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1. Introduction. In this note we want to study compact homogeneous spaces
G/Γ, where G is a connected and simply-connected Lie group and Γ a discrete sub-
group in G. It is well known that the existence of such a Γ implies the unimodularity
of the Lie group G. Recall that a Lie group G is called unimodular if for all X ∈ g

holds tr adX = 0, where g denotes the Lie algebra of G.
If we further demand G/Γ to be symplectic (when G is even-dimensional), a result

of Chu [11] shows that G has to be solvable.
Therefore, we regard compact quotients of connected and simply-connected solv-

able Lie groups by discrete subgroups, so called solvmanifolds
The notion of nilpotent and solvable Lie algebras (and groups) is well known.

1.1. Formality. A differential graded algebra (DGA) is a graded R-algebra A =⊕
i∈N Ai together with an R-linear map d : A → A such that d(Ai) ⊂ Ai+1 and the

following conditions are satisfied:
(i) The R-algebra structure of A is given by an inclusion R ↪→ A0.
(ii) The multiplication is graded commutative, i.e. for a ∈ Ai and b ∈ Aj one has

a · b = (−1)i·jb · a ∈ Ai+j .
(iii) The Leibniz rule holds: ∀a∈Ai∀b∈A d(a · b) = d(a) · b+ (−1)ia · d(b)
(iv) The map d is a differential, i.e. d2 = 0.
Further, we define |a| := i for a ∈ Ai.
The i-th cohomology of a DGA (A, d) is the algebra

Hi(A, d) :=
ker(d : Ai → Ai+1)

im(d : Ai−1 → Ai)
.

If (B, dB) is another DGA, then a R-linear map f : A→ B is called morphism if
f(Ai) ⊂ Bi, f is multiplicative, and dB ◦ f = f ◦ dA. Obviously, any such f induces
a homomorphism f∗ : H∗(A, dA) → H∗(B, dB). A morphism of differential graded
algebras inducing an isomorphism on cohomology is called quasi-isomorphism.

Definition 1.1.1. A DGA (M, d) is said to be minimal if
(i) there is a graded vector space V =

(⊕
i∈N+

V i
)
= Span {ak | k ∈ I} with

homogeneous elements ak, which we call the generators,
(ii) M =

∧
V ,

(iii) the index set I is well ordered, such that k < l ⇒ |ak| ≤ |al| and the
expression for dak contains only generators al with l < k.

We shall say that (M, d) is a minimal model for a differential graded algebra
(A, dA) if (M, d) is minimal and there is a quasi-isomorphism of DGAs ρ : (M, d)→
(A, dA), i.e. it induces an isomorphism ρ∗ : H∗(M, d)→ H∗(A, dA) on cohomology.
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The importance of minimal models is reflected by the following theorem, which
is taken from Sullivan’s work [53, Section 5].

Theorem 1.1.2. A differential graded algebra (A, dA) with H0(A, dA) = R pos-
sesses a minimal model. It is unique up to isomorphism of differential graded algebras.

We quote the existence-part of Sullivan’s proof, which gives an explicit construc-
tion of the minimal model. Whenever we are going to construct such a model for a
given algebra in this article, we will do it as we do it in this proof.

Proof of the existence. We need the following algebraic operations to “add” resp.
“kill” cohomology.

Let (M, d) be a DGA. We “add” cohomology by choosing a new generator x and
setting

M̃ :=M⊗
∧
(x), d̃|M = d, d̃(x) = 0,

and “kill” a cohomology class [z] ∈ Hk(M, d) by choosing a new generator y of degree
k − 1 and setting

M̃ :=M⊗
∧
(y), d̃|M = d, d̃(y) = z.

Note that z is a polynomial in the generators ofM.
Now, let (A, dA) a DGA with H0(A, dA) = R. We set M0 := R, d0 := 0 and

ρ0(x) = x.
Suppose now ρk : (Mk, dk) → (A, dA) has been constructed so that ρk induces

isomorphisms on cohomology in degrees ≤ k and a monomorphism in degree (k + 1).
“Add” cohomology in degree (k+1) to get morphism of differential graded algebras

ρ(k+1),0 : (M(k+1),0, d(k+1),0) → (A, dA) which induces an isomorphism ρ∗(k+1),0 on

cohomology in degrees ≤ (k + 1). Now, we want to make the induced map ρ∗(k+1),0

injective on cohomology in degree (k + 2) .
We “kill” the kernel on cohomology in degree (k + 2) (by non-closed generators

of degree (k+1)) and define ρ(k+1),1 : (M(k+1),1, d(k+1),1) → (A, dA) accordingly. If
there are generators of degree one in (M(k+1),0, d(k+1),0) it is possible that this killing
process generates new kernel on cohomology in degree (k + 2). Therefore, we may
have to “kill” the kernel in degree (k + 2) repeatedly.

We end up with a morphism ρ(k+1),∞ : (M(k+1),∞, d(k+1),∞) → (A, dA) which
induces isomorphisms on cohomology in degrees ≤ (k + 1) and a monomorphism in
degree (k + 2). Set ρk+1 := ρ(k+1),∞ and (Mk+1, dk+1) := (M(k+1),∞, d(k+1),∞).

Inductively we get the minimal model ρ : (M, d)→ (A, dA).

A minimal model (MM , d) of a connected smooth manifold M is a minimal model
for the de Rahm complex (Ω(M), d) of differential forms on M . The last theorem
implies that every connected smooth manifold possesses a minimal model which is
unique up to isomorphism of differential graded algebras.

Now, we are able to introduce the notion of formality. Endowed with the trivial
differential, the cohomology of a minimal DGA is a DGA itself, and therefore it also
possesses a minimal model. In general, this two minimal models need not to be
isomorphic.

A minimal differential graded algebra (M, d) is called formal if there is a mor-
phism of differential graded algebras

ψ : (M, d)→ (H∗(M, d), dH = 0)
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that induces the identity on cohomology.
This means that (M, d) and (H∗(M, d), dH = 0) share their minimal model. The

following theorem gives an equivalent characterisation.

Theorem 1.1.3 ([46, Theorem 1.3.1]). A minimal model (M, d) is formal if and
only if we can writeM =

∧
V and the space V decomposes as a direct sum V = C⊕N

with d(C) = 0, d is injective on N , and such that every closed element in the ideal
I(N) generated by N in

∧
V is exact.

This allows us to give a weaker version of the notion of formality.

Definition 1.1.4. A minimal model (M, d) is called s-formal, s ∈ N, if we can
write M =

∧
V and for each i ≤ s the space V i generated by generators of degree

i decomposes as a direct sum V i = Ci ⊕ N i with d(Ci) = 0, d is injective on N i

and such that every closed element in the ideal I(
⊕

i≤s N
i) generated by

⊕
i≤s N

i in∧(⊕
i≤s V

i
)
is exact in

∧
V .

Obviously, formality implies s-formality for every s.
The following theorem is an immediate consequence of the last definition.

Theorem 1.1.5. Let (M, d) be a minimal model, where M =
∧
V , V = C ⊕N

with d(C) = 0 and d is injective on N .
Assume that there exist r, s ∈ N+, n ∈ N r and x ∈ ∧(⊕

i≤s V
i
)
such that holds

∀c∈Cr (n+ c)x is closed and not exact.

Then (M, d) is not max{r, s}-formal.

A connected smooth manifold is called formal (resp. s-formal) if its minimal
model is formal (resp. s-formal).

The next theorem shows the reason for defining s-formality: in certain cases
s-formality is sufficient for a manifold to be formal.

Theorem 1.1.6 ([20, Theorem 3.1]). Let M be a connected and orientable com-
pact smooth manifold of dimension 2n or (2n− 1).

Then M is formal if and only if it is (n− 1)-formal.

Example ([20, Corollary 3.3])
(i) Every connected and simply-connected compact smooth manifold is 2-formal.
(ii) Every connected and simply-connected compact smooth manifold of dimen-

sion seven or eight is formal if and only if it is 3-formal.

Proposition 1.1.7 ([20, Lemma 2.11]). Let M1,M2 be connected smooth mani-
folds. They are both formal (resp. s-formal) if and only if M1 ×M2 is formal (resp.
s-formal).

An important tool for detecting non-formality is the concept of Massey products:
As we shall see below, the triviality of the Massey products is necessary for formality.

Let (A, d) be a differential graded algebra and ai ∈ Hpi(A), pi > 0, 1 ≤ i ≤ 3,
satisfying aj · aj+1 = 0 for j = 1, 2. Take elements αi of A with ai = [αi] and write
αj ·αj+1 = dξj,j+1 for j = 1, 2. The (triple-)Massey product 〈a1, a2, a3〉 of the classes
ai is defined as

[α1 · ξ2,3 + (−1)p1+1ξ1,2 · α3] ∈ Hp1+p2+p3−1(A)

a1 ·Hp2+p3−1(A) +Hp1+p2−1(A) · a3 .
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Remark. The definition of the triple-Massey product as an element of a quotient
space is well defined, see e.g. [46, Section 1.6].

The next lemma shows the relation between formality and Massey products.

Lemma 1.1.8 ([46, Theorem 1.6.5]). For any formal minimal differential graded
algebra all Massey products vanish.

Corollary 1.1.9. If the de Rahm complex (Ω(M), d) of a smooth manifold M
possesses a non-vanishing Massey product, then M is not formal.

Fernández and Muñoz considered in [21] the geography of non-formal compact
manifolds and obtained the following theorem:

Theorem 1.1.10. Given m ∈ N+ and b ∈ N, there are compact oriented m-
dimensional smooth manifolds with b1 = b which are non-formal if and only if one of
the following conditions holds:

(i) m ≥ 3 and b ≥ 2,
(ii) m ≥ 5 and b = 1,
(iii) m ≥ 7 and b = 0.

1.2. Symplectic, Kähler and Lefschetz manifolds. The main examples of
formal spaces are Kähler manifolds. By definition, a Kähler manifold possesses a
Riemannian, a symplectic and a complex structure that are compatible. The notion
is well known

In [43], Newlander and Nirenberg proved their famous result that an almost com-
plex structure J on a smooth manifold M is integrable if and only if NJ ≡ 0, where
the Nijenhuis tensor NJ is defined as

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]

for all vector fields X,Y on M .
The difficulty to prove non-existence of any Kähler structure is obvious. Nowa-

days, two easily verifiable necessary conditions for Kähler manifolds are known. First,
we have the main theorem from the work [13] of Deligne, Griffiths, Morgan and Sul-
livan.

Theorem 1.2.1 ([13, p. 270]). Compact Kähler manifolds are formal.

We say that a symplectic manifold (M2n, ω) is Lefschetz if the homomorphism

Lk : Hn−k(M,R) −→ Hn+k(M,R)
[α] �−→ [α ∧ ωk]

is surjective for k = n − 1. If Lk is surjective for k ∈ {0, . . . , n − 1}, then (M,ω) is
called Hard Lefschetz .

Note that for compact M the surjectivity of Lk implies its injectivity.
Obviously, the Lefschetz property depends on the choice of the symplectic form.

But as mentioned above, if there is a symplectic form satisfying the Lefschetz property,
we have the following consequence that is purely topological.

Theorem 1.2.2. The odd degree Betti numbers of a Hard Lefschetz manifold are
even.
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Proof. Let (M2n, ω) be a symplectic manifold satisfying the Lefschetz property.
We us the same idea as in [26, p. 123]. For each i ∈ {0, . . . , n − 1} one has a non-
degenerated skew-symmetric bilinear form

H2i+1(M,R)×H2i+1(M,R) −→ R,
([α], [β]) �−→ [α ∧ β ∧ ωn−2i−1]

i.e. H2i+1(M,R) must be even-dimensional.

Obviously, this also proves the next corollary.

Corollary 1.2.3. The first Betti number of a Lefschetz manifold is even.

Finally, the following shows that the statement of the last theorem holds for
Kähler manifolds:

Theorem 1.2.4 ([26, p. 122]). Compact Kähler manifolds are Hard Lefschetz.

2. Nilmanifolds. We give a brief review of known results about a special kind
of solvmanifolds, namely nilmanifolds.

A nilmanifold is a compact homogeneous space G/Γ, where G is a connected and
simply-connected nilpotent Lie group and Γ a lattice in G, i.e. a discrete co-compact
subgroup.

In contrast to arbitrary solvable Lie groups, there is an easy criterion for nilpotent
ones which enables one to decide whether there is a lattice or not.

Recall that the exponential map exp: g→ G of a connected and simply-connected
nilpotent Lie group is a diffeomorphism. We denote its inverse by log : G→ g.

Theorem 2.1 ([48, Theorem 2.12]). A simply-connected nilpotent Lie group G
admits a lattice if and only if there exists a basis {X1, . . . , Xn} of the Lie algebra g of
G such that the structure constants Ck

ij arising in the brackets

[Xi, Xj] =
∑
k

Ck
ij Xk

are rational numbers.

More precisely we have:

(i) Let g have a basis with respect to which the structure constants are rational.
Let gQ be the vector space over Q spanned by this basis.
Then, if L is any lattice of maximal rank in g contained in gQ, the group
generated by exp(L) is a lattice in G.

(ii) If Γ is a lattice in G, then the Z-span of log(Γ) is a lattice L of maximal rank
in the vector space g such that the structure constants of g with respect to any
basis contained in L belong to Q.

For a given lattice Γ in a connected and simply-connected nilpotent Lie group G,
the subset log(Γ) need not to be an additive subgroup of the Lie algebra g.

Example. Consider the nilpotent Lie group G := {
⎛
⎝ 1 x z

0 1 y
0 0 1

⎞
⎠ |x, y, z ∈ R}.
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Its Lie algebra is g := {
⎛
⎝ 0 x z

0 0 y
0 0 0

⎞
⎠ |x, y, z ∈ R}, and the logarithm is given by

log(

⎛
⎝ 0 x z

0 0 y
0 0 0

⎞
⎠) =

⎛
⎝ 1 x z − xy

2
0 1 y
0 0 1

⎞
⎠ .

The set of integer matrices contained in G forms a lattice Γ in G and log(Γ) is not a
subgroup of g.

If Γ is a lattice such that log(Γ) is a subgroup of the Lie algebra, we call Γ a
lattice subgroup.

For later uses, we quote the following two results.

Proposition 2.2 ([12, Lemma 5.1.4 (a)]). Let G be a locally compact group,
H a closed normal subgroup and Γ a discrete subgroup of G. Moreover, denote by
π : G→ G/H the natural map.

If Γ ∩H is a lattice in H, and Γ is a lattice in G, then π(Γ) is a lattice in G/H
and ΓH = HΓ is a closed subgroup of G.

Theorem 2.3 ([12, p. 208]). Let G be a connected and simply-connected nilpotent
Lie group with lattice Γ and k ∈ N.

Then Γ ∩ D(k)G, Γ ∩ G(k) resp. Γ ∩ G(k) are lattices in D(k)G, G(k) resp. G(k).
Note, G(1) is the center Z(G) of G.

Note that we can associate a DGA to each Lie algebra g as follows:
Let {X1, . . . , Xn} be a basis of g and denote by {x1, . . . , xn} the dual basis of g∗.

The Chevalley-Eilenberg complex of g is the differential graded algebra (
∧
g∗, δ) with

δ given by

δ(xk) = −
∑
i<j

Ck
ij xi ∧ xj ,

where Ck
ij are the structure constants of {X1, . . . , Xn}.

Theorem 2.4 ([44], [46, Theorem 2.1.3]). Let G/Γ be a nilmanifold and denote
by Ωl.i.(G) the vector space of left-invariant differential forms on G.

Then the natural inclusion Ωl.i.(G)→ Ω(G/Γ) induces an isomorphism on coho-
mology.

Moreover, the minimal model of G/Γ is isomorphic to the Chevalley-Eilenberg
complex of the Lie algebra of G.

Corollary 2.5. Any nilmanifold satisfies b1 ≥ 2.

Proof. Let g be a nilpotent Lie algebra. By [59, Theorem 7.4.1] we have
H1(

∧
g∗, δ) ∼= g/[g, g]. By [16] any nilpotent Lie algebra g satisfies the inequality

dim g/[g, g] ≥ 2 which then implies b1(g) ≥ 2. Hence the claim follows from the
preceding theorem.

We now quote some results that show that it is easy to decide whether a nilman-
ifold is formal, Kählerian or Hard Lefschetz.

Theorem 2.6 ([28, Theorem 1]). A nilmanifold is formal if and only if it is a
torus.
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Theorem 2.7 ([46, Theorem 2.2.2]). If a nilmanifold is Kählerian, then it is a
torus.

This theorem follows from Theorem 2.6. Another proof was given by Benson and
Gordon in [4]. In fact they proved the following:

Theorem 2.8 ([4, pp. 514 et seq.]). A symplectic non-toral nilmanifold is not
Lefschetz.

Corollary 2.9. A symplectic nilmanifold is Hard Lefschetz if and only if it is
a torus, independent of the special choice of the symplectic form.

3. Solvmanifolds in general. A solvmanifold is a compact homogeneous space
G/Γ, where G is a connected and simply-connected solvable Lie group and Γ a lattice
in G, i.e. a discrete co-compact subgroup.

Every connected and simply connected solvable Lie group is diffeomorphic to
Rm (see e.g. [57]), hence solvmanifolds are aspherical and their fundamental group
is isomorphic to the considered lattice. Since [48, Theorem 3.6] directly imlies the
following Theorem, the fundamental group plays an important role in the study of
solvmanifolds.

Theorem 3.1. Two solvmanifolds with isomorphic fundamental groups are dif-
feomorphic.

Unfortunately, there is no simple criterion for the existence of a lattice in a con-
nected and simply-connected solvable Lie group. We shall quote some necessary
criteria.

Proposition 3.2 ([37, Lemma 6.2]). If a connected and simply-connected solv-
able Lie group admits a lattice then it is unimodular.

Theorem 3.3 ([39],[46, Theorem 3.1.2]). Let G/Γ be a solvmanifold that is not
a nilmanifold and denote by N the nilradical of G.

Then ΓN := Γ ∩ N is a lattice in N, ΓN = NΓ is a closed subgroup in G and
G/(NΓ) is a torus. Therefore, G/Γ can be naturally fibred over a non-trivial torus
with a nilmanifold as fiber:

N/ΓN = (NΓ)/Γ −→ G/Γ −→ G/(NΓ) = T k

This bundle will be called the Mostow bundle.

Remark. The structure group action of the Mostow bundle is given by left
translations

NΓ/Γ0 ×NΓ/Γ −→ NΓ/Γ,

where Γ0 is the largest normal subgroup of Γ which is normal in NΓ. (A proof of the
topological version of this fact can be found in [52, Theorem I.8.15]. The proof for
the smooth category is analogous.)

In view of Theorem 3.3, we are interested in properties of the nilradical of a
solvable Lie group. The following proposition was first proved in [40].

Proposition 3.4. Let G be a solvable Lie group and N its nilradical.
Then dimN ≥ 1

2 dimG.
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In some cases, we will be able to apply the next theorem to the situation of
Theorem 3.3. It then gives a sufficient condition for the Mostow bundle to be a
principal bundle.

Theorem 3.5. Let G be a connected and simply-connected solvable Lie group and
Γ a lattice in G. Suppose that {e} �= H � G is a closed normal abelian Lie subgroup
of G with H ⊂ N(Γ), the normalizer of Γ. (For example the latter is satisfied if H is
central.) Assume further that ΓH := Γ ∩H is a lattice in H.

Then H/ΓH = HΓ/Γ is a torus and

(1) H/ΓH −→ G/Γ −→ G/HΓ

is a principal torus bundle over a solvmanifold.

Proof. By assumption, H is a closed normal abelian subgroup of G and ΓH is a
lattice in H . We have for h1γ1, h2γ2 ∈ HΓ with hi ∈ H , γi ∈ Γ the equivalence

(h1γ1)
−1(h2γ2) ∈ Γ⇔ h−1

1 h2 ∈ ΓH ,

i.e. H/ΓH = HΓ/Γ. Therefore, Proposition 2.2 implies that (1) is a fibre bundle
whose fibre is clearly a torus and its base a solvmanifold. The structure group action
is given by the left translations

HΓ/Γ0 ×HΓ/Γ −→ HΓ/Γ,

where Γ0 is the largest normal subgroup of Γ which is normal in HΓ. (This can be
seen analogous as in the Remark on page 205.) Since H is contained in N(Γ) = {g ∈
G | gΓg−1 = Γ}, we have for each h ∈ H and γ, γ0 ∈ Γ

(hγ)γ0(hγ)
−1 = hγγ0γ

−1h−1 ∈ hΓh−1 = Γ,

i.e. Γ = Γ0 and the theorem follows.

Definition 3.6. Let G be a Lie group with Lie algebra g.
(i) G and g are called completely solvable if the linear map adX : g→ g has only

real roots1 for all X ∈ g.
(ii) If G is simply-connected and exp: g → G is a diffeomorphism, then G is

called exponential .

A nilpotent Lie group or algebra is completely solvable, and it is easy to see that
completely solvable Lie groups or algebras are solvable. Moreover, the two propo-
sitions below show that simply-connected completely solvable Lie groups are expo-
nential, and exponential Lie groups are solvable. Note that the second proposition is
simply a reformulation of results of Saitô and Dixmier, see [49, Théorèmes II.1 et I.1]
and [17, Théorème 3].

Proposition 3.7 ([47, Theorem 2.6.3]). Any exponential Lie group is solvable.

Proposition 3.8. A connected and simply-connected solvable Lie group G with
Lie algebra g is exponential if and only if the linear map adX : g → g has no purely
imaginary roots for all X ∈ g.

1By a root of a linear map, we mean a (possibly non-real) root of the characteristic polynomial.
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Let a lattice in a connected and simply-connected solvable Lie group be given.
Then Theorem 3.3 stated that its intersection with the nilradical is a lattice in the
nilradical. In the case of completely solvable Lie groups, we have an analogue for the
commutator.

Proposition 3.9 ([25, Proposition 1]). Let G be a connected and simply-
connected completely solvable Lie group and Γ a lattice in G.

Then [Γ,Γ] is a lattice in [G,G]. In particular, Γ∩ [G,G] is a lattice in [G,G].

We formulate the result that enables us to compute the minimal model of solv-
manifolds which are built by dividing a lattice out of a completely solvable group.
The main part of the next theorem is due to Hattori [32].

Theorem 3.10. Let G/Γ be a solvmanifold. Denote by (
∧
g∗, δ) the Chevalley-

Eilenberg complex of G and recall that g∗ is the set of left-invariant differential 1-forms
on G. Then the following holds:

(i) The natural inclusion (
∧
g∗, δ)→ (Ω(G/Γ), d) induces an injection on coho-

mology.
(ii) If G is completely solvable, then the inclusion in (i) is a quasi-isomorphism,

i.e. it induces an isomorphism on cohomology. Therefore, the minimal model
MG/Γ is isomorphic to the minimal model of the Chevalley-Eilenberg complex.

(iii) If Ad (Γ) and Ad (G) have the same Zariski closures2, then the inclusion in
(i) is a quasi-isomorphism.

