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HOLOMORPHIC EXTENSION FROM A CONVEX HYPERSURFACE
∗

LUCA BARACCO†

Abstract. We discuss a general result of holomorphic extension of a real analytic function f

defined on the boundary ∂D of a real analytic strictly convex subset D ⊂⊂ Cn. We show that this
follows from the hypothesis of separate holomorphic extension along stationary/extremal discs.
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The problem of testing analyticity on a domain D ⊂ Cn by a family of discs has
attracted a great deal of work. The first example of testing family was first observed
by Agranovsky ans Valsky in [2] on the unit ball of Cn. A significant generalization
goes back to Stout [15] who uses as testing family all the straight lines. Reducing the
testing family, Agranovsky and Semenov [3] use the lines which meet an open subset
D′ ⊂⊂ D. It is classical that the lines which meet a single point zo ∈ D do not suffice
not even in the case of the sphere Bn. Other testing families are considered, among
others, by Globevnik [7], Globevnik and Stout [10], Rudin [14]. In the present paper,
for a strictly convex real analytic domainD, we prove that the stationary discs passing
through a boundary point ia a testing family. The stationary discs passing through
an interior point is supplemented by another (2n− 2)-parameter, generic set of discs
are, alltogether, a testing family. In particular this second set can be chosen as the set
of stationary discs through another point of D. This last result was already obtained
in recent paper by Agranovsky [1] in the ball. We deal with stationary/extremal
discs in the sense of Lempert [12]. We first introduce some terminology. A disc A is
the holomorphic image of the standard disc Δ; PT ∗Cn is the cotangent bundle with
projectivized fibers, and π the projection on the base point; PT ∗∂DCn the projectivized
conormal bundle to ∂D in Cn.

Definition 0.1. A disc A of D is said to be stationary when it is endowed with a
meromorphic lift A∗ ⊂ T ∗Cn with a simple pole attached to T ∗∂DCn, that is, satisfying
∂A∗ ⊂ T ∗∂DCn.

The meromorphic lifts to T ∗Cn become holomorphic in PT ∗Cn. We adopt this
point of view (in accordance to [12]) but keep the same notation A∗ for the lifts to
PT ∗Cn. We consider a (2n−2)-parameter family of stationary discs A = {At}t∈R2n−2 ,
the family A∗ = {A∗t } of their lifts and form the set in PT ∗Cn M = ∪A∗t . The set M
is generically a CR manifold of CR dimension 1 except at the points of a closed set;
we denote by M reg the complement of this set. We have a basic geometric statement

Theorem 0.2. Let Azo be the family of stationary discs which pass through a

point zo ∈ D̄ and let Mzo the union of their lifts; then

(0.1) M reg

zo
= Mzo \ π

−1(zo).

Proof. We first assume that D coincides with the unit ball Bn and zo is in
the interior. It is classical that the stationary discs are the straight lines. By a
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biholomorphic transformation of Bn we can displace zo at 0. It is helpful to use the
parametrization

∂Bn × (0, 1) → M0

(z, r) �→ (zr, [z̄]),

where square brackets denote projectivized coordinates. For fixed r > 0, this describes
a totally real maximal manifold of PT ∗Cn; thus dimCR M0 ≤ 1. On the other hand,
M0 is foliated by discs and therefore dimCR M0 = 1.

Instead, for r = 0, we have π−1(0)∩M0 = {0}×P
n−1
C

; thus any point of π−1(0)∩
M0 is CR singular since there the CR dimension jumps from 1 to n.

We pass now to a general strictly convex domain D. We know from [12] that there
is a mapping Ψ : Bn → D which interchanges 0 with zo, is C

ω outside 0, transforms
holomorphically the complex lines through 0 of Bn (denoted A0) into the stationary
discs of D through zo (denoted Azo), and which fixes the tangent directions at the
“centers”. Therefore, Ψ lifts in a natural way to a mapping Ψ∗ between the manifold
M0 (the union of the A∗0’s) to the corresponding manifold Mzo (the union of A∗zo ’s).
Denote by Bn

r the ball of radius r and put Dr := Ψ(Bn
r ); we know from the theory of

Lempert that

A∗Dr
= (A∗D)|Dr

.

Since (A∗Dr
)|∂Dr

⊂ PT ∗∂Dr
C

n, it follows that Mzo \ π
−1(zo) ⊂ ∪

r
PT ∗∂Dr

C
n. Thus,

PT ∗∂Dr
Cn being maximal totally real for any r, we conclude that Mzo is a CR manifold

except at points of π−1(zo) and that it is CR-diffeomorphic, via Ψ∗, to M0 \ π
−1(0) .

If zo is in the boundary the proof is the same but uses the boundary version of the
Riemann-Lempert mapping Theorem as in Chang-Hu-Lee [6].

Before introducing our main theorem we have to recall the theory by [12] for the
parts that we need.

