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DEFORMING COMPLETE HERMITIAN METRICS WITH
UNBOUNDED CURVATURE*®

ALBERT CHAU', KA-FAI LI}, AND LUEN-FAI TAMS

Abstract. We produce solutions to the Kahler-Ricci flow emerging from complete initial metrics
go which are C° Hermitian limits of K&hler metrics. Of particular interest is when gg is Kahler with
unbounded curvature. We provide such solutions for a wide class of U(n)-invariant K&hler metrics go
on C™, many of which having unbounded curvature. As a special case we have the following Corollary:
The Kéhler-Ricci flow has a smooth short time solution starting from any smooth complete U(n)-
invariant K&hler metric on C™ with either non-negative or non-positive holomorphic bisectional
curvature, and the solution exists for all time in the case of non-positive curvature.

Key words. Kihler-Ricci flow, parabolic Monge-Ampere equation, U(n) invariant Kéhler met-
rics.
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1. Introduction. Let (M™,gg) be a complete noncompact Riemannian mani-
fold. The Ricci flow is the following evolution equation:

9
(1.1) 979 = ~2My

9(0) = go.

In [S1] Shi proved that if the curvature of go is bounded then (1.1) has a solution
g(t) up to some time T > 0 depending only on the curvature bound for go and the
dimension n of M such that the curvature is bounded in space-time. If in addition,
(M™, go) is a Kahler manifold with complex dimension n, then Shi [S2] proved that
the solution ¢(t) is also Kéhler, and hence g(t) satisfies Kéhler-Ricci flow equation:

P
(1.2) 5797 = ~Hiz

9(0) = go.

See Theorem 2.1 for more details.

There are many results of existence without assuming that the initial condition
go has bounded curvature. In [Si], Simon proved that starting from any sufficiently
small C° perturbation g of a complete Riemannian metric with bounded curvature,
there is a short time solution of the Ricci harmonic heat flow. We also refer to the
works [KL, SSS1] where the Ricci harmonic heat flow is solved starting with rough
initial data obtained from a sufficiently small perturbation of the Euclidean metric
on R™, and [SSS2] for a similar result for the hyperbolic metrics. In [CW], Cabezas-
Rivas and Wilking obtained a short time existence result of the Ricci flow starting
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from any complete Riemannian metric with nonnegative complex sectional curvature.
They do not assume the curvature is bounded and do not assume the initial metric
is a small perturbation of a complete metric with bounded curvature. The solutions
from [Si], [KL],[SSS1] and [SSS2] are complete and have bounded curvature when
t > 0. In [CW], complete solutions are constructed where the curvature is bounded
whenever ¢t > 0 and examples are also given of complete solutions where the curvature
is unbounded when ¢ > 0.

For Kéhler-Ricci flow, when n = 1, Giesen and Topping [GT] proved that (1.2)
always has a solution starting from any smooth Kéahler metric gy which may have
unbounded curvature, and may even be incomplete. In fact, they also constructed
solutions where ¢(t) is complete with unbounded curvature for all ¢ € [0,T). Using
the construction of [CW], Yang and Zheng [YZ] proved that if gy is a U(n) invariant
complete Kahler metric with nonnegative sectional curvature, and with some technical
assumptions on the solution ¢(¢) of (1.1), then ¢(¢) is Kahler for ¢ > 0. Hence in this
case Kéahler-Ricci flow (1.2) has short time solution.

In this work we want to discuss the short time existence and long time existence
of the Kahler-Ricci flow (1.2) in higher dimensions without the assumption that go
has bounded curvature. We obtain the following;:

THEOREM 1.1. Let go be a complete continuous Hermitian metric on a noncom-
pact complex manifold M™. Suppose there exists a sequence {hy o} of smooth complete
Kahler metrics with bounded curvature on M converging uniformly on compact sub-
sets to go and another complete Kdhler metric § with bounded curvature on M such
that C=1g < hyo < Cg for some C independent of k. Then for some T > 0, the
Kahler-Ricci flow (1.2) has a complete smooth solution g(t) on M x (0,T) which has
bounded curvature for allt > 0, and extends continuously to M x[0,T) with g(0) = go.
Moreover, if go is smooth and {hyo} converges smoothly and uniformly on compact
subsets of M, then g(t) extends to a smooth solution to (1.2) on M x [0,T) with

9(0) = go-

One can also estimate the existence time 7" and bounds of the norms of the
curvature tensor and its covariant derivatives with respect to g(t), see Theorem 4.2
for more details.

As a corollary, we obtain an estimate of 7" in Theorem 2.1 in terms of the upper
bound of the holomorphic bisectional curvature. In fact, we can prove a more general
result (see Corollary 4.2):

Let (M™, go) be a complete noncompact Kahler manifold with bounded curvature.
Suppose that g < go < Cg for some complete Kahler metric g with bounded curvature
and holomorphic bisectional curvatures bounded above by K. Let T = 1/(2nK) if
K > 0, otherwise let T = oo. Then the Kdhler-Ricci flow (1.2) has a complete
smooth solution g(t) on M x [0,T) with g(0) = go. Moreover, the curvature of g(t) is
uniformly bounded on M x [0,T’] for all 0 < T’ < T.

Another corollary is that one can prove that the Kéhler-Ricci flow (1.2) has a
short time solution if gg is perturbation of a complete Kahler metric § with bounded
curvature by a potential satisfying certain growth conditions. More precisely (see
Corollary 4.1),

Let (M™, go) be a complete noncompact Kahler manifold with bounded curvature.
Suppose w is a C? function such that |Vulg, and |u| are of sublinear growth and
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such that gy + /—100u is uniformly equivalent to go. Then for some T > 0, the
Kahler-Ricci flow (1.2) has a complete smooth solution g(t) on M x (0,T) which
has bounded curvature for all t > 0 and extends continuously to M x [0,T) with

9(0) = go + v/—100u.

If the condition in Theorem 1.1 that C~'g < hyo < C§ is relaxed to only as-
suming hy o > C~1g, we still can obtain a short time solution under some additional
assumptions on hy . See Theorem 4.1, for more details. However, in this case, we do
not know if the curvature of the solution is bounded for ¢ > 0.

Applying our general existence theorems to U(n) invariant Kahler metrics on C™,
we obtain:

THEOREM 1.2. Let gy be a complete smooth U(n)-invariant Kdihler metric on
C™ with either non-negative or non-positive holomorphic bisectional curvature. Then
for some T > 0, the Kdhler-Ricci flow (1.2) has a complete smooth U(n)-invariant
solution g(t) on C™ x [0,T) with g(0) = go. Moreover, the solution exists for all time
in case that gg has non-positive holomorphic bisectional curvature.

REMARK 1. Building on the results here, the authors proved in [CLT] that
the solution in Theorem 1.2 exists for all time when gy has non-negative bisectional
curature as well (see also remark 5). We refer to [CLT] for this and more general
longtime existence results.

This gives an affirmative answer to a question posed by Yang-Zheng [YZ]. In fact,
one can prove results more general than the Theorem above. See Theorems 5.3, 5.4
and their corollaries for more details. We also obtain some long time existence results
for gop with nonnegative holomorphic bisectional curvature, see Theorem 5.5

The organization of the paper is as follows. In section §2 we review some basic
theory and estimates for (1.2), and in §3 we prove some further a priori estimates
which we will need later. §4 contains our main existence theorems Theorems 4.2 and
4.1 and accompanying corollaries. In §5 we review Wu-Zheng’s description in [WZ]
of U(n) invariant Kéhler metrics on C™ and use this to apply our previous results to
prove Theorems 5.3 and 5.4.