Proof. (i) is [46, Theorem 3.2.10] and (iii) is [48, Corollary 7.29].
ad (ii): Denote the mentioned inclusion by i : (

∧
g∗, δ) → (Ω(G/Γ), d). By Hat-

tori’s Theorem (see [46, p. 77]), this is a quasi-isomorphism. It remains to show that
the minimal model ρ : (MCE , δCE) → (

∧
g∗, δ) of (

∧
g∗, δ) is the minimal model of

(Ω(G/Γ), d). Since the minimal model is unique and the map i ◦ ρ : (MCE , δCE) →
(Ω(G/Γ), d) is a quasi-isomorphism, this is obvious.

We have seen in the last section that the first Betti number of a nilmanifold is
greater than or equal to two. For arbitrary solvmanifolds this is no longer true. Below,
we shall see various examples of solvmanifolds with b1 = 1. The following corollary
shows that b1 = 0 cannot arise.

Corollary 3.11. Any solvmanifold satisfies b1 ≥ 1.

Proof. Let g be a solvable Lie algebra. As in the nilpotent case we have
b1(

∧
g∗, δ) = dim g/[g, g], and dim g/[g, g] ≥ 1 by solvability. The claim now fol-

lows from Theorem 3.10 (i).

To end this section, we shortly discuss the existence problem for Kähler structures
on solvmanifolds. The only Kählerian nilmanifolds are tori, but in the general context
we have the hyperelliptic surfaces, which are non-toral Kählerian solvmanifolds, see
Section 6 below. Benson and Gordon [5] conjectured in 1990 that the existence of a
Kähler structure on a solvmanifold G/Γ with G completely solvable forces G/Γ to be
toral and this is true. In fact, Hasegawa proved the following:

2A basis for the Zariski topology on GL(m,C) is given by the sets

Up := GL(m,C) \ p−1({0}),

where p : GL(m,C) ∼= C(m2) → C ranges over polynomials.
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Theorem 3.12 ([31]). A solvmanifold G/Γ is Kählerian if and only if it is a
finite quotient of a complex torus which has a structure of a complex torus bundle
over a complex torus.

If G is completely solvable, then G/Γ is Kählerian if and only if it is a complex
torus.

4. Semidirect products. In order to define semidirect products, we recall the
construction of the Lie group structure of the group of Lie group automorphisms of a
simply-connected Lie group in the following theorem. It collects results that can be
found in [58, pp. 117 et seq.].

Theorem 4.1.

(i) Let h =
(|h| = Rh, [. . . , . . .]

)
be an h-dimensional Lie algebra. Then the

set A(h) of Lie algebra isomorphisms of h is a closed Lie subgroup of the
automorphism group Aut(|h|) of the h-dimensional vector space |h|. The Lie
algebra of A(h) is

d(h) = {ϕ ∈ End(|h|) |ϕ derivation with respect to [. . . , . . .]}.
(ii) Let H be a connected and simply-connected Lie group with neutral element e

and Lie algebra h. The Lie group structure of A(H), the group of Lie group
automorphisms of H, is given by the following group isomorphism:

A(H) −→ A(h) , f �−→ def

Moreover, if H is exponential, its inverse is the map

A(h) −→ A(H) , ϕ �−→ expH ◦ϕ ◦ logH .

For given (Lie) groups G,H and a (smooth) action μ : G×H → H by (Lie) group
automorphisms, one defines the semidirect product of G and H via μ as the (Lie)
group G�μ H with underlying set (manifold) G×H and group structure defined as
follows:

∀(g1,h1),(g2,h2)∈G×H (g1, h1)(g2, h2) =
(
g1g2, μ(g

−1
2 , h1)h2

)
.

Note that for (g, h) ∈ G�μ H we have (g, h)−1 =
(
g−1, μ(g, h−1)

)
.

If the action μ is trivial, i.e. ∀g∈G, h∈H μ(g, h) = h, one obtains the ordinary direct
product. In the case of Lie groups G and H , the exponential map expG×H is known
to be the direct product of expG and expH . If the action is not trivial, the situation
becomes a little more complicated:

Theorem 4.2. Let G,H be connected Lie groups and μ : G × H → H a
smooth action by Lie group automorphisms. Denote the Lie algebras of G and H
by g and h and let φ := (deGμ1) : g → d(h), where μ1 : G → A(h) is given by
μ1(g) = deHμ(g, . . .) = AdG�μH

g .
(i) The Lie algebra of G �μ H is g �φ h. This Lie algebra is called semidirect

product of g and h via φ. Its underlying vector space is g× h and the bracket
for (X1, Y1), (X2, Y2) ∈ g× h is given by

[(X1, Y1), (X2, Y2)] =
(
[X1, X2]g, [Y1, Y2]h + φ(X1)(Y2)− φ(X2)(Y1)

)
.

In the sequel we shall identify X ≡ (X, 0) and Y ≡ (0, Y ).



ON LOW-DIMENSIONAL SOLVMANIFOLDS 209

(ii) For (X,Y ) ∈ g �φ h one has expG�μH((X,Y )) = (expG(X), γ(1)), where
γ : R→ H is the solution of

γ̇(t) = (deHRγ(t))
(
expA(h)(−t ad(X)|h)(Y )

)
, γ(0) = eH .

Here Ra denotes the right translation by an element a ∈ H.

Proof. The proof of (i) can be found in [57]. We give a proof of (ii). Given a Lie
group homomorphism f between Lie groups, we denote its differential at the neutral
element by f∗.

For (g0, h0), (g, h) ∈ G�μH we have R(g0,h0)(g, h) = (Rg0(g), Rh0
(μ(g−1

0 , h)), and
this yields for (X,Y ) ∈ g�φ h

(R(g0,h0))∗
(
(X,Y )

)
=

(
(Rg0)∗(X), (Rh0

)∗
(
μ1(g

−1
0 )(Y )

))
.

Since
(
γ1(t), γ2(t)

)
:= expG�μH

(
t (X,Y )

)
is the integral curve through the identity of

both the right- and left-invariant vector fields associated to (X,Y ), the last equation
implies that

(
γ1(t), γ2(t)

)
is the solution of the following differential equations:

γ1(0) = eG,γ̇1(t) = (Rγ1(t))∗(X),(2)

γ2(0) = eH ,γ̇2(t) = (Rγ2(t))∗(μ1(γ1(−t))(Y )).(3)

γ1(t) = expG(tX) is the solution of (2), and this implies

μ1(γ1(−t)) = Ad
G�μH

γ1(−t) |h = expA(h)(−t ad(X)|h),

i.e. (3) is equivalent to γ2(0) = eH , γ̇2(t) = (Rγ2(t))∗(exp
A(h)(−t ad(X)|h)(Y )). So

the theorem is proven.

A connected and simply-connected solvable Lie groupG with nilradicalN is called
almost nilpotent if it can be written as G = R �μ N . Moreover, if N is abelian, i.e.
N = Rn, then G is called almost abelian.

Let G = R�μ N be an almost nilpotent Lie group. Since N has codimension one
in G, we can consider μ as a one-parameter group R→ A(N). By Theorem 4.1, there
exists ϕ ∈ d(n) with

∀t∈R μ(t) = expN ◦ expAut(|n|)(tϕ) ◦ logN .

Choosing a basis of |n|, we can identify Aut(|n|) with a subset of gl(n,R) and get

∀t∈R de
(
μ(t)

) ∈ expGL(n,R)
(
gl(n,R)

)
.

Note, if N is abelian, the exponential map expN : n → N is the identity. These
considerations make it interesting to examine the image of expGL(n,R).

Theorem 4.3 ([45, Theorem 6]). M is an element of expGL(n,R)(gl(n,R)) if and
only if the real Jordan form of M contains in the form of pairs the blocks belonging
to real negative eigenvalues λ−i , whenever there exist real negative eigenvalues λ−i of
M . I.e. the block belonging to such a λ−i is of the following form

ni⊕
j=1

(
Jnij

0
0 Jnij

)
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with

Jnij
=

⎛
⎜⎜⎜⎜⎝

λ−i 1 0

λ−i
. . .

. . . 1
0 λ−i

⎞
⎟⎟⎟⎟⎠ ∈M(nij , nij ;R).

We are now going to derive some facts that follow from the existence of a lattice
in an almost nilpotent Lie group.

Theorem 4.4 ([55]). Let G = R �μ N be an almost nilpotent and completely
solvable Lie group containing a lattice Γ.

Then there is a one-parameter group ν : R → A(N) such that ν(k) preserves the
lattice ΓN := Γ∩N for all k ∈ Z. Γ is isomorphic to Z�νΓN and G/Γ is diffeomorphic
to

(
R�ν N

)
/
(
Z �ν ΓN

)
.

Moreover, there are t1 ∈ R \ {0} and an inner automorphism In1
∈ A(N) such

that ν(1) = μ(t1) ◦ In1
.

Proof. We know that ΓN is a lattice in N and im(Γ→ G/N) ∼= Γ/ΓN is a lattice
in G/N ∼= R. Therefore, Γ/ΓN

∼= Z is free, and the following exact sequence is split:

{1} −→ ΓN −→ Γ −→ Z −→ {0},
i.e. there is a group-theoretic section s : Z → Γ. [49, Théorème II.5] states that a
group homomorphism from a lattice of completely solvable Lie group into another
completely solvable Lie group uniquely extends to a Lie group homomorphism of
the Lie groups. Hence, s extends uniquely to a one-parameter group s : R → G.
Therefore,

ν : R −→ A(N), ν(t)(n) = s(t) · n · s(t)−1

is a one-parameter group with ∀k∈Z ν(k)(ΓN ) = ΓN , the lattice Γ is isomorphic to
Z �ν ΓN and G/Γ is diffeomorphic to

(
R�ν N

)
/
(
Z �ν ΓN

)
.

Let γ1 := s(1) ∈ (Γ \ ΓN ) ⊂ R �μ N . There are unique t1 ∈ R \ {0}, n1 ∈ N
with γ1 = t1 · n1, where we identify t1 ≡ (t1, eN ) ∈ G and n1 ≡ (0, n1) ∈ G. Since
G = R �ν N and G = R �μ N with the same normal subgroup N of G, one has for
all n ∈ N

ν(1)(n) = γ1 · n · γ−1
1 = t1 · n1 · n · n−1

1 · t−1
1 = μ(t1)(n1 · n · n−1

1 ) = μ(t1)(In1
(n)),

from where the theorem follows.

Corollary 4.5. Let G = R �μ N be an almost nilpotent (not necessary com-
pletely solvable) Lie group containing a lattice Γ. Again, denote by ΓN := Γ ∩N the
induced lattice in the nilradical of G.

Then there exist t1 ∈ R \ {0}, a group homomorphism ν : Z→ Aut(ΓN ), and an
inner automorphism In1

of N such that Γ ∼= Z �ν ΓN and ν(1) = μ(t1) ◦ In1
.

If G is almost abelian, then a basis transformation yields Γ ∼= t1Z �μ|Zn Zn.

Proof. We argue as in the last proof. But we do not use [49, Théorème 5] and
get only a group homomorphism ν : Z → Aut(ΓN ) (defined on Z instead of R). For
general N , the calculation at the end of the proof implies the claim.
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Since an abelian group has only one inner automorphism, in the almost abelian
case this yields ν(1) = μ(t1)|ΓN

, so ν can be extended to ν : R → A(Rn) via ν(t) :=
μ(t · t1). Further, by Theorem 3.1, we have ΓN

∼= Zn.

Hence we have seen, that the existence of a lattice in an almost nilpotent Lie
group implies that a certain Lie group automorphism must preserve a lattice in the
(nilpotent) nilradical. The next theorem deals with such automorphisms.

Theorem 4.6. Let N be a connected and simply-connected nilpotent Lie group
with Lie algebra n, f∗ ∈ A(n), and f := expN ◦f∗ ◦ logN ∈ A(N), i.e. def = f∗.
Assume that f preserves a lattice Γ in N .

Then there exists a basis X of n such that MX(f∗) ∈ GL(n,Z), where MX(f∗)
denotes the matrix of f∗ with respect to X.

Moreover, if there are a one-parameter group μ : R→ A(N) and t0 �= 0 such that
μ(t0) = f , i.e. de(μ(t0)) = f∗, then det

(
de(μ(. . .))

) ≡ 1.

Proof. By Theorem 2.1 (ii),

L := 〈logN (Γ)〉Z = {
m∑
i=1

ki Vi |m ∈ N+, ki ∈ Z, Vi ∈ logN (Γ)}

is a lattice in n. Therefore, there exists a basis X = {X1, . . . , Xn} of n such that
L = 〈X〉Z.

Since f(Γ) ⊂ Γ, we have f∗
(
logN (Γ)

) ⊂ logN (Γ). This implies f∗(L) ⊂ L and
hence, MX(f∗) ∈ GL(n,Z).

Further, if μ(t0) = f with μ, t0 �= 0 as in the statement of the theorem, then the
map Δ := det ◦de(μ(. . .)) : (R,+)→ (R\{0}, ·) is a continuous group homomorphism
with Δ(0) = 1 and Δ(t0) = ±1, i.e. Δ ≡ 1.

Obviously, a one-parameter group μ in the automorphism group of an abelian
Lie group with μ(t0) integer valued for t0 �= 0 defines a lattice in R �μ Rn. It is
easy to compute the first Betti number of the corresponding solvmanifold, as the next
proposition will show. Before stating it, we mention that the situation becomes more
complicated in the case of a non-abelian and nilpotent group N .

Let a one-parameter group μ : R→ A(N) be given and t0 �= 0 such that de(μ(t0))
is an integer matrix with respect to a basis X of the Lie algebra n of N . In general,
this does not enable us to define a lattice in R �μ N . But if ΓN := expN (〈X〉Z) is a
lattice in N , i.e. ΓN is a lattice group, then this is possible.

Proposition 4.7. Let μ : R → SL(n,R) be a one-parameter group such that
μ(1) = (mij)i,j ∈ SL(n,Z).

Then M := (R�μ Rn)/(Z �μ Zn) is a solvmanifold with

π1(M) = 〈e0, e1, . . . , en |∀i∈{1,...,n} e0eie
−1
0 = em1i

1 · · · emni
n

∀i,j∈{1,...,n} [ei, ej] = 1 〉

and b1(M) = n+ 1− rank
(
μ(1)− id

)
.

Proof. The statement about the fundamental group is clear. Therefore, we get

H1(M,Z) = 〈e0, e1, . . . , en |∀i∈{1,...,n} em1i

1 · · · emii−1
i · · · emni

n = 1

∀i,j∈{0,...,n} [ei, ej ] = 1 〉
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and this group is the abelianisation of

Z⊕ 〈e1, . . . , en | ∀i∈{1,...,n} em1i

1 · · · emii−1
i · · · emni

n = 1〉.

Now, the proof of the theorem about finitely generated abelian groups (see e.g. [7])

shows H1(M,Z) = Zn−k+1⊕⊕k
i=1 Zdi

, where d1, . . . , dk ∈ N+ denote the elementary
divisors of μ(1)− id. The proposition follows.

We finally mention a result of Gorbatsevich. In view of Theorem 3.10 (iii), it
enables us to compute the minimal model of a wide class of solvmanifolds which are
discrete quotients of almost abelian Lie groups.

Theorem 4.8 ([25, Theorem 4]). Let μ : R→ SL(n,R) be a one-parameter group
such that μ(1) = expSL(n,R)(μ̇(0)) ∈ SL(n,Z). Denote by λ1, . . . , λn the (possibly not
pairwise different) roots of μ̇(0). Then Γ := (Z�μ Zn) is a lattice in G := (R�μ Rn).

The Zariski closures of Ad (Γ) and Ad (G) coincide if and only if the number πi is
not representable as a linear combination of the numbers λk with rational coefficients.

5. Three-dimensional solvmanifolds.

Proposition 5.1 ([3]). Every 3-dimensional connected and simply-connected
solvable non-nilpotent Lie group G that possesses a lattice Γ has a 2-dimensional
nilradical. The Lie group can be written as G = R�μR2 and the lattice as Γ = Z�μZ2.

Proof. This is a direct consequence of Proposition 3.4 and Corollary 4.5.

Theorem 5.2. A three-dimensional solvmanifold G/Γ is non-formal if and only
if b1(G/Γ) = 2. In this case, G/Γ is diffeomorphic to a nilmanifold.

Proof. By Theorem 2.6, it suffices to consider the case when G is solvable and
non-nilpotent. The last proposition implies that there is a map ν : Z→ SL(2,Z) such
that Γ = Z �ν Z2.

If none of the roots of ν(1) equals 1, Proposition 4.7 implies b1 = 1, so G/Γ is
formal by Theorem 1.1.10.

Assume that ν(1) possesses the double root 1. Then Proposition 4.7 implies b1 = 3
if ν(1) is diagonalisable and b1 = 2 if ν(1) is not diagonalisable.

Case A: ν(1) is diagonalisable
Recall that a solvmanifold is uniquely determined by its fundamental group. There-
fore, we can assume G = R �μ R2 and Γ = Z �μ 〈v1, v2〉Z with linearly independent
v1, v2 ∈ R2 and μ(t) ≡ id. In this case, G/Γ is a torus which is formal.

Case B: ν(1) is not diagonalisable
In this case, we can assume G = R �μ R2 as well as Γ = Z �μ 〈v1, v2〉Z with linearly
independent v1, v2 ∈ R2 and

μ(t) =

(
1 t
0 1

)
.

The Lie algebra g = 〈T,X, Y | [T, Y ] = X〉 of G is nilpotent, so G/Γ is a nilmanifold
with b1 = 2. Therefore, it cannot be a torus and is not formal by Theorem 2.6.

In [3, Chapter III ?] the three-dimensional solvmanifolds which have no nilmani-
fold structure are examined. This, together with the last theorem, yields a “cohomo-
logical” classification of three-dimensional solvmanifolds.
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Table 5.1: 3-dimensional solvmanifolds

b1(G/Γ) G/Γ formal Nilmfd. 3 c.s. 4

a) 3 yes Torus yes
b) 2 no yes yes
c) 1 yes no yes
d) 1 yes no no

Theorem 5.3. Every 3-dimensional solvmanifold G/Γ is contained in Table 5.1.
In particular, G/Γ is non-formal if and only if it is a non-toral nilmanifold.

Theorem 5.4. Every lattice in the unique 3-dimensional connected and simply-
connected non-abelian nilpotent Lie group

U3(R) := {
⎛
⎝ 1 x z

0 1 y
0 0 1

⎞
⎠ |x, y, z ∈ R}

is isomorphic to Γ3,n := Γ3,n(Z) := {
⎛
⎝ 1 x z

n
0 1 y
0 0 1

⎞
⎠ |x, y, z ∈ Z} with n ∈ N+.

Therefore, any three-dimensional nilmanifold with b1 = 2 is of the form
U3(R)/Γ3,n(Z).

Γ3,n(Z) is presented by 〈e1, e2, e3 | [e1, e2] = en3 and e3 central 〉.
Proof. The proof follows from [3, Chapter III §7].
Sometimes, we shall write (x, y, z) for the corresponding matrix in U3(R).

Proposition 5.5.

(i) [U3(R), U3(R)] = Z(U3(R)) = {(0, 0, z) | z ∈ R}, U3(R)/Z(U3(R)) ∼= R2

(ii) Every Lie group homomorphism f : U3(R)→ U3(R) induces natural Lie group
homomorphisms

fZ : Z(U3(R)) −→ Z(U3(R))

and

f : U3(R)/Z(U3(R)) −→ U3(R)/Z(U3(R)).

[(x, y, 0)] = [(x, y, z)] �−→ [f
(
(x, y, z)

)
] = [(f1(x, y, 0), f2(x, y, 0), 0)]

f uniquely determines fZ , and f is an automorphism if and only if f is such.
(iii) Let γ1 = (a1, b1,

c1
n ), γ2 = (a2, b2,

c2
n ) ∈ Γ3,n. Then there is a unique homo-

morphism g : Γ3,n → Γ3,n such that g
(
(1, 0, 0)

)
= γ1 and g

(
(0, 1, 0)

)
= γ2.

Moreover, g
(
(0, 0, 1

n )
)
=

(
0, 0, 1

n (a1b2 − a2b1)
)
.

One has Γ3,n/Z(Γ3,n) ∼= Z2, and g is an isomorphism if and only if

g : Γ3,n/Z(Γ3,n) −→ Γ3,n/Z(Γ3,n)

is an isomorphism, i.e. a1b2 − a2b1 = ±1.
3possesses the structure of a solvmanifold as quotient of a nilpotent Lie group
4possesses the structure of a solvmanifold as quotient of a completely solvable Lie group
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Proof. (i) is trivial.
ad (ii): Let f : U3(R)→ U3(R) be a Lie group homomorphism. Then

(4) f
(
(0, 0, z)

)
= [f

(
(z, 0, 0)

)
, f

(
(0, 1, 0)

)
] ∈ Z(U3(R)),

i.e. f
(
Z(U3(R))

) ⊂ Z(U3(R)). Moreover, one has for (a, b, c) := f
(
(x, y, 0)

)
(a, b, 0)−1 · (a, b, c) = (−a,−b,−ab) · (a, b, c) = (0, 0,−2ab+ c) ∈ Z(U3(R)),

and therefore [(a, b, 0)] = f([(x, y, 0)]). Now, (4) implies that fZ is uniquely deter-
mined by f .

Assume, f is an isomorphism. Then (4) also holds for f−1 and we get
f
(
Z(U3(R))

)
= Z(U3(R)), i.e. fZ is an isomorphism of the additive group R. Since

f is continuous, there exists m ∈ R \ {0} such that fZ
(
(0, 0, z)

)
= (0, 0,mz). Denote

by (fij)1≤i,j≤2 the matrix of f : R2 → R2 with respect to the basis {
(
1
0

)
,

(
0
1

)
}

of the vector space R2. One calculates

(0, 0, det(fij)) = [(f11, f21, 0), (f12, f22, 0)] = [f
(
(1, 0, 0)

)
, f

(
(0, 1, 0)

)
]

(4)
= (0, 0,m),

so f is an automorphism, since m �= 0.
Conversely, if f is an automorphism, then the homomorphism fZ is given by

fZ
(
(0, 0, z)

)
= (0, 0, det(f)z) which is even an automorphism. Therefore, the 5-

Lemma implies that f is an automorphism.
ad (iii): Let γ1, γ2 be as in (iii). Then [γ1, γ2] =

(
0, 0, 1

n (a1b2 − a2b1)
)n

and this
implies the existence of the (unique) homomorphism g with the mentioned properties.

If g is an isomorphism, then g(Z(Γ3,n)) = Z(Γ3,n) = {(0, 0, z
n ) | z ∈ Z}, and

therefore |a1b2 − a2b1| = 1. Since the matrix of g has determinant a1b2 − a2b1, f is
an isomorphism.

Again, the converse is trivial.