Stationary discs are stable under reparametrization. In particular, the pole can
be displaced at any of their interior points. It is convenient to identify the lift A∗

to its image in the projectivized bundle PT ∗Cn with coordinates (z, [ζ]). We assume
that D is strictly convex and Ck+1. In this situation, a stationary disc and its lift A∗

are Ck up to ∂Δ. Moreover, one has the following basic result for whose proof we
refer to [12].

Proposition 0.3. For any point (z, [ζ]) ∈ PT ∗Cn|D there is unique, up to

reparametrization, the stationary disc whose lift A∗(z,[ζ]) contains (z, [ζ]). Moreover,

the correspondence

(0.2) (z, [ζ]) �→ A∗(z,[ζ]), PT ∗Cn|D → C1(Δ̄),

is an immersion.

We consider now a Cω function f in ∂D and suppose that it extends holomor-
phically along each disc of a certain family A. The funtion f is not extended to a
function over the union of the discs A ∈ A but it is naturally ”lifted”’ to a function
F on the union of the A∗. This is defined by

F (z, [ζ]) = fA(z,[ζ])
(z)

where A(z,[ζ]) is the unique stationary disc whose lift A∗(z,[ζ]) passes through (z, [ζ]).
The crucial point is that the A’s may overlap on Cn but the A∗’s do not in PT ∗Cn.
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Theorem 0.4. Let D ⊂⊂ Cn be a strictly convex domain with Cω boundary and

f a Cω function on ∂D. Suppose that f extends holomorphically along each disc of

a 2n− 2 parameter family A. Then F extends holomorphically to a neighborhood of

M reg

Proof. We first remark that at any point of M reg the CR structure is fully
formed by the discs. The set M is a manifold with boundary E = ∪∂A∗ which
is an open subset of the conormal bundle PT ∗∂DCn; in particular E is totally real.
Since f ∈ Cω(∂D), then F |E ∈ Cω(E) and so F extends holomorphically to a full
neighborhood of E in PT ∗Cn. Outside the edge, at regular points, the CR structure
of M is fully provided by the discs A∗ by which it is foliated, that is, TC

(z,[ζ])M =
T(z,[ζ])A

∗. In particular, since F is holomorphic along the A∗’s, than it is CR on M .
By propagation of holomorphic extendibility on M reg (cf. [11, 17] )along the discs A∗

we get the conclusion.

We focus our attention to the family Azo of discs through a point zo.

Theorem 0.5. Let D be strictly convex with Cω boundary and let f ∈ Cω(∂D).
Suppose that one of the stationary discs through zo, Ao, belongs to a second family A,
let M =

⋃
A∈AA∗ be the collection of their lifts and assume that π−1(zo)∩A

∗
o ⊂M reg.

Suppose that f extends along the discs of the two families. Than f extends to a

holomorphic function on D.

Corollary 0.6. Let D be a real analytic domain, f ∈ Cω(∂D) and suppose that

f extends holomorphically along

1. either the discs through two interior points

2. or the discs through a boundary point

Then f extends holomorphically.

Remark 0.7. Note that in (1) the family of discs which pass through the second
point is only used to cover the singular point of Mzo over zo; for this purpose, a much
more general family than of discs through another point is suitable.

Remark 0.8. Discs by two points of the ball are also present, as a testing family,
in the papers [1] by Agranovsky and Globevnik [9]. Discs through one point in the
case of the unit ball is also present in [4].

Proof of theorem 0.5. According to Theorem 0.4 F extends to a neighborhood of
both M reg and M reg

zo
. On the other hand, by Theorem 0.2, M reg

zo
= Mzo \ π

−1(zo);
Since we suppose that π−1(zo) ∩ A∗o ⊂M reg then

(0.3) F is holomorphic in a full neighborhood U∗ of A∗o

We prove now that (0.3) implies that

(0.4) F extends holomorphically on the whole PT ∗Cn|D.

To see this, we suppose A∗(z,[ζ])(0) = (z, [ζ]) and define a function G by means of the
Cauchy integral

(0.5) G(z, [ζ]) := (2πi)−1

∫
∂Δ

f ◦A(z,[ζ])(τ)

τ
dτ.
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This is defined for any (z, [ζ]) ∈ PT ∗Cn|D and is real analytic. If (z, [ζ]) is sufficiently
close to A∗o, then A∗(z,ζ) ⊂ U∗ where, according to 0.3, F is holomorphic. By Cauchy

formula (noticing that f◦A(z,[ζ])|∂Δ = F ◦A∗(z,[ζ])|∂Δ) we have thatG(z, [ζ]) = F (z, [ζ])
then we have

G = F in a neighborhood of A∗o.

Hence F , identified to G, extends holomorphically to the full PT ∗Cn|D. In particular
since PT ∗Cn|D has compact complex fibers it follows that F is constant in [ζ]. Thus
it is a function of z only, the holomorphic extension of f to D.
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