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DEFORMING COMPLETE HERMITIAN METRICS WITH
UNBOUNDED CURVATURE∗

ALBERT CHAU† , KA-FAI LI‡ , AND LUEN-FAI TAM§

Abstract. We produce solutions to the Kähler-Ricci flow emerging from complete initial metrics
g0 which are C0 Hermitian limits of Kähler metrics. Of particular interest is when g0 is Kähler with
unbounded curvature. We provide such solutions for a wide class of U(n)-invariant Kähler metrics g0
on Cn, many of which having unbounded curvature. As a special case we have the following Corollary:
The Kähler-Ricci flow has a smooth short time solution starting from any smooth complete U(n)-
invariant Kähler metric on Cn with either non-negative or non-positive holomorphic bisectional
curvature, and the solution exists for all time in the case of non-positive curvature.

Key words. Kähler-Ricci flow, parabolic Monge-Ampère equation, U(n) invariant Kähler met-
rics.
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1. Introduction. Let (Mn, g0) be a complete noncompact Riemannian mani-
fold. The Ricci flow is the following evolution equation:

(1.1)

{
∂

∂t
gij = −2Rij

g(0) = g0.

In [S1] Shi proved that if the curvature of g0 is bounded then (1.1) has a solution
g(t) up to some time T > 0 depending only on the curvature bound for g0 and the
dimension n of M such that the curvature is bounded in space-time. If in addition,
(Mn, g0) is a Kähler manifold with complex dimension n, then Shi [S2] proved that
the solution g(t) is also Kähler, and hence g(t) satisfies Kähler-Ricci flow equation:

(1.2)

{
∂

∂t
gij̄ = −Rij̄

g(0) = g0.

See Theorem 2.1 for more details.
There are many results of existence without assuming that the initial condition

g0 has bounded curvature. In [Si], Simon proved that starting from any sufficiently
small C0 perturbation g0 of a complete Riemannian metric with bounded curvature,
there is a short time solution of the Ricci harmonic heat flow. We also refer to the
works [KL, SSS1] where the Ricci harmonic heat flow is solved starting with rough
initial data obtained from a sufficiently small perturbation of the Euclidean metric
on Rn, and [SSS2] for a similar result for the hyperbolic metrics. In [CW], Cabezas-
Rivas and Wilking obtained a short time existence result of the Ricci flow starting
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from any complete Riemannian metric with nonnegative complex sectional curvature.
They do not assume the curvature is bounded and do not assume the initial metric
is a small perturbation of a complete metric with bounded curvature. The solutions
from [Si], [KL],[SSS1] and [SSS2] are complete and have bounded curvature when
t > 0. In [CW], complete solutions are constructed where the curvature is bounded
whenever t > 0 and examples are also given of complete solutions where the curvature
is unbounded when t > 0.

For Kähler-Ricci flow, when n = 1, Giesen and Topping [GT] proved that (1.2)
always has a solution starting from any smooth Kähler metric g0 which may have
unbounded curvature, and may even be incomplete. In fact, they also constructed
solutions where g(t) is complete with unbounded curvature for all t ∈ [0, T ). Using
the construction of [CW], Yang and Zheng [YZ] proved that if g0 is a U(n) invariant
complete Kähler metric with nonnegative sectional curvature, and with some technical
assumptions on the solution g(t) of (1.1), then g(t) is Kähler for t > 0. Hence in this
case Kähler-Ricci flow (1.2) has short time solution.

In this work we want to discuss the short time existence and long time existence
of the Kähler-Ricci flow (1.2) in higher dimensions without the assumption that g0
has bounded curvature. We obtain the following:

Theorem 1.1. Let g0 be a complete continuous Hermitian metric on a noncom-
pact complex manifold Mn. Suppose there exists a sequence {hk,0} of smooth complete
Kähler metrics with bounded curvature on M converging uniformly on compact sub-
sets to g0 and another complete Kähler metric ĝ with bounded curvature on M such
that C−1ĝ ≤ hk,0 ≤ Cĝ for some C independent of k. Then for some T > 0, the
Kähler-Ricci flow (1.2) has a complete smooth solution g(t) on M × (0, T ) which has
bounded curvature for all t > 0, and extends continuously to M×[0, T ) with g(0) = g0.
Moreover, if g0 is smooth and {hk,0} converges smoothly and uniformly on compact
subsets of M , then g(t) extends to a smooth solution to (1.2) on M × [0, T ) with
g(0) = g0.

One can also estimate the existence time T and bounds of the norms of the
curvature tensor and its covariant derivatives with respect to g(t), see Theorem 4.2
for more details.

As a corollary, we obtain an estimate of T in Theorem 2.1 in terms of the upper
bound of the holomorphic bisectional curvature. In fact, we can prove a more general
result (see Corollary 4.2):

Let (Mn, g0) be a complete noncompact Kähler manifold with bounded curvature.
Suppose that ĝ ≤ g0 ≤ Cĝ for some complete Kähler metric ĝ with bounded curvature
and holomorphic bisectional curvatures bounded above by K. Let T = 1/(2nK) if
K > 0, otherwise let T = ∞. Then the Kähler-Ricci flow (1.2) has a complete
smooth solution g(t) on M × [0, T ) with g(0) = g0. Moreover, the curvature of g(t) is
uniformly bounded on M × [0, T ′] for all 0 < T ′ < T .

Another corollary is that one can prove that the Kähler-Ricci flow (1.2) has a
short time solution if g0 is perturbation of a complete Kähler metric ĝ with bounded
curvature by a potential satisfying certain growth conditions. More precisely (see
Corollary 4.1),

Let (Mn, g0) be a complete noncompact Kähler manifold with bounded curvature.
Suppose u is a C2 function such that |∇u|g0 and |u| are of sublinear growth and
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such that g0 +
√−1∂∂̄u is uniformly equivalent to g0. Then for some T > 0, the

Kähler-Ricci flow (1.2) has a complete smooth solution g(t) on M × (0, T ) which
has bounded curvature for all t > 0 and extends continuously to M × [0, T ) with
g(0) = g0 +

√−1∂∂̄u.

If the condition in Theorem 1.1 that C−1ĝ ≤ hk,0 ≤ Cĝ is relaxed to only as-
suming hk,0 ≥ C−1ĝ, we still can obtain a short time solution under some additional
assumptions on hk,0. See Theorem 4.1, for more details. However, in this case, we do
not know if the curvature of the solution is bounded for t > 0.

Applying our general existence theorems to U(n) invariant Kähler metrics on Cn,
we obtain:

Theorem 1.2. Let g0 be a complete smooth U(n)-invariant Kähler metric on
Cn with either non-negative or non-positive holomorphic bisectional curvature. Then
for some T > 0, the Kähler-Ricci flow (1.2) has a complete smooth U(n)-invariant
solution g(t) on Cn × [0, T ) with g(0) = g0. Moreover, the solution exists for all time
in case that g0 has non-positive holomorphic bisectional curvature.

Remark 1. Building on the results here, the authors proved in [CLT] that
the solution in Theorem 1.2 exists for all time when g0 has non-negative bisectional
curature as well (see also remark 5). We refer to [CLT] for this and more general
longtime existence results.

This gives an affirmative answer to a question posed by Yang-Zheng [YZ]. In fact,
one can prove results more general than the Theorem above. See Theorems 5.3, 5.4
and their corollaries for more details. We also obtain some long time existence results
for g0 with nonnegative holomorphic bisectional curvature, see Theorem 5.5

The organization of the paper is as follows. In section §2 we review some basic
theory and estimates for (1.2), and in §3 we prove some further a priori estimates
which we will need later. §4 contains our main existence theorems Theorems 4.2 and
4.1 and accompanying corollaries. In §5 we review Wu-Zheng’s description in [WZ]
of U(n) invariant Kähler metrics on Cn and use this to apply our previous results to
prove Theorems 5.3 and 5.4.

The first author would like to thank Bo Yang, and the third author would like to
thank Fangyang Zheng for helpful discussions and interest in this work.

2. Preliminaries. In this section, we review some well known results for the
Kähler Ricci flow which we will use in the paper. We first recall Shi’s short time
existence theorem for (1.2) in [S2].

Theorem 2.1. Let (Mn, g0) be a complete noncompact Kähler manifold with
curvature bounded by a constant K. Then for some 0 < T ≤ ∞ depending only on K
and the dimension n, there exists a smooth solution g(t) to (1.2) on M × [0, T ) with
g(0) = g0 such that

(i) g(t) is Kähler and equivalent to g0 for all t ∈ [0, T );
(ii) g(t) has uniformly bounded curvature on M× [0, T ′] for all 0 < T ′ < T . More

precisely, for any l ≥ 0 there exists a constant Cl depending only on l, K and
the dimension n such that

supM |∇lRm(g(t))|2g(t) ≤
Cl

tl
,

on M × [0, T ).
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(iv) If T <∞ and lim
t→T

sup
M
|Rm(x, t)| <∞, then g(t) extends to a smooth solution

to (1.2) on M×[0, T1) for some T1 > T so that (ii) is still true with T replaced
by T1.