Theorem 5.6. As a set, the group of Lie group automorphisms A(U3(R)) equals
GL(2,R)× R2, the group law is given by

(A, a) ◦ (B, b) �−→ (
AB, det(B)B−1a+ det(A)b)

)
,(5)

and for f = (A =

(
α β
γ δ

)
,

(
u
v

)
) ∈ A(U3(R)) and (x, y, z) ∈ U3(R) we have

f
(
(x, y, z)

)
=
(
αx + βy, γx+ δy,

det(A)z + βγxy +
αγ

2
x2 +

βδ

2
y2 + uy − vx

)
.

(6)

Proof. Let f ∈ A(U3(R)) and (x, y, z) ∈ U3(R) be given. We have to show that

there is (

(
α β
γ δ

)
,

(
u
v

)
) ∈ GL(2,R)×R2 such that f

(
(x, y, z)

)
satisfies (6). Then

a short computation yields (5).

Let

(
α β
γ δ

)
∈ GL(2,R) be the matrix of f with respect to the canonical basis

of R2. We showed in the last proof f
(
(0, 0, z)

)
= (0, 0 det(f)z).
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There exist smooth functions f1, f2 : R→ R with

f
(
(x, 0, 0)

)
= (αx, γx, f1(x)),

f
(
(0, y, 0)

)
= (βy, δy, f2(y)).

We set u := f
′
2(0) and v := −f ′

1(0). The homomorphism property of f implies

1

h
(f1(x+ h)− f1(x)) =

f1(x) − f1(0)

h
+ αγx,

1

h
(f2(y + h)− f2(y)) =

f2(y)− f2(0)

h
+ βδy,

and this yields

f1(x) = −vx+ αγ

2
x2,

f2(y) = uy +
βδ

2
y2.

Using (x, y, z) = (0, y, 0)(x, 0, 0)(0, 0, z), one computes (6).

Corollary 5.7. f = (A,

(
u
v

)
) ∈ A(U3(R)) with A =

(
α β
γ δ

)
lies on a

one-parameter group of A(U3(R)) if and only if A lies one a one-parameter group of
GL(2,R).

If νt =

(
αt βt

γt δt

)
denotes a one-parameter group with ν1 = A, then the map

μt : R→ A(U3(R)) defined by

μt

(
(x, y, z)

)
=

(
αtx+ βty, γtx+ δty,

(αtδt − βtγt)︸ ︷︷ ︸
= 1

z + βtγtxy +
αtγt

2 x2 + βtδt
2 y2 + tuy − tvx

)

is a one-parameter group with μ1 = f .

Proof. The only claim that is not obvious is the fact that μt defines a one-
parameter group. Using νt+s = νt ◦ νs, this can be seen by a short calculation.

6. Four-dimensional solvmanifolds.

Proposition 6.1. Every 4-dimensional connected and simply-connected solvable
non-nilpotent Lie group G that possesses a lattice Γ has a 3-dimensional nilradical
N which is either R3 or U3(R). Therefore, G/Γ fibers over S1 (this is the Mostow
bundle) and the Lie group can be written as G = R �μ N . If N is abelian, a basis
transformation yields Γ = Z�μ|

Z3
Z3. Otherwise, Γ is isomorphic to Z�ν Γ3,n, where

ν : Z→ Aut(Γ3,n) is a group homomorphism with

ν(1)(x, y, z
n ) =

(
a1x+ a2y, b1x+ b2y, a2b1xy + a1b1

x(x−1)
2 + a2b2

y(y−1)
2

+ 1
n (c1x+ c2y + (a1b2 − a2b1)z)

)
,

where c1, c2,∈ Z, and

(
a1 a2
b1 b2

)
∈ GL(2,Z) is the matrix of ν(1) with respect to

the canonical basis of the Z-module Z2 = Γ3,n/Z(Γ3,n). Moreover, ν(1) lies on a
one-parameter group R→ A(U3(R)/Z(U3(R))) = GL(2,R), i.e. ν(1) ∈ SL(2,R).
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Proof. From [46, Theorem 3.1.10] follows dimN = 3 and G = R �μ N . If N is
abelian, Corollary 4.5 implies that we can assume Γ = Z �μ|

Z3
Z3.

Assume now that N is not abelian, i.e. N = U3(R). ΓN = Γ ∩ N is a lat-
tice in N and by Theorem 5.4, we have ΓN = Γ3,n. By Corollary 4.5, there is a
homomorphism ν : Z → Aut(Γ3,n) with Γ ∼= Z �ν Γ3,n. By Proposition 5.5(iii),
(a1, b1,

c1
n ) := ν(1)

(
(1, 0, 0)

)
and (a2, b2,

c2
n ) := ν(1)

(
(0, 1, 0)

) ∈ Γ3,n determine ν(1).
Since (x, y, z

n ) = (0, 1, 0)y(1, 0, 0)x(0, 0, 1
n )

z, a short computation yields the claimed
formula for ν(1)

(
(x, y, z

n )
)
.

Further, Corollary 5.7 implies that ν(1) lies on a one-parameter group.

Theorem 6.2. Every 4-dimensional solvmanifold G/Γ is contained in Table 6.1.
In particular, G/Γ is non-formal if and only if it is a non-toral nilmanifold.

Table 6.1: 4-dimensional solvmanifolds

b1(G/Γ) G/Γ formal symplectic complex Kähler Nilmfd. 5 c.s. 6

a) 4 yes yes Torus yes Torus yes
b) 3 no yes PKS 7 no yes yes
c) 2 yes yes no no no yes
d) 2 yes yes HS 8 yes no no
e) 2 no yes no no yes yes
f) 1 yes no no no no yes
g) 1 yes no IS0 9 no no no
h) 1 yes no IS+ 10 no no yes
i) 1 yes no SKS 11 no no no

Proof. Apart from the column on formality the theorem follows from works of
Geiges [23] and Hasegawa [29]. (Attention: In [29] a more general notion of solvman-
ifold is used!)

A decomposable four-dimensional connected and simply-connected nilpotent
Lie group is abelian or has a two-dimensional center. The only connected and
simply-connected indecomposable nilpotent Lie group of dimension four has a two-
dimensional commutator. By Propositions 2.3 and 2.2, the corresponding nilmanifolds
have the structure of orientable T 2-bundles over T 2. (The orientability follows from
the total spaces’ orientability.)

¿From a result of Geiges [23, Theorems 1 and 3] follows that they are contained
in Table 6.1. (Recall that a nilmanifold is formal if and only if it is a torus.) In
particular, every four-dimensional nilmanifold is symplectic.

Now, we regard a lattice Γ = Z �ν ΓN , ΓN ∈ {Z3,Γ3,n(Z)}, in a Lie group
G = R �μ N as in the last proposition.

We expand Hasegawa’s argumentation in [29] by the aspect of formality and
consider the “roots” of ν(1). Recall, Theorem 3.1 implies that a solvmanifold is

5possesses the structure of a solvmanifold as quotient of a nilpotent Lie group
6possesses the structure of a solvmanifold as quotient of a completely solvable Lie group
7PrimaryKodaira Surface
8Hyperelliptic Surface
9Inoue Surface of Type S0

10Inoue Surface of Type S+

11Secondary Kodaira Surface
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determined by its fundamental group. Below, we shall use this fact several times.

Case A.: ΓN = Z3

By Proposition 6.1, ν extends to a one-parameter group R → SL(3,R). Denote by
λ1, λ2, λ3 ∈ C the roots of ν(1) ∈ SL(3,Z), i.e. λ1 · λ2 · λ3 = 1. We get from Theorem
4.3 and Lemma B.4 that the following subcases can occur:
A.1.) λ1, λ2, λ3 ∈ R+

A.1.1.) ∃i0 λi0 = 1 (w.l.o.g. λ1 = 1)
A.1.1.1.) λ2 = λ3 = 1
A.1.1.2.) λ2 = λ−1

3 ∈ R \ {1}
A.1.2.) ∀i λi �= 1

A.1.2.1.) ν(1) is diagonalisable
A.1.2.2.) ν(1) is not diagonalisable

A.2.) λ1 = 1, λ2 = λ3 = −1 and ν(1) is diagonalisable
A.3.) ∃i0 λi0 ∈ C \ R (w.l.o.g. λ2 = λ3 ∈ C \ R and λ1 ∈ R+)

A.3.1.) λ1 = 1
A.3.2.) λ1 �= 1

One can now check that the cases give the mentioned propertys.

Below, we give examples for each of the nine types of four-dimensional solv-
manifolds. The Lie algebras of the connected and simply-connected four-dimensional
solvable Lie groups that admit lattices are listed in Table A.1 in Appendix A.

Example. The following manifolds belong to the corresponding row in Table 6.1.
a) R4/Z4

b) (R �μb
R3)/(Z �μb

Z3), μb(t) =

⎛
⎝ 1 0 0

0 1 t
0 0 1

⎞
⎠

c) (R �μc
R3)/Γc with

Γc = Z�μc
〈
⎛
⎝ 1

0
0

⎞
⎠ ,

⎛
⎝ 0

1
1

⎞
⎠ ,

⎛
⎜⎝

0
18+8

√
5

7+3
√
5

2
3+
√
5

⎞
⎟⎠〉Z,

t1 = ln(3+
√
5

2 ) and μc(t) =

⎛
⎝ 1 0 0

0 et t1 0
0 0 e−t t1

⎞
⎠

d) (R �μd
R3)/(π Z�μd

Z3), μd(t) =

⎛
⎝ 1 0 0

0 cos(t) − sin(t)
0 sin(t) cos(t)

⎞
⎠

e) (R �μe
R3)/(Z �μe

Z3), μe(t) =

⎛
⎝ 1 t 1

2 (t
2 − t)

0 1 t
0 0 1

⎞
⎠

f) Consider A :=

⎛
⎝ 0 0 1

1 0 −11
0 1 8

⎞
⎠ ∈ SL(3,Z). A has X3 − 8X2 + 11X − 1 as

characteristic polynomial which possesses three pairwise different real roots
t1 ≈ 6, 271, t2 ≈ 1, 631 and t3 ≈ 0, 098. Therefore, A is conjugate to μf (1),

where μf (t) =

⎛
⎝ et ln(t1) 0 0

0 et ln(t2) 0

0 0 et ln(t3)

⎞
⎠, and this implies the existence
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of a lattice Γf in the completely solvable Lie group R �μf
R3.

g) Let A :=

⎛
⎝ 0 0 1

1 0 −8
0 1 4

⎞
⎠ ∈ SL(3,Z). The characteristic polynomial of A

is X3 − 4X2 + 8X − 1 which has three pairwise different roots t1 ≈ 0, 134
and t2,3 = (1/

√
t1) (cos(ϕ) ± i sin(ϕ)) ≈ 1, 933 ± 1, 935 i. So A is conjugate

to μg(1), where μg(t) =

⎛
⎝ et ln(t1) 0 0

0 et ln(|t2|) cos(t ϕ) −et ln(|t2|) sin(t ϕ)
0 et ln(|t2|) sin(t ϕ) et ln(|t2|) cos(t ϕ)

⎞
⎠,

and this implies the existence of a lattice Γg in the Lie group R �μg
R3.

h) Using Theorem 2.1, one shows that

γ1 := (1, 1,−1 +
√
5

3 +
√
5
),

γ2 := (−2(2 +
√
5)

3 +
√
5

,
1 +

√
5

3 +
√
5
,−11 + 5

√
5

7 + 3
√
5
),

γ3 := (0, 0,
√
5)

generate a lattice Γ in U3(R) with [γ1, γ2] = γ3 and γ3 central.
Define the one-parameter group μh : R→ A(U3(R)) by

μh(t)
(
(x, y, z)

)
= (e−t t1x, et t1y, z),

where t1 := ln(3+
√
5

2 ). Then μh(1) preserves the lattice Γ with

μh(1)(γ1) = γ2
1 γ2, μh(1)(γ2) = γ1 γ2, μh(1)(γ3) = γ3

and therefore, Z �μh
Γ is a lattice in R�μh

U3(R).

i) Consider the Lie group G̃ and the one-parameter group μ̃ of Case B.2 from
the proof of the last theorem. Setting γ1 = (1, 0, 0), γ2 = (0, 1, 0) as well as
γ3 = (0, 0, 1), n = 1 and c1 = c2 = 0, one explicitly gets an example.

The manifolds of type c) show that formal spaces with the same minimal model
as a Kähler manifold need not be Kählerian. This was proved by Fernández and Gray.

Theorem 6.3 ([18]). Let M be one of the symplectic solvmanifolds of type c)
in the last theorem, i.e. M is formal and possesses no complex structure. M has the
same minimal model as the Kähler manifold T 2 × S2.

7. Five-dimensional solvmanifolds.

7.1. Nilpotent and decomposable solvable Lie algebras. There are nine
classes of nilpotent Lie algebras in dimension five, see Table A.2. Each of them has a
basis with rational structure constants. By Theorem 2.1, the corresponding connected
and simply-connected Lie groups admit lattices and accordingly to Theorem 2.6, the
associated nilmanifolds are formal if and only if they are tori. For i ∈ {4, 5, 6} the
connected and simply-connected nilpotent Lie group with Lie algebra g5.i possesses
the left-invariant contact form x1 (where x1 is dual to the basis element X1 ∈ gi as
in Table A.2). Therefore, the corresponding nilmanifolds are contact.

The eight classes of decomposable unimodular non-nilpotent solvable Lie algebras
are listed in Table A.3. Except for g4.2⊕g1, the corresponding connected and simply-
connected Lie groups admit lattices since both of their factors admit lattices.
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Theorem 7.1.1. The connected and simply-connected Lie group G4.2 × R with
Lie algebra g4.2 ⊕ g1 possesses no lattice.

Proof. Write G for G4.2 × R and

g = 〈X1, . . . , X5 | [X1, X4] = −2X1, [X2, X4] = X2, [X3, X4] = X2 +X3〉
for its Lie algebra which has n = R4

X1,X2,X3,X5
as nilradical. Therefore, G can be

written as almost abelian Lie group R�μ R4 with

μ(t) = expGL(n,R)(t ad(X4)) =

⎛
⎜⎜⎝

e2t 0 0 0
0 e−t −te−t 0
0 0 e−t 0
0 0 0 1

⎞
⎟⎟⎠ .

By Corollary 4.5, the existence of a lattice in G would imply that there is t1 ∈ R\ {0}
such that μ(t1) is conjugate to an element of SL(4,Z). Clearly, the characteristic

polynomial of μ(t1) is P (X) = (X − 1) P̃ (X) , where the polynomial P̃ (X) = X3 −
kX2 + lX − 1 ∈ Z[X ] has the double root e−t1 . Lemma B.4 then implies e−t1 = 1,
i.e. t1 = 0 which is a contradiction.

Proposition 7.1.2. If Γ is a lattice in a five-dimensional completely solvable
non-nilpotent connected and simply-connected decomposable Lie group G, then G/Γ
is formal.

Proof. Let G, Γ be as in the proposition. As usual, we denote by g the Lie
algebra of G. We have g = h ⊕ kg1 with k ∈ {1, 2} and a certain (5− k)-dimensional
completely solvable non-nilpotent Lie algebra h, see Tables A.3 and A.1. By com-
pletely solvability and Theorem 3.10 (ii), G/Γ and the Chevalley-Eilenberg com-
plex of h ⊕ kg1 share their minimal model M. The lower dimensional discussion
above shows that for all h which can arise in the decomposition of g the algebras
M(

∧
h∗,δh) andM(

∧
kg∗

1
,δ=0) = (

∧
kg∗1, δ = 0) are formal. This implies the formality

ofM =M(
∧

h∗,δh) ⊗M(
∧

kg∗
1 ,δ=0).

7.2. Indecomposable non-nilpotent Lie algebras. There are 19 classes of
indecomposable non-nilpotent Lie algebras in dimension five which are unimodular.
These are listed in Tables A.4 – A.7. Instead of the small German letters for the
Lie algebras in the mentioned tables, we use capital Latin letters (with the same
subscripts) for the corresponding connected and simply-connected Lie groups.

Almost abelian algebras. We now consider the almost abelian Lie groups
G5.i = R �μi

R4. We write μ(t) = μi(t) = expGL(4,R)(t ad(X5)), where X5 ∈ g5.i
is as in Table A.4 (X5 depends on i). We know by Corollary 4.5, Theorem 4.6 and
Proposition 4.7 that there is a lattice Γ in G5.i if and only if there exists t1 �= 0 such
that μ(t1) is conjugate to μ̃(1) ∈ SL(4,Z) and Γ = Z �μ̃ Z4. This will be used in
the proof of the following propositions. In most cases, we construct the lattice by
giving explicit such an integer matrix μ̃(1). Using Mathematica-software, one can
check that the mentioned matrices are really conjugated. We will not write down the
transformation matrix T ∈ GL(4,R) with T μ̃(1)T−1 = μ(t1).

Methods to obtain integer matrices with given characteristic polynomial and nec-
essary conditions for their existence are given in Appendix B.

Proposition 7.2.1. Let p, q, r ∈ R with −1 ≤ r ≤ q ≤ p ≤ 1, pqr �= 0 and
p + q + r = −1. If the completely solvable Lie group Gp,q,r

5.7 admits a lattice and M
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denotes the corresponding solvmanifold, then M is formal, b1(M) = 1 and one of the
following conditions holds:

(i) b2(M) = 0,
(ii) b2(M) = 2, i.e. r = −1, p = −q ∈ ]0, 1[ or
(iii) b2(M) = 4, i.e. r = q = −1, p = 1.

Moreover, there exist p, q, r as above satisfying (i), (ii) resp. (iii) such that Gp,q,r
5.7

admits a lattice.

Proof. We suppress the sub- and superscripts of G and g.
a) Assume, there is a lattice in G and denote the corresponding solvmanifold by

M . Since g is completely solvable, the inclusion of the Chevallier-Eilenberg complex(∧
(x1, . . . , x5), δ

)
into the forms onM induces an isomorphism on cohomology. More-

over, the minimal model of
(∧

(x1, . . . , x5), δ
)
is isomorphic to the minimal model of

M .
δ is given by

δx1 = −x15, δx2 = −p x25, δx3 = −q x35, δx4 = −r x45, δx5 = 0.

(Here we write xij for xixj .) This implies b1(M) = 1.
One computes the differential of the non-exact generators of degree two in the

Chevalley-Eilenberg complex as

δx12 = (1 + p)x125, δx13 = (1 + q)x135, δx14 = (1 + r)x145,
δx23 = (p+ q)x235, δx24 = (p+ r)x245, δx34 = (q + r)x345.

−1 ≤ r ≤ q ≤ p ≤ 1, pqr �= 0 and p+ q + r = −1 implies p �= −1 and q �= −r and a
short computation yields that either (i), (ii) or (iii) holds.

In each case, a determination of the 2-minimal model, i.e. the minimal model up
to generators of degree two, shows that these generators are closed. By Definition
1.1.4, the minimal model then is 2-formal and Theorem 1.1.6 implies the formality of
M .

b) Now, we show that there are examples for each of the three cases. In case (i),
the proof is done in [27].

In case (ii), regard the matrix

⎛
⎜⎜⎝

0 0 0 −1
1 0 0 10
0 1 0 −23
0 0 1 10

⎞
⎟⎟⎠ which is conjugate to μ(t1) =

⎛
⎜⎜⎝

e−t1 0 0 0
0 e−pt1 0 0
0 0 ept1 0
0 0 0 et1

⎞
⎟⎟⎠ for t1 = 2 ln(3+

√
5

2 ) and p = 1
2 since both matrices have

the same characteristic polynomial which has four distinct real roots.

In case (iii), regard the matrix

⎛
⎜⎜⎝

3 0 −1 0
0 3 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ which is conjugate to μ(t1) =

⎛
⎜⎜⎝

e−t1 0 0 0
0 e−t1 0 0
0 0 et1 0
0 0 0 et1

⎞
⎟⎟⎠ for t1 = ln(3+

√
5

2 ) since both diagonalisable matrices have

the same minimal polynomial by Proposition B.8 (ii).



ON LOW-DIMENSIONAL SOLVMANIFOLDS 221

We have seen that a non-formal solvmanifold is a non-toral nilmanifold in di-
mensions three and four. In higher dimensions this is no longer true as the following
proposition shows:

Proposition 7.2.2. The completely solvable Lie group G−1
5.8 admits a lattice.

Moreover, for each lattice Γ the corresponding solvmanifold M = G−1
5.8/Γ has

b1(M) = 2 and is not formal.

Proof. Again, we suppress the sub- and superscripts. G admits a lattice since

μ(t) = expGL(4,R)(t ad(X5)) =

⎛
⎜⎜⎝

1 −t 0 0
0 1 0 0
0 0 e−t 0
0 0 0 et

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

0 0 0 −1
1 0 0 5
0 1 0 −8
0 0 1 5

⎞
⎟⎟⎠ are

conjugated for t1 = ln(3+
√
5

2 ).
Now, let Γ be an arbitrary lattice in G. By completely solvability and Theorem

3.10 (ii), we get the minimal model of M = G/Γ as the minimal model M of the
Chevalley-Eilenberg complex (

∧
g∗, δ). The latter is given by

δx1 = −x25, δx2 = 0, δx3 = −x35, δx4 = x45, δx5 = 0,

which implies b1(M) = 2. Further, the minimal model ρ : (
∧

V, d) → (
∧

g∗, δ) must
contain two closed generators y1, y2 which map to x2 and x5. Then we have ρ(y1y2) =
x25 = −δx1 and the minimal model’s construction in the proof of Theorem 1.1.2
implies that there is another generator u of degree one such that ρ(u) = −x1 and
du = y1y2. Since ρ(uy1) = −x12 and ρ(uy2) = −x15 are closed and non-exact, there
are no further generators of degree one in V . But this implies that (u+ c) y1 is closed
and non-exact in M for each closed element c of degree one. Using the notation of
Theorem 1.1.5, we have u ∈ N1, y1 ∈ V 1 andM is not formal.

Proposition 7.2.3. The completely solvable Lie group Gp,−2−p
5.9 , p ≥ −1, does

not admit a lattice.

Proof. The first half of the proof is taken from [27]. Assume there is a lattice.

μ(t) =

⎛
⎜⎜⎝

e−t −te−t 0 0
0 e−t 0 0
0 0 e−tp 0

0 0 0 et(2+p)

⎞
⎟⎟⎠ is conjugate to an element of SL(4,Z) for

t = t1 �= 0 and has roots e−t1 , e−t1 , e−t1p and et1(2+p). By Proposition B.6, this can
occur if and only if p = −1. Therefore, for the remainder of the proof we assume
p = −1.

The Jordan form of μ(t1) is

⎛
⎜⎜⎝

e−t 1 0 0
0 e−t 0 0
0 0 et 0
0 0 0 et

⎞
⎟⎟⎠, i.e. the characteristic and

the minimal polynomial of μ(t1) are

P (X) = (X − e−t1)2(X − et1)2

= X4 − 2(e−t1 + et1)X3 + (e−2t1 + e2t1 + 4)X2 − 2(e−t1 + et1)X + 1,

m(X) = (X − e−t1)2(X − et1)

= X3 − (2e−t1 + et1)X2 + (e−2t1 + 2)X − e−t1 .