The first author would like to thank Bo Yang, and the third author would like to
thank Fangyang Zheng for helpful discussions and interest in this work.

2. Preliminaries. In this section, we review some well known results for the
Kahler Ricci flow which we will use in the paper. We first recall Shi’s short time
existence theorem for (1.2) in [S2].

THEOREM 2.1. Let (M™, go) be a complete noncompact Kdihler manifold with
curvature bounded by a constant K. Then for some 0 < T < oo depending only on K
and the dimension n, there exists a smooth solution g(t) to (1.2) on M x [0,T) with
g(0) = go such that

(i) g(t) is Kdhler and equivalent to go for all t € [0,T);

(i) g(t) has uniformly bounded curvature on M x [0, T'] for all0 < T" < T. More

precisely, for any l > 0 there exists a constant C; depending only on |, K and
the dimension n such that

G
supys |V Ren(g (1) < .

on M x [0,T).
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(w) If T < oo and tlinr% sup |[Rm(z,t)| < oo, then g(t) extends to a smooth solution
=T M

to (1.2) on M x[0,Ty) for some Ty > T so that (ii) is still true with T replaced
by T1 .

The solution g(¢) in Theorem 2.1 has uniformly bounded curvature on M x [0,T")
for any 0 < T" < T. From this it is easy to see that ¢g(0) and g¢(¢) are uniformly
equivalent on M x [0,7”). On the other hand, it is a well known fact that one can
study the K&hler-Ricci flow (1.2) through the parabolic Monge-Ampere equation. This
was originated in [C], and we refer to [CT] and references therein for further details on
this fact. By the Evans-Krylov theory [Ev, Kr] for fully non-linear equations, which
in the case of (1.2) takes the form in Theorem 2.2 below, one may conclude that if
¢(0) and ¢(¢) are uniformly equivalent, then subsequent curvature bounds follow (see
[SW], and also [Yu] for proofs using only the maximum principle). Actually, we need
a more general version in the sense that we need local estimates where g(t) is assumed
to be uniformly equivalent to a fixed background metric g.

Let us first fix some notations and terminology. (M™, ) is said to have bounded
geometry of infinite order if the curvature tensor and all its covariant derivatives are
uniformly bounded. In particular, the solution ¢(t) in Theorem 2.1 has bounded
geometry of infinite order for ¢ > 0.

Also, we will denote the geodesic ball with respect to the metric g with center at
p and radius r by By(p,r). The following theorem can be found in [SW].

THEOREM 2.2. Let (M™, §) be a complete noncompact Kdhler manifold with
bounded geometry of infinite order. Let h(t) be a solution of Kdhler-Ricci (1.2) on
M x [0,T) with initial condition ho which is a complete Kdhler metric. For any
x € M, suppose there is a constant N > 0, such that

N~™'g < h(t) < Ng

on By(x,1) x [0,T). Let V be the covariant derivative with respect to §. Then

(1)

- Ch
ky (2
VPG <
on By(z,1/2) x (0,T), for some constant Cy, depending only on k, §, n, T
and N. R
(11) If we assume |V’“h0|§ is bounded in By(x,1) by ci, for k> 1, then

IVFR[Z < Ck,

on By(x,1/2) x [0,T) for some constant Cy, depending only on k, ¢y, n, T
and N.

Proof. Since ¢ has bounded geometry of infinite order, by [TY], for any = € M
there exists a local biholomorphism ¢, : D — M, where D = D(1) is the open unit
ball in C", satisfying the following in D:

(a) ¢.(0) = x, ¢o(D) C B(x,1), (D) D B(x,26) for some § > 0 which is

independent of x.
(b) C716;; < (¢%(9))i; < C;j for some C independent of z.
9'(¢3(9))iz
() 0zL
constant C; which is independent of z.

< () for any [,4,7 and multi index L of length [ for some
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Consider ¢%(h(t)), which clearly will solve (1.2) on D(1) x [0,7T"). By the Evans-
Krylov theory [Ev, Kr| for fully non-linear elliptic and parabolic equations (see also
[SW] for a maximum principle proof in the case of Kéhler Ricci flow), the result
follows. O

We end this section with the following longtime existence Theorem from [CT]
when we look at certain special solutions to (1.2) on C™ in Theorem 5.5.

THEOREM 2.3. Let (M, go) be a complete non-compact Kdhler manifold such that
i) |Rm(z)| — 0 as d(x) — oo where d(x) is the distance function on M from
some p € M.
ii) The injectivity radius of (M, go) is uniformly bounded below by some constant
c>0.
iii) There exists a strictly pluri-subharmonic function F on M.
Then the Kdhler-Ricci flow (1.2) has a complete smooth solution g(t) on M x [0, 00)
with g(0) = go. Moreover, the curvature of g(t) is bounded uniformly on M x [0,T)]
for all T < 0.

3. Further estimates. In this section we prove some more estimates which we
will need later. One main tool is Theorem 2.2. Hence we want to obtain C° estimate
for solutions of Kéahler-Ricci flow in terms of a background metric.

Recall that the holomorphic bisectional curvature of a Kéahler manifold is said to
be bounded above by K if

R(X,X,Y,Y)
2 2 % 2SK
IXIYIE + [(X. 7))

for any two nonzero (1,0)-vectors X,Y. The holomorphic bisectional curvature of a
Kéhler manifold being bounded below by K is defined similarly.
In the following, V always denotes the covariant derivative of g.

LEMMA 3.1. Let h(t) be a solution to (1.2) on M™ x [0,Ty) with h(0) = hy such
that h(t) has uniformly bounded curvature for on M x [0,T'] for all 0 < T" < Ty.
Let g be another complete Kahler metric on M with bounded curvature such that the
holomorphic bisectional curvature bounded above by K > 0. Let T = ﬁ if K >0,
otherwise let T = oco.

(i) Suppose hg > §. Then h(t) > (L —2Kt) g on M x [0, min{T,, T}).

(i) Suppose in addition to (i) we have hg < Cg, that is, suppose § < hg < C§,

then

(3.1)

(1 —w(t)g < h(t) < (1+w(t))g
on M x [0 mm{TO,T})
where w(t \/vg t) +va(t) — 2n), vi(t) = T T, va(t) = nCe 21t and

K 1S a lower bound on the bisectional curvature ofg In particular, we have w(0) =
ny/C(C —1).

Proof. (i) Let ¢(t) := trp)g. Let O = at — A, where A is the Laplacian with
respect to h(t). Then as in [ST], we can calculate in a normal coordinate relative to
h(t) and use (1.2) to get

O =((h)5ig) = B (h7gi5)z
(3:2) =(R7§i3) = (R7gi5) + W1 Ry — GPThM W9 01Giq01G,;
< 2K 2.
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Now w1 (t) is the positive solution to the ODE
dv1 (t)
dt

for t € [0,T). Let S € (0,min{7y,T"}) be fixed. Since h(t) has uniformly bounded
curvature on M x [0,S] we have h(t) > Cihg > C1g for some C; > 0 and hence
¢ is a bounded function on M x [0, S]. Moreover, v; is also a bounded function on
M x[0,5]. Let A =supysyjo,5)(¢ +v1). Then on M x [0, 5]

I
< emCAKIDE DR (¢ —0f) — (2AK + 1)(¢ — v1)]
= e~ CAKFD DK (¢ +v1) — (2AK +1)] (¢ — v1)

=2Kvi(t); v1(0)=n

which is nonpositive at the points where ¢ — v; > 0. Using the fact that h(t) has
uniformly bounded curvature on M x [0, S] and the fact that e~ (2AK+1)? (gb v1) <0 at
t = 0, and is uniformly bounded on M x [0, S], we conclude that e~ GAK+DE (¢ —q) <
and thus (¢ —v1) < 0 on M x [0,S5] by the maximum principle, see [NT, Theorem
1.2] for example. This proves (i).