The solution g(t) in Theorem 2.1 has uniformly bounded curvature on M× [0, T ′)
for any 0 < T ′ < T . From this it is easy to see that g(0) and g(t) are uniformly
equivalent on M × [0, T ′). On the other hand, it is a well known fact that one can
study the Kähler-Ricci flow (1.2) through the parabolic Monge-Ampère equation. This
was originated in [C], and we refer to [CT] and references therein for further details on
this fact. By the Evans-Krylov theory [Ev, Kr] for fully non-linear equations, which
in the case of (1.2) takes the form in Theorem 2.2 below, one may conclude that if
g(0) and g(t) are uniformly equivalent, then subsequent curvature bounds follow (see
[SW], and also [Yu] for proofs using only the maximum principle). Actually, we need
a more general version in the sense that we need local estimates where g(t) is assumed
to be uniformly equivalent to a fixed background metric ĝ.

Let us first fix some notations and terminology. (Mn, ĝ) is said to have bounded
geometry of infinite order if the curvature tensor and all its covariant derivatives are
uniformly bounded. In particular, the solution g(t) in Theorem 2.1 has bounded
geometry of infinite order for t > 0.

Also, we will denote the geodesic ball with respect to the metric g with center at
p and radius r by Bg(p, r). The following theorem can be found in [SW].

Theorem 2.2. Let (Mn, ĝ) be a complete noncompact Kähler manifold with
bounded geometry of infinite order. Let h(t) be a solution of Kähler-Ricci (1.2) on
M × [0, T ) with initial condition h0 which is a complete Kähler metric. For any
x ∈M , suppose there is a constant N > 0, such that

N−1ĝ ≤ h(t) ≤ Nĝ

on Bĝ(x, 1)× [0, T ). Let ∇̂ be the covariant derivative with respect to ĝ. Then
(i)

|∇̂kh|2ĝ ≤
Ck

tk

on Bĝ(x, 1/2) × (0, T ), for some constant Ck depending only on k, ĝ, n, T
and N .

(ii) If we assume |∇̂kh0|2ĝ is bounded in Bĝ(x, 1) by ck, for k ≥ 1, then

|∇̂kh|2ĝ ≤ Ck,

on Bĝ(x, 1/2) × [0, T ) for some constant Ck depending only on k, ck, n, T
and N .

Proof. Since ĝ has bounded geometry of infinite order, by [TY], for any x ∈ M
there exists a local biholomorphism φx : D → M , where D = D(1) is the open unit
ball in C

n, satisfying the following in D:
(a) φx(0) = x, φx(D) ⊂ B̂(x, 1), φx(D) ⊃ B̂(x, 2δ) for some δ > 0 which is

independent of x.
(b) C−1δij ≤ (φ∗

x(ĝ))ij̄ ≤ Cδij for some C independent of x.

(c)

∣∣∣∣∂l(φ∗
x(ĝ))ij̄
∂zL

∣∣∣∣ ≤ Cl for any l, i, j and multi index L of length l for some

constant Cl which is independent of x.
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Consider φ∗
x(h(t)), which clearly will solve (1.2) on D(1)× [0, T ). By the Evans-

Krylov theory [Ev, Kr] for fully non-linear elliptic and parabolic equations (see also
[SW] for a maximum principle proof in the case of Kähler Ricci flow), the result
follows.

We end this section with the following longtime existence Theorem from [CT]
when we look at certain special solutions to (1.2) on Cn in Theorem 5.5.

Theorem 2.3. Let (M, g0) be a complete non-compact Kähler manifold such that
i) |Rm(x)| → 0 as d(x) → ∞ where d(x) is the distance function on M from

some p ∈M .
ii) The injectivity radius of (M, g0) is uniformly bounded below by some constant

c > 0.
iii) There exists a strictly pluri-subharmonic function F on M .

Then the Kähler-Ricci flow (1.2) has a complete smooth solution g(t) on M × [0,∞)
with g(0) = g0. Moreover, the curvature of g(t) is bounded uniformly on M × [0, T ]
for all T <∞.

3. Further estimates. In this section we prove some more estimates which we
will need later. One main tool is Theorem 2.2. Hence we want to obtain C0 estimate
for solutions of Kähler-Ricci flow in terms of a background metric.

Recall that the holomorphic bisectional curvature of a Kähler manifold is said to
be bounded above by K if

(3.1)
R(X, X̄, Y, Ȳ )

‖X‖2‖Y ‖2 + |〈X, Ȳ 〉|2 ≤ K

for any two nonzero (1,0)-vectors X,Y . The holomorphic bisectional curvature of a
Kähler manifold being bounded below by K is defined similarly.

In the following, ∇̂ always denotes the covariant derivative of ĝ.

Lemma 3.1. Let h(t) be a solution to (1.2) on Mn × [0, T0) with h(0) = h0 such
that h(t) has uniformly bounded curvature for on M × [0, T ′] for all 0 < T ′ < T0.
Let ĝ be another complete Kähler metric on M with bounded curvature such that the
holomorphic bisectional curvature bounded above by K ≥ 0. Let T = 1

2nK if K > 0,
otherwise let T =∞.

(i) Suppose h0 ≥ ĝ. Then h(t) ≥ (
1
n − 2Kt

)
ĝ on M × [0,min{T0, T }).

(ii) Suppose in addition to (i) we have h0 ≤ Cĝ, that is, suppose ĝ ≤ h0 ≤ Cĝ,
then

(1 − w(t))ĝ ≤ h(t) ≤ (1 + w(t))ĝ

on M × [0,min{T0, T }),
where w(t) =

√
v2(t)(v1(t) + v2(t)− 2n), v1(t) = 1

1
n
−2Kt

, v2(t) = nCe−2κv1(t)t and

κ is a lower bound on the bisectional curvature of ĝ. In particular, we have w(0) =
n
√
C(C − 1).

Proof. (i) Let φ(t) := trh(t)ĝ. Let � = ∂
∂t − Δ, where Δ is the Laplacian with

respect to h(t). Then as in [ST], we can calculate in a normal coordinate relative to
h(t) and use (1.2) to get

�φ =((h)ij̄ĝij̄)− hkl̄(hij̄ĝij̄)kl̄

=(Rij̄ĝij̄)− (Rij̄ĝij̄) + hkl̄hij̄R̂ij̄kl̄ − ĝpq̄hkl̄hij̄∂kĝiq̄∂l̄ĝpj̄

≤ 2Kφ2.

(3.2)
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Now v1(t) is the positive solution to the ODE

dv1(t)

dt
= 2Kv21(t); v1(0) = n

for t ∈ [0, T ). Let S ∈ (0,min{T0, T }) be fixed. Since h(t) has uniformly bounded
curvature on M × [0, S] we have h(t) ≥ C1h0 ≥ C1ĝ for some C1 > 0 and hence
φ is a bounded function on M × [0, S]. Moreover, v1 is also a bounded function on
M × [0, S]. Let A = supM×[0,S](φ+ v1). Then on M × [0, S]

�

(
e−(2AK+1)t(φ− v1)

)
≤ e−(2AK+1)t

[
2K(φ2 − v21)− (2AK + 1)(φ− v1)

]
= e−(2AK+1)t [2K(φ+ v1)− (2AK + 1)] (φ− v1)

which is nonpositive at the points where φ − v1 ≥ 0. Using the fact that h(t) has
uniformly bounded curvature on M×[0, S] and the fact that e−(2AK+1)t(φ−v1) ≤ 0 at
t = 0, and is uniformly bounded onM×[0, S], we conclude that e−(2AK+1)t(φ−v1) ≤ 0
and thus (φ − v1) ≤ 0 on M × [0, S] by the maximum principle, see [NT, Theorem
1.2] for example. This proves (i).

(ii) Let ψ(t) := trĝh(t). For any fixed S ∈ [0,min{T0, T }), as in [C] we calculate
in a normal coordinate relative to ĝ and use (1.2) to get that on M × [0, S):

�ψ =(ĝij̄(ht)ij̄)− hkl̄(ĝij̄hij̄)kl̄

=− (ĝij̄Rij̄)− hkl̄(R̂ij̄

kl̄
hij̄) + (ĝij̄Rij̄)− ĝij̄hpq̄hkl̄∂ihpl̄∂j̄hkq̄

=− hkl̄hij̄R̂
j̄i

kl̄
− ĝij̄hpq̄hkl̄∂ihpl̄∂j̄hkq̄

≤− 2κv1(t)ψ

≤− 2κv1(S)ψ

(3.3)

by (i). Let wS(t) = nCe−2cv1(S)t be the solution to the ODE

dwS(t)

dt
= −2cv1(S)wS(t); wS(0) = nC.

Then arguing as above, we have ψ ≤ wS on Mn × [0, S]. In particular, we get
ψ(S) ≤ wS(S) for every S ∈ [0,min{T0, T }).