Since μ(t1) is conjugate to an integer matrix, we have P (X),m(X) ∈ Z[X ] by Theorem
B.3. This is impossible for t1 �= 0.
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Proposition 7.2.4 ([27]). The completely solvable Lie group G−3
5.11 does not

admit a lattice.

Proof. If the group admits a lattice, there exists t1 ∈ R \ {0} such that the

characteristic polynomial of μ(t1) =

⎛
⎜⎜⎝

e−t1 −t1e−t1 t21
2 e
−t1 0

0 e−t1 −t1e−t1 0
0 0 e−t1 0
0 0 0 e3t1

⎞
⎟⎟⎠ is a monic

integer polynomial with a three-fold root e−t1 and a simple root e3t1 . By Proposition
B.6, this is impossible for t1 �= 0.

Proposition 7.2.5 ([27]). There are q, r ∈ R with −1 ≤ q < 0, q �= − 1
2 , r �= 0

such that G−1−2q,q,r
5.13 admits a lattice.

Proposition 7.2.6. There exists r ∈ R \ {0} such that G−1,0,r
5.13 admits a lattice.

Proof. Let t1 = ln(3+
√
5

2 ), r = π/t1 and A =

⎛
⎜⎜⎝

3 1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠. Then A

is conjugate to μ0,r(t1) =

⎛
⎜⎜⎝

e−t1 0 0 0
0 et1 0 0
0 0 cos(rt1) sin(rt1)
0 0 sin(rt1) cos(rt1)

⎞
⎟⎟⎠ and this implies the

existence of a lattice.

Proposition 7.2.7. G0
5.14 admits a lattice.

Proof. We have μ(t) =

⎛
⎜⎜⎝

1 −t 0 0
0 1 0 0
0 0 cos(t) − sin(t)
0 0 sin(t) cos(t)

⎞
⎟⎟⎠. Let t1 = π

3 , then μ(t1) is

conjugate to

⎛
⎜⎜⎝

1 0 0 0
1 1 0 0
0 1 1 −1
0 0 1 0

⎞
⎟⎟⎠, so there is a lattice.

Proposition 7.2.8. If there is a lattice Γ in the Lie group G := G0
5.14 such that

b1(G/Γ) = 2, then G/Γ is not formal.

Proof. By Theorem 3.10(i), the natural inclusion of the Chevalley-Eilenberg com-
plex (

∧
g∗, δ) → (Ω(G/Γ), d) induces an injection on cohomology. (

∧
g∗, δ) is given

by

δx1 = −x25, δx2 = 0, δx3 = −x45, δx4 = x35, δx5 = 0.

This implies b1(
∧
g∗, δ) = 2, hence H1(G/Γ, d) = 〈[x2], [x5]〉. Therefore

[x2] ·H1(G/Γ) +H1(G/Γ) · [x5] = 〈[x25]〉 = 〈[δx1]〉 = 0,

and in the Massey product 〈[x2], [x2], [x5]〉 = [−x15] is no indeterminacy. Since x15 is
closed and not exact, G/Γ cannot be formal.

Proposition 7.2.9. The completely solvable Lie group G−1
5.15 admits a lattice.

For each lattice the corresponding solvmanifold satisfies b1 = 1 and is non-formal.
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Proof. The construction of a lattice is given in [27]. The proof of the other
statements is similar to the proof of Proposition 7.2.2.

Proposition 7.2.10 ([27]). G−1,q
5.16 , q �= 0, does not admit a lattice.

Proof. If the group admits a lattice, there exists t1 ∈ R \ {0} such that the

characteristic polynomial of μ(t1) =

⎛
⎜⎜⎝

e−t1 −t1e−t1 0 0
0 e−t1 0 0
0 0 et1 cos(t1q) −et1 sin(t1q)
0 0 et1 sin(t1q) et1 cos(t1q)

⎞
⎟⎟⎠

is a monic integer polynomial with simple roots et1(cos(t1q)± i sin(t1q)) and a double
root e−t1 . By Proposition B.6, this is impossible for t1 �= 0.

Proposition 7.2.11 ([27]). There are p, r ∈ R, p �= 0, r /∈ {0,±1}, such that
Gp,−p,r

5.17 admits a lattice.

Proposition 7.2.12. There exists p ∈ R \ {0} such that Gp,−p,±1
5.17 admits a

lattice.

Proof. Let p := 1
π ln(

3+
√
5

2 ), t1 := π and A :=

⎛
⎜⎜⎝

0 −1 0 0
1 −3 0 0
0 0 0 −1
0 0 1 −3

⎞
⎟⎟⎠. Then

μ(t1) =

⎛
⎜⎜⎝

e−t1p cos(t1) −e−t1p sin(t1) 0 0
e−t1p sin(t1) e−t1p cos(t1) 0 0

0 0 et1p cos(±t1) −et1p sin(±t1)
0 0 et1p sin(±t1) et1p cos(±t1)

⎞
⎟⎟⎠ is conju-

gate to A and this implies the existence of a lattice.

Proposition 7.2.13. There exists r ∈ R \ {0,±1} such that G0,0,r
5.17 admits a

lattice.

Proof. Let r ∈ {2, 3}. Then μ(t) =

⎛
⎜⎜⎝

cos(t) sin(t) 0 0
sin(t) cos(t) 0 0
0 0 cos(tr) sin(tr)
0 0 sin(tr) cos(tr)

⎞
⎟⎟⎠ is an

integer matrix for t = π. This implies the existence of a lattice.

Proposition 7.2.14. G0,0,±1
5.17 admits a lattice.

Proof. μ(t) =

⎛
⎜⎜⎝

cos(t) sin(t) 0 0
sin(t) cos(t) 0 0
0 0 cos(±t) sin(±t)
0 0 sin(±t) cos(±t)

⎞
⎟⎟⎠ is an integer matrix for

t = π. This implies the existence of a lattice.

Proposition 7.2.15 ([27]). G0
5.18 admits a lattice.

Algebras with nilradical n := g3.1 ⊕ g1 = 〈X1, . . . , X4 | [X2, X3] = X1〉. We
now regard the unimodular almost-nilpotent Lie groups G5.i with nilradical N :=
U3(R) × R, i.e. i ∈ {19, 20, 23, 25, 26, 28}. We can identify N with R4 as a manifold
and the group law given by

(a, b, c, r) · (x, y, z, w) = (a+ x+ bz , b+ y , c+ z , r + w).
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The Lie algebras of the unimodular Lie groups G5.i = R�μi
N with nilradical N

are listed in Table A.5. We have μi(t) = expN ◦ expA(n)(t ad(X5)) ◦ logN , where X5

depends on i.
Assume there is a lattice Γ in G5.i. By Corollary 4.5, there are t1 �= 0 and an

inner automorphism In1
of N such that νi := μi(t1) ◦ In1

, ν−1
i ∈ A(N) preserve the

lattice ΓN := Γ ∩N in N . For n1 = (a, b, c, r) one calculates

(7) In1
(x, y, z, w) = (x+ bz − yc , y , z , w).

ΓN ′ := ΓN ∩ N ′ ∼= Z is a lattice in N ′ := [N,N ] = {(x, 0, 0, 0) |x ∈ R} ∼= R by
Theorem 2.3 and since νi(ΓN ′), ν−1

i (ΓN ′) ⊂ ΓN ′ , we have νi|ΓN′ ∈ Aut(Z). This
implies νi|ΓN′ = ±id and hence μi(t1)|[N,N ] = ±id (a cause of (7) and the shape of

[N,N ]). Moreover, we have [n, n] = 〈X1〉 and since expR is the identity,

±id = μi(t1)|[N,N ] = expA(n)(t1 ad(X5)|〈X1〉)|[N,N ].

(Note that expN ([n, n]) = [N,N ] by [57, Theorem 3.6.2].) Therefore, t1[X5, X1] has
no component in 〈X1〉 and since t1 �= 0, this means that [X1, X5] has no component
in X1-direction. The list of Lie algebras in Table A.5 implies:

Proposition 7.2.16. The only connected and simply-connected solvable Lie
groups with nilradical U3(R)× R that can contain a lattice are G−1

5.20 and G0,±1
5.26 .

Remark. In a previous version of this article, the group G−1
5.20 is absent. It was

added, after the author had read [15].

Proposition 7.2.17. The completely solvable Lie group G−1
5.20 admits a lattice.

For each lattice the corresponding solvmanifold admits a contact form, is formal and
has b1 = 2.

Proof. Using Theorem 2.1, one shows that

γ1 := (
20 + 9

√
5

9 + 4
√
5
, 0, 0, 0),

γ2 := (
181 + 81

√
5

47 + 21
√
5
,
18 + 8

√
5

7 + 3
√
5
,

2

3 +
√
5
, 0),

γ3 := (
181 + 81

√
5

47 + 21
√
5
, 1, 1, 0),

γ4 := (0, 0, 0,− 20 + 9
√
5

(9 + 4
√
5) ln(3+

√
5

2 )
)

generate a lattice ΓN in N with [γ2, γ3] = γ1 and γ1, γ4 central.
A short calculation yields that μ(t)

(
(x, y, z, w)

)
= (x − tw, e−ty, etz, w) defines

a one-parameter group in A(N). Moreover, for t1 = ln(3+
√
5

2 ) holds μ(t1)(γ1) = γ1,

μ(t1)(γ2) = γ3, μ(t1)(γ3) = γ−1
2 γ3

3 and μ(t1)(γ4) = γ1γ4.
This implies the existence of a lattice in G := G−1

5.20 = R �μ N .
Let Γ be an arbitrary lattice in G. By completely solvability and Theorem 3.10

(ii), we get the minimal model ofM = G/Γ as the minimal modelM of the Chevalley-
Eilenberg complex (

∧
g∗, δ). The latter is given by

δx1 = −x23 − x45, δx2 = −x25, δx3 = x35, δx4 = δx5 = 0,
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which implies b1(M) = 2. Moreover, x1 defines a left-invariant contact form on G/Γ.
The proof of the formality is similar to the proof of Proposition 7.2.2.

Proposition 7.2.18. G0,ε
5.26 admits a lattice for ε = ±1. For each lattice the

corresponding solvmanifold is contact and has b1 ≥ 2.

Proof. One calculates that μ : R→ A(N) defined by

μ(t)
(
(x, y, z, w)

)
=

(
x+ ht(y, z)− εtw, cos(tπ) y − sin(tπ) z, sin(tπ) y + cos(tπ) z, w

)
,

where ht(y, z) =
1
2 sin(tπ)

(
cos(tπ)

(
y2− z2

)− 2 sin(tπ)yz), is a one-parameter group.
Then we have G := G0,ε

5.26 = R�μ N and Z �μ {(x, y, z, w) ∈ N |x, y, z, w ∈ Z} is
a lattice in G since μ(1)

(
(x, y, z, w)

)
= (x − εw,−y,−z, w).

Using de
(
μ(t)

)
= logN ◦μ(t) ◦ expN , we obtain the Lie algebra g of G as

〈X1, . . . X5 | [X2, X3] = X1, [X2, X5] = X3, [X3, X5] = −X2, [X4, X5] = εX1〉.

Denote {x1, . . . , x5} the basis of g∗ which is dual to {X1, . . . , X5}, i.e. the xi are left-
invariant 1-forms on G. One calculates that x1 is a left-invariant contact form on G,
so it descends to a contact form on the corresponding solvmanifold.

The statement about the first Betti number follows from Theorem 3.10(i).

Algebras with nilradical g4.1 = 〈X1, . . . , X4 | [X2, X4] = X1, [X3, X4] = X2〉.
Proposition 7.2.19. No connected and simply-connected solvable Lie group G5.i

with nilradical N := G4.1 admits a lattice.

Proof. There is only one unimodular connected and simply-connected solvable

Lie group with nilradical G4.1, namely the completely solvable group G := G
− 4

3

5.30. We
show that it admits no lattice.

The group N is R4 as a manifold with multiplication given by

(a, b, c, r) · (x, y, z, w) = (a+ x+ wb +
1

2
w2c , b+ y + wc , c+ z , r + w),

and one calculates for n1 = (a, b, c, r)

In1
(x, y, z, w) = (x + wb+

1

2
w2c− ry − rwc +

1

2
r2z , y + wc− rz , z , w).

Let G = R �μ N , where μ(t) = expN ◦ expA(n)(t ad(X5)) ◦ logN and assume
there is a lattice Γ in G. By Corollary 4.5, there are t1 �= 0 and n1 ∈ N such that
ν := μ(t1) ◦ In1

∈ A(N) preserves the lattice ΓN := Γ ∩N in N .
ΓN ′ := N ′ ∩ ΓN is a lattice in N ′ := [N,N ] = {(x, y, 0, 0) ∈ N |x, y ∈ R} ∼= R2

by Theorem 2.3, and since ν(N ′) ⊂ N ′, this lattice is preserved by ν|N ′ . This and

expR
2

= id imply

±1 = det(ν|N ′) = det
(
expA(n)(t1 ad(X5)|[n,n])|[N,N ]

) · det(In1
|N ′)︸ ︷︷ ︸

=1

,

i.e. ad(X5)|[n,n] has trace equal to zero. This contradicts g−
4
3

5.30, see Table A.6.
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Non-almost nilpotent algebras. Now, there remain two unimodular con-
nected and simply-connected solvable Lie groups in dimension five, namely G−1,−1

5.33

and G−2,0
5.35 . In April 2009, Diatta and Foreman [15] proved that G−1,−1

5.33 possesses
a lattice. Note, Harshavardhan’s argumentation in [27, p. 33] is not sufficient. One
easily proves the following Proposition.

Proposition 7.2.20. Consider an arbitrary lattice in G−1,−1
5.33 . Then the corre-

sponding solvmanifold admits a contact form (since G−1,−1
5.33 possesses the left-invariant

contact form x1 + x2 + x3 with xi dual to Xi ∈ g
−1,−1
5.33 as in Table A.7, see [14]), is

formal and has b1 = 2.

Proposition 7.2.21. G−2,0
5.35 contains a lattice. For each lattice the corresponding

solvmanifold is contact and has b1 ≥ 2.

Proof. A lattice and a contact form were constructed by Geiges in [24]. One has
the left-invariant contact form x1 + x2 on the Lie group, where x1, x2 are dual to the
left-invariant vector fields as in Table A.7. Hence the form descends to each compact
quotient by a discrete subgroup.

The statement about the first Betti number follows from Theorem 3.10(i).

Conclusion. We have seen that each connected and simply-connected 5-
dimensional solvable Lie group admits a lattice if it is nilpotent or decomposable
with the exception of G4.2 × R. If an indecomposable non-nilpotent group G5.i gives
rise to a solvmanifold it is contained in Table 7.1. Recall, by Theorem 3.10, we always
have a lower bound for the solvmanifold’s Betti numbers and in some cases the exact
value. These can be read of in the second and the third column. The last column
refers to the examples that we have constructed above. “yes” means that we have
such for certain parameters that satisfy the conditions of the column “Comment”.
Except for i = 33 we have explicit examples for all possible values of i.

Assuming that there is a lattice in one the non-completely solvable Lie groups
G5.i, i.e. i ∈ {13, 14, 17, 18, 26, 35}, such that the inequalities in the above table are
equalities, then one can calculate that such quotients are formal for i ∈ {13, 17, 26, 35}
and not formal for i ∈ {14, 18}. The assumptions about the Betti numbers are
needed to ensure that the Lie algebra cohomology is isomorphic to the solvmanifold’s
cohomology.

7.3. Contact structures. Some of the connected and simply-connected five-
dimensional solvable Lie groups G5.i which admit a lattice Γ possess a left-invariant
contact form. Obviously, it also defines a contact form on the corresponding solvman-
ifold. By this way, we showed that the manifolds G5.i/Γ for i ∈ {4, 5, 6} and quotients
of almost nilpotent groups with non-abelian nilradical (i.e. i ≥ 19) by lattices are
contact.

But R5, U3(R)×R2, G4.1 ×R and G5.i do not have a left-invariant contact form
for i ∈ {1, 2, 3, 7, . . . , 18}, see e.g. [14]. For some of the nilmanifolds, we can provide
a contact structure by another approach.

Theorem 7.3.1. Let G ∈ {R5, U3(R)× R2, G4.1 × R, G5.1, G5.3} and Γ a lattice
G. Then G/Γ admits a contact structure.

Proof. For G chosen as in the theorem, the dimension of the center is greater than
or equal to two. Therefore, we can find a two-dimensional closed normal subgroup
that lies in the center such that its intersection with Γ is a lattice in it. By Theorem
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Table 7.1: 5-dimensional indecomposable non-nilmanifolds

b1 b2 formal Comment Example

Gp,q,r
5.7 1 0 yes −1 < r < p < q < 1, 7.2.1 (i)

pqr �= 0,
p+ q + r = −1

Gp,q,−1
5.7 1 2 yes p = −q ∈]0, 1[ 7.2.1 (ii)

G1,−1,−1
5.7 1 4 yes 7.2.1 (iii)

G−1
5.8 2 3 no 7.2.2

G−1−2q,q,r
5.13 ≥ 1 ≥ 0 ? q ∈ [−1, 0] \ { 12}, 7.2.5

r �= 0

G−1,0,r
5.13 ≥ 1 ≥ 2 ? r �= 0 7.2.6
G0

5.14 ≥ 2 ≥ 3 ? 7.2.7

G−1
5.15 1 2 no 7.2.9

Gp,−p,r
5.17 ≥ 1 ≥ 0 ? p �= 0, r /∈ {0,±1} 7.2.11

Gp,−p,±1
5.17 ≥ 1 ≥ 2 ? p �= 0 7.2.12

G0,0,r
5.17 ≥ 1 ≥ 2 ? r /∈ {0,±1} 7.2.13

G0,0,±1
5.17 ≥ 1 ≥ 4 ? 7.2.14
G0

5.18 ≥ 1 ≥ 2 ? 7.2.15

G−1
5.20 2 1 yes 7.2.17

G0,±1
5.26 ≥ 2 ≥ 1 ? 7.2.18

G−1,−1
5.33 2 1 yes no

G−2,0
5.35 ≥ 2 ≥ 1 ? 7.2.21

3.5, G/Γ has the structure of a principal T 2-bundle over a three dimensional closed
orientable manifold. Then the following result of Lutz implies the claim.

Theorem 7.3.2 ([36]). The total space of a principal T 2-bundle over a closed
orientable 3-manifold admits a contact form.

Unfortunately, we did not find a contact structure on the manifold of Proposition
7.2.9. If such exists, this yields a five-dimensional non-formal contact solvmanifold
with b1 = 1.

8. Six-dimensional solvmanifolds. There are 164 types of connected and
simply-connected indecomposable solvable Lie groups in dimension six, most of them
depending on parameters. For classifying six-dimensional solvmanifolds, we restrict
ourselves to the following types:

(1) nilmanifolds
(2) symplectic solvmanifolds that are quotients of indecomposable non-nilpotent

groups
(3) products of lower-dimensional solvmanifolds
Although we have to make some restrictions to get a manageable number of

cases, one certainly has to consider types (1) and (3). The further restriction in (2) is
justified by the large number of indecomposable non-nilpotent solvable Lie algebras in
dimension six: There are 140 types of it. The author has decided to consider the most
interesting among them. Since we are not able to refute a symplectic form’s existence
in the non-completely solvable case, we shall partly make even more restrictions.
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8.1. Nilmanifolds. There are 34 isomorphism classes of nilpotent Lie algebras
in dimension six. Each of them possesses a basis with rational structure constants and
therefore determines a nilmanifold. They are listed on page 228 in Table 8.1 which
is taken from [50]. The corresponding Lie algebras are listed in Appendix A. Among
the 34 classes of nilmanifolds, there are 26 which admit a symplectic form.

Table 8.1: 6-dimensional nilmanifolds

b1(G/Γ) b2(G/Γ) Comment g

6 15 Torus, symplectic 6g1

5 11 symplectic g3.1 ⊕ 3g1

5 9 not symplectic g5.4 ⊕ g1

4 9 symplectic g5.1 ⊕ g1

4 8 symplectic 2g3.1
4 8 symplectic g6.N4

4 8 symplectic g6.N5

4 7 symplectic g5.5 ⊕ g1
4 7 symplectic g4.1 ⊕ 2g1

4 6 not symplectic g6.N12

3 8 symplectic g6.N3

3 6 symplectic g6.N1

3 6 symplectic g6.N6

3 6 symplectic g6.N7

3 5 symplectic g5.2 ⊕ g1
3 5 not symplectic g5.3 ⊕ g1
3 5 symplectic g5.6 ⊕ g1
3 5 symplectic g6.N8

3 5 symplectic g6.N9

3 5 symplectic g6.N10

3 5 not symplectic g6.N13

3 5 not symplectic g16.N14

3 5 not symplectic g−1
6.N14

3 5 symplectic g6.N15

3 5 symplectic g6.N17

3 4 symplectic g6.N16

2 4 symplectic g6.N11

2 4 symplectic g16.N18

2 4 symplectic g−1
6.N18

2 3 symplectic g6.N2

2 3 symplectic g6.N19

2 3 symplectic g6.N20

2 2 not symplectic g6.N21

2 2 not symplectic g6.N22

Recall that a nilmanifold is formal or Kählerian if and only if the corresponding
Lie algebra is abelian.
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8.2. Candidates for the existence of lattices. Among the 61 types of inde-
composable unimodular almost nilpotent Lie algebras in dimension six that are listed
in Tables A.9 – A.16, there are some that cannot be the Lie algebra of a connected
and simply-connected Lie group which admits a lattice.

Instead of the small German letters for the Lie algebras in the mentioned tables,
we use again capital Latin letters with the same subscripts for the corresponding
connected and simply-connected Lie groups. If any, we chose the same designation
for the parameters a, b, c, h, s, ε of G6.i as for their Lie algebras.

Proposition 8.2.1. Let i ∈ {13, . . . , 38}, i.e. Nil(G6.i) = U3(R) × R2. Then it
is necessary for G6.i to contain a lattice that one of the following conditions holds:

i = 15, i = 18 ∧ a = −1, i = 21 ∧ a = 0, i = 23 ∧ a = 0,
i = 25 ∧ b = 0, i = 26, i = 29 ∧ b = 0, i = 32 ∧ a = 0,
i = 33 ∧ a = 0, i = 34 ∧ a = 0, i = 35 ∧ a = −b, i = 36 ∧ a = 0,
i = 37 ∧ a = 0, i = 38.

Proof. This can be seen analogous as in the proof of Proposition 7.2.16. Denote
{X1, . . . , X6} the basis used for the description of the Lie algebra in Appendix A. Then
the existence of a lattice implies that [X6, X1] has no component in X1-direction and
this yields the claim.

Proposition 8.2.2. Let i ∈ {39, . . . , 47}, i.e. the nilradical of G6.i is G4.1 × R.
If G6.i admits a lattice, then holds i = 39 ∧ h = −3 or i = 40.