(ii) Let ¢(¢) := tryh(t). For any fixed S € [0,min{Ty,T}), as in [C] we calculate
in a normal coordinate relative to § and use (1.2) to get that on M x [0, .5):

0w =57 (he)ig) = WM (57 hig)ia

= — (§"7Riy) — W (R7hay) + (97 Riz) — G hPThM ;05 g
(33) _ hk[hiﬁﬁkjf =i hpqhklaihpfajhkq

< — 2Ky (t)Y

< —2kv1(S)Y

by (i). Let wg(t) = nCe 219 he the solution to the ODE

dws(t)
dt

= —2cv1(S)ws(t); wg(0) =nC.

Then arguing as above, we have 1) < wg on M"™ x [0,5]. In particular, we get
P(S) < wg(S) for every S € [0, min{To,T}).

So far, we have ¢(t) < v1(t), and 1(t) < va(t) on M x [0, min{Ty, T}) where vy, vo
are as in the statement of the Lemma. Now we follow an idea from [S1]. At any point
n (p,t) € M x [0,min{To,T}), let Ais be the eigenvalues of h with respect to g, and
calculate at (p,t)

n

1 "1
DR B R
(3.4) =i =i
=¢p+1 —2n

SUl (t) + ’UQ(t) —2n
and thus for any fixed i we have

(3.5) —w(t) < N —1 < w(t)
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where w(t) = \/va(t)(v1(t) + v2(t) — 2n). The conclusion in (ii) then follows. O

The following lemma basically says that if a local solution h(t) to (1.2) is a priori
uniformly equivalent to a fixed metric ¢ in space time, and close to ¢ at time ¢t = 0,
then it remains close to ¢ in a uniform space time region. Note that in contrast to
Lemma 3.1, the assumption here is on h(t) for all .

LEMMA 3.2. Let h(t) be a smooth solution to (1.2) on B(1)x[0,T) with h(0) = hg
where B(1) is the unit Euclidean ball in C™. Let § be a smooth Kdhler metric on B(1).
Suppose

(3.6) N7'g<h(t)<Nj

on B(1) x [0,T) for some N >0, and that

3.7) g<hy<Cyg

on B(1). Then there exists a positive continuous function a(t) : [0,T) = R depending
only on g, N,C and n such that

(3.8) A=alt), << (1+a(t))ho

on B(1/2) x [0,T), where a(0) = ny/C(C —1).

Proof. Asin the previous Lemma, let ¢ = trg, 1 = tryh on B(1) %[0, Tp). Choose
some smooth non-negative cutoff function on 7 : B(1) — R satisfying n|p1/2) =
L nlB@a/aye = 0, V|2 < Cin, |@dn]; < Cy on B(1) for some constants C, Cy
depending only on §. Using the fact that h(t) > N~1g, we have

\Vn|? = h'nm; < N|Vy|? < NCy,
and
|An| = |hij77ij‘ < N|85n|g < N(Cs.

Now we consider the function n¢ on B(1) x [0,T). Then in B(1) x [0,T) at the
point where 1 > 0, as in the proof of Lemma 3.1 (i) we obtain

(Or = A)(nd) =n(0r — A)p =2 <V, Vo > —¢An
2
(0 — A)p— 2= v, V(ne) > | 2IVn??I 5

n
< Vn,V(ng) >
n

pAn

<nC3¢? -2 +2NCi1¢+ NCapo

< Vn,V(ne) >
n

<Cy—2

for some constants C'5, Cy depending only on g, N, C and n, where we have used the
assumption (3.8). Since 7n¢ is zero outside B(3/4), applying the maximum principle
to n¢ — Cyt one can conclude that

N6 < n+ Cit =: w1 (t)

on B(1) x [0, 7).
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Now consider the function 71 on B(1) x [0, T). Using the proof of Lemma 3.1 (ii)
and estimating as above we obtain

(3.10) nY < nC + Cst =: Ua(t)

on B(1) x [0,T) for some constant C5 depending only on g, N, C' and n.
Now at any point in (p,t) € B(1/2) x [0,T), let A;s be the eigenvalues of h with
respect to g. Then as in the proof of Lemma 3.1 (ii) we get that at (p, t)

(3.11) —i(t) < N —1 < ()

where @ (t) = \/v2(t) (V1 (t) + v2(t) — 2n). Since 71 (0) = n and 92(0) = nC, the lemma
follows easily from this. O

In contrast to the previous lemma, in the following lemmas we only assume a
lower bound on a solution h(z,t) to (1.2).

LEMMA 3.3. Let h(z,t) be a smooth solution to (1.2) on M x[0,T) with h(0) = hg.
Let p € M. Suppose there is a positive continuous function a(t) : [0,T) = R such
that
h(t) > a(t)g.

where g is a complete Kdhler metric with bounded curvature. Then, there exists a
positive continuous function B(r,t) : [1,00) x [0,T) = R B(r,t) depending only on §
the upper bound of tryhy in By(p,2r), the lower bound of scalar curvature R(0) of
h(0) in By(p,2r), a(t) and the dimension n such that for r > 1

h(t) < B(r,t)g.
in By(p,r) x [0,T).

Proof. Let d(x) be the distance with respect to g from z to a fixed point p € M.
Since ¢ has bounded curvature, by [S2] (see also [T]) there exists a smooth positive
function p(x) satisfying d(z) +1 < p(z) < d(z) + C on M for some C' > 0, with
|Vp|, |V2p| are bounded on M. Hence without loss of generality, we may assume for
simplicity that d(z) is in fact smooth with |Vd|, |V2d| bounded on M.

Let ¢(s) be smooth function on R such that ¢ =1 for s < 1 and is zero for s > 2.
Moreover, we assume ¢' < 0, (¢')?/¢ < C1, |¢"] < Ca. Let R be the scalar curvature
of h(t). Then

0 1
. — — > 2.

on M x [0,T). Let p(x) = ¢(d(x)/r). Then ¢(x) =0 if d(x) > 2r. Fix some T" < T.
Then as in the proof of the previous lemma, we compute
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on B(2r) x [0,T"] for some constant C5 depending only on 7", «(t) and §. Similarly,

1 1
|Ag| =|=¢'Ad + —¢"|Vd|?|
r r

1 1
<C4(— +

- r T_Q)

on B(2r) x [0, T'] where Cy depends on Cy,Cs, T’ a(t) and g.
Now

(3.13) <§t - A) (vR) =¢ (gt - A) R—RAp - 2(VE,Vy)

1
2;;732 — C5|R| — 2(VR, V)

on B(2r) x [0,T"] where C5 depends only on Cy and r. Suppose the infimum of pR
on B(2r) x [0,T"] is attained at ¢ = 0, then R > min{0,infp_(, 2) R(ho)} on By(r).
Suppose instead that @R attains a negative minimum at some (z,t) € B(2r) x [0,7"]

where t > 0. Then at (z,t), VR = —%. Hence at this point,

1
(3.14) 0 ZHQDRQ — Cg| R
where (s depends only on Cg, C3 and r. Hence
©*|R| < nCs.

on B(2r) x [0,T'] and we conclude that R > —C7 on By(p,r) x [0,T] for some Cr
depending only on 7", g, 7, a(t). On the other hand,

0 det(hqp)(t)
1% (awtrcson ) =50

@I

So

det(hag)(t) < Ot det(haB)(O)
det(gn5) det(gn3)

on By(p,r) x [0,77]. Let X\; be eigenvalues of h(t) with respect to §. By assump-
tion, A;(z,T") > «(T") for each i and = € By(p,r), the above inequality then implies
Ai(z, T") < B(r,T") for some B(r,T") depending only on the those constants listed
in the Lemma. Moreover, it is not hard to see that S(r,T’) can be chosen to de-
pend continuously on 7, 7" as a(t) is continuous. The Lemma follows as T" < T is
arbitrary. O

REMARK 2. Given only a local solution h(t) to (1.2) on B(1) x [0,T) where B(1)
is the unit ball on C", it is not hard to see from its proof that the conclusion of Lemma
3.3 will hold in B(r) x [0,T) for all r < 1/2.