So far, we have φ(t) ≤ v1(t), and ψ(t) ≤ v2(t) on M× [0,min{T0, T }) where v1, v2
are as in the statement of the Lemma. Now we follow an idea from [S1]. At any point
in (p, t) ∈M × [0,min{T0, T }), let λ′

is be the eigenvalues of h with respect to ĝ, and
calculate at (p, t)

n∑
i=1

1

λi
(1− λi)

2 =

n∑
i=1

1

λi
+ λi − 2

=φ+ ψ − 2n

≤v1(t) + v2(t)− 2n

(3.4)

and thus for any fixed i we have

(3.5) −w(t) ≤ λi − 1 ≤ w(t)
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where w(t) =
√
v2(t)(v1(t) + v2(t)− 2n). The conclusion in (ii) then follows.

The following lemma basically says that if a local solution h(t) to (1.2) is a priori
uniformly equivalent to a fixed metric ĝ in space time, and close to ĝ at time t = 0,
then it remains close to ĝ in a uniform space time region. Note that in contrast to
Lemma 3.1, the assumption here is on h(t) for all t.

Lemma 3.2. Let h(t) be a smooth solution to (1.2) on B(1)×[0, T ) with h(0) = h0

where B(1) is the unit Euclidean ball in C
n. Let ĝ be a smooth Kähler metric on B(1).

Suppose

(3.6) N−1ĝ ≤ h(t) ≤ Nĝ

on B(1)× [0, T ) for some N > 0, and that

(3.7) ĝ ≤ h0 ≤ Cĝ

on B(1). Then there exists a positive continuous function a(t) : [0, T )→ R depending
only on ĝ, N, C and n such that

(3.8)
(1− a(t))

C
h0 ≤ h ≤ (1 + a(t))h0

on B(1/2)× [0, T ), where a(0) = n
√
C(C − 1).

Proof. As in the previous Lemma, let φ = trhĝ, ψ = trĝh on B(1)×[0, T0). Choose
some smooth non-negative cutoff function on η : B(1) → R satisfying η|B(1/2) =

1, η|(B(3/4))c = 0, |∇̂η|2 ≤ C1η, |∂∂̄η|ĝ ≤ C2 on B(1) for some constants C1, C2

depending only on ĝ. Using the fact that h(t) ≥ N−1ĝ, we have

|∇η|2 = hij̄ηiηj̄ ≤ N |∇̂η|2 ≤ NC1,

and

|Δη| =
∣∣hij̄ηij̄

∣∣ ≤ N |∂∂̄η|ĝ ≤ NC2.

Now we consider the function ηφ on B(1) × [0, T ). Then in B(1) × [0, T ) at the
point where η > 0, as in the proof of Lemma 3.1 (i) we obtain

(∂t −Δ)(ηφ) = η(∂t −Δ)φ− 2 < ∇η,∇φ > −φΔη

= η(∂t −Δ)φ− 2
< ∇η,∇(ηφ) >

η
+

2|∇η|2
η

φ− φΔη

≤ ηC3φ
2 − 2

< ∇η,∇(ηφ) >

η
+ 2NC1φ+NC2φ

≤ C4 − 2
< ∇η,∇(ηφ) >

η

(3.9)

for some constants C3, C4 depending only on ĝ, N, C and n, where we have used the
assumption (3.8). Since ηφ is zero outside B(3/4), applying the maximum principle
to ηφ − C4t one can conclude that

ηφ ≤ n+ C4t =: ṽ1(t)

on B(1)× [0, T ).
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Now consider the function ηψ on B(1)× [0, T ). Using the proof of Lemma 3.1 (ii)
and estimating as above we obtain

(3.10) ηψ ≤ nC + C5t =: ṽ2(t)

on B(1)× [0, T ) for some constant C5 depending only on ĝ, N, C and n.
Now at any point in (p, t) ∈ B(1/2)× [0, T ), let λ′

is be the eigenvalues of h with
respect to ĝ. Then as in the proof of Lemma 3.1 (ii) we get that at (p, t)

(3.11) −w̃(t) ≤ λi − 1 ≤ w̃(t)

where w̃(t) =
√
ṽ2(t)(ṽ1(t) + ṽ2(t)− 2n). Since ṽ1(0) = n and ṽ2(0) = nC, the lemma

follows easily from this.

In contrast to the previous lemma, in the following lemmas we only assume a
lower bound on a solution h(x, t) to (1.2).

Lemma 3.3. Let h(x, t) be a smooth solution to (1.2) on M×[0, T ) with h(0) = h0.
Let p ∈ M . Suppose there is a positive continuous function α(t) : [0, T ) → R such
that

h(t) ≥ α(t)ĝ.

where ĝ is a complete Kähler metric with bounded curvature. Then, there exists a
positive continuous function β(r, t) : [1,∞) × [0, T ) → R β(r, t) depending only on ĝ
the upper bound of trĝh0 in Bĝ(p, 2r), the lower bound of scalar curvature R(0) of
h(0) in Bĝ(p, 2r), α(t) and the dimension n such that for r ≥ 1

h(t) ≤ β(r, t)ĝ.

in Bĝ(p, r)× [0, T ).

Proof. Let d(x) be the distance with respect to ĝ from x to a fixed point p ∈M .
Since ĝ has bounded curvature, by [S2] (see also [T]) there exists a smooth positive
function ρ(x) satisfying d(x) + 1 ≤ ρ(x) ≤ d(x) + C on M for some C > 0, with
|∇̂ρ|, |∇̂2ρ| are bounded on M . Hence without loss of generality, we may assume for
simplicity that d(x) is in fact smooth with |∇̂d|, |∇̂2d| bounded on M .

Let φ(s) be smooth function on R such that φ = 1 for s ≤ 1 and is zero for s ≥ 2.
Moreover, we assume φ′ ≤ 0, (φ′)2/φ ≤ C1, |φ′′| ≤ C2. Let R be the scalar curvature
of h(t). Then

(3.12)

(
∂

∂t
−Δ

)
R ≥ 1

n
R2.

on M × [0, T ). Let ϕ(x) = φ(d(x)/r). Then ϕ(x) = 0 if d(x) ≥ 2r. Fix some T ′ < T .
Then as in the proof of the previous lemma, we compute

|∇ϕ|2 =
1

r2
(φ′)2|∇d|2

=
1

r2
(φ′)2hij̄didj̄

≤ 1

r2α(t)
(φ′)2ĝij̄didj̄

≤C3

r2
(φ′)2
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on B(2r) × [0, T ′] for some constant C3 depending only on T ′, α(t) and ĝ. Similarly,

|Δϕ| =|1
r
φ′Δd+

1

r2
φ′′|∇d|2|

≤C4(
1

r
+

1

r2
)

on B(2r) × [0, T ′] where C4 depends on C1, C2, T
′, α(t) and ĝ.

Now (
∂

∂t
−Δ

)
(ϕR) =ϕ

(
∂

∂t
−Δ

)
R −RΔϕ− 2〈∇R,∇ϕ〉

≥ 1

n
ϕR2 − C5|R| − 2〈∇R,∇ϕ〉

(3.13)

on B(2r) × [0, T ′] where C5 depends only on C4 and r. Suppose the infimum of ϕR
on B(2r) × [0, T ′] is attained at t = 0, then R ≥ min{0, infBĝ(p,2r) R(h0)} on Bĝ(r).
Suppose instead that ϕR attains a negative minimum at some (x, t) ∈ B(2r)× [0, T ′]
where t > 0. Then at (x, t), ∇R = −R∇ϕ

φ . Hence at this point,

0 ≥ 1

n
ϕR2 − C6|R|(3.14)

where C6 depends only on C6, C3 and r. Hence

ϕ2|R| ≤ nC6.

on B(2r) × [0, T ′] and we conclude that R ≥ −C7 on Bĝ(p, r) × [0, T ′] for some C7

depending only on T ′, ĝ, r, α(t). On the other hand,

∂

∂t
log

(
det(hαβ̄)(t)

det(hαβ̄(0))

)
= −R ≤ C7.

So

det(hαβ̄)(t)

det(ĝαβ̄)
≤ eC7t

det(hαβ̄)(0)

det(ĝαβ̄)

on Bĝ(p, r) × [0, T ′]. Let λi be eigenvalues of h(t) with respect to ĝ. By assump-
tion, λi(x, T

′) ≥ α(T ′) for each i and x ∈ Bĝ(p, r), the above inequality then implies
λi(x, T

′) ≤ β(r, T ′) for some β(r, T ′) depending only on the those constants listed
in the Lemma. Moreover, it is not hard to see that β(r, T ′) can be chosen to de-
pend continuously on r, T ′ as α(t) is continuous. The Lemma follows as T ′ < T is
arbitrary.

Remark 2. Given only a local solution h(t) to (1.2) on B(1)× [0, T ) where B(1)
is the unit ball on Cn, it is not hard to see from its proof that the conclusion of Lemma
3.3 will hold in B(r) × [0, T ) for all r ≤ 1/2.