Proof. Use the designation X1, . . . , X6 as above. Then 〈X1, X2〉 is the commuta-
tor of the nilradical of g6.i. Analogous as in the proof of Proposition 7.2.19, one shows
that ad(X6)|〈X1,X2〉 has trace equal to zero. This is only satisfied for i = 39∧h = −3
or i = 40.

Proposition 8.2.3.

(i) Let i ∈ {54, . . . , 70}, i.e. the nilradical of G6.i is G5.1. If G6.i admits a lattice,
then holds i = 54 ∧ l = −1, i = 63, i = 65 ∧ l = 0 or i = 70 ∧ p = 0.

(ii) No connected and simply-connected almost nilpotent Lie group with nilradical
G5.2 or G5.5 admits a lattice.

Proof. This follows in the same manner as the last proposition. The trace of
ad(X6) restricted to the commutator of the nilradical must be zero.

8.3. Symplectic solvmanifolds whose first Betti number equals one. If
we are looking for solvmanifolds with b1 = 1, it is necessary that the corresponding
Lie algebra is unimodular, almost nilpotent and has b1 = 1 itself. Note that the latter
forces the algebra to be indecomposable. In Tables A.20 – ?? on pages 257 – ??

we have listed all possible values that can arise as b1 for the classes of unimodular
non-nilpotent solvable indecomposable Lie algebras in dimension six.

Since we are mainly interested in symplectic 6-manifolds, we now investigate
which Lie algebras contained in Tables ?? – A.16 that satisfy b1 = 1 are cohomologi-
cally symplectic, i.e. there is a closed element ω ∈ ∧2

g∗ such that ω3 is not exact.
Note, if a unimodular Lie algebra is cohomologically symplectic, then each com-

pact quotient of the corresponding Lie group by a lattice is symplectic. If the Lie
algebra is completely solvable, this is even necessary for the quotient to be symplec-
tic.
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Proposition 8.3.1. Let g6.i be a unimodular almost-nilpotent Lie algebra with
b1(g6.i) = 1. Then we have:

g6.i is cohomologically symplectic if and only if i ∈ {15, 38, 78}.
Proof. For i ∈ {15, 38, 78} one computes all symplectic forms up to exact sum-

mands as
i = 15 : ω = (λ+ μ)x16 + λx25 − μx34, λ, μ ∈ R \ {0}, λ �= −μ,
i = 38 : ω = λx16 + μx24 +

λ
2 x25 − λ

2 x34 + μx35, λ, μ ∈ R, λ �= 0,− 3
2λ

3 �= 2λμ2,
i = 78 : ω = λx14 + λx26 + λx35, λ ∈ R \ {0}.

If i /∈ {15, 38, 78}, then the conditions on the parameters of g6.i to ensure its

unimodularity and b1(g6.i) = 1 imply that there are no closed elements of
∧2

g∗6.i
without exact summands which contain one of the elements x16, x26, x36, x46 or x56.
Therefore, g6.i cannot be cohomologically symplectic.

We now examine the three Lie groups that have cohomologically symplectic Lie
algebras.

The next theorem was announced in [6]. It provides an example of a symplec-
tic non-formal 6-manifold with b1 = 1. Since it is a solvmanifold, this manifold is
symplectically aspherical. Hence, we found an example for which Kȩdra, Rudyak and
Tralle looked in [34, Remark 6.5].

Theorem 8.3.2.

(i) The completely solvable Lie group G−1
6.15 contains a lattice.

(ii) If Γ is any lattice in G := G−1
6.15, then M := G/Γ is a symplectic and non-

formal manifold with b1(M) = 1 and b2(M) = 2.

Proof. ad (i): Let N = U3(R) × R2 denote the nilradical of G. We can identify
N with R5 as a manifold and the multiplication given by

(a, b, c, r, s) · (x, y, z, v, w) = (a+ x+ bz, b+ y, c+ z, r + v, s+ w),

i.e. [N,N ] = {(x, 0, 0, 0, 0) |x ∈ R} ∼= R and N := N/[N,N ] ∼= R4.
By definition of G, we have G = R�μ N , where

∀t∈Rμ(t) = expN ◦ expA(n)(t

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 −1 0 −1 0
0 0 −1 0 1

⎞
⎟⎟⎟⎟⎠) ◦ logN ,(8)

and since expR
4

= id, the induced maps μ(t) : N → N are given by

μ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t

⎛
⎜⎜⎝
−1 0 0 0
0 1 0 0
−1 0 −1 0
0 −1 0 1

⎞
⎟⎟⎠)

⎛
⎜⎜⎝

y
z
v
w

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

e−t 0 0 0
0 et 0 0

−te−t 0 e−t 0
0 −tet 0 et

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y
z
v
w

⎞
⎟⎟⎠ .

One calculates that μ̃ : R→ A(N) given by

∀t∈R∀(x,y,z,v,w)∈N μ̃(t)
(
(x, y, z, v, w)

)
=

(
x, μ(t)

(
(y, z, v, w)

))
(9)
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is a one-parameter group, and since the derivations of (8) and (9) in zero are equal,
we have μ ≡ μ̃.

Let t1 = ln(3+
√
5

2 ), then μ(t1) is conjugate to A :=

⎛
⎜⎜⎝

2 1 0 0
1 1 0 0
2 1 2 1
1 1 1 1

⎞
⎟⎟⎠. The

transformation matrix T ∈ GL(4,R) with TAT−1 = μ(t1) is

T =

⎛
⎜⎜⎜⎜⎜⎝

1 − 2(2+
√
5)

3+
√
5

0 0

1 1+
√
5

3+
√
5

0 0

0 0 ln( 2
3+
√
5
)

2(2+
√
5) ln( 3+

√
5

2
)

3+
√
5

0 0 ln( 2
3+
√
5
) − (1+

√
5) ln( 3+

√
5

2
)

3+
√
5

⎞
⎟⎟⎟⎟⎟⎠ .

Denote by {b1, . . . , b4} the basis of R4 for which μ(t1) is represented by A, i.e. bi is
the i-th column of T . One calculates

b11b22 − b12b21 =
√
5,

bi1bj2 − bi2bj1 = 0 for i < j, (i, j) �= (1, 2).

This implies that we have for γ0 := (
√
5, 0R4), γi := (bi0, bi) ∈ N with arbitrary

bi0 ∈ R, i = 1, . . . , 4,

[γ1, γ2] = γ0, [γ1, γ3] = [γ1, γ4] = [γ2, γ3] = [γ2, γ4] = [γ3, γ4] = eN .

We can choose the bi0 such that the following equations hold:

(10)

μ(t1)(γ0) = γ0,
μ(t1)(γ1) = γ2

1 γ2 γ2
3 γ4,

μ(t1)(γ2) = γ1 γ2 γ3 γ4,
μ(t1)(γ3) = γ2

3 γ4,
μ(t1)(γ4) = γ3 γ4.

Note that (10) leads to the equation (id − τA)

⎛
⎜⎜⎝

b10
b20
b30
b40

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 + 2(1+
√
5)

3+
√
5

1+
√
5

3+
√
5

0
0

⎞
⎟⎟⎟⎠ which

has the (unique) solution b10 = − 1+
√
5

3+
√
5
, b20 = − 11+5

√
5

7+3
√
5
and b30 = b40 = 0.

We claim that t1Z �μ 〈expN
(
SpanZ log

N ({γ0, . . . , γ4})
)〉 defines a lattice in G:

It suffices to show that 〈expN (
SpanZ log

N ({γ0, . . . , γ4})
)〉 defines a lattice in N ,

so let us prove this assertion. There exist uniquely Y0, . . . , Y4 ∈ n with expN (Yi) = γi
for i ∈ {0, . . . , 4}. If we prove that Y := {Y0, . . . , Y4} is a basis of n with rational
structure constants, then Theorem 2.1 (i) implies that 〈expN (SpanZY)〉 is a lattice in
N .

We identify n with R5 and brackets given by the Campbell-Hausdorff formula, see
e.g. [57, Chapter 2.15]. Since n is 2-step nilpotent (and expN is a diffeomorphism),
the formula yields for all V,W ∈ n

logN
(
expN (V ) expN (W )

)
= V +W +

1

2
[V,W ].
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Since U3(R) can be considered as a group of matrices, one can easily calculate its
exponential map. Then, its knowledge implies that the exponential map resp. the
logarithm of N is given by

expN
(
(x, y, z, v, w)

)
= (x+

1

2
yz, y, z, v, w),

logN
(
(x, y, z, v, w)

)
= (x− 1

2
yz, y, z, v, w),

and we obtain Y0 = (
√
5, 0R4), Y1 = (b10 − 1

2 , b1), Y2 = (b20 +
(2+

√
5)(1+

√
5)

(3+
√
5)2

, b2),

Y3 = (0, b3), Y4 = (0, b4), [Y1, Y2] = Y0. The other brackets vanish.

ad (ii): Let Γ be an arbitrary lattice in G. By completely solvability and Theorem
3.10 (ii), we get the minimal model of M = G/Γ as the minimal model M of the
Chevalley-Eilenberg complex (

∧
g∗, δ). The latter has the closed generator x6 and

the non-closed generators satisfy

δx1 = −x23, δx2 = −x26, δx3 = x36, δx4 = −x26 − x46, δx5 = −x36 + x56,

which implies b1(M) = 1.

One computes the differential of the non-exact generators of degree two in the
Chevalley-Eilenberg complex as

δx12 = x126, δx13 = −x136, δx14 = x126 + x146 − x234,
δx15 = x136 − x156 − x235, δx16 = x236, δx24 = 2x246,
δx25 = x236, δx34 = −x236, δx35 = −2x356,
δx45 = x256 − x346,

i.e. b2(M) = 2.

The minimal model ρ : (
∧
V, d)→ (

∧
g∗, δ) must contain three closed generators

y, z1, z2 which map to x6, x16 + x25 and x16 − x34. ρ(yz1) = x256 and ρ(yz2) = −x346

are closed and not exact. But in the generation of y, z1 and z2 is one (and up to a
scalar only one) element that maps onto an exact form, namely ρ(y(z1 + z2)) = δx45.
The minimal model’s construction in the proof of Theorem 1.1.2 implies that there is
another generator u of degree two such that ρ(u) = x45 and du = y(z1 + z2). Since
ρ(yu) = x456 is closed and non-exact, there are no further generators of degree less
than or equal to two in V . But this implies for each closed element c of degree two
that y (u+ c) is closed and non-exact inM. Using the notation of Theorem 1.1.5, we
have u ∈ N2, y ∈ V 1 andM is not formal.

Finally, the existence of a symplectic form onG/Γ follows from Proposition 8.3.1.

Proposition 8.3.3.

(i) Each quotient of the Lie group G0
6.38 by a lattice is symplectic. G0

6.38 contains
a lattice Γ with b1(G

0
6.38/Γ) = 1.

(ii) If the Lie group G0
6.38 contains a lattice Γ such that M := G0

6.38/Γ satisfies
b1(M) = 1 and b2(M) = 2, then M is a symplectic and non-formal manifold.

Proof. The proof is similar to that of the last theorem. Therefore, we just give a
sketch of the proof.

ad (i): The existence of a symplectic form on each quotient of G := G0
6.38 by a

lattice follows from Proposition 8.3.1.
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The nilradical N of G is the same as in the proof of Theorem 8.3.2, so we have
[N,N ] = R and N = N/[N,N ] = R4. If μ(t) : N → N is defined by

μ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
−1 0 0 1
0 −1 −1 0

⎞
⎟⎟⎠)

⎛
⎜⎜⎝

y
z
v
w

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

cos(t) sin(t) 0 0
− sin(t) cos(t) 0 0
−t cos(t) −t sin(t) cos(t) sin(t)
t sin(t) −t cos(t) − sin(t) cos(t)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y
z
v
w

⎞
⎟⎟⎠ ,

one calculates that μ : R→ A(N) given by

μ(t)
(
(x, y, z, v, w)

)
=

(
x− sin2(t)yz +

sin(t) cos(t)

2
(z2 − y2) + t

√
3

8
(y − z),

μ(t)
(
(y, z, v, w)

) )

is a one-parameter group with de
(
μ(t)

)
= expA(n)(t

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 −1 0 −1 0
0 0 −1 0 1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
= ad(X6)

), i.e.

G = N �μ R. (Here X6 is chosen as in the last line of Table ?? on page ??.) For
t1 :=

π
3 we have

μ(t1)
(
(x, y, z, v, w)

)
=

(
x− 3

4
yz +

√
3

8
(z2 − y2) +

π

8
√
3
(y − z), μ(t)

(
(y, z, v, w)

))
,

and in order to construct a lattice in G, it is enough to construct a lattice in N that

is preserved by μ(t1). μ(t1) is conjugate to A :=

⎛
⎜⎜⎝
−1 −3 0 0
1 2 0 0
−2 −3 −1 −3
1 1 1 2

⎞
⎟⎟⎠ and the

transformation matrix T ∈ GL(4,R) with TAT−1 = μ(t1) is

T =

⎛
⎜⎜⎝

√
3

π 0 0 0
− 3

π − 6
π 0 0

0 0 − 2√
3
−√3

0 0 0 1

⎞
⎟⎟⎠ .

Denote by {b1, . . . , b4} the basis of R4 for which μ(t1) is represented by A, i.e. bi is
the i-th column of T . One calculates

b11b22 − b12b21 =
−6√3
π2

,

bi1bj2 − bi2bj1 = 0 for i < j, (i, j) �= (1, 2).

This implies that we have for γ0 := (b11b22 − b12b21, 0R4), γi := (bi0, bi) ∈ N with
arbitrary bi0 ∈ R, i = 1, . . . , 4,

[γ1, γ2] = γ0, [γ1, γ3] = [γ1, γ4] = [γ2, γ3] = [γ2, γ4] = [γ3, γ4] = eN .
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If we set b10 =
1488

√
3+72

√
3π−19

√
3π2+4π3

128π2 , b20 =
2736

√
3+216

√
3π−25

√
3π2+12π3

128π2 and
b30 = b40 = 0, we obtain

μ(t1)(γ0) = γ0,
μ(t1)(γ1) = γ−1

1 γ2 γ−2
3 γ4,

μ(t1)(γ2) = γ−3
1 γ2

2 γ−3
3 γ4,

μ(t1)(γ3) = γ−1
3 γ4,

μ(t1)(γ4) = γ−3
3 γ2

4 .

Then 〈expN (
SpanZ log

N ({γ0, . . . , γ4})
)〉 is a lattice in N . This can be seen by a

similar computation as in the proof of the last theorem. Finally, one checks that the
abelianisation of this lattice is isomorphic to Z, hence the corresponding solvmanifold
has b1 = 1.

ad (ii): Let Γ be a lattice in G such that b1(G/Γ) = 1 and b2(G/Γ) = 2.
The Chevalley-Eilenberg complex (

∧
g∗, δ) has the closed generator x6 and δ is

given on the non-closed generators by

δx1 = −x23, δx2 = x36, δx3 = −x26, δx4 = −x26 + x56, δx5 = −x36 − x46,

which implies H1(
∧
g∗, δ) = 〈[x6]〉.

One computes the differential of the non-exact generators of degree two in the
Chevalley-Eilenberg complex as

δx12 = −x136, δx13 = x126,
δx14 = x126 − x156 − x234, δx15 = x136 + x146 − x235,
δx16 = −x236, δx24 = −x256 − x346,
δx25 = x236 + x246 − x356, δx34 = −x236 + x246 − x356,
δx35 = x256 + x346, δx45 = x256 − x346,

i.e. H2(
∧
g∗, δ) = 〈[x16 +

1
2x25 − 1

2x34], [x24 + x35]〉.
This implies that G/Γ and (

∧
g∗, δ) have the same Betti numbers and therefore,

by Theorem 3.10, they share their minimal model.
Now, the proof of non-formality is similar to the proof in the last theorem.

Theorem 8.3.4.

(i) The completely solvable Lie group G := G6.78 possesses a lattice.
(ii) For each lattice the corresponding quotient is a symplectic and formal mani-

fold with b1 = b2 = 1.

Proof. ad (i): By definition, we have G = R �μ N with N = G5.3 and μ(t) =

expN ◦ expA(n)(t ad(X6)) ◦ logN , where {X1, . . . , X6} denotes a basis of g as in the
second row of Table A.14. Note that {X1, . . . , X5} is a basis for the nilradical n. One
computes

(11) μ(t)∗ := de
(
μ(t)

)
= expA(n)(t ad(X6)) =

⎛
⎜⎜⎜⎜⎝

et 0 0 0 0
0 1 0 0 0
0 0 e−t −te−t 0
0 0 0 e−t 0
0 0 0 0 et

⎞
⎟⎟⎟⎟⎠ .

Using n = 〈X5〉�ad(X5)

(〈X1〉 ⊕ 〈X2, X3, X4 | [X2, X4] = X3〉
)
, we can determine

the Lie group N .
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As a smooth manifold N equals R5, and the multiplication is given by

(a, b, c, r, s) · (x, y, z, v, w)
= (a+ x+ bw +

rw2

2
, b+ y + rw , c+ z + bv +

r2w

2
+ rvw , r + v , s+ w).

Now, Theorem 4.2 enables us to compute the exponential map of N as

expN (xX1 + yX2 + zX3 + vX4 + wX5)

=
(
x+

yw

2
+

vw2

6
, y +

vw

2
, z +

yv

2
+

v2w

3
, v , w

)
,

and therefore, we also obtain the logarithm of N

logN
(
(x, y, z, v, w)

)
= (x− yw

2
+

vw2

12
)X1 + (y − vw

2
)X2 + (z − yv

2
− v2w

12
)X3 + vX4 + wX5.

Finally, a short computation shows that (11) implies

μ(t)
(
(x, y, z, v, w)

)
= (etx, y, e−t(z − tw), e−tv, etw).

Let t1 := ln(3+
√
5

2 ), b0 := − 2t1
1+
√
5
and consider for t ∈ R the automorphisms

I(t) : N → N given by

I(t)
(
(x, y, z, v, w)

)
= (0, tb0, 0, 0, 0)(x, y, z, v, w)(0, tb0, 0, 0, 0)

−1 = (x+ tb0w, y, z + tb0v, v, w),

and ν(t) := μ(t)◦I(t) : N → N . It is easy to see that ν : R→ A(N) is a one-parameter
group in N .

We shall show that there exists a lattice ΓN in N preserved by ν(t1), and this
then implies the existence of a lattice in G6.78, namely t1Z �ν ΓN .

For the remainder of the proof, we identify n ≡ R5 with respect to the basis
{X1, . . . , X5} of n. Under this identification, consider the basis {Y1, . . . , Y5} of n, Yi

being the i-th column of T = (Tij) ∈ GL(5,R), where T has the following entries:

T11 =
10(161+72

√
5) ln( 3+

√
5

2
)2

1165+521
√
5

, T13 =
5(2+

√
5)(161+72

√
5) ln( 3+

√
5

2
)2

1525+682
√
5

,

T14 =
328380+146856

√
5−(159975+71543

√
5) ln( 3+

√
5

2
)2

202950+90762
√
5

, T22 = T33 = − (5+3
√
5) ln( 3+

√
5

2
)

3+
√
5

,

T24 = − (158114965+70711162
√
5) ln( 3+

√
5

2
)

141422324+63245986
√
5

, T25 =
5(3940598+1762585

√
5) ln( 3+

√
5

2
)

17622890+7881196
√
5

,

T31 =
1
2 (5 +

√
5) ln(3+

√
5

2 ), T33 = T22, T35 = − 597+267
√
5+(3808+1703

√
5) ln( 3+

√
5

2
)

369+165
√
5

,

T45 = − 2(2+
√
5)

3+
√
5

, T54 = ln( 2
3+
√
5
), T55 = − 2 ln( 3+

√
5

2
)

1+
√
5

, T15 = T34 = T44 = 1,

T12 = T21 = T23 = T32 = T41 = T42 = T43 = T51 = T52 = T53 = 0.
Let γi := expN (Yi) for i ∈ {1, . . . 5} and

S1 =
92880525355200+41537433696024

√
5

57403321562460+25671545829588
√
5
− (3591421616495+1606132574069

√
5) ln( 3+

√
5

2
)2

57403321562460+25671545829588
√
5

,

S2 = − (228826127+102334155
√
5) ln( 3+

√
5

2
)

141422324+63245986
√
5

, S3 = 1− (757189543+338625458
√
5) ln( 3+

√
5

2
)

848533944+379475916
√
5

,

S4 =
724734510+324111126

√
5−(325041375+145362922

√
5) ln( 3+

√
5

2
)2

724734510+324111126
√
5

,
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S5 =
(120789085+54018521

√
5) ln( 3+

√
5

2
)

74651760+33385282
√
5

S6 = − 466724522940+208725552012
√
5

24(12018817440+5374978561
√
5)
+

(3393446021605+1517595196457
√
5) ln( 3+

√
5

2
)

24(12018817440+5374978561
√
5)

.

One computes γ1 = (T11, 0, T31, 0, 0), γ2 = (0, T22, 0, 0, 0), γ3 = (T13, 0, T33, 0, 0),
γ4 = (S1, S2, S3, T44, T54) and γ5 = (S4, S5, S6, T45, T55).

Moreover, if A denotes the matrix

⎛
⎜⎜⎜⎜⎝

1 0 1 13
6

11
6

0 1 0 0 − 1
2

1 0 2 − 5
6 − 1

3
0 0 0 2 1
0 0 0 1 1

⎞
⎟⎟⎟⎟⎠, we can calculate

TAT−1 = ν(t1)∗ := de(ν(t)). Since ν(t1) = expN ◦ν(t1)∗◦logN , this yields ν(t1)(γ1) =
γ1 γ3, ν(t1)(γ2) = γ2, ν(t1)(γ3) = γ1 γ

2
3 , ν(t1)(γ4) = γ2

1 γ
−2
2 γ2

4 γ5 and ν(t1)(γ5) =
γ2
1 γ

−1
2 γ4 γ5.
Therefore, we have shown that ν(t1) preserves the subgroup ΓN of N which is

generated by γ1, . . . , γ5. In order to complete the proof of (i), it suffices to show that
ΓN is a lattice in N .

Since n is 3-step nilpotent, the Baker-Campbell-Hausdorff formula (see e.g. [57,
Chapter 2.15]) yields for all V,W ∈ n

logN
(
expN (V ) expN (W )

)
= V +W +

1

2
[V,W ] +

1

12
([[V,W ],W ]− [[V,W ], V ]).

Therefore, we obtain by a short calculation [Y2, Y4] = Y3, [Y2, Y5] = Y1 and [Y4, Y5] =
1
2Y1 + Y2 +

1
2Y3, i.e. the basis {Y1, . . . , Y5} has rational structure constants. Theorem

2.1 then implies that ΓN is a lattice in N .
ad (ii): Let Γ be a lattice in G := G6.78. By completely solvability and Theorem

3.10 (ii), the minimal model of M = G/Γ is the same as the minimal modelM of the
Chevalley-Eilenberg complex (

∧
g∗, δ). In view of Theorem 1.1.6, it suffices to prove

that the latter is 2-formal. On the non-closed generators of (
∧
g∗, δ) the differential

is given by

δx1 = x16 − x25, δx2 = −x45, δx3 = −x24 − x36 − x46, δx4 = −x46, δx5 = x56,

i.e. H1(
∧
g∗, δ) = 〈[x6]〉. Further, one calculates H2(

∧
g∗, δ) = 〈x14 + x26 + x35〉.

