. Math., 9:3 (2011), pp. 558–577.
[27] V. Rovenski and P. Walczak, Topics in Extrinsic Geometry of Codimension-One Foliations,

Springer (2011).
[28] V. Rovenski and P. Walczak, Integral formulae on foliated symmetric spaces, Math. Ann.,

352:1 (2012), pp. 223–237.
[29] M. Svensson, Holomorphic foliations, harmonic morphisms and the Walczak formula, J. Lon-

don Math. Soc. (2), 68:3 (2003), pp. 781–794.
[30] P. Tondeur, Geometry of Foliations, Birkhauser Verlag (1997).
[31] J. Viaclovsky, Some fully nonlinear equations in conformal geometry, Differential equations

and mathematical physics (Birmingham, AL, 1999) (Providence, RI), Amer. Math. Soc.,
Providence, (2000), pp. 425–433.

[32] K. Voss, Einige differentialgeometrische Kongruenzsfitze ftir geschlossene Flfichen und Hy-

perflfichen, Math. Ann., 131 (1956), pp. 180–218.
[33] P. Walczak, An integral formula for a Riemannian manifold with two orthogonal complemen-

tary distributions, Colloq. Math., 58:2 (1990), pp. 243–252.



322 K. ANDRZEJEWSKI, W. KOZ�LOWSKI, AND K. NIEDZIA�LOMSKI