4. Kähler Ricci flow: general existence Theorems. We are now ready to
state and prove our main existence Theorems for (1.2) using the estimates in the
previous section. Theorems 4.1 and 4.2 provide general existence Theorems for (1.2)
when the initial Kähler metric is realized as a limit of a sequence of Kähler metrics
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satisfying certain properties. The curvature of the initial metric may be unbounded
or even undefined. As an application, In Corollary 4.1 we obtain an existence result
for Hermitian continuous metrics which are perturbations of a complete Kähler metric
with bounded curvature. In Corollary 4.2 we apply the above Theorems to provide
an estimate for the maximal existence time for (1.2) assuming that the curvature of
the initial Kähler metric is bounded. In some cases, we have long time existence.

In the following, we say that a sequence of smooth metrics hk converge smoothly
to a metric g on a set U , if hk converge to g in C∞ norm on U .

Theorem 4.1. Let g0 be a complete continuous Hermitian metric on a noncom-
pact complex manifold Mn. Suppose there exists a sequence {hk,0} of smooth complete
Kähler metrics with bounded curvature on M converging uniformly on compact subsets
to g0 and there exists another complete Kähler metric ĝ on M with bounded curvature
and with holomorphic bisectional curvature bounded from above by K ≥ 0 satisfying:

(i) hk,0 ≥ ĝ for all k;
(ii) for every k, Kähler-Ricci flow (1.2) has smooth solution hk(t) with initial

value hk,0 on M × [0, T ′) for some T ′ > 0 independent of k such that the
curvature of hk(t) is uniformly bounded on M × [0, T1] for all 0 < T1 < T ′;

(iii) for some fixed point p ∈M , for any r > 0 there exists a constant Cr > 0 such
that the scalar curvature Rk of hk,0 satisfies Rk ≥ −Cr on Bĝ(p, r) for all k.

Let T = min{T ′, 1
2nK } if K > 0, otherwise let T = T ′. Then the Kähler-Ricci flow

(1.2) has a complete smooth solution g(t) on M × (0, T ) which extends continuously
to M × [0, T ) with g(0) = g0 and satisfies g(t) ≥ (1/n− 2Kt)ĝ on M × (0, T ).

Moreover, if g0 is smooth and {hk,0} converges smoothly and uniformly on com-
pact subsets of M , then g(t) extends to a smooth solution to (1.2) on M × [0, T ) with
g(0) = g0.

Proof. By Lemma 3.1, we have

(4.1) hk(t) ≥
(
1

n
− 2Kt

)
ĝ

as long as t < T0 = 1/(2nK). By Theorem 2.1, let ĝ(t) be the solution Kähler-Ricci
flow in the theorem with initial condition ĝ. Then for any 1 > ε > 0 small, choose
0 < t0 small enough so that (1 − ε)ĝ(t0) ≤ ĝ ≤ (1 + ε)ĝ(t0). Then we have

(4.2) hk(t) ≥
(
1

n
− 2Kt

)
(1− ε)ĝ(t0)

and ĝ(t0) has bounded geometry of infinite order. By Lemma 3.3, for there is a
positive continuous function β(r, t) : [1,∞)× [0, T0)→ R such that for r ≥ 1

(4.3) hk(t) ≤ β(r, t)ĝ(t0)

in B̂(p, r)× [0, T ) where T = min{T ′, 1
2nK } and p ∈M is a fixed point. We conclude

from Theorem 2.2 (i), that passing to some subsequence, the hk(t)’s converge to a
solution g(t) of Kähler-Ricci on M × (0, T ) so that (4.1) is true with hk(t) replaced
with g(t). Moreover, if g0 is smooth and {hk} converges smoothly and uniformly to
g0 on compact sets, then we see from Theorem 2.2 (ii) that in fact g(t) extends to a
smooth solution on M × [0, T ) such that g(0) = g0.

We now prove g(t) converge uniformly on compact set to g0 as t → 0 when
g0 is only assumed to be continuous. Fix any x ∈ M and a local biholomorphism
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φ : B(1)→M where B(1) is the open unit ball in Cn with image inside Bĝ(x, 1), and
φ(0) = x. Consider the pullbacks φ∗hk(t), φ

∗hk,0 = φ∗hk(0), φ
∗ĝ, which by abuse

of notation we will simply denote by hk(t), hk,0, ĝ, respectively, for the remainder of
proof. In particular, hk(t) solves Kähler-Ricci flow (1.2) on B(1)× [0, T ).

Now by our hypothesis on the convergence of hk, given any δ > 0 we may find k0
such that |hk0,0 − g0|ĝ ≤ δ and

(4.4) (1− δ)hk0,0 ≤ hk,0 ≤ (1 + δ)hk0,0

for all k ≥ k0 on B(1). On the other hand, by (4.2) and (4.3) we can find N > 0 such
that

(4.5) N−1hk0,0 ≤ hk(t) ≤ Nhk0,0

in B(1) × [0, T/2) for all k ≥ k0. Then by Lemma 3.2, there exists a continuous
function a(t) depending on N, hk0 and δ such that

(1− a(t))
(1 − δ)2

(1 + δ)
hk0,0 ≤ hk(t) ≤ (1 + a(t))(1 + δ)hk0,0

in B(12 )× [0, T/2) with a(0) = n
√
C(C − 1), with C = (1+ δ)/(1− δ). Note that a(t)

is independent of k. Letting k →∞ gives

(4.6) (1− a(t))
(1 − δ)2

(1 + δ)
hk0,0 ≤ g(t) ≤ (1 + a(t))(1 + δ)hk0,0

in B(12 )× (0, T/2). We then get

lim sup
t→0

|g(t)− g0|ĝ
≤ lim sup

t→0
(|g(t)− hk0,0|ĝ + |hk0,0 − g0|ĝ)

≤
[∣∣∣∣1− (1 − a(0))

(1− δ)2

(1 + δ)

∣∣∣∣+ |(1 + a(0))(1 + δ)− 1|
]
|hk0,0|ĝ

+ δ|hk0,0|ĝ
uniformly on B(12 ). Then letting δ → 0 above, and using the fact that a(0) → 0 as
δ → 0, and (4.2) and (4.3) we conclude that

lim sup
t→0

|g(t)− g0|ĝ = 0

uniformly on B(12 ). Hence g(t) converge to g0 uniformly on compact sets as t→ 0.

We do not have any bound on the curvature of solution g(t) in the previous
theorem. Also in the previous theorem, we assume that the Kähler-Ricci flow (1.2)
has solution with initial condition hk,0 on a fixed time interval independent of k. We
want to remove this assumption and obtain curvature bound for the solutions. In
order to do this, we assume hk,0 also has an uniform upper bound.

Theorem 4.2. Let g0 be a complete continuous Hermitian metric on a noncom-
pact complex manifold Mn. Suppose there exists a sequence {hk,0} of smooth complete
Kähler metrics with bounded curvature on M converging uniformly on compact subsets
to g0 and there exists another complete Kähler metric ĝ on M with bounded curvature
and holomorphic sectional curvature bounded from above by K ≥ 0 such that
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(i) C−1ĝ ≤ hk,0 ≤ Cĝ for some C independent of k;
(ii) hk has bounded curvature for every k.

Let T = 1/(2CnK) if K > 0, otherwise let T =∞. Then the Kähler-Ricci flow (1.2)
has a smooth solution g(t) on M × (0, T ) such that

(a) (1/(nC)− 2Kt)ĝ ≤ g(t) ≤ B(t)ĝ on M × (0, T ) for some positive continuous
function B(t) depending only on C, ĝ and n.

(b) g(t) has bounded curvature for t > 0. More precisely, for any 0 < T ′ < T
and for any l ≥ 0 there exists a constant Cl depending only on C, l, T ′, ĝ
and the dimension n such that

supM |∇lRm(g(t))|2g(t) ≤
Cl

tl+2
,

(c) g(t) converges uniformly on compact subsets to g0 as t→ 0.
Moreover, if g0 is smooth and {hk,0} converges smoothly and uniformly on com-

pact subsets of M , then g(t) extends to a smooth solution on M×[0, T ) with g(0) = g0.

Proof. For each k, let hk(t) be the solution to (1.2) with initial condition hk from
Theorem 2.1 which is defined on M × [0, Tk) for some Tk > 0. We first claim that we
can choose Tk such that Tk ≥ T for some positive T for all k. By Lemma 3.1, there
is a positive continuous function B(t) : [0, T )→ R independent of k such that

(1/n− 2CKt)ĝ ≤ hk(t) ≤ B(t)ĝ

in M × [0,min{Tk, T }) where T = 1/(2nCK). As before, we may assume that ĝ has
bounded geometry of infinite order. By Theorem 2.2, we conclude that if Tk < T ,
then |Rm(hk(t))|hk(t) are bounded in M × [0, Tk). By Theorem 2.1, we see that one
can extend hk(t) so that Tk ≥ T for all k as claimed. Given upper and lower bounds
on hk(t) as above, we may conclude from Theorem 2.2, as in the proof of Theorem 4.1,
that there is a smooth solution to the Kähler-Ricci flow g(t) on M × (0, T ) satisfying
condition (a) and (c) from which we conclude, by Theorem 2.2 (i), that condition (b)
is also satisfied.