The minimal model ρ : (
∧

V, d)→ (
∧

g∗, δ) then must contain two closed generators
y, z which map to x6 and x14 + x26 + x35. Since ρ(yz) = x146 + x356 is closed and
non-exact, there are no other generators of degree two in (

∧
V, d), hence up to degree

two, all generators are closed. This implies the minimal model’s 2-formality.
Moreover, x14 + x26 + x35 defines a symplectic form.

8.4. Symplectic solvmanifolds whose first Betti number is greater than

one. In this section, we examine which Lie groupsG can give rise to a six-dimensional
solvmanifold G/Γ with b1(G/Γ) > 1. Again, we just consider indecomposable con-
nected and simply-connected solvable Lie groups. The nilradical of such a group has
not dimension equal to three, see e.g. [42]. Proposition 3.4 then tells us that in-
decomposable solvable Lie groups have nilradicals of dimension greater than three.
Moreover, the nilpotent ones were considered in Section 8.1, hence we can assume
that G is non-nilpotent, i.e. dimNil(G) ∈ {4, 5}. The corresponding Lie algebras are
listed in Tables A.9 – A.19.

In Section 8.2, we have excluded some groups G since they cannot admit lattices.
Clearly, we omit them in the considerations below.
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By Theorem 3.10(ii), we have in the completely solvable case an isomorphism from
Lie algebra cohomology to the solvmanifold’s cohomology, i.e. the Lie algebra g must
satisfy b1(g) > 1, too. In the last section, we saw that g06.38 is the only non-completely
solvable but cohomologically symplectic Lie algebra with b1(g) = 1. Therefore, for
each lattice Γ in G0

6.38 with b1(G
0
6.38/Γ) > 1, the quotient is symplectic. We now turn

to Lie algebras with b1(g) > 1. The possible values of b1 can be read of in Tables A.20
– ??.

The remaining algebras to examine are g6.i as in (12), see below.
As above, we just consider such Lie algebras that are cohomologically symplec-

tic, although this condition is only in the completely solvable case necessary for the
existence of a symplectic form on G/Γ.

(12)

i = 2, a = 0; i = 3, d = −1; i = 6, a = − 1
2 , b = 0;

i = 9, b = 0; i = 10, a = 0; i = 21, a = 0;
i = 23, a = 0; i = 25, b = 0; i = 26;
i = 29, b = 0; i = 33, a = 0; i = 34, a = 0;
i = 36, a = 0; i = 54, l = −1; i = 63;
i = 65, l = 0; i = 70, p = 0; i = 83, l = 0;
i = 84; i = 88, μ0 = ν0 = 0; i = 89, ν0s = 0;
i = 90, ν0 = 0; i = 92, ν0μ0 = 0; i = 93, ν0 = 0;
i = 102; i = 105; i = 107;
i = 113; i = 114; i = 115;
i = 116; i = 118; i = 120;
i = 125; i = 129; i = 135.

Proposition 8.4.1. Let g6.i be one of the Lie algebras listed in (12).
Then g6.i is cohomologically symplectic if and only if it is contained in the follow-

ing list:

b1 = 2 : i = 3 ∧ d = −1, i = 10 ∧ a = 0, i = 21 ∧ a = 0,
i = 36 ∧ a = 0, i = 54 ∧ l = −1,
i = 70 ∧ p = 0, i = 118 ∧ b = ±1.

b1 = 3 : i = 23 ∧ a = 0 ∧ ε �= 0, i = 29 ∧ b = 0.

Proof. This is done by a case by case analysis as described in the proof of Propo-
sition 8.3.1. We list the symplectic forms for the Lie algebras that are cohomologically
symplectic. In the cases with b1 = 2, the symplectic forms are given by

i = 3, d = −1 : ω = λx16 + μx23 + ν x45, λμν �= 0,
i = 10, a = 0 : ω = λx16 + μx23 + ν x45, λμν �= 0,
i = 21, a = 0 : ω = λx12 + μx36 + ν x45, λμν �= 0,
i = 36, a = 0 : ω = λx12 + μx36 + ν x45, λμν �= 0,
i = 54, l = −1 : ω = λ (x12 + x23) + μx34 + ν x56, λν �= 0,
i = 70, p = 0 : ω = λ (x13 + x24) + μx34 + ν x56, λν �= 0,
i = 118, b = ±1: ω = λ (x13 ± x24) + μ (x14 − x23) + ν x56, (λ2 + μ2)ν �= 0.

In the cases with b1 = 3, we have the symplectic forms

ω = λ (x12 + ε x35) + μ (x16 + x24) + ν (x23 − ε x56) + ρ x25 + σ x46
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with λμν �= 0 for i = 23, a = 0, ε �= 0,

ω = λ (x13 + ε x45) + μ (x16 + x24) + ν (x23 − ε x56) + ρ x26 + σ x34

with λ �= 0, ρ �= (λ+ε)μν
λ for i = 29, b = 0, ε �= 0 and

ω = λx12 + μx13 + ν (x16 + x24) + ρ x26 + σ x34 + τ x56

with ν(νσ + μτ) �= 0 for i = 29, b = 0, ε �= 0.

Provided there is a lattice in one of the ten Lie groups G6.i in the last propo-
sition whose Lie algebras are cohomologically symplectic, we can ensure that the
corresponding solvmanifold is symplectic. In the completely solvable case, i.e.
i ∈ {3, 21, 23, 29, 54}, we can determine cohomological properties of the potential
solvmanifolds.

Proposition 8.4.2.

(i) There is a lattice in the completely solvable Lie group G0,−1
6.3 .

(ii) For each lattice the corresponding solvmanifold is symplectic, not formal and
satisfies b1 = 2 as well as b2 = 3.

Proof. ad (i) : We have G := G0,−1
6.3 = R�μ R4 with μ(t) = expGL(4,R)(t ad(X6)),

where X6 ∈ g
0,−1
6.3 is chosen as in Table ??, i.e.

μ(t) =

⎛
⎜⎜⎜⎜⎝

1 −t t2

2 0 0
0 1 −t 0 0
0 0 1 0 0
0 0 0 e−t 0
0 0 0 0 et

⎞
⎟⎟⎟⎟⎠ .

Set t1 := ln(3+
√
5

2 ). Then μ(t1) is conjugate to

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 1 3

⎞
⎟⎟⎟⎟⎠. (This can be

seen by the use of Mathematica-software.) Hence G admits a lattice.

ad (ii): By completely solvability and Theorem 3.10 (ii), the solvmanifold’s min-
imal model is the same as the minimal model of the Chevalley-Eilenberg complex. In
view of Theorem 1.1.6, it suffices to prove that the latter is not 2-formal.

Using the knowledge of the Chevalley-Eilenberg complex, one can compute the
minimal model up to generators of degree two. This implies the statement about the
Betti numbers. Moreover, it is easy to see that the minimal model is not 1-formal.

Proposition 8.4.3.

(i) There is a lattice in the completely solvable Lie group G0
6.21.

(ii) For each lattice the corresponding solvmanifold is symplectic, not formal and
satisfies b1 = 2 as well as b2 = 3.

Proof. The proof of (ii) is analogous to that of (ii) in the last proposition.

ad (i): In order to prove the existence of a lattice, we use the same argumentation
as in the proof of Theorem 8.3.2 (i). (Note that G−1

6.15 and G := G0
6.21 share their
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nilradical N .) But of course, we now have a different initial data: G = R�μ N with

μ(t) = expN ◦ expA(n)(t

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠) ◦ logN and

μ(t)
(
(y, z, v, w)

)
= expGL(4,R)(t

⎛
⎜⎜⎝

0 0 0 0
−t 0 0 0
0 0 −t 0
0 0 0 t

⎞
⎟⎟⎠)

⎛
⎜⎜⎝

y
z
v
w

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1 0 0 0
−t 1 0 0
0 0 e−t 0
0 0 0 et

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y
z
v
w

⎞
⎟⎟⎠ .

Arguing analogous as in (9), one obtains

μ(t)
(
(x, y, z, v, w)

)
=

(
x− t

2
y2, μ(t)

(
(x, y, z, v, w)

))
.

Let t1 = ln(3+
√
5

2 ), A :=

⎛
⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 0 −1
0 0 1 3

⎞
⎟⎟⎠ and T =

⎛
⎜⎜⎜⎝

0 − 1
t1

0 0

1 0 0 0

0 0 18+8
√
5

7+3
√
5

1

0 0 2
3+
√
5

1

⎞
⎟⎟⎟⎠.

Then we have TAT−1 = μ(t1). Denote the i-th column of T by bi. Analogous
calculations as in loc. cit. imply the existence of a lattice generated by γ0 := ( 1

t1
, 0R4)

and γi := (bi0, bi), i ∈ {1, . . . , 4}, where b20 ∈ R arbitrary and b10 = − 1
2t1

as well as
b30 = b40 = 0.

Proposition 8.4.4.

(i) Let ε = ±1. There is a lattice in the completely solvable Lie group G0,0,ε
6.23 .

(ii) If there is a lattice in G0,0,ε
6.23 , ε �= 0, then the corresponding solvmanifold is

symplectic, non-formal and satisfies b1 = 3 as well as b2 = 5.

Proof. ad (i): G0,0,ε
6.23 has the same nilradical N as G−1

6.15 and the latter is described
at the beginning of the proof of Theorem 8.3.2.

By definition, G0,0,ε
6.23 = R �μ N with

μ(t) = expN ◦ expA(n)(t

⎛
⎜⎜⎜⎜⎝

0 0 0 0 −ε
0 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠) ◦ logN .

The functions expN , logN also can be found in the proof of Theorem 8.3.2. Using
their knowledge, we calculate

μ(t)
(
(x, y, z, v, w)

)
=

(
x− t

2
y2 − tε , y , z − ty ,

t2

2
y − tz + v , w

)
.

If ε = ±1, then the map μ(2) preserves the lattice

{(x, y, z, v, w) ∈ N |x, y, z, v, w ∈ Z} ⊂ N.
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Therefore, G0,0,ε
6.23 admits a lattice.

ad (ii): By completely solvability, the Betti numbers of the Chevalley-Eilenberg
complex coincide with the solvmanifold’s Betti numbers. A short calculation yields
the first Betti numbers of the former as b1 = 3 and b2 = 5.

As above, the knowledge of the Chevalley-Eilenberg complex enables us to com-
pute the first stage of the minimal model. It is easy to see that it is not 1-formal.

Proposition 8.4.5.

(i) Let ε ∈ {0,±1}. There is a lattice in the completely solvable Lie group G0,0,ε
6.29 .

(ii) If there is a lattice in G0,0,ε
6.29 , ε ∈ R, then the corresponding solvmanifold is

symplectic, non-formal and has b1 = 3 as well as b2 =

{
5, if ε �= 0
6, if ε = 0

}
.

Proof. The argumentation is analogous to the last proof, but this time we have

μ(t)
(
(x, y, z, v, w)

)
=

(
x− ε

6
t3z +

ε

2
t2v − εtw , y , z , −tz + v ,

1

2
t2z − tv + w

)
.

For ε ∈ {0,±1}, μ(6) preserves the integer lattice mentioned in the last proof.
This implies (i).

In order to prove (ii), we consider the minimal model up to generators of degree
one and can deduce the non-formality.

The following result is due to Fernández, de Léon and Saralegui. Its proof can be
found in [19, Section 3]. Note that the cohomological results are independent of the
choice of the lattice, since the Lie group in the proposition is completely solvable.

Proposition 8.4.6. The completely solvable Lie group G0,−1
6.54 admits a lattice.

For each such, the corresponding solvmanifold is symplectic, non-formal and satisfies
b1 = 2 as well as b2 = 5.

Summing up the results concerning completely solvable Lie groups that admit
symplectic quotients, we obtain:

Theorem 8.4.7. All six-dimensional symplectic solvmanifolds that can be writ-
ten as quotient of a non-nilpotent completely solvable indecomposable Lie group are
contained in one of the last five propositions, Theorem 8.3.2 or Theorem 8.3.4.

To end this section, we consider the four cohomologically symplectic Lie algebras
g6.i of Proposition 8.4.1 that are not completely solvable, this means i = 10 ∧ a = 0,
i = 36∧a = 0, i = 70∧p = 0 or i = 118∧ b = ±1. C Clearly, the existence of a lattice
implies that the corresponding solvmanifold is symplectic. But in order to make a
statement about cohomological properties, one needs an assumption about the first
two Betti numbers to ensure the knowledge of the cohomology algebra.

Proposition 8.4.8.

(i) Each quotient of the Lie group G := G0,0
6.10 by a lattice is symplectic and G

admits a lattice Γ with b1(G/Γ) = 2.
(ii) If there is a lattice in G such that the corresponding solvmanifold satisfies

b1 = 2 and b2 = 3, then it is symplectic and not formal.

Proof. We have G = R �μ R4 with μ(t) = expGL(4,R)(t ad(X6)) and X6 ∈ g
0,0
6.10
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chosen as in Table ??, i.e.

μ(t) =

⎛
⎜⎜⎜⎜⎝

1 −t t2

2 0 0
0 1 −t 0 0
0 0 1 0 0
0 0 0 cos(t) − sin(t)
0 0 0 sin(t) cos(t)

⎞
⎟⎟⎟⎟⎠ .

μ(π) is conjugate to

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠. (This can be seen by the use of

Mathematica-software.) Hence G admits a lattice Γ.
A short calculation yields that the abelianisation of this lattice is isomorphic to

Z2 ⊕ Z2
2, i.e. b1(G/Γ) = 2.

Using the assumptions of (ii), one calculates the minimal model up to generators
of degree one and proves the non-formality.

Proposition 8.4.9.

(i) Each quotient of the Lie group G := G0,0
6.36 by a lattice is symplectic and G

admits a lattice Γ with b1(G/Γ) = 2.
(ii) If there is a lattice in the Lie group G such that the corresponding solvmanifold

satisfies b1 = 2 and b2 = 3, then it is symplectic and not formal.

Proof. The proof of (ii) is analogous to the last one.
ad (i): Using another initial data, we can argue as in the proof of Proposition

8.4.3.

(i) Each quotient of the Lie group G := G0,0
6.70 by a lattice is symplectic and G

admits a lattice Γ with b1(G/Γ) = 2.
(ii) If there is a lattice Γ in G such that b1(G/Γ) = 2 and b2(G/Γ) = 3, then G/Γ

is formal.
Proof. ad (i): By definition, we have G = R �μ N with N = G5.1 and μ(t) =

expN ◦ expA(n)(t ad(X6)) ◦ logN , where {X1, . . . , X6} denotes a basis of g as in the
second row of Table ??. Note that {X1, . . . , X5} is a basis of the nilradical n. One
computes

μ(t)∗ := de
(
μ(t)

)
= expA(n)(t ad(X6))

=

⎛
⎜⎜⎜⎜⎝

cos(t) sin(t) 0 0 0
− sin(t) cos(t) 0 0 0

0 0 cos(t) sin(t) 0
0 0 − sin(t) cos(t) 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Using n = 〈X5〉 �ad 〈X1, . . . , X4 | 〉, ad(X5)(X3) = −X1, we can determine the
Lie group N .

As a smooth manifold N equals R5, and the multiplication is given by

(a, b, c, r, s) · (x, y, z, v, w) = (
a+ x+ cw , b+ y + rw , c+ z , r + v , s+ w

)
.

By Theorem 4.2, we can obtain the exponential map of N as

expN (xX1 + yX2 + zX3 + vX4 + wX5) = (x+
zw

2
, y +

vw

2
, z , v , w),
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and obviously, this implies

logN
(
(x, y, z, v, w)

)
= (x − wz

2
)X1 + (y − vw

2
)X2 + zX3 + vX4 + wX5.

¿From μ(t) = expN ◦μ(t)∗ ◦ logN we get

μ(t)
(
(x, y, z, v, w)

)
= (cos(t)x + sin(t) y , − sin(t)x+ cos(t) y ,

cos(t) z + sin(t) v , − sin(t) z + cos(t) v , w),

and μ(π) preserves the lattice {(x, y, z, v, w) ∈ N |x, y, z, v, w ∈ Z}.
The corresponding solvmanifold has b1 = 2 since the abelianisation of this lattice

is isomorphic to Z2 ⊕ Z2
4.

ad (ii): A calculation of the minimal model up to generators of degree two shows
that the minimal model is 2-formal. By Theorem 1.1.6, the solvmanifold is formal.

Proposition 8.4.10.

(i) G := G0,±1,−1
6.118 admits a lattice such that the first Betti number of the corre-

sponding solvmanifold equals two and the second Betti number equals five.
(ii) If there is a lattice Γ in G such that b1(G/Γ) = 2 and b2(G/Γ) = 3, then G/Γ

is symplectic and formal.

Proof. The construction of the lattices mentioned in (i) can be found in [60]. In
loc. cit. G0,1,−1

6.118 is denoted by G3 and G0,−1,−1
6.118 by G1, respectively. The Betti numbers

of the quotient of G0,−1,−1
118 are determined explicitly. In the case of G0,1,−1

118 , one can
make an analogous computation.

Assume there is a lattice that satisfies the condition of (ii). A calculation of the
solvmanifolds’s minimal model up to generators of degree two shows its 2-formality.
Theorem 1.1.6 then implies formality.

9. Relations with the Lefschetz property. We have seen in Section 1.2 that
a compact Kähler manifold is formal, Hard Lefschetz and its odd-degree Betti numbers
are even. Even if a manifold has a complex structure, these conditions are not sufficient
as the following theorem which is mentioned in [30] shows. Recall, we have seen above
that G1,−1,−1

5.7 admits a lattice.

Theorem 9.1. Let Γ be an arbitrary lattice in G1,−1,−1
5.7 . Then the solvmani-

fold M := G1,−1,−1
5.7 /Γ × S1 is formal, Hard Lefschetz and has even odd-degree Betti

numbers. Moreover, M possesses a complex structure but it cannot be Kählerian.

Proof. From Proposition 7.2.1 follows that the Lie group G := G1,−1,−1
5.7 × R

possesses a lattice Γ. The Chevalley-Eilenberg complex of its Lie algebra

〈X1, . . . , X6 | [X1, X5] = X1, [X2, X5] = X2, [X3, X5] = −X3, [X4, X5] = −X4 〉
is given by

δx1 = −x15, δx2 = −x25, δx3 = x35, δx4 = x45, δx5 = δx6 = 0,

where {x1, . . . , x6} is a basis of the left-invariant one-forms onG. SinceG is completely
solvable, Theorem 3.10 (ii) enables us to compute the cohomology of M as

H1(M,R) = 〈[x5], [x6]〉,
H2(M,R) = 〈[x13], [x14], [x23], [x24], [x56]〉,
H3(M,R) = 〈[x135], [x136], [x145], [x146], [x235], [x236], [x245], [x246]〉,(13)

H4(M,R) = 〈[x1234], [x1356], [x1456], [x2356], [x2456]〉,
H5(M,R) = 〈[x12345], [x12346]〉.
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Let [ω] ∈ H2(M,R) represent a symplectic form on M . A short calculation shows
that there are a, b, c, d, e ∈ R with e(bc− ad) �= 0 and

[ω] = a[x13] + b[x14] + c[x23] + d[x24] + e[x56].

Since [x5] ∪ [ω]2 = 2(bc− de)[x12345] �= 0 and [x6] ∪ [ω]2 = 2(bc− de)[x12346] �= 0, the
homomorphism L2 : H1(M,R)→ H5(M,R) is an isomorphism.

In the basis (13), the homomorphism L1 : H2(M,R)→ H4(M,R) is represented

by the matrix

⎛
⎜⎜⎜⎜⎝
−d c −b −a 0
e 0 0 0 a
0 e 0 0 b
0 0 e 0 c
0 0 0 e d

⎞
⎟⎟⎟⎟⎠ which has 2e3(ad− bc) �= 0 as determinant,

hence M is Hard Lefschetz.
We define an almost complex structure J on G by

JX1 = X2, JX2 = −X1, JX3 = X4, JX4 = −X3, JX5 = X6, JX6 = −X5,

which induces an almost complex structure on M . It is easy to see that the Nijenhuis
tensor vanishes, hence M is a complex manifold.

M is a non-toral solvmanifold which is a quotient of a completely solvable Lie
group. Therefore, M cannot be Kählerian by Theorem 3.12.

The authors of [33] considered the relations between the above three properties
for closed symplectic manifolds. We want to try to complete [33, Theorem 3.1 Table
1] in the case of symplectic solvmanifolds. Actually, the mentioned table deals with
symplectically aspherical closed manifolds, but note that symplectic solvmanifolds are
symplectically aspherical.

We start our investigations by the examination of the Lefschetz property in di-
mension four.

Theorem 9.2. A four-dimensional symplectic solvmanifold is not (Hard) Lef-
schetz if and only if it is a non-toral nilmanifold. Especially, the (Hard) Lefschetz
property is independent of the choice of the symplectic form.

Proof. By Theorem 6.2, there are five classes of four-dimensional symplectic
solvmanifolds. Three of them are nilmanifolds and satisfy the claim by Corollary 2.9.

There remain two non-nilmanifolds to consider. We start with a quotient of the
Lie group which has g−1

3.1 ⊕ g1 as Lie algebra, see Table A.1. The Lie group is com-
pletely solvable, hence the Lie algebra cohomology is isomorphic to the solvmanifold’s
cohomology. If x1, . . . , x4 denote the left-invariant one-forms which are dual to the
basis given in Table A.1, one computes

H1 = 〈[x3], [x4]〉,H2 = 〈[x12], [x34]〉, H3 = 〈[x123], [x124]〉.(14)

The class representing a symplectic form must be of the form [a x12 + b x34] with
a, b �= 0 and obviously, the Lefschetz map with respect to this class is an isomorphism.

Now, consider a solvmanifold G/Γ such that the Lie algebra of G is g03.5 ⊕ g1
and b1(G/Γ) = 2. A short computation yields that the Lie algebra cohomology of
g3.5 ⊕ g1 is the same as in (14). Since G/Γ is compact and parallelisable, we see
further bi(G/Γ) = 2 for i ∈ {1, 2, 3}, and Theorem 3.10 (i) implies that (14) also gives
the cohomology of G/Γ. We have yet seen that a symplectic four-manifold with this
cohomology is Hard Lefschetz.
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Denote KT “the” four-dimensional symplectic nilmanifold with b1(KT ) = 3. We
have seen that KT is not formal and not Lefschetz. Its square has the following
properties:

Theorem 9.3 ([33]). KT ×KT is not formal, not Lefschetz and has even odd-
degree Betti numbers.

Next, we are looking for an example of a formal manifold that is not Lefschetz
and has even odd degree Betti numbers resp. an odd odd degree Betti number.