4. Kihler Ricci flow: general existence Theorems. We are now ready to
state and prove our main existence Theorems for (1.2) using the estimates in the
previous section. Theorems 4.1 and 4.2 provide general existence Theorems for (1.2)
when the initial Kéhler metric is realized as a limit of a sequence of Kéahler metrics
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satisfying certain properties. The curvature of the initial metric may be unbounded
or even undefined. As an application, In Corollary 4.1 we obtain an existence result
for Hermitian continuous metrics which are perturbations of a complete Kéahler metric
with bounded curvature. In Corollary 4.2 we apply the above Theorems to provide
an estimate for the maximal existence time for (1.2) assuming that the curvature of
the initial Kéhler metric is bounded. In some cases, we have long time existence.

In the following, we say that a sequence of smooth metrics hy converge smoothly
to a metric g on a set U, if hj, converge to g in C*° norm on U.

THEOREM 4.1. Let go be a complete continuous Hermitian metric on a noncom-
pact complex manifold M™. Suppose there exists a sequence {hy0} of smooth complete
Kahler metrics with bounded curvature on M converging uniformly on compact subsets
to go and there exists another complete Kahler metric § on M with bounded curvature
and with holomorphic bisectional curvature bounded from above by K > 0 satisfying:

(i) hio > g for all k;

(i1) for every k, Kdahler-Ricci flow (1.2) has smooth solution hy(t) with initial
value hyo on M x [0,T") for some T" > 0 independent of k such that the
curvature of hy(t) is uniformly bounded on M x [0,T1] for all 0 < Ty < T;

(iii) for some fized point p € M, for anyr > 0 there exists a constant C,. > 0 such
that the scalar curvature Ry, of hi,o satisfies R > —C, on By(p,r) for all k.

Let T = min{T", 52} if K > 0, otherwise let T = T’'. Then the Kdihler-Ricci flow
(1.2) has a complete smooth solution g(t) on M x (0,T) which extends continuously
to M x [0,T) with g(0) = go and satisfies g(t) > (1/n — 2Kt)g on M x (0,T).

Moreover, if go is smooth and {hy o} converges smoothly and uniformly on com-
pact subsets of M, then g(t) extends to a smooth solution to (1.2) on M x [0,T) with
9(0) = go-

Proof. By Lemma 3.1, we have

(4.1) hio(t) > <i - 2Kt> g

as long as t < Tp = 1/(2nK). By Theorem 2.1, let §(¢) be the solution Kéahler-Ricci
flow in the theorem with initial condition §. Then for any 1 > ¢ > 0 small, choose
0 < to small enough so that (1 —€)g(to) < § < (1 + €)g(to). Then we have

(12) ha(t) > (1 - m) (1 - )g(to)

n

and §(tp) has bounded geometry of infinite order. By Lemma 3.3, for there is a
positive continuous function §(r,t) : [1,00) x [0,Ty) — R such that for r > 1

(4.3) hi(t) < B, D3 (to)

in B(p,r) x [0,T) where T = min{T", 72=} and p € M is a fixed point. We conclude
from Theorem 2.2 (i), that passing to some subsequence, the hy(t)’s converge to a
solution g(t) of Kéhler-Ricci on M x (0,T) so that (4.1) is true with hy(t) replaced
with g(t). Moreover, if gg is smooth and {h;} converges smoothly and uniformly to
go on compact sets, then we see from Theorem 2.2 (ii) that in fact g(¢) extends to a
smooth solution on M x [0,7T) such that ¢g(0) = go.

We now prove g(t) converge uniformly on compact set to go as ¢ — 0 when
go is only assumed to be continuous. Fix any x € M and a local biholomorphism
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¢ : B(1) — M where B(1) is the open unit ball in C"* with image inside By(z,1), and
¢(0) = z. Consider the pullbacks ¢*hi(t), ¢*hiko = ¢*hi(0), ¢*§, which by abuse
of notation we will simply denote by hy(t), hxo, g, respectively, for the remainder of
proof. In particular, hy(t) solves Kéhler-Ricci flow (1.2) on B(1) x [0,T).

Now by our hypothesis on the convergence of hy, given any 6 > 0 we may find kg
such that |hg,.0 — goly < ¢ and

(4.4) (1 =0)hng,0 < hio < (14 6)hg 0

for all kK > ko on B(1). On the other hand, by (4.2) and (4.3) we can find N > 0 such
that

(4.5) N hiy 0 < hi(t) < Nhyg o

in B(1) x [0,7/2) for all k > ko. Then by Lemma 3.2, there exists a continuous
function a(t) depending on N, hy, and § such that

(162
(1- a(f))mhko,o < h(t) < (14 a(t)(1 + 8)hiy .0

in B(3) x [0,T/2) with a(0) = n\/C(C — 1), with C = (1+6)/(1—6). Note that a(t)
is independent of k. Letting k — oo gives

(4:6) (1= a(0) 55 oo < 9(8) < (1+ a(0)(1 + )

in B(3) x (0,7/2). We then get
limsup|g(t) — golg
t—0
<limsup (|g(t) — g0l + [Fko,0 — 9ol3)
t—0

(1-9)
(1+49)

< Hl —(1—a(0) 1L+ a(0) (1 +8) — 11| g ols

+ 6|hig.0l5

uniformly on B(3). Then letting 6 — 0 above, and using the fact that a(0) — 0 as
d — 0, and (4.2) and (4.3) we conclude that

limsup |g(t) — golg =0
t—0

uniformly on B (%) Hence ¢(t) converge to go uniformly on compact sets as t — 0. O

We do not have any bound on the curvature of solution g(¢) in the previous
theorem. Also in the previous theorem, we assume that the Kéhler-Ricci flow (1.2)
has solution with initial condition Ay ¢ on a fixed time interval independent of k. We
want to remove this assumption and obtain curvature bound for the solutions. In
order to do this, we assume hy o also has an uniform upper bound.

THEOREM 4.2. Let go be a complete continuous Hermitian metric on a noncom-
pact complex manifold M™. Suppose there exists a sequence {hx,o} of smooth complete
Kdhler metrics with bounded curvature on M converging uniformly on compact subsets
to go and there exists another complete Kahler metric g on M with bounded curvature
and holomorphic sectional curvature bounded from above by K > 0 such that
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(i) C71§ < hyo < Cg for some C independent of k;
(i) hy has bounded curvature for every k.
Let T =1/(2CnK) if K > 0, otherwise let T = co. Then the Kdhler-Ricci flow (1.2)
has a smooth solution g(t) on M x (0,T) such that
(a) (1/(nC)—2Kt)g < g(t) < B(t)§g on M x (0,T) for some positive continuous
function B(t) depending only on C, ¢ and n.
(b) g(t) has bounded curvature for t > 0. More precisely, for any 0 < T’ < T
and for any | > 0 there exists a constant C; depending only on C, 1, T, §
and the dimension n such that

supar| V' Rm(g(1))50) < 175

(¢) g(t) converges uniformly on compact subsets to gy ast — 0.
Moreover, if go is smooth and {hy o} converges smoothly and uniformly on com-
pact subsets of M, then g(t) extends to a smooth solution on M x[0,T) with g(0) = go.