Corollary 4.1. Let (Mn, ĝ) be a complete Kähler manifold with bounded cur-
vature. Suppose u is real C2 function on M such that |∇̂u|+ |u| = o(r) and

A−1ĝ ≤ ĝ +
√−1∂∂̄u ≤ Aĝ

for some A > 1, where ∇̂ is the covariant derivative with respect to ĝ. Then for some
T > 0, the Kähler-Ricci flow (1.2) has a complete solution g(t) on M × [0, T ) with
g(0) = g0 +

√−1∂∂̄u and satisfying the conclusion of Theorem 4.2.

(Here f = o(rk) represents a positive function on M such that f(x)/dkp(x) ap-
proaches 0 as dp(x) → ∞ where d(x) is the distance function from some fixed point
in M relative to ĝ).

Proof. Let d(x) be the distance with respect to ĝ from x to a fixed point p ∈M .
As in the proof of Lemma 3.3, we may assume without loss of generality that d(x) is
smooth with |∇̂d|, |∇̂2d| bounded on M . Let φ be a smooth function on R such that
0 ≤ φ ≤ 1, φ(s) = 1 for s ≤ 1 and φ(s) = 0 for s ≥ 2, and |φ′| + |φ′′| ≤ c1 for some
c1. For any k ≥ 1, let ηk(x) = φ(d(x)/k). Then |∇̂ηk|, |∇̂2ηk| ≤ c2/k on M for some
constant c2 independent of k. Now let {uk} be a sequence of smooth functions on M
which converging to u, uniformly on compact subsets of M in the C2 norm. For each
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k we have

∂∂̄(ηkuj) =ηk∂∂̄uj + uj∂∂̄ηk + ∂uj ∧ ∂̄ηk + ∂ηk ∧ ∂̄uj

→ ηk∂∂̄u+ u∂∂̄ηk + ∂u ∧ ∂̄ηk + ∂ηk ∧ ∂̄u
(4.7)

uniformly on M as j → ∞. Since ∂ηk and ∂∂̄ηk vanish on B(k) and outside B(2k),
and |∇̂u| + |u| = o(r), for any ε > 0 we have |∂uj ∧ ∂̄ηk|ĝ + |uj∂∂̄ηk|ĝ ≤ ε if j is
large enough. Hence, for any k, we can find ujk with jk → ∞ as k → ∞ such that
hk = ĝ +

√−1∂∂̄(ηkujk) is a Kähler metric such that

(2A)−1ĝ ≤ hk ≤ 2Aĝ.

In particular, hk is complete, outside a compact set hk = ĝ and thus has bounded
curvature, and hk converges to g0 uniformly on compact sets in C0. The corollary
now follows from Theorem 4.2

Remark 3. Note that if |∇̂u| = o(1), then |u| = o(r). This will imply that
|∇̂u|+ |u| = o(r). Also from the proof of the theorem, if ĝ has bounded curvature and
u is a smooth function on M such that ∂∂̄u, u and ∇̂u are bounded, then for ε > 0
small enough, the Kähler-Ricci flow with initial condition ĝ + ε

√−1∂∂̄u has a short
time solution.

By Theorem 4.2, one may obtain estimates for maximal time interval of existence
of the Kähler-Ricci flow constructed in Theorem 2.1.

Corollary 4.2. Let Mn be a complex noncompact manifold and let g0, ĝ be
complete Kähler metrics with bounded curvature on M . Suppose the holomorphic
bisectional curvature of ĝ is bounded above by K ≥ 0 and that ĝ ≤ g0 ≤ Cĝ for some
C ≥ 1. Let T = 1/2nK if K > 0, otherwise let T = ∞. Then the Kähler-Ricci flow
(1.2) has a complete smooth solution g(t) on M × [0, T ) with g(0) = g0 such that for
all t ∈ [0, T ), g(t) has bounded curvature and

(4.8) (1/n− 2Kt) ĝ ≤ g(t).

In particular, the Kähler-Ricci flow has a long time solution if the initial condition
is a complete Kähler metric with non-positive and bounded holomorphic bisectional
curvatures.

5. Kähler Ricci flow of U(n) invariant metrics on Cn. In this section we
apply Theorems 4.1, 4.2 to U(n) invariant metrics on Cn.

5.1. Wu-Zheng’s construction. We recall Wu-Zheng’s construction in [WZ]
of smooth U(n) invariant metrics on Cn. Begin with a smooth function ξ : [0,∞)→ R

with ξ(0) = 0, and define functions h, f : [0,∞)→∞ by

(5.1) h(r) := He
∫

r

0
− ξ(t)

t
dt; f(r) :=

1

r

∫ r

0

h(t)dt

where h(0) = H > 0 and f(0) = h(0).
Now define a U(n) invariant metric g on Cn by

(5.2) gij̄ = f(r)δij + f ′(r)zizj,
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where gij̄ are the components of g in the standard coordinates z = (z1, . . . , zn) on Cn

and r = |z|2. Notice that a different choice of h(0) simply corresponds to scaling the
metric g above. In the following, we always take H = 1, i.e. h(0) = 1. Wu-Zheng
[WZ] proved:

Theorem 5.1. [Wu-Zheng]
(i) The metric g above is complete if

(5.3)

∫ ∞

0

√
h√
t
dt =∞.

Conversely, up to scaling by a constant factor, every complete smooth U(n)
invariant Kähler metric on Cn can be generated in this way.

(ii) At the point z = (z1, 0, . . . , 0), relative to the orthonormal frame {e1 =
1√
h
∂z1 , e2 = 1√

f
∂z2 , . . . ,

1√
f
∂zn} with respect to gij̄, we have

(a) A = R11̄11̄ =
ξ′

h
,

(b) B = R11̄īi =
1

(rf(r))2

∫ r

0

ξ′(t)
(∫ t

0

h(s)ds

)
dt,

(c) C = Rīiīi = 2Rīijj̄ =
2

(rf(r))2

∫ r

0

h(t)ξ(t)dt,

where 2 ≤ i �= j ≤ n and these are the only non-zero components of the
curvature tensor at z except those obtained from A,B or C by the symmetric
properties of R.

In this section, C always denotes the quantity in the above theorem. By the
above construction, Wu-Zheng [WZ] proved the correspondence below for positively
curved metrics, while Yang later showed in [Y] that this extends to a correspondence
for non-negatively curved metrics.

Theorem 5.2. [Wu-Zheng, Yang] There is a one to one correspondence between
the set of all smooth complete U(n) invariant Kähler metrics on Cn with non-negative
holomorphic bisectional curvature (modulo scaling by a constant factor) and the set
of all smooth functions ξ : [0,∞)→ R satisfying

(5.4) ξ(0) = 0, ξ′ ≥ 0, ξ ≤ 1.

Remark 4. One direction of the above correspondence is immediately obvious
from Theorem 5.1 (ii)a. In particular, it is obvious that if g has non-negative (non-
positive) holomorphic bisectional curvature then ξ′ ≥ 0 (ξ′ ≤ 0).

5.2. Applications of Theorems 4.1 and 4.2 to U(n) invariant metrics.
We now apply Theorems 4.1 and 4.2 to U(n) invariant metrics. First we have the
following lemma.

Lemma 5.1. Let g be a complete U(n) invariant Kähler metric on Cn generated
by ξ.

(i) If
∣∣∣ ξ′h ∣∣∣ is uniformly bounded, then the curvature of g is uniformly bounded.

(ii) If limr→∞
∣∣∣ ξ′(r)h(r)

∣∣∣ = 0, and limr→∞ rf(r) = ∞ then the curvature of g ap-

proaches to zero as r →∞.
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Proof. (i) It is sufficient to prove that the holomorphic bisectional curvature is

uniformly bounded under the assumption that
∣∣∣ ξ′h ∣∣∣ is uniformly bounded by c, say. By

Theorem 5.1, in the notations of the theorem it is sufficient to prove that |A|, |B|, |C|
are uniformly bounded. It is obviously |A| ≤ c. Now

|B| ≤ 1

r2f2

∫ r

0

ch(t)dt

(∫ t

0

h(s)ds

)
dt

≤ c

r2f2

(∫ r

0

h(t)dt

)2

=c

because h > 0 and rf(r) =
∫ r

0
h(t)dt. Similarly, since

|ξ(r)| ≤
∫ r

0

|ξ′(t)|dt ≤ c

∫ r

0

h(t)dt,

we have

|C| ≤ 2c.

(ii) If limr→∞
∣∣∣ ξ′(r)h(r)

∣∣∣ = 0, then limr→∞ A = 0. On the other hand, for any ε > 0,

there is r0 such that
∣∣∣ ξ′(r)h(r)

∣∣∣ ≤ ε for r ≥ r0. Then

|B| ≤ 1

r2f2

∫ r0

0

|ξ′|(t)
(∫ t

0

h(s)ds

)
dt+ ε.