Theorem 9.4. The Lie group G6.78 admits a lattice Γ, see above. M := G6.78/Γ
is a formal solvmanifold with b1(M) = 1 that admits a symplectic form ω such that
(M,ω) is not Hard Lefschetz. Moreover, (M × M,ω × ω) is a formal symplectic
manifold with even odd degree Betti numbers that is not Hard Lefschetz.

Proof. By Theorem 8.3.4, M is a formal symplectic manifold with Betti numbers
b1(M) = b2(M) = 1. Note that this implies that M ×M is symplectic and formal
(the latter property by Proposition 1.1.7).

Corollary 1.2.3 forces M to be not Lefschetz and since [20, Proposition 4.2] says
that a product is Lefschetz if and only if both factors are Lefschetz, M ×M is not
Lefschetz.

M is a six-dimensional solvmanifold and so it is parallelisable. Hence the fact
b0(M) = b1(M) = b2(M) = 1 implies b3(M) = 2. This and Poincaré Duality imply
b1(M ×M) = b11(M ×M) = 2, b3(M ×M) = b9(M ×M) = 6 and b5(M ×M) =
b7(M ×M) = 4.

In 1990, Benson and Gordon [4, Example 3] constructed an eight-dimensional
non-exact symplectic and completely solvable Lie algebra that does not satisfy the
Hard Lefschetz property, but they did not know whether the corresponding connected
and simply-connected Lie group GBG admits a lattice.

Fernández, de León and Saralegui computed in [19, Proposition 3.2] the minimal
model of the complex of the left-invariant differential forms on GBG. It is formal
and its cohomology of odd degree is even-dimensional. If GBG admits a lattice, by
completely solvability, the corresponding solvmanifold would be a symplectic and
formal manifold with even odd degree Betti numbers that violates the Hard Lefschetz
property.

In 2000, Tralle [55] claimed that a lattice does not exist but Sawai and Yamada
noted 2005 Tralle’s proof would contain calculatory errors and constructed a lattice
[51, Theorem 1]. This proves the next theorem.

Theorem 9.5. There exists an eight-dimensional symplectic and formal solv-
manifold MBG with even odd degree Betti numbers that is not Hard Lefschetz.

We sum up the above results in Table 9.1 on page 245. It is an enlargement of
[33, Theorem 3.1 Table 1].

Unfortunately, the missing example does not arise among the six-dimensional
solvmanifolds that possess the same cohomology as the corresponding Lie algebra.
We omit the discussion here.
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Table 9.1: Relations of the Kähler properties

Formality Hard Lefschetz b2i+1 ≡ 0(2) Example

yes yes yes Kähler
yes yes no impossible
yes no yes MBG, G6.78/Γ×G6.78/Γ
yes no no G6.78/Γ
no yes yes ?
no yes no impossible
no no yes KT ×KT
no no no KT

Appendix A. Lists of Lie Algebras.

In Table A.1, we give the isomorphism classes of Lie algebras of the simply-
connected solvable Lie groups up to dimension four that possesses lattices. The des-
ignation gi,j means the j-th indecomposable solvable Lie algebra of dimension i. The
choice of the integer j bases on the notation of [40]. The superscripts, if any, give the
values of the continuous parameters on which the algebra depends.

Table A.1: Solvmanifolds up to dimension four

[Xi, Xj ] cpl. solv.

g1 abelian

2g1 abelian

3g1 abelian
g3.1 [X2, X3] = X1 nilpotent

g−1
3.4 [X1, X3] = X1, [X2, X3] = −X2 yes

g03.5 [X1, X3] = −X2, [X2, X3] = X1 no

4g1 abelian
g3.1 ⊕ g1 [X2, X3] = X1 nilpotent

g−1
3.4 ⊕ g1 [X1, X3] = X1, [X2, X3] = −X2 yes

g03.5 ⊕ g1 [X1, X3] = −X2, [X2, X3] = X1 no
g4.1 [X2, X4] = X1, [X3, X4] = X2 nilpotent

g
p,−p−1
4.5 [X1, X4] = X1, [X2, X4] = pX2, yes

[X3, X4] = (−p− 1)X3, − 1
2 ≤ p < 0

g
−2p,p
4.6 [X1, X4] = −2pX1, [X2, X4] = pX2 −X3, no

[X3, X4] = X2 + pX3, p > 0

g−1
4.8 [X2, X3] = X1, [X2, X4] = X2, [X3, X4] = −X3 yes

g04.9 [X2, X3] = X1, [X2, X4] = −X3, [X3, X4] = X2 no

We do not claim that the corresponding Lie groups admit a lattice for all param-
eters. We just know that there exist such for certain parameters!

The set of non-isomorphic five dimensional nilpotent Lie algebras is exhausted by
three types of decomposable algebras and six indecomposables which are listed in the
next table. The designation is taken from [41].
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Table A.2: 5-dimensional nilpotent algebras

[Xi, Xj ]

5g1 abelian
g3.1 ⊕ 2g1 [X2, X3] = X1

g4.1 ⊕ g1 [X2, X4] = X1, [X3, X4] = X2

g5.1 [X3, X5] = X1, [X4, X5] = X2

g5.2 [X2, X5] = X1, [X3, X5] = X2, [X4, X5] = X3

g5.3 [X2, X4] = X3, [X2, X5] = X1, [X4, X5] = X2

g5.4 [X2, X4] = X1, [X3, X5] = X1

g5.5 [X3, X4] = X1, [X2, X5] = X1, [X3, X5] = X2

g5.6 [X3, X4] = X1, [X2, X5] = X1, [X3, X5] = X2, [X4, X5] = X3

There are 24 classes of solvable and non-nilpotent decomposable Lie algebras in
dimension five. The unimodular among them are the ones in Table A.3.

Table A.3: 5-dimensional decomposable unimodular non-nilpotent algebras

[Xi, Xj ] cpl. solv.

g−1
3.4 ⊕ 2g1 [X1, X3] = X1, [X2, X3] = −X2 yes

g03.5 ⊕ 2g1 [X1, X3] = −X2, [X2, X3] = X1 no

g−2
4.2 ⊕ g1 [X1, X4] = −2X1, [X2, X4] = X2, yes

[X3, X4] = X2 +X3

g
p,−p−1
4.5 ⊕ g1 [X1, X4] = X1, [X2, X4] = pX2, yes

[X3, X4] = (−p− 1)X3, − 1
2 ≤ p < 0

g
−2p,p
4.6 ⊕ g1 [X1, X4] = −2pX1, [X2, X4] = pX2 −X3, no

[X3, X4] = X2 + pX3, p > 0

g−1
4.8 ⊕ g1 [X2, X3] = X1, [X2, X4] = X2, [X3, X4] = −X3 yes

g04.9 ⊕ g1 [X2, X3] = X1, [X2, X4] = −X3, [X3, X4] = X2 no

Except for g4.2 ⊕ g1, to each class of algebras there is a connected and simply-
connected solvable Lie group admitting a lattice and has a Lie algebra belonging to
the class.

Mubarakzjanov’s list in [41] contains 33 classes of five-dimensional indecompos-
able non-nilpotent solvable Lie algebras, namely g5.7, . . . , g5.39. We list the unimod-
ular among them in Tables A.4 to A.7.

Note that there is a minor misprint in [41] which has been corrected in the list
below.

Table A.4: 5-dimensional indecomposable unimodular almost abelian algebras

[Xi, Xj ] cpl. solv.
g
p,q,r
5.7 [X1, X5] = X1, [X2, X5] = pX2, yes

[X3, X5] = qX3, [X4, X5] = rX4,
−1 ≤ r ≤ q ≤ p ≤ 1, pqr �= 0, p+ q + r = −1

(Continued on next page)
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Table A.4: 5-dimensional indecomposable unimodular almost abelian algebras

[Xi, Xj] cpl. solv.
g−1
5.8 [X2, X5] = X1, [X3, X5] = X3, [X4, X5] = −X4, yes

g
p,−2−p
5.9 [X1, X5] = X1, [X2, X5] = X1 +X2, [X3, X5] = pX3, yes

[X4, X5] = (−2− p)X4, p ≥ −1
g−3
5.11 [X1, X5] = X1, [X2, X5] = X1 +X2, yes

[X3, X5] = X2 +X3, [X4, X5] = −3X4,

g
−1−2q,q,r
5.13 [X1, X5] = X1, [X2, X5] = (−1− 2q)X2, no

[X3, X5] = qX3 − rX4, [X4, X5] = rX3 + qX4,
−1 ≤ q ≤ 0, q �= − 1

2 , r �= 0
g05.14 [X2, X5] = X1, [X3, X5] = −X4, [X4, X5] = X3 no

g−1
5.15 [X1, X5] = X1, [X2, X5] = X1 +X2, yes

[X3, X5] = −X3, [X4, X5] = X3 −X4

g
−1,q
5.16 [X1, X5] = X1, [X2, X5] = X1 +X2, no

[X3, X5] = −X3 − qX4, [X4, X5] = qX3 −X4

q �= 0

g
p,−p,r
5.17 [X1, X5] = pX1 −X2, [X2, X5] = X1 + pX2, no

[X3, X5] = −pX3 − rX4, [X4, X5] = rX3 − pX4

r �= 0
g05.18 [X1, X5] = −X2, [X2, X5] = X1, no

[X3, X5] = X1 −X4, [X4, X5] = X2 +X3

Table A.5: 5-dimensional indecomposable unimodular algebras with nilradical g3.1 ⊕ g1

[Xi, Xj ] cpl. solv.

g
p,−2p−2
5.19 [X2, X3] = X1, [X1, X5] = (1 + p)X1, [X2, X5] = X2, yes

[X3, X5] = pX3, [X4, X5] = (−2p− 2)X4, p �= −1
g−1
5.20 [X2, X3] = X1, [X2, X5] = X2, [X3, X5] = −X3, yes

[X4, X5] = X1

g−4
5.23 [X2, X3] = X1, [X1, X5] = 2X1, [X2, X5] = X2 +X3, yes

[X3, X5] = X3, [X4, X5] = −4X4

g
p,4p
5.25 [X2, X3] = X1, [X1, X5] = 2pX1, [X2, X5] = pX2 +X3, no

[X3, X5] = −X2 + pX3, [X4, X5] = −4pX4, p �= 0

g
0,ε
5.26 [X2, X3] = X1, [X2, X5] = X3, [X3, X5] = −X2, no

[X4, X5] = εX1, ε = ±1
g
− 3

2

5.28 [X2, X3] = X1, [X1, X5] = − 1
2X1, [X2, X5] = − 3

2X2, yes
[X3, X5] = X3 +X4, [X4, X5] = X4

There are ten classes of decomposable nilpotent Lie algebras in dimension six:
6g1, g3.1 ⊕ 3g1, 2g3.1, g4.1 ⊕ 2g1 and g5.i ⊕ g1 for i ∈ {1, . . .6}.

Table A.8 contains the six-dimensional indecomposable nilpotent real Lie alge-
bras. They base on Morozov’s classification in [38], where nilpotent algebras over a
field of characteristic zero are determined. Note that over R, there is only one iso-
morphism class of Morozov’s indecomposable type 5 resp. type 10 and type 14 resp.
18 splits into two non-isomorphic ones.
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Table A.6: 5-dimensional indecomposable unimodular algebras with nilradical g4.1

[Xi, Xj ] cpl. solv.

g
− 4

3

5.30 [X2, X4] = X1, [X3, X4] = X2, [X1, X5] =
2
3X1, yes

[X2, X5] = − 1
3X2, [X3, X5] = − 4

3X3, [X4, X5] = X4,

Table A.7: 5-dimensional indecomposable unimodular algebras with nilradical 3g1

[Xi, Xj ] cpl. solv.

g
−1,−1
5.33 [X1, X4] = X1, [X3, X4] = −X3, yes

[X2, X5] = X2, [X3, X5] = −X3

g
−2,0
5.35 [X1, X4] = −2X1, [X2, X4] = X2, [X3, X4] = X3 no

[X2, X5] = −X3, [X3, X5] = X2

Table A.8: 6-dimensional indecomposable nilpotent algebras

[Xi, Xj ]
g6.N1 [X1, X2] = X3, [X1, X3] = X4, [X1, X5] = X6

g6.N2 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X1, X5] = X6

g6.N3 [X1, X2] = X6, [X1, X3] = X4, [X2, X3] = X5

g6.N4 [X1, X2] = X5, [X1, X3] = X6, [X2, X4] = X6

g6.N5 [X1, X3] = X5, [X1, X4] = X6, [X2, X3] = −X6, [X2, X4] = X5

g6.N6 [X1, X2] = X6, [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X5

g6.N7 [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X6

g6.N8 [X1, X2] = X3 +X5, [X1, X3] = X4, [X2, X5] = X6

g6.N9 [X1, X2] = X3, [X1, X3] = X4, [X1, X5] = X6, [X2, X3] = X5

g6.N10 [X1, X2] = X3, [X1, X3] = X5, [X1, X4] = X6,
[X2, X3] = −X6, [X2, X4] = X5

g6.N11 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5, [X2, X3] = X6

g6.N12 [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g6.N13 [X1, X2] = X5, [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g±1
6.N14 [X1, X3] = X4, [X1, X4] = X6, [X2, X3] = X5, [X2, X5] = ±X6

g6.N15 [X1, X2] = X3 +X5, [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g6.N16 [X1, X3] = X4, [X1, X4] = X5, [X1, X5] = X6,
[X2, X3] = X5, [X2, X4] = X6

g6.N17 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X6, [X2, X5] = X6

g±1
6.N18 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X6,

[X2, X3] = X5, [X2, X5] = ±X6

g6.N19 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5,
[X1, X5] = X6, [X2, X3] = X6

g6.N20 [X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5,
[X1, X5] = X6, [X2, X3] = X5, [X2, X4] = X6

g6.N21 [X1, X2] = X3, [X1, X5] = X6, [X2, X3] = X4,
[X2, X4] = X5, [X3, X4] = X6

(Continued on next page)
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Table A.8: 6-dimensional indecomposable nilpotent algebras

[Xi, Xj ]
g6.N22 [X1, X2] = X3, [X1, X3] = X5, [X1, X5] = X6,

[X2, X3] = X4, [X2, X4] = X5, [X3, X4] = X6

Mubarakzjanov’s list in [42] contains 99 classes of six-dimensional indecomposable
almost nilpotent Lie algebras, namely g6.1, . . . , g6.99.

As first remarked by Turkowski, there is one algebra missing. The complete (and
partly corrected) list can be found in the article [10] of Campoamor-Stursberg13,
where the missing algebra is denoted by g∗6.92.

We list the unimodular among this 100 algebras in Tables A.9 to A.16 (where
some minor misprints have been corrected). Note that there is no table with Lie
algebras with nilradical g5.6 since the only such algebra is not unimodular.

Table A.9: 6-dimensional indecomposable unimodular almost abelian algebras

[Xi, Xj ] cpl. solv.

g
a,b,c,d
6.1 [X1, X6] = X1, [X2, X6] = aX2, [X3, X6] = bX3, yes

[X4, X6] = cX4, [X5, X6] = dX5

0 < |d| ≤ |c| ≤ |b| ≤ |a| ≤ 1, a+ b+ c+ d = −1
g
a,c,d
6.2 [X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X3, yes

[X4, X6] = cX4, [X5, X6] = dX5

0 < |d| ≤ |c| ≤ 1, 2a+ c+ d = −1
g
−d+1

3
,d

6.3 [X1, X6] = − d+1
3 X1, [X2, X6] = X1 − d+1

3 X2, yes
[X3, X6] = X2 − d+1

3 X3, [X4, X6] = X4, [X5, X6] = dX5

0 < |d| ≤ 1,

g
− 1

4

6.4 [X1, X6] = − 1
4X1, [X2, X6] = X1 − 1

4X2, yes
[X3, X6] = X2 − 1

4X3, [X4, X6] = X3 − 1
4X4, [X5, X6] = X5

g
a,b
6.6 [X1, X6] = X1, [X2, X6] = aX2, [X3, X6] = X2 + aX3, yes

[X4, X6] = bX4, [X5, X6] = X4 + bX5, a ≤ b, a+ b = − 1
2

g
a,− 2

3
a

6.7 [X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X2 + aX3, yes
[X4, X6] = − 3

2aX4, [X5, X6] = X4 − 3
2aX5, a �= 0

g
a,b,c,p
6.8 [X1, X6] = aX1, [X2, X6] = bX2, [X3, X6] = cX3, no

[X4, X6] = pX4 −X5, [X5, X6] = X4 + pX5

0 < |c| ≤ |b| ≤ |a|, a+ b+ c+ 2p = 0

g
a,b,p
6.9 [X1, X6] = aX1, [X2, X6] = bX2, [X3, X6] = X2 + bX3, no

[X4, X6] = pX4 −X5, [X5, X6] = X4 + pX5,
a �= 0, a+ 2b+ 2p = 0

g
a,− 3

2
a

6.10 [X1, X6] = aX1, [X2, X6] = X1 + aX2, [X3, X6] = X2 + aX3, no
[X4, X6] = − 3

2aX4 −X5, [X5, X6] = X4 − 3
2aX5

g
a,p,q,s
6.11 [X1, X6] = aX1, [X2, X6] = pX2 −X3, [X3, X6] = X2 + pX3, no

[X4, X6] = qX4 − sX5, [X5, X6] = sX4 + qX5,
(Continued on next page)

13The author wishes to express his gratitude to R. Campoamor-Stursberg for providing him with
copies of [10] and [42].
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Table A.9: 6-dimensional indecomposable unimodular almost abelian algebras

[Xi, Xj ] cpl. solv.
as �= 0, a+ 2p+ 2q = 0

g
−4p,p
6.12 [X1, X6] = −4pX1, [X2, X6] = pX2 −X3, no

[X3, X6] = X2 + pX3, [X4, X6] = X2 + pX4 −X5,
[X5, X6] = X3 +X4 + pX5, p �= 0

Table A.10: 6-dimensional indecomposable unimodular algebras with nilradical g3.1 ⊕ 2g1

[Xi, Xj ] cpl. solv.

g
a,b,h
6.13 [X2, X3] = X1, [X1, X6] = (a+ b)X1, [X2, X6] = aX2, yes

[X3, X6] = bX3, [X4, X6] = X4, [X5, X6] = hX5,
a �= 0, 2a+ 2b+ h = −1

g
a,b
6.14 [X2, X3] = X1, [X1, X6] = (a+ b)X1, [X2, X6] = aX2, yes

[X3, X6] = bX3, [X4, X6] = X4, [X5, X6] = X1 + (a+ b)X5,
a �= 0, a+ b = − 1

3

g−1
6.15 [X2, X3] = X1, [X2, X6] = X2 +X4, yes

[X3, X6] = −X3 +X5, [X4, X6] = X4, [X5, X6] = −X5,

g
− 1

2
,0

6.17 [X2, X3] = X1, [X1, X6] = − 1
2X1, [X2, X6] = − 1

2X2, yes
[X3, X6] = X4, [X5, X6] = X5,

g
a,−2a−3
6.18 [X2, X3] = X1, [X1, X6] = (1 + a)X1, [X2, X6] = aX2, yes

[X3, X6] = X3 +X4, [X4, X6] = X4,
[X5, X6] = −(2a+ 3)X5, a �= − 3

2

g
− 4

3

6.19 [X2, X3] = X1, [X1, X6] = − 1
3X1, [X2, X6] = − 4

3X2, yes
[X3, X6] = X3 +X4, [X4, X6] = X4, [X5, X6] = X1 − 1

3X5

g−3
6.20 [X2, X3] = X1, [X1, X6] = X1, [X3, X6] = X3 +X4, yes

[X4, X6] = X1 +X4, [X5, X6] = −3X5

ga6.21 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, yes
[X3, X6] = aX3, [X4, X6] = X4, [X5, X6] = −(4a+ 1)X5

a �= − 1
4

g
− 1

6

6.22 [X2, X3] = X1, [X1, X6] = − 1
3X1, [X2, X6] = − 1

6X2 +X3, yes
[X3, X6] = − 1

6X3, [X4, X6] = X4, [X5, X6] = X1 − 1
3X5

g
a,−7a,ε
6.23 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, yes

[X3, X6] = aX3 +X4, [X4, X6] = aX4,
[X5, X6] = εX1 − 5aX5, εa = 0

g
b,−1−b
6.25 [X2, X3] = X1, [X1, X6] = −bX1, yes

[X2, X6] = X2, [X3, X6] = −(1 + b)X3,
[X4, X6] = bX4 +X5, [X5, X6] = bX5

g−1
6.26 [X2, X3] = X1, [X2, X6] = X2, [X3, X6] = −X3 yes

[X4, X6] = X5, [X5, X6] = X1

g
−2b,b
6.27 [X2, X3] = X1, [X1, X6] = −bX1, [X2, X6] = −2bX2, yes

[X3, X6] = bX3 +X4, [X4, X6] = bX4 +X5,
[X5, X6] = bX5, b �= 0
(Continued on next page)
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Table A.10: 6-dimensional indecomposable unimodular algebras with nilradical g3.1 ⊕ 2g1

[Xi, Xj] cpl. solv.

g−2
6.28 [X2, X3] = X1, [X1, X6] = 2X1, [X2, X6] = X2 +X3, yes

[X3, X6] = X3, [X4, X6] = −2X4 +X5, [X5, X6] = −2X5

g
−2b,b,ε
6.29 [X2, X3] = X1, [X1, X6] = −bX1, [X2, X6] = −2bX2, yes

[X3, X6] = bX3 +X4, [X4, X6] = bX4 +X5,
[X5, X6] = εX1 + bX5, εb = 0 (?)

g
a,−6a−h,h,ε
6.32 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = εX1 + (2a+ h)X4,
[X5, X6] = −(6a+ h)X5, a > − 1

4h, εh = 0

g
a,−6a
6.33 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = −6aX4,
[X5, X6] = X1 + 2aX5, a ≥ 0

g
a,−4a,ε
6.34 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = −2aX4,
[X5, X6] = εX1 − 2aX5, εa = 0

g
a,b,c
6.35 [X2, X3] = X1, [X1, X6] = (a+ b)X1, [X2, X6] = aX2, no

[X3, X6] = bX3, [X4, X6] = cX4 +X5,
[X5, X6] = −X4 + cX5, a+ b+ c = 0, a2 + b2 �= 0

g
a,−2a
6.36 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = aX3, [X4, X6] = −2aX4 +X5,
[X5, X6] = −X4 − 2aX5

g
−a,−2a,s
6.37 [X2, X3] = X1, [X1, X6] = 2aX1, [X2, X6] = aX2 +X3, no

[X3, X6] = −X2 + aX3, [X4, X6] = −2aX4 + sX5,
[X5, X6] = −sX4 − 2aX5, s �= 0

g06.38 [X2, X3] = X1, [X2, X6] = X3 +X4, no
[X3, X6] = −X2 +X5, [X4, X6] = X5, [X5, X6] = −X4

Table A.11: 6-dimensional indecomposable unimodular algebras with nilradical g4.1 ⊕ g1

[Xi, Xj] c. s.