Proof. For each k, let hy(t) be the solution to (1.2) with initial condition hy, from
Theorem 2.1 which is defined on M x [0,T}) for some T}, > 0. We first claim that we
can choose T} such that T > T for some positive T for all k. By Lemma 3.1, there
is a positive continuous function B(t) : [0,7) — R independent of k such that

(1/n—2CKt)g < hi(t) < B(t)g

in M x [0,min{7T},T}) where T = 1/(2nCK). As before, we may assume that § has
bounded geometry of infinite order. By Theorem 2.2, we conclude that if T}, < T,
then [Rm(hg(t))|n, ) are bounded in M x [0,T}). By Theorem 2.1, we see that one
can extend hy(t) so that T, > T for all k as claimed. Given upper and lower bounds
on hi(t) as above, we may conclude from Theorem 2.2, as in the proof of Theorem 4.1,
that there is a smooth solution to the Ké&hler-Ricci flow g(¢) on M x (0,T) satisfying
condition (a) and (c¢) from which we conclude, by Theorem 2.2 (i), that condition (b)
is also satisfied. O

COROLLARY 4.1. Let (M",g) be a complete Kdhler manifold with bounded cur-
vature. Suppose u is real C? function on M such that |Vu| + |u| = o(r) and

AT g < g+ V—100u < Ag

for some A > 1, where V is the covariant derivative with respect to g. Then for some
T > 0, the Kdhler-Ricci flow (1.2) has a complete solution g(t) on M x [0,T) with
9(0) = go + V—100u and satisfying the conclusion of Theorem 4.2.

(Here f = o(r*) represents a positive function on M such that f(z)/dk(z) ap-
proaches 0 as d,(x) — oo where d(z) is the distance function from some fixed point
in M relative to §).

Proof. Let d(x) be the distance with respect to g from z to a fixed point p € M.
As in the proof of Lemma 3.3, we may assume without loss of generality that d(z) is
smooth with |Vd|,|V2d| bounded on M. Let ¢ be a smooth function on R such that
0<¢p<1,¢(s)=1for s <1and ¢(s) =0 for s > 2, and |¢'| + |¢"| < ¢; for some
c1. For any k > 1, let ny.(x) = ¢(d(z)/k). Then |V, |[V2ni| < c2/k on M for some
constant ¢z independent of k. Now let {uy} be a sequence of smooth functions on M
which converging to u, uniformly on compact subsets of M in the C? norm. For each
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k we have

(47) 0(niuj) =nRO0u; + u;00my, + Ouj A Oy, + Oy, A du
' — nROOU + udOn, + Ou A Oy 4+ O A Ou

uniformly on M as j — oo. Since Onj, and 00, vanish on B(k) and outside B(2k),
and |Vu| + |u| = o(r), for any € > 0 we have |du; A Onkls + |u;00nk|; < € if j is
large enough. Hence, for any k, we can find uj, with ji — 0o as k — oo such that
hi = §++/—100(nru;, ) is a Kahler metric such that

(24)7'g < hy, < 244.

In particular, hy is complete, outside a compact set hy, = ¢ and thus has bounded
curvature, and hy converges to go uniformly on compact sets in C%. The corollary
now follows from Theorem 4.2 00

REMARK 3. Note that if [Vu| = o(1), then |u| = o(r). This will imply that
|Vu| + |u| = o(r). Also from the proof of the theorem, if § has bounded curvature and
w is a smooth function on M such that du, u and Vu are bounded, then for e > 0
small enough, the Kéhler-Ricci flow with initial condition § + ev/—190u has a short
time solution.

By Theorem 4.2, one may obtain estimates for maximal time interval of existence
of the Kéahler-Ricci flow constructed in Theorem 2.1.

COROLLARY 4.2. Let M"™ be a complex noncompact manifold and let go, § be
complete Kdhler metrics with bounded curvature on M. Suppose the holomorphic
bisectional curvature of g is bounded above by K > 0 and that § < go < Cg for some
C>1. Let T =1/2nK if K > 0, otherwise let T = co. Then the Kdhler-Ricci flow
(1.2) has a complete smooth solution g(t) on M x [0,T) with g(0) = go such that for
all t €10,T), g(t) has bounded curvature and

(48) (1/n —2K1)§ < g(t).

In particular, the Kdahler-Ricci flow has a long time solution if the initial condition
is a complete Kahler metric with non-positive and bounded holomorphic bisectional
curvatures.

5. Kahler Ricci flow of U(n) invariant metrics on C”. In this section we
apply Theorems 4.1, 4.2 to U(n) invariant metrics on C™.

5.1. Wu-Zheng’s construction. We recall Wu-Zheng’s construction in [WZ]
of smooth U(n) invariant metrics on C". Begin with a smooth function ¢ : [0,00) — R
with £(0) = 0, and define functions h, f : [0,00) — oo by

(5.1) h(r) = Helo =5Fdt, f(r) .= l/rh(t)dt
0

where h(0) = H > 0 and f(0) = h(0).
Now define a U(n) invariant metric g on C™ by

(5.2) 95 = f(r)dy + f'(r)Ziz,
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where g,; are the components of g in the standard coordinates z = (21,...,2,) on C"
and r = |z|%. Notice that a different choice of h(0) simply corresponds to scaling the
metric g above. In the following, we always take H = 1, i.e. h(0) = 1. Wu-Zheng
[WZ] proved:

THEOREM 5.1. [Wu-Zheng]
(i) The metric g above is complete if

(5.3) /OOO %dt .

Conversely, up to scaling by a constant factor, every complete smooth U(n)
invariant Kdhler metric on C™ can be generated in this way.
(i) At the point z = (z1,0,...,0), relative to the orthonormal frame {e; =
ﬁ@zl,eg = %8@, cee %an} with respect to g;;, we have
!
E7
L[y ([ is)s) e
0 == A [ ([ o)
“rfm)? o 0

2
(¢) € = R = 2Ruy = (s | hlt)E(o)at
7 (rf(r)? Jo
where 2 < i # j < n and these are the only non-zero components of the

curvature tensor at z except those obtained from A, B or C by the symmetric
properties of R.

(a) A= Riq1 =

t

In this section, C' always denotes the quantity in the above theorem. By the
above construction, Wu-Zheng [WZ] proved the correspondence below for positively
curved metrics, while Yang later showed in [Y] that this extends to a correspondence
for non-negatively curved metrics.

THEOREM 5.2. [Wu-Zheng, Yang] There is a one to one correspondence between
the set of all smooth complete U(n) invariant Kdhler metrics on C™ with non-negative
holomorphic bisectional curvature (modulo scaling by a constant factor) and the set
of all smooth functions £ : [0,00) — R satisfying

(5.4) £0)=0, &>0, ¢<1L

REMARK 4. One direction of the above correspondence is immediately obvious
from Theorem 5.1 (ii)a. In particular, it is obvious that if g has non-negative (non-
positive) holomorphic bisectional curvature then & > 0 (¢ <0).

5.2. Applications of Theorems 4.1 and 4.2 to U(n) invariant metrics.
We now apply Theorems 4.1 and 4.2 to U(n) invariant metrics. First we have the
following lemma.