Since rf(r)→∞ as r →∞, it is easy to see that limr→∞ |B| = 0. Also

|ξ|(r) ≤
∫ r0

0

|ξ′|(t)dt+ ε

∫ r

r0

h(t)dt

if r ≥ r0. Hence

|C| ≤ 1

rf

∫ r0

0

|ξ′|(t)dt + ε,

and one can conclude that limr→∞ |C| = 0. From these (ii) follows.

Lemma 5.2. Let ξ : [0,∞) be a smooth function with ξ(0) = 0. Suppose ξ(r) = a
for some constant a ≤ 1 for all r ≥ r0. Then ξ generates a complete U(n) invariant
metric g such that the curvature of g approaches 0 as x→∞ on Cn.

Proof. For r ≥ r0, ∫ r

0

ξ(t)

t
dt =

∫ r0

0

ξ(t)

t
dt+ a log(

r

r0
).

Hence h(r) = c1r
−a for some constant c1 > 0 for all r ≥ r0. Since a ≤ 1, it is easy to

see that ∫ ∞

0

√
h(r)√
r

dr =∞.
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Hence g is complete by Theorem 5.1. Also ξ′ = 0 near infinity, and

rf(r) =

∫ r

0

h(t)dt ≥ c2 + c3 log r

for some constants c2, c3 with c3 > 0 because a ≤ 1. The result follows from Lemma
5.1.

Theorem 5.3. Let g0 be a smooth complete U(n) invariant Kähler metric on C
n

generated by a smooth function ξ : [0,∞) → R with ξ(0) = 0. Suppose there exists

ξ̂ : [0,∞)→ R with ξ̂(0) = 0 which generates a smooth complete U(n) invariant Kähler
metric ĝ with bounded curvature and holomorphic bisectional curvature bounded above
by K ≥ 0, such that for all r ≥ 0 ∫ r

0

ξ − ξ̂

t
dt ≤ c

for some c > 0 independent of r. Let T = 1/(2nKec) if K > 0, otherwise let T =∞.
Then the Kähler-Ricci flow (1.2) has a smooth complete U(n) invariant solution g(t)
on M × [0, T ) with g(0) = g0.

Proof. As ξ and ξ̂ are smooth, for each k ≥ 0 there exists a δk > 0 and a smooth
“cutoff” function ηk : (−∞,∞)→ R satisfying

(5.5) ηk(r) :

⎧⎪⎨⎪⎩
= 1 if −∞ < r ≤ k,

0 < ηk(r) < 1 if k < r < k + δk,

= 0 if k + δk ≤ r <∞,

and

(5.6)

∫ k+δk

k

∣∣∣∣∣ (ξ − ξ̂)

t

∣∣∣∣∣ dt ≤ 1/k

for all k. Fix such a choice of η′ks, and consider the sequence of functions {ξk} :
[0,∞)→∞ defined by

ξk(r) = ηkξ + (1− ηk)ξ̂

and let ωk be the corresponding sequence of smooth U(n) invariant Kähler metrics.
Then

∫ r

0

ξk(t)− ξ̂(t)

t
dt =

∫ r

0

ηk(ξ − ξ̂)

t
dt

=

{ ∫ r

0
ξ−ξ̂
t dt, if r ≤ k;∫ k

0
ξ−ξ̂
t dt+ αk, if r > k

where

|αk| ≤
∫ k+δk

k

∣∣∣∣∣ξ − ξ̂

t

∣∣∣∣∣ dt ≤ 1

k
,
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Hence ∫ r

0

ξk(t)− ξ̂(t)

t
dt ≤ c+

1

k
.

where C is the constant in the hypothesis. This implies, by (5.1) and (5.2), that

exp(−c− 1

k
)ĝ ≤ ωk.

In particular, ωk is complete. Also, from (5.1) and (5.2), we have

ωk ≤ ckĝ

where ck = exp
(∫ k+δk

0

∣∣∣ ξ−ξ̂
t

∣∣∣ dt) . It is also easy to see that ωk has bounded curvature

for each k, and thus by Corollary 4.2, for each k there exists a solution gk(t) to (1.2)
on M × [0, Tk) where Tk = 1/(2nK exp(c + 1

k )). By uniqueness [CZ], gk(t) is U(n)
invariant for all t. The result now follows from Theorem 4.1.

By Theorem 5.3, we have

Corollary 5.1. Let g0 be a smooth complete U(n) invariant Kähler metric g0
on C

n generated by a smooth function ξ : [0,∞)→ R with ξ(0) = 0. If ξ(r) ≤ 1, then
for some T > 0 the Kähler-Ricci flow (1.2) has a complete U(n) invariant smooth
solution g(t) on Cn× [0, T ) with g(0) = g0. If in fact ξ(r) ≤ 0, in particular if ξ′ ≤ 0,
then the solution exists on Cn × [0,∞).

Proof. Let ξ̂ be a smooth function on [0,∞) with ξ̂(0) = 0 and ξ̂(r) = 1 for r ≥ 1.

Then ξ̂ generates a complete U(n) invariant Kähler metric with bounded curvature
by Lemma 5.2. The first result follows from Theorem 5.3.

If ξ ≤ 0, then we can choose ξ̂ = 0 which generates the standard Euclidean metric.
The second result also follows from Theorem 5.3.

We do not have any curvature bound on the solution in Theorem 5.3. In the next
theorem, the solution also has some bounds on the curvature and its derivatives.

Theorem 5.4. Let g0 be a smooth complete U(n) invariant Kähler metric on
Cn generated by a smooth function ξ : [0,∞)→ R with ξ(0) = 0. Suppose there exist
α ≤ 0 and β such that for all 0 < a < r,

(5.7)

∫ r

a

(α− ξ)

t
dt,

∫ r

a

(ξ − 1)

t
dt ≤ β.

Then for some T > 0 the Kähler-Ricci flow (1.2) has a complete smooth U(n) invari-
ant solution g(t) on Cn× [0, T ) with g(0) = g0. Moreover, for every l ≥ 0 there exists
a constant cl depending only on α, β, l and n such that

(5.8) sup
p∈Cn

‖∇lRm(p, t)‖2t ≤
cl
tl+2

on Cn × (0, T ).
If in addition,

(5.9)

∫ r

0

ξ

t
< σ
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for some constant σ independent of r, then the above solution to Kähler-Ricci flow is
defined on Cn × [0,∞) and satisfies (5.8) on Cn × (0, T ′) for some T ′ > 0.

Remark 5. In [CLT] it was proved that if β < 1 in Theorem 5.4 then T = ∞.
While (5.8) holds on Cn × (0, T ′) for some T ′ > 0, it is unclear if this is true for all
T ′.

Corollary 5.2. Let g0 be a smooth complete U(n) invariant Kähler metric g0 on
Cn generated by a smooth function ξ : [0,∞)→ R with ξ(0) = 0. If α ≤ ξ(r) ≤ 1 for
some α ≤ 0, in particular if ξ′ ≥ 0 so that g0 has nonnegative holomorphic bisectional
curvature, then for some T > 0 the Kähler-Ricci flow (1.2) has a smooth solution
on Cn × [0, T ) with g(0) = g0 and satisfies (5.8). Moreover, the solution g(t) has
nonnegative holomorphic bisectional curvature for t ∈ (0, T ).

If in fact c ≤ ξ ≤ 0 for all r, then the solution exists for all time and satisfies
(5.8) on Cn × (0, T ′) for some T ′ depending only on c and n.

Proof. If c ≤ ξ(r) ≤ 1 (or c ≤ ξ(r) ≤ 0) for some c, then the conditions of Theorem
5.4 clearly hold. In case g0 has non-negative holomorphic bisectional curvature, the
fact that g(t) has non-negative bisectional curvature for all t ∈ [0, T ) was proved in
[YZ].

Remark 6. Let ξ̂ : [0,∞) → R be smooth with ξ̂(0) = 0 and ξ̂(r) = 1 +
1/ ln r for r ≥ 1 say. Then from the proof of Proposition 5.1, it is not hard to
see that the corresponding ĝ is complete with bounded curvature. Now it is easy
to construct a smooth function ξ ≥ ξ̂ satisfying the assumptions in Theorem 5.3,
where the corresponding g is complete with unbounded curvature. Thus ξ satisfies
the assumptions in Theorem 5.3, while it is also easy to see that ξ does not satisfy
the assumptions in Theorem 5.4.

5.3. Proof of Theorem 5.4. By Theorem 4.2, Theorem 5.4 will follow once
we produce a sequence ξk and function ξ̂ such that the corresponding U(n) invariant
Kähler metrics hk, g0 and ĝ satisfy the hypothesis of Theorem 4.2. We begin by
proving the existence of such a function ξ̂:

Proposition 5.1. Under assumptions (5.7) of Theorem 5.4 on ξ, there exists ξ̂
such that the corresponding U(n) invariant metric ĝ has bounded curvature and

(5.10) c−1ĝ ≤ g0 ≤ cĝ

on Cn for some constant c > 0. If in addition, (5.9) is true, then ξ̂ can be chosen to
be nonpositive.

Proof. Assume (5.7) is true. We consider three different cases.