g
−4−3h,h
6.39 [X1, X5] = X2, [X4, X5] = X1, [X1, X6] = (1 + h)X1, yes

[X2, X6] = (2 + h)X2, [X3, X6] = −(4 + 3h)X3,
[X4, X6] = hX4, [X5, X6] = X5, h �= − 4

3

g
− 3

2

6.40 [X1, X5] = X2, [X4, X5] = X1 yes
[X1, X6] = − 1

2X1, [X2, X6] =
1
2X2,

[X3, X6] = X2 +
1
2X3, [X4, X6] = − 3

2X4, [X5, X6] = X5

g−1
6.41 [X1, X5] = X2, [X4, X5] = X1 yes

[X2, X6] = X2, [X3, X6] = −X3,
[X4, X6] = X3 −X4, [X5, X6] = X5

g
− 5

3

6.42 [X1, X5] = X2, [X4, X5] = X1, yes
[X1, X6] = − 2

3X1, [X2, X6] =
1
3X2, [X3, X6] = X3

[X4, X6] = − 5
3X4, [X5, X6] = X3 +X5

g−7
6.44 [X1, X5] = X2, [X4, X5] = X1, yes

(Continued on next page)
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Table A.11: 6-dimensional indecomposable unimodular algebras with nilradical g4.1 ⊕ g1

[Xi, Xj ] c. s.
[X1, X6] = 2X1, [X2, X6] = 3X2, [X3, X6] = −7X3

[X4, X6] = X4, [X5, X6] = X4 +X5

g
−3,ε
6.47 [X1, X5] = X2, [X4, X5] = X1, yes

[X1, X6] = X1, [X2, X6] = X2, [X3, X6] = −3X3

[X4, X6] = εX2 +X4, ε ∈ {0,±1}

Table A.12: 6-dimensional indecomposable unimodular algebras with nilradical g5.1

[Xi, Xj ] c. s.

g
2(1+l),l
6.54 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = lX2, [X3, X6] = (−1− 2l)X3

[X4, X6] = (−2− l)X4, [X5, X6] = 2(1 + l)X5

g−4
6.55 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −3X2, [X3, X6] = 4X3

[X4, X6] = X1 +X4, [X5, X6] = −3X5

g
4
3

6.56 [X3, X5] = X1, [X4, X5] = X2, yes
[X1, X6] = X1, [X2, X6] = − 1

3X2, [X3, X6] = X2 − 1
3X3

[X4, X6] = − 5
3X4, [X5, X6] =

4
3X5

g
− 2

3

6.57 [X3, X5] = X1, [X4, X5] = X2, yes
[X1, X6] = X1, [X2, X6] = − 4

3X2, [X3, X6] =
5
3X3

[X4, X6] = − 2
3X4, [X5, X6] = X4 − 2

3X5

g
− 3

4

6.61 [X3, X5] = X1, [X4, X5] = X2, yes
[X1, X6] = 2X1, [X2, X6] = − 3

2X2, [X3, X6] = X3

[X4, X6] = − 5
2X4, [X5, X6] = X3 +X5

g−1
6.63 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = X1, [X2, X6] = −X2, [X3, X6] = X3

[X4, X6] = X2 −X4

g
4l,l
6.65 [X3, X5] = X1, [X4, X5] = X2, yes

[X1, X6] = lX1 +X2, [X2, X6] = lX2, [X3, X6] = −3lX3 +X4

[X4, X6] = −3lX4, [X5, X6] = 4lX5

g
4p,p
6.70 [X3, X5] = X1, [X4, X5] = X2, no

[X1, X6] = pX1 +X2, [X2, X6] = −X1 + pX2,
[X3, X6] = −3pX3 +X4, [X4, X6] = −X3 − 3pX4,

[X5, X6] = 4pX5

Table A.13: 6-dimensional indecomposable unimodular algebras with nilradical g5.2

[Xi, Xj ] cpl. solv.

g
− 7

4

6.71 [X2, X5] = X1, [X3, X5] = X2, [X4, X5] = X3, yes
[X1, X6] =

5
4X1, [X2, X6] =

1
4X2, [X3, X6] = − 3

4X3

[X4, X6] = − 7
4X4, [X5, X6] = X5
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Table A.14: 6-dimensional indecomposable unimodular algebras with nilradical g5.3

[Xi, Xj] cpl. solv.

g−1
6.76 [X2, X4] = X3, [X2, X5] = X1, [X4, X5] = X2 yes

[X1, X6] = −X1, [X3, X6] = X3,
[X4, X6] = X4, [X5, X6] = −X5

g6.78 [X2, X4] = X3, [X2, X5] = X1, [X4, X5] = X2 yes
[X1, X6] = −X1, [X3, X6] = X3,

[X4, X6] = X3 +X4, [X5, X6] = −X5

Table A.15: 6-dimensional indecomposable unimodular algebras with nilradical g5.4

[Xi, Xj] cpl. solv.

g
0,l
6.83 [X2, X4] = X1, [X3, X5] = X1, yes

[X2, X6] = lX2, [X3, X6] = lX3,
[X4, X6] = −lX4, [X5, X6] = −X4 − lX5

g6.84 [X2, X4] = X1, [X3, X5] = X1, yes
[X2, X6] = X2, [X4, X6] = −X4, [X5, X6] = X3

g
0,μ0,ν0
6.88 [X2, X4] = X1, [X3, X5] = X1, cpl. solv.

[X2, X6] = μ0X2 + ν0X3, [X3, X6] = −ν0X2 + μ0X3, �
[X4, X6] = −μ0X4 + ν0X5, [X5, X6] = −ν0X4 − μ0X5 ν0 = 0

g
0,ν0,s
6.89 [X2, X4] = X1, [X3, X5] = X1, cpl. solv.

[X2, X6] = sX2, [X3, X6] = ν0X5, �
[X4, X6] = −sX4, [X5, X6] = −ν0X3 ν0 = 0

g
0,ν0
6.90 [X2, X4] = X1, [X3, X5] = X1, cpl. solv.

[X2, X6] = X4, [X3, X6] = ν0X5, �
[X4, X6] = X2, [X5, X6] = −ν0X3, ν0 �= 1 ν0 = 0

g6.91 [X2, X4] = X1, [X3, X5] = X1, no
[X2, X6] = X4, [X3, X6] = X5,
[X4, X6] = X2, [X5, X6] = −X3

g
0,μ0,ν0
6.92 [X2, X4] = X1, [X3, X5] = X1, no

[X2, X6] = ν0X3, [X3, X6] = −μ0X2,
[X4, X6] = μ0X5, [X5, X6] = −ν0X4

g06.92∗ [X2, X4] = X1, [X3, X5] = X1, no
[X2, X6] = X4, [X3, X6] = X5,

[X4, X6] = −X2, [X5, X6] = −X3

g
0,ν0
6.93 [X2, X4] = X1, [X3, X5] = X1, cpl. solv.

[X2, X6] = X4 + ν0X5, [X3, X6] = ν0X4, �
[X4, X6] = X2 − ν0X3, [X5, X6] = −ν0X2 |ν0| ≤ 1

2

Table A.16: 6-dimensional indecomposable unimodular algebras with nilradical g5.5

[Xi, Xj] cpl. solv.

g−2
6.94 [X3, X4] = X1, [X2, X5] = X1, [X3, X5] = X2 yes

[X2, X6] = −X2, [X3, X6] = −2X3,
[X4, X6] = 2X4, [X5, X6] = X5
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The six-dimensional solvable Lie algebras with four-dimensional nilradical were
classified by Turkowski in [56]. We list the unimodular among them in Tables A.17 –
A.19. Note that there is no table with Lie algebras with nilradical g4.1 since the only
such algebra is not unimodular.

The equations for the twenty-fifth algebra in Turkowoski’s list contain a minor
misprint that we have corrected here.

Table A.17: 6-dimensional indecomposable unimodular algebras with nilradical 4g1

[Xi, Xj ] c. s.

g
a,b,c,d
6.101 [X5, X1] = aX1, [X5, X2] = cX2, [X5, X4] = X4, yes

[X6, X1] = bX1, [X6, X2] = dX2, [X6, X3] = X3,
a+ c = −1, b+ d = −1, ab �= 0, c2 + d2 �= 0

g
−1,b,−2−b
6.102 [X5, X1] = −X1, [X5, X2] = X2, [X5, X3] = X4, yes

[X6, X1] = bX1, [X6, X2] = (−2− b)X2,
[X6, X3] = X3, [X6, X4] = X4

g
−2,−1
6.105 [X5, X1] = −2X1, [X5, X3] = X3 +X4, yes

[X5, X4] = X4, [X6, X1] = −X1, [X6, X2] = X2

g
−1,b,0
6.107 [X5, X1] = −X1, [X5, X2] = −X2, [X5, X3] = X3 +X4, no

[X5, X4] = X4, [X6, X1] = X2, [X6, X2] = −X1

g
a,b,−a,d
6.113 [X5, X1] = aX1, [X5, X2] = −aX2, [X5, X3] = X4, no

[X6, X1] = bX1, [X6, X2] = dX2, [X6, X3] = X3

[X6, X4] = X4, a2 + b2 �= 0, a2 + d2 �= 0, b+ d = −2
g
a,−1,−a

2

6.114 [X5, X1] = aX1, [X5, X3] = −a
2X3 +X4, no

[X5, X4] = −X3 +
a
2X4, [X6, X1] = −X1,

[X6, X2] = X2, a �= 0

g
−1,b,c,−c
6.115 [X5, X1] = X1, [X5, X2] = X2, no

[X5, X3] = −X3 + bX4, [X5, X4] = −bX3 −X4,
[X6, X1] = cX1 +X2, [X6, X2] = −X1 + cX2

[X6, X3] = −cX3, [X6, X4] = −cX4, b �= 0

g
0,−1
6.116 [X5, X1] = X2, [X5, X3] = X4, [X5, X4] = −X3 no

[X6, X1] = X1, [X6, X2] = X2,
[X6, X3] = −X3, [X6, X4] = −X4

g
0,b,−1
6.118 [X5, X1] = X2, [X5, X2] = −X1, [X5, X3] = bX4, no

[X5, X4] = −bX3, [X6, X1] = X1, [X6, X2] = X2

[X6, X3] = −X3, [X6, X4] = −X4, b �= 0

g
−1,−1
6.120 [X5, X2] = −X2, [X5, X4] = X4, [X5, X6] = X1, yes

[X6, X2] = −X1, [X6, X3] = X3

g
0,−2
6.125 [X5, X3] = X4, [X5, X4] = −X3, [X5, X6] = X1, no

[X6, X2] = −2X2, [X6, X3] = X3, [X6, X4] = X4

In the introduction of [42], Mubarakzjanov quotes his own result that a six-
dimensional solvable Lie algebra with three-dimensional nilradical is decomposable.
Therefore, by Proposition 3.4, we have listed all unimodular indecomposable solvable
Lie algebras of dimension six.

The first Betti numbers of the six-dimensional unimodular indecomposable Lie
algebras are listed in Table A.20. The word “always” means that the certain value
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Table A.18: 6-dimensional indecomposable unimodular algebras with nilradical g3.1 ⊕ g1

[Xi, Xj ] c. s.

g
−2,−2
6.129 [X2, X3] = X1, [X5, X1] = X1, [X5, X2] = X2, yes

[X5, X4] = −2X4, [X6, X1] = X1,
[X6, X3] = X3, [X6, X4] = −2X4

Table A.19: 6-dimensional indecomposable unimodular algebras with nilradical g3.1 ⊕ g1
(continued)

[Xi, Xj ] c. s.

g
0,−4
6.135 [X2, X3] = X1, [X5, X2] = X3, [X5, X3] = −X1, no

[X6, X1] = 2X1, [X6, X2] = X2,
[X6, X3] = X3, [X6, X4] = −4X4

arises independent of the parameters on which the Lie algebra depends, but we sup-
pose that the parameters are chosen such that Lie algebra is unimodular. The word
“otherwise” in the tables means that this value arises for all parameters such that the
Lie algebra is unimodular and the parameters are not mentioned in another column
of the Lie algebra’s row.

Table A.20: b1(g6.i) for g6.i unimodular

i b1 = 1 b1 = 2 b1 = 3 b1 = 4 b1 = 5
1 always - - - -
2 a �= 0 a = 0 - - -
3 d �= −1 d = −1 - - -
4 always - - - -
6 a, b �= 0 a = − 1

2 ∧ b = 0 - - -
7 always - - - -
8 always - - - -
9 b �= 0 b = 0 - - -
10 a �= 0 a = 0 - - -
11 always - - - -
12 always - - - -

13 b �= 0 ∧ h �= 0 otherwise
a = − 1

2
∧b

= h = 0
- -

14 otherwise a = − 1
3 ∧ b = 0 - - -

15 always - - - -
17 - always - - -
18 a �= 0 a = 0 - - -
19 always - - - -
20 - always - - -
21 a �= 0 a = 0 - - -
22 always - - - -

(Continued on next page)
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Table A.20: b1(g6.i) for g6.i unimodular

i b1 = 1 b1 = 2 b1 = 3 b1 = 4 b1 = 5
23 a �= 0 - a = 0 - -
25 b /∈ {−1, 0} b ∈ {−1, 0} - - -
26 - always - - -
27 always - - - -
28 always - - - -
29 b �= 0 - b = 0 - -
32 h /∈ {−2a,−6a} otherwise - - -
33 a �= 0 - a = 0 - -
34 a �= 0 - a = 0 - -
35 a, b �= 0 otherwise - - -
36 a �= 0 a = 0 - - -
37 always - - - -
38 always - - - -
39 h �= 0 h = 0 - - -
40 always - - - -
41 always - - - -
42 always - - - -
44 always - - - -
47 - always - - -
54 l /∈ {−2,−1,− 1

2} l ∈ {−2,−1,− 1
2} - - -

55 always - - - -
56 always - - - -
57 always - - - -
61 always - - - -
63 - always - - -
65 l �= 0 - l = 0 - -
70 p �= 0 p = 0 - - -
71 always - - - -
76 always - - - -
78 always - - - -
83 l �= 0 - - l = 0 -
84 - always - - -
88 μ0 �= 0 ∨ ν0 �= 0 - - - μ0 = ν0 = 0
89 ν0 �= 0 ∧ s �= 0 - otherwise - ν0 = s = 0
90 ν0 �= 0 - ν0 = 0 - -
91 always - - - -
92 μ0 �= 0 ∧ ν0 �= 0 - otherwise - μ0 = ν0 = 0
92∗ always - - - -
93 ν0 �= 0 - ν0 = 0 - -
94 always - - - -
101 - always - - -
102 - always - - -
105 - always - - -

(Continued on next page)
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Table A.20: b1(g6.i) for g6.i unimodular

i b1 = 1 b1 = 2 b1 = 3 b1 = 4 b1 = 5
107 - always - - -
113 - always - - -
114 - always - - -
115 - always - - -
116 - always - - -
118 - always - - -
120 - always - - -
125 - always - - -
129 - always - - -
135 - always - - -

Appendix B. Integer Polynomials. In this article, we often try to use neces-
sary conditions for a matrix to be conjugated to an integer matrix. We state briefly
the used results. Vice versa, we sometimes want to find integer matrices with given
minimal polynomial. We also present a few constructions.

Let be n ∈ N+, K a field and A ∈ M(n, n;K). The characteristic polynomial of
A is the monic polynomial

PA(X) := det(X id−A) ∈ K[X ],

and the minimal polynomial mA(X) is the unique monic divisor of lowest degree of
PA(X) in K[X ] such that mA(A) = 0. (Note, by the theorem of Cayley-Hamilton,
one has PA(A) = 0.)

If two matrices are conjugated, then they have the same characteristic resp. min-
imal polynomials.

λ ∈ K is called root of A if λ is a root of the characteristic polynomial, considered
as polynomial in K[X ], where K denotes the algebraic closure of K.

The next proposition follows directly from [35, Corollaries XIV.2.2, XIV.2.3].

Proposition B.1. Let n ∈ N+. If A ∈ M(n, n;C) and B ∈ M(n, n;Q)
are conjugated via an element of GL(n,C), then holds PA(X) = PB(X) ∈ Q[X ],
mA(X) = mB(X) ∈ Q[X ] and mA(X) divides PA(X) in Q[X ].

Proposition B.2. If P (X) ∈ Z[X ], m(X) ∈ Q[X ] are monic polynomials and
m(X) divides P (X) in Q[X ], then holds m(X) ∈ Z[X ].

Proof. Let P (X),m(X) be as in the proposition and f(X) ∈ Q[X ] non-constant
with P (X) = f(X)m(X). There exist k, l ∈ Z \ {0} such that

k f(X) =
∑
i

aiX
i, l m(X) =

∑
j

bjX
j ∈ Z[X ]

are primitive. (An integer polynomial is called primitive if its coefficients are relatively
prime.) We have

kl P (X) = (
∑
i

aiX
i)(

∑
j

bjX
j)
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and claim kl = ±1.
Otherwise, there is a prime p ∈ N that divides kl. Since the coefficients of k f(X)

resp. l m(X) are relatively prime, there are minimal i0, j0 ∈ N such that p does not
divide ai0 resp. bj0 .

The coefficient of X i0+j0 of kl f(X)m(X) is

ai0bj0 + ai0−1bj0+1 + ai0+1bj0−1 + . . .

and p divides each summand except the first. But since p | kl, p divides the whole
sum. This is a contradiction.

Theorem B.3. Let n ∈ N+ and A ∈ M(n, n;C) be conjugated to an integer
matrix. Then holds PA(X),mA(X) ∈ Z[X ].

Proof. This follows from the preceding two propositions.

Lemma B.4 ([29, Lemma 2.2]). Let P (X) = X3 − kX2 + lX − 1 ∈ Z[X ].
Then P has a double root X0 ∈ R if and only if X0 = 1 or X0 = −1 for which

P (X) = X3 − 3X2 + 3X − 1 or P (X) = X3 +X2 −X − 1 respectively.

Proposition B.5 ([27, Proposition 5]). Let λi ∈ R+ with λi +
1
λi

= mi ∈ N+

and mi > 2 for i ∈ {1, 2}.
Then there exists no element in SL(3,Z) with roots λ1, λ2,

1
λ1λ2

.

Proposition B.6. Let P (X) = X4 −mX3 + pX2 − nX + 1 ∈ Z[X ].
Then P has a root with multiplicity > 1 if and only if the zero set of P equals

{1, 1, a, a−1}, {−1,−1, a, a−1}, {a, a−1, a, a−1} or {a,−a−1, a,−a−1} for fixed a ∈ C.

Proof. The most part of the proof was done by Harshavardhan in the proof of
[27, Propositon 2].

We set S := m2 + n2 and T := mn and get the discriminant D of P (X) as

D = 16p4 − 4Sp3 + (T 2 − 80T − 128)p2 + 18S(T + 8)p(15)

+256− 192T + 48T 2 − 4T 3 − 27S2.

Note that P (X) has a root of multiplicity > 1 if and only if D = 0. Solving D = 0
for S, we see

S = − 2

27
p3 +

1

3
pT +

8

3
p± 2

27

√
(p2 − 3T + 12)3,

and since S and T are integers, there is q ∈ Z with

p2 − 3T + 12 = q2,

which implies

S = 4p+
1

27
(p3 − 3pq2 ± 2q3)(16)

T =
1

3
(p2 − q2 + 12).

We first consider the plus sign in equation (16). Then one has

(m+ n)2 = S + 2T =
1

27
(p+ 2q + 6)(p− q + 6)2,

(m− n)2 = S − 2T =
1

27
(p+ 2q − 6)(p− q − 6)2,
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and this implies the existence of ki, li ∈ N, i = 1, 2, such that

3k21 = (p+ 2q + 6)k22,

3l21 = (p+ 2q − 6)l22.

We shall show: |m| = |n|
[If l2 = 0, the claim is proved. Therefore, we can assume l2 �= 0.
Case 1: k2 = 0
Then holds k1 = 0 and this means S + 2T = 0, i.e. (m + n)2 = 0, so we have

m = −n.
Case 2: k2 �= 0
We write k := k1

k2
and l := l1

l2
. Then holds

3k2 = p+ 2q + 6 ∈ Z,

3l2 = p+ 2q − 6 ∈ Z,

and 3(k2 − l2) = 12. Therefore, we have k2 − l2 = 4, so k2 = 4, l2 = 0, i.e. l1 = 0,
S − 2T = 0 and m = n. ]

Now, consider the minus sign in equation (16). Then one has

(m+ n)2 = S + 2T =
1

27
(p− 2q + 6)(p+ q + 6)2,

(m− n)2 = S − 2T =
1

27
(p− 2q − 6)(p+ q − 6)2,

and shows analogously as above |m| = |n|.
We have shown: If P (X) has a multiple root, then holds m = ±n.
If m = n, then one calculates the solutions of D = 0 in (15) as the following
(i) p = −2 + 2m,
(ii) p = −2− 2m,

(iii) p = 2 + m2

4 ,
and if m = −n, then the real solution of D = 0 in (15) is

(iv) p = −2 + m2

4 .
Moreover, a short computation yields the zero set of P (X) in the cases (i) – (iv)

as {1, 1, a, a−1}, {−1,−1, a, a−1}, {a, a−1, a, a−1},{a,−a−1, a,−a−1}, respectively.
Proposition B.7 ([1, Proposition 4.4.14]). Let K be a field and

m(X) = Xn + an−1X
n−1 + . . .+ a1X

1 + a0 ∈ K[X ]

a monic polynomial. Then

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 −a0
1 0 . . . 0 0 −a1
0 1 . . . 0 0 −a2
...

...
. . .

...
...

...
0 0 . . . 1 0 −an−2

0 0 . . . 0 1 −an−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

has minimal polynomial

m(X).

If one is willing to construct an integer matrix with given characteristic and
minimal polynomial, one always can chose any matrix M which has the desired poly-
nomials and try to find an invertible matrix T such that T−1MT has integer entries.
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Of course, this can be difficult. In the case of 4 × 4 - matrices we have the following
easy construction.

Proposition B.8 ([27, Section 2.3.1]).
(i) Let integers m,n, p ∈ Z be given.

Choose m1, . . . ,m4 ∈ Z such that
∑4

i=1 mi = m and set

a := −m2
1p+m3

1m2 +m3
1m3 +m3

1m4 +m1n− 1,

b := (−m2 −m1)p+m1m
2
2 +m1m2m3 +m1m2m4 +m2

2m3 +m2
2m4

+m2
1m2 +m2

1m3 +m2
1m4 + n,

c := m1m2 +m1m3 +m1m4 +m2m3 +m2m4 +m3m4 − p.

Then the matrix

⎛
⎜⎜⎝

m1 0 0 a
1 m2 0 b
0 1 m3 c
0 0 1 m4

⎞
⎟⎟⎠ has X4 −mX3 + pX2 − nX + 1

as characteristic polynomial.

(ii) Let m ∈ 2Z be an even integer. Then the matrix

⎛
⎜⎜⎝

m
2 0 −1 0
0 m

2 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ has

the characteristic polynomial (X2−m
2 X+1)2, and (X2−m

2 X+1) as minimal
polynomial.
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