LEMMA 5.1. Let g be a complete U(n) invariant Kdihler metric on C™ generated

by €.
(i) If ’% is uniformly bounded, then the curvature of g is uniformly bounded.
(ii) If im, % =0, and lim, oo rf(r) = oo then the curvature of g ap-

proaches to zero as r — oo.
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Proof. (i) Tt is sufficient to prove that the holomorphic bisectional curvature is
is uniformly bounded by ¢, say. By

Theorem 5.1, in the notations of the theorem it is sufficient to prove that |Al,|B], |C|
are uniformly bounded. It is obviously |A| < ¢. Now

B gﬂ—lﬁ /0 ch(t)dt </Ot h(s)ds> dt

§r2cf2 ( /O ' h(t)dt)2

=C

uniformly bounded under the assumption that ‘ %

because h > 0 and rf(r) = [ h(t)dt. Similarly, since

el < [ e <e [ noa,
0 0
we have
|C] < 2e.
(ii) If Timy o0 ’% — 0, then lim, .o A = 0. On the other hand, for any € > 0,

g (r)
h(r)

|ﬂs§p4mmw(é%@@)ﬁ+e

Since rf(r) — o0 as r — 00, it is easy to see that lim,_,, |B| = 0. Also

there is ro such that < eforr>rg. Then

|w0sAWWWMHf/%@w

To

if » > ry. Hence

1 TO,
|msﬁA €' (8)dt + e,

and one can conclude that lim, o |C| = 0. From these (ii) follows. O

LEMMA 5.2. Let £ : [0,00) be a smooth function with £(0) = 0. Suppose £(r) = a
for some constant a < 1 for all r > ro. Then £ generates a complete U(n) invariant
metric g such that the curvature of g approaches 0 as r — oo on C™.

Proof. For r > ry,

nE@) @) r
/Otdt— ; Tdt—kalog(%).

Hence h(r) = ¢1r~* for some constant ¢; > 0 for all » > r¢. Since a < 1, it is easy to

see that
/ \/E(T) dr = 0o
o VT
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Hence g is complete by Theorem 5.1. Also £ = 0 near infinity, and

rf(r) = / h(t)dt > co + c3logr
0

for some constants ¢z, c3 with ¢3 > 0 because a < 1. The result follows from Lemma
5.1.0

THEOREM 5.3. Let go be a smooth complete U(n) invariant Kdhler metric on C"
generated by a smooth function £ : [0,00) — R with £(0) = 0. Suppose there exists
£:[0,00) = R with £(0) = 0 which generates a smooth complete U (n) invariant Kihler
metric § with bounded curvature and holomorphic bisectional curvature bounded above

by K > 0, such that for all r > 0
/ <
0 t

for some ¢ > 0 independent of r. Let T = 1/(2nKe) if K > 0, otherwise let T = oc.
Then the Kdhler-Ricci flow (1.2) has a smooth complete U(n) invariant solution g(t)
on M x [0,T) with g(0) = go.

Proof. As £ and é are smooth, for each k > 0 there exists a J; > 0 and a smooth
“cutoff” function ny : (—o0,00) — R satisfying

=1 if —OO<’I”§]€,
(5.5) Ne(r) s Q0 <mp(r) <1 ifk<r<k-+d,
=0 if k+ 0 <7r < oo,
and
k406 _ F
(5.6) / @ dt <1/k
k

for all k. Fix such a choice of 7,5, and consider the sequence of functions {{;} :
[0,00) — oo defined by

Ee(r) = m€ + (1 —mi)€

and let wy, be the corresponding sequence of smooth U(n) invariant Kéhler metrics.
Then

() =€) (€ =€)
[a-do, e,

t
_ fo; S5t if r <k
IN %dt—i—ak, ifr >k
where
k495 _ ¢ 1
e [ e
k t k
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Hence
T &) — () 1
/0 715 dt < c+ E

where C' is the constant in the hypothesis. This implies, by (5.1) and (5.2), that

1

exp(—c — %)g < wp.

In particular, wy is complete. Also, from (5.1) and (5.2), we have
wr < Ckg

k+6
where ¢, = exp (fo o

for each k, and thus by Corollary 4.2, for each k there exists a solution gx(t) to (1.2)
on M x [0,T;) where Tj, = 1/(2nK exp(c + £)). By uniqueness [CZ], g (t) is U(n)
invariant for all ¢. The result now follows from Theorem 4.1. O

’%’ dt) . It is also easy to see that wy has bounded curvature

By Theorem 5.3, we have

COROLLARY 5.1. Let go be a smooth complete U(n) invariant Kdhler metric gg
on C" generated by a smooth function & : [0,00) — R with £(0) = 0. If {(r) < 1, then
for some T > 0 the Kdhler-Ricci flow (1.2) has a complete U(n) invariant smooth
solution g(t) on C" x [0,T) with g(0) = go. If in fact £(r) < 0, in particular if & <0,
then the solution exists on C™ x [0, 00).

Proof. Let € be a smooth function on [0, 00) with £(0) = 0 and £(r) = 1 for 7 > 1.
Then é generates a complete U(n) invariant Kahler metric with bounded curvature
by Lemma 5.2. The first result follows from Theorem 5.3.

If ¢ <0, then we can choose é = 0 which generates the standard Euclidean metric.
The second result also follows from Theorem 5.3. O

We do not have any curvature bound on the solution in Theorem 5.3. In the next
theorem, the solution also has some bounds on the curvature and its derivatives.

THEOREM 5.4. Let go be a smooth complete U(n) invariant Kdhler metric on
C™ generated by a smooth function & : [0,00) — R with £(0) = 0. Suppose there exist
a <0 and B such that for all 0 < a <7,

(5.7 [ e ta [ ass

t t

Then for some T > 0 the Kdhler-Ricci flow (1.2) has a complete smooth U(n) invari-
ant solution g(t) on C™ x [0,T) with g(0) = go. Moreover, for everyl > 0 there exists
a constant ¢; depending only on «, B, | and n such that

C

! 2
(5.8) Sup IV Rm(p, D)l < 55

on C" x (0,T).
If in addition,

(5.9) /OT§<U
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for some constant o independent of r, then the above solution to Kdhler-Ricci flow is
defined on C™ x [0,00) and satisfies (5.8) on C™ x (0,T") for some T’ > 0.

REMARK 5. In [CLT] it was proved that if 3 < 1 in Theorem 5.4 then T = cc.
While (5.8) holds on C™ x (0,7”) for some T” > 0, it is unclear if this is true for all
T

COROLLARY 5.2. Let go be a smooth complete U(n) invariant Kdhler metric go on
C™ generated by a smooth function & : [0,00) = R with £(0) =0. If a« < &(r) <1 for
some a < 0, in particular if £ > 0 so that go has nonnegative holomorphic bisectional
curvature, then for some T > 0 the Kdhler-Ricci flow (1.2) has a smooth solution
on C" x [0, T) with g(0) = go and satisfies (5.8). Moreover, the solution g(t) has
nonnegative holomorphic bisectional curvature for t € (0,T).

If in fact ¢ < & < 0 for all r, then the solution exists for all time and satisfies
(5.8) on C™ x (0,T") for some T' depending only on ¢ and n.

Proof. Tt e < &(r) <1 (ore < &(r) < 0) for some ¢, then the conditions of Theorem
5.4 clearly hold. In case go has non-negative holomorphic bisectional curvature, the
fact that ¢(¢) has non-negative bisectional curvature for all ¢ € [0,7) was proved in
[YZ]. O

REMARK 6. Let & : [0,00) — R be smooth with £(0) = 0 and £(r) = 1 +
1/Inr for r > 1 say. Then from the proof of Proposition 5.1, it is not hard to
see that the corresponding g is complete with bounded curvature. Now it is easy
to construct a smooth function £ > é satisfying the assumptions in Theorem 5.3,
where the corresponding ¢ is complete with unbounded curvature. Thus £ satisfies
the assumptions in Theorem 5.3, while it is also easy to see that £ does not satisfy
the assumptions in Theorem 5.4.