Case 1: Suppose there is c′ > 0 such that
∫ r

1
ξ−1
t dt ≥ c′ for all r ≥ 1. Let ξ̂ be

a fixed smooth function on [0,∞) such that ξ̂(0) = 0 and ξ̂(r) = 1 for r ≥ 1. Let ĝ

be the complete U(n) invariant metric generated by ξ̂. Then there is c′′ such that for
any 1 ≥ r > 0, ∣∣∣∣∣

∫ r

0

ξ − ξ̂

t
dt

∣∣∣∣∣ ≤
∣∣∣∣∫ r

0

ξ

t
dt

∣∣∣∣+
∣∣∣∣∣
∫ r

0

ξ̂

t
dt

∣∣∣∣∣ ≤ c′′
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for some c′′. For r ≥ 1 ∫ r

1

ξ − ξ̂

t
dt =

∫ r

1

ξ − 1

t
dt ≤ β

and ∫ r

1

ξ − ξ̂

t
dt =

∫ r

1

ξ − 1

t
dt ≥ c′.

Hence by (5.1) and (5.2), the U(n) invariant Kähler metric ĝ generated by ξ̂ satisfies
the required conditions in the Proposition.

Case 2: Suppose there is c′ > 0 such that
∫ r

1
α−ξ
t dt ≥ c′ for r ≥ 1. Let ξ̂ be a

fixed smooth function on [0,∞) such that ξ̂(0) = 0 and ξ̂(r) = α for r ≥ 1. Then as

in the previous case, the U(n) invariant Kähler metric ĝ generated by ξ̂ satisfies the

required conditions in the Proposition. Note that in this case, ξ̂ can be chosen to be
nonpositive.

Case 3: Suppose as a function of r,
∫ r

1
ξ−1
t dt is not bounded from below and∫ r

1
ξ−α
t dt is not bounded from above. We want to find ξ̂ and 1 ≤ a0 < a1 < a2 · · · → ∞

such that ξ̂ generates a complete U(n) metric ĝ such that

(5.11)

∫ a2(i+1)

a2i

ξ − ξ̂

t
dt = 0

for all i ≥ 0;

(5.12)

∣∣∣∣∣
∫ r

a2i

ξ − ξ̂

t
dt

∣∣∣∣∣ ≤ c1

for some c1 for all i ≥ 0 and for all r ∈ [a2i, a2(i+1)); and

(5.13)

∣∣∣∣∣ ξ̂′(r)ĥ(r)

∣∣∣∣∣ ≤ c2

for some c2 for all r ≥ 0. Then by Lemma 5.1, (5.1) and (5.2), we can conclude that
ĝ satisfies the conditions of the Proposition.

Fix a smooth function ρ on R, such that

ρ(t) =

{
1, if t ≤ 1 + ε;
α, if t ≥ 3− ε,

and ρ′ ≤ 0, where ε > 0 is small enough so that 1 + ε < 3− ε. Then α ≤ ρ ≤ 1.
Let ξ̂ be a smooth function on [0, 1] with ξ̂(0) = 0 and ξ̂(r) = 1 near r = 1 such

that 0 ≤ ξ̂ ≤ 1. We are going to find ai and ξ̂(r) on [ai, ai+1] inductively. Let a0 = 1.∫ 3a0

a0

ξ − ρ

t
dt =

∫ 3a0

a0

ξ(t)− 1 + 1− ρ(t)

t
dt ≤ β + (1− α) log 3.

Since
∫ r

3a0

ξ−α
t dt is not bounded from above, there is a first a1 > 3a0 such that∫ 3a0

a0

ξ − ρ

t
dt+

∫ a1

3a0

ξ − α

t
dt = c3
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where c3 = β + (1− α) log 3 + 1. On the other hand,

∫ 3a1

a1

ξ − (1 + α− ρ( t
a1
))

t
dt ≥ −β − (1 − α) log 3.

Since
∫ r

3a1

ξ−1
t dt is not bounded from below, there exists a first a2 > 3a1, such that∫ 3a1

a1

ξ − (1 + α− ρ( t
a1
))

t
dt+

∫ a2

3a1

ξ − 1

t
dt = −c3.

Define

ξ̂(r) =

⎧⎪⎪⎨⎪⎪⎩
ρ(r), if a0 ≤ r ≤ 3a0;
α, if 3a0 < r ≤ a1;
1 + α− ρ( r

a1
), if a1 < r ≤ 3a1;

1, if 3a1 < r ≤ a2.

It is easy to see that ξ̂ is smooth on [0, a2] with ξ̂(r) = 1 near a2. Moreover, α ≤ ξ̂ ≤ 1
on [1, a2], and ∫ a2

a0

ξ − ξ̂

t
dt = 0,

so (5.11) is true for i = 0. It is easy to see that

|ξ′| ≤ c4
r

where c4 = 3max |ρ′|.
For a0 ≤ r ≤ a1, by the definition of a1 we have∫ r

a0

ξ − ξ̂

t
dt ≤ c3.

For a1 < r ≤ a2, ∫ r

a0

ξ − ξ̂

t
dt =

(∫ a1

a0

+

∫ r

a1

)
ξ − ξ̂

t
dt

≤c3 +
∫ r

a1

ξ − 1 + 1− ξ̂

t
dt

≤c3 + β + (1− α) log 3.

Hence for a0 ≤ r ≤ a2, ∫ r

a0

ξ − ξ̂

t
dt ≤ 2c3.

Similarly, one can prove that ∫ r

a0

ξ − ξ̂

t
dt ≥ −2c3.
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To summarize, we have find ξ̂(r) and a0 < a1 < a2 such that ξ̂ is smooth and defined

on [0, a2] with α ≤ ξ̂ ≤ 1 on [a0, a2], satisfying (5.11) with i = 0, (5.12) with i = 0,

c1 = 2c3, and |ξ̂′| ≤ c4
r on [a0, a2]. Moreover, ξ̂(r) = 1 near r = a2.

From the above construction, it is easy to see that one can continue and find
a2 < a3 < a4 · · · → ∞ and ξ̂ with α ≤ ξ̂(r) ≤ 1 for r ≥ a0, satisfying (5.11) with and

(5.12) with c1 = 2c3, and |ξ̂′| ≤ c4
r on [a0,∞).

Since ξ̂ ≤ 1,

ĥ(r) ≥ c5 exp(−
∫ r

1

1

t
dt) ≥ c5

r

for some c5 > 0 for all r ≥ 1. Combing with the fact that |ξ̂′| ≤ c4
r on [a0,∞), we

conclude that (5.13) is also true.
Suppose in addition ξ satisfies (5.9). If

∫ r

0
ξ
t dt is uniformly bounded from below,

then one can take ξ̂ ≡ 0. If
∫ r

1
ξ
t dt is not bounded from below and

∫ r

1
ξ−α
t dt is not

bounded from above, then one can proceed as in the proof of Case 3 in the above,
by taking ρ = 0 near r = 1 instead. Then one can get ξ̂ to be nonpositive. This
completes the proof of the Proposition.

Now we are ready to prove Theorem 5.4.

Proof of Theorem 5.4. Let ĝ be the U(n) invariant Kähler metric with bounded

curvature generated by ξ̂ defined in Proposition 5.1, so that

(5.14) c−1
1 ĝ ≤ g0 ≤ c1ĝ

for some c1 > 0 as in Proposition 5.1. As in the proof of Theorem 5.3, choose δk > 0
and smooth “cutoff” functions ηk : (−∞,∞)→ R satisfying

(5.15) ηk(r) :

⎧⎪⎨⎪⎩
= 1 if −∞ < r ≤ k

0 < ηk(r) < 1 if k < r < k + δk

= 0 if k + δk ≤ r <∞.

and

(5.16)

∫ k+δk

k

∣∣∣∣∣(ξ − ξ̂)

t

∣∣∣∣∣ dt ≤ 1

for all k. Let {ξk} : [0,∞)→∞ be defined by

ξk(r) = ηkξ + (1− ηk)ξ̂.

Then as in the proof of Theorem 5.3, each ξk generates a U(n) invariant Kähler metric
ωk so that

(5.17) c−1
2 ĝ ≤ ωk ≤ c2ĝ

for some constant c2 > 0, for all k. Now recall that the curvature of ĝ is bounded by
a constant K as in Proposition 5.1, and thus by Theorem 2.1 we may assume without
loss of generality that ĝ has bounded geometry of order infinity. In particular, the
formula of curvature in Theorem 5.1 implies that each ωk also has bounded curvature.
We also clearly have ωk → g0 uniformly and smoothly on compact subsets of M . By



288 A. CHAU, K.-F. LI, AND L.-F. TAM

Theorem 4.2, there is a solution g(t) of the Kähler-Ricci flow with initial condition g0
on M × [0, T ) for some T > 0 so that

||Rm(g(t))||2g(t) ≤
c3
t2

for some c3 > 0 and for all 0 < t < T . The estimates for ||∇lRm|| for each l ≥ 0 then
follows from the general results of [S1].