5.3. Proof of Theorem 5.4. By Theorem 4.2, Theorem 5.4 will follow once
we produce a sequence & and function é such that the corresponding U(n) invariant
Kahler metrics hy, go and g satisfy the hypothesis of Theorem 4.2. We begin by
proving the existence of such a function é :

PROPOSITION 5.1. Under assumptions (5.7) of Theorem 5.4 on &, there e:m'stsé
such that the corresponding U(n) invariant metric § has bounded curvature and

(5.10) g <go<cg

on C™ for some constant ¢ > 0. If in addition, (5.9) is true, thené can be chosen to
be nonpositive.

Proof. Assume (5.7) is true. We consider three different cases.

Case 1: Suppose there is ¢ > 0 such that flr %dt > ¢ for all # > 1. Let & be
a fixed smooth function on [0, 00) such that £(0) = 0 and £(r) = 1 for r > 1. Let §
be the complete U(n) invariant metric generated by é . Then there is ¢’ such that for

any 1 >r >0,
re-¢ /Ts ‘
S St Sdt| +
/0 3 o t

| S

< < J’
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[ [ aes
[ [ s

Hence by (5.1) and (5.2), the U(n) invariant Kiihler metric § generated by ¢ satisfies
the required conditions in the Proposition.

for some ¢”. For r > 1

and

Case 2: Suppose there is ¢ > 0 such that [ OLdt > ¢ for r > 1. Let € be a

7
fixed smooth function on [0, 00) such that £(0) = 0 and £(r) = « for 7 > 1. Then as
in the previous case, the U(n) invariant Ké&hler metric ¢ generated by é satisfies the
required conditions in the Proposition. Note that in this case, é can be chosen to be
nonpositive.

Case 3: Suppose as a function of r, fl 1dt is not bounded from below and
flr £ to‘dt is not bounded from above. We want to find 5 and1 <ag<ay <ag---— o0

such that é generates a complete U(n) metric § such that
A2(i+1)
(5.11) / £ ; gdt_()

24

for all 7 > 0;

(5.12) <o

[t

for some ¢; for all # > 0 and for all r € [ag;, a(;+1)); and

(5.13)

for some ¢y for all » > 0. Then by Lemma 5.1, (5.1) and (5.2), we can conclude that
g satisfies the conditions of the Proposition.
Fix a smooth function p on R, such that

(t) = 1, ift<1l+e
PU=Y a, ift>3—e

and p" < 0, where € > 0 is small enough so that 1+¢ <3 —e. Thena <p <1.
Let € be a smooth function on [0,1] with £(0) = 0 and £(r) = 1 near r = 1 such
that 0 < & < 1. We are going to find a; and £(r) on [a;, a;11] inductively. Let ag = 1.

3ao _ 3ao ) —1 1—
/a ngdtz/a &) —l_ p(t)dtgﬁ—l—(l—a)log?).

0 0

Since f3 O‘dt is not bounded from above, there is a first a; > 3ag such that

3(10 al _
/ i£ﬁ+/ 0=
ag t 3(1() t



286 A. CHAU, K.-F. LI, AND L.-F. TAM

where c¢3 = 8+ (1 — a)log3 + 1. On the other hand,

a1 & — o — L
/3 -1+ p(al))dtz_ﬁ_(l—a)log?).

t
Since f3 1dt is not bounded from below, there exists a first as > 3ay, such that
a1 — (1 4+ o — t ag —1
/ E—( p(‘“))dt—i—/ E-1. _
aq t 3a1 t
Define
p(r), if ag <7 < 3ap;
0oy ) if 3ap < r < ag;
§(r) = l+a—p(s), ifar <r<3a;
15 if3a1<1"§a2.

It is easy to see that & is smooth on [0, as] with £(r) = 1 near ag. Moreover, a < £ < 1

on [1,as], and
as
/ - 5dt =0,
ao

so (5.11) is true for ¢ = 0. It is easy to see that
[

€' < —

r

where ¢4 = 3max|p/|.
For ap < r < aq, by the definition of a; we have

[t [) 555

—14+1-£
§03+/ %dt
ail

<cs+ B+ (1 —a)log3.

For a1 <r < aq,

Hence for ag < r < ao,

[ Saca
ao

Similarly, one can prove that

%dt > —2cs3.

ao
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To summarize, we have find é (r) and ap < a1 < ag such that é is smooth and defined
on [0,az] with a < € < 1 on [ag, as], satisfying (5.11) with i = 0, (5.12) with i = 0,
¢1 = 2¢3, and |€'] < 4 on [ag, az]. Moreover, £(r) = 1 near r = ay.

From the above construction, it is easy to see that one can continue and find
as < az < ag--+ — 0o and é with a < é(r) < 1 for r > ay, satisfying (5.11) with and
(5.12) with ¢; = 2¢3, and |€] < 4 on [ag, 00).

Since é <1,

o "1

h(r) > cs exp(—/ =dt) > &
1 t T

for some ¢5 > 0 for all » > 1. Combing with the fact that || < % on [ag, 00), we

conclude that (5.13) is also true.

Suppose in addition £ satisfies (5.9). If fOT %dt is uniformly bounded from below,
then one can take é =0. If flr %dt is not bounded from below and flT &To‘dt is not
bounded from above, then one can proceed as in the proof of Case 3 in the above,
by taking p = 0 near r = 1 instead. Then one can get & to be nonpositive. This
completes the proof of the Proposition. O

Now we are ready to prove Theorem 5.4.

Proof of Theorem 5.4. Let g be the U(n) invariant Kéahler metric with bounded
curvature generated by ¢ defined in Proposition 5.1, so that

(5.14) 'g<go< g

for some ¢; > 0 as in Proposition 5.1. As in the proof of Theorem 5.3, choose d; > 0
and smooth “cutoff” functions ny, : (—oo0,00) — R satisfying

=1 if —co<r<k
(5.15) me(r) s 0<me(r) <1 ifk<r<k+d
=0 ifk+6op <r<oc.
and
k+65 _A
(5.16) / @ dt < 1
k

for all k. Let {&} : [0,00) — oo be defined by

Ex(r) = mé + (1 — ni)E.

Then as in the proof of Theorem 5.3, each &, generates a U(n) invariant Ké&hler metric
wpg so that

(5.17) ¢ g <wp < g

for some constant co > 0, for all k. Now recall that the curvature of § is bounded by
a constant K as in Proposition 5.1, and thus by Theorem 2.1 we may assume without
loss of generality that ¢ has bounded geometry of order infinity. In particular, the
formula of curvature in Theorem 5.1 implies that each wy, also has bounded curvature.
We also clearly have wy, — go uniformly and smoothly on compact subsets of M. By
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Theorem 4.2, there is a solution g(t) of the Kahler-Ricci flow with initial condition go
on M x [0,T) for some T > 0 so that

cs
IRm(g(t)ll5) < 75
for some c3 > 0 and for all 0 < ¢ < T. The estimates for ||V'Rm|| for each I > 0 then
follows from the general results of [S1].