If in addition that ∫ ∞

0

ξ

t
dt < σ

for some σ for all r, then ξ̂ can be chosen to be nonpositive. Then ξk is nonpositive
near infinity. Therefore the Kähler-Ricci flow with initial condition hk has longtime
solution hk(t) by Theorem 5.3. On the other hand, g0 ≥ c4ge for some constant
c4 > 0, where ge is the Euclidean metric on Cn. By (5.14) and (5.17),

hk ≥ c5ge

for some constant c5 > 0 for all k. By Theorem 4.1, there exists a longtime solution
g(t) to (1.2) with initial condition g0. On (0, T ) from the previous paragraph, g(t) is
the same as before. Hence g(t) also satisfies (5.8) on Cn × (0, T ).

The long time existence results in Theorem 5.4 are basically for U(n) invariant
metrics with non-positive curvature. The following Theorem gives a longtime exis-
tence result for U(n) invariant metrics with non-negative curvature.

Theorem 5.5. Let g0 be a smooth complete U(n) invariant Kähler metric on Cn

generated by a smooth function ξ : [0,∞) → R with ξ(0) = 0. Suppose ξ(r) = a for
r sufficiently large where a ≤ 1. Then the Kähler-Ricci flow has a smooth complete
U(n) invariant solution g(t) on Cn × [0,∞) with g(t) = g0. In general, if there is
C > 0 such that

(5.18) −C ≤
∫ r

1

ξ − a

t
dt ≤ C

for some a ≤ 1 for all r > 1 and such that |ξ′| = o(r−a), then the Kähler-Ricci flow
has a smooth complete U(n) invariant solution g(t) on Cn × [0,∞) with g(t) = g0
such that the curvature of g(t) is uniformly bounded on M × [0, T ] for all T <∞.

Remark 7. If a ≤ 0, then we have long time solution by Theorem 5.4. However,
there is no curvature bound obtained for all t in that theorem. In that theorem, we
can only conclude that the curvature of the solution is uniformly bounded inM×[0, T ]
for some T > 0.

Proof. Suppose (5.18) is true. We want to prove that the curvature of g tends to
zero as x→∞. Consider the case that a < 1, then

h ≥ c1r
−a

for large r for some c1 > 0. Hence rf ≥ c2r
1−a for r large for some c2 > 0 and

rf(r)→∞ as r →∞. |ξ′| = o(r−a) implies | ξ′h | = o(1). By Lemma 5.1, the curvature
of g0 approaches to zero at infinity.
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Suppose a = 1, then there is c3 > 0 such that

h ≥ c3
r

for r large. So

rf ≥ c4 log r

for some c4 > 0 if r is large. By Lemma 5.1, the curvature of g0 also approaches to
zero at infinity.

The Theorem now follows from the above curvature decay estimates, Lemma 5.3
below which implies the injectivity radius of g is bounded below on Cn, and Theorem
2.3 because Cn has a strictly pluri-subharmonic function.

Lemma 5.3. Let ξ(r) = a for all r sufficiently large and a ≤ 1. Let g be the
corresponding U(n) invariant Kähler metric on Cn. Then the injectivity radius of g
is bounded below by a positive constant on C

n

Proof. We begin by assuming a < 1. Indeed, this will be sufficient for our
applications. By the estimate in [CGT] and by the fact that the curvature of g is
bounded by Lemma 5.2, in order to prove the injectivity radius of g is positive on Cn

it is sufficient to prove there is a constant c > 0 such that

Vg(Bg(x, 1)) ≥ c

for all x where Bg(x, 1) is the geodesic ball of radius 1 with center at x with respect
to g. Let τ be the geodesic distance from the origin, then for a < 1 and r = |z|2 > r0.

(5.19) τ(z) =

∫ r

0

√
h

2
√
s
ds = c1 + c2r

1
2 (1−a)

for some constants c1, c2 with c2 > 0. So

rf(r) = c3 + c4(τ − c1)
2

with c4 > 0.

V (Bg(0; τ)) = cn(rf)
n =

(
c3 + c4(τ − c1)

2
)n

,

where τ = τ(r) is given by (5.19). Hence if τ is large, then

(5.20) Vg(Bg(0; τ + 1) \Bg(0; τ − 1)) ≥ c5τ
2n−1

for some c5 > 0 independent of τ . Let F be a maximal disjoint family of Bg(x, 1) with
x ∈ ∂Bg(0, τ). Let C = {x| Bg(x, 1) ∈ F and let N = N(τ) = #(C). We claim that⋃

x∈C Bg(x, 3) ⊃ Bg(0; τ + 1) \Bg(0; τ − 1). In fact, if y ∈ Bg(0; τ + 1) \Bg(0; τ − 1),
then there is y′ ∈ ∂Bg(0; τ) such that dg(y, y

′) < 1. On the other hand, there is x ∈ C
with dg(x, y

′) < 2. From these the claim followers.
Since g is U(n) invariant, v = v(τ) = Vg(Bg(x, 3)) is constant for x ∈ ∂Bg(0, τ).

Hence we have

Nv ≥ c5τ
2n−1
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and

(5.21) v ≥ c5
N

τ2n−1.

By the expressions of h and f , on ∂Bg(0, τ) = ∂B0(0,
√
r), c−1

6 r−ag0 ≤ g ≤ c6r
−ag0

for some c6 > 0 if r is large, where B0(0,
√
r) is the Euclidean ball with radius

√
r and

center at the origin. Let Bτ
g (x, ρ) be the geodesic ball with respect to the intrinsic

distance of ∂Bg(0, τ). Define Bτ
0 (x, ρ) similarly with respect to g0.

Since Bg(x, 1) ⊃ Bτ
g (x, 1), and Bτ

0 (x, c
−1
6 r

a
2 ) ⊂ Bτ

g (x, 1). Hence

{Bτ
0 (x, c

−1
6 r

a
2 )|x ∈ C} is a disjoint family and

NVg0(B
τ
0 (x, c

−1
6 r

a
2 )) ≤ Vg0(∂B0(0,

√
r)) = cnr

2n−1
2 ,

where cn is the volume of the unit sphere in Cn. Let ρ = r
1
2 , then the volume of the

geodesic ball of radius s0 in ∂B0(0, ρ) is

cnρ
n−2

∫ s0

0

sin2n−2 s

ρ
ds.

Let s0 = c−1
6 r

a
2 . Then s0/ρ→ 0 as r→∞. Hence for r large,

Vg0(B
τ
0 (x, c

−1
6 r

a
2 )) ≥c7

∫ s0

0

s2n−2ds

=c8s
2n−1
0 .

Hence

v ≥c5N−1τ2n−1

≥c−1
n c5c8τ

2n−1r−
2n−1

2 s2n−1
0

≥c9
for some positive constant c9 independent of τ .

We now consider the case when a = 1. Consider Cao’s cigar soliton g̃ which is a
complete U(n) invariant Kähler metric on Cn . It was shown in [WZ] g̃ has positive

sectional curvatures and is generated by ξ̃ satisfying

(5.22)

∫ ∞

0

ξ − ξ̃

t
dt <∞

since ξ(r) = 1 for sufficiently large r (see Theorem 3 in [WZ]).
In particular, by (5.1) and (5.2) it follows that g and g̃ are uniformly equivalent

and thus

Vg(Bg(p, 1)) ≥ CVg̃(Bg̃(p, 1))

for some C > 0 for all p ∈ Cn and for some constant C independent of p. To bound
the injectivity radius of g from below, it suffices to prove that the volume in the
RHS above is uniformly bounded below. This follows from [GM] since g̃ is complete,
and has bounded positive sectional curvatures. For completeness, we include a proof
below that g̃ has bounded curvature. By Wu-Zheng:
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Let φ̃ = rf̃ and t = log r. φ̃′ = rh̃. Hence φ̃ > 0, φ̃′ > 0 for t > −∞. Here
all primes on φ̃ are with respect to t. Since A,B,C > 0, we only need to prove that
A,B,C are bounded from above. It is sufficient to prove that A,B,C are bounded
from above for t ≥ 0. For t ≥ 0, by [WZ, §4]

A = n(1 +
n− 1

φ̃
)− φ̃′

(
1 +

2(n− 1)

φ̃
+

n(n− 1)

φ̃2

)
≤ n(1 +

n− 1

φ̃(0)
),

because φ̃′ > 0, φ̃ > 0. So A is bounded.

B =
1

(rf̃ )2

∫ r

0

dξ̃

dr

(∫ t

0

h̃(s)ds

)
dt ≤ 1

rf̃

because dξ̃
dr > 0, ξ̃(r) ≤ 1. On the other hand by (5.22), h̃(r) ≥ cr−1 for r ≥ 1. Hence

rf̃ ∼ c log r. So B is bounded. Similarly, C is also bounded.

Remark 8. In case 1 > a ≥ 0, we may simply compare g with a metric g̃ with
nonnegative bisectional curvature generated by ξ̃ with ξ̃ = a near infinity. In this
case, g̃ has maximum volume growth by [WZ]. Hence each geodesic ball of radius 1
is bounded below by a constant which is uniform for all points. So this is also true
for g.
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