If in addition that
/ §dt <o
0 t

for some o for all r, then é can be chosen to be nonpositive. Then ¢, is nonpositive
near infinity. Therefore the Kahler-Ricci flow with initial condition hy has longtime
solution hy(t) by Theorem 5.3. On the other hand, go > csg. for some constant
¢4 > 0, where g is the Euclidean metric on C"™. By (5.14) and (5.17),

hi > c59e

for some constant c¢5 > 0 for all k. By Theorem 4.1, there exists a longtime solution
g(t) to (1.2) with initial condition go. On (0,7") from the previous paragraph, g(t) is
the same as before. Hence g(t) also satisfies (5.8) on C™ x (0,7). O

The long time existence results in Theorem 5.4 are basically for U(n) invariant
metrics with non-positive curvature. The following Theorem gives a longtime exis-
tence result for U(n) invariant metrics with non-negative curvature.

THEOREM 5.5. Let go be a smooth complete U(n) invariant Kdhler metric on C™
generated by a smooth function £ : [0,00) — R with £(0) = 0. Suppose &(r) = a for
r sufficiently large where a < 1. Then the Kahler-Ricci flow has a smooth complete
U(n) invariant solution g(t) on C™ x [0,00) with g(t) = go. In general, if there is
C > 0 such that

(5.18) —Cg/ 5;adt§0

1
for some a <1 for all r > 1 and such that |&'| = o(r=), then the Kdhler-Ricci flow
has a smooth complete U(n) invariant solution g(t) on C™ x [0,00) with g(t) = go
such that the curvature of g(t) is uniformly bounded on M x [0,T] for all T < oc.

REMARK 7. If a < 0, then we have long time solution by Theorem 5.4. However,
there is no curvature bound obtained for all ¢ in that theorem. In that theorem, we
can only conclude that the curvature of the solution is uniformly bounded in M x [0, T']
for some T > 0.

Proof. Suppose (5.18) is true. We want to prove that the curvature of ¢g tends to
zero as © — o0o. Consider the case that a < 1, then

h>cir ¢

for large r for some ¢; > 0. Hence rf > cor!=¢ for r large for some ¢y > 0 and
rf(r) — ocoasr — oo. || = o(r~*) implies |%| = o(1). By Lemma 5.1, the curvature
of gy approaches to zero at infinity.
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Suppose a = 1, then there is c¢g > 0 such that

C.
h> =2
T

for r large. So
rf >cqlogr

for some ¢4 > 0 if r is large. By Lemma 5.1, the curvature of gy also approaches to
zero at infinity.

The Theorem now follows from the above curvature decay estimates, Lemma 5.3
below which implies the injectivity radius of g is bounded below on C", and Theorem
2.3 because C" has a strictly pluri-subharmonic function. O

LEMMA 5.3. Let &(r) = a for all v sufficiently large and a < 1. Let g be the
corresponding U(n) invariant Kdhler metric on C"*. Then the injectivity radius of g
is bounded below by a positive constant on C"

Proof. We begin by assuming a < 1. Indeed, this will be sufficient for our
applications. By the estimate in [CGT] and by the fact that the curvature of g is
bounded by Lemma 5.2, in order to prove the injectivity radius of g is positive on C™
it is sufficient to prove there is a constant ¢ > 0 such that

Vo(By(z,1)) = ¢

for all z where B,(z, 1) is the geodesic ball of radius 1 with center at x with respect
to g. Let 7 be the geodesic distance from the origin, then for a < 1 and r = |2|? > 7.

" Vh .
(5.19) T(z) = S ds = ¢y + cprz(17
0 2v/s

for some constants ¢y, ¢co with ¢ > 0. So
rf(r) = c3 + ca(T — c1)?

with ¢4 > 0.

n

V(Bg(0;7)) = cn(rf)" = (c3 + calr — 01)2) ;
where 7 = 7(r) is given by (5.19). Hence if 7 is large, then
(5.20) Vo(Bg(0; 7 + 1)\ By(0;7 — 1)) > e572"

for some c¢5 > 0 independent of 7. Let F be a maximal disjoint family of B, (z, 1) with
x € 0B4(0,7). Let C = {z| By(x,1) € F and let N = N(7) = #(C). We claim that
Usee By(,3) D By(0; 7+ 1)\ By(0;7 —1). In fact, if y € By(0;7 4 1)\ By(0;7 — 1),
then there is y' € 9By(0; 7) such that dg(y,y’) < 1. On the other hand, there is x € C
with dgy(z,y") < 2. From these the claim followers.

Since ¢ is U(n) invariant, v = v(7) = V,(By(z, 3)) is constant for x € 9B, (0, 7).
Hence we have

Nuv > ezr?nt
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and

(5.21) v > %72"*1.

By the expressions of h and f, on 9B,(0,7) = dBo(0, /1), cg'r™ %0 < g < 7o
for some ¢ > 0 if r is large, where By(0, \/7) is the Euclidean ball with radius 1/r and
center at the origin. Let BT(:E p) be the geodesic ball with respect to the intrinsic
distance of 0B,(0, 7). Define Bf(x, p) similarly with respect to go.
Since Bg(x 1) > Bj(x,1), and Bf(z,cq r3)y B (x,1). Hence
{Bf(x,c5'r3)|z € C} is a disjoint family and
2n—1

NV, (B (2,5 '7%)) < Vg, (9Bo(0,v/1)) = cur =,

where ¢, is the volume of the unit sphere in C". Let p = r%, then the volume of the
geodesic ball of radius so in 9B(0, p) is

S0 s
Cp? / sin®" 2 Zds.
0 P

Let 5o = ¢4 L%, Then so/p — 0 as r — oo. Hence for r large,

s0
Vgo(Bg(x,cglr%)) 207/ 224
0

—685(2)" L

Hence

v >cs N~ 12t

—1 —
>c, Cs5C8T r S0
>C9

for some positive constant cg independent of 7.

We now consider the case when a = 1. Consider Cao’s cigar soliton § which is a
complete U(n) invariant Kéhler metric on C™ . It was shown in [WZ] g has positive
sectional curvatures and is generated by E satisfying

52 [

since £(r) = 1 for sufficiently large r (see Theorem 3 in [WZ]).
In particular, by (5.1) and (5.2) it follows that g and § are uniformly equivalent
and thus

Vy(By(p, 1)) > CV5(B;(p, 1))

for some C' > 0 for all p € C" and for some constant C' independent of p. To bound
the injectivity radius of g from below, it suffices to prove that the volume in the
RHS above is uniformly bounded below. This follows from [GM] since § is complete,
and has bounded positive sectional curvatures. For completeness, we include a proof
below that g has bounded curvature. By Wu-Zheng:
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Let ¢ = rf and t = logr. ¢ = rh. Hence ¢ > 0, ¢' > 0 for t > —oc. Here
all primes on ¢ are with respect to ¢. Since A, B,C' > 0, we only need to prove that
A, B, C are bounded from above. It is sufficient to prove that A, B,C are bounded
from above for ¢ > 0. For t > 0, by [WZ, §4]

- n—1. - 2(n—1) n(n-1) " n—1
A=n(l+==) ¢(1+ Tt >§(1+~ ),

because ¢’ > 0, ¢ > 0. So A is bounded.

1 [rde ([t 1

- / —5(/ h(s)als)dlfg—~
(rf)?Jo dr \Jo rf
because Z—g >0, £(r) < 1. On the other hand by (5.22), h(r) > cr—! for r > 1. Hence
rf ~ clogr. So B is bounded. Similarly, C' is also bounded. O

REMARK 8. In case 1 > a > 0, we may simply compare g with a metric g with
nonnegative bisectional curvature generated by é with é = @ near infinity. In this
case, ¢ has maximum volume growth by [WZ]. Hence each geodesic ball of radius 1
is bounded below by a constant which is uniform for all points. So this is also true
for g.